
Annual Review of Statistics and Its Application

Flexible Models for Complex
Data with Applications
Christophe Ley,1 Slađana Babić,1,2 and Domien Craens1
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Abstract

Probability distributions are the building blocks of statistical modeling and
inference. It is therefore of the utmost importance to know which distribu-
tion to use in what circumstances, as wrong choices will inevitably entail a
biased analysis. In this article, we focus on circumstances involving complex
data and describe the most popular flexible models for these settings.We fo-
cus on the following complex data: multivariate skew and heavy-tailed data,
circular data, toroidal data, and cylindrical data. We illustrate the strength
of flexible models on the basis of concrete examples and discuss major ap-
plications and challenges.
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1. INTRODUCTION

Probability distributions are the building blocks of statistical modeling and inference. Perhaps
more basically yet importantly, they allow us to quantify the uncertainty of random phenomena
and to describe the random behavior of data bymeans of amathematical formula.The latter aspect
seems to be a core need for scientists—an example is the search for universal formulae explaining
physical phenomena or epidemics such as the coronavirus disease 2019 (COVID-19) crisis, where
researchers strive to detect whether the growth rates are of an exponential type or approach amore
reassuring logistic or Gompertz curve ( Jia et al. 2020). This quest for explaining randomness via a
formula (ideally, a simple one) was also the driving force behind Carl Friedrich Gauss’s search for
a probability distribution describing the law of errors of his astronomical measurements (Gauss
1809). The resulting exponential law of errors is nowadays, of course, known as the Gaussian
distribution or normal distribution. The Belgian scientist Adolphe Quetelet propagated the use
of the Gaussian distribution in biology and the social sciences to model various types of data.
Following the efforts of Quetelet, many researchers started to work on modeling all types of data
by means of a meaningful probability distribution, thereby leading to the creation of a plethora
of new models. For instance, in 1897, Galton proposed the log-normal distribution (under the
impetus of finding a transformation rendering positive data normally distributed), while at the
end of the nineteenth century, Edgeworth and Pearson started a fierce competition about the best
nonnormal distribution.We refer the reader to Stigler (1986) for details about this fruitful period
and to Ley (2015, section 2) for a brief historic account.

Describing a random phenomenon with a probability distribution is not a goal per se, but it
allows, inter alia, the calculation of concrete probabilities of events and risks, and the making of
predictions and defining strategies related to the data at hand (especially in our modern big data
era).A historic example is the scale of intelligence quotient points,whichwas chosen to be a normal
distribution centered at 100 with a standard deviation of 15, allowing one to derive to what upper
percentile a person with, e.g., an IQ of 133 belongs (Hunt 2011). Another example, in the domain
of renewable energies, is that the two-parameter Weibull distribution is generally adopted as a
model for wind speed, load, and power, and thus is used to determine quantities such as capacity
factor and average output of a wind turbine (Gugliani et al. 2018) as well as to identify optimal
wind turbine generator parameters ( Jangamshetti & Rau 2001). However, it is crucial to use the
correct—or at least a reasonably fitting—distribution, since wrong choices will inevitably bias the
subsequent analysis and calculations, with potentially dramatic consequences. A famous example
is the 2008 financial crisis, when financial institutions had recourse to the multivariate Gaussian
distribution formodeling the behavior of their assets. By nature, financial data are heavy-tailed and
often also skewed because negative events are typically more extreme than positive events, and the
Gaussian distribution, not accounting for extreme and skew events, led to an underestimation of
risks. The danger of choosing a too-simplified model and hence missing the intrinsic nature of the
data is all the more present when dealing with complex data, be they complex due to their form,
topology, or volume. In this article, we focus on (potentially vast-dimensional) multivariate skew
and heavy-tailed data, as well as on circular, toroidal, and cylindrical data, and present and discuss
the (in our opinion) best state-of-the-art flexible models for these complex data. For univariate
data on the entire real line, we refer the interested reader to the review articles of Lee et al. (2013),
Jones (2015), and Ley (2015), and for data on the positive real line (so-called size or survival data),
we refer readers to the monograph by Kleiber & Kotz (2003) and the book chapter by Dominicy
& Sinner (2017).

A natural question at this point is how to define a flexible model, or perhaps more importantly,
which properties a good flexible model ought to possess. Upon perusing the literature and from
personal experience, we came up with the following list of desirable properties:

370 Ley • Babić • Craens
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� Versatility: As the word “flexible” suggests, such a model should ideally be able to exhibit as
many distinct shapes as possible and, consequently, be more robust to misspecifications than
simple models.

� Tractability: The density should be of a tractable form and amenable to calculations.
� Interpretability: The number of parameters should be as small as possible, and the param-

eters should bear clear interpretations in order to infer conclusions about the underlying
population from which the data were taken.

� Data generating mechanism: This desideratum has two goals. (a)We should be able to read-
ily simulate new data from the model in order to produce large-scale stochastic simulations
and predictions (e.g., about the spread of a disease), and (b) when it is related to a nice stochas-
tic representation, we may be able to naturally link a particular model to data for which we
can trace back their real generation process.

� Straightforward parameter estimation: A correct parameter estimation procedure is the basis
for the subsequent calculation of quantities such as the risk of exceeding a certain threshold
value and for statistical inference.

As an additional, but less important, property, we further mention testability and model reduction:
Natural goodness-of-fit tests can be defined for the flexible model, and it should nest well-known
submodels, as this permits model reduction. In what follows, we depict the, in our opinion, most
useful flexible models for multivariate skew and heavy-tailed data (Section 2), circular data (Sec-
tion 3), and toroidal and cylindrical data (Section 4). A discussion about major applications of and
challenges related to flexible parametric distributions is given in Section 5 before we conclude in
Section 6 with some final comments.

2. FLEXIBLE MODELS FOR MULTIVARIATE SKEW
AND HEAVY-TAILED DATA

In this section, we present models that turned out to be useful for modeling multivariate skew
and heavy-tailed data. Besides the already-mentioned field of finance, such complex data appear
in various other domains such as biostatistics (Lambert & Vandenhende 2002), environmental
sciences (Genton & Thompson 2004), and meteorology (Field & Genton 2006). We focus on
the level of flexibility of each model in terms of degree of skewness and ability to model tails
lighter and/or heavier than the normal tails. The choice of a suitable model and estimation of
parameters are covered, and we see that usually it turns out that the more flexible the model is,
the more challenging its parameters are to estimate, especially in higher dimensions. Our choice
of versatile distributions is based on the recent comparison of Babić et al. (2019), a paper we refer
the reader to for further flexible distributions. Other general popular references for multivariate
distributions are the works of Kotz et al. (2004) and Balakrishnan & Lai (2009), the latter for the
two-dimensional case.

2.1. Skew-Elliptical Distributions

The family of skew-elliptical distributions is a natural extension of elliptical distributions, which
are themselves an extension of themultivariate Gaussian distribution. Skew-elliptical distributions
are able to accommodate both skewness and heavy and/or light tails. They are obtained by intro-
ducing skewness into elliptical distributions via a skewing function. To define formally the family
of skew-elliptical distributions, we need to first define elliptical distributions.

A d-dimensional random vectorX is said to be elliptically distributed if and only if there exists a
vectorμμμ ∈ R

d , a positive semidefinite and symmetric matrix��� ∈ R
d×d , and a function ϕ : R → R

+
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such that the characteristic function of X is given by t �→ exp(it′μμμ)ϕ (t′���t), t ∈ R
d . An elliptical

random vectorX can conveniently be represented by the stochastic representation (here=d stands
for equality in distribution)

X =d μμμ+ R���U(k), 1.

where��� ∈ R
d×k has maximal rank k≤ d and is such that������′ = ���,U(k) is a k-dimensional random

vector uniformly distributed on the unit hypersphere, and R is a nonnegative random variable
independent of U(k). If R has a density, then the density of X is of the form

x �→ cd,g|���|−1/2g((x −μμμ)′���−1(x −μμμ)), 2.

where g : R+
0 → R

+ is the radial function related to the distribution of R and typically depends
on a tail weight parameter, and cd, g is a normalizing constant. The vector μμμ represents a location
parameter, while��� stands for a scatter parameter. The multivariate normal distribution, of course,
corresponds to g(r) = exp (−r/2), and the Student’s t-distribution with ν > 0 degrees of freedom
to g(r) = (1 + r/ν)−(ν + d)/2. Elliptical distributions were introduced by Kelker (1970) and allow for
both lighter-than-normal and heavier-than-normal tails while keeping the elliptical geometry of
the multinormal equidensity contours.We refer the reader to Paindaveine (2012) for an overview
and to Babić et al. (2019, section 2) for a concise presentation of the main properties and modeling
limitations.

Skew-elliptical distributions are obtained by modulating elliptical symmetry by means
of a skewing function � : Rd × R

d → [0, 1] satisfying �(−z,δδδ) +�(z,δδδ) = 1, z,δδδ ∈ R
d , and

�(z, 000) = 1/2, z ∈ R
d . Let Y be an elliptically symmetric random d-vector with density given by

Equation 2 and U a uniform random variable on (0,1), both independent of each other. Then,

X =d

{
Y ifU ≤ �(���−1/2(Y −μμμ),δδδ)
−Y ifU > �(���−1/2(Y −μμμ),δδδ) 3.

follows a skew-elliptical distribution with density

x �→ 2cd,g|���|−1/2g((x −μμμ)′���−1(x −μμμ))�(���−1/2(x −μμμ),δδδ).
Whenever δδδ �= 000, the resulting density is skewed in the direction of δδδ, while at δδδ = 000, the original
elliptical distribution is retrieved. Thus, δδδ endorses the role of skewness parameter. A salient
feature of skew-elliptical distributions is their simple expression since the normalizing constant
is directly inherited from the elliptical base distribution. Generating skew-elliptical data is easy
thanks to the stochastic representations given by Equations 1 and 3. A potential drawback lies
in the fact that the tail weight parameter is typically one-dimensional since it issues from the
scalar function g. Maximum likelihood estimation in skew-elliptical distributions is relatively
straightforward, yet certain problems are well known, such as the fact that some members of the
skew-elliptical family suffer from a Fisher information singularity in the vicinity of symmetry, due
to collinearity between the scores for location and skewness (see, e.g., Ley & Paindaveine 2010b,
Hallin & Ley 2012). The most famous representative suffering from this flaw is the multivariate
skew-normal of Azzalini & Dalla Valle (1996). For a monograph-long treatment of skew-elliptical
distributions, both from a theoretical and an applied modeling perspective, we refer the reader
to Genton (2004). An interesting recent contribution of relevance for applied work is that of
Adcock & Azzalini (2020). We also remark that skew-elliptical distributions are part of the wider
family of skew-symmetric distributions (Wang et al. 2004), where the base density is centrally
symmetric instead of elliptically symmetric.

An interesting representative of skew-elliptical distributions is the multivariate skew-t distri-
bution proposed by Azzalini &Capitanio (2003; see also Azzalini &Genton 2008) [note that other
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skew versions of the multivariate t-distribution exist in the literature; see, for instance, Jones &
Faddy (2003)]. It is a tractable and robust distribution with parameters that regulate both skewness
and heavy tails. It is formally defined as a ratio of a multivariate skew-normal variate and an ap-
propriate transformation of a chi-square random variable, that is,X =d μμμ+V −1/2Y, where Y has
a multivariate skew-normal distribution andV ∼ χ2

ν /ν with ν > 0, independent of Y. The skew-t
distribution allows for tails that are heavier than tails of the Gaussian distribution, but it cannot
represent lighter tails. This limitation can be overcome by considering the multivariate extended
skew-t distribution introduced by Arellano-Valle & Genton (2010).

Skew-elliptical models can be used to model vast-dimensional data since they remain tractable.
The R package fMultivar (Wuertz et al. 2020) provides tools for fitting the multivariate skew-t
distribution, while the sn package (Azzalini 2017) can be used for the skew-normal distribution.

2.2. Transformation Approach Distributions

The transformation approach is based on a simple idea: start from a basic random vector Y, typi-
cally multivariate normal, and turn it into X =d H−1(Y) via some diffeomorphism H : Rd → R

d .
This implies a simple data generating mechanism, provided we can simulate Y.Writing f, the den-
sity ofY, the new random vectorX has density x �→ f (H(x))|DH(x)|, x ∈ R

d , whereDH(x) stands
for the determinant of the Hessian matrix associated with the transformation H. For instance, if
Y follows a multinormal Nd (μμμ,���), then a transformation Ha,b, with a ∈ R

d a skewness parameter
and b ∈ R

d a tail weight parameter, leads to a multivariate distribution with well-identified loca-
tion, scatter, skewness, and tail weight parameters, where, moreover, the tail weight parameter is
d-dimensional. The arguably best-known transformation is the Box-Cox transformation (Box &
Cox 1964), whose multivariate version is presented by Andrews et al. (1971). We will not delve
into the Box-Cox transformation here, nor into extensions like Yeo & Johnson (2000), but rather
refer the interested reader to the recent survey paper by Atkinson (2020).

A well-known modern example obtained via the transformation approach is the multivariate
g-and-h distribution of Field & Genton (2006), extending the well-known scalar g-and-h distri-
bution of Tukey (1977). A random vector X ∈ R

d is said to have a standard multivariate g-and-h
distribution, where g = (g1, . . . , gd )′ ∈ R

d controls the skewness and h = (h1, . . . , hd )′ ∈ R
d
+ con-

trols the tail weight, if it can be represented as

X =d (τg1,h1 (Z1), . . . , τgd ,hd (Zd ))
′ = τττ g,h(Z),

where Z = (Z1, . . . ,Zd )′ has a standard multivariate normal distribution and the univariate func-
tions τgi ,hi , i = 1, . . . , d, are defined as

τgi ,hi (z) =
(
exp(giz) − 1

gi

)
exp

(
hi
2
z2
)
, z ∈ R.

Location and scatter parameters can be introduced as usual, leading to the stochastic
representation

X =d μμμ+���1/2τg,h(Z).

By construction, themarginals of���−1/2(X −μμμ) follow scalar g-and-h distributions.Themultivari-
ate g-and-h distribution does not have a closed-form density unless g = 000, and one has to resort
to some definition of quantiles to estimate its parameters. Namely, affine-equivariant quantiles of
the data set are required. One issue of the multivariate g-and-h distribution in higher dimensions
is that the number of directions in which to compute the quantiles grows exponentially. Unfor-
tunately, to the best of our knowledge, there is no R package that provides tools for fitting this
distribution, but more details can be found in Field & Genton (2006).
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Finally, we also refer the reader to Jones & Pewsey (2009) for the multivariate sinh-arcsinh
normal distribution, another representative of this approach, and to the general study on trans-
formation approach distributions as skewing mechanisms by Ley & Paindaveine (2010a).

2.3. Copulas

A functionC : [0, 1]d → [0, 1] is a d-dimensional copula ifC is a joint cumulative distribution func-
tion (cdf ) of a d-dimensional random vector on the unit cube [0, 1]d with uniform marginals. A
key result concerning copulas is Sklar’s theorem (Sklar 1959), which enables linking multivariate
cdfs to their univariate marginals through the concept of copulas. It states that any multivariate
cdf F with marginal cdfs F1, . . . , Fd can be expressed under the form F(x1, . . . , xd) = C(F1(x1), . . . ,
Fd(xd)), where C is a suitable copula. Conversely, any combination of such a copula C and marginal
distributions leads to a multivariate random vector with cdf C(F1(x1), . . . , Fd(xd)). The first appear-
ance of copulas in the statistical literature is often traced back to Fréchet (1951), and cornerstone
references about copulas are the monographs by Joe (1997) and Nelsen (2006).

Copulas are a powerful tool for constructingmultivariate distributions with separately specified
marginals and dependence structure. Moreover, they are very useful for representing dependence
structures between random variables. Many measures of dependence, such as Spearman’s rho or
Kendall’s tau, can be expressed in terms of copulas. Despite the fact that copulas allow for various
types of dependence structures, they face some limitations when it comes to higher dimensions
(some of them can be overcome via vine copulas; see below). In what follows, we focus on several
families of copulas that are useful in statistical modeling.

Copulas generated by elliptical distributions represent a simple and widely used class of copula
distributions also known as meta-elliptical distributions (Fang et al. 2002). An elliptical copula is
of the form C(u) = F (F−1

g (u1), . . . ,F−1
g (ud )), where F is a multivariate elliptical cdf and Fg is the

same symmetric marginal cdf for every component. It is convenient to work with elliptical copulas
because they inherit the nice stochastic properties of elliptical distributions. They are symmetric,
the upper and lower tail dependence coefficients are the same, they can be simply computed, they
have a low number of parameters, and lower-dimensional margins are elliptical copulas again.The
most commonly used elliptical copulas are the Gaussian and Student’s t copulas.

Archimedean copulas are another commonly used class of copulas. A d-variate Archimedean
copula is defined as

C(u1, . . . , ud ) = 
−1(
(u1) + · · · +
(ud )), (u1, . . . , ud )′ ∈ [0, 1]d ,

where the generator 
: [0, 1] → [0, ∞] is continuous, decreasing, convex, and such that

(1) = 0. An important source of generators consists of the inverses of the Laplace transforms of
cdfs. Examples of Archimedean copulas are the Gumbel (Gumbel 1960), Clayton (Clayton 1978),
and Frank (Frank 1979) copulas. The Gumbel and Clayton copulas are asymmetric copulas,
the former exhibiting greater dependence in the positive tail and the latter exhibiting greater
dependence in the negative tail. The Frank copula is a symmetric copula with both lower and
upper tail dependence coefficients equal to 0. Most Archimedean copulas admit an explicit
formula, something not possible, for instance, for the Gaussian copula. They allow modeling
dependence in arbitrarily high dimensions but with only one parameter governing the strength
of dependence. Archimedean copulas are widely used, especially in finance and insurance. Nelsen
(2003), in his survey of properties and applications of copulas, mentions some open problems in
the field of Archimedean copulas. For example, are there any statistical properties of two random
variables that assure that their copula is Archimedean? The choice of the suitable copula family
is more difficult, in general, than the choice of the proper marginal distribution families. While
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there is no general procedure for selecting the copula class, Genest & Rivest (1993) suggest
some strategies for selecting the parametric family of Archimedean copulas that provides the best
possible fit to a given set of data.

An important class of copulas is vine copulas. Most multivariate copulas become inflexible in
higher dimensions and/or they do not allow for different dependence structures between pairs of
variables. For many data applications this is too restrictive; therefore, Joe (1996) suggested con-
structing multivariate copulas using only blocks of bivariate copulas (the pair-copula approach),
and Bedford&Cooke (2002) introduced a new graphical model called a vine.We do not enter into
the details here but refer the reader to Aas et al. (2009) and the monograph by Kurowicka & Joe
(2010). In terms of flexibility, a vine copula on d variables is composed of d(d − 1)/2 pair-copulas,
and each pair-copula can have multiple parameters. The VineCopula package by Nagler et al.
(2020) provides tools for parameter estimation, model selection, simulation, goodness-of-fit tests,
and visualization of vine copula models. The advantage is, of course, the flexibility, but the draw-
back is that this approach can be computationally unaffordable in terms of estimation, and there
is always a possibility of overfitting. Recently,Müller & Czado (2019) proposed a novel three-step
approach that overcomes the computational limitation. First, Gaussian methods are applied to
split data sets into feasibly small subsets, then parsimonious and flexible vine copulas are applied,
and finally, these submodels are reconciled into one joint model.We refer the reader to Müller &
Czado (2019) for more details and for an example of the use of vine copulas in high dimensions.
A modified Bayesian information criterion (BIC) tailored to sparse vine copula models by Nagler
et al. (2019) represents another approach for dealing with the computational cost and overfitting
in vine copula models for high dimensions.

Constructing copulas and sampling from them is extremely simple and fast, yet the estima-
tion can become challenging. The copula concept allows us to estimate the marginal distributions
and the copula separately, and much work in this field is focused on the estimation of the copula
function. The natural approach is the classical maximum likelihood estimation for all parameters
and the entire distribution, but it is often computationally too demanding. The most widely used
approach is a two-stage estimation process, which is also called inference functions for margins
(IFM). First, the margins are estimated, followed by the copula parameters. In both steps, maxi-
mum likelihood is used. Alternatively, pseudomaximum likelihood, a two-step procedure in which
the marginals are estimated nonparametrically, can be applied.We refer the reader to Embrechts
& Hofert (2013) for a discussion of estimation in high dimensions and Joe (1997) for the asymp-
totics of the two-step approach. For the R platform, there is the well-known copula package by
Hofert et al. (2017).

2.4. Finite Mixtures

Many multivariate distributions arise from the Gaussian distribution by applying some transfor-
mation to a multivariate normal random vector or considering mixtures of multinormal distri-
butions, for instance. Interesting constructions are the so-called scale and location-scale mixtures
(see, e.g.,McNeil et al. 2005), even more so the subsequent multiple scale (Forbes &Wraith 2014)
and multiple location-scale mixtures (Wraith & Forbes 2015) of multinormals. High modeling
flexibility, such as different tail weights in every dimension and a simple generatingmechanism, are
mitigated by a nontractable density and, consequently, serious computational difficulties for pa-
rameter estimation even in low-dimensional cases (we had trouble in dimension five, for instance).
We refer the reader to Babić et al. (2019) for more details. Instead,we focus here on finitemixtures.

When modeling complex data, it is often unrealistic to assume that our data are coming from
the same unimodal distribution.Therefore, one needs flexible distributions that can accommodate
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multimodality, for instance. Finite mixtures, which are widely used and very powerful for complex
data sets and problems that involve data clustering, are a good option here. They can be formally
written as

f (x,θθθ1, . . . ,θθθ k ) =
k∑
i=1

πi fi(x;θθθ i ), x ∈ R
d ,

where the mixing proportion π i represents the probability that an observation belongs to the ith
subpopulation with corresponding component density fi(x;θθθ i ), with θθθ i, i = 1, . . . , k, the set of pa-
rameters of every component (their dimensions need not coincide). The mixing proportions are
nonnegative, with

∑k
i=1 πi = 1.Usually the component densities fi(x;θθθ i ) belong to the same para-

metric family—for example, the multivariate normal.There is a vast literature concerning mixture
models, including works by Everitt &Hand (1981),McLachlan&Basford (1988), Böhning (1999),
and Mengersen et al. (2011), to cite but a few. We particularly refer the interested reader to the
recent article by McLachlan et al. (2019) for more details and references about finite mixtures (of
multinormals).

A common approach for parameter estimation by means of maximum likelihood in finite mix-
tures is the EM algorithm. The mclust package by Scrucca et al. (2016) can be used for Gaussian
finite mixture models.

2.5. An Empirical Analysis of Financial Returns Data

We consider a two-dimensional data set consisting of 18 years of daily returns from two major
financial indexes from the United States, the Nasdaq and the S&P 500 (Standard and Poor’s 500).
The sample consists of 4,619 observations from January 7, 2000, through September 20, 2017.
Those observations, of course, are serially dependent. In order to neutralize conditional het-
eroskedasticity, following the suggestion of Lombardi & Veredas (2009) for elliptical and possibly
heavy-tailed data, they were adjusted via AR(2)-GARCH(1,1) filtering. We fitted the following
models on these adjusted data: the Gaussian, t, Gumbel, Clayton, and Frank copulas, all of them
combined with normal, Student’s t, and SAS (sinh-arcsinh) marginals, and the skew-t distribution.
For the sake of completeness, we mention the density of the SAS-normal distribution ( Jones &
Pewsey 2009):

z �→ h/σ√
2π (1 + (z− μ)2/σ 2)

(
1 + S2g,h

(
z− μ

σ

))1/2

exp

(
−
S2g,h

( z−μ
σ

)
2

)
,

with z �→ Sg,h(z) := sinh(h sinh−1(z) − g), z ∈ R, and where μ ∈ R is a location, σ > 0 is a scale,
g ∈ R is a skewness, and h > 0 is a tail weight parameter. We performed a test of unimodality
using the folding.test function from the Rfolding package (Siffer 2018). It turned out that the
data are unimodal; therefore, we opted not to include the Gaussian mixture model. The metric
comparison was the BIC.

The BIC scores are shown in Table 1 and indicate that the t copula combined with SAS
marginals outperforms its competitors.Figure 1 shows the contour lines of the t-SAS model with
the estimated parameters and the scatter plot of Nasdaq and S&P 500 data. In general, almost all
copula models exhibit the best performance when they are combined with SAS marginals. This
is in line with the fact that the SAS distribution can capture skewness and heavy tails. Indeed, the
skewness and kurtosis values of Nasdaq are −0.36 and 1.15, respectively, while for the S&P 500
they are −0.47 and 1.75. The values of skewness indicate that both indices are skewed to the left,
and the values of kurtosis show that both indices are heavy-tailed. This is reflected by the parame-
ters of the SAS distribution: for Nasdaq, the location was estimated to be 0.089, the scale 0.59, the
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Table 1 BIC scores for copula models

Copula
Marginals

Normal Student’s t SAS
Gaussian 17,345.56 17,056.73 16,940.23
t 17,159.94 16,738.99 16,623.79
Gumbel 17,365.73 17,030.32 17,103.57
Clayton 19,912.03 18,884.83 18,431.11
Frank 17,650.65 17,640.43 17,640.05

Abbreviation: BIC, Bayesian information criterion; SAS, sinh-arcsinh.

skewness −0.091, and the tail weight 0.72, while the values for the S&P 500 were slightly smaller:
0.066, 0.51,−0.078 and 0.67, respectively.We draw the reader’s attention to the fact that values of
the tail weight parameter of the SAS distribution that are smaller than 1 indicate heavy tails. The
parameters ρ (dependence) and ν (degrees of freedom) of the Student’s t copula are estimated to
be 0.92 and 4.68, respectively. The value of ρ indicates strong linear correlation.

The last model that we considered is the skew-t distribution, fitted by using the well-known
sn package (Azzalini 2017). The BIC value that we obtained was 16,697.42, which is second best
behind the t-SAS.

3. FLEXIBLE MODELS FOR CIRCULAR DATA

In this section, we give an introduction to circular data and present models that turned out to be
useful for modeling univariate circular data. First, we briefly explain the complexity of circular
data and illustrate the difference with classical data on the line via a concrete example. Next, we

−6

2

0

−2

−4

−6

−4 −2 0 2 4

Nasdaq

S&
P 

50
0

Figure 1

The contour lines of the t-SAS model with the estimated parameters and the scatter plot of Nasdaq and S&P
500. Abbreviations: S&P, Standard and Poor’s; SAS, sinh-arcsinh.
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Figure 2

Direction of waves presented in (a) a Rose diagram from Lagona et al. (2015) and represented as angles in (b). [0, 2π ) and (c) [−π , π ).
The red line in panels b and c indicates the classical mean of the data.

show popular methods to generate distributions on the circle, highlighting some classical models.
Then we turn our attention to the, in our opinion, most useful flexible distributions. For a broad
overview on circular distributions, we refer the reader to Mardia & Jupp (2000, section 3.5),
Jammalamadaka& SenGupta (2001, chapter 2), Pewsey et al. (2013, section 4.3), Ley&Verdebout
(2017, sections 2.2, 2.5) and Mardia & Ley (2018).

3.1. Specificities of Circular Data and Circular Densities

The rose diagram in Figure 2a displays a time series of semihourly wave directions, recorded in
the period from February 15 to March 16, 2010, by the buoy of Ancona, located in the Adriatic
Sea approximately 30 km from the coast. Lagona et al. (2015) provide a more detailed description
of the study of these sea currents. Suppose that we are interested in the average direction of the
waves. One could identify each direction with a value in radians: For example, start with north at
0 radians, east at π

2 radians, and so on, until we are back at north as 2π radians. A histogram of
these data is given in Figure 2b. Calculating the classical mean of the data gives 2.46 radians, i.e.,
around southeast. Instead, we might just as well decide to start labeling south with −π and end
labeling (clockwise) at π . The histogram of these labelings is shown in Figure 2c, with a resulting
classical mean of 0.97 radians, i.e., around northeast. These wildly differing results will convince
the reader that one cannot just cut the circle at an arbitrary point and ignore that the start and end
points are connected. Thus, a notion as simple as the mean needs to be (re)defined carefully (e.g.,
as a point on the unit circle of the complex field) when dealing with circular data, and the same
goes for nearly all statistical concepts, including densities. We refer the reader to Mardia & Jupp
(2000) and Jammalamadaka & SenGupta (2001) for book-long treatments of the field of circular
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statistics and to Craens & Ley (2018) for a very succinct description of how to deal with circular
data.

Besides being a positive function over the real line, a circular density f (θ ) needs to satisfy
f (θ + 2kπ ) = f (θ ) for every integer k (2π periodicity) and

∫ α+2π
α

f (θ )dθ = 1 for all α ∈ R. The
expected value of a function g is then well defined if g is 2π periodic: E[g(�)] := ∫ 2π

0 g(θ ) f (θ )dθ
for�∼ f. The trigonometric moment of order p is defined asm�(p) = E[eip�] (the circular equiv-
alent of classical moments for densities on R), and contrary to densities on R, all trigonometric
moments exist and are finite.

3.2. Classical Circular Models and How to Construct Them

We now describe the classical approaches to building circular densities.

� The conditioning approach: Express a distribution on R
2 as the joint distribution of the

polar coordinates’ length and angle, (r, �), and consider then the distribution of the angle
conditionally on the restriction r = 1. A well-known example is the von Mises distribution,
obtained by conditioning on a bivariate normal distribution with mean (cos (μ), sin (μ)) and
diagonal covariance matrix with both diagonal elements equal to κ−1, μ � [−π , π ), κ > 0.
The resulting von Mises density reads

θ �→ 1
2πI0(κ )

eκ cos(θ−μ),

where I0(κ ) = ∫ 2π
0 eκ cos(x)dx is the modified Bessel function of the first kind and of order

zero. Here, μ plays the role of circular mean direction, and the mean resultant length or
circular concentration is controlled by κ .

� The projection approach: Instead of conditioning on r = 1, one can integrate the length
part out to obtain the marginal density of the angular part. A popular case of this approach
is the projected normal distribution (see Mardia & Jupp 2000, section 3.5.6).

� The wrapping approach: LetX be a continuous variable on the real line with density fX, then
� := X mod 2π is a circular variable with density

f�(θ ) =
+∞∑

k=−∞
fX (θ + 2πk).

Most wrapped distributions like the wrapped normal suffer from a major drawback, namely,
that the density function does not have a simplified form.A notable exception is the wrapped
Cauchy distribution with density

θ �→ 1
2π

1 − ρ2

1 + ρ2 − 2ρ cos (θ − μ)
,

where ρ � [0, 1) regulates concentration. A particularly flexible four-parameter example of
this approach is the wrapped stable distribution investigated by Pewsey (2008).

� The perturbation approach: An existing circular density is multiplied by a function under
the constraint that the resulting product remains a proper circular density. A well-known
example of this approach is the cardioid distribution, with density 1

2π (1 + 2ρ cos(θ − μ))
with concentration parameter ρ � [0, 0.5]. It is obtained from the uniform density 1/(2π )
over the circle.

� The transformation approach: There are various ways to construct new circular distributions
using transformations of a stochastic variable, which can be located either on the real line or
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on the circle. For a variable X on the real line, a natural choice is 2 arctan(X ). A well-known
transformation on the circle is the Möbius transformation,

� �→ μ+ ν + 2 arctan
[
1 − r
1 + r

tan
(
1
2
(�− ν )

)]
,

with parameters μ � [−π , π ), ν � [0, 2π ) and 0 ≤ r < 1. Kato & Jones (2010) applied this
transformation to the von Mises distribution.

3.3. Parsimonious Flexible Unimodal Models

We now describe two highly flexible unimodal proposals from the literature: first, a three-
parameter symmetric model, and then, a four-parameter model that is able to capture asymmetry.

3.3.1. A flexible symmetric three-parameter model: the Jones–Pewsey family. For mod-
eling symmetric data on the circle, a good choice is the Jones–Pewsey model ( Jones & Pewsey
2005) with density given by

θ �→ (cosh(κψ ))1/ψ

2πP1/ψ (cosh(κψ ))
{
1 + tanh (κψ ) cos (θ − μ)

}1/ψ , 4.

where Pα is the associated Legendre function of the first kind of degree α ∈ R and order zero,
μ � [−π , π ) is a location parameter, κ ≥ 0 is a concentration parameter, and ψ ∈ R is a shape
parameter called index. This model includes the popular circular distributions mentioned in
Section 3.2: the von Mises when ψ → 0, the cardioid and wrapped Cauchy distribution for
ψ = 1 and ψ = −1, respectively, and the uniform when κ = 0 or ψ → ±∞ (with κ finite). The
Jones–Pewsey density is unimodal for any values of ψ and κ > 0. Besides its versatility, it allows
for stochastic representations as conditional distribution of spherically/elliptically symmetric
distributions onR2, and the trigonometric moments can be expressed in terms of known functions.

Concerning parameter estimation, no closed-form expressions exist for the maximum like-
lihood estimators of μ, κ , and ψ , implying that numerical optimization methods are required.
Numerical maximization converges rapidly as long as |κψ | < 6, while the optimization becomes
unstable when |κψ | is big.

A skewed version of the Jones–Pewsey family has been proposed by Abe & Pewsey (2011a),
who apply the perturbation approach by multiplying Equation 4 with (1 + λsin (θ − μ)) with
λ � (−1, 1) taking the role of skewness parameter. Indeed, only at λ = 0 is the original symmetric
family retrieved, and all other values of λ render a skew distribution. Abe & Pewsey (2011a) speak
of a sine-skewed Jones–Pewsey model.

3.3.2. Flexible four-parameter model. Even more flexibility under unimodality is ensured by
the four-parameter Kato–Jones distribution (Kato & Jones 2015), which, in our modest opinion,
represents an ideal flexible model for this purpose. It is constructed by first defining trigonometric
moments and, from there, deriving the related density. The chosen expression for trigonometric
moments of order p ≥ 1 is

m(p) = γ
(
ρeiη

)−1 (
ρei(μ+η))p ,

where μ, η � [−π , π ), γ ≥ 0, and ρ � [0, 1). Associated with these trigonometric moments is the
absolutely continuous circular density

θ �→ 1
2π

{
1 + 2γ

cos(θ − μ) − ρ cos(η)
1 + ρ2 − 2ρ cos(θ − μ− η)

}
,
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under the condition

(ρ cos(η) − γ )2 + (ρ sin(η))2 ≤ (1 − γ )2. 5.

This family includes both the wrapped Cauchy (γ = ρ and η = 0) and the cardioid density
(ρ = 0) as special cases. If γ > 0, the distribution is always unimodal, and it can incorporate di-
verse shapes: symmetric or asymmetric, flat-topped or sharply peaked. The parameters bear clear
interpretations: μ is the mean direction, γ is the mean resultant length, and the circular skewness
cS and kurtosis cK of Batschelet (1981) are conveniently given by γ ρsin (λ) and γ ρcos (λ). It is
thus possible to reparameterize the density in terms of the parameters cS and cK so as to have
pleasing parameter interpretability in terms of location, concentration, skewness, and kurtosis.
Random variable generation follows via acceptance/rejection algorithms from wrapped Cauchy
variables.

Parameter estimation is possible via both the method of moments and maximum likelihood.
The simple trigonometric moments enable easy method of moments estimators, and the resulting
values can be used as starting values for the numerical maximization of the log-likelihood func-
tion. A difficulty represents the constraint given by Equation 5, which can be circumvented by a
reparameterization suggested in Kato & Jones (2015, section 5.2).

3.4. Flexible Models for Multimodal Data

Various circular data sets such as the wave data presented in Figure 2 are not unimodal, and hence
alternatives to the abovementioned flexible unimodal distributions are required. When the data
happen to be bipolar symmetric, meaning that they are bimodal and symmetric about two antipo-
dally placed modes (which can typically occur in studies of animal behavior), then we recommend
the approach of Abe & Pewsey (2011b), which consists of two steps: Duplicate some unimodal
symmetric density f (θ − μ) about μ � [−π , π ) into f (2(θ − μ)) and then perturb the latter by
multiplication with (1 + λcos (θ − μ)) for λ� [0, 1]. A popular yet not very tractable model for bi-
modal data that are not necessarily bipolar nor symmetric is the generalized vonMises distribution
(see Gatto & Jammalamadaka 2007 for a rather recent description).

Our main recommendation, however, for bi- or multimodal data are finite mixtures. Since we
describe finite mixtures for multivariate data in Section 2.4, we only briefly touch upon the topic
here. Not surprisingly, the most frequently used and thoroughly studied mixtures are mixtures of
von Mises distributions (see Mardia & Sutton 1975, Mooney et al. 2003, but also Mardia & Jupp
2000, section 5.5). A good practice to capture all possible features of highly complex data is to use
mixtures of flexible unimodal distributions such as the Kato–Jones model, as these are likely to
lead to fewer mixture components and better interpretability of the individually detected modes.
Estimation typically is operated by means of the EM algorithm, with criteria such as the Akaike
information criterion (AIC) or BIC determining the number of modes.

4. FLEXIBLE MODELS FOR TOROIDAL AND CYLINDRICAL DATA

In this section, we consider data with two circular components or with a circular and a linear
component,which are respectively called toroidal (or circular-circular) and cylindrical (or circular-
linear) data.Modeling such data has gained increasing interest in recent years due to the demands
from emerging scientific disciplines such as bioinformatics. Besides the desiderata formulated in
the Introduction, the following two properties are also particularly important for this type of
models: (a) tractable marginal and conditional distributions, ideally of well-known forms, and (b)
a sound dependence structure. After presenting the (in our opinion) best state-of-the-art flexible
models for these data, we conclude this section with an overview of domains dealing with toroidal
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and cylindrical data and by discussing selected applications. For a detailed overview of the entire
literature on models for toroidal and cylindrical data, we refer readers to Ley & Verdebout (2017,
sections 2.4 and 2.5).

4.1. Flexible Models on the Torus

The two-dimensional unit torus S1 × S1 is a natural two-dimensional extension of the unit circle
S1. In that vein, Mardia (1975) introduced the bivariate von Mises density,

(θ1, θ2) �→C exp (κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2)

+ (cos(θ1 − μ1), sin(θ1 − μ1))A(cos(θ2 − μ2), sin(θ2 − μ2))′ ) ,

with normalizing constant C; circular location parameters μ1, μ2 � [−π , π ); concentration pa-
rameters κ1, κ2 ≥ 0; and circular-circular dependence parameter A, a 2 × 2 matrix. With a total
of 8 parameters, the bivariate von Mises is overparameterized, and more parameter-parsimonious
submodels have been proposed over the years. We here highlight two such models, namely the
Sine and the Cosine models. Singh et al. (2002) defined the Sine model with density

(θ1, θ2) �→ C exp (κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2) + β sin(θ1 − μ1) sin(θ2 − μ2)) ,

with dependence parameter β ∈ R and the normalizing constant C given by

C−1 = 4π2
∞∑
i=0

(
2i
i

)(
β2

4κ1κ2

)i
Ii(κ1)Ii(κ2),

where Ip is the modified Bessel function of the first kind and is of order p. Mardia et al. (2007)
investigated the Cosine model with density

(θ1, θ2) �→ C exp (κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2) − β cos(θ1 − μ1 − θ2 + μ2)) ,

with dependence parameter β ∈ R and normalizing constant

C−1 = 4π2

[
I0(κ1)I0(κ2)I0(β ) + 2

∞∑
i=1

Ii(κ1)Ii(κ2)Ii(β )

]
.

For an insightful review on the various variants of bivariate von Mises distributions, we refer
the reader to Hamelryck et al. (2012, chapter 6). Multivariate extensions of the Sine and Cosine
models for p angles θ1, . . . , θ p are respectively introduced in Mardia et al. (2008) and Mardia &
Patrangenaru (2005).

The Sine and Cosine models have conditional von Mises densities and marginal densities pro-
portional to expressions of the form I0(h(θ − μ))exp (κcos (θ − μ)) for some function h, some
location μ � [−π , π ), and some concentration κ ≥ 0. The marginal densities are symmetric, and
their number of modes (1 or 2) depends on conditions involving the nonlocation parameters,while
the conditions for uni- or bimodality of the joint distributions are of a simpler form (see Mardia
et al. 2007).

A drawback of the bivariate von Mises and its submodels is that they cannot model any depar-
ture from symmetry. Therefore, Ameijeiras-Alonso & Ley (2019) proposed a general technique
to skew symmetric models on the torus. Starting from the base density f (θ1 − μ1, θ2 − μ2;ϑϑϑ )
where ϑϑϑ covers all nonlocation parameters, their approach consists in transforming it into the
sine-skewed version,

(θ1, θ2) �→ f (θ1 − μ1, θ2 − μ2;ϑϑϑ )
(
1 +

2∑
s=1

λs sin(θs − μs )

)
, 6.
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where λλλ ∈ [−1, 1]2 plays the role of skewness parameter and satisfies
∑2

s=1 |λs| ≤ 1. For the sake
of presentation, we restrict our attention here to the two-dimensional case, but the construction
actually holds in any dimension d, replacing

∑2
s=1 with

∑d
s=1. As for skew-elliptical distributions,

this symmetry modulation does not imply changing the normalizing constant, many properties
are inherited from the base symmetric density, and random number generation follows along a
similar argument based on a separate uniform random variable.

Parameter estimation for the symmetric toroidal densities and their sine-skewed counterparts
can be done by means of maximum likelihood, via the solver proposed by Ye (1987) implemented
in the Rsolnp package (Ghalanos & Theussl 2015). Ameijeiras-Alonso & Ley (2019) suggest us-
ing distinct initial points to avoid having a local maximum as a solution. Submodel testing (in
particular, testing for symmetry) is straightforward with a likelihood ratio test.

4.2. Flexible Models on the Cylinder

Two types of cylindrical data exist: those on S1 × R and those on S1 × R
+. For each type, we

present an attractive distribution.
Mardia& Sutton (1978) wished to have a cylindrical model with a simple dependence structure

and, in the case of independence, with a normal linear and a von Mises circular part. Thus, they
proposed the density

(θ , z) �→ 1
σ (2π )3/2I0(κ )

exp
{
− (z− (μ′ + λ cos(θ − ν )))2

2σ 2
+ κ cos(θ − μ)

}
, 7.

with circular location μ� [−π , π ) and concentration κ ≥ 0, linear location μ′ ∈ R and dispersion
σ > 0, and circular-linear parameters ν � [−π , π ) and λ ≥ 0. The latter parameter regulates the
dependence structure, λ= 0, yielding the product of independent vonMises and normal densities.
TheMardia-Sutton distribution can be derived by conditioning on a trivariate normal distribution
whose first component is the linear part in Equation 7. The agreeable conditional distributions
pave the way to regression analysis, the marginal circular density is again a von Mises, but the
form of the marginal linear part is complicated.Maximum likelihood estimation is straightforward
with closed-form expressions for the estimators. A more complicated, generalized version of the
Mardia-Sutton distribution was proposed by Kato & Shimizu (2008), where the main change
is that the conditional and marginal circular distributions are generalized von Mises and hence
possibly asymmetric and bimodal.

Extending a too-simple previous proposal by Johnson & Wehrly (1978), Abe & Ley (2017)
introduced the density

(θ , z) �→ αβα

2π cosh(κ )
(1 + λ sin(θ − μ)) zα−1 exp (−(βz)α (1 − tanh(κ ) cos(θ − μ))) ,

with circular locationμ� [−π ,π ) and skewness λ� (−1, 1),with linear dispersion β > 0 and shape
parameter α > 0, and where κ ≥ 0 takes on the roles of both circular concentration and cylindrical
dependence parameter. The Johnson-Wehrly model is retrieved when λ = 0 and α = 1. Con-
trary to most toroidal and cylindrical models, the Abe-Ley density has a very simple normalizing
constant, rendering, for instance, moment calculations simple. The conditional circular and linear
laws are sine-skewed vonMises andWeibull, respectively, and we remark that the circular concen-
tration increases with the linear part. The circular marginal distribution is sine-skewed wrapped
Cauchy, and the linear marginal density is proportional to I0(zαβα tanh (κ))zα − 1exp (−(βz)α). Pa-
rameter estimation works very well via maximum likelihood, and submodel testing (e.g., for the
Johnson-Wehrly distribution) is easy.
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4.3. Copula Models for the Torus and Cylinder

The very nature of toroidal and cylindrical data makes copulas an appealing structure for building
flexible distributions. Thanks to the descriptions of Section 2.3, we can readily write out copula-
based densities under their most general form for our purposes here:

(θ , y) �→ c (F1(θ ),F2(y)) f1(θ ) f2(y), 8.

where y is either a linear or a circular component, f1 and F1 (respectively, f2 and F2) are a circular
(respectively, a linear or a circular) density and its associated cdf, and c is a bivariate copula den-
sity regulating the dependence. In the toroidal setting, c is a density on the torus with uniform
marginals, for which Jones et al. (2015) coined the term circula. This most general form of cop-
ulas has not yet been thoroughly studied in the literature, and we hope to motivate researchers
to dig more into that appealing structure upon reading these lines. Instead, a particular case of
Equation 8 has been popularized by Johnson & Wehrly (1978) and Wehrly & Johnson (1980)
without proper mention of the term copulas. Its density corresponds to

(θ , y) �→ 2π cb
(
2π (F1(θ ) − qF2(y))

)
f1(θ ) f2(y), 9.

with q = 1 in the cylindrical and q = 1 or −1 in the toroidal setting, and with cb a circular density
called binding function. Jones et al. (2015) gave an in-depth study of the copula structure given
by Equation 9, while Pewsey & Kato (2016) developed parametric bootstrap goodness-of-fit tests
for the toroidal case.

We wish to mention a particularly interesting copula-based density on the torus, namely the
bivariate wrapped Cauchy model of Kato & Pewsey (2015). They chose both marginals as well as
the binding function to be wrapped Cauchy, leading to a density proportional to

(
c0 − c1 cos(θ1 − μ1) − c2 cos(θ2 − μ2) − c3 cos(θ1 − μ1)

× cos(θ2 − μ2) − c4 sin(θ1 − μ1) sin(θ2 − μ2)
)−1,

for constants c1, c2, c3, and c4 depending on two circular concentration parameters and a depen-
dence parameter. The bivariate wrapped Cauchy distribution enjoys various appealing proper-
ties such as clear parameter interpretability, a simple (yet long) normalizing constant, unimodal-
ity, circular conditional distributions that are wrapped Cauchy, closed-form expressions for the
trigonometric moments, and consequently, fast method of moments estimation of its parameters.
The sine-skewed bivariate wrapped Cauchy distribution, discussed by Ameijeiras-Alonso & Ley
(2019), is, thanks to its added skewness and potential bimodality, perhaps the most promising flex-
ible model on the torus, as further supported by the real data analysis of Ameijeiras-Alonso & Ley
(2019).

4.4. Selected Domains of Application

Typical examples of toroidal data are wind directions measured at two distinct moments of the
day or peak systolic blood pressure times, converted to angles, during two separate time peri-
ods. However, currently, the most influential domain of application has arguably been structural
bioinformatics. Researchers have noted that dihedral angles of amino acids can be much better
modeled by viewing them as data on the torus (see Hamelryck et al. 2012), an observation that
has led to crucial contributions in the protein structure prediction problem. Devising probabilis-
tic models for these couples of angles improves on the analyses previously based on scatter plots
called Ramachandran plots (Ramachandran 1963). Given the structure of the data, mixtures of
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flexible toroidal models are recommended, whose parameters can typically be estimated by means
of the Expectation–Maximization (EM) approach.

Environmental, ecological, and biological sciences provide a large amount of cylindrical data—
for example, wind direction and other climatological variables, such as wind speed and air tem-
perature, wave direction and wave height, wildfire orientation and burnt area, and the direction in
which an animal moves and the distance moved. We wish to mention, in particular, the study of
correlated cylindrical data, where the correlation occurs along time or space, leading to temporal,
spatial, or spatio-temporal cylindrical models. Typically a mixture of flexible cylindrical models is
combined with a hidden Markov chain or Markov random field according to which the param-
eters of the cylindrical model vary across time or space. The resulting final model is chosen in a
parameter-parsimonious way, rendering estimation possible via the EM algorithm, especially in
combination with a composite likelihood approach (see, e.g., Ranalli et al. 2018, Lagona 2019).
These models, among others, have been used to segment wildfire occurrences and sea regimes.

5. APPLICATIONS AND CHALLENGES

So far the reader has seen what properties a flexible distribution should possess and which mod-
els we recommend to use in combination with diverse, complex data. In this section, we briefly
consider two further important aspects: major applications of and challenges related to flexible
parametric models.

5.1. Major Applications

We now highlight essential applications of flexible distributions, with the added goal of explaining
why and when to use flexible parametric models instead of nonparametric approaches such as
kernel density estimates (which are, of course, also highly useful but pursue different aims).

� Data analysis: As our real data example illustrates, flexible models able to fit complicated data
sets have the asset of interpretable parameters. Very often, the parameters or combinations
of parameters provide information about the location, scale, skewness, kurtosis, dependence,
or other aspects of data shapes, and this gives the data analyst amore concrete way to describe
and investigate the data at hand.

� Calculation of relevant quantities: Especially with tractable densities, it is straightforward to
calculate quantities of interest for our data analysis.Thesemay be risks of exceeding a certain
threshold, correlation measures such as Kendall’s tau, survival functions, peak and duration
of epidemics, or fan charts used by banks to quantify uncertainty (Kowalczyk 2013), to name
a few examples. Interpretable parameters can also pave the way for further uses, such as, for
instance, the ranking of soccer teams on the basis of strength parameters appearing in a
suitable probability distribution for match outcomes (Ley et al. 2019).

� Enrichment of other statistical and machine learning techniques: Flexible distributions can
serve as a versatile basis for other statistical methods such as (quantile) regression, time
series analysis (in both cases as error distribution), Bayesian statistics (as choices for priors),
robust inference (flexible models are by nature more robust to model misspecification), and
supervised learning (by the use of estimated parameters of a flexible model as information-
rich covariate), among many others.

� Stochastic modeling: In situations where it is impossible to calculate probabilities of certain
events (e.g., spread of a disease, winner of a tournament, rainfall, development of ecological
systems), it is crucial to be able to simulate them repeatedly in order to approximate the
true unknown probabilities. Flexible models with simple generating mechanisms are highly
useful in such situations.
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5.2. Major Challenges

This overview of flexible models would not be complete without an objective discussion on pitfalls
and challenges. We identify the following issues that should be dealt with carefully.

� Too many cooks spoil the broth. The same holds true for flexible models: The more models
there are, the more difficult it is for practitioners or researchers from other domains to find
their way in the jungle of distributions.Charemza et al. (2013) discuss precisely this difficulty.
Our main message here is to let quality prevail over quantity. A true contribution from the
literature should make the field advance significantly because of a clear need, and not for
the sake of proposing yet another variant of a certain distribution.We hope that this article,
in combination with other critical reviews like those of Jones (2015) and Babić et al. (2019),
sheds light on what makes a flexible distribution a good choice.

� The latter point raises the next issue: Sometimes there is a trade-off between fit and inter-
pretability. It may happen that one parametric model yields a better fit to the data but the
parameter interpretation is less obvious than for another model, whose overall fit is inferior
(not too inferior though, as otherwise the choice would be clear) but which yields a bet-
ter story of data generation. There is no global rule for this problem. The answer will be
case-by-case and depends ultimately on what the main goal is.

� Which tools should be used to compare various flexible models? In cases where we have
good reasons to assume a certain data generatingmechanism, the corresponding distribution
is a natural choice. If this is not given, and several distributions remain after eliminating
those that are, by their properties, not an option, then there are several ways to compare the
models. In this article, we used information criteria like the AIC and BIC. Alternatively, and
possibly also in combination with the information criteria, goodness-of-fit tests can be used.
The latter, however, are mainly means to validate or disqualify models, since one should not
compare the sizes of large p-values.

� In cases when we hesitate between several models and perform goodness-of-fit tests, we
run into problems of postselection inference (Tibshirani et al. 2015). This is a crucial issue
because such pretests can invalidate the classical inference. Therefore, we recommend the
reader make an informed decision of which path to take: Either choose a flexible distribution
beforehand on the basis of solid stochastic arguments, and perform classical inference, or,
if no obvious choice can be made, compare the models and have recourse to postselection
inference.

We reckon that there are further challenges, not to mention computational troubles in cases of
absent software packages for practical implementation.An influential paper reflecting generally on
the culture of data modeling via a stochastic model versus algorithmic modeling is that of Breiman
(2001).

6. FINAL COMMENTS

In this article, we have described what desirable properties a flexible distribution ought to possess
and presented popular models for complex data, which we judge extremely influential and use-
ful in the light of these desiderata. For the sake of space restrictions, we of course had to make
choices on the types of data we wished to consider, and different readers may find different com-
plex data missing. Therefore, we now briefly mention some omitted but important data types and
references: (hyper-)spherical data (Ley & Verdebout 2017, sections 2.3 and 2.5), data on high-
dimensional spheres and shape spaces (Dryden 2005), rotation data (Arnold & Jupp 2018), spatial
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data (Gelfand & Banerjee 2017), over- and underdispersed count data (Sellers et al. 2017), and
heaped count data (Bermúdez et al. 2017), among others.While the number of probability distri-
butions on the real line has been exploding recently (leading to a suboptimal trend of “generalized
modified extended...distribution,” with often nonsignificant improvements over existing distribu-
tions), the same does not hold true for complex data. We hope to have conveyed an incentive for
the use of meaningful flexible distributions to model complex data and for the development of
new distributions adhering to the principles stated in the Introduction and bearing in mind the
challenges mentioned in the previous section.
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