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Abstract—In the case of a non-linear system, the dynamic
state of the targets (position, velocity, and acceleration) is
estimated by an extended Kalman filter (EKF). The theory of
EKF is established on the assumption that measurements follow
Gaussian distribution. However, in practice, this assumption falls
short and limits the application of EKF. In literature, to deal with
the non-Gaussianity, the maximum correntropy criterion (MCC)-
based EKF (EKF-MCC) has been studied well. The MCC, an
information-theoretic criterion, claims to effectively deal with
the system’s non-Gaussianity. Nevertheless, like EKF, EKF-
MCC also approximates the known system non-linearity with
a Jacobian. The Jacobian provides the first-order approximation
of the non-linearity and hinders the estimation accuracy achieved
by EKF-MCC, particularly for complex target motion models.
Therefore, in this work, firstly, we propose to use EKF-MCC for
estimating the dynamic state of the target from non-Gaussian
measurement. After that, utilizing MCC, we propose reproducing
kernel Hilbert space (RKHS) based non-linear estimation of
system non-linearity and using it with EKF-MCC. Amid non-
linear estimation utilizing MCC, the proposed filter is named
EKF-MCC-RKHS. The simulation performed to estimate the
dynamic states of the complex constant acceleration (CA) target
motion model validates the superiority of EKF-MCC-RKHS over
recently introduced EKF-MCC and traditional EKF.

Index Terms—EKF, EKF-MCC, EKF-MCC-RKHS, MCC,
RKHS

I. INTRODUCTION

With the rapid increase of radar sensors for surveillance
and monitoring applications, adequate and accurate tracking
demands have also increased. The Kalman filter (KF) plays
a crucial role in tracking [1]–[3]. The KF filters the noisy
radar measurements and estimates the target’s dynamic state
(position, velocity, and acceleration). In case of miss detec-
tions and sensor irregularities, the KF provides the predicted
measurements to maintain the tracks. The KF is mainly used
when the measurement function relating the measurements
and the dynamic states is linear. However, a practical radar
sensor provides the measurements in spherical coordinates,
typically consisting of radial range, azimuth, and elevation. In
this case, along with filtering, the dynamic state estimator has
to convert the spherical coordinate to a Cartesian coordinate.
The conversion from spherical to Cartesian coordinate is a
nonlinear operation; therefore, the nonlinear extension of KF,
the extended Kalman filter (EKF), is used [2], [3]. The utility
of EKF in practical tracking applications is limited by the fact
that the nonlinear measurement function is approximated by

Jacobian, which effectively is a first-order approximation. The
Jacobian approximation limits the accuracy achieved by EKF,
particularly for estimating dynamic states for complex target
motion models like constant acceleration (CA). Also, for most
applications, the exact measurement function is unknown; for
instance, not all radar sensors need to provide measurements in
the same format; consequently, Jacobian for one sensor would
not work for the other. Targeting the abovementioned issues in
EKF, in [4], [5], reproducing kernel Hilbert space-based EKF
(EKF-RKHS) has been proposed and validated for different
target motion models.

In EKF-RKHS, the nonlinear measurement function is es-
timated at each time instant with the kernel recursive least
squares (KRLS) method [6], which is essentially an RKHS-
based nonlinear estimation technique. Afterward, the estimated
measurement function is plugged into EKF, making the EKF-
RKHS independent of knowing the exact non-linearity. Partic-
ularly in [5], the EKF-RKHS-based state estimator has been
validated for different target motion models, and it has been
shown that because of estimating the measurement function
instead of approximating with Jacobian, EKF-RKHS achieves
far better estimation accuracy as compared to EKF.

The theory of EKF and its advanced version EKF-RKHS
is based on the assumption that the measurement follows the
Gaussian distribution. The Gaussian assumption is made in
the literature to ease the mathematical analysis of EKF and
EKF-RKHS. However, the measurement doesn’t need to be
Gaussian distributed. Because the measurement noise is effec-
tively the estimation noise that cannot be Gaussian distributed
with a guarantee. Also, various surrounding effects around the
radar sensor and random movement of the targets question
the traditional Gaussian assumption for measurements. In
light of the above discussion, the EKF and hence the EKF-
RKHS performance will drastically degrade subject to the
non-Gaussian distributed measurements. In [7], to make the
EKF capable of dealing with the effects of non-Gaussianity,
the maximum correntropy criterion (MCC)-based EKF (EKF-
MCC) has been proposed. The EKF utilizes the minimum
mean square error (MMSE) criterion for estimating unknown
dynamic states and optimizes only the second-order error
statistics, essentially an error covariance. However, unlike
EKF, EKF-MCC uses MCC, an information-theoretic criterion
considering the higher-order statistics for the estimation error.



In EKF-MCC, the consideration of higher-order error statistics
gives an upper hand over EKF to minimize the effect of non-
Gaussianity.

Nevertheless, like EKF, the implementation of the EKF-
MCC requires the exact knowledge of the nonlinear measure-
ment function. Even when the precise non-linearity is known,
in EKF-MCC, the Jacobian is used, which provides the first-
order approximation of the system non-linearity. Consequently,
like EKF, the dependence of EKF-MCC on the exact knowl-
edge of nonlinear measurement function and its approximation
with Jacobian hinders the versatility and estimation accuracy
achieved by EKF-MCC. Therefore, in the continuation of the
research related to EKF-RKHS, in this work, we propose
to estimate the nonlinear measurement function using repro-
ducing kernel Hilbert’s space (RKHS) based algorithm [8].
Subsequently, the estimated measurement function replaces
the Jacobian in EKF-MCC; the filter is named EKF-MCC-
RKHS. In EKF-MCC-RKHS, the non-linearity is estimated by
the kernel recursive maximum correntropy (KRMC) algorithm,
which, to deal with non-Gaussianity, utilizes MCC [9]. The
summarized contribution of the proposed work are:

• The EKF-MCC is proved to be a suitable choice under
measurements non-Gaussianity.

• The KRMC algorithm estimates the system non-linearity
and replaces the Jacobian in EKF-MCC; hence achieves
better estimation accuracy. The combined proposed fil-
tering (EKF-MCC and RKHS-based KRMC) is termed
EKF-MCC-RKHS.

• The EKF-MCC-RKHS because of using KRMC is no
longer dependent on the exact knowledge of nonlinear
measurement function. Moreover, MCC makes the pro-
posed EKF-MCC-RKHS filter robust against measure-
ment non-Gaussianity.

The organization of the paper is as follows. In Section II,
the problem statement is described in detail. Next, Section
III, covers the description of the proposed filtering scheme.
Further, in section IV, simulations are performed over the
practical target motion model and comparative conclusions
are drawn between classical EKF, EKF-MCC, and EKF-MCC-
RKHS. Lastly, conclusions are drawn in Section V.

Notations: Scalar variables (constants) are denoted by lower
(upper) case letters. Vectors (matrices) are denoted by boldface
lower (upper) case letters. Superscripts (.)T , (.)H and (.)∗

denote matrix/vector transpose, complex conjugate transpose,
and scalar complex conjugation operation respectively. E[.]
denotes statistical expectation and R denote the set of real
numbers. In denotes the identity matrix of cardinality n and
⊗ denotes the Kronecker product.

II. PROBLEM STATEMENT

Let at the kth time index of coherent pulse interval (CPI),
the radar sensor reports the noisy measurement vector yk ∈
Rnm×1 of cardinality nm from the target, moving in 3D space.
The yk either consist of the estimates of radial range (r̂k),
azimuth (ϕ̂k), and elevation (θ̂k) or r̂k, radial velocity (v̂k),
and ϕ̂k. Observing yk, the primary objective is to estimate

the state of the target sk ∈ Rns×1 of cardinality ns consisting
of various target attributes. The evolving target’s state w.r.t k
can be modeled as

sk = f(sk−1) + uk, (1)

where, sk−1 is the target’s state vector at k − 1st instant, f(·) ∈
Rns×1 governs how sk−1 evolves with k, and uk ∈ Rns×1

modeling the error in the evolution of sk.
Consequently, yk in terms of sk is modeled as

yk = h(sk) +wk, (2)

where h(·) ∈ Rnm×1 is the non-linear measurement function
relating sk and yk, and wk ∈ Rnm×1 is the error modeling
all types of estimation and surrounding noises.

The various attributes of the targets contained in sk depend
upon the considered target motion model. In this work, we
have considered the CA target motion model. In CA, sk
consists of target positions, velocities and accelerations across
x, y, and z coordinates. As a result, the total 9 parameters
must be estimated, and CA covers the complete knowledge
about the targets’ kinematics. In CA motion model, the sk is
represented as

sk = [xk, vxk, axk, yk, vyk, ayk, zk, vzk, azk]
T ,

where, xk, yk, and zk, vxk, vyk, and vzk, and axk, ayk,
and azk are the target’s positions, velocities, and accelerations,
respectively moving in 3D space.

The f(sk−1) is given by

f(sk−1) = [I3 ⊗F ]sk−1,

where F =

1 Tcpi 0.5T 2
cpi

0 1 Tcpi
0 0 1

, and Tcpi is the CPI.

In this work, uk is considered to be Gaussian distributed
with zero mean vector and known covariance matrix Qu =
E[ukuk

T ], s.t. uk ∼ NR(0,Qu)

Qu = [I3 ⊗ T ]σ2
a

where σ2
a is the acceleration variance, and

T =


T 4

cpi

4

T 3
cpi

2

T 2
cpi

2
T 3

cpi

2 T 2
cpi Tcpi

T 2
cpi

2 Tcpi 1

 .

Further, in (2), it is worth noting that sk is in Cartesian
coordinate and yk is in spherical coordinate, consequently,
the h(·) is nonlinear. Therefore, to estimate the hidden sk
from observable yk, a nonlinear extension of KF (EKF) could
be used. However, EKF uses the MMSE criterion, which
considers only the second-order error statistics and is suitable
only when wk is assumed to be Gaussian. In the line of the
above statement, as wk models the estimation and surrounding
noises, the Gaussianity assumption is not certain. Therefore, in
practice, the EKF may perform worse when used to estimate
sk from non-Gaussian yk.



In the literature, with the objective of making EKF free
of Gaussianity assumption an ample amount of research has
been done. Notably, in [7], MCC is suggested to use instead
of MMSE, hence the filter named EKF-MCC. Further, in
literature dealing with EKF-MCC, the non-Gaussianity of wk

is usually modeled as a Gaussian mixture [7], [9]. Therefore, in
the presented work we have consider that wk follows Gaussian
mixture, which has the following form

wk ∈ p1NR(µ
1
w,R

1
w) + p2NR(µ

2
w,R

2
w), (3)

where µg
w and Rg

w for g ∈ [1, 2] are the mean vector and
covariance matrix of two separate Gaussian, respectively and
p1 and p2 are the mixing proportions with p1 + p2 = 1.

From (3), the equivalent covariance matrix of wk (Rw ∈
Rnm×nm ) is given by

Rw = E[(wk − µw)(wk − µw)
T ]

=

2∑
g=1

pgR
g
w +

2∑
g=1

pg(µ
g
w − µw)(µ

g
w − µw)

T ,

where µw =
∑2

g=1 pgµ
g
w is the mean of wk.

III. PROPOSED FILTERING SCHEME

In this section, firstly, MCC is briefly discussed. Later, the
EKF-MCC is introduced, followed by a detailed description
of the proposed EKF-MCC-RKHS.

A. Maximum correntropy Criterion

The MCC maximizes the correntropy between two random
variables X ∈ R and Y ∈ R. If PX,Y is the joint distribution
function of X and Y , the correntropy between X and Y is
given by

C(X,Y ) = E(κ(X,Y )) =

∫
κ(x, y)PX,Y , (4)

where κ(·, ·) ∈ R is the Gaussian Mercer Kernel (GMK) and
is defined by

κ(x, y) = exp

(
− ∥x− y∥2

2σ2

)
,

where ∥·∥ is the l2 norm, and σ is the kernel width.
In practice, as PX,Y is unknown, the E of the random

variable is approximated by the available limited samples.
Therefore, if N samples of X and Y are available, (4) can
be estimated as

Ĉ(X,Y ) =
1

N

N∑
i=1

Kσ(ei), (5)

where ei = xi − yi is the error, and Kσ(ei) = κ(ei).
If Y is consider to be the estimate of X , then to yield the

optimum value of Y closer to X , the MCC maximizes (5) as

Y = X̂ = max
yi

1

N

N∑
i=1

Kσ(ei) (6)

In (6), the Kσ(ei) can be expanded in Taylor’s series
as Kσ(ei) = 1 − e2i

2σ2 +
e4i
2σ4 − · · · . Hence, it is explicit

that (6) contains the higher order terms of error, or more
specifically, the MCC considers the higher order statistics of
the error in optimization. However, MMSE considers only
the error-squared term (e2i ) in the optimization. Considering
higher order statistics makes the MCC-based filter more robust
against the non-Gaussianity. Also, the σ in (6) prevents the
MCC-based filter from exploding for high error. Based on this
fact, next, the EKF-MCC is introduced, which utilizes MCC
to estimate sk from non-Gaussian yk.

B. EKF-MCC

Let at kth time instance, the estimate of sk−1 be ŝk−1

and the corresponding error covariance matrix is Pk−1 =
E[(sk−1 − ŝk−1)(sk−1 − ŝk−1)

T ]. Similar to EKF [2], the
EKF-MCC propagates ŝk−1 and Pk−1 iteratively and yield the
final estimate of sk in two steps a) prediction and b) update.
In prediction step, the EKF, predicts sk and Pk with the help
of following equations:

spk = Fk−1ŝk−1,

Pp
k = Fk−1Pk−1F

T
k−1 +Qu, (7)

where Fk−1 ∈ Rns×ns is the motion model matrix and can
be obtained from (1).

After prediction, in the update step, the EKF-MCC invokes
the MCC criterion, and the predictions made in (7) are updated
with the help of available measurement from radar sensor (yk).
The following equations give the updated equations of EKF-
MCC:

yp
k = Hks

p
k, (8)

KMCC
k = P̄p

kH
T
k (HkP̄

p
kH

T
k + R̄w)

−1,

ŝk = spk +KMCC
k (yk − yp

k),

Pk = P̄p
k −KMCC

k HkP̄
p
k.

where Hk = ∂h(sk)
∂sk

∣∣∣∣
sk=spk

∈ Rnm×ns is the Jacobain matrix

of h(·) (evaluated at prediction spk), yp
k is the predicted mea-

surement, KMCC
k and P̄p

k is the Kalman gain and predicted
error covariance matrix of EKF-MCC, respectively, and ŝk and
Pk are the final estimate of sk and updated error covaraince
matrix, respectively.

Further, in the representation of KMCC
k , the P̄p

k and R̄w

are given by

P̄p
k = Cp

kE
s
k
−1Cp

k
T
,

R̄w = Cr
kE

y
k
−1

Cr
k
T ,

where Cp
k and Cr

k are obtain from the Cholesky decomposition
of Pp

k = Cp
kC

p
k
T and Rw = Cr

kC
r
k
T , respectively, and

Es
k = diag[Kσ(e1),Kσ(e2), · · · ,Kσ(ens

)],

Ey
k = diag[Kσ(ens+1),Kσ(ens+2), · · · ,Kσ(ens+nm

)].

From (8), it can be inferred that in comparison to EKF’s
Kalman gain (Kk = Pp

kH
T
k (HkP

p
kH

T
k +Rm)−1), the KMCC

k



provides a mean to tackle the effect of non-Gaussianity with
the help of σ. Also, for a high value of σ the Es

k and Ey
k

becomes identity matrix, correspondingly, P̄p
k = Pp

k and
KMCC

k = Kk, eventually EKF-MCC converges to EKF. In the
light of the above discussion, it is concluded that for a suitable
value of σ, the EKF-MCC will have a different KMCC

k to
Kk of EKF, this makes EKF-MCC suitable to deal with non-
Gaussianity.

Nevertheless, in (8), it is explicit that like EKF, EKF-MCC
also linearizes h(·) via Jacobian, which yields the first-order
approximation of h(·). Consequently, it restricts EKF-MCC
from achieving high estimation accuracy and, in some cases,
yielding inaccurate results when dealing with complex target
motion models. Also, to obtain the Jacobian, and hence, to
implement the further steps, EKF-MCC is bound to know
the exact form of h(·) (which depends on the radar sensor
type and, in most cases, not known apriori). In the following
subsection, we present an approach to deal with these short-
comings in EKF-MCC. We describe the implementation of
EKF-MCC-RKHS, which first estimates the h(·) in RKHS
using a well-known KRMC algorithm, which is effectively
a non-linear adaptive algorithm in RKHS. Subsequently, the
estimate of h(·) replaces the Jacobian in EKF-MCC for
performing further prediction and update.

C. EKF-MCC-RKHS

In this subsection, the KRMC algorithm used to implement
EKF-MCC-RKHS is described. Firstly, referring to (2), the
hidden state sk is mapped to a high dimensional RKHS (H)
via an unknown implicit mapping function ϕ(·) [6], [10], [11].
Subsequently, yk, which originally is the nonlinear function of
sk is linearized in terms of ϕ(sk) in H. Eventually, the estimate
of yk in H can be given by the well known Representer’s
theorem [12] as

ŷk = ⟨Ω,ϕ(sk)⟩H, (9)

where ⟨(·, ·)⟩His the inner product in H and Ω is the unknown
weight matrix in H.

In the search of the optimized value of Ω and for the
available k pairs of yk and sk,

{
(s0,y0), . . . , (sk−1,yk−1)

}
,

the KRMC algorithm maximizes the following cost function

J (Ω) = max
Ω

k−1∑
j=0

βk−1−jKσ1(yj − ŷj) +
1

2
βk−1λ ∥Ω∥2 ,

(10)
where β is the forgetting factor (0 < β ≤ 1), introduce in (10)
to enhance the effect of latest estimates, Kσ1

(·) is the GMK
with kernel width σ1, and λ is the regularization factor.

Utilizing (9), yields

J (Ω) = max
Ω

k−1∑
j=0

βk−1−jKσ1(yj−⟨Ω,ϕ(sj)⟩H)+
1

2
βjλ ∥Ω∥2 ,

(11)

Evaluating the gradient of (11) and equating it to zero the
solution of Ω is given by

Ω = Φk−1(Φ
T
k−1Φk−1 + λβk−1σ2

1B
−1
k−1)

−1yk−1, (12)

where Φk−1 = [ϕ(s0), . . . ,ϕ(sk−1)]
T , and

Bk−1 = diag[βk−1Kσ1(y0 − ⟨Ω,ϕ(s0)⟩H), · · · ,
Kσ1(yk−1 − ⟨Ω,ϕ(sk−1)⟩H)].

Substituting (12) in (9), yields

ŷk = [⟨ϕ(s0),ϕ(sk)⟩H, . . . , ⟨ϕ(sk−1),ϕ(sk)⟩H]aTk−1, (13)

where ak−1 = (ΦT
k−1Φk−1 + λβk−1σ2

1B
−1
k−1)

−1.
With an analogy of (13) with (2), it can be infer that the

estimate of h(·) at kth time instant is given by

ĥk = [⟨ϕ(s0),ϕ(sk)⟩H, . . . , ⟨ϕ(sk−1),ϕ(sk)⟩H]. (14)

In (14), ⟨ϕ(si),ϕ(sj)⟩H, represents the inner product of
ϕ(si) and ϕ(sj) in H. Since ϕ(·) is inaccessible, (14) can be
simplified by evoking a celebrated Mercer’s theorem [8]. Mer-
cer’s theorem states that the inner product in H is efficiently
calculated in Euclidean space by the use of κ(·, ·) (introduced
in (4)).

Hence, utilizing Mercer’s theorem, the simplified form of
ĥk is given by

ĥk = [κ(s0, sk), . . . , κ(sk−1, sk)]. (15)

The (15), suggests that unlike EKF-MCC, the knowledge of
h(·) is no longer needed. Instead, h(·) can be iteratively
estimated along with the prediction and update step of EKF-
MCC. Moreover, at kth instant, ĥk is based on the present
state vector sk and the past state vectors

{
s0, . . . , sk−1

}
. This

implies that at kth time instant after obtaining ŝk from EKF-
MCC, in (15), the ŝk replaces sk. Afterward, ĥk replaces h(·)
in EKF-MCC to do the further prediction and update steps.
The process repeats iteratively for k = 1, 2, . . . ,K. Also, σ1 in
ak−1 provides an additional freedom to adjust the performance
of EKF-MCC-RKHS against the non-Gaussianity.

The advantages of using EKF-MCC-RKHS over EKF-MCC
and EKF are three-fold: (1) Unlike EKF-MCC and EKF,
the implementation of EKF-MCC-RKHS is not restricted to
knowing the exact form of h(·). (2) Since, unlike EKF-MCC
and EKF, the estimate of h(·) is used, the EKF-MCC-RKHS
will yield the estimate of sk with higher accuracy. (3) Lastly, to
estimate h(·), since MCC is used in KRMC, like EKF-MCC,
the EKF-MCC-RKHS is suitable to use with non-Gaussianity;
however, provide better estimation accuracy than EKF-MCC.

The pseudo algorithm for EKF-MCC-RKHS is given in
Algorithm 1, where zk, rk, Qk, θk, ek, and ak are as per
[9].

IV. SIMULATION RESULTS AND ANALYSIS

This section provides a thorough description of the simu-
lation results performed to evaluate the performance of the
proposed EKF-MCC-RKHS in comparison to EKF-MCC and
EKF. The simulations are characterized in Scenario I and
Scenario II. In Scenario I, the simulations are performed



Algorithm 1: Implementation of EKF-MCC-RKHS
Intialization:

1 s0, y(s0), ŝ0, P0, ĥ0 = [κ(ŝ0, ŝ0)],
Q0 = (λβσ2

1 + κ(ŝ0, ŝ0))
−1, a0 = [1, . . . , 1]1×nm

2 for k = 1, 2, 3, · · · ,K do
3 EKF-MCC
4 Compute spk and Pp

k using (7)
5 yp

k = aTk−1ĥ
T
k−1

6 Ĥk =

{(
∂ĥk−1

∂ŝk−1

∣∣∣∣
ŝk−1=spk

)
ak−1

}T

7 Compute KMCC
k , ŝk, and Pk using (8)

8 KRMC
9 ĥk = [κ(ŝ0, ŝk), . . . , κ(ŝk−1, ŝk)]

10 ek = yk − aTk−1ĥ
T
k−1

11 zk = Qk−1ĥ
T
k−1

12 θk = (exp(−∥ek∥2

2σ2
1
))−1

13 rk = λβkσ2
1θk + κ(ŝk, ŝk)− zTk ĥ

T
k−1

14 Qk = r−1
k

[
Qk−1rk + zkz

T
k −zk

−zTk 1

]
15 ak =

[
ak−1 − r−1

k zke
T
k

r−1
k eTk

]
16 end

to validate the better performance of EKF-MCC over EKF.
Since EKF and EKF-RKHS use the same MMSE crite-
rion, in Section I, the EKF-MCC is compared with EKF
only. Henceforth, Scenario II evaluates the performance of
EKF-MCC-RKHS compared to its counterparts EKF-MCC
and EKF. For both scenarios, the yk is assumed to be
in spherical coordinate and follow Gaussian mixture with
wk ∈ p1NR(0,R

1
w) + p2NR(0,R

2
w), correspondingly, Rw =∑2

g=1 pgR
g
w. The p1 = 0.1 and p2 = 0.9, the R1

w = σ2
w1Inm

and R2
w = σ2

w2Inm
, where σ2

w1 = 0.15 and σ2
w2 = 20,

respectively. Scenario I and Scenario II both are simulated
for K = 150 CPI’s i.e., k = 1, 2, · · · , 150, Tcpi = 0.01 sec,
and Qu is according to (II), where σa = 10−2. The ŝ0 and
P0 for both scenarios are consider as [1, 1, · · · , 1]ns×1 and
Ins

, respectively. Further, since yk is available in spherical
coordinate (yk = [r̂k, θ̂k, ϕ̂k]

T ), the associated non-linear h(·)
is given by

h(sk) =

[√
x2
k + y2

k + z2k, tan
−1

(
yk
xk

)
, tan−1 (√x2

k + y2
k

zk

)]T

.

The target is assumed to move in 3D space in an indoor
scene. Correspondingly, the maximum distance traveled by
the target in x, y, and z directions is limited to 10 m. The
performance of the filters for both Scenarios I and Scenario
II are quantified with root mean square error (RMSE) along
the positions, velocities, and accelerations in the x, y, and z
directions. The RMSEs for the elements of ŝk are define as

RMSE(i) =

√√√√ 1

K

K−1∑
k=0

(sk(i)− ŝk(i))2; i = 1, 2, . . . , ns

where i denotes the ith element of sk and ŝk.

A. Scenario I

In Scenario I, the simulations are performed to evaluate
the performance of EKF and EKF-MCC. For EKF-MCC, the
σ = 0.95. The ground truth (GT) and estimated trajectories
obtained from EKF and EKF-MCC are shown in Fig. 1. As
depicted in Fig. 1, the trajectory estimated by EKF-MCC
is close to GT. The improved performance of EKF-MCC
over EKF amid MCC is shown in Fig. 2. In Fig. 2, the
RMSE obtained by EKF-MCC and EKF in estimating all
ns = 9 parameters is shown. Referring to Fig. 1 and Fig.
2, it concluded that the EKF-MCC outperforms EKF when
the system is affected by non-Gaussian noise.

Fig. 1. Evolution of GT and estimated trajectories in 3D space with EKF
and EKF-MCC for Scenario I.
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Fig. 2. RMSE in the estimation of all parameters (x, vx, ax, y, vy , az , z,
vz , and az) with EKF and EKF-MCC for Scenario I.

B. Scenario II

The simulations to evaluate the comparative performance of
EKF-MCC and EKF-MCC-RKHS are performed in Scenario
II. It is already shown in Fig. 1 and Fig. 2 that EKF-
MCC outperforms EKF. Nevertheless, for better clarity, in this



subsection, the performance of EKF-MCC-RKHS is compared
with EKF-MCC and EKF both. In the simulations, for EKF-
MCC σ = 0.95 and for KRMC σ1 = 5, also, β and λ are
1 and 0.004, respectively. Further, it is depicted in Fig. 3
that EKF-MCC-RKHS yield the estimated trajectory in close
proximity to GT. Also, from Fig. 3, it can be inferred that EKF-
MCC performs better than EKF with system non-Gaussianity;
however, because of estimating h(·) and using MCC, EKF-
MCC-RKHS performs better than both EKF-MCC and EKF.
Further, Fig. 4 validates the improved performance of EKF-
MCC-RKHS over EKF-MCC and EKF in terms of RMSEs of
all estimated parameters.

Fig. 3. Evolution of GT and estimated trajectories in 3D space with EKF,
EKF-MCC and EKF-MCC-RKHS for Scenario II.
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Fig. 4. RMSE in the estimation of all parameters (x, vx, ax, y, vy , az , z,
vz , and az) with EKF, EKF-MCC, and EKF-MCC-RKHS for Scenario II.

V. CONCLUSIONS

In this paper, the problem of estimating the target’s dynamic
parameter in the presence of measurement non-linearity and
non-Gaussianity is tackled. Firstly, to deal with the effects of
non-Gaussianity, EKF-MCC is suggested as a better choice

over EKF. For non-Gaussianity, unlike MMSE, the MCC
utilizes higher-order error characteristics in estimation, pro-
viding estimates with good estimation accuracy. Further, to
make EKF-MCC independent of knowing the exact non-
linearity (h(·)), we proposed clubbing EKF-MCC filtering
with RKHS-based KRMC. The KRMC uses the MCC and
provides the estimates of h(·) by linearizing the non-linear
relation in RKHS. The combined filter EKF-MCC-RKHS,
instead of approximating h(·) via Jacobian, estimates h(·) and
hence provides better estimation accuracy over EKF-MCC.
The simulation performed to estimate the target’s dynamic
parameters of the CA target motion model validates the
superior performance of EKF-MCC-RKHS compared to its
predecessors, EKF-MCC and EKF.

Future work could include the theoretical analysis of the
convergence and estimation accuracy achieved by the proposed
EKF-MCC-RKHS filter.
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