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Abstract: Intelligent systems are expected to adapt to change dynamically up to varying context by keeping 

trustworthiness of the system via available resources. In the case of decentralized resources and algorithms, 

scalability becomes a key issue compared to centralized approaches. The increasing number of nodes in 

swarm system impacts its behavior, since it utilizes complex computational mechanisms for co-operative 

missions, which has to dynamically fuse large-scale matrices of the nodes and merge those to be able to scale 

and train the system in (near) real-time. The literature review in the domain shows that keeping the system 

resilient is challenging since it requires real-time updates and predictions in different system layers. In this 

context, some approaches based on ledger chain structures and big-data technologies can accomplish the 

transaction scalability and memory-speed analytic performance in some manner. Despite that, 

mission/safety/operation-critical applications (such as cooperative autonomous missions), require measuring 

and monitoring trust in critical checkpoints of a system in operation while keeping the expected performances 

of the total system. The thesis aims at solving such challenge and targeted the development of a new Methods 

called Trusted Distributed Artificial Intelligence (TDAI). The main contributions of the thesis are on the 

development of novel method that covers the following aspects: 

- Measuring, quantifying and justifying trust in distributed systems. 

- Enabling trusted scalability of autonomous systems.  

- Assuring trust for swarm intelligence mechanisms. 

- Manipulating swarm system units with search and mining focus to implement TDAI methodology in 

(near) real time.                                                                                                               
In order to develop such a holistic methodology approach, we gradually contributed from different 

perspectives. We initially proposed to utilize a holistic MEMCA (Memory-Centric-Analytics) abstraction, to 

maximize the trust factor of the system while enabling trusted scalability of the transactions and memory-

speed. Data locality is extended to the edges in trusted scalable manner to handle the complexity of 

data/transaction-flow while the memory performance was ensured in the swarm. This approach is based on 

micro-services architecture and has innovative approaches for layer-wise structure enabling verification of 

trust in critical checkpoints of an operational system via observed and observing nodes that can enable us to 

build growing intelligent mechanisms with software-defined networking (SDN) features by virtualizing 

network functionalities with maximized trust features for continuous trust monitoring in observed context. 

Accordingly, critical feature sets of AI systems and growing intelligent mechanisms are identified, measured, 

quantified and justified dynamically with defined three architectural perspectives (1) central, (2) 

decentral/autonomous/embedded, (3) distributed/hybrid for emerging trusted distributed AI mechanisms. 

Therefore, resiliency and robustness can be assured in a dynamic context with an end-to-end Trusted 

Execution Environment (TEE) for growing intelligent mechanisms and systems. Thanks to TDAI 

methodology, the system could consider the trust indicators that can bring a confidence on the predictions in 

the distributed context. This way, distributed algorithms can be processed at massive scale by ensuring trusted 

scalability. Therefore, resiliency and robustness can be assured in a dynamic context with an end-to-end 

Trusted Execution Environment (TEE) for growing intelligent mechanisms and systems. Besides that, the 

trust measurement, quantification, and justification methodologies on top of TDAI are also applied in 

emerging distributed systems and their underlying diverse application domains. Finally, smartness features 

are also improved with human-like intelligence abilities at massive scale thanks to the promising performance 

of TDAI at massive scale initial deployment experiments. TDAI is demonstrated in a cross-border financial 

risk monitoring scenario within the distributed systems formed by the connected nodes, to detect and 

minimize critical risk alerts within the observed context. The main objective is to maximize trust values of 

the critical nodes and the observed environment within the monitored time-span.  

Following the thesis, the simulation of autonomous and connected vehicles will be pursued as the application 

domain with specific use-cases for further massive scale deployments within different cross-border 

challenges. Furthermore, the innovative approaches will also be utilized to wider spectrum intelligent system 

requirements of smart-cities and space systems as well with improved trust features.        

INDEX TERMS Trusted AI, Distributed Systems, Software Defined Networking (SDN), Trusted Execution 

Environment (TEE)
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Intelligent systems are able to adapt to change dynamically in varying contexts by keeping 

the trustworthiness of a system within the limits of available resources. However, increasing 

computational and storage capacities require the decentralization of resources and 

algorithms. Trusted scalability of analytical functions and resources is still an open research 

issue. In fact, large-scale matrices generated by the novel methods, which are used to 

formally state the data and context, have to be merged and dynamically fused to be able to 

scale/train [1] the decentralizing algorithms. Furthermore, an increasing number of nodes in 

the system cause swarm behavior [2,3,4] due to the use of complex computational systems 

for co-operative and critical missions of autonomous system units. The components utilized 

to interact with these units are called edge devices, and have densified storage and 

computational facilities, which enable them to cover broader additional contexts and a wider 

spectrum. This is a key enhancement for running novel machine-learning algorithms at the 

edge by ensuring trust and security [5]. Nevertheless, the dynamic context exponentially 

triggers data/transaction flows in the system. The flows lead recent challenges for 

intelligence valorization in a dynamic context.  Table 1 introduces selected keyword 

definitions that will be used in the rest of the document. 

 

 

Trust Belief in Reliability, Truth, Ability, Strength, Reliance, Dependence, 

Faith, and Confidence.  

In the computing domain, it is defined as the behavioural integrity of a 

system, which behaves as expected for all transactions [37,14,15,28]. 

Distributed System Set of nodes with decentralized/distributed memory and processing 

resources, which operates coherently [14,15]. 

Autonomous 

System 

In a general context, a network or set of networks under one organization. 

In systems and computing science, it can be defined as a component or a 

unit, which can operate independently [13,38,15]. 

Resilient Swarm Set of fully connected nodes. 

Artificial 

Intelligence - AI 

Ability to make the right decision in a mathematically well-defined 

context. 

Smart System A system with a set of nodes, which can behave intelligently [14,15]. 

Table 1. Keyword definitions.  
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Intelligence flow is also need to be valorized within critical/distributed/autonomous systems 

constraints as defined in Table 1 keyword definitions. Thereby, security/privacy features, 

QoS metrics, and other trust justification features are defined as part of the justification 

process. These features are widely explored in trust building approaches with QoS and 

security/privacy based trust models [145,146]. However, the models need to be managed 

dynamically, instead of static approaches to enable dynamism in observed context. So that 

trust can be monitored via sufficiently trusted nodes within the embedded checkpoints, are 

linked to the nodes and fetched to growth-flow mechanisms of intelligent systems [140] with 

the feedback structures to justify the trust in (near) real time [147].  

 

Besides that, valorizing the swarm intelligence and keeping the system resilient require real-

time updates and predictions in different system layers [6,7]. Ledger-based chain structures 

and big-data technologies can accomplish transaction scalability and memory-speed analytic 

performance to a certain extent. Despite this, mission/safety/operation-critical applications, 

such as tracking a moving object, monitored by a swarm, require trust to be verified at the 

critical checkpoints while maintaining the performance of the overall system. Extending data 

locality to the edge in a trusted scalable manner with holistic views can help to manage the 

complexity of the data/transaction-flow and maintain the memory speed performance of the 

total system and analytical transactions [130].  

 

Furthermore, holistic abstraction can maximize the trust factor of the system while enabling 

trusted scalability of the transactions and keeping the memory speed of large-scale trusted 

analytics on massive-systems. Co-operation between these units can be maximized with 

micro-service architectures, which have innovative approaches for layer-wise structures. 

Thereby, trust can be verified at critical checkpoints to maximize the targeted throughputs of 

these units. The approaches can help to dynamically define user feature sets and the 

management of these features can be enabled at run-time to maximize the performance of 

the co-operative mission, and the trust factor of a resilient system. Therefore, the system can 

consider the trust indicators that can give confidence concerning, for instance, the predictions 

processed by the distributed AI/ML algorithms at a massive scale by ensuring trusted 

scalability with the justified features.  
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Thereby, resiliency and robustness can be assured in a dynamic context with an end-to-end 

Trusted Execution Environment (TEE) for the growing intelligent mechanisms and systems 

thanks to the holistic abstraction paradigms as a critical improvement to Amdahl’s notation 

[5]. Since the dynamic holistic views can enable to measure the trust and correlate with 

expected throughput levels of the system node in (near) real-time. The innovative approach 

can be utilized to extend TEE definitions with end-to-end (E2E) architectural perspective via 

the improved check-point mechanism and dynamic feedback structures. Since, intelligence-

flow mechanisms can ensure behavioral integrity of a system node with the justified features 

of the context requirements. By that means, resiliency and robustness can be ensured during 

justification process within the intelligence-flow mechanisms of growth-flow structures. E2E 

trust mechanism protection is also succeeded via the trusted agents based ensured 

interactivity within the observed context by dynamically verifying the expectation fulfillment 

of the nodes and the linked context. 

 

These critical feature sets are explored as components of a distributed computing system with 

novel trusted distributed AI-driven approaches with a comprehensive scientific background 

definition. In this way, the trust justification features can be explored and identified for the 

emerging intelligent systems and mechanisms.  

 

As a main target in this thesis, we introduced a new concept of Trusted Distributed AI 

(TDAI), which offers the ability to make the right decision in a mathematically well-defined 

context within the critical, distributed, autonomous system constraints [15]. It covers the 

following main research questions:  

 

1. How to handle the dynamic and (near) real time context? 

2. How to consider the scalability in a holistic end-to-end view? 

3. How generic the methodology is in different critical and autonomous scenario use 

cases? 
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Tackling the above-mentioned research questions required first benchmarking our 

approach against existing methods to help understanding the new concept of TDAI, with a 

comprehensive review of the major related contributions in the current literature. Thanks 

to that, we obtained comprehensive view on emerging AI systems concepts and its’ critical 

components like SDN, TEE etc. Thereby, TDAI can be utilized to gain massive scale 

operationally in trusted scalable manner [5] thanks to the improvements and promising 

experimental performances of the methodology, and its novel critical features identified in 

this thesis. 

 

The TDAI methodological innovations proposed in the thesis are applicable to many 

perspectives since it has been experimentally validated in real-life experiments and it is 

based on a taxonomy allowing a formal trust measurement and quantification with novel 

holistic abstraction paradigms [5]. Associated metrics makes it operational and generic to 

any critical distributed and autonomous applications. The resulting trusted distributed 

system becomes complex and may involve self-organizing techniques with multiple 

hierarchical layers to better manage the decisions between several nodes. A node which 

might play the role of master would benefit from an overall view for global decision-

making for trusted interactivity and cooperation. Compared to existing trust based 

methodology approaches, TDAI is based on the fact that it considers a combination of 

security and privacy features together with the QoS related ones. Its exploitation requires 

a modeling phase of the observed system with a focus on the critical checkpoints. This way 

it makes it unique against the existing trust monitoring approaches, which are compared in 

details in Table 3.b.    

 

Many applications might be related to this, especially those related to mobile, edge and 

ubiquitous computing in mobility scenarios where vehicles are equipped with context-

aware and user-centric technologies. Furthermore, applications that cover this could be 

related to driver behavior profiling, with different possible outcomes, like low-emission 

driving where the user or the car (if fully autonomous) would need to follow precise 

instructions depending on the way that is driving and, on the environment and user-health 

diagnosis as explained in details in chapter V.   
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Rest of the thesis is structured as follows, Chapter. II introduces the general scientific 

background and definitions of AI vs Distributed AI and intelligent systems, Chapter. III 

introduces comparative analysis of the literature, which gives details about the security, 

privacy, and trust metrics considered in this study. Furthermore, it includes the discussion, 

current challenges, and a comparative analysis of the literature. Chapter IV introduces TDAI 

methodology formal statement, system architecture and its components. Chapter V explains 

evaluations, experiments and related use-case specifications and descriptions. Chapter. VI 

concludes the study and introduces future directions. 
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Introduction 

 

This chapter covers the main background on the distributed elements of AI systems 

together with their underlying trust justification features. It presents and defines the 

concepts of trusted distributed AI systems and their underlying architectures. Furthermore, 

reviews the state of the art with comparative analyses of related studies. 

A. Distributed Systems Vs Trusted Distributed Systems 

In order to characterize a distributed system, it is useful to use the logical functional 

distribution of the processing capabilities of a given system composed of a set of 

computers. The logical distribution of such capabilities is based on the following criteria 

like: Multiple processes, Inter-process communication, Shared memory and Collective 

goals. Some examples of distributed systems can be related to Peer-to-peer networks, 

Process control systems, Sensor networks and Grid computing.  

 

The computers in these systems are identified as system units, which are generic 

components called nodes. A distributed system is a system with set of nodes 

𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛, }, which can operate coherently as a single system. Depending on 

the memory system design, it is called (1) a parallel system with shared memory resources 

or (2) a distributed system with decentralized/distributed memory resources in each system 

node 𝑁𝑖 , as illustrated in Figure 1.    

 

The systems can be designed for specific purposes or as generic mechanisms for multi-

purpose implementations. Examples of this are: (1) Distributed computing system, which 

can be a cluster computing system or a grid computing system; (2) Distributed information 

system for a transaction-processing system (mainly database applications) or enterprise 

applications; and (3) Distributed pervasive systems with mobile and embedded computing 

devices. This category can include wireless nodes as networking devices for low latency 

communication, such as emerging 1/2/3/4/5/6G communication and networking 

technologies [14]. 
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Features for networking and communication technologies and current research challenges 

for distributed systems will be discussed in Chapter. III, but we can already say that 

emerging communication and networking technologies together with system abstraction 

approaches enable us to categorize that as a fog layer with novel holistic view approaches 

[5], with a feedback controller mechanism. Some examples of emerging wireless 

communication technologies such as 5/6G can be defined as a network component for 

distributed pervasive systems with a set of interacting nodes 𝑁𝑖 … 𝑛 {} , which have very 

low latencies for real/near real time critical systems. It is a core mechanism for emerging 

Software Defined Networking (SDN) and virtualized network functionalities (NFV), as 

well as for the growing intelligent systems. 

 

The concept of trust is very subjective, having been used by many researchers in many 

domains for different purposes.  The generic definition of trust is as follows:  

 “trust (or, symmetrically, distrust) is a particular level of the subjective probability with 

which an agent will perform a particular action, both before [we] can monitor such action 

(or independently of his capacity of ever to be able to monitor it) and in a context in which 

it affects [our] own action”.  

Trust can then be defined as the belief that a rational entity will resist malicious 

manipulation or that a passionate entity will behave without malicious intent [40]. 

 

If we look at the distributed systems from a service point of view, the emerging digital 

environments and infrastructures, such as distributed security and computing services, have 

together generated new means of communication, information-sharing, and resource 

 
Figure 1. Parallel and Distributed Systems. 
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utilization. However, using these distributed services results in the challenge of how to 

trust service providers to not violate security requirements, whether in isolation or jointly. 

Answering this question is crucial for designing trusted distributed systems and selecting 

trusted service providers [41]. 

 

When designing distributed systems, trust has to be considered as a major factor in all 

development stages. Therefore, the trust-based design and development would need a 

framework to guide system developers towards identifying a set of comprehensive 

requirements and simultaneously preventing any possible conflicts [42]. These conflicts 

are observed via layering and logical operations with a multi-layer design principle and 

paradigm approach, as illustrated in Figure 2, which interacts via data between the layers. 

Thereby, data can be the key components to track the states and critical knowledge 

regarding the required framework. 

 

In [5], authors propose the Markov chain Monte Carlo (MCMC) method, which can be 

analytically considered as an inference problem, i.e. computing the posterior distribution 

via prior distribution information. Given a dataset 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁}, the posterior 

probability of 𝑃(𝑥∗|𝐷) for the excess state 𝑥∗ can be calculated using the Bayesian Rule 

with a probabilistic distribution. Knowing the probability distribution of the initial state 

𝑃(𝑥0) and the transition kernels 𝑇(𝑥∗ ← 𝑥), the marginal probability of the Markov chain 

at the specific state 𝑥∗ is computed dynamically. If the prior states are likely to link to the 

posterior states, then, the Markovian chain is ergodic and converges to an invariant 

distribution. So that, trust can be transferred between the contexts. This approach can be 

considered for a dynamic context with a rational agent function to obtain a well-defined 

context to elaborate on the challenges. So that, trust can be measured with initial 

assumption and a value assignment to the system node between 0-1. Depending on the 

fulfillment of required expectation in the observed environment E{N[*]} the values are 

adjusted dynamically within the observed time span. The more features are justified in the 

context the more trust level obtained. Furthermore, it can be utilized to ensure the 

interactivity within the observed context. Thereby, TDAI taxonomy can utilize the 

approach to adjust trust level of the context dynamically. Each system node it is associated 
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the trust features on top of which values are via some probes (using for instance automated 

or semi-automated processes). These values are aggregated and normalized in a way to get 

a trust value between 1 and 5 (TDAI  Trust levels). 

 

In order to formulate interactions with the environment within the well-defined dynamic 

context, the behavior of a given node can be described as a dynamic system node in the 

environment E {}, which produces a sequence of states or snapshots of that environment. 

A performance measurement U() evaluates this sequence, where performance is dependent 

of the set of nodes in the observed environment NE {N1, N2, N3, …, Nn}.  

 

Let 𝑉(𝑓, 𝑬, 𝑈) denote the expected utility according to U () of the agent function f () 

operating in E {}. Each Environment has a set of nodes, NE {N1, N2, N3, …, Nn} and can 

be monitored with a set of trusted agents or nodes. Each node can be defined as a trusted 

agent, which can be defined as system nodes depending on their context. We can identify 

the rational agent with a function as follows: 

 

𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 max
𝑓

𝑉(𝑓, 𝑬, 𝑈) (1). 

 

Throughput of each Node X(N) is monitored via trusted Agent A {} as well as via other 

nodes N {}. A trusted Agent is formulated as follows: 

  

A {} = { 𝑖𝑁𝑖 and with activation function 𝑎𝑖 }(2). 

 

The goal of the set of agents A {} and nodes N {} is to maximize the expected utility V () 

of the set of environments E {} by monitoring behaviors with 𝑓𝑜𝑝𝑡() function via trusted 

channels. The interactions with the environment and identified trust justification features 

can be observed dynamically with (1) centralized, (2) decentralized and (3) distributed 

system design paradigms within an architectural design perspective. Thereby, the trust 

factor of the system, 𝑃(𝑥∗) ∝ 𝑡 with the set of nodes; N E{}:{N1, N2, N3, …, Nn} can be 

aggregated in order to maximize the throughput in the well-defined dynamic context. 
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Chapter IV introduces detailed formal statement of TDAI, in this chapter we focus on 

background analysis with the initial statements. 

 

The dynamic context and environment in which the set of nodes E{N[*]} interacts, require 

an optimal level of trust in the context in order to be able to ensure the interactivity of the 

nodes and system components. Depending on this level of trust, the system can be 

identified as a trusted distributed system with the hard constraints of a critical system in 

real time. This set of features can be mainly identified and measured with dynamic metrics 

such as the latency, throughput, and power values of the nodes. The values have to be set 

up accurately for the context dependencies and adapted dynamically to the changing 

context. Next chapter introduces the background of these AI principles and paradigms with 

a comparative analysis on centralized and distributed perspectives.  

B. Centralized AI Vs Distributed AI 

 

Artificial/computational intelligence has been described from many aspects in literature. The 

main challenge is finding the abstract and numeric definitions of thinking, learning, and 

intelligence. In this chapter, we will provide the major definitions of machine intelligence, 

computing, and AI, in order to emphasize the roots of our conceptual and abstract basic 

definition for trusted AI mechanisms available in the literature. This chapter articulates and 

discusses state-of-the-art conceptual definitions of artificial intelligence. 

  

In spite of not having a standard definition for artificial intelligence, most accepted 

definitions can be categorized into four main groups. (1) behavior, acting humanly; (2) 

thought processes and reasoning, thinking humanly, cognitive modeling; (3) success 

measurement respective to human performance, thinking rationally; and (4) the ideal 

performance measure, rationality; acting rationally is a combination of mathematics and 

engineering [13]. The remainder of the chapter briefs on the four main categories and 

introduces the state-of-the-art definitions. Current challenges will be addressed with a 

comparative analysis of the state of the art. 
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The first category is behavior, acting humanly and is initiated by the Turing test approach. 

Natural language processing methods enable computers to communicate with other 

computers like humans. A computer passes the test if a human interrogator cannot 

differentiate whether the sender of the message is a human or machine. Knowledge 

representation stores heard or known data. Automated reasoning uses stored information to 

answer questions and inference new conclusions.  

 

Machine learning adapts a system to new contexts and detects/extrapolates patterns. There is 

no direct physical interaction between the computer and the interrogator, since the physical 

simulation of a person is unnecessary for intelligence. A video signal is included to test the 

subject’s perceptual abilities and pass physical objects through a hatch. Computers need 

computer vision to perceive objects and robotics that manipulate/move objects in order to be 

able to pass the test. AI researchers prefer studying the underlying principles of intelligence 

rather than duplicating exemplary scenarios. Therefore, little effort is needed to pass the 

Turing test.  

 

The second category is the thought processes and reasoning, thinking humanly, cognitive 

modeling approach. Cognitive science merges computer models from AI and experimental 

methods from psychology to imitate the human mind. Each field is growing rapidly and 

fertilizing the other. One of the most popular definitions of intelligence is the ability to adapt 

to change (Hawking, 1992), which has inspired most AI systems.  

 
Figure 2. Layering and logical operations of a distributed system [14]. 
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Neuropsychological evidence supports computer vision to develop innovative computational 

models. However, the systems used in real life have mission/safety/operational critical 

system constraints. Rational and formally proven methods are preferred by AI researchers. 

 

The third category is rational thinking, success measurement with respect to human 

performance. Logicians develop precise notations for statements about all kinds of objects in 

the world and relationships among them. Logic-based computational reasoning systems are 

applicable to some extent. However, formalizing and stating informal knowledge in formal 

terms with uncertainty factors is not an approach that is fully applicable. Furthermore, an 

insufficient number of facts make the use of problem-solving methods impossible and would 

exhaust computational resources. Reasoning steps can be added to increase the performance 

of a computational reasoning system, but it would remain limited due to uncertainty and 

informal knowledge resources.  

 

The fourth category is the acting rationally, rational agent approach, a combination of 

mathematics and engineering, based on an ideal performance measure known as rationality. 

A computer agent operates autonomously, perceives the environment, persists in a defined 

time period, adapts to change, reasons logically, and generates and pursues goals. A rational 

agent operates/acts under uncertain conditions to achieve the best expected outcome. All 

skills are required for the Turing test enable agent to act rationally. Knowledge representation 

and reasoning skills enable agents to reach good decisions. Comprehensible sentences in 

natural language need to be generated to communicate with the environment.  

 

Continuous learning is needed to improve the ability to generate effective behavior with the 

agent function 𝑓𝑜𝑝𝑡(). This category of AI can enable us to obtain a mathematically well-

defined context to interact with the environment. In this way, we can extend a definition for 

trust to AI systems as illustrated in Figure 3, where we have a dynamic context and where 

we see the AI based categories and trust impact. For instance, in IV part of the figure we can 

have mathematically well-defined context, where we can extend, quantify and qualify the 

trust with precise definitions of rationality principles.  
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Based on the comprehensive view of AI system methodologies, we can see that the rational 

agent approach is preferred by AI researchers. The standard of rationality is mathematically 

well-defined and completely general. It can enable an agent to be generated for any well-

defined context. Achieving perfect rationality and always doing the right thing is not feasible 

with the uncertainty factors intensive environments. Computational requirements cannot be 

satisfied in the context. A computer system that has (1) storage, (2) an executive unit, (3) 

control units does not have to be a central mechanism. Decentralized and distributed system 

design approaches can enable us to get closer to achieving perfect rationality.  

 

Architectural views and perspectives can be used to differentiate and categorize the features 

of emerging AI systems. The categories can be named as (1) centralized AI (2) 

decentralized/autonomous/embedded AI and (3) distributed/hybrid AI. The centralized 

approach is not considered feasible with the current state-of-the-art approaches, since the 

emerging intelligent environments are data-intensive and they have limited agent 

cooperation interactivity features due to the bandwidth limits of interaction channels. 

Thereby, the number of nodes in the limited context inflates exponentially. The agent 

functions 𝑓𝑜𝑝𝑡() also grow exponentially and the systems exceed the limits of computational 

scalability [5].  

 
Figure 3. Main categories of Artificial Intelligence. 
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As the second alternative, decentralized design features can help to control the independent 

nodes with limited capabilities of the autonomous agents, mainly with limited knowledge 

storing and processing features to make the right decision in uncertainty-intensive contexts 

and environments. However, decentralized design is also limited due to the capacities of the 

independent node, which is only feasible for a well-defined limited context. 

 

Fortunately, distributed design paradigms can help to merge critical feature sets of 

centralized and decentralized design paradigms within a hybrid design approach for 

cooperation and interaction with the agent function 𝑓𝑜𝑝𝑡() under uncertainty-intensive 

conditions. Thereby, we can define the distributed AI as the ability to make the right decision 

in a mathematically well-defined context within the critical, distributed, autonomous system 

constraints [15]. The main difference between centralized and distributed approaches is the 

dynamic data-driven cooperation with a set of nodes; NE : {N1, N2, N3, …, Nn} in a set of 

dynamic environments E{} to achieve the expected utility V().  

 

As cooperation between the nodes increases, system level trust becomes a more critical 

requirement to ensure the behavioral integrity of a system. The distributed design approach 

can enable us to maximize the critical feature sets (memory, storage, processing capacities 

etc.) of distributed AI/ML algorithms for the intelligent systems and mechanisms targeted. 

The following chapter discusses these feature sets in a dynamic context, where we introduce 

the need and increasing interest for Trusted Distributed AI in the literature as the core generic 

mechanism of the emerging trusted distributed systems. In this way, the agent function 𝑓𝑜𝑝𝑡() 

can dynamically control distributed resources to maximize the performance of the expected 

utility V (). By this means, the system can cover wider contexts and spectrums with the 

distributed features of trusted distributed AI, as explained in the next chapter. 
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C. Trusted AI Vs Trusted Distributed AI 

 

In a broader context, Trusted Distributed AI (TDAI) can be defined as the ability to make 

the right decision in a mathematically well-defined context within the critical, distributed, 

autonomous system constraints. The constraints can be observed with agent function 𝑓𝑜𝑝𝑡() 

to reach ultimate rationality in uncertainty-intensive environments. In order to identify these 

features, the rest of the chapter introduces basic definitions of (1) distributed systems, (2) 

security, privacy, and trust, (3) distributed AI and multi-agent systems, (4) end-to-end 

paradigms, and swarm mechanisms to maximize cooperation between the agents and thus 

maximize the performance measure U () in a set of environments E {}.  

 

Table 2 introduces selected critical feature set comparisons between trusted AI and Trusted 

Distributed AI with the architectural perspectives. The rest of the chapter explains the key 

features of TDAI and its advantages with decentral and hybrid design approaches, which 

enables us to maximize the performance of the agent function 𝑓𝑜𝑝𝑡() and overall system. 

 

C.I. Security, Privacy and Trust Features 

 

Security, privacy, and trust are the key elements of growing intelligent distributed systems. 

The scientific principles and paradigms are investigated in all design lifecycles with 

hardware/software co-design approaches. These features can make systems more flexible 

and undertake the necessary configurations to tackle the challenges of hardware 

dependencies. Scientific views and challenges can be categorized into many perspectives, 

such as the authors [14] roughly divide the issues of security in a distributed system into two 

parts. (1) concerns the communication between users or processes, possibly residing on 

different machines that have secure communication channel mechanisms. The mechanisms 

are more specifically designed for authentication, message integrity, and confidentiality. (2) 

concerns authorization, which deals with ensuring access rights to the resources with an 

access control mechanism. The mechanism can manage the user access level, system node 

confidentiality classification, and data protection policies with cryptographic keys and 
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certificates. The Table 2 below categorizes these most critical features with (1) centralized 

(2) decentralized/autonomous/embedded (3) distributed/hybrid design perspective, for which 

the values are assigned based on the background analyzes in this chapter.             

 

In a broader context, the security of a computer system is strongly related to the notion of 

dependability, which means that the computer system must have justifiable trust to deliver 

its services. Dependability includes availability, reliability/liability, safety, maintainability, 

and robustness. Furthermore, recently emerging concepts like anti-fragility can also be a 

notion of the resilience and dependence of the system. The authors include the confidentiality 

and integrity of the computer system as a prerequisite of trust.  

 

Confidentiality feature can be ensured by the security mechanisms in some manner with a 

layered logical and security mechanism. However, the integrity and coherency of the system 

require holistic views and end-to-end transaction monitoring approaches within the limits of 

critical system constraints [15]. In this way, alterations and state changes can be detected and 

rectified in real or near real time at massive scale. By this means, Alice can trust the computer 

system and interact with Bob via trusted channels in real or near real time. Trust features, 

metrics, and measurement/quantification approaches will be discussed in detail in Chapter. 

III after the brief background definitions of end-to-end paradigms and swarm mechanism 

feature sets in the next chapter.  

ARCHITECTURE Trust 
Measurement 
and 
Quantification 

Trusted 
Scalability 

Trust 
Assurance 

Swarm 
Manipulation 

System 
and User 
Behaviour 
Monitoring 

Decentralized (Autonomous/ 
Embedded/Local) 

❌ ❌ ❌ ❌ ✅ 

Centralized/ (Fully connected) ❌ ✅ ✅ ❌ ✅ 
Limited 

with end-
to-end 

latencies. 

Distributed 
(Edge/Hybrid/Hierarchical/Multi-
layer) 

❌ ✅ ✅ ✅ ❌ 

Trusted Distributed AI ✅ ✅ ✅ ✅ ✅ 

Table 2. Artificial Intelligence System state-of-the-art targeted feature summary (✅: 

Yes, ❌: No). 
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C.II. End-To-End Paradigm and Swarm Mechanisms 

 

The data-intensive nature of emerging AI systems and context-dependent programs makes 

the problem much more complicated due to the increasing complexities of the transactions. 

Nevertheless, a generalization approach is possible. Distributed caching policies and system 

abstractions have recently been tested. Performance improvements are observed with 

distributed file systems and different configurations for memory bottlenecks and congestions 

as an improvement to the Turing and McCarthy abstraction models [29,3]. The studies prove 

that the end-to-end implementations of machine-learning pipelines with modern cloud 

systems, which have browser-based interface architectures, can be implemented in real time 

or near real-time. The authors define the diversity of emerging data growth as big data 

concept. It is 3V (Volume, Variety, Velocity) data, which cannot be processed with classical 

database systems.  

 

A proof-of-concept study was experimented with basic machine-learning use cases for an 

opinion-mining application to understand social polarization and convergence features. The 

proposed distributed file system-based design enables us to overcome the memory bottleneck 

with a 90% true clustering performance [29] for designed scoring algorithms. 

 

System-level innovations and new conceptual definitions and abstractions have enabled us 

to develop advanced computational systems to automate many manual processes. Thereby, 

trusted distributed AI methodologies can be implemented with end-to-end machine learning 

pipelines and trusted execution of transactions with holistic views to the total system. Baydin 

et al. [1] propose automatic differentiation for machine-learning applications to build end-to-

end pipelines. The approach can enable end-to-end machine-learning models/knowledge 

bases to be merged and trained in different contexts. Emerging AI systems and 

computational/storage resources can support the end-to-end design of AI systems. Data can 

be managed and fused with knowledge bases within reasonable latency thresholds for many 

applications to keep the rationality of the agents in a well-defined dynamic context [30].  
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Machine learning and statistical techniques can help to transform big data into actionable 

knowledge with a simple user-interface via an efficient distributed system design approach 

[2]. End-to-end differentiable pipelining frameworks can support the automatic composition 

of a learning framework within acceptable latency thresholds [3]. The innovations enable 

cooperation between diverse contexts for the tasks, and trigger novel trust modeling 

approaches. Cohen et al. [4] propose a multi-agent-based trust model to be able to ensure the 

expected behaviors of system units. In order to increase cooperation between system-level 

transactions, swarm-based coherence is proposed as a collective adaptation for swarm 

intelligence with artificial neural networks [31]. 

 

The emerging technologies associated with swarm mechanisms enable trusted distributed AI 

to be developed, with an increase in processing capacity together with the 

distribution/decentralization of resources (data units, AI processes, etc.). Real-time 

management/exploitation of such systems and consideration of them from a holistic point of 

view becomes much more critical. [5] is an example of holistic system abstraction proposed 

for end-to-end transaction flow monitoring of trusted AI systems. In addition to this, some 

research work focuses on transaction management considering the X-AI concepts together 

with the lineage aspects (data locality and tracking) [32,33,34,35]. In terms of the 

development and engineering of AI-based systems, cloud-based lifecycle-based trust 

modeling and monitoring approaches are also proposed by the authors [8,9].  

 

As a brief overview to the explored background, the challenges can be categorized into three 

main architectural design views with a system level perspective. (1) Decentralized 

(Autonomous/Embedded/Local) (2) Centralized/ Fully connected (3) Distributed 

(Edge/Hybrid/Hierarchical/Multi-layer). Within these, the interactivity and cooperation of 

the agents and dynamic system components can be observed in the dynamic context within 

a holistic point of view.     
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The features in the literature targeting trustworthy mechanisms for either centralized AI or 

Distributed AI can be summarized as illustrated in Table.2. These categories and main 

feature sets can be listed as follows: 

 

- trust measurement, quantification, and justification 

- trusted scalability 

- trust assurance 

- swarm manipulation 

- system and user/agent behavior monitoring 

D. Conclusion 

 

We can conclude that there is little research work that is related to the field of TDAI. Indeed, 

this research field requires all five key features dedicated to pure distributed AI-driven 

systems, as mentioned above, to be considered.  

 

All these indicators may require simulation tasks to understand and measure the ability of 

a distributed system solution to solve complex (near) real-time mobility problems 

compared to conventional centralized approaches. Chapter IV content illustrates an 

intelligence flow mechanism in which the learning and growth is correlated with an end-

to-end trust mechanism. Thereby, the high-level monitoring dashboards of the intelligent 

systems can have a holistic view of the growing mechanisms in a dynamic context. Chapter 

IV describes the novel feature sets of TDAI with a use-case focus for the growing 

intelligent systems. It comparatively analyses the state of the art for the identified principles 

and paradigms and introduces the emerging challenges and potentials in detail.  
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Chapter III: Research Challenges 

and Related Work   
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Introduction 

This chapter presents the following: 

• AI system categorization covering its architecture perspectives, networking and 

communication features as well as its end to end trust mechanism justification 

features and indicators. 

• Comparative Matrix on the related work results. 

A. AI System Categorization 

 

Continuously growing intelligent systems can enable massive-scale AI support for many 

critical systems. However, challenges also increase, mainly in terms of complexity, 

inflation of size/volume, reaching limits of resource centralization, and an increased need 

for decentralized/distributed mechanisms due to non-deterministic alterations and 

uncertainties in system components. In this chapter, we will discuss related studies, which 

categorize the challenges and introduce the main features to be targeted for a trusted 

distributed AI methodology as a core mechanism of growing intelligent systems as 

illustrated in Figure 4. 

 

Data is the most valuable digital dynamic asset of the intelligent systems. Since computing 

machines have existed, the most interesting challenge has been to tackle the computational 

complexities in a timely manner and access the system resources with the right credentials. 

[42] Proper identifies the current state of the data as fuel for the digital age. Business 

analytics, statistics-based AI, digital twins, etc. are defined as “data-hungry” applications, 

which are components of complex systems, and which can be thought of as data 

ecosystems. The research challenges below are defined as the main categories:  

 

- Data as a key resource 

- Trust at the core 

- Regulation of data ecosystems 

- Data need semantics 

- From data to information 
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The challenges within the identified categories can help define the role of data in the current 

context of smart systems. However, data is not fully separated concern from computation, 

it has to be mapped to computation. Trust has to be measured and quantified. Novel holistic 

system abstractions are required to track the transaction flow at the system level and to 

assign trust values to each category. Furthermore, semantic web-based ontology modeling 

approaches with RDF (Resource Description Framework, Subject-Predicate-Object) 

[43,44], scenario-based strategy planning tools [45], or any other system design tools can 

help to model a lifecycle with a conceptual modeling perspective to better interact with 

intelligent system components at run time or (near) real time. Thereby, explainability and 

justifiability features with socio-dynamical perspectives can also be tracked more 

coherently to contribute to the continuous growth of the emerging intelligent mechanisms.  

 

Within the digital-dynamics perspective, system-level end-to-end transaction monitoring 

can be succeeded by a holistic view [5], which enables data-state and lineage tracking in a 

trusted manner with a robust core mechanism. System-level trust features, metrics, and 

measurement approaches will be discussed later in this chapter to indicate the justification 

of trust prerequisites, such as robustness, reliability/liability, resiliency, and integrity.          

 

The digitization of everyday life, cause the amount of data to grow exponentially, and the 

challenges emerging from this have made the need for system reconfigurability more 

critical. Hardware-dependent designs are replaced with software-driven mechanism and 

hardware/software co-design approaches are utilized when necessary. The software-driven 

approaches also adapted the software challenges to the current intelligent system context 

with software-intensive mechanisms. [46] Aksit has summarized these challenges/research 

directions into six categories with a focus on smart-city systems and presents them in a 

single list as briefed below; 

 

1. Developing models for smart cities; 

2. Designing a framework for managing and optimizing the configurations of clusters; 

3. Designing models, methods and tools for critical infrastructures; 
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4. Optimizing the necessary quality attributes through system adaptation at run-time; 

5. Integrating software systems; 

6. Designing a smart infrastructure with a high degree of interoperability, configurability, 

adaptability, and evolvability.    

 

The challenges can help to synchronize coherency between the related research studies. 

However, new software and hardware co-design principles are emerging. System-level 

hardware/software integrated views, which can interact with all verticals at run-times, are 

required for emerging smart city systems. Trust is not only required for dependability, 

which already ensures the security, robustness, resilience, integrity, and coherency of a 

system [46], but must be measured and quantified for smart systems, in order to inspire 

confidence in system architectural level disruptive innovations.  

 

The next chapters will identify these architectural design differences to emphasize the need 

for distributed design and the potential benefits of hybrid mechanisms. Thereby, we will 

be able to introduce the methodology to be used for the concept of SDN to ensure the 

interactivity of trusted agents in near/real-time for smart systems. Hybrid approaches also 

define a core mechanism for emerging networking/communication methodologies for 

close-to-long-range systems as the generic IT core, which can be implemented in emerging 

software intensive systems, such as 5/6G. In order to be able to focus the identified features 

on the TDAI, these system-level paradigms can be categorized as architectural (1) and (2) 

networking/communication perspectives. Thereby, we can obtain the trust justification 

features of novel computing systems with a focus on distributed computing concerns for 

the targeted trust frameworks. Rest of the chapter introduces these identified system-level 

features and explains them as the trust-justification features of emerging AI systems. 
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A.I. Architecture 

 

Architectural modeling and the models are the basic methodology and critical feature for 

system-design paradigms. These are mainly considered with hardware and software-level 

design concerns. The approaches can be limited to board-level architecture-design 

paradigms for computing and intelligent system mechanisms [47]. Chip-level designs can 

enable us to implement computing facilities on any system components as an integrated 

unit, such as edge devices and mobile units. However, increasing amounts of the data 

manipulated by the systems require major updates of the hardware and software abstraction 

principles.  

 

Existing approaches can enable us to process and manipulate data with virtualization and 

caching policies [48]. Chip-level interconnection [49] mechanisms can enable us to transfer 

the data between the processes with available scheduling policies [50]. These design 

approaches are limited with 3D-Stack board/memory design principles [51] and network 

interconnection issues [52], such as scalability, performance, energy consumptions, and 

most of all, with bandwidths of the transmission and buffering channels.  

 

 
Figure 4. Intelligent System Intelligence Flow Mechanism.  
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Emerging intelligent computing 

architectures [53] can enable us to 

process and manipulate data with 

more intelligent approaches. For 

instance, caching performances 

[54] can be optimized and 

streaming buffers can be designed 

more coherently and adaptively 

[55] to interact more efficiently 

with the system components. The 

interactions can be designed with 

online approaches with an event-

based trigger mechanism [55] with 

data-center networking [56] protocols. The architectural concerns can be modeled as 

generic core mechanisms with the holistic abstraction and end-to-end system design 

paradigms with throughput maximization approaches [5].        

 

Interactions with the environment and the dynamic state changes of the components also 

trigger behavioral complexities. These require the dynamic modeling of system view points 

and snapshots of the states, and can be succeeded by available system engineering 

architectural frameworks [57] up to the specific requirements of the dynamic context 

changes. In addition, business processes can also be modeled conceptually [58] to interact 

more efficiently with the environment. Therefore, system resource modeling and 

management paradigms can be improved with novel learning heuristics [59]. Furthermore, 

system resource-management knowledge bases can be trained for continuous growth and 

the heuristics can be improved with holistic abstraction [5] paradigms. These architectural 

features can be categorized into three main groups with centralized (fully connected), 

decentralized (autonomous/embedded/local), and distributed 

(edge/hybrid/hierarchical/multi-layer) system design approaches. 

 

 

 
Figure 5. Networking and communication 

systems range-based categorization. 
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• Centralized/ (Fully connected): Processing and memory resources are fully centralized 

 

Centralized architecture can enable to build smart systems with intelligent mechanisms, 

which have centralized processing and memory/storage components. Furthermore, robust 

networking/communication channel-based abilities are supported with strong back-end 

units, such as quantum computing mechanism, to interact with the environment and 

dynamic context efficiently. However, these architectural design paradigms are limited by 

system integration and performance issues [60]. Fortunately, parallelizable portions of 

these issues can be identified with trust factor maximization principles, and integrity 

concerns can be minimized with holistic interfaces [61], and holistic total system 

throughput maximization methodologies [5]. Nevertheless, the design/manufacturing costs 

and physical limits of these designs require decentralized and distributed approaches, 

which are explained briefly in the next chapters.        

 

• Decentral/ (Autonomous/Embedded/Local): Processing and memory resources are fully 

de-centralized 

 

The decentralization of the mechanisms requires trusted computing units [37] on edge 

devices and secure channels for trusted interactions with the environment. The trust 

constraints can be ensured to a certain extent, but the edge/mobile components are limited 

by digital design paradigms and require novel holistic interfaces [61]. 3D-stack digital 

design technologies can help to improve edge/mobile units as densified system components 

[15,62]. These features can dynamically adapt to the context changes with the holistic 

interface’s digital design approaches [61] and end-to-end holistic abstraction and views 

[14,5]. Thereby, the available features of edge/mobile devices can be maximized with 

densified design paradigms, and the overall system performance can be improved with a 

distributed design approach. Next chapter introduces the basics of distributed design and 

details are discussed in a comparative matrix in Chapter. IV C. 
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• Distributed/ (Edge/Hybrid/Hierarchical/Multi-layer): Processing and memory resources 

are distributed 

 

Distributed system design issues can be grouped into (1) algorithm-level and (2) system-

level concerns with a focus on distributed computing [14] principles and paradigms. 

Algorithm-level challenges include learning paradigms with statistical and AI/ML 

optimization approaches, such as learning cardinality estimator performance maximization 

[63] with a flow loss model, a source code compiler to minimize algorithmic complexities 

[64], and other AI/ML challenges to automate the data pipelines of training and test data-

sets [65]. One of the most critical concerns of these challenges, estimator performance 

maximization, can be improved with holistic abstraction paradigms, which can enable the 

dynamic training of multi-layer data models [5].  

However, increasing complexities and uncertainties of the algorithms trigger more system-

level concerns and require computational tractability of the processes and transactions. For 

instance, critical database ACID (Atomicity, Consistency, Integrity, Durability) features 

need to be extended to edge devices in a trusted, scalable manner [5]. These challenges 

require updates in logic design and hardware level updates within the polynomial time 

threshold values to minimize latency concerns [66]. Holistic interfaces can help to design 

reconfigurable hardware with a dynamic end-to-end logic structure [61]. However, 

middleware design paradigms are also critical for software/hardware co-design issues 

[5,62]. Fortunately, rational verification methods in polynomial time [66] can help to 

improve the transaction flow to enable the computational tractability of the processes.  

 

Behavioral strategies of these mechanisms can also be dynamically configured [67] to 

improve the intelligence mechanism of the intelligent systems. Therefore, AI systems can 

be improved with novel methodologies, so that we are able to mention trust on these 

systems, which have more opportunities and challenges than ML features [68], due to their 

behavioral integrity constraints [5,62]. Intelligent agents [69] are key components for these 

intelligently behaving smart systems, and trust measurement and maximization with 

swarming approaches are promising indicators and features of these paradigms [15]. 

Comparative analysis matrix in Chapter. IV B summarizes potential research directions. 
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Discussions in the next chapter will be limited to networking and communication 

perspectives in order to observe the methodologies that can maximize critical features of 

an intelligent system with the set of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛, }, such as connectivity 

and interactivity paradigms.  
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A.II. Networking and Communication 

 

As the emerging technologies grow faster, intersections between the fields are also 

increasing and multi-disciplinary fields are converging with AI systems-driven design 

paradigms. For example, networking and communication technologies are improved, with 

the critical features of emerging AI systems and novel functionalities are being enabled 

with software-driven design paradigms, such as NFV (Network Function Virtualization) 

and SDN (Software Defined Networking). In this way, emerging networking and 

communication technologies like 5/6G technologies can enable massive-scale AI System 

deployments to be implemented with novel hardware/software codesign paradigms, and 

the challenges can be explored with AI systems perspectives. The rest of the chapter 

explores these critical features with a range-based categorization approach as illustrated in 

Figure 5.  

 

Networking and communication features, which trigger growth acceleration in the 

computing paradigms and the densified computing/storage system units, can enable 

distributed massive data to be processed in real time and help to ensure the connectivity 

and interactivity of the components within the critical system constraints. These features, 

which are the key enablers for the SDN mechanisms with virtualized network 

functionalities, are called NFV. Thereby, the connected mechanisms can help to design 

software-driven dynamic systems rather than hardware-dependent designs to make the 

networking and communication systems flexible and adaptive to dynamic context changes. 

In doing this, the critical networking and communication components of emerging 

technologies can enable us to ensure the interactivity of the agents within hybrid-cloud 

mechanisms [49] and Radio-Network technologies, which have multi-layer design with 

network slicing features [56].  

 

Standard definitions are still on progress of improving signal transmission and edge/mobile 

processing latencies to meet the critical system constraints [57]. In spite of making good 

progress with these challenges, distributed computing and system design paradigms 

[14,15] still need to be investigated and tested with the critical feature sets of the emerging 
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networking and communication systems. These features are mainly categorized into two 

groups: (1) beamforming and signal transmission and (2) edge/mobile processing 

mechanism for networking mechanisms and systems. Figure 6 [72] illustrates the basic 

characteristics of wireless features, with GHz frequencies and advanced emerging features, 

which are mmWave and THz waveforms. These signal transmission abilities can help to 

improve the interactivity of system nodes and edge/mobile units within the limits of total 

system throughput principles and paradigms [5]. Furthermore, available networking 

protocols and mechanisms can enable the transmission and processing of [86] packages 

with multi-layer connectivity paradigms, as illustrated in Figure 7. Transmission latencies 

and edge/mobile package processing features are promising for ensuring the interactivity 

and connectivity of an intelligent system with a set of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛, }. 

Detailed features are discussed with a focus on end-to-end trust mechanism justification 

features and indicators. In this chapter, we will limit the discussion to critical networking 

and communication features with a range-based categorization approach as illustrated in 

Figure 5, consist of (1) Close (2) short (3) mid (4) long ranges. 

   

• Close-Range (PAN < 100m): Bluetooth, Wi-Fi, 802.11p/ITS G5 for V2X, low latency 

networks etc. 

 

An increasing number of networking and communication technologies can provide a wide 

variety of options for the connectivity and interactivity maximization of the system nodes 

and edge/mobile units. However, the growth and diversity of options increase complexity 

and trigger behavioral anomalies, which require (near)-real-time channel selection 

mechanisms.  

 

Fortunately, intelligent control mechanisms can enable us to design vision-based control 

mechanisms [87] or hybrid controllers with a wireless/visual sensor-based [5] control 

structure inside the edge/mobile units. These challenges trigger the requirement for novel 

synchronization and concurrency features [88] at the edge/mobile units. Networking and 

communication services can also be adapted to the dynamic internet/intranet [89] 

applications. Energy efficiency of these nodes is also a critical feature for the available 
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wireless/wired communication channels and required wireless communication protocols 

[90], and wireless sensor network architectures [91] can be adapted to change dynamically. 

These features can be designed as open-flow mechanisms [92] for a selected region, and 

adaptive protocols [93] can help to process packages and disseminate information in 

edge/mobile units with a distributed design approach [93]. Multi-layer topologies [94], 

such as MAC 802.11 ad hoc protocols, can be maintained dynamically to adapt the physical 

layers at run-time.  

 

The resiliency of overlay networks [95] is also a critical concern for the edge/mobile device 

surface [96] signal processing abilities within the critical system constraints. Thereby, 

advances in edge/mobile device features and abilities like ultrasonic ranging hardware [97], 

congestion controller mechanisms [98], miniaturized beamforming devices [99] can 

operate and help to ensure the interactivity and connectivity of the components with ms-

scale latency values [100]. On the other hand, these advanced features require hardware-

level code management challenges with context-aware computing paradigms. Fortunately, 

this adaptiveness can be improved with Machine Inferred Code Similarity (MISIM) 

systems [101], which can be part of a future research challenge in terms of the run-time 

reconfigurability of the systems. In order to limit discussions on close-range 

communication in terms of end-to-end trust mechanism and justification features, the rest 

of the chapter will only mention short-to-long range paradigms briefly and will focus on 

the identified trusted computing feature sets. 
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• Short-Range (LAN < 10km): Cellular networks, 4G/LTE, 5G NR etc. 

 

Short-range feature sets and end-to-end networking/ communication mechanisms can 

maximize the connectivity and interactivity of the system components and edge/mobile 

units in real/near-real time. Figure 7 illustrates these protocol categories, which include 

link-layer and end-to-end connectivity features. These features need to be extended to 

short-range cover, especially for smart-city use cases. For instance, emerging mobility 

technologies like autonomous cars can behave like a mobile computer device, which can 

help to implement urban air transport with the cars having a dual functionality as mobile 

computers.   

 

Connectivity and interactivity of these mobile units can be ensured with emerging systems 

and methods in order to obtain [102] telematic data with wireless/wired sensor tags. These 

protocols can be adapted dynamically to the dynamic context changes as explained in the 

previous chapter. The discussions can be limited to the V2X (vehicle to everything) domain 

to explain the most promising feature sets. For instance, ITS-G5 (IEEE 802.11p) and C-

 
Figure 6. Advance wireless communication systems emerging features [72]. 



 
 
 
 
 
 

 
44 

V2X (3GPP Release 14) are promising technologies in terms of sampling/transmission 

frequencies and power/energy efficiencies [103] with minimized congestion and latency 

values. Nice progress is saved with 5G hybrid-mechanisms [85], which are supported by 

hybrid clouds with maximized bandwidth limits to exceed theoretical thresholds like 

Edholm’s law of bandwidth [81]. Distributed computing paradigms are still under 

investigation to maximize the total system throughput values of the system [5] with novel 

AI/ML supported designs [32,6]. These feature sets will be summarized in chapter. III C. 

The rest of the chapter briefs on mid/long-range challenges and potential future research 

directions. 

    

• Mid-Range (MAN < 100km): High Speed Wireless Internet, cable TV systems 

 

As the amount of data traffic increases to the peta/exa-scale, controller mechanisms 

become more complicated and require advanced intelligent controllers inside edge/mobile 

devices with distributed mechanisms to be able to cover wider ranges. The diversity of the 

components and interaction require advanced package processing features and real-time 

decision mechanisms. Fortunately, the state-of-the art methodologies can enable 

distributed sensor computing systems, as illustrated in Figure 8. [12]. The detailed feature 

sets of these mechanisms are explained in the next chapter with a focus on the end-to-end 

trust features of computing principles and paradigms. As a brief introduction, these features 

can cover on-board computing units with mobile/edge query processing mechanisms. 

Therefore, dynamic measurement metrics can be collected to help to ensure the 

connectivity and interactivity of mobile units with maximized trust values, as explained in 

the next chapter, as advanced feature sets of the trust mechanism to be able to extend 

networking and communication features to mid-range. 
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• Long-Range (WAN > 1000 km): Space Networks, Sat Com, Space Internet, Futuristic 

(Drones, Low-Orbit Satellite etc.) 

 

The growth in communication technologies and signal transmission features can enable us 

to reach higher signal frequency transmission features up to PHz scales. Futuristic 

components of the emerging smart systems, which have higher bandwidths, can ensure the 

connectivity and interactivity of the components at massive scale within continental scope 

and low-mid-high orbit space systems. These innovative space missions can cover space 

internet, space aircrafts, and other advanced high-throughput connectivity mechanisms like 

6G and InfiniBand optical systems. These advanced radio signals and mm-to-ultraviolet 

frequencies are illustrated in Figure 9 [72].  

 

Swarming and end-to-end trust mechanisms can help to maximize the throughput of each 

node and the total system within the critical system constraints [15] with novel AI-

supported distributed computing system designs as the core mechanisms. Main 

characteristics of these features are summarized in chapter. IV.B within the detailed 

comparative features matrix. Figure 5 illustrates the categorization of these emerging 

networking and communication technologies with a range-based classification approach. 

Figure 7. Networking protocols for package transmission [98]. 
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Advanced communication and future networking systems will be considered in future 

related works. In this thesis, the focus is on distributed computing paradigms and principles 

of emerging intelligent systems. 
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A.III. Trust: End-To-End Trust Mechanism Justification Features and Indicators   

 

Trust paradigms are widely explored in technical and human science disciplines. Since our 

focus is on technical concerns with distributed computing scientific paradigms and 

communities, the categorization and futures are selected from the computing perspectives 

of a system with a set of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛 , }. In this way, the continuous growth 

acceleration of an intelligent system can be maximized with dynamic feedback structures 

[5]. These justification features can be categorized into four main groups: (1) Performance, 

(2) Run-time monitoring, (3) Security, and (4) Test-based features and indicators. This 

chapter will explain these justification features by using a selection of the main related 

studies in the literature. 

 

I.Performance 

 

Performance elements are the key metrics for the justification features and defined trust 

indicators. These can be measured, quantified, and monitored from many perspectives. In 

order to focus the indicators on distributed computing domains and improve the feedback 

control structure of the generic mechanism, we can address and focus mainly on the 

scalability, elasticity, connectivity, and energy efficiency features of the nodes and total 

system.  

 

Thereby, the rationality and performance features of AI/ML methodologies can adapt to 

the dynamic context [13] and (near) real-time threshold constraints, and ensure the 

interactivity of mobile agents. This chapter explains the identified performance elements 

of these trust justification features. 
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a. Scalability, Elasticity, and Connectivity Limits: Total number of nodes and users in 

the system 

 

The scalability, elasticity, and connectivity features of a node can be identified as basic 

features of the performance-measuring approaches in system sciences. These are measured 

with number of nodes, users, data volume, and other system/algorithm level computational 

scalability limit metrics [5]. The approach has been widely applied with AI methodologies, 

such as distributed AI and multi-agents in many industries. For example, 

telecommunication systems became data intensive and improved with scalable system 

design paradigms [16]. Thanks to the advances in data-processing technologies, these 

features can be queried in real time and correlated with knowledge bases of the systems 

with dynamic holistic views [15]. The challenges will be discussed with a comparative 

feature analysis matrix in the next chapter. 

 

b. Energy Efficiency: Average energy consumption of nodes and critical transactions 

 

Dynamic management of system resources and physical capacity features requires both 

hardware and the physical layer monitoring of the units in real time. Energy efficiency 

average consumption value is the key capacity metric for the interactivity features of the 

mobile agents for the required power constraints. A novel system abstraction approach can 

enable the physical layer parameter/metric monitoring to be extended to ensure 

interactivity and adaptivity in near or near real-time [5].  

  



 
 
 
 
 
 

 
49 

c. Energy Efficiency: Average EMF (v/m), SAR(w/kg), Power(W) environment 

friendliness 

Emerging networking/communication systems like 5/6G can enable the implementation of 

novel features of the AI methodologies, such as real-time massive scale analytics. 

However, this triggers risks pertaining to human health, include cancer, COVID-19, etc. 

[73,74]. These challenges can be mainly identified and are rooted in EMF, SAR, and the 

power features of the nodes. In order to be able to justify trust in a dynamic context, these 

features have to be monitored in real time with the local/global regulative constraints. 

Thanks to the holistic view [5] of innovations in emerging computational ecosystems, this 

can also be achieved within the regulative constraints and it is discussed in the next chapter. 

  

II.Run-time Monitoring 

 

In order to be able to maintain overall performance; dynamically justified trust features, 

the growth progress of the systems, and other trust indicators have to be monitored 

continuously. Active and passive systems have different constraints and limits, which 

trigger diverse challenges in distributed computing paradigms. AI methodology 

approaches can be improved to satisfy the need of the active system constraints at run-time 

with dynamic approaches. Trust features and indicators can be guaranteed for machine-

learning systems [18] and distributed AI techniques [8]. Programming approaches like 

 
Figure 8. A distributed mobile sensor computing system [12]. 
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probabilistic/concurrent [20], dynamic/differential [18,1] can enable knowledge bases and 

data states to be updated at run-time coherently. Therefore, the justification features can be 

trained and updated dynamically for a continuously growing mechanism. We focus these 

challenges on distributed computing and caching policies in the next chapter discussions. 

This chapter is a brief on data-state tracking/transitions for an efficient end-to-end feature 

embedding/manipulation mechanism of a running system. 

 

a. Data-flow monitoring: Data state monitoring between applications 

 

Data is the fuel and most valuable asset for the emerging intelligent systems [42]. It is the 

critical element of the justification features to ensure the integrity of the mechanisms and 

systems. Each state-change has to be tracked and manipulated during the whole lifecycle 

of the data. Emerging AI technologies can improve data challenges [30] with novel end-

to-end paradigms and scientific improvements in the field. Improved ML systems can also 

help to improve knowledge bases and are dynamically generated up to data-state 

dependencies [2]. However, the training process is not only required for data states, it also 

has to be mapped to the pipelining [3] and feedback mechanisms of system nodes with trust 

indicators [4]. The features that can help to justify trust are discussed in the comparative 

matrix table in Chapter 4. B. 

 
Figure 9. Frequency spectrum paradigm shift by communication and sensing features (3kHz-

30PHz) [72]. 
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b. Transaction-Flow Monitoring: Transaction lifecycle monitoring 

 

The diversity and heterogeneity of the emerging systems require decentralized and 

distributed designs to be able to ensure the growth of the mechanism [30]. Distributed 

computing paradigms are core features for managing the resources and mapping the data 

and computation where necessary. Swarm intelligence techniques at the algorithm and 

system levels can help to resolve the challenges and complexities that trigger swarm 

behavior in emerging intelligent systems [2]. Novel designs for control structures and 

abstraction hierarchies [5] can help to embed trust justification features and ensure 

continuous growth with the necessary updates at runtime with real-time threshold values. 

Thereby, transaction life-cycle can be monitored dynamically and failures can be recovered 

with minimum latency via the feedback controllers and holistic views. These features will 

be discussed in the next chapter. 

 

c. Trust Monitoring: Periodical trust verification 

 

Technical and human science concerns around trust modeling are critical paradigms and 

features for the justification mechanisms. Our focus will be on technical concerns of trust 

with distributed computing principles and paradigm challenges. In order to improve the 

quality attributes with user-level measurement metrics, we can consider the regulative 

aspects of the trust issues. Emerging trends like explainability features [32] can provide 

growth acceleration metrics, and these can be improved with lineage-tracking features [15]. 

Furthermore, these features are strongly dependent on the secure execution of the 

monitored transactions. In [118], authors explored and improved hardware-based SEE 

(Secure Execution) with a Trusted Execution Environment (TEE) concept. Storage and 

user interfaces are identified as critical features and compared with some of the available 

technologies like ARM TrustZone-based TEEs.  

 

However, these features have (near)real time interactivity constraints with diverse system 

components. For this reason, hardware isolation and separated kernels are far from 

achieving these latency, interactivity and scalability thresholds. Fortunately, dynamic 
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holistic views can help to maximize the trusted scalability of the emerging AI Systems 

[28,29]. Additionally, holistic abstraction paradigms [5] can also help to measure and 

quantify trust with a trust factor coefficient-based throughput maximization approach as an 

extension to Amdahl’s notation. Thereby, trust can also be verified periodically with the 

identified trust justification features. From a system-level perspective, the trustworthiness 

features of AI/ML principles [6,33,7,34,8,36] can be interpreted as basic structures of 

feedback and other mechanical/digital control loops for the growing mechanisms [5]. 

Furthermore, the uncertainty of the harsh conditions [75] can also be measured and 

quantified at run-time as calibration metrics [15].  

 

In order to obtain measurable and quantifiable metrics for trust concerns, we will keep the 

focus on regulative features, such as EMF/SAR/power values for health-care limits, 

privacy of data etc. with local/global perspectives [76,77,10]. These are the critical metrics 

of the massive-AI system justification features for real-time alerting and risk prediction 

algorithms [6]. Risk predictions can also improve the scalability limits of large-scale 

optimization algorithms [10] at run time [5]. Therefore, trust performance and node 

regulative constraint thresholds can be justified and can help to improve the growth of the 

mechanism by ensuring the behavioral integrity of the total system. Next chapter 

summarizes and discusses the scope of the technical concerns with trust measurement and 

quantification perspectives in distributed computing paradigms with AI/ML pipelining 

features of growing intelligent systems. 

 

d. AI/ML Pipelining: Dynamic knowledge base monitoring and update 

 

Dynamic contexts, in which mobile agents and system components interact, require real-

time updates in different system layers, data models, and most critically, knowledge bases 

for critical decision-support mechanisms. In order to be able to justify the trust features and 

indicators, interactivity of mobile agents has to be ensured with distributed computing 

paradigms and challenges. System acceleration units and algorithm level improvements 

can be designed for these purposes [11]. In order to be able to manage the system resources 

dynamically for the changing context parameters, AI/ML pipelining mechanisms can be 
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designed [78] with novel digital control structures [79]. Swarming approaches are also 

useful for mission-critical constraints of the growing smart systems. Resiliency, 

robustness, durability, locality, and anti-fragility features [80, 5] are critical features of the 

trust justification mechanisms for the trusted computing units [37], which are explained in 

the next chapter.      

 

e. Run-time feature embedding and interaction: Data fetching at run-time to knowledge 

bases 

 

Previous chapters introduced background information on the intelligent-system growth 

mechanisms. Some additional advanced system features can be explored in terms of trust 

justification features with technical concerns with a focus on distributed computing 

paradigms. Sensor-based approaches with wireless/visual detection/actuation interactors 

are promising for dynamic and fully-automated/autonomous designs. Detected features can 

be integrated within the limits of current networking/communication technologies [81]. 

Dynamic heuristics [82] and knowledge bases can be trained dynamically with critical-

system constraints of massive AI systems [15]. Multi-layer neural networks and tree 

structures with different data structures can improve the interactivity and performance of 

training [119,120].  

 

Other critical feature sets like data poisoning, backdoor attack can also be monitored to 

improve the data collection process of training transactions [121]. The features can be 

extracted dynamically within the critical data sets like fingerprint images and can be 

embedded into other knowledge bases and used for critical missions like spoof detection 

[122]. Furthermore, privacy-preserving deep learning models with homomorphic 

encryption and chain structures can be designed. However, these feature definitions and 

interactions are limited due to computational scalability and critical system design 

constraints [5]. Emerging hybrid-cloud and distributed computing design paradigms can 

help to maximize total system throughputs in order to handle the limitations in a trusted 

scalable manner [29,117]. The challenges and future directions will be summarized in a 

comparative analysis matrix in Chapter. III B. 
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III.Security 

 

Security is also a critical system constraint for the justifiable trust features. Security 

concerns for distributed computing paradigms cover a wide scope from physical protection 

to digital security mechanisms. The trust features can be justified with digital security 

design principles for any system with the set of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛 , }. Therefore, 

we can limit the scope to digital security concerns. Justifiable trust features can be ensured 

by improving system thinking paradigms [83] and artificially intelligent cyber-security 

mechanisms [84]. Adaptive protocols for dynamic contexts with checksum verification-

based approaches can justify the trust features and indicators [5] dynamically. Next chapter 

will discuss the details of these features and future challenges. In this chapter, we will 

introduce the basic principles of context awareness and trusted computing paradigms.     

 

a. Context aware dynamic adaptiveness: Event-based secure connection policies and 

protocols 

 

Context change detection/actuation and correlation extraction between the system resource 

allocation abilities are increased with the capacity improvements of computing 

technologies. Event-based abstraction approaches can adapt to change and reconfigure the 

required trust justification features with the available policies and protocols [5]. Context-

aware computing paradigms can distribute computing and process/extract the required 

features at the edge or on mobile units [27] with trusted computing mechanisms [37]. 

Furthermore, the bandwidth limitations of communication systems can also be made 

trusted with secure channels/interfaces [85,81] and the interactivity of agents and nodes 

can be ensured for continuous growth [15]. Next chapter introduces checkpoint and 

verification approaches-based feature for dynamic context change. 

     

b. Context aware dynamic adaptiveness: Dynamic package check-sum verification 

 

Thanks to the growth of distributed computing mechanisms, transaction flows can be 

verified at available checkpoints with dynamic package monitoring approaches to extract 
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the required metric with sets of justification features. Package checksum verification 

approaches can verify the integrity check mechanism [5], and this can be applied to generic 

IT core mechanisms with end-to-end paradigms [15]. By that means, targeted justification 

features of the related context can be extracted dynamically within the edge units and 

merged the transaction flows at (near)-real-time. Therefore, we can rely on and limit the 

scope to package check-sum verification approaches to justify the defined trust features, 

which are summarized and discussed in the comparative matrix in Chapter 4. B. 
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IV. Test 

 

Testing is also a de facto component for the system design lifecycle. Continuous testing 

mechanisms (black box, white box, grey box etc.) can detect anomalies and future risks 

with digital twins of the system units for continuous growth-assurance paradigms. 

Performance metrics are the key elements of trust justification features for both technical 

and human-level trust justification features. Behavioral anomaly detection/reaction-based 

monitoring approaches can detect/recover potential risks within the critical system design 

constraints [80]. Therefore, we can limit the testing scope to verification and confidence-

building approaches. 

     

a. Verification (survey, benchmarking, expert): Formal verification with regulative and 

technical standards  

 

Verification mechanisms are part of the holistic system lifecycle for distributed computing 

paradigms. These challenges can be defined and categorized as software engineering [46] 

paradigms with system design perspectives. Therefore, the necessary quality attributes can 

be defined/tracked/monitored as performance indicators. In order to make the approaches 

dynamic and adaptive to changing contexts, we can limit the scope to check-point 

controller and feedback mechanism principles for continuous growth assurance concerns. 

Detailed features are summarized in the next chapters with the comparative matrix tables. 

Rest of the chapter briefs about the selected trust justification features of the testing and 

verification mechanisms of the growing intelligent systems. 

 

i. Dynamic check-point locating with feedback controllers and optimization: End-to-

end holistic check-point structures 

 

Improvements in the distributed computing can enable packages to be processed at the edge 

or using mobile units as discussed in previous chapters. Feedback controllers can be 

correlated with the total system performance and each system unit’s throughput values can 

be correlated dynamically with the behavioral anomalies for feature 
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extraction/detection/reaction mechanisms [5]. Novel structures and holistic abstraction 

approaches can be implemented on the edge devices and used to build end-to-end TEE. 

Dynamic optimizers can be merged as critical supplementary components with respect to 

the context dependencies.      

 

Therefore, the system can ensure growth acceleration and improve the performances of the 

mobile units and agents with the trust justification mechanism via the holistic views, which 

provides dynamic feedback for the continuous growth of an intelligent system. Critical 

feature sets are summarized within the comparative matrix in Table.3. B.  

 

ii. Resiliency and robustness monitoring with holistic views and feedback controllers: 

Data-driven dynamic control structures for monitoring mechanisms 

 

User-level concerns are also critical metrics for the trust justification features at the 

technical and human/socio-dynamics levels. Resiliency and robustness features can be 

tracked with semantic or graph-modeling approaches, which are used to represent and 

visualize [43,44] the correlations between the entities. These features can be named and 

generalized as conceptual modeling [42] and monitored with a holistic end-to-end trust 

mechanism [15] as part of the generic IT core structure. Thereby, it can used to monitor 

regulative constraints in related contexts to observe the identified thresholds and improve 

train sets of alerting mechanisms.    

 

These features can be improved with scenario-based strategy planning paradigms [45]. 

Therefore, trust justification features can ensure the acceleration of the growth of the 

system with the monitored performance indicators and quality attributes of resiliency and 

robustness features with dynamic controllers and testing operations/processes. Table.3 

gives a summary of the identified features and emerging challenges to ensure the 

continuous growth of the intelligent systems. 
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b. Confidence-Building: Trust and confidence measurement/quantification in 

intelligent systems 

 

Trust can be defined as the behavioral integrity of a system, that is, the system behaves as 

expected at all times, in computing paradigms and sciences [37]. Human/socio-dynamics 

level concerns can be limited to regulative legal metrics with IT audit paradigms. Socio-

dynamical visions can help us to understand changing requirements and contexts 

dynamically and provide continuous feedback on the defined/monitored trust justification 

features to accelerate the growth progress of the intelligent systems.  

 

Building confidence in these systems also requires critical constraint feature predictions 

and forecasts for potential anomalies. This level of confidence can be maximized with 

strategy planning and a vision of the future cases and predictions about the states of the 

contexts [45]. Therefore, the trusted mechanisms can keep learning and accelerate growth 

continuously with an increasing confidence in the total system. Regulative legal 

constraints are dependent on the digital dynamic operation context and socio-dynamic 

regulation within the client context. This field is a future possible direction and challenge 

in our research. Next chapter will elaborate on the user-level monitoring metrics, which 

can be identified as critical system threshold values of the alerting mechanisms. So that, 

user-oriented critical alerts can be minimized and confidence can be built with maximum 

level. Next chapter briefs about these metrics/parameters. 

 

c. User-level continuous trust measurement: Facial expressions/body language, 

behavioral anomalies 

 

In order to retain the validity of the metrics for trust measurement mechanisms in 

distributed computing paradigms, these justification features can be improved with novel 

indicators, such as facial expressions, body language or any other human-level behavioral 

anomalies that can be correlated as sensor units of opinion-mining algorithms [29]. 

Therefore, the impacts of socio-dynamical changes can provide dynamic feedback to the 

control loops of growth mechanisms via trusted channels [29], and the interactivity of the 
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mobile units can be maximized with minimum latencies and fault penalties with a dynamic 

holistic view [5]. These features are observed dynamically with respect to the identified 

regulative legal constraints of the targeted context.  

 

Regulation mechanisms are also disrupted by growth acceleration and the diverse structure 

of emerging intelligent systems. Real-time alerting mechanisms are required in daily life 

also be able to observe socio-dynamic changes and make dynamic alerts for the critical 

risks in the observed context. Mathematically well-defined structures can enable us to 

implement swarming approaches within the agent functions 𝑓𝑜𝑝𝑡() and maximize the 

cooperation between the exponentially increasing number of components and exa-scale 

data resources [15]. Thereby, measurable metrics of the regulative legal constraints of 

observed subject matter can be visualized within the high-level monitoring dashboards of 

the intelligent systems within the intelligence-flow mechanisms. Figure 4 visualizes the 

correlation between the end-to-end trust mechanism and growth-flow structure, which can 

enable to build dynamic intelligence flow within regulative legal constraints of the 

observed context. Thereby, trust can be quantified with respect to dynamic legal metrics of 

the socio-dynamic metrics and parameters. This field is also a research domain will be 

investigated in related future works, in this thesis we will keep focus on behavioral anomaly 

observations of the observed context.   

 

On the other hand, data processing capabilities are still limited by edge device processing 

limitations and the latency values of these units. Fortunately, the current state regulatory 

standards define the critical constraints, which are emissions, power limits, and other 

critical factors. These have an impact on our health and can be monitored and extracted as 

trust justification features in real time or near real time via the alerting mechanisms. 

Nevertheless, massive scale deployment is still limited with scalability concerns at the 

algorithm and system levels [5]. These include critical risks for human health and 

environmental concerns. These features are also part of the future research directions. 

Table.3 summarizes major concerns and identifies critical feature sets of trust justification 

features to be able to maximize trust in emerging intelligent systems and minimize socio-

dynamic risks within the identified regulatory legal constraints. 
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B. Comparative Matrix 

 

The comparative matrix is reflecting the state of the art related to the thesis. It shows first 

the main scientific papers connected to TDAI reflected in Table 3.A, as well as a matrix 

comparing all such works against trust justification features reflected in Table 3. B.  

 

An intelligent system with of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛, }, which have critical selected 

features can be categorized into five main groups as in Table.3: 

 

- Trusted scalability and elasticity for throughput maximization 

- Resilience to adversarial/adversarial threads  

- Simulation-based validation and verification with digital twins or limited context 

simulations 

- Monitoring with holistic views of the system  

- Thread detection and reaction with dynamic feedback controllers for continuous 

growth flow. 

 

As summarized in Table.3, state-of-the-art approaches investigate the challenges with 

disruptive system-level innovations. For instance, a data-centric operating system is 

proposed with limited features [106]. Higher-throughput lower-latency features are also 

studied with protected data planes [107]. The approach has triggered paradigm switches on 

transaction definitions and implementations, such as a device [108] is proposed for a secure 

transaction with advanced feature sets like dynamic feedback controllers. Although trusted 

scalability remains an open issue but novel holistic abstraction approaches [5] can help 

maximize the throughput of nodes and total systems.  

 

AI-driven system modeling is also a hot topic, especially for decentralized and distributed 

systems [109]. Adversarial/un-adversarial thread monitoring and transaction approval 

approaches [110,111,112,113] also promising to minimize system-level anomalies and 

failures in (near)-real time. Quantum computing and quantum cryptography features [114] 

are becoming a critical challenge and feature for the growing intelligent systems. 
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Simulation-based digital twins are [115] widely implemented to minimize potential future 

failures and improve knowledge bases and training sets.  

 

In a nutshell, we can say that decentralized and distributed designs enable us to implement 

massive-scale AI/ML algorithms within the growing intelligent systems as hybrid clouds 

[116,117] with novel accelerator components, as indicated in Table.7 with focus on recent 

years between 2011-23. Next chapter summarizes these challenges and main findings and 

introduces potential TDAI research fields and comparative matrices as tables.   
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Table.3. A. Related Works 

# Type, Year, 

Authors 

 

Impacts Shortcomings 

1 Survey, 2018, 

Baydin et al., 

Oxford et al. 

Automatic differentiation is proposed for machine-

learning applications to build end-to-end pipelines. 

Limited evaluation of dynamic computational 

graphs and differentiable programming. 

Computational scalability considerations are 

missing. 

2 Method, 2013, 

Kraska et al., 

Brown Uni. et al. 

Support for machine learning and statistical 

techniques with a distributed system design view 

and novel data management features. 

Limited evaluation of data management, 

networking, and distributed system design 

basics. 

3 Method, 2017, 

Milutinovic et al., 

Berkeley et al. 

End-to-end differentiable pipelining frameworks 

are proposed for ML frameworks. 

Results are not presented with a proof-of-

concept trial. 

4 Method, 2019, 

Cohen et al., 

University of 

Waterloo   

Trust modeling in multi-agent systems is proposed 

for trust assurance in AI systems. 

Limited definition of trust and trust modeling 

metrics at system level. 
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5 Method, 2019, 

Agca, TOBB ETU 

Holistic system abstraction is proposed for the 

end-to-end transaction flow monitoring of trusted 

AI systems. 

Proof-of-concept test systems to be tested on 

larger scales and in different contexts. 

6 Method, 2020, 

Nassar et al., 

American 

University of 

Beirut et al. 

Blockchain structures and smart contracts are 

proposed for explainable and trustworthy AI. 

Limited file system and caching policy 

evaluation. Theoretical system design and 

computational scalability indicators are 

missing. 

7 Method, 2020, 

Kumar et al., 

University of 

Helsinki, Finland 

et al. 

Trust issues for AI systems and smart-city use 

cases explored. 

Limited system architecture and networking 

feature evaluations. 

8 Method, 2019, 

Hummer et al., 

IBM Research 

A framework is proposed for end-to-end AI 

Lifecycle management with a DevOps focus. 

Limited system abstraction definition. Trust 

measurement and quantification is missing. 

Application layer perspectives are used for 

system design concepts like feedback 

mechanisms. 

9 Survey, 2020, 

Fernández et al., 

Research directions identified for AI Models on 

Trustworthy Autonomous Systems. 

Limited SOTA review and description of 

identified keywords. System verticals are not 
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UPC-

BarcelonaTech et 

al. 

explored; limited application layer level 

DevOps design issues are identified.  

10 Survey, 2018, 

Bottou et al., 

Facebook AI 

Research et al. 

A comprehensive review for large-scale 

optimization methods for machine learning is 

provided.  

Limited benchmarking and computational 

scalability evaluations. 

11 Method, 2017, Lee 

et al., University of 

California, 

Berkeley et al. 

An acceleration framework for increasing the 

performance of distributed machine learning 

algorithms is proposed. Noises, such as straggler 

nodes, system failures, or communication 

bottlenecks are identified and elaborated with 

coding theory techniques to provide resiliency in 

different engineering contexts. 

Limited benchmarking and computational 

scalability/performance evaluations. 

12 Method, 2006, 

Hull et al., MIT 

A distributed mobile sensor computing system is 

proposed for the cars to dynamically process data 

at massive scale.  

Scalability and trust mechanisms are not 

investigated. 

13 Survey, 2010, 

Russel & Norvig, 

Berkeley 

Full-breadth definition of AI as a scientific field.  Limited evaluation for networking and trust 

aspects.    
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14 Survey, 

2014,Steen& 

Tanenbaum, 

University of 

Twente et al.  

Full-breadth definition of Distributed Systems and 

Distributed Computing Principles and Paradigms.  

Limited evaluation for networking, trust 

measurement/quantification and end-to-end 

paradigms.    

15 Method, 2020, 

Agca et al., LIST 

Key challenges for swarm intelligence 

mechanisms are identified as computing, 

communication, and control. In order to ensure 

resilience against manipulation threats, the other 

parts of the contribution concern end-to-end trust 

mechanism (integrated view of the three pillars: 

networking, processing/optimization, and security) 

and swarm controller methods guaranteeing safety, 

which aims to enable the trusted scalability of the 

swarm systems. It introduces CCAM Connected 

Cooperative, Autonomous Mobility) business-use 

cases. 

Limited discussion of the results of the 

proposed methodology and proof-of-concept - 

POC implementations. 

16 Method, 1993 

Velthuijsen, PTT 

Research 

Distributed AI usage in telecommunication is 

implemented. 

Limited results and evaluation. 
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17 Survey, 1997, 

Stone & Veloso, 

CMU 

ML potential applications to DAI and Multi-Agent 

systems are proposed. 

Limited use cases and evaluations. 

18 Survey, 2019, 

Toreini et al., 

Newcastle Uni. 

Trust review for AI and ML studies. Limited evaluation of ML and AI Systems. 

19 Method, 1992, 

Marsh, University 

of Stirling 

Formal definition and evaluation of trust for 

distributed AI. 

Limited evaluation of AI methodologies and 

system perspectives. 

20 Method, 1999, 

Agha $ Jamali, 

MIT 

Concurrent programming paradigm based on 

multi-agent system actor model abstraction is 

proposed for DAI. 

Limited context definition for distributed 

agent interactions. 

 Other Related and Selected Studies 

30 Survey, 2019, 

Gadepally et al., 

MIT 

Comprehensive view of AI systems and available 

and future technologies. 

Limited system abstraction definitions and 

literature review of AI methodologies. 

31 Book, 2001, 

Russell, 

Computelligence 

LLC 

Emphasizes swarm-based coherence as collective 

adaptation for swarm intelligence with artificial 

neural networks. 

Limited system design and scheduling metrics 

evaluation. 
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32 Survey, 2019, Xu 

et al., Lenovo 

Research et al. 

Explainability features of AI systems are explored 

with a neural network focus. 

Limited evaluation of system abstraction 

hierarchies. 

33 Method, 2020, 

Wing, Columbia 

University 

Formal definitions of trust and relations between 

trusted computing and trustworthy AI are 

explored. 

Limited evaluation of SOTA for the proposed 

concept. 

34 Survey, 2018, 

Sileno et al. 

University of 

Amsterdam, 

Netherlands et al. 

Emphasizes norm ware with computational 

artefacts to deal with trust and explainability 

problems. 

Limited norm definition and trust modeling. 

75 Method, 2020, 

Tomsett et al., 

IBM Research et 

al. 

Interpretability and uncertainty of AI systems are 

identified for a trust calibration framework. 

Limited AI methodology categorization and 

trust modeling to measure and quantify it in 

AI systems. 

76 Method, 2019, 

Smuha, KU 

Leuven, Belgium  

 

High-level governance framework is proposed for 

trustworthy AI systems. 

System-level standard definitions and 

feasibility evaluations are missing. Trust 

measurement and quantification approaches 

are not evaluated.  
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104 Method, 2016, 

Scherer, Harvard 

Regulative framework is proposed for AI systems. Technical standard definitions and literature 

review is missing. 

78 Survey, 2019, 

Alsamhi et al., 

School of 

Aerospace 

Engineering, 

Tsinghua 

University, 

Beijing, China et 

al.   

AI methods are reviewed for robot teaming and 

human cooperation methodologies. 

Limited categorization of AI methodologies 

and data management for swarm systems. 

38 Book, 2010 

Golnaraghi et al., 

Simon Fraser 

University, 

Canada et al. 

Basics of automatic control systems are explained 

in detail. Feedback mechanisms for distributed 

systems are defined. 

Limited evaluation of intelligent systems' 

actuator and sensor architectures. Data-

intensive design and decentralization of 

computational resource evaluations are 

missing. 

105 Survey, 2004, 

Truskowski et al., 

NASA  

AI techniques are proposed for challenges of 

mission-critical autonomous software. Novel 

abstraction paradigms are identified as a 

requirement for reducing the complexity of swarm 

Trust measurement/quantification, 

computational scalability evaluations are 

missing; which are basic and fundamental 

requirements for critical systems. 
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systems. The heterogenous structure of emerging 

intelligent swarms is identified as a challenge for 

system behavior monitoring and verification. 

80 Survey, 2004, 

Rouff et al., NASA 

Formal methods and techniques are explored for 

the verification, validation, and assurance of future 

swarm-based missions, such as the ANTS 

(Autonomous Nano Technology Swarm) mission. 

It has 1,000 autonomous robotic agents designed 

to cooperate in asteroid exploration. 

Context-aware computational paradigms and 

real-time data management/fetching features 

are not evaluated.  

82 Method, 2020, 

Machovec et al., 

Colorado State 

University, USA et 

al. 

Dynamic heuristics for surveillance mission 

scheduling with UAVs in heterogeneous 

environments are proposed. Real-time thresholds 

are targeted for critical-missions. 

Computational load and feasibility evaluations 

for on-board UAV tasks are missing. 

85 Survey Report, 

2021, Stuckman et 

al., EU 

Commission  

The main contributions of 5G projects are 

summarized as of 2021. 

Limited evaluation for AI systems use-cases. 

System abstraction standard definition and 

benchmarking results are missing. 

83 Method, 2020, 

Crowder et al., 

A system-level thinking process is proposed for AI 

systems. 

Data-flow mapping with a computational 

transaction is missing. The categorization of 
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Colorado 

Engineering Inc. et 

al. 

AI agents has no mathematically well-defined 

context. Proof of concept experimentation is 

not provided.   

84 Method, 2020, 

Carbone et al., 

Forcepoint Global 

Governments and 

Critical 

Infrastructure 

LLC et al. 

A comprehensive transdisciplinary approach is 

proposed, which includes Axiomatic Design (AD), 

AI/ML techniques and Information Theoretic 

Methods (ITM), in order to reduce risks and 

complexity by improving 

cyber system adaptiveness, enhancing cyber 

system learning, and increasing cyber system 

predictions and insight potential. 

System design theoretical design limitations 

are not included. Trust measurement and 

quantification is not identified, which is a 

fundamental concern for the proposed 

concept. 

85 Method, 2020, 

Crowder et al., 

Colorado 

Engineering Inc. et 

al. 

Concepts and notional architectures are presented 

for the Big Data Analytical Process (BDAP), in 

order to facilitate real-time cognition-based 

information discovery, decomposition, reduction, 

normalization, 

encoding, memory recall (knowledge 

construction), and decision-making for big data 

systems. 

Limited evaluation of AI methodologies, 

feedback structures, and data-flow process 

and definition. 
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42 Survey and 

Method, 2020, 

Proper, 

Luxembourg 

Institute of Science 

and Technology 

(LIST)  

Business analytics, statistics-based AI, digital 

twins, etc., are defined as “data hungry” 

application components of complex systems, 

which can be thought of as data ecosystems. 

Data is not fully separated from computation, 

it has to be mapped to computation. 

Trust has to be measured and quantified. 

Novel holistic system abstractions are 

required to track transaction flows at the 

system level and to assign trust values to each 

one.  

46 Survey, 2020, 

Aksit, TOBB ETU, 

Ankara, TURKEY 

Software engineering challenges for smart-city 

systems are categorized.  

1- Developing models for smart cities; 

2- Designing a framework for managing and 

optimizing the configuration of clusters; 

3- Designing models, methods, and tools for 

critical infrastructures; 

4- Optimizing the necessary quality attributes 

through system adaptation at run-time; 

5- Integrating software systems; 

6- Designing a smart infrastructure with a high 

degree of interoperability, configurability, 

adaptability, and evolvability. 

Software and hardware co-design principles 

are emerging. System level hardware/software 

integrated views are required, which interact 

with all verticals at run-time. Trust is not only 

about dependability. It also has to be 

measured and quantified for smart systems in 

order to inspire confidence. 
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27 Survey, 2013, 

Perera et al., 

Information and 

Communication 

Centre, Australia 

Context awareness is surveyed from an IoT 

perspective, which includes techniques, methods, 

models, functionalities, systems, applications, and 

middleware solutions. Growth progress of context-

aware computing from desktop applications, web 

applications, mobile computing, and 

pervasive/ubiquitous computing concerning the 

Internet of Things (IoT) is explained. 

Limited evaluation for distributed caching and 

memory management. The computational 

scalability of the emerging complex systems 

is not evaluated with system throughput 

limitations.  

37 Method, 2009, 

Martin et al., 

University of 

Oxford 

Trusted computing, trusted platforms, and trusted 

systems are defined as the system components, 

which behave as expected. 

Limited definition for data caching, trust 

measurement, and computational scalability 

issues. 

81 Survey, 2004, 

Cherry, 

Northwestern 

University, USA 

The throughput data rates of communication 

technologies correlated with Moore's law and 

Edholm's law of bandwidth. 

Limited evaluation for computational 

scalability and system throughput limitations. 

116 Survey, 2020, 

Reuther et al., 

MIT, USA 

AI/ML accelerators with end-to-end approaches 

are summarized. Vector engines, dataflow engines, 

neuromorphic designs, flash-based analog memory 

Limited evaluation for middleware categories 

and trusted scalability concerns. 



 

 
 
 
 
 

 
73 

processing, and photonic based processing 

approaches are discussed. 

117 Method, 2021, 

Samsi et al., MIT, 

USA 

Modern AI/ML workloads are categorized, and 

limitations of HPC systems are explained. 

SuperCloud hybrid mechanisms are introduced 

with recent data sets.     

End-to-end trust mechanisms and holistic 

abstraction paradigms are not considered. 

Limited evaluation for middleware 

components. 
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Table.3. B. Trust Justification Features 
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 Denominators: Distributed computing/caching, differential/probabilistic/dynamic programming 

 ✓: YES         ✘: NO        ? : NOT INDICATED 

1 ✓ X X X ? ? ? ? ? ? ?  X X  X ✓ X ✓ X  X X  X X X 

2 ✓ X X X X X ✓ ? ? ? ?  ✓ X  ✓ X X X ✓  X X  X X ✓ 

3 ✓ X X X ? ? ? ? ? ? ?  X X  X X X ✓ X  X X  X X X 
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4 ✓ X X ✓ ? ? ? ? ? ? ?  X X  X X ✓ X X  X X  X ✓ ✓ 

5 ✓ X X ✓ X X ✓ ✓ ✓ X X  ✓ ✓  ✓ ✓ ✓ ✓ X  ✓ ✓  ✓ ✓ X 

6 ✓ X X ✓ ✓ X ✓ ? ? ? ?  X X  X ✓ X ✓ X  X X  X X ✓ 

7 ✓ X X X ? ? ? ? ? ? ?  X X  ✓ ✓ X X X  X X  X X ✓ 

8 ✓ X X X ? ? ? ? ? ? ?  ✓ X  ✓ ✓ X ✓ ✓  ✓ ✓  X ✓ ✓ 

9 ✓ X X X ? ? ? ? ? ? ?  X X  X ✓ ✓ X X  ✓ ✓  ✓ X ✓ 

10 ✓ X X X ✓ X ✓ ? ? ? ?  ✓ X  X X X ✓ X  X X  X X X 

11 ✓ X X X ✓ X ✓ ✓ ✓ X X  ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓  X X X 

12 ✓ X X X X X ✓ X ✓ X X  X X  ✓ X X X X  X ✓  X X X 

13 ✓ X X X ? ? ? ? ? ? ?  X X  X ✓ X ✓ X  X X  X X X 

14 X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  X X  ✓ X X X X  ✓ ✓  ✓ X X 

15 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ X  ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ X 

16 X X X ✓ X ✓ ✓ ? ✓ ✓ ?  X X  X X X X ✓  X X  X X X 

17 ✓ X X ✓ X X ✓ ✓ X X X  ? ?  ? ? ? ? ?  X X  X X X 

18 ✓ X X ? ? ? ? ? ? ? ?  X X  X X ✓ ✓ X  X X  X X ✓ 

19 X X X ✓ X X ✓ ? ? ? ?  X X  X X ✓ X X  X X  X X X 

20 X X X ✓ X X ✓ ? ? ? ?  X X  X ✓ X X ✓  X X  X X ✓ 

 Other Related and Selected Studies 

30 ✓ X X X ? ? ? ? ? ? ?  ✓ ✓  ✓ X ✓ ✓ X  ✓ X  X ✓ ✓ 

13 ✓ X X X ? ? ? ? ? ? ?  ✓ X  X X X X X  X X  ✓ X X 

32 ✓ X X X ? ? ? ? ? ? ?  X X  X X X ✓ X  X X  X X X 

33 ✓ X X X ? ? ? ? ? ? ?  ✓ X  X X ✓ ✓ X  X X  ✓ X X 

34 ✓ X X ✓ ? ? ? ? ? ? ?  X X  ✓ X ✓ X X  X X  X X ✓ 

75 ✓ X X X ? ? ? ? ? ? ?  X X  X X ? X X  X X  X ✓ ✓ 

76 ✓ X X X ? ? ? ? ? ? ?  X X  X X X X X  X X  X X X 

104 ✓ X X ✓ ? ? ? ? ? ? ?  X X  X X X X X  X X  X X ✓ 

78 ✓ X X ✓ ✓ ✓ ✓ ✓ ✓ X X  X ✓  X ✓ X X X  ✓ ✓  X X X 

38 X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  X ✓  X X X X ✓  X X  ✓ X X 

105 ✓ X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  X X X X ✓  X X  ✓ X ✓ 

80 ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  X X  X X X X X  X X  ✓ X ✓ 
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82 ✓ X X ✓ ✓ ✓ ✓ ✓ ✓ X X  X ✓  X X X X X  X X  X X X 

85 ✓ X ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  X ✓ ✓ X X  ✓ ✓  ✓ X ✓ 

83 ✓ ✓ X ✓ ✓ ✓ ✓ ? ? ? ?  X X  ✓ ✓ X X X  X X  X X ✓ 

84 ✓ X X X ✓ ✓ ✓ ? ? ? ?  ✓ X  ✓ ✓ X X X  ✓ ✓  X X ✓ 

85 ✓ ✓ X X ✓ ✓ ✓ ? ? ? ?  ✓ X  ✓ X X X X  ✓ ✓  ✓ X X 

42 ✓ X X X ✓ ✓ ✓ X X X X  X X  ✓ ✓ ✓ ✓ X  X X  X ✓ ✓ 

46 ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓ X X X ✓  ✓ ✓  ✓ X ✓ 

27 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  X X X X ✓  ✓ ✓  X X ✓ 

37 X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ X  ✓ ✓ ✓ X X  ✓ ✓  ✓ X ✓ 

81 ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓  X X  ✓ ✓ X X X  X X  X X X 

116 ✓ X ✓ ✓ ✓ ✓ X ✓ ✓ X X  X ✓  ✓ X X ✓ ✓  X X  ✓ X X 

117 ✓ X ✓ X ✓ X ✓ ✓ ✓ X X  ✓ ✓  ✓ X X ✓ ✓  X X  X X X 



 
 
 
 
 
 

 
77 

C. Result Analysis and Conclusions 

 

As a brief summary to the explored research challenges identified in the previous chapter, we 

emphasize major concerns and express a strong interest in the trusted distributed AI mechanism 

with the identified justification features. The features and indicators of the end-to-end trust 

mechanism can be listed as below.   

 

▪ Performance  

• Scalability, Elasticity, and Connectivity Limits: Total number of nodes and users in 

the system 

• Energy Efficiency: Average energy consumption of nodes and transactions 

• Energy Efficiency: Average EMF (v/m), SAR(w/kg), Power(W) environmental 

friendliness 

▪ Run-time Monitoring 

• Data-flow monitoring: Data-state monitoring between applications 

• Transaction-Flow Monitoring: Transaction lifecycle monitoring 

• Trust Monitoring: Periodical trust verification 

• AI/ML Pipelining: Dynamic knowledge-base monitoring and update 

▪ Security 

• Context-aware dynamic adaptiveness: Event-based secure connection policies and 

protocols 

• Context-aware dynamic adaptiveness: Dynamic package checksum verification 

▪ Test 

• Verification (survey, benchmarking, expert): 

▪ Dynamic check-point locating with feedback controllers and optimization 

▪ Resiliency and robustness monitoring with holistic views and feedback 

controllers 

• Confidence-Building: Trust and confidence measurement/quantification in smart 

systems 

• User-level continuous trust measurement: Face mimics/body language, behavioral 

anomalies. 
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The main categories of these features and indicators identified are: (1) Performance (2) Run-

Time Monitoring (3) Security (4) Test-based dynamic metrics. These can build the end-to-end 

trust mechanism with technical computing paradigms and user-level concerns. The rest of the 

chapter will provide information on the main related works identified that introduce the 

emerging challenges.  

 

The reviewed literature shows that distributed AI has been investigated in many domains, such 

as telecommunication technologies [16]. It has been merged with multi-agent systems as a joint 

approach for complex system [17] design. Trust features are also explored for the AI/ML 

paradigms, which are [18] Fair, Explainable, Auditable and Safe (FEAS), to be explored in 

different stages of a system lifecycle, with each stage forming part of a Chain of Trust. Formal 

definitions of trust are also elaborated widely in literature [19,4]. The mechanisms are 

improved with ML and statistical perspectives to cover data management challenges [2] with 

end-to-end pipelining mechanisms [3]. Programming paradigms, such as concurrent [20], 

probabilistic/dynamic/differential [1] are also explored to adapt the mechanisms to change in 

a dynamic context. 

 

Performance modeling paradigms are widely discussed in the literature. For instance, an 

acceleration framework is proposed for the performance increase of distributed machine-

learning algorithms. Noises, such as straggler nodes, system failures, or communication 

bottlenecks are identified and elaborated with a coding theory technique to provide resiliency 

in different engineering contexts [11]. The authors state a bandwidth reduction gain of O(1/n) 

from the fundamental limit of communication rate for coded shuffling. Another current 

problem identified is to find an information-theoretic lower boundary for the rate of coded 

shuffling. AI methods have been reviewed for robot teaming and human cooperation 

methodologies. Mobile robotic communication and swarm UAVs will be explored with CNN 

and RNN methods for the data processing of the obtained image/video data [78].  

 

AI techniques are proposed for challenges of mission-critical autonomous software. Novel 

abstraction paradigms are identified as a requirement in order to reduce the complexity of 

swarm systems. The heterogenous structure of emerging intelligent swarms is identified as a 

challenge for system behavior monitoring and verification. Requirements in engineering, 

nontrivial learning and planning, agent technology, self-modifying systems, and verification 
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technologies are emphasized as future challenges for critical swarm mission autonomous 

software [79]. Formal methods and techniques are explored for the verification, validation, and 

assurance of future swarm-based missions, such as the ANTS (Autonomous Nano Technology 

Swarm) mission. It has 1,000 autonomous robotic agents designed to cooperate in asteroid 

exploration [80]. Its non-deterministic nature, high degree of parallelism, intelligent behavior, 

and emergent behavior, and new kinds of verification methods remain to be explored. Formal 

specification language to predict and verify the emergent behavior of future NASA swarm-

based systems is currently being designed and developed. 

 

In order to have a comprehensive overview of the challenges, it is proposed to limit the scope 

to the system-level thinking process for AI systems [83]. Comprehensive transdisciplinary 

approaches are proposed, which include Axiomatic Design (AD), AI/ML techniques, and 

Information Theoretic Methods (ITM) to reduce risks and complexities by improving cyber-

system adaptiveness, enhancing cyber-system learning, and increasing the cyber-system 

prediction and insight potential [84]. The growth perspectives of the mechanisms are another 

research direction [27] in context awareness surveyed from an IoT perspective, and include 

techniques, methods, models, functionalities, systems, applications, and middleware solutions. 

The growth progress of context-aware computing, from desktop applications, web applications, 

mobile computing, pervasive/ubiquitous computing to the Internet of Things (IoT) is 

explained. Therefore, trusted computing paradigms can help to ensure the behavioral integrity 

of the mechanisms, in which trusted computing, trusted platforms, and trusted systems are 

defined as the system components which behave as expected for all transactions [37].  

 

These challenges for the mechanisms can be identified in a nutshell as major points. Key 

challenges for emerging smart-system mechanisms are identified as computing, 

communication, and control. In order to ensure resilience against manipulation threats, the 

other research directions concern end-to-end trust mechanisms (integrated view of the three 

pillars: networking, processing/optimization, as well as security) and swarm controller methods 

guaranteeing safety, which aim to enable the trusted scalability of the swarm systems. These 

features are called CCAM Connected, Cooperative, Autonomous Mobility) as generalized 

use/business cases [15]. Chapter. V briefs on these emerging features and discusses the 

challenges with a focus on the last ten years between 2011-23. 
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IV.I Introduction  

Intelligent systems are becoming more complex and diverse as the amount of data 

exponentially increase. Since, the system nodes and components are diverse and complexity 

exponentially grows, which is not feasible to ensure trusted scalability of the system and 

algorithms running in real time [140]. Fortunately, widely accepted learning representation 

approaches with the data such as back propagation [124] can help to formally state the 

environment and interaction within that. In order to be able to track sequences and state 

transitions, end-to-end pipeline modelling and differentiation approaches [125,126] can be 

implemented. However, to be able to keep the critical systems constraints and trusted 

scalability of the algorithms between the cooperating components, robust distributed check-

point mechanisms and [127] computationally scalable mathematical/system models [129,130] 

are required.       

 

On the other hand, holistic abstraction paradigms can help to extend ACID (atomicity, 

consistency, isolation, durability) features of database systems to higher system level by 

extending data locality [130] to the edges in trusted scalable manner. Cooperation and task data 

sharing between the components can be accelerated with SDN (software defined networking) 

[131] features of the components. However, as the system functions virtualizes, and number of 

transactions increases, behavioral integrity of the system is also become controversial due to 

exponential growth in error rates in task sharing. In order to maximize the performance of task 

cooperation and minimize the error rates, trust assurance methodologies can help to ensure the 

behavioral integrity of the system with TEE (trusted execution environment) utilization such 

as open-TEE [132].  

 

Furthermore, holistic views [130] are required as critical constraints for dynamic package 

transmission and task sharing between these units. In order to tackle the challenge, we propose 

a methodology called Trusted Distributed AI (TDAI) in this study to ensure end-to-end trust 

and built a software driven trusted execution environment to maximize performance of task 

cooperation and minimize error rates. So that, behavioral integrity of a growing intelligent 

system can be assured with maximum performance and dynamic feedback structures, which 

are utilized via the trusted holistic views.  
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In addition to the holistic views, behavioral integrity and trusted scalability issues of 

intelligent systems are widely explored in literature with many perspectives. In [133], authors 

integrate resources virtualization approaches as SuperCloud and publishes initial data sets for 

performance evaluations. In [134], 75,000,000,000 streaming inserts/second using hierarchical 

matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave) are 

experimented. In [126], Spatial Temporal Analysis of 40,000,000,000,000 Internet Darkspace 

packets are observed to analyze internet traffic. Improvements of edge devices enabled to 

extract more features to implement recent end-to-end paradigms. 

 

Reuther et.al. [136], explores the ways of Interactive supercomputing on 40,000 cores for 

machine learning and data analysis. The authors targets to overcome old fashion compute 

bound design limitations of HPC (High Performance Computing) with interactive approaches. 

Kepper et.al. [137] explores better representation of data in AI systems with associative arrays. 

More interestingly Tataria et.al. [138,139, 142] makes holistic discussions by covering 

communication and networking perspectives also with a focus on 6G wireless components of 

the emerging intelligent systems. Thereby, we can see the increasing need to end-to-end TEE 

and behavioral integrity assurance with TDAI methodology in the state of the art.  

 

From the standardization side, many initiatives (like EU ones) are claiming about the need 

of introducing certification for “trusted AI” systems which can delivered by independent bodies 

after testing the products for key trust features. This is also true for AI products that are 

distributed by system characteristic requirements [130, 141,143,144]. In all standards and 

assessment related activities, a reference model is always required to monitor with dynamics 

holistic views during all stages of a system life-cycle. Thereby, in this study we propose a new 

methodology called Trusted Distributed AI (TDAI) to ensure end-to-end trust and built a 

software driven trusted execution environment to maximize performance of task cooperation 

and minimize error rates. By that means, behavioral integrity of a growing intelligent 

distributed system can be assured with maximum performance thanks to dynamically justified 

features of a system as explained in rest of the paper. 

 

Rest of the chapter is organized as follows: Chapter. IV.II defines trusted distributed AI 

methodology (TDAI), Chapter IV.III defines distributed AI system architectures and explains 
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the need for distributed architectures and articulates increasing interest to TDAI in literature. 

Furthermore, gives details about the security, privacy, trust metrics, and regulative constraints 

considered in this study by asserting the methodology and contributions of TDAI in detail.  

Additionally, the chapter compares the behavior monitoring application in CCAM (Connected 

Cooperative Autonomous Mobility) domain to comparatively analyze TDAI with other SOTA 

methodologies; such as, centralized, decentralized/autonomous ones, non-trusted approaches 

etc. Chapter IV.IV evaluates the contributions of this study and discusses about the future 

potentials. Finally, Chapter. IV.V concludes the chapter. 
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IV.II Methodology Components 

A. Methodology Overview 

 

This paper is introducing a novel methodology that offers explicit means to justify trust in 

distributed intelligent systems with operational features (TDAI-OM). In fact, as the number of 

required critical justified features increases to ensure trusted interactivity [5], trust cost also 

increases to be able to justify the trust in dynamic context in (near) real time as illustrated in 

Figure 10.a TDAI-OM framework helps finding the optimal trust zone based on the balance 

that any systems operation can leverage in the targeted distributed nodes design and 

deployment. This way, depending on the context of use case, the reachable trust level can be 

managed based on the cost available and required features. Next sub- chapter explains the trust 

levels and introduce TDAI formulation. 

B. TDAI Taxonomy 

B.I. TDAI-Om Trust Levels:  

 

TDAI-OM is designed in a way that it can be used in most cases compared to similar complex 

methodologies that exist in the literature like Common Criteria standard [140,141,143]. TDAI-

OM is actually based on 5 trust levels that can be accessible. TDAI-OM aim is to estimate the 

trust value of each node based on key features do identify trust levels in Table.4 and critical 

metrics/parameters listed in Table.5. So that, each node will be included in available category, 

are 5 main levels associated to the TDAI taxonomy based on the following: 

 

- TL 1 - Trust Level 1 (0): System 

nodes not trusted 

- TL 2 - Trust Level 2 (0.25): System 

nodes insufficiently trusted 

- TL3 - Trust Level 3 (0.50): System 

nodes sufficiently trusted 

- TL 4 - Trust Level 4 (0-75): System 

nodes partially trusted 

- TL 5 - Trust Level 5 (1.0): System nodes fully trusted 

 
Figure 10.a Trust justification cost. 
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In order to be able to identify 

a system or it’s node as 

trusted, it has to be justified 

[140]. However, for each use 

case, there is trust cost for 

each justification feature as 

illustrated in the example 

reflected in Figure 10.a. As 

the number of justification 

features increases, the trust 

cost also increases 

exponentially. Furthermore, 

to be able to ensure the 

required minimum throughput 

of a system, the trust cost 

worth to pay [130] but can be 

kept at optimal level with 

right dynamic strategy 

mechanisms. In the case of the 

example of Figure 10.a, Trust 

level 4 seems to correspond be 

the optimal TDAI use in the 

actual context. 

 

Dynamic strategy plans can 

be updated in real time by ensuring interactivity of the all components of a system within the 

observed context. For an optimal level of trust in the context critical nodes 𝑖𝑁𝑖 are monitored 

in (near) real time by ensuring interactivity of trusted agents attached to the nodes as illustrated 

in Figure 10.b. Next sub chapter explains classes and critical identified features to defined trust 

levels of TDAI methodology.  

  

1)  

 

 

 

 

 

2)   

 

Figure 10.b: (1) A distributed system with set of nodes 

(2) Justified channels for trusted interactivity with 

TDAI. 
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B.II. TDAI Classes 

 

Table.4 represents a summary of the defined TLs of nodes N {}. The columns represent an 

ordinal set of TLs, while the rows represent the trust classes and features of criteria, we use in 

order to express the requirements for the various trust levels with respect to the trust level 

taxonomy defined above. Each number in the resulting matrix identifies a specific trust 

component where higher numbers imply increased requirements. Thereby, the most critical 

features of a system node can be identified and default values of trust level (TL 1-5) are 

empirically assigned considering several uses cases in order to make it more operational in a 

sense that it can capture the maximum measurable values of the features.  These can be adjusted 

dynamically during the observations of many other environment with set of nodes E{N[*]}. 

Main objective is to maximize trust values and ensure growth-flow in the observed context to 

be monitored with trusted intelligence-flow between the nodes [140]. 

 

Table 4. TDAI Classes 

a) Class PERF: Performance 

Feature Description 

PERF_SE Scalability/Elasticity Maximum number of 

nodes and user in the 

observed context 

Class Features Trust Levels 

1 2 3 4 5 

CL1-

Performance 

PERF_SE: 

Scalability/Elasticity 

1 2 3 3 3 

PERF_EE: Energy 

Efficiency 

1 1 2 3 4 

CL2- 

Runtime 

RT_T: Throughput 1 1 2 3 4 

RT_C: Capacity 1 2 3 3 3 

RT_U: Utilization 1 2 3 3 3 

CL3- 

Security 

SEC_C: Checksum 1 2 3 3 3 

SEC_SP: Security 

Protocol 

1 1 2 3 4 

Cl4 - Test TST_V: Verification 1 1 2 3 4 

TST_C: Confidence 1 2 3 3 3 

TST_UB: User 

Behaviors 

1 2 3 3 3 
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PERF_EE Energy Efficiency Average energy 

consumption of the node. 

 

 

b) Class RT: RunTıme 

Feature Description 

RT_T Throughput Expected throughput 

values of the node. 

RT_T Capacity Storage capacity of the 

node. 

RT_T Utilization Completion of the 

assigned tasks in 

expected timelines. 

 

a) Class SEC: Security 

Feature Description 

SEC_C Checksum Checksum values of the 

monitored packages. 

SEC_SP Security Protocol Dynamic secure 

interactivity protocols. 

 

b) Class RT: Test 

Feature Description 

TST_V Verification Verification of observed 

package checksum 

values. 

TST_C Confidence User level confidence 

feedback observations. 

TST_UB User Behaviors User behavior normal or 

not. 

 

Each feature within the classes helps to identify trust level of a node and a system composed 

by the nodes and to justify it dynamically. Next sub chapter explains the weight update and 

error minimization strategies of TDAI methodology and introduces TDAI formal statement. 
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B.III. TDAI Formulation 

B.III.I TDAI Taxonomy and System Modelling (Trusted Neuron and Trust Measurement 

Method): 

 

Generic systems are represented by a 

dynamic model as illustrated in Figure 

10.b, where nodes 𝑁0..𝑛{}, are connected 

to neighbors for cooperation purposes. 

The aim of the TDAI-OM is to justify 

channels for trusted interactions among 

the connected nodes. Each node can be 

considered as an agent or so-called 

trusted neuron 𝑁𝑖 {}, see Figure 11.a. 

The neurons interact with the environment E {} via the linked nodes and utilizes its’ functions 

dynamically to pursue continues growth-flow within the observed context. Next sub chapter 

gives details of the TDAI formal statements.    

 

B.III.II Trusted Value Formulation:  

 

Stage 1: Trusted Neuron Formulation:  

 

As formalized in equation.3 below, a neuron and a trusted neuron, which have input 

function 𝑁𝑖, gives the weighted sum of the unit’s input values, that is, the sum of the input 

activations multiplied by their weights 𝑤𝑖𝑗 : 

 

𝑁𝑖 =  ∑ 𝑤𝑖𝑗
𝑗=0..𝑁

𝑎𝑗  (3) 

Stage 2:  Function:  

 

In the second stage, the activation function, g, takes the input from the first stage as argument 

and generates the output, or activation level, 𝑎𝑖: 

 

 
Figure 11.a Trusted neuron 
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𝑎𝑖  = 𝑔(𝑁𝑖) =  𝑔 (∑ 𝑤𝑖𝐽
𝑗=0..𝑁

𝑎𝑗)  (4) 

 

Stage 3: Neurons’ Trust Value:  

 

Trust value 𝑡𝑎𝑖
 (0,1) of output 𝑎𝑖; 

𝑡𝑎𝑖
= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ( ∑ 𝑁𝑖

𝑖

0

 ) , 𝑁 𝜖 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑙𝑜𝑤 (5). 

   

Transaction flow repeats 

continuously with holistic 

feedback controller mechanism 

[130], which assures continuous 

growth of an intelligent system. 

Learning systems of neural 

networks can be improved with 

further justification features and 

iteratively updated. The frequency 

of updates improves the total performance of the system, but limited with available resources. 

By that means, growth flow in dynamic context is observed and updated dynamically. Next 

sub chapter introduces weight update strategy and error minimization methodology. 

 

B.III.III Weight Update Strategy and Error Minimization: 

 

For a given set of representative input and output pairs,  (〈𝑥𝑗 , 𝑡𝑗〉)
𝑗=1

𝑘
 , consider a network with 

just one neuron N directly connected to the inputs. The inputs 𝑥𝑗 can be thought of as a vector 

with k components. 

  

Let 𝑥𝑖
𝑗
 be the 𝑖𝑡ℎ component in the 𝑗𝑡ℎ training input. Random weights are assigned for each 

input to initiate training. Output and total errors are computed based on these inputs. Single 

 
Figure 11.b Single neuron network with error 

calculation 
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neuron n gives output n (𝑥𝑗) with the training data 𝑥𝑗 that has ideal output 𝑜𝑗. Error e, on a 

single input 𝑗 is usually defined as 
1

2
(𝑜𝑗 − 𝑁(𝑥𝑗))

2
. The network computes the error 

periodically as indicated in the Figure 11.b below.  

 

Gradient descent training moves the weights in the direction that they have greatest 

impact on the error. The weights are then moved in the direction that the error reduces most. 

Equation.6 below formulates changing the weights in round r+1.     

 

𝑊𝑖 (𝑟 + 1) =  𝑊𝑖 (𝑟) −  𝜖
𝜕𝑒

𝜕𝑊𝑖
 (6). 

 

If the function g is differentiable, chain-rule can be applied for derivation. The chain rule 

application can enable to compute the rate of change of the error function with respect to 

the weights from the rate of change of the error with respect to the output. For an input 

𝑥𝑗, the derivative of the error with respect to the output is below equation.7a and 7.b; 

 

𝜕𝑒

𝜕𝑁
=  − (𝑡𝑗 − 𝑁(𝑥𝑗))  (7. 𝑎). 

 

𝑒 =  
1

2
 (𝑡𝑗 − 𝑁(𝑥𝑗))

2
  (7. 𝑏). 

 

 

Chain rule can be used to get the derivative of the error with respect to any weight.  

 

 
𝜕𝑒

𝜕𝑊𝑖
=  

𝜕𝑒

𝜕𝑖𝑛
 

𝜕𝑖𝑛

𝜕𝑊𝑖
       (8a). 

 

      =  
𝜕𝑒

𝜕𝑁
 

𝜕𝑁

𝜕𝑖𝑛
 

𝜕𝑖𝑛

𝜕𝑊𝑖
 

       =  − ( 𝑡𝑗 − 𝑁(𝑥𝑗)) ∗ 𝑥𝑖  
𝜕𝑁

𝜕𝑖𝑛
 

 

𝜕𝑒

𝜕𝑊𝑖
=  − ( 𝑡𝑗 − 𝑁(𝑥𝑗)) ∗  𝑥𝑗

𝑖 ∗
𝜕𝑁

𝜕𝑖𝑛
 (8. 𝑏). 
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Equation.6 can be plugged to 

equation.8 to get a rule to calculate 

how the weights should be updated. 

Figure.11.bu. illustrates the single 

neuron network error calculation 

strategy. 

 

Chain-rule can be applied to multi-

layer neural networks as well to train 

the network. Backpropagation 

method [124] (Rumelhart et al. 

1986) is proposed for the error 

derivative with respect to the weight 

from layer 𝑖 to layer 𝑖 + 1. 

Derivatives of the errors used with 

respect to the inputs in layer 𝑖 + 1. 

The approach is emerging point for 

automatic differentiation methods in 

machine learning [125] (Baydin et 

al. 2018). The methods enable end-

to-end training of differentiable 

pipelines across machine learning 

frameworks [126] (Milutinovic et 

al. 2017).  

 

Backpropagation algorithm is a special case of automatic differentiation [127] (Griewank 

2000). The method computes a program 𝑃′ for the derivative of a function 𝑓′ of a function 𝑓 

given a program 𝑃 for a function 𝑓. Univariate Taylor series with suitable degree is proposed 

for the problem of evaluating all pure and mixed partial derivatives of some vector function 

defined by an evaluation procedure. Possibility of derivatives calculation only in some 

directions instead of the full derivative tensor is explained. Estimates for the corresponding 

computational complexities are given. 

  

Name of 

Parameters/ 

Metrics 

Abbrv. Label Descriptions 

Parameters:  

Node ID 

(IMSI/IMEI) 

𝑛𝑖𝑑 Defines unique ID for the node 

in the well-defined context. 

Status of Node 𝑛𝑠𝑡 Defines whether the node is in 

active state (value 0) or in dead 

state (value 1) depending on the 

battery level. 

Type of Event 𝑛𝑒  Indicates the type of event. 

Node Location 𝑛𝑙  Indicates the node location. 

Identification 𝑛𝑖𝑑 Represents the unique IP 

address of a node. 

Security Key 𝑛𝑘 Represents the security key. 

Node Behavior 𝑛𝐵 Represents node behavior (1: 

normal, 0: not) 

Risk Alert 𝑛𝑅 Represents Risk Alert of a node 

(1: yes, 0: no) 

Metrics: 

Throughput 

GBPs 
𝑛𝑇 Represents maximum 

bandwidth capacity of a node 

Latency 𝑛𝐿 Gives the latency value of a 

node. 

Checksum 𝑛𝑐ℎ𝑠𝑢𝑚 Gives the checksum of datum in 

a node. 

Capacity 𝑛𝑐 Gives the capacity value of a 

node. 

Utilization 𝑛𝜌 Gives the utilization of a node. 

Trust Factor 𝑛𝑡 Gives the trust factor of a node. 

Regulative Constraints: 

Power 𝑛𝑝 Gives the power value of a 

node. 

EMF 𝑛𝑒𝑚𝑓 Gives EMF (Electro Magnetic 

Field) value of a node. 

SAR 𝑛𝑠𝑎𝑟 Gives SAR (Specific 

Absorption Rate) value of a 

node. 

Table.5. Monitoring metrics/parameters of a node. 
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Computational differentiation is useful for gradient error calculation and single/multi-layer 

neural network training can be improved with other features. However, computing the rate of 

change is restricted with computational scalability limitations. Furthermore, it inflates the 

memory resources and require larger memory resources. Algorithm 799 [127] (Griewank 

et.al. 2000) implements a checkpointing for the reverse or adjoint mode of computational 

differentiation. The authors develop a check-point schedule as an explicit “controller” to reduce 

the storage requirements and to run a time-dependent applications program. However, 

differential sequences require (near) real time dynamic holistic views to be able to ensure the 

validity of the control mechanisms. Thereby, scalability of a system can be considered with the 

dynamics feedback structures as critical performance metrics. 

 

Scalability modelling metrics and parameters are key performance indicator for any system 

performance evaluation process. Many aspects can be observed to indicate desired outputs. 

Main bottleneck for the emerging systems and neural networks is computational scalability 

constraints. Amdahl law [128] (Amdahl 1967) considers sequential and parallelizable portions 

of the programs. General theory of computational scalability [129] (Gunther 2008) extends 

Amdhall law with queuing theory approach. The theory proves that computational capacity is 

equivalent to the synchronous throughput bound for a machine-repairman with state-dependent 

service rate. 

 
Figure.12. a/b. Trust factor coefficient-based throughput maximisation approach [5]. 
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On the other hand, decentral and distributed architectures are preferred for emerging systems. 

Scheduling and control approach can be improved with MEMCA (Memory Centric Analytics) 

holistic abstraction and distributed check-pointing/control mechanism [130]. Check-point 

locations are optimized with a hierarchical structure, which have TI-Cloud, TII-Gateway, TIII-

Fog, TIV-Edge layers. It can be applied to end-to-end AI/ML pipelines to monitor transaction 

flows also.  

 

State-of-the-art design and holistic abstraction extend data locality to the edges in trusted 

scalable manner, , it can further improve neural network training  with other justified features 

and total performance with a holistic view to the system. The holistic abstraction provides end-

to-end trust justification features for decision mechanism with lineage graph recording of 

transaction-flows. Trust indicators defined in different system layers   can maximize the 

targeted throughput and minimize crosstalk and latency penalties in hybrid designed 

architectures. Figure.12 illustrates the correlation of trust factor coefficient with respect to 

growth of a system.  

 

The study shows that, if a system is trusted, same value of throughput can be obtained with less 

or same number of nodes in an intelligent mechanism. That is, we can say that in order to 

maximize throughput of a context, making it trusted is more efficient approach rather than the 

increasing number of nodes. The holistic abstraction can help to define the features sets of a 

trusted agent as a system node abstract component, which interacts dynamically with the 

environments, as formally defined and stated in detail in next sub chapter. 
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The feature sets are fetched dynamically as inputs to the train sets of data models and structures 

with a feedback controller mechanism. Thereby, checkpoints can be defined as trusted 

execution environment (TEE) for critical 

package context extract/embed in set of 

flowing network packets p<>. Next sub 

chapter explains the trusted agent and 

interaction with the environment. 

 

C. TDAI Work-flow: Trusted Agent 

Interaction with Environment 

Behavior of an agent 𝑁𝑖 can be described 

as system node abstract component in the 

environment E (from a class E of 

environments), and which produces a 

sequence of states or snapshots of that 

environment. A performance measure U () 

evaluates this sequence; see the box 

labelled “Performance Measure” in 

Figure.13. Let 𝑉(𝑓, 𝑬, 𝑈) denote the 

expected utility according to U () of the 

agent function f () operating on E {}.  

 

Each Node X(N); Defined as Trusted Agent = { 𝑁𝑖 and with activation function 𝑎𝑖 } 

Trusted Agent as 𝑁𝑖 and activation function 𝑎𝑖 

 

𝑁𝑖 =  ∑ 𝑤𝑖𝑗
𝑗=0..𝑁

𝑎𝑗  

𝑎𝑖 = 𝑔(𝑁𝑖) =  𝑔 (∑ 𝑤𝑖𝑗
𝑗

𝑎𝑗)   (9). 

 

Each Environment E has set of nodes; NE : {N1, N2, N3, …, Nn }. Each environment can be 

monitored with set of trusted agents or nodes. Each node can be defined as a trusted agent or 

agents can be defined as system nodes depending on the context. 

Behavior of the trusted agent A{} is monitored 

within set of nodes N{}  in the Environment E 

∈ E {} with four steps below; 

 

Step 1: Trusted Agent A{} produces a 

sequence of states or snapshots of that 

environment.  

Step 2: Performance measure U () evaluates 

this sequence 

Step 3: Let 𝑉(𝑓,𝑬,𝑈) denote the expected 

utility according to U of the agent function 

𝑓𝑜𝑝𝑡() operating on E{}.  

Step 4: Monitors System/User Behavior 

with the Performance Indicators 

a. Quantifies and measures trust in 

system within set of nodes Ny}   

b. Maximizes expected utility V()  

 

 𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓

𝑉(𝑓, 𝐸, 𝑈).  
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Let 𝑉(𝑓, 𝑬, 𝑈) denote the expected utility according to U of the agent function f operating on 

E. We identify rational agent with an agent function: 

 

𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 max
𝑓

𝑉(𝑓, 𝑬, 𝑈) (10). 

 

Throughput of each Node X(N); monitored via trusted Agent A {} and nodes N{} 

 

Trusted Agent A {} = 

{𝑖𝑁𝑖 and with activation function 𝑎𝑖 } 

 

The goal for the set of agents A {} and nodes N {} are to maximize the expected utility V () of 

the set of environments E {} by monitoring behaviors with 𝑓𝑜𝑝𝑡() function via trusted channels. 

Set of dynamics packets p <> are observed in distributed checkpoints within the trusted 

execution environments (TEE). Thereby, learning goals can be accelerated with dynamic 

feature vectors as feedbacks to assure continuous growth of the agents and the environments.  

  

Trusted Agent 𝑖𝑁𝑖 in an environment interaction workflow 1-4 is illustrated in Figure.13. 

Rationality of agents can enable to interact with the environment in dynamic context via trusted 

channels.  

 

Transaction flow 1 to 4 repeats for continuous growth-flow of intelligent-system. (1) Trusted 

Channel Builder starts transaction-flow (2) Sensors interacts with environment, (3) Actuators 

monitors/detects from environment, (4) Performance element updates/trains the agents. 

Throughput values of each node X(N) is monitored dynamically with expected average 

threshold limits. Table.5 in next chapter illustrates the selected metrics and regulative 

constraints identified in this study. The algorithm called Trusted Distributed AI (TDAI) runs 

as above pseudocode. 
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Set of Trusted Agent 𝑁𝑖 in an environment gets the feature sets dynamically as input and 

produces set of targeted outputs; such as, risk alerts for the environment dynamically. 

Figure.14.a illustrates the pseudocode and TEE based interaction in set of environments E{}. 

The loop enables continuous growth of the system with feedback controller and holistic view 

to the context with an end-to-end TEE (Trusted Execution Environment). In order to be able to 

interact with each node, system level design perspectives are required, since the interactions 

with set of nodes NE: {N1, N2, N3, …, Nn } in a context are also dynamic and it is not only data 

dependent but also other dependencies arises up to context features. However, data is the key 

component to track transaction states and 

required knowledge-bases to assure the 

integrity and growth of the mechanism. 

  

Chapter.III explains the TDAI system 

components and nodes in detail. 

Figure.14.a introduces the basic 

pseudocode for TEE based interaction 

with the environment. Each Environment 

E{} has set of snapshots for selected time 

spans of the observed context. Set of 

nodes N{} in a context are observed 

 
Figure.13. Trusted Agent Environment Interaction Workflow 1 to 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.a Pseudo code for TEE based 

interaction with the environment 

# Environment E {"Scenario: Risk Detection, 

Time: DD:MM:YYYY,HH:MM:SS", Nodes[*], 

FeatureVectors v <*>}; 

 

Input: Environment E {Nodes[*]};   

Output: Environment E {Nodes[*][ ‘Alerts’]} ; 

 

BEGIN 

 

While ( E{} has active nodes ) 

 

 Maximize V(f,E,U) 

 Update U ( “Feedback Controllers“) 

} 

 

END 
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dynamically with set of  Trusted Agents A{}, which are embedded to OBU (On Board 

Units/Computers) of each node.  

 

Figure.15 in chapter illustrates the main components of the OBU nodes and interaction with 

the dynamic context with (1) Central (2) Decentral/autonomous (3) Distributed/Hybrid system 

architectural design perspectives. Thereby, we can say that the generic and dynamic holistic 

abstraction [128] can be applied to obtain dynamic holistic view of the context with trust factor 

coefficient-based throughput maximization approach. 

  

Performance measure U () function is dynamically merged from the dynamic context with an 

expected utility maximization function 𝑉(𝑓,𝑬,𝑈). Furthermore, within the well-defined 

parameters of the Environment E {}, 

optimization function 𝑓𝑜𝑝𝑡() is also 

defined dynamically to improve the 

knowledge base built with feature vector 

functions v<*>. So that, the agent 

function 𝑓𝑇𝑟𝑢𝑠𝑡𝑒𝑑 𝐴𝑔𝑒𝑛𝑡{𝐴{}}(𝐸{𝑁[∗]}) 

can be operated dynamically in set of 

environments within end-to-end Trusted 

Execution Environment (TEE) to 

maximize the dynamically defined 

improvement parameters with a dynamic 

optimizer  𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓

𝑉(𝑓, 𝐸, 𝑈) 

to ensure the continuous growth-flow of 

the observed context as introduces in 

below pseudocode of  Figure.14.b. Next 

chapter introduces the TDAI system 

nodes and the components, which has a 

dynamic growth-flow mechanism based 

on continuously justified feedback-

structures for optimal trust level of the 

trusted system. 

# Environment E {"Scenario: Risk Detection, Time: 

DD:MM:YYYY,HH:MM:SS", Nodes[*], 

FeatureVectors v <*>}; 

 

Input: Environment E {Nodes[*]};   

Output: Environment E {Nodes[*][ ‘Alerts’]} ; 

 

BEGIN 

 

Maximize V(ta.f (true),E{},U[]) 

{ 

 

for ( i from 0 to N: number of trusted agents) 

 

   while (data sensors fetch new data) 

   { 

 Decode Package p <*>; 

Extract Package p <*>; 

Extract Feature Metrics v <*>; 

 Update Trust Values of Nodes [*]; 

Embed Feature Metrics v <*>; 

Embed Package p <v>; 

 Encode Package p <*>; 

Update Environment E { 

Nodes[p<*>][ ‘Alerts’]} ; 

 

   } 

 

} 

 

END 

 

Figure 14.b Pseudo code for TDAI trust 

verification for continuous growth-flow 
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IV.III Trusted Distributed AI System Architectures and Components 

In this sub-chapter, we introduce three categories of systems (1) Centralized (2) 

Decentralized/autonomous (3) Distributed/Hybrid design perspectives and hypothesis with 

theorems regarding the applicability of TDAI methodology to such systems. In fact, the first 

category of systems enables fully connected context but it faces connectivity and bandwidth 

limitations, while the second category enable to design fully decentralized autonomous nodes 

but capacities are limited with edge node feature sets. The third one can maximize connectivity 

and interactivity with distributed nodes N{} and hybrid system design paradigms. Following 

sub-chapter will describe the main architectural and component features required for the 

applicability of the TDAI methodology described in the previous sub-chapter and applied in 

different contexts.  

A. System nodes and components 

 

Trusted agent structure 𝑖𝑁𝑖 and interaction flow with the environment is formally stated in 

previous sub-chapter II. It introduces TDAI system node main components and architectural 

perspective differences. Throughput values of the nodes X(N) are monitored dynamically via 

interaction units called OBU (On Board Units) in the context of mobile nodes and other linked 

nodes when required. The node can be 

any kind of edge device/computers such 

as: mobile/smart phones/watches, 

servers, storages, 

networking/communications gateways 

etc.  

 

Basic components of an OBU device is illustrated in Figure.15, which are: trusted agent (for 

TDAI needs), connection ports, processor, and memory. Interaction intra-nodes and the 

environment can be iterated with (1) central (2) decentral (Autonomous/Embedded/Local), (3) 

distributed/hybrid mechanisms. Rest of the sub-chapter introduces the main design paradigms 

 
Figure 15. OBU system components 
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and hypothesis proposed regarding the methodology. Each node N{} in different contexts 

interacts with set of Environment E{} via TDAI methodology and embeds the critical metrics 

and parameters dynamically to the packages p<> as stated in equation.11. The packages are 

dynamically monitored in critical checkpoints and detect/react mechanisms are triggered 

depending on the threshold values of the alerts (trust values ae under the expected value).  The 

metrics listed in Table.5 is transmitted from each node as a packet; 

 

𝑝 =< 𝑛𝑖𝑑 , 𝑛𝑠𝑡 , 𝑛𝑒 , 𝑛𝑙 , 𝑛𝑖𝑑 , 𝑛𝑘 , 𝑛𝑇 , 𝑛𝑐ℎ𝑠𝑢𝑚, 𝑛𝑐 , 𝑛𝜌, 𝑛𝑑 >, (11) 

 

The packages p<> are monitored dynamically and related feature sets are vectorized within the 

continues growth-flow mechanism as represented in Figure.14.b. Each architectural design has 

critical advantages and limitations ad summarized in Table.6. It is clear that distributed design 

is required to be able to ensure trusted interactivity, which will be formally proved in next sub-

chapters.  Next chapter gives details on centralized design and its limitations with regard to the 

applicability of TDAI methodology.    

Critical 

Features 

Centralized (Fully connected) Decentral (Autonomous 

/Embedded/Local) 

Distributed (Edge /Hybrid) 

Memory/ 

Storage 

+: Easy to maintain and 

scale up. 

-: Mobility and accessibility 

limited. 

+: Mobility can be 

maximized. 

-: Capacity is limited 

with edge node feature 

sets. 

+: Data accessibility can be 

maximized by extending it to 

the edge in trusted scalable 

manner. 

-: Multi-layer system 

maintenance and data caching 

is required. 

Computation +: Data can be mapped in 

real time to maximize the 

computing speed. 

- Edge nodes have limited 

access to the computational 

devices. 

+: Computation can be 

done in any location.  

-: Edge devices have 

limited access to the 

computational resources 

can capacities are 

limited with edge nodes. 

+: Computational algorithm 

can be decentralized with task 

cooperation approaches and 

data caching policies. 

-: System maintenance and 

deployment is more time 

consuming.  

Power/ Energy +: Each unit can be 

connected to central power 

units.  

-: Health risks increases due 

to emission impacts. 

+: Mobile batteries can 

be used. 

-: Battery life times are 

limited and causes toxic 

garbage. 

+: Power and energy can also 

be transferred with wireless 

energy transfer approaches to 

maximize mobility of the 

components. 

-: Human health and 

environmental impact risks 

increases. 

 

Table 6. Distributed design critical features advantages/disadvantages comparison 

(“+”: advantages, “– “= disadvantages).  
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B. Centralized (Fully connected)  

 

Centralizing interactions of the nodes 

in a system has advantages; such as, 

integrity of the design, accessibility 

of resources, assuring trusted 

connectivity of components. 

However, increasing diversity of the 

components and decentralization of 

data/memory resources require 

system level design reconsideration. Due to computational scalability limit of algorithms and 

control structures, it is not feasible to centralize the resources [130]. Figure.16 illustrates is a 

typical example showing the basic components, which are a central cloud, mobile nodes, and 

fog layer-based networking and communication components.  

As the number of the node NE: {N1, N2, N3, …, Nn} in the context increases, throughput of the 

system decreases as illustrated in Figure.12.a. Fortunately, making the system trusted can help 

maximize the total throughput of the system with less number of nodes, see Figure.12.b. 

Thereby, we can assume that in order to be able to make the system trusted and scalable, the 

nodes have to cooperate and share the tasks to be able to ensure the integrity. Next sub chapter 

briefs about decentralized design basics as another approach, which enables to maximize 

capacities of each node. 

C. Decentralized (Autonomous/ Embedded/Local) 

 

 Decentralized design enables each node 

to have memory/storage and 

networking/communication components 

independently as seen in Figure.17. As 

the Moores’s law disappears with 

emergence of 3D-Stack memory and 

storage components, data capacities can be maximized within the autonomous nodes as 

decentralized mechanism. By that means, the interactions intra set of nodes NE: {N1, N2, N3, 

…, Nn } can be minimized and networking and communication bottlenecks are minimized as 

Figure 16. Centralized (Fully connected) System 

 
Figure 17. Decentral (Autonomous/ 

Embedded /Local ) System 
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well. However, data intensive nature of emerging intelligent systems generates peta-scale data 

and require real-time massive analytics. Therefore, distributed design is required to be able to 

assure required throughput (as one of the TDAI metric) of each node and minimize crosstalk 

and contention bottleneck in total system [130].  

 

Next sub chapter introduces basics of the distributed and hybrid design approach and compares 

advantages and disadvantages of each approach by correlating with expected throughput values 

(as one of the TDAI metric) of the nodes X(N) within the observed environment E {}.  

 

D. Distributed (Edge/Hybrid)  

 

Previous two approaches (1) centralized 

(2) decentralized ones can enable to build 

a joint knowledge base, is enough for 

most cases as compared in above Table.6. 

However, as the growth acceleration of 

the emerging intelligent systems 

increases exponentially, the third 

approach is important since distributed 

design becomes de facto paradigm for throughput level requirement of each node and the total 

system.  

 

Since the diversity of the components and number of interacted nodes increases exponentially, 

behavioral integrity of total system and transactions have to be assured in real-time to be able 

to keep the critical system constraints. Figure.18 illustrates multi-layer abstraction approach 

and distributed connectivity channels between the components. Each node has an on-board unit 

and an embedded trusted agent (out of the TDAI methodology requirement) to interact with 

the environment. Trusted channels ensure and maximizes connectivity of the components. 

  

Trust factor coefficient-based throughput maximization methodology [130] can enable to build 

end-to-end trusted scalable channel within the components and total system. Throughput value 

 
Figure 18. Distributed (Edge/Hybrid) System 
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of each node X(N) is observed 

dynamically and the agent function 

𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓

𝑉(𝑓, 𝐸, 𝑈) operates 

continuously to assure coherency and 

continuous growth of a system.  

 

Table.5 Introduces metrics, parameters, 

and regulative constraints observed in this 

study. Table.6 introduces basic 

comparative analysis and 

advantages/disadvantages of distributed 

design over other approaches with 

identified system features. Next sub 

chapter articulates how this approach of 

TDAI can be utilized to enable TEE based 

networking for trusted channel as SDN 

(Software Defined Networking) feature 

of the growth-flow mechanism as 

visualized in Figure.19.a/b.  

 

 

E. TEE based networking for trusted channels as SDN (Software Defined Networks) 

 

Increasing diversity of the components of the nodes NE: {N1, N2, N3, …, Nn } and data intensive 

nature of the systems require critical updates in networking paradigms also. Data-flow 

processes are improved with virtualized network functionalities, which have software-

controller based switch and router design approaches [131], which is called software defined 

networking (SDN). The innovation enables dynamism for the growth-flow mechanisms of the 

emerging intelligent systems, which require (near) real-time interactivity constraints of the 

trusted agents. As the virtualized components increase in the systems, abstraction paradigms 

are also rethought such as holistic views [130]. The innovations enable to design end-to-end 

Trusted Execution Environment (TEE) as illustrated in Figure.13. to ensure interactivity within 

 
Figure 19.a End-to-end TEE Flow Diagram 

 
Figure 19.b High-level view of proposed 

Mechanism and learning approach for 

continuous growth 



 
 
 
 
 
 

 
103 

the environment E {} more coherently. The proposed approach can enable to ensure network 

scalability and throughput maximization of emerging software defined networking-based 

systems.  

 

Furthermore, it can be utilized to monitor systems and user behavior to minimize misbehaviors 

with a holistic view to the system [130]; such as, emission generated by cars and EMF 

generated by emerging computational/memory units of intelligent-systems with set of the 

nodes NE: {N1, N2, N3, …, Nn } as dynamically controlled features of the growth-flow 

mechanism. Next sub chapter introduces security, privacy, trust metrics and package 

transmission approach of feature vector structures with TDAI and introduces theorems and 

hypothesis of TDAI methodology with distributed design paradigms. 

F. Security, Privacy and Trust Metrics 

 

As the diversity of the components increase, security and privacy are also considered as key 

trust metrics within TDAI. Security by design principles enable to design more robust and 

secure intelligent mechanisms. 

However, security constraints still 

cause dependency to a custom 

hardware design and limits software 

driven dynamic reconfiguration for 

adaptive systems.  

Fortunately, emerging TEE 

mechanisms like Open-TEE [132] can help to make the system software driven trusted 

mechanisms with dynamic compiling structures to any platform. Thereby, we can obtain 

measurable dynamic trust metrics as feature vectors within the transaction flow and package 

transmission processes; such as, checksum values of packages, trust factor of the nodes in the 

system, latency values of the transactions. See Table.4 and Table.5 for the identified metrics 

and features of TDAI for a package p<> based observation within the dynamic context.  

Virtualized functionalities of software driven TEE ecosystems, can help to overcome 

limitations of hardware isolated TEE mechanism in state-of-the-art designs. Dynamic 

compiling and testing approaches, which are (1) black box (2) gray box (3) white boxes are 

 
Figure.20. TDAI vs Black, Gray, and White Boxes  



 
 
 
 
 
 

 
104 

widely implemented for cryptography and testing features. Main differences are summarized 

in Figure.20. 

However, emerging paradigms triggers architectural improvement need concerns also. For 

instance, decentralization of resources requires updates in many system layers in real time, 

which is only possible with distributed and hybrid design approaches. Thereby, TDAI can 

enable dynamic testing as user and developer with risk prediction and minimization via 

monitored set of network packages p<>, which have embedded feature to be 

compressed/decompressed in available check-points.  

Distributed check-point mechanisms are dynamically correlated with throughput 

values of each node X(N), with respect to the regulative constraints identified in 

Table.5 as critical features of the observed environment E{} with set of nodes 

NE: {N1, N2, N3, …, Nn }.  

So that, we can state the hypothesis and theorems with TDAI with a comparative analysis on 

growth acceleration of the mechanisms, which have  

(1) Centralized.  

(2) Decentralized/autonomous/embedded.  

(3) Distributed/hybrid architectural perspectives.  

Figure.19.a illustrates the end-to-end TEE workflow diagram. The loop repeats continuously 

while the monitored set of Environments E{} has active nodes to ensure the growth-flow of the 

context.  

Furthermore, dynamic optimizer function 𝑓𝑜𝑝𝑡 =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓

𝑉(𝑓, 𝐸, 𝑈)maximizes expected 

utilities of each node via trusted agents 𝑓𝑇𝑟𝑢𝑠𝑡𝑒𝑑 𝐴𝑔𝑒𝑛𝑡{𝐴{}}(𝐸{𝑁[∗]}).  

However, interactivity of these agents is strongly dependent of embedded feature transmission 

via set of network packages p<>. Fortunately, these features can be compressed/decompressed 
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within reasonable latency thresholds of the emerging OBU mechanisms as feature vectors V<> 

via dynamically observed packages p<>. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑚:    

 

So that, we can claim that it is possible to ensure the growth-flow of a dynamic environment 

with set of nodes 𝐸{𝑁[∗]} with  

• Centralized,  

o NE: {N1, N2, N3, …, Nn } are fully connected to master node.   

• Decentralized/autonomous/embedded 

o NE: {N1, N2, N3, …, Nn } are not connected but has (near) real time connectivity feature 

to each node and master when required   

• Distributed/hybrid-design perspectives of TDAI methodology. 

o NE: {N1, N2, N3, …, Nn } are fully-connected to each other and master node also in real-

time via edge node or any other available node to the master node when required.    

The claim can be formalized as below in Equation 12.   

Growth-flow of (1) Decentralized (2) Centralized (3) Distributed design can be arranged as 

below equation.12. Since, distributed design can enable to maximize total throughput of each 

node X(N) and total system.  

Next chapter evaluates the methodology and introduces validation for the proposed theorem 

after a short proof of the statement below.    

𝑓𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 E[N](𝑁1, 𝑁2, … , 𝑁𝑛) 

<  𝑓𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝐸[𝑁](𝑁1, 𝑁2, … , 𝑁𝑛) 

<  𝑓𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝐸[𝑁](𝑁1, 𝑁2, … , 𝑁𝑛) 

(12) 
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𝑃𝑟𝑜𝑜𝑓:   

 

The proof for TDAI methodology can be correlated with the risk alerts minimized in the 

monitored context. It is observed that TDAI can enable to minimize the alerts in a dynamic 

context, for which the results are briefly introduced in next chapter and will be discussed in 

details within the related future works.  

    

𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑙𝑒𝑟𝑡𝑠 𝑜𝑓 𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 E{N[∗]}(𝑁1, 𝑁2, … , 𝑁𝑛) 

>  𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑙𝑒𝑟𝑡 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 E{N[∗]}(𝑁1, 𝑁2, … , 𝑁𝑛) 

> 𝑓𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑙𝑒𝑟𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑𝐺𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 E{N[∗]}(𝑁1, 𝑁2, … , 𝑁𝑛) 

(13) 

 

As formulated in above equation 13, we can say that number of alerts are minimized via TDAI, 

which have distributed/hybrid design, it outperforms other centralized and 

decentralized/autonomous design perspectives.  

 

Minimized risk alerts of dynamic context, is illustrated above equation.13, proves that 

interactivity of the nodes and growth-flow of the context can be maximized with a distributed 

design rather than central and autonomous ones.  

 

So that, 

 

Throughput of each Node X(N); in an Environment E {} can be monitored in (near) real-time 

via trusted Agent A{} and set of nodes N{} can be improved continuously with dynamic 

growth-flow mechanism  

 

𝑓𝑇𝑟𝑢𝑠𝑡𝑒𝑑 𝐴𝑔𝑒𝑛𝑡{𝐴{}}(𝐸{𝑁[∗]}) (14) 

Trusted Agent A {}  

 

{𝑖𝑁𝑖 and with activation function 𝑎𝑖 } 

 

Each feature of the linked nodes is improved with activator level 𝑎𝑖,𝑗 dependency; 
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Trusted Agent as 𝑁𝑖 and linked activation function g () are triggered depending on the 

activation level of the 𝑎𝑖 where set of nodes N {} monitored continuously via package p <> 

within the environment 𝐸{𝑁[∗]},  

𝑁𝑖 =  ∑ 𝑤𝑖𝑗
𝑗=0..𝑁

𝑎𝑗  (15). 

 

𝑎𝑖 = 𝑔(𝑁𝑖) =  𝑔 (∑ 𝑤𝑖𝑗
𝑗

𝑎𝑗). 

 

Trust value 𝑡𝑎𝑖
 (0,1) of activator threshold level 𝑎𝑖 monitored continuously where;  

 

𝑡𝑎𝑖
= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ( ∑ 𝑁𝑖

𝑖

0

 ) , 𝑁 𝜖 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑙𝑜𝑤 

 

The activation levels are linked to optimal trust level of the nodes within the observed 𝐸{𝑁[∗]} 

as dynamic growth-flow mechanism of TDAI methodology as stated in above equation.14 and 

equation.15. 

IV.IV Conclusion 
 

To sum up, we can state that the TDAI utilizes the MEMCA holistic abstraction with AI 

systems perspectives. Trust factor theorem [5] introduced novel holistic abstraction as 

extension to Amdahl’s notation to improve the available abstraction approaches like neural 

networks. So that we can obtain dynamic holistic views of observed environment with set of 

nodes E{N[*]}, which have dynamic vector structure for input/output data steams to embed 

required features of the nodes N[*] via streaming packages p<*>. The abstraction and system 

node definition can be applied to many domains like networks and 5G technologies as compute 

intensive computer systems. Thereby, network functions can be virtualized (NFV) and utilized 

to improve SDN (Software Defined networking) features of the network systems, which are 

critical fog-layer components of holistic abstraction paradigms. So that latency risks can be 

eliminated and (near) real-time threshold limits can be succeeded by trusted interactivity 

between the nodes thanks to the maximized trust values of the nodes and the observed 

environment. 
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Next chapter introduces initial experimental validation results with trust factor coefficient 

theorem [130] based total system throughput maximization approach. In which, we 

experimentally validated and demonstrated promising performance of TDAI methodology 

within real-life use-cases of critical and autonomous applications to minimize the risk alerts 

within the observed context. The trust is measured with initial assumption and a default value 

assigned to the system node between 0-1 to identify the initial trust level-TRL [1-5]. Depending 

on the fulfillment of required expectations in the observed environment E{N[*]} the values are 

adjusted dynamically within the observed time span. The more features are justified in the 

context the more trust level is obtained. Furthermore, it is utilized to ensure the sufficiently 

trusted interactivity within the observed context. Main objective in real-life experimental 

validations is to maximize trust values and ensure growth-flow in the observed context with 

trusted intelligence-flow between the nodes [140,147], in which we demonstrated promising 

performance of TDAI methodology. 
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Chapter V: Evaluations and 

Experiments   
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Introduction  

This chapter presents the thesis results in terms of evaluation of the TDAI as well as with the 

experiments conducted during the time frame of the thesis. The experiments were driven with 

some scenarios showing some critical use cases and applicable as much as possible to 

autonomous and distributed systems like in the context of smart city business cases. 

A. Use-Cases Specifications and Descriptions 

 

The scenarios targeted in this thesis is related to smart city use-cases that considers a mix of 

connected autonomous or semi-autonomous fixed or mobile nodes. In order to reflect the TDAI 

evaluation method, we focus on the main scenario use case describing the mobility and the 

financial related use cases.  

 

Mobility Scenario Description:  

In the context of mobility for instance, each node is represented by a vehicle (autonomous: 

SAE level 4/5 or semi-autonomous) which is deployed with a sensing unit as system node that 

has a processing and reasoning capability – to process the raw data collected from a vehicle’s 

sensors and subsequently interpret them into useful outcomes of emerging AI systems. In this 

context, we can imagine a given number of nodes/vehicles on the road moving from a starting 

point to a destination with all vehicles connected to each other and sharing some data measured 

and/or interpreted locally, using their sensing capabilities, or collaboratively, using each other’s 

knowledge. In such a situation, each node could implement its own AI module to estimate/predict 

or learn, not only from what has happened in the past, but also from what the other nodes are 

sharing with it (using its reasoning capability). In this context, we assume that for some tasks, a 

given node might rely on the processing power offered (vs allowed) by a remote node due to the 

lack of processing power or learning capability of the original node. In other words, vehicles that 

are not equipped with this AI feature or with a too weak computing capability can potentially 

rely on other vehicles’ modules by using low-latency communication capabilities provided by 

P2P or cellular communication networks. This can be achieved via a collaboration feature that a 

distributed system can offer to give all mechanisms for the ability to run in real time. This 

heterogeneity (in the nature and capacities of vehicles) makes this collaborative approach 

particularly efficient, allowing a single node to benefit from the overall knowledge and 

processing capabilities. In such a scenario, we see a double (win/win) benefit, where a local node 
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can profit from neighboring nodes to help make decisions locally and anticipate decisions for the 

next steps. 

 

The resulting distributed architecture can become complex and may involve self-organizing 

techniques with multiple hierarchical layers to better manage the decisions between several 

nodes. A node which might play the role of master would benefit from an overall view for 

global decision-making. Many applications might be related to this, especially those related to 

mobile, edge and ubiquitous computing where vehicles are equipped with context-aware and 

user-centric technologies.  

 

Cross-Border Mobility Applications: 

Applications that cover this could be related to driver behavior profiling, with different possible 

outcomes, like low-emission driving where the user or the car (if fully autonomous) would 

need to follow precise instructions depending on the way that is driving and, on the 

environment, (i.e. other vehicles).  

 

One challenge of particular interest is when a mix of fully autonomous and semi-autonomous 

vehicles are collaborating. This specific scenario involves different behaviors and ways of 

sending, processing, and reacting to a given situation. This might of course lead to conflicting 

decisions, with semi-autonomous vehicles, still operated by a driver, sending requests or 

information that might be badly interpreted by the other vehicles. This type of scenario, when 

coupled with the complexity of the underlying distributed architecture, can lead to trust issues. 

This is even more true when AI algorithms are distributed over several disparate entities, since 

one of them may misinterpret an outcome interpreted by another vehicle. Another possible 

scenario is a complementary mobility application being related to an emergency where an 

ambulance can process data (related to early medical diagnosis) of the patient being 

transported, to be transmitted in real time before arriving at the hospital. In such a case, a 

patient’s mobile device (e.g., smartphone or smartwatch) could be used for such a transmission 

via a roadside unit node (like a 5G edge node), which is utilized for transmitting the packets to 

the destination.  

 

This process involves low latency and a high quality of service, as well as cooperation. 

Sometimes, it might indeed occur that we rely on such a node to request ad hoc computation if 
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an edge node (hospital edge node) is not available or not trusted anymore. In such a scenario, 

the main challenge is ensuring that the actors in the value chain trust the services at the top of 

such a distributed system since they mainly rely on AI systems capabilities: sensing, processing 

and reasoning features. In other words, what are the measurable trust indicators that can be 

considered to gauge confidence and correlate with trust in the overall services offered by such 

a distributed system? 

 

Financial/Banking Monitoring Systems Related Use Case: 

The scenario use-case is about global digital asset monitoring within a bank and accounts on 

top of which financial transactions are performed. These ones present some risks especially 

when the users are in mobility mode.  

 

The mobility of the environment with set of nodes 𝐸{𝑁[∗]} is observed to minimize the risk 

alerts and maximize the trust factor of the nodes with a focus on throughput values of each one 

to ensure expected throughput levels for required sufficient trust levels of the observed context. 

 

Key Trust Indicators: 

Looking at the trusted conceptual background provided by the literature, we can already specify 

the following key trust indicators that are specific to the distributed nature of a given intelligent 

and growing system: 

 

- AI and the underlying distribution/architecture (versus organization) of its analytics 

functions: local learning (like in centralized systems), federated learning (like in distributed 

systems), etc. 

- Processing over the nodes: processing power and organization within the distributed system 

- Reputation of the distributed nodes, meaning how can we exclude any of the nodes if the 

overall reputation is degraded and how can we detect such a failure? 

- Impact assessment of the overall trust value at both the node and global level. 

- Measure/quantify/justify the trust factor coefficient of each node and the context 

dynamically in different time spans by observing the throughput levels expected for them.  
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B. Evaluations and Discussions 

 

Previous chapters presented a comprehensive scientific background on emerging intelligent 

systems with a focus on TDAI concept and trust justification features. Details regarding the 

challenges and required main feature sets of the identified trust justification features are 

explained in details in Table.3. In this chapter, we focus on experimenting these features with 

regard to the challenges reflected in Table 7, these features are focused on the challenges 

between 2011-23.   

 

Based on the explored literature, we can say that the system resource management principles 

and AI system perspectives introduced in previous chapters can enable continues growth for 

smart-system mechanisms with the set of nodes 𝑁𝑖 : {𝑁𝑜 , 𝑁1, 𝑁2, … , 𝑁𝑛 , }. Thus, in the TDAI 

evaluation we consider some critical features like robustness, resilience, reliability, and trust 

of the nodes to be ensured that are compliant to the observed AI systems research studies and 

aligned with the four main evaluation questions below: 

 

▪ Is trust in distributed systems measured/quantified/justified?  

▪ Is trusted scalability of autonomous systems achieved? 

▪ Is trust for swarm intelligence mechanisms ensured? 

▪ Is swarm system units is manipulated to implement trusted distributed AI methodology in 

(near) real time? 

   

These questions can help us to understand how to build a growth-flow mechanism for emerging 

intelligent systems, which have dynamic and untrusted contexts. For this reason, the trusted 

distributed AI methodologies need to be implemented to maximize confidence and accelerate 

the growth of intelligent systems within the observed environment 𝐸{𝑁[∗]}. Table.7. gives 

details regarding the challenges and required main feature sets of the identified trust 

justification features are (1) Trusted scalability and elasticity for throughput maximization (2) 

Adversarial/un-adversarial thread monitoring and transaction approval (3) Simulation-based 

validation and verification (3) Monitoring (4) Detection and reaction with dynamic feedback-

controllers for continuous growth-flow, for which experimental validation observations are 

explained in next sub-chapter.  
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RELATED WORKS AND 
MAIN FEATRUES 

Trusted 
scalability 
and elasticity 
for 
throughput 
maximization 

Adversarial/ 
un-
adversarial 
threads 

Simulation-
based 
validation 
and 
verification 

Monitoring Detection and 
reaction with 
dynamic 
feedback-
controllers for 
continuous 
growth-flow 

[106] Data-Centric 
Operating System  

❌ ❌ ❌ ✅ ❌ 

[107] A protected data-
plane operating system 
for high throughput and 
low latency   

✅ ✅ ✅ ❌ ❌ 

[108] A device for secure 
transaction approval  

❌ ✅ ✅ ✅ ✅ 
Limited with 
end-to-end 
latencies 

[5] A holistic abstraction 
to ensure trusted scaling 
and memory-speed 
trusted analytics 
 

✅ ✅ ✅ ✅ ✅ 

[109] White Paper – 
Artificial Intelligence 

❌ ✅ ❌ ✅ 
Limited 

evaluation 
for 

abstraction 
levels 

❌ 

[110,111,112,113] 
Adversarial/un-
adversarial thread 
monitoring for transaction 
approvals. 

❌ ✅ ✅ ✅ ❌ 

[114] Quantum 
cryptography features 
 

❌ ✅ ❌ ✅ ❌ 

 
[115] BioDynaMo_ a 
general platform for 
scalable agent-based 
simulation 

❌ ❌ ✅ ✅ ❌ 

[116] Survey on AI/ML 
accelerators. 

❌ ❌ ✅ ✅ ❌ 

[117] SuperCloud Data 
sets and categorization 
of AI/ML workloads.  

✅ ❌ ✅ ✅ ❌ 

Table 7. Artificial Intelligence System state-of-the-art and main research challenges between 2011-23. 
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B.I Experimental Validation Activities and Training Data Stream Management 

 

In order to demonstrate 

the proof of concept for 

TDAI methodology, each 

critical metrics and 

parameters up to impact 

on throughput level of 

each node’s trust factor 

[130] listed in Table.5 are 

correlated dynamically 

with expected throughput 

values of the nodes and the context. The correlations are utilized dynamically with TDAI risk 

minimization approach to ensure growth-flow within the observed environment 𝐸{𝑁[∗]}. 

Thereby, set of trusted agents 𝑓𝑇𝑟𝑢𝑠𝑡𝑒𝑑 𝐴𝑔𝑒𝑛𝑡{𝐴{}}(𝐸{𝑁[∗]}) operates in dynamic context of the 

observed Environment E {} to monitor misbehaviors and maximize trust factor of each node 

and total system and generates risk alerts when there is impact on throughput levels of the 

monitored nodes N {}.  

 

Data streams are dynamically mapped to control nodes N [*] via package p<*> in unified 

vectorized structure as illustrated in Figure 21.a. Main objective is to maximize trust values of 

the observed context within the monitored time-span. Training data sets are mapped 

dynamically to transaction-flows as summarized in Table 8. 

 

Data set are standardized as unified vector structure for experimental validations of TDAI in 

observed environment 𝐸{𝑁[∗]}  as below;  

- E{"Scenario: Cross-Border Risk Monitoring, Time: DD.MM.YYYY", Nodes[*], 

FeatureVectors <*>}; . 

Transmission capacities of the monitored nodes N{}. Critical metrics and parameters of 

package 𝑝 =< 𝑛𝑖𝑑 , 𝑛𝑠𝑡 , 𝑛𝑒 , 𝑛𝑙 , 𝑛𝑖𝑑 , 𝑛𝑘 , 𝑛𝑇 , 𝑛𝑐ℎ𝑠𝑢𝑚 , 𝑛𝑐 , 𝑛𝜌 , 𝑛𝑑 , 𝑛𝑅 >,   such as, throughput GBPs, EMF 

v/m, latency ms, are defined as critical risk resources  

𝑛𝑅 and activation threshold 𝑎𝑖 within the EN[∗]} and dynamic feature vectors 

 
Figure.21.a High-level architecture of TDAI experimental 

validation setup and data streams. 
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FeatureVectors<*>. Figure 22 summarizes the observation metrics/parameters and Table.8 

have the results for alert sources in a dynamic environment with set of nodes 𝐸{𝑁[∗]}.  

 

Trust factor coefficient theorem is utilized with a focus on 16.02.21-21.12.22 time-span for 

observations. Transaction flows linked to the nodes N [*] are observed via package p<*> 

analyzes with respect to it’s impact to throughput and correlate with risk alerts to identify trust 

value of the linked nodes with a value between 0-1. The more risk the less throughput and the 

less trust for the nodes. MEMCA 5G connected hybrid cloud edge nodes have approximately 

10GBPs max and 4G ones about 100 MBPs throughput levels.  

 

The main objective is to maximize trust values of the critical nodes and the observed 

environment within the monitored time-span with a focus on detection of critical risk alerts. 

FIGURE 23 illustrates MEMCA-Hybrid cloud for generic smart city emulation and TDAI 

trusted interactivity experimental observation with sample DigiBank monitoring application 

[7].  

 

Package 𝑝 =< 𝑛𝑖𝑑 , 𝑛𝑠𝑡 , 𝑛𝑒 , 𝑛𝑙 , 𝑛𝑖𝑑 , 𝑛𝑘 , 𝑛𝑇 , 𝑛𝑐ℎ𝑠𝑢𝑚 , 𝑛𝑐 , 𝑛𝜌, 𝑛𝑑 , 𝑛𝑅 >,  transmissions are observed via 

trsuted agents of the monitored nodes N{}. Any metric can be measured and extracted to detect 

risk resources 𝑛𝑅 and depending on the activation threshold 𝑎𝑖 within the EN{[∗]} via available 

physical sensors of the nodes. 1 physical MEMCA mobile node can record required 

observations. Table 8 summarizes experimental validation results and summarizes the data sets 

of the observation results. 

 

So that dynamic vector structure can enable to merge the observed features and correlate with 

risk alerts as visualized in Figure 22 TDAI Sample experimental observation. Thereby, the 

impacts on throughput level of the nodes and the context are monitored with dynamic holistic 

views. Experimental validation setup is also visualized in Figure 23 where we evaluated 

experimentally validated TDAI [5,147].  

     

The experimental results are obtained based on the deployment of some commercial tools with 

focus on DigiBank hybrid cloud, in which we experimentally validated TDAI methodologies 

as well. The tests were achieved following the scenario use cases that we considered. The 

obtained results are reflected in the following part of this sub-chapter. 
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Experimental Validation of the Financial/Banking Monitoring Systems Use Case: 

The time span and observation metric/parameters can be limited to scope of Figure 22 to 

demonstrate and experimentally validate TDAI performance as in the defined cross-border 

smart-city financial transactions focused scenario use case as described in the previous section. 

 

The scenario for the risk observations are based on a DigiBank Intracontinental hybrid-cloud 

use-case for global digital asset monitoring within a bank and an account based on package 

p<> transmission traffic-based risk alerts within the environment E {}. The mobility of the 

environment with set of nodes 𝐸{𝑁[∗]} is observed to minimize the risk alerts and maximize 

the trust factor of the nodes with a focus on throughput values of each one to ensure expected 

throughput levels for required sufficient trust levels of the observed context [5]. 

 

The monitoring periods are in limited time-span and utilized between the USA-TÜRKİYE-EU 

during cross-border mobility evaluations of the bank account transaction flow analysis as 

summarized in Figure 22 holistic views.  

 

Configuration of the Experiment:  

The number of nodes considered in the experimentation has been fixed to 29 which is sufficient 

for scale up and therefore meets the TDAI evaluation objectives. The observation has been 

achieved with a focus on the period from 16.02.2021 to 21.12.2022. Out of the 29 nodes, 1 

node is a physical mobile node which is linked to the other nodes via public internet cloud. The 

28 other nodes are simulated with custom designed smart city emulator which might be similar 

or different depending on the system functional requirements.  

 

From the functional view point, such a distributed system composed of the 29 nodes is focused 

on financial banking transactions such a money transfer via for instance banking clearing 

systems. Such a use case is a perfect scenario for TDAI evaluation, since it requires a high level 

of trust by nature due to its global legal constraints. Such nodes are basically exchanging some 

data on the business needs based on some clearing protocols being deployed on fixed or mobile 

nodes. The observation of such a system in operation requires the application of TDAI nodes 

monitoring which is done dynamically in (near) real-time basis using package p<> transmission 

among the different nodes.  
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The main objective is to maximize trust values of the critical nodes and the observed 

environment within the monitored timespan with a focus on detection of critical risk alerts. The 

number of transactions exchanged among the nodes might have an impact on the TDAI features 

like throughput which has a direct correlation with risk alerts to identify trust level of the linked 

nodes with a value between 0-1. In fact, the more risk is high the less throughput value is and 

therefore the less trust value is on the nodes. It’s impact to throughput level of the node is 

observed with respect to critical metrics and parameters of package 𝑝 =<

𝑛𝑖𝑑 , 𝑛𝑠𝑡 , 𝑛𝑒, 𝑛𝑙 , 𝑛𝑖𝑑 , 𝑛𝑘 , 𝑛𝑇 , 𝑛𝑐ℎ𝑠𝑢𝑚 , 𝑛𝑐, 𝑛𝜌 , 𝑛𝑑 , 𝑛𝑅 >,  such as, throughput (in GBPs), EMF (in 

v/m), latency (in ms). Here we have some contextual data that are considered in the case of 

MEMCA 5G: the connected hybrid cloud edge nodes have approximately 10GBPs max and 

4G ones about 100 MBPs throughput levels. 

 

 TDAI Features Data Collection: 

The TDAI observing system exploits the concept of package p<> transmission implementable 

via trusted agents transmission capacities of the monitored nodes N{}. Critical metrics and 

parameters of package 𝒑 =< 𝒏𝒊𝒅, 𝒏𝒔𝒕, 𝒏𝒆, 𝒏𝒍, 𝒏𝒊𝒅, 𝒏𝒌, 𝒏𝑻, 𝒏𝒄𝒉𝒔𝒖𝒎, 𝒏𝒄, 𝒏𝝆, 𝒏𝒅, 𝒏𝑹 >,  such as, 

throughput (in GBPs), EMF (in v/m), latency (in ms), are defined as critical risk resources in 

the experimented case.  Any metric can be extracted via available physical sensors located at 

the nodes level. The 1 physical MEMCA mobile node records the required observed data.  

 

From the technical viewpoint, TDAI observation system is exploiting the concept of probes 

that are linked to sensors associated to the physical or virtual nodes. The observation is rather 

dynamic which can allow real time detection of risks during the system in operation within the 

specified timespan. TDAI methodology requires that all metrics are embedded to the nodes of 

package p <> and each one has its specific embedded detector e.g. SAR, power, etc. 

 

Experimental Validation of the Mobility Use Case: 

The risks metrics and parameters are broadened with further parameters of a custom designed 

simulator for the simulation of accident detection and signal propagation analysis as 

represented in Figure 23 with dynamic holistic views of the observed environment 𝐸{𝑁[∗]}.         
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Dynamic holistic views are updated dynamically with data sensor fetching as illustrated in 

Figure.19 a with dynamically updated feedback controllers. Furthermore, features embedding 

mechanism also ensure the continuous growth of the context depending on throughput values 

of each node X(N) with respect to 1/𝜆 as indicated in Figure.19. b.  

 

The Architecture Developed: 

Furthermore, Figure 21.b illustrates 

the TDAI microservice architecture, is 

designed to ensure and maximize 

interactivity of the trusted agents. It 

introduces the critical parameters and 

the correlation approach to minimize 

the false-positive alerts of the 

dynamic environment to maximize 

growth-flow of the observed context.  

 

 

The target for the observation within the 𝐸{𝑁[∗]} is defined as detection of critical risk alerts 

with TDAI utilization and porting those to growth-flow mechanism of TDAI approach via 

package p<> transmission to dynamically train the DigiBank 5G connected hybrid-cloud 

system as sample critical commercial technology tool we used during the thesis 

experimentation. It has 5G connectivity features also for (near) real-time package transmission 

capacities of the monitored nodes N{}, where we observe package p<> transmission to extract 

the critical metrics and parameters when required. 

 

Critical metrics and parameters of package 𝑝 =< 𝑛𝑖𝑑 , 𝑛𝑠𝑡 , 𝑛𝑒 , 𝑛𝑙 , 𝑛𝑖𝑑 , 𝑛𝑘 , 𝑛𝑇 , 𝑛𝑐ℎ𝑠𝑢𝑚 , 𝑛𝑐 , 𝑛𝜌 , 𝑛𝑑 >; such 

as, throughput GBPs, EMF v/m, latency ms, are defined as critical risk resources 𝑛𝑅 and 

activation threshold  𝑎𝑖 within the 𝐸{𝑁[∗]}. Next sub chapter articulates the correlation and 

alerting approach utilized for the observations.   

 

  

 
Figure.21b. TDAI Micro-service architecture 

for trusted interactivity. 



 
 
 
 
 
 

 
120 

B.II TDAI based Correlation and Alerting Approach 

 

As stated in trust factor coefficient theorem [130], trust value of each node is correlated 

dynamically to throughput and the metrics, which have direct impact on it. Furthermore, it is 

proportional to generated risk alerts 𝑛𝑅 from the nodes as formulated in equation 16. 

 

Additionally, Table.5 illustrates the monitoring metrics/parameters of each node and critical 

identified regulative constraints, which are EMF, SAR and Power values of each node and the 

observed dynamic context. Low emission driving constraint defines a trusted system as a 

system that cannot exceed/generate a certain level of emissions.  

 

To do so, it has to take care of the following elements, and find countermeasures, when 

necessary (e.g. with optimization), so that overall trust value of each node controlled and 

correlated to risk alerts in (near) real time. Equation.16 below formulates the risk monitoring 

model and trust value correlation of an environment 𝐸{𝑁[∗]}.  

 

𝑡𝑁𝑖
= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ( ∑

𝑁𝑖.𝑡 𝑡𝑟𝑢𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑡 ∈ {0 𝑡𝑜 1} 

𝑁𝑖.𝑅 (𝑡𝑜𝑡𝑎𝑙 𝑟𝑖𝑠𝑘 𝑎𝑙𝑒𝑟𝑡 𝑛𝑢𝑚𝑏𝑒𝑟)
 

𝑖

0

 ),  

𝑁𝜖 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑚𝑒𝑛𝑡 𝑬{𝑵[∗]} (16). 

 

As stated in above Equation.16, the trust values are directly proportional to risk alerts of 

resources as set of nodes N {}. Thereby, the metrics have impact on the risk alerts can be 

defined as other critical constraints of the observed context. By that means, critical alerts from 

legal constraints violations are the major trust indicators and threshold bounds 𝑎𝑖 have direct 

impact of throughput level of the nodes and linked trust values. Table.8 visualizes list of alert 

resources within the observed 4G and 5G traffics.  

 

TDAI performs promising performance of detection of the legal constraint based critical alerts, 

which results in account termination and bank investigations with %100 ratio for the 

observations of the main transactions linked to monitored nodes. On the other hand, further 

parameters and metrics can be defined with custom designed simulator as visualized in Figure 

23. Below are the some of the other critical observation metrics for TDAI methodology for 

further risk analyzes and observations; 
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- The behavior of the driver, which directly impacts the emission level. It can be measured 

by inferring the acceleration of the car, which obviously depends on the way the user 

accelerates or decelerates. With this value it is possible to deduce how much a driver is 

aggressive, slow, etc. This acceleration profile can be computed with GPS, RPM 

(Revolution Per Minute) or the smartphone’s accelerometer for instance depending on the 

position of the device in the car. The driver him/herself is also important, since the age, 

driving habits and experience are all factors that obviously influence the behavior. 

- The vehicle itself, and most specifically its maintenance and type (e.g., age, engine, etc.) – 

A old vehicle for instance usually generates more emissions that a recent one. 

- Environmental conditions: weather, road traffic, etc. can affect the emissions generated 

by tires, brakes and exhaust emissions. 

- The profiling and recommendations systems that are embedded in the app and that are 

only using local routines, so only a limited information knowledge that can easily be 

influenced negatively – thus biasing the recommendations. 

- The connectivity part used to transmit the data – if false data is sent, then the models will 

not be accurate. 

 

 
Figure.22. TDAI sample experimental observation. 
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Furthermore, other metrics from data sensors e.g. data collected through the OBD dongle 

includes Gas pedal position%, RPM (Revolution Per Minute), Gear position, Fuel 

consumption, Mass Air Flow (MAF), NOx sensor, Vehicle speed, Engine Coolant 

Temperature, Steering wheel angle, Catalyst Temperature Banks & sensors, Air pressure, 

Engine out NOx emission are defined as critical constraints of TDAI. 

 

The more metrics are observed the more trust level between TRL 1-5 can be assured and 

justified proportionally in a dynamic context with trusted agents based continuous growth-flow 

mechanism in the monitored context via 𝑓𝑇𝑟𝑢𝑠𝑡𝑒𝑑 𝐴𝑔𝑒𝑛𝑡{𝐴{}}(𝐸{𝑁[∗]}). However, each feature 

causes a justification process and increases the trust cost exponentially as formulated in 

Figure1.a. Therefore, TDAI limits the critical constraint and metrics as selected in Table 8. The 

more trust value is depending on the risk alerts in the context which have impact on required 

throughput values of the nodes as summarized in Figure 22 with a holistic view to the context 

within the selected time frame.  

 

Dynamic holistic views can help to accelerate the growth-flow with trusted feedback structures, 

which have (1) Centralized (2) Decentralized/autonomous (3) Distributed/Hybrid design 

perspectives. Since, distributed design can enable to maximize total throughput of each node 

          
Figure.23. MEMCA-Hybrid Cloud for generic smart city emulation and TDAI trusted 

interactivity experimental observation with sample DigiBank monitoring application [5]. 
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X(N) and total system with utilization of TDAI with maximized growth-flow of the observed 

environment 𝐸{𝑁[∗]. 

 

To sum up, it is observed that in initial simulations of TDAI, as briefed in Figure 23, which has 

trusted interactivity since it can be assured 

at massive scale with minimum risk alerts 

as summarized in Table.8. TDAI can 

merge the feedbacks in (near) real time 

and detect the risk with 70% true positive 

detection performance with scaled up 

alerts and trustfully utilized MEMCA 

holistic views [130] for accelerated 

growth-flow mechanism.  

 

MEMCA 5G connected hybrid-cloud is 

utilized to develop generic smart city emulation and ensure trusted interactivity with TDAI for 

a sample DigiBank financial transaction monitoring application. So that, we can ensure optimal 

trust in observed Environment E {Nodes[*][ ‘Alerts’]} and correlate potential risks with trust 

values of each nodes.  

 

Thereby, minimized risk alert and maximum growth-flow performance as summarized in 

Figure 22 and visualized in Figure 23, in which each node and total system can succeed the 

expected throughput levels in (near) real time thanks to TDAI based trusted interactivity of the 

context and maximized growth-flow performance with dynamic holistic views to the system. 

The more we justify trust the more accelerated growth-flow can be succeeded. Next sub-

chapter concludes the chapter before the thesis conclusions and future works introductions.  

  

Alert Sources 

  

Intersection/Convergence Points 

Accident Risk Alerts for  

Snapshot.E{“16.02.2021 – 21.12.2022”}; 

EMF 

Transaction Flow Traffic Size:  

4G/ ~100 MBPs – 5G/ max. 10GBPs  

Fatal Alerts:  7 

Emission True Positive False Positive 

Bandwidth 

Congestion 
70% 20% 

System 

Throughput 

Limit 

False Negative True Negative 

Saturation 

Effect 
5% 5% 

Legal 

Constraints 
 

Table 8. Alert sources in a dynamic 

environment with set of nodes 𝐸{𝑁[∗]}. 
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B.III Chapter Conclusion 

 

To sum up, we can state that three main architectures (central, decentral/autonomous, 

distributed/hybrid) can enable to build basis for TDAI methodology to ensure end-to-end trust 

in holistic AI system life cycle. Distributed/hybrid designs can enable to improve total system 

performance and ensure growth-flow in dynamic context. So that, computational algorithm can 

be decentralized with task cooperation approaches and data caching policies with trust factor 

coefficient based total system throughput maximization approach and TDAI based multi-agent 

system with maximized interactivity.  

 

Any other critical constraints, which have impact on expected throughput values of the nodes 

are defined as risk alerts and critical constraints of TDAI. Thereby, main sources of the alerts 

can be detected in (near) real time and ported to growth-flow paths with trusted feedback 

controller structures. So that defined critical constraints summarized in Table.8, e.g. EMF, 

bandwidth congestion, system throughput limits, saturation effects can be detected and false-

positives values can be minimized for optimal system resource management. The more trust in 

the context, the less alerts generated in observed context and continuous growth-flow can be 

assured for maximum trust values of an environment with set of nodes 𝐸{𝑁[∗]}. 
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Chapter VI: Conclusion and Future 

Work 
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A. Summary of The Main Findings 

 

As a brief conclusion of the research challenges explored, we ascertain that TDAI is seen as a 

missing, and yet, largely unexplored area. TDAI core component of the methodology has three 

main architectural perspectives (1) Centralized. (2) Decentralized/autonomous/embedded (3) 

Distributed/hybrid architectural perspectives. So that we can assure the trusted interactivity of 

the nodes within the observed environment 𝐸{𝑁[∗]} with optimal trust cost. Critical feature 

sets of the TDAI can be summarized as summarized in Table.2, that is:  

 

(1) trust measurement, quantification, and justification  

(2) trusted scalability  

(3) trust assurance  

(4) swarm manipulation  

(5) system and user behavior monitoring.  

 

The feature sets elaborated in this thesis help to ensure the continuous growth of the intelligent 

systems, which are core mechanisms of emerging smart ecosystems, with software-driven 

dynamic systems to ensure adaptiveness and flexibility in a dynamic context, rather than 

hardware-dependent designs. So that we can obtain a dynamic end-to-end trust mechanism to 

justify the required level of trust with optimal cost. Thereby, the trust factor of the system, 

𝑃(𝑥∗) ∝ 𝑡 with the set of nodes NE : {N1, N2, N3, …, Nn} can be increased to maximize the 

throughput in the well-defined dynamic context with the adaptive agent function 𝑓𝑜𝑝𝑡(). The 

critical feature sets selected in Table.3.B can be considered as the key elements of the end-to-

end trust mechanism for the continuous growth of intelligent systems. The better the features 

justified, the faster the growth for the dynamic objectives of the mechanisms is ensured.  

 

As the TDAI experimentally validated and evaluated in previous Chapter V, we can rely on the 

promising performance of the novel methodology to ensure interactivity and sufficient level of 

trust in a dynamic environment E{}. Architectural design principles are critical concerns for 

the novel innovations in the growing context. Decentralized approaches can build 

autonomous/embedded/local components with basic functionalities like swarm manipulation. 

In order to improve the components with trusted scalability and monitoring features, end-to-

end fully connected channels are required. Centralized designs can guarantee these features 
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with respect to end-to-end latency limits. Identified advanced justified functionalities are 

required for the novel futuristic designs, which are possible with the distributed design 

paradigms, which include edge/hybrid/hierarchical/multi-layer features with emerging holistic 

abstraction principles [31,14,15].  

 

These features and research challenges are also included in the growth-flow of the emerging 

intelligent systems with advanced trusted AI capabilities. Next chapter introduces potential 

research challenges and future directions within a summary table. The challenges summarized 

in Tables.2 and 3 briefly introduced future directions to be explored in related future works. 

 

B. Potential TDAI Research Fields and Future Directions 

 

Disruptive innovations proposed for growing intelligent systems trigger acceleration to obtain 

an end-to-end fully trusted execution environment, which can be operated in the distributed 

context within the limits of critical systems constraints. However, the limitations of the 

decentralized components can only provide basic functionalities, like swarm manipulation 

features. These features can be improved with decentralized designs and hybrid mechanisms 

for the recent challenges. Table.9 introduces major points from the related works and reviewed 

literature between 1950 and 2023, with a focus on recent years. These challenges remain open 

issues to be explored in detail to obtain a fully trusted execution environment for growing 

intelligent systems with dynamically correlated and observed socio-dynamic features, which 

mainly focus on the regulative legal measurement metrics of alerting methodologies. These 

identified challenges will be investigated in detail in future related works.        

 

In the TDAI research field, we identify the following emerging areas as being of increasing 

interest within the distributed computing communities:  

 

▪ Trust measurement,  quantification, and justification in distributed systems and its 

underlying diverse components. 

▪ Trusted scalability of autonomous systems with algorithms and system levels with end-to-

end holistic views.   
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▪ Trusted architecture mechanisms (e.g. Machine Learning) with novel abstraction 

approaches of end-to-end paradigms.  

▪ (Near) Real-Time swarm manipulation to implement trusted distributed AI methodology. 

 

The challenges and future directions identified in this thesis can be defined as key features and 

milestones for massive scale trusted AI. Thereby, an intelligence flow can be assured for 

growing intelligent mechanisms via end-to-end trust mechanisms, which have TEE based 

trusted interaction with the environments within the smart-ecosystems and dynamic contexts. 

The more features justified within the critical systems constraints, the more trust can be 

obtained with TDAI for the growing intelligent systems.   

 

On the other hand, in spite of the major progress made in computing systems with distributed 

design innovations, there are still challenges for the critical system constraints for the 

continuous growth of the intelligence systems. For instance, in [37] experiments have recently 

reported with trusted computing paradigms in real life use-cases. In [81] high throughout 

mobile and wireless communication technologies have recently been replaced with tethered 

ones. More critically, [117] HPC limitations are still set to be improved with modern AI/ML 

frameworks with hybrid cloud design paradigms.  

 

Fortunately, defined architectural perspectives (central, decentral/autonomous, 

distributed/hybrid) for emerging trusted distributed AI mechanisms can enable to ensure 

resiliency and robustness in a dynamic context with an end-to-end TEE for growing intelligent 

mechanisms and systems. Furthermore, the trust measurement, quantification, and justification 

methodologies can be applied in emerging distributed systems and their underlying diverse 

application domains with TDAI.  

 

As conclusion we can summarize the future perspective of the thesis as follows; 

 

1. TDAI Experimentation and Application contexts: TDAI approach can further improve the 

distributed ML systems and justify the trust features for such applications, which has not 

been fully tested in all contexts during this thesis. Examples of experimentations contexts 

are detailed in the following:  
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• Smart city use-cases (such as driver behaviors for smart mobility) with AI systems 

considerations like consciousness of machines, as well as end-to-end trust mechanism 

for swarm systems. 

• Development and operation of AI systems with increasing trust for holistic DevOpS 

lifecycle which expect to bring together the Larger-scale data amounts and high number 

of users. 

• Coordination-based systems, caching policies, and middleware mechanisms to be 

investigated. Security/Privacy/Trust support are also limited aspects of proposed 

solutions. 

• Further trust formalizations and understandings to be identified for the TDAI use-cases 

specific experimental validation in different domains. Other approaches where feature 

interaction problems are important like interactive multiagent systems to be further 

improved with the TDAI justification features.  

 

2. TDAI Framework Design and Tooling: Framework design and experimentation are also 

ongoing activity and TDAI methodology can support the frameworks and state of the art 

system with the identified novel features. This can enable further application fields of TDAI 

as a justification feature sets within the holistic views with trust factor coefficient theorem 

and pertaining abstraction paradigms. Frameworks can be improved and tested with large 

scale use-cases for experimental validation activities in related applications. Furthermore, 

DAI and (MAS) multi-agent systems can also be improved with TDAI feature sets with 

improved abstraction levels. So that, agent features to be broadened and distributed design 

paradigms to with improved abilities.  

 

3. TDAI Standardization: TDAI Impact can be at the standardization which might require its 

evaluation in many industrial applications and therefore the trust metrics can be adapted to 

fit to the standardized requirements. More particularly the development perspectives can 

bring some benefits as listed in the following:  

• TDAI improvement with customized trust metrics and performance indicators.  

• TDAI method and tools could be further developed with the perspectives of exploiting 

them for Auditing and Certification potential where fair, explainable, auditable, and 
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safe futures to be explored in different stages of a system lifecycle, with each stage 

forming part of a Chain of Trust. 

• Improvement of the TDAI evaluation matrix associated to the TDAI taxonomy via 

further trust formalization implementations and understandings. 

 

4. TDAI Automation for Decision Making: As another aspect, TDAI can help minimization 

of humans in loop and real-time decision-support limitations to increase automated features 

of growing AI systems. There are strong requirements for TDAI to be utilized in automation 

decision making processes, which is a part of TDAI trust justification process that will be 

experimented in related future works. 

 

Further details of the additional parts for the identified future directions, which will be explored 

and experimented in our related future works justified in details in [140], where there are strong 

requirements for further TDAI implementations.  
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