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Abstract

Multiple-input multiple-output (MIMO) radars transmit a set of sequences that exhibit small cross-

correlation sidelobes, which enhance sensing performance by separating them at the matched filter

outputs. Small auto-correlation sidelobes are also required in order to avoid masking of weak targets

by the range sidelobes of strong targets and to mitigate the negative effects of distributed clutter. In

light of these requirements, in this paper, we design a set of phase-only (constant modulus) sequences

that exhibit near-optimal properties in terms of Peak Sidelobe Level (PSL) and Integrated Sidelobe

Level (ISL). At the design stage, we adopt weighted `p-norm of auto- and cross-correlation sidelobes

as the objective function and minimize it for a general p value, using block successive upper bound

minimization (BSUM). Considering the limitation of radar amplifiers, we design unimodular sequences

which make the design problem non-convex and NP-hard. To tackle the problem, in every iteration of the

BSUM algorithm, we introduce different local approximation functions and optimize them concerning

a block, containing a code entry or a code vector. The numerical results show that the performance

of the optimized set of sequences outperforms the state-of-the-art counterparts, in terms of both PSL

values and computational time.

Index Terms – BSUM, `p-norm, PSL, ISL, MIMO Radar, Waveform Design.

I. INTRODUCTION

A complex problem in radar pulse compression (intra-pulse modulation) is the design of wave-

forms exhibiting small Peak Sidelobe Level (PSL). PSL shows the maximum auto-correlation

sidelobe of a transmit waveform in a typical Single-Input Single-Output (SISO)/Single-Input

Multiple-Output (SIMO), or phased-array radar system. If this value is not small, then either

a false detection or a miss detection may happen, based on the way the Constant False Alarm
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Rate (CFAR) detector is tuned [1]. In Multiple-Input Multiple-Output (MIMO) radars, PSL min-

imization is more complex since the cross-correlation sidelobes of transmitting set of sequences

need to be also considered. Small value in cross-correlation sidelobes helps the radar receiver

to separate the transmitting waveforms and form a MIMO virtual array.

Similar properties hold for Integrated Sidelobe Level (ISL) of transmitting waveforms where

in case of SISO/SIMO or phased-array radars, the energy of auto-correlation sidelobes should

be small to mitigate the deleterious effects of distributed clutter. In solid state-based weather

radars, ISL needs to be small to enhance reflectively estimation and improve the performance

of hydrometer classifier [2]. In MIMO radar systems, ISL shows the energy leakage of different

waveforms in addition to the energy of non-zero auto-correlation sidelobes. Indeed, correlation

sidelobes are a form of self-noise that reduce the effectiveness of transmitting waveforms in

every radar system [3].

In a MIMO radar system, different multiplexing schemes are used to create zero values

for cross-correlations of the transmitting waveforms, Frequency Division Multiplexing (FDM),

Doppler Division Multiplexing (DDM), and Time Division Multiplexing (TDM) as some ex-

amples [4]. Currently, TDM-MIMO radars are commercialized in the automotive industry with

a variety of functionalities from de-chirping and Doppler processing to angle estimation and

tracking [5], [6]. However, Code Division Multiplexing (CDM)-MIMO is the next step of the

industry, which can use more efficiently the available resources (time space and frequency)

[7]–[9].

In this paper, we devise a method called Weighted BSUM sEquence SeT (WeBEST) to design

transmitting waveforms for CDM-MIMO radars. To this end, we adopt the weighted `p-norm of

auto- and cross-correlation sidelobes as the objective function and minimize it under Continuous

Phase (CP) and Discrete Phase (DP) constraints. The weighting and p values in the provided

formulation create a possibility for intelligent transmission based on prevailing environmental

conditions, where can select appropriate p based on presence of distributed clutter or strong

target [10]–[13]. For example, choosing p→ 0 and minimizing the `p-norm of auto- and cross-

correlation sidelobes, a set of sequences with sparse sidelobes will be obtained. With p = 2,

the resulting optimized set of sequences will have small ISL value which performs well in the

presence of clutter. Further, by minimizing the `p-norm when p → +∞, the optimized set of

sequence will have small PSL and are well suited for enhancing the detection of point targets.
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A. Background and Related Works

Waveform design based on sidelobe reduction in SISO/SIMO or phased-array radar systems:

Research into design of waveforms with small ISL and PSL values has significantly increased

over the past decade for single waveform transmitting radar systems [3], [14]–[22]. In case

of ISL minimization, several optimization frameworks are proposed, including power method-

like iterations, Majorization-Minimization (MM), Coordinate Descent (CD), Gradient Descent

(GD), Alternating Direction Method of Multipliers (ADMM), Inexact Alternating Direction

Penalty Method (IADPM), Proximal Method of Multipliers (PMM) and MM-MDR to name a

few [14]–[26]. In [3], an algorithm based on steepest descent is proposed for designing long

binary sequences. Joint ISL and PSL minimization based on CD under DP and CP constraints

is proposed in [20]. In the proposed method of this paper, `p-norm of auto-correlation sidelobes

when p→ +∞ is considered for the initialization. Similarly, several papers have considered `p-

norm minimization to design waveform with small PSL values. In [21], a GD based approach

is proposed to design sequences with small sidelobes based on `p-norm criteria for SISO radar

systems. The proposed algorithm is applicable when p is an even number, i.e., p = 2n, n ∈ Z+.

In [17], [18], MM based approach are proposed for `p-norm minimization when p ≥ 2.

The results in [17], [18], [20] depict that by gradually increasing p during the minimization of

the `p-norm of auto-correlation sidelobes, sequences with very small PSL values are obtained.

Motivated by this observation, this paper investigates `p-norm minimization of auto- and cross-

correlation functions to obtain set of sequences with very small PSL values for MIMO radars.

Waveform design based on sidelobe reduction in MIMO radar systems: In order to design set of

sequences with small auto- and cross-correlation sidelobes, several approaches including Multi-

Cyclic Algorithm-New (CAN)/Multi-PeCAN [27], Iterative Direct Search [28], ISLNew [29],

MM-Corr [30] and CD [31]–[35], are proposed all considering the ISL as the design metric. On

the other hand, few papers have focused on PSL minimization for MIMO radars [36], [37]. In

[36], [38] a CD based approach is proposed to minimize PSL. In [37], [39] a MM based approach

is proposed to directly minimize the PSL and design set of sequences for MIMO radar systems.

The authors in [40] solve the problem based on Chebyshev distance minimization. In the current

study, we design set of sequences with very small PSL values by minimizing `p-norm of auto-

and cross-correlation sidelobes for a set of sequences which was not addressed previously in the

literature. In contrast to the previous studies, we solve the problem for a general p value (p > 0)
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under DP constraint, and solve it for 0 < p ≤ 1 ∪ p ≥ 2 under CP constraint. Interestingly, the

obtained PSL values are close to the Welch lower bound and fill the gap between the best of

literature and the available lower bound.

B. Contributions

The main contributions of the current article are summarized below.

• Unified optimization framework: We propose a unified framework based on Block Succes-

sive Upper Bound Minimization (BSUM) paradigm to solve a general `p-norm minimization

problem under practical design constraints which make the problem non-convex, non-smooth

and NP-hard. The proposed problem formulation includes `1/`0-norm of the auto-correlation

sidelobe which relatively have lower number of local minima comparing with `2-norm.

Also, the local minima of those cost function would correspond to sequences with good

auto-correlation sidelobe levels. For instance, in the simulation analysis we show that any

local minima of `0-norm of auto-correlation would have many zeros (sparse auto-correlation)

which can enhance the detection performance in the presence of distributed clutter.

• Entry- and vector-based solutions: BSUM is an iterative method, that in each iteration, the

variable is divided into several blocks, then the problem is optimized with respect to that

block. The blocks are a portion of the variable or in the smallest case, it is one entry. In

this regard, in each iteration of BSUM, we propose two approaches, i.e, entry- and vector-

based solutions. In the entry-based optimization, we formulate the problem with respect to

a single variable; this enables us to find the critical points and obtain the global optimum

solution in each step. For vector-based optimization, we propose a solution based on GD.

This approach is faster than the entry-based method. However, the entry-based method has

a better performance in terms of minimizing the objective function due to obtaining the

global optimum solution in each step.

• Trade-off and flexibility: By conducting thorough performance assessment, we propose a

flexible tool to design set of sequences with different properties. We show that the `p-

norm optimization framework provides the flexibly of controlling optimization objective

by choosing p, where p → ∞ leads to design set of waveforms with good PSL property.

Choosing p → 0 leads to sparse auto- and cross-correlation and choosing p = 2 leads to

design set of waveforms with good ISL property.
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While BSUM offers a generic framework, the contribution of the paper lies in devising different

solutions based on simplifying the complexity and obtain a good performance. We finally propose

a direct solution for the discrete phase constraint using Fast Fourier Transform (FFT) technique.

C. Organization and Notations

The rest of this paper is organized as follows. In Section II, we formulate the `p-norm

minimization for MIMO radar systems, then we introduce the BSUM method as the Optimization

framework and finally we define the local approximation functions suitable for `p-norm problem.

We develop the BSUM framework to solve the problem in Section III and provide numerical

experiments to verify the effectiveness of proposed algorithm in Section IV.

Notations: This paper uses lower-case and upper-case boldface for vectors (a) and matrices

(A) respectively. The set of complex, positive integer numbers, transpose, conjugate transpose,

sequence reversal, Frobenius norm, `p norm, absolute value, round operator, real part, imaginary

part, Hadamard product and cross-correlation operator are denoted by C, Z+, (.)T , (.)H , (.)r,‖.‖F ,

‖.‖p, |.|, b.e, <(a), =(a), � and ~ symbols respectively. The letter j represents the imaginary

unit (i.e., j =
√
−1), while the letter (i) is used as step of a procedure.

II. PROBLEM FORMULATION

We consider a narrow-band MIMO radar system with M transmitters and each transmitting

a sequence of length N in the fast-time domain. Let the matrix X ∈ CM×N denote the set

of transmitted sequences in baseband, whose the mth row indicates the N samples of mth

transmitter while the nth column indicates the nth time-sample across the M transmitters. Let

xm , [xm,1, xm,2, . . . , xm,N ]T ∈ CN be the transmitted signal from mth transmitter. The aperiodic

cross-correlation of xm and xl is defined as,

rm,l(k) , (xm ~ xl)k =
∑N−k

n=1 xm,nx
∗
l,n+k, (1)

where m, l ∈ {1, . . . ,Mt} are the transmit antennas indices and k ∈ {−N + 1, . . . , N − 1} is

the lag of cross-correlation. If m = l, (1) represents the aperiodic auto-correlation of signal xm.

The zero lag of auto-correlation (rm,m(0)) represent the peak of the mth matched filter output.

Also |rm,m(0)| contains the energy of sequence which for constant modulus sequences is equal

to N . The other lags (k 6= 0) are referred to the sidelobes. The weighted `p-norm of auto- and

cross correlation in MIMO radar is written as,(∑M
m=1

∑M
l=1

∑N−1
k=−N+1 |wkrm,l(k)|p −M(w0N)p

) 1
p
, (2)
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where

wk =

1, k ∈ V

0, k ∈ U

with V and U are the desired and undesired correlation lags, respectively, that satisfy V ∪ U =

{−N + 1, . . . , N − 1} and V ∩ U = ∅ 1. The M(w0N)p term in (2) is the weighted `p-norm

of the mainlobes, where
∑M

m=1 |w0rm,m(0)|p = M(w0N)p. Since the term M(w0N)p in (2) is

constant, the weighted `p-norm minimization is equivalently written as,
min
X

f(X) ,
∑M

m=1

∑M
l=1

∑N−1
k=−N+1 |wkrm,l(k)|p

s.t. xm,n ∈ X∞ or XL,
(3)

where, X∞ and XL indicating the unimodular and discrete phase with L alphabet size sequences.

More precisely, we consider X∞ = {ejφ|φ ∈ Ω∞} and XL = {ejφ|φ ∈ ΩL}, where Ω∞ , (−π, π]

and ΩL , {0, 2π
L
. . . , 2π(L−1)

L
}. The unimodular and discrete phase are equality constraint and

they are not an affine set. Therefore the optimization problem is non-convex, multi-variable and

NP-hard in general. Note that, due to the existence of the parameter p in f(X), direct solution

of (3) is complicated.

III. PROPOSED METHOD

In this paper, we propose a method based on BSUM framework to tackle the non-convex

problem (3). The BSUM framework provides a connection between Block Coordinate Descent

(BCD) and MM, by successively optimizing a certain upper bound of the original objective in

a coordinate wise manner 2. In this context, BSUM requires to find an approximation function

for the objective function in (3), and then the approximation function should be written in a

simplified form with respect to one variable block while other blocks are held fixed. In this

regard, term |wkrm,l(k)|p in (3) is majorized by the following local approximation functions (see

Appendix A for more details),

u(wkrm,l(k)) = ηmlk|wkrm,l(k)|2 + ψmlk|wkrm,l(k)|+ νmlk (4)

where3,

1Mathematically, one can select wk ≥ 0 and still use the method described here to solve the problem.
2Details of BSUM and different ways of choosing approximation functions of this paper can be found in Appendix A.
3We do not report the value of νmlk because it is a constant term that has no effect on the optimization procedure.
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ηmlk ,



τp + (p− 1)|wkr(i)m,l(k)|p − pτ |wkr(i)m,l(k)|p−1

(τ − |wkr(i)m,l(k)|)2
p ≥ 2


pε(p−2)

2
|wkrm,l(k)| 6 ε

p|wkrm,l(k)|(p−2)

2
|wkrm,l(k)| > ε

0 < p ≤ 1,

, τ ,

 N−1∑
−N−1

|wkr(i)m,l(k)|p
 1

p

(5)

and

ψmlk ,


p|wkr(i)m,l(k)|p−1 − 2ηmlk|wkr(i)m,l(k)| p ≥ 2

0 0 < p ≤ 1.
(6)

In (5), ε is a positive and small value (ε > 0 and ε→ 0) incorporated in the objective function

to avoid the singularity problem for 0 < p ≤ 1.

Consequently, (3) is equivalently replaced with,

P


min
X

u(X) ,
∑M

m=1

∑M
l=1

∑N−1
k=−N+1 u(wkrm,l(k))

s.t. xm,n ∈ X∞ or XL,
(7)

Let xt (t ∈ {1, . . . ,M}) be the only variable block, while other blocks are held fixed and stored

in the matrix X−t , [xT1 ; . . . ; xTt−1; x
T
t+1; . . . ; x

T
M ] ∈ C(M−1)×N . In this case, the approximation

function u(X) is decomposed to a term independent of the optimization variable xt, and two

other terms, one indicating the auto-correlation of xt, and the other is its cross-correlation with

the other sequences of the set X−t. Precisely,

u(X) = um(X−t) + uau(xt) + ucr(xt,X−t), (8)

where

um(X−t) =
∑M

m,l=1
m,l 6=t

∑N−1
k=−N+1 u(wkrm,l(k)), uau(xt) =

∑N−1
k=−N+1 u(wkrt,t(k)),

ucr(xt,X−t) = 2
∑M

l=1
l 6=t

∑N−1
k=−N+1 u(wkrt,l(k)).

(9)

In the sequel, we provide different approaches for minimizing u(X) under the aforementioned

constraints.

A. Code entry optimization

To design the code vector xt, one possible solution is to optimize its code entry sequentially.

Let xt,d (t ∈ {1, . . . ,M} and d ∈ {1, . . . , N}) be the only entry variable of vector xt while other

entries are held fixed and stored in vector xt,−d , [xt,1, . . . , xt,d−1, 0, xt,d+1, . . . , xt,N ]T ∈ CN .
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In this regard, the auto- and cross-correlation of tth transmitter is written as dth entry as follows,

[20], [31], [36],

rt,t(k) , c̄ttdk + āttdkxt,d + b̄ttdkx
∗
t,d, rt,l(k) , c̄tldk + ātldkxt,d, (10)

where,

c̄tldk ,
∑N−k

n=1
n6=d

xt,nx
∗
l,n+k, ātldk , x∗l,d+kIA(d+ k), c̄ttdk ,

∑N−k
n=1

n6=d,n 6=d−k
xt,nx

∗
t,n+k,

āttdk , x∗t,d+kIA(d+ k), b̄ttdk , xt,d−kIA(d− k),

(11)

where, IA(p) is the indicator function of set A = {1, . . . , N}, i.e, IA(p) ,


1, p ∈ A

0, p /∈ A
. Please

note that the coefficients c̄tldk and c̄ttdk depend on xt,−d while ātldk, āttdk and b̄ttdk depend on

xt,d. Therefore the weighted auto- and cross-correlation of tth transmitter becomes,

wkrt,t(k) = cttdk + attdkxt,d + bttdkx
∗
t,d wkrt,l(k) = ctldk + atldkxt,d, (12)

where

attdk , wkāttdk, bttdk , wkb̄ttdk, cttdk , wkc̄ttdk, atldk , wkātldk, ctldk , wkc̄tldk. (13)

Further, to consider the unimodularity constraint, we substitute xt,d with ejφ. In this case, it

is shown that,

wkrt,t(k, φ) = cttdk + attdke
jφ + bttdke

−jφ, wkrt,l(k, φ) = ctldk + atldke
jφ. (14)

Observe that the term um(X−t) in (8) is independent to the optimization variable xt,d. Thus, the

optimization problem (7) with respect to xt,d becomes,
min
φ

∑N−1
k=−N+1 u(wkrt,t(k, φ)) + 2

∑M
l=1
l 6=t

∑N−1
k=−N+1 u(wkrt,l(k, φ))

s.t. φ ∈ Ω∞,

(15)

In this case, by some mathematics manipulation, the objective function in (15) is explicitly

written based on φ as (see Appendix B),

Pe


min
φ

u(φ) , <
{∑2

n=−2 vne
jnφ
}

s.t. φ ∈ Ω∞,

(16)

where the coefficients vn are defined in Appendix B.
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The solution to Pe is calculated by finding the critical points of the problem and selecting

the solution that minimizes the objective. In this regard, we find the real roots of the first-order

derivative of the objective function and evaluate the objective function in these points and the

boundaries and select the solution that minimizes the objective. In this regard, the derivative of

u(φ) is obtained by,

u′(φ) = <
{
j
∑2

n=−2 nvne
jnφ
}
, (17)

Then, considering trigonometric equations of cos(φ) = (1− tan2(φ
2
))/(1 + tan2(φ

2
)), sin(φ) =

2 tan(φ
2
)/(1 + tan2(φ

2
)) and performing the change of variable z , tan(φ

2
) in (17), it is shown

that finding the roots of du(φ)
dφ

= 0 is equivalent to finding the roots of the following 4 degree

real polynomials (see Appendix C for details),∑4
k=0 skz

k = 0, (18)

where the coefficients are given in Appendix C.

We only admit the real roots for (18). Let us assume that zk (k = {1, . . . , 4}) be the roots of∑4
k=0 skz

k = 0. Hence, the critical points of u(φ) are expressed as,

Ωu =
{

2 arctan (zk)|=(zk) = 0
}

(19)

Therefore, the optimum phase would be,

φ? = arg min
φ

{
u(φ)|φ ∈ Ωu

}
. (20)

Subsequently the optimum solution for xt,d at ith iteration is, x(i+1)
t,d = ejφ

? .

Remark 1: Since, u(φ) is functions of cosφ and sinφ, it is periodic, real and differentiable.

Therefore, it has at least two extrema and hence its derivative has at least two real roots; thus

Ωu never becomes a null set. As a result in each iteration, the problem has a solution and never

becomes infeasible.

Remark 2: To design a sequence with discrete phase constraint, an elegant solution is obtained

for 0 < p < ∞ by using FFT as detailed below. In this case, the optimization problem with

respect to the phase variable φ by removing the constant terms is written as,

Pd


min
φ

2
∑M

l=1
l 6=t

∑N−1
k=−N+1 |ctldk + atldke

jφ|p +
∑N−1

k=−N+1 |cttdk + attdke
jφ + bttdke

−jφ|p

s.t. φ ∈ ΩL,

(21)

Note that in the optimization problem (21), all the discrete points lie on the boundary of the

optimization problem; hence, all of them are critical points for the problem. Interestingly, the
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solution to (21) is obtained efficiently using an FFT operation due to the fact that the objective

function represents the modulus of the L-point Discrete Fourier Transform (DFT) of a sequence

associated with coefficients cttdk, attdk, bttdk, ctldk, and atldk. Precisely, we find the index l′? by

(see Appendix D),

l′? = arg min
l=1,...,L

2
∑M

l=1
l 6=t

∑N−1
k=−N+1 |FL{atldk, ctldk}|p +

∑N−1
k=−N+1 |FL{attdk, cttdk, bttdk}|p, (22)

where, FL is L-point DFT operator. Hence, the optimum phase is

φ? =
2π(l′? − 1)

L
. (23)

Subsequently, the optimum entry is x(i+1)
t,d = ejφ

? .

The summary of the proposed method, called WeBEST-entry based design optimization frame-

work is given by Algorithm 1, where, x(i+1)
t,d = ejφ

? is the optimized solution. To obtain this

solution, WeBEST-e (entry optimization) considers a feasible set of sequences as the initial

waveforms. Then, at each iteration, it selects xt,d as the variable and updates that with optimized

x?t,d, denoted by x(i+1)
t,d . This procedure is repeated for other entries and is undertaken until all the

entries are optimized at least once. After optimizing the MN th entry, the algorithm examines the

convergence metric for the objective function. If the stopping criterion is not met the algorithm

repeats the aforementioned steps.

B. Code vector optimization

One alternative approach to solve (7) and minimize u(X) is to consider the entire code

vector xt as the optimization variable. Let Φ , ∠X ∈ RM×N , Φ−t , ∠X−t ∈ R(M−1)×N and

ϕt , ∠xt ∈ RN be the phases corresponding to the matrices X, X−t and the vector variable xt

respectively. Hence, with respect to ϕt, the optimization problem is
min
ϕt

um(Φ−t) + uau(ϕt) + ucr(ϕt,Φ−t)

s.t. φt,n ∈ Ω∞.

(24)

To solve (24), one possible solution is to use GD framework, which is a first-order iterative

optimization algorithm for finding a local minimum of a differentiable function. In general,

the GD procedure starts with an initial solution (Φ(0)), then at ith iteration, each block (ϕt) is

updated by the following equation [41],

ϕ
(i+1)
t = ϕ

(i)
t + δ(i)∆ϕ

(i)
t (25)
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Input: Initial set of feasible sequences, X(0).
Initialization: i := 0.
Optimization:
1) while, ∆X(i+1) ,

∥∥∥X(i+1) −X(i)
∥∥∥
F
≤ ζ do

2) X(i+1) = X(i);
3) for t = 1, . . . ,M do
4) for d = 1, . . . , N do
5) Optimize xt,d:
a) with CP:

i) From Appendix C calculate the coefficients sk in (18);
ii) Find the roots of (18),

∑4
k=0 skz

k = 0 and save it as zk;
iii) Find the real critical points using (19), Ωu =

{
2 arctan (zk)|=(zk) = 0

}
;

iv) Derive the optimum phase using (20), φ? = arg minφ
{
u(φ)|φ ∈ Ωu

}
;

b) with DP:
i) Derive the optimum index of M -ary Phase Shift Keying (MPSK) alphabet using (22),

l′? = arg min
l=1,...,L

2
∑M

l=1
l 6=t

∑N−1
k=−N+1 |FL{atldk, ctldk}|p +

∑N−1
k=−N+1 |FL{attdk, cttdk, bttdk}|p;

ii) Derive the optimum phase using φ? = 2π(l′?−1)
L

;

6) Update x(i+1)
t,d = ejφ

?;
7) X(i+1) = X(i+1)|

xt,d=x
(i+1)
t,d

;
8) end for
9) end for

10) i := i+ 1;
11) end while
Output: X? = X(i+1).

Algorithm 1: :WeBEST-entry optimization framework

where, δ(i) and ∆ϕ
(i)
t are the step size (step length) and the search direction at ith itera-

tion, respectively. After updating all of the blocks, the phase matrix is updated by Φ(i+1) ,

[ϕ
(i+1)
1 , . . . ,ϕ

(i+1)
M ]T . In gradient descent method, the search direction is equal to the opposite

direction of the gradient i.e. ∆ϕ
(i)
t = −∇u(ϕ

(i)
t ). Note that, the convergence behavior of GD

methods is highly dependent on choosing the step size and the step direction. In order to achieve

the monotonic descent behavior in each step (u(ϕ
(i+1)
t ) ≤ u(ϕ

(i)
t ) ), backtracking line search is

used for choosing the step size, where it depends on two constants α and β with 0 < α < 0.5

and 0 < β < 1, indicated in Algorithm 2 [41].

Algorithm 3, called WeBEST-v shows the procedure of vector optimization of `p-norm min-

imization. In this algorithm, matrix ∇Φ(i) ∈ RM×N contains the gradient of objective function
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Input: ∆ϕ
(i)
t , α (0 < α < 0.5) and β (0 < β < 1).

Initialization: δ(i) := 1

1) while f(ϕ
(i)
t + δ(i)∆ϕ

(i)
t ) > f(ϕ

(i)
t ) + αs∇f(ϕ

(i)
t )∆ϕ

(i)
t

2) δ(i) := δ(i)β;
3) end while

Algorithm 2: : Backtracking line search

Input: X(0)

Initialization: i := 0, Φ(i) = ∠X(0).
1) while, ∆X(i+1) ,

∥∥∥X(i+1) −X(i)
∥∥∥
F
≤ ζ do

2) for t := 1 : M

3) ∆ϕ
(i)
t := −∇ϕt

u(ϕ
(i)
t );

4) obtain δ(i) using backtracking line search;
5) ϕ

(i+1)
t := ϕ

(i)
t + δ(i)∆ϕ

(i)
t ;

6) end for
7) i := i+ 1;
8) end while

Algorithm 3: : WeBEST-vector optimization framework

with respect to sequence phases at ith iteration, i.e., ∇Φ(i) , [∇ϕ1
u(ϕ

(i)
1 ), . . . ,∇ϕM

u(ϕ
(i)
M )]T .

This procedure will be continued until the algorithm meet the stopping criteria .

Algorithm 3 requires calculation of the gradients of ∇ϕt
u(ϕ

(i)
t ), which is obtained using the

following lemma.

Lemma 3.1: The gradient of ∇ϕt
u(ϕ

(i)
t ) is equal to,

∇ϕt
u(ϕ

(i)
t ) = 4={x∗t � ((ϑ2

tt � (xt ~ xt)) ~ xt)k+N−1}

+ 4
∑M

l=1
l 6=t
={x∗t � ((ϑ2

tl � (xl ~ xt)
r) ~ x∗l )k+N−1},

(26)

where, ϑtt , [ϑtt(−N + 1), . . . , ϑtt(N − 1)]T |ϑtt(k) , wk
√
µttk, µttk , p

2
|wkr(i)t,t (k)|p−2 and

ϑtl , [ϑtl(−N + 1), . . . , ϑtl(N − 1)]T |ϑtl(k) , wk
√
µtlk, µtlk , p

2
|wkr(i)t,l (k)|p−2.

proof: Since the third term in (4) is a constant, it does not affect the gradient calculation and it

can be removed. Beside, according to lemma A.3, the `1-norm in the second term (|wkrm,l(k)|)

is majorized by the following equation [42],

1

2
|wkr(i)m,l(k)|−1|wkrm,l(k)|2 − 1

2
|wkr(i)m,l(k)|. (27)

Substituting (27) with the |wkrm,l(k)| term in (4), becomes,

ū(wkrm,l(k)) , µmlk|wkrm,l(k)|2 + ςmlk, (28)
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where,
µmlk ,

p

2
|wkr(i)m,l(k)|p−2

ςmlk , ηmlk|wkr(i)m,l(k)|2 − 1

2
ψmlk|wkr(i)m,l(k)| − (p− 1)|wkr(i)m,l(k)|p,

(29)

Now we define ū(Φ) , um(Φ−t) + ūau(ϕt) + ūcr(ϕt,Φ−t), where,

ūau(ϕt) =
∑N−1

k=−N+1

(
µttk|wkrt,t(k)|2 + ςttk

)
=
∥∥%tt � (xt ~ xt)k

∥∥2
2

+
∑N−1

k=−N+1 ςttk, (30)

and,
ūcr(ϕt,Φt−1) = 2

∑M
l=1
l 6=t

∑N−1
k=−N+1

(
µtlk|wkrt,l(k)|2 + ςtlk

)
= 2

∑M
l=1
l 6=t

∥∥%tl � (xl ~ xt)k
∥∥2
2

+ 2
∑M

l=1
l 6=t

∑N−1
k=−N+1 ςtlk.

(31)

The second terms in (30) and (31) are constant and can be ignored. In this regard, it is shown

that [21],

∇ϕt

∥∥%tt � (xt ~ xt)k
∥∥2
2

= 4={x∗t � ((%2
tt � (xt ~ xt)) ~ xt)k+N−1} (32)

∇ϕt

∥∥%tl � (xl ~ xt)k
∥∥2
2

= 2={x∗t � ((%2
tl � (xl ~ xt)

r) ~ x∗l )k+N−1} (33)

Please note that, since ū(Φ) majorizes the |wkrm,l(k)| term of u(Φ), therefore according to

the MM properties the gradient of ū(Φ) is equal to u(Φ) at ϕt i.e. ∇ϕt
ū(Φ) = ∇ϕt

u(Φ).

Likewise, ū(Φ) is a majorizer function for f(Φ), thus, ∇ϕt
ū(Φ) = ∇ϕt

u(Φ) = ∇ϕt
f(Φ).

Therefore, considering the equations (32), (33), (30) and (31) readily the gradient in (26) is

obtained which completes the proof.

C. Convergence

The convergence of the proposed method can be discussed in two aspects, the convergence

of objective function and the convergence of the waveform set X. With regard to the objective

function, as u(X) > 0, therefore, this expression is also valid for the optimum solution of

WeBEST-e and WeBEST-v (u(X?) > 0). On the other hand, both WeBEST-e and WeBEST-v

minimize the objective function in each step leading to a monotonic decrease of the function

value. Since the function value is lower bounded, it can be argued that the algorithm converges

to a specific value. Particularly, if the algorithm starts with feasible X(0) we have,

u(X(0)) > · · · > u(X(i)) > · · · > u(X?) > 0,

The convergence of the argument requires additional conditions and its investigation is beyond

the scope of this paper. However, for the optimization problem considered in this paper, we

numerically observed that the argument converges as well as objective function.
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D. Computational Complexity

In this subsection we evaluate the computational complexity of WeBEST-e and WeBEST-v

Complexity of WeBEST-e: This algorithm needs to perform the following steps in each

iteration:

• Calculate the coefficient vn in (16): The maximum complexity of the coefficients are

belong to v−1, v0 and v1 (see Appendix B for details). Without loss of generality, we

consider ṽ−1 , 2
∑M

l=1
l 6=t

∑N−1
k=−N+1 ηtlka

∗
tldkctldk to obtain the computational complexity. As

can be seen, ṽ−1 needs to calculate the terms ηtlk, atldk and ctldk. Through these three terms,

ctldk is the most complex term (see (11) and (13) for details), which substantially is the cross-

correlation of tth and lth transmitters. Thus, calculating ctldk requires N log2(N) operations

due to using fast convolution [43]. In addition, calculating ṽ−1 needs MN summation.

Therefore ṽ−1 needs MN2 log2(N) operation in overall. Using a recursive equation, the

computational complexity can be reduced more.

• Solving the optimization problem (16): WeBEST-e needs finding the roots of 4 degree

polynomials4 in (18), which take 43 operations. In case of discrete phase constraint we

obtain (22) using two L-points FFT which each has L log2(L) operations.

• Optimizing all the entries of matrix X: To this end we need to repeat the two aforementioned

steps MN times.

Let us assume that K iterations are required for convergence of the algorithm. Therefore, the over-

all computational complexity of WeBEST-e is O(KMN(43 +MN2 log2(N))), for continuous

phase constraint, while under discrete phase constraint is O(KMN(L log2(L)+MN2 log2(N))).

Complexity of WeBEST-v: This algorithm needs to perform the following steps in each

iteration:

• Calculate the gradient of auto- and cross-correlation: The gradient in (26) is expressed in

terms of correlations; therefore the gradient needs N log2(N) operation due to using fast

convolution [21]. Since we need to calculate the gradient of auto-correlation for one time

and cross-correlation for M−1 times, therefore the overall computational complexity would

be MN log2(N).

4For finding the roots of polynomial we use “roots” function in MATLAB. This function is based on computing the eigenvalues

of the companion matrix. Thus the computational complexity of this method is O(k3), where k is the degree of the polynomial

[44], [45]
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• Obtain the step size: This step contains calculating the auto- and cross-correlation part

of objective functions i.e. fau(X) and fcr(X), which needs MN log2(N) operations. Lets

assume that this step needs S iteration to find the step size, therefore the complexity of this

step would be SMN log2(N).

• Optimizing all the entries of matrix X: To this end we need to repeat the two aforementioned

steps M times.

Let us assume that K iterations are required for convergence of the WeBEST-v. Therefore, the

overall computational complexity of WeBEST-v is O(KSM2N log2(N)).

IV. NUMERICAL RESULTS

In this section, we provide representative numerical examples to illustrate the effectiveness

of the proposed algorithmic framework. We consider ∆X(i+1) ,
∥∥∥X(i+1) −X(i)

∥∥∥
F
≤ ζ as the

stopping criterion of WeBEST-e and WeBEST-v, where ζ is the stopping threshold (ζ > 0). We

set ζ = 10−9 for all the following numerical examples. We further stop the algorithm if number

of iterations exceed 105. Also, we consider ε = 0.05 in (5). In this section, by L → ∞ we

denote a set of continuous phase sequences or a set of sequences with infinity alphabet sizes.

Besides, we use 10 log(.) to report the results based on decibel scale.

A. Convergence

Fig. 1 depicts the convergence time (behavior) of the proposed method. We consider a set

of random MPSK sequences (X0 ∈ CM×N ) with M = 4 transmitters, N = 64 code-length, and

L = 8 alphabet size, as the initial waveform set. For the initialization sequences, every code

entry is given by,

x(0)m,n = ej
2π(lm,n−1)

L , (34)

where lm,n is random integer variable uniformly distributed in [1, L]. Fig. 1a and 1b show the

objective function for p = 3 (f(X)) and p = 0.75 (u(X)) respectively. Observe that, due to the

convergence property of BSUM framework, in both cases the objective decreases monotonically.

Since for 0 < p ≤ 1 we incorporate ε in the objective function, the algorithms is not dealing

directly with `p-norm metric, the convergence of f(X) (`p-norm metric) is not monotonic. This

fact is shown in Fig. 1c. However, in case of 0 < p ≤ 1, f(X) mimics the monotonous

decreasing behavior of the smooth approximation function. This shows the accuracy of the
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Fig. 1: The convergence time of proposed method. (a) The `p-norm (f(X)) for p = 3, (b) the

approximation function (u(X)) for p = 0.75, (c) the `p-norm correspond to fig (b), and (d) the

argument (∆X(i)) (M = 4 and N = 64).

smooth approximation function. Fig. 1d shows the convergence of the argument when p = 3

and p = 0.75. In all the cases and considering the constant modulus constraint, the vector

optimization offers less run-time than entry optimization.

B. `2-norm (ISL) minimization

In this part, we evaluate the performance of proposed method when p = 2. In this case, the

proposed method minimizes the Integrated Sidelobe Level Ratio (ISLR) metric (ISLR , ISL
N2 )

where the lower bound in this case is calculated by 10 log(M(M − 1)) (dB) [30]. TABLE I

compares the average ISLR values of the proposed method with Multi-CAN [27], MM-Corr

[30], Binary Sequences seTs (BiST) [36] and the lower bound, when N = 64 for different

number of transmit antennas. Similar to the other methods, the proposed method meets the

lower bound under continuous phase constraint. Interestingly, using the proposed method even
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TABLE I: Comparison between the ISLR (dB) of the proposed method with other methods

(p = 2, N = 64).

M 2 4 6 8 9 10

Initial 5.92 11.91 15.55 18.05 19.20 19.97

Lower bound 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-e, L→∞ 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-v 3.01 10.79 14.77 17.48 18.57 19.54

Multi-CAN 3.01 10.79 14.77 17.48 18.57 19.54

MM-Corr 3.01 10.79 14.77 17.48 18.57 19.54

WeBEST-e, L = 8 3.25 10.82 14.78 17.48 18.57 19.54

BiST (θ = 0, L = 8) 3.26 10.82 14.79 17.48 18.57 19.54

TABLE II: The ISLR obtained by the proposed method under discrete phase constraint with

different length (p = 2, M = 4).

N 64 128 256 512 1024

L = 8 10.82 10.82 10.82 10.82 10.82

for alphabet size L = 8, the ISLR values of the optimized sequences are very close to the lower

bound.

By keeping M = 4 and L = 8, TABLE II shows the optimized ISLR values under discrete

phase constraint for different sequence lengths. Referring to the lower bound in the TABLE I,

we observe that the ISLR values of the optimized sequences are very close to the lower bound.

C. `p-norm minimization for p ≥ 2

To perform PSL minimization, we consider an increasing scheme for selection of p in several

steps. Precisely, we select p1, p2, . . ., pT , such that 2 ≤ p1 < p2 < · · · < pT <∞. We initialize

the algorithm with a set of random sequences and design the waveform with p = p1. Then we

select the optimized solution of `p1-norm as the initial waveform for `p2-norm minimization, and

so on. We repeat this procedure until we cover all of the pi values (i ∈ 1, . . . , T ). Finally, we

choose the designed waveform with p = pT as the solution for PSL minimization.

Fig. 2a shows the performance of PSL minimization of the proposed method based on

aforementioned approach for p ∈ {2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128}. In this figure, we initialize
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Fig. 2: The PSL behavior of the proposed method with the increasing scheme of value

p ∈ {2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128} and comparing the PSL value with PSL-BSUM, BiST

and Welch lower bound.

both Algorithm 3 and Algorithm 1 with the same set of random MPSK sequences, with L = 8.

It can be observed from Fig. 2a that the PSL decreases further when p increases. In Fig. 2b, we fix

the number of transmit antennas (M = 4) and report the PSL values of the optimized sequences

at different sequence lengths. Vice versa in Fig. 2c, we fix the sequence length to N = 64 and

report the PSL values of the optimized sequences for different number of transmitters. In both

figures we compare the performance of the proposed method with BiST [36] (θ = 1), BSUM-

PSL [39], and the available lower bound for PSL (Welch lower bound), which is given by [46],

[47],

BPSL =

√
M − 1

2MN −M − 1
. (35)

In this figure, we consider Hadamard Code as an initial waveform for all the algorithms. Further,

for a fair comparison, we drop the spectral constraint in BSUM-PSL. It can be observed that

considering the discrete phase constraint, WeBEST-e outperforms the BiST method (L = 8). In

the case of continuous phase constraint, the performance of WeBEST-v and WeBEST-e (L→∞)

are almost the same and they outperform the BSUM-PSL. Indeed, WeBEST-v and WeBEST-e

(L → ∞) fill the available gap between PSL values of the state-of-the-art and Welch lower

bound.

D. `p-norm minimization for 0 < p ≤ 1

In this part, inverse to PSL minimization we consider a decreasing scheme for the values of p,

i. e., 1 ≥ p1 > p2 > · · · > pT ′ > 0. We initialize the algorithm with a set of random sequences
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and design the waveform with p = p1. Then we select the optimized solution of `p1-norm as the

initial waveform for `p2-norm minimization, and so on. We repeat this procedure until we cover

all of the pi values (i ∈ 1, . . . , T ′). Finally, we choose the designed waveform with p = pT ′ as

the solution for sparse auto and cross-correlation.

To identify the sparsity, we consider a threshold for the lags of auto- and cross-correlation

sidelobes. If the absolute value of the lags is less than that the threshold, we assume that the

lags is zero, and count it as a sparse lag. We choose 1 as the threshold, since |rm,l(N − 1)| =

|xm,Nx∗l,1| = 1, is the lowest possible PSL value for unimodular sequences [48]. Let Ns be the

number of lags of auto- and cross-correlations whose absolute value is less than 1. We define

the sparsity value as,

Sp =
Ns

M2(2N − 1)
,

where Sp ∈ [0, 1], and the denominator (M2(2N − 1)) is the total number of lags of auto and

cross-correlations. By this definition, if Sp → 1 means that the auto- and cross-correlation of set

of sequences are sparse, and vice versa if Sp → 0 means that the auto- and cross-correlation of

the set of sequences are not sparse.

Fig. 3a shows the sparsity behavior of the optimized sequences with decreasing scheme of

p (p ∈ {1, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, }). As can be seen, by decreasing the value of p we

obtain higher sparsity. In Fig. 3a, we fix the number of transmit antennas (M = 4) and report the

sparsity values of the optimized sequences at different sequence lengths. Vice versa in Fig. 3c,

we fix the sequence length to N = 64 and report the sparsity values of the optimized sequences

for different number of transmitters. In these figures, we use Hadamard code as the initial set

of sequences. Comparing with BiST (θ = 0) [36] and Multi-CAN, Fig. 3b and Fig. 3c show a

higher sparsity for the proposed method.

E. The impact of weighting

In this part, we evaluate the impact of the weight parameter (w) on the auto- and cross-

correlation sidelobes of the optimized sequences. Fig. 4 shows the impact of w for different

values of p when M = 2, N = 256. In this figure, we consider different regions for the desired

lags, precisely we set V = [−90, 90], V = [−64, 64] and V = [−38, 38]. It can be observed from

Fig. 4 that nulls are deeper if the interval of V is smaller.

In Fig. 5, we compare the performance of the proposed method with MM-WeCorr [30] and

Multi-WeCAN [27]. In this figure, we assume that p = 2, M = 2, N = 512, and we consider
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Fig. 4: The impact of weighting in WeBEST-e with different values of p (L→∞, M = 2 and

N = 256).

V = [−51, 51]. As can be seen, the proposed method outperforms the Multi-WeCAN method.

Note that, the vector optimization approach has similar performance comparing to MM-WeCorr.

However, the entry optimization approach offers lower sidelobes in the lag region V = [−51, 51]

when compared to MM-WeCorr.

F. Computational Time

In this subsection, we assess the run-time of WeBEST and compare it with Multi-WeCAN and

MM-WeCorr. In this regard, we report the computational time using a desktop PC with Intel (R)

Core (TM) i9-9900K CPU @ 3.60GHz with installed memory (RAM) 64.00 GB. Fig. 6 shows

the computational time of WeBEST, Multi-WeCAN and MM-WeCorr with p = 2, M = 2,

l = 64 at different sequence lengths. In this figure, we assume that the desired lags are located

at V = [−b0.1Ne, b0.1Ne]. For fair comparison, we assume ∆X = 10−3 as stopping threshold

for all methods.
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Fig. 5: Comparison of the performance of the weighted ISL minimization of the proposed method

with MM-WeCorr and Multi-WECAN unde discrete phase, entry and vector optimization (p = 2,

M = 2 and N = 512).
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Fig. 6: Comparison of the run-time of WeBEST with other methods. ( p = 2, M = 2 and

L = 64)

V. PERFORMANCE COMPARISON IN SISO CASE

Fig. 7 shows the performance of WeBEST-v and GD-based method [21] in terms of PSL, for

different values of p and different initial waveforms, when M = 1. In this figure, we consider

Golomb and random phase sequences of length N = 128 as initial waveforms. Besides, since

the GD-based method [21] just admit the even values of p, we consider an increasing scheme

of p in the set p = {2, 4, 6, 8, 10, 12} (from the lowest to the largest value of p), while for

WeBEST-v, we consider the set p = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The termination threshold

is ζ = 10−9 for both methods. It can be observed from the figure that regardless of the initial
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Fig. 8: The comparison of the PSL of WeBEST-v and GD-based method with different sequence

length (M = 1).

waveform, WeBEST-v offers better PSL in comparison to GD-based method. Observe that, the

GD-based method, does not solve the problem for odd values of p, while WeBEST-v solves the

`p-norm problem in these points. Probably, solving the `p-norm at odd points caused to obtain

a better performance in comparison with GD-based method.

TABLE III compares the convergence time of WeBEST-v and GD-based method. In this table

the simulation setup is similar to Fig. 8. It can be observed from the table that the proposed
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TABLE III: Convergence time (sec) of WeBEST-v and GD-based method (M = 1).

N 8 16 32 64 128 256

WeBEST-v (Golomb) 0.7 1.4 4.3 7.2 25 78

GD (Golomb) 212 300 204 400 559 379

WeBEST-v (Random) 1.2 1.5 3.2 7.8 62 50

GD (Random) 141 39 207 415 1020 970

method offers lower convergence time in comparison with GD-based method.

VI. SPARSE AUTO- AND CROSS-CORRELATION

In this part, we show how we can design waveform with sparse auto- and cross-correlation

sidelobes using the `p→0 metric. To this end, Fig. 9 shows the range-Doppler profile for the cases

when `p→0 and `32 was considered as the objective function for the waveform design problem

under discrete phase constraint. In this figure, we assume N = 1024, M = 3, and alphabet size

L = 32. First, we consider three targets located at [40, 50, 60]T meters distance to the radar,

at the same velocity 30km/h, angle 30o and similar Radar Cross Section (RCS) 30m2. In this

case, both waveforms have almost equivalent performance in terms of possibility of detecting

targets. Then, we consider distributed targets are located from 50 to 55 meter distance to the

radar. In this case, waveforms which are optimized using `0-norm can identify more targets.

This is due to the fact that, because of sparsity in auto- and cross-correlation functions of the

optimized waveforms by `0-norm, less number of targets are masked in this case in comparison

to `32-norm.

VII. CONCLUSION

In this paper, we considered the `p-norm of auto- and cross-correlation functions of a set of

sequences as the objective function and optimized the sequences under unimodular constraint

using BSUM framework. This problem formulation, provided further the flexibility for selecting

p and adapting waveforms based on the environmental conditions, a key requirement for the

emerging cognitive radar systems. To tackle the problem, in every iteration of BSUM algorithm,

we utilized a local approximation function to minimize the objective function. Specifically, we

introduced entry- and vector-based solutions where in the former we obtain critical points and



24

45 50 55 60 65

Range (m)

-100

-50

0

50

100

150

S
p

ee
d

 (
k

m
/h

)

(a) `p→0-norm.

45 50 55 60 65

Range (m)

-100

-50

0

50

100

150

S
p
ee

d
 (

k
m

/h
)

(b) `32-norm.

45 50 55 60 65

Range (m)

-100

-50

0

50

100

150

S
p

ee
d

 (
k

m
/h

)

7 Targets 

(c) `p→0-norm.

45 50 55 60 65

Range (m)

-100

-50

0

50

100

150

S
p

ee
d

 (
k

m
/h

)

1 Target 

(d) `32-norm.

Fig. 9: Range-Doppler profile of `p→0 and `32-norm with point and continuous targets (M = 3,

N = 1024 and L = 32).

in the latter, we obtain the gradient to find the optimized solution. We further used FFT-

based method for designing discrete phase sequences. Simulation results have illustrated the

monotonicity of the proposed framework in minimizing the objective function. Besides, the

proposed framework meets the lower bound in case of ISL minimization, and outperforms the

counterparts in terms of PSL, `0-norm and computational time values.
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APPENDIX A

The BSUM algorithm includes algorithms that successively optimize particular upper-bounds

or local approximation functions of the original objectives in a block by block manner [49]–[54].
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Let X , [xT1 ; . . . ; xTM ] ∈ CM×N , where xm,m = 1, . . . ,M is the transmitted signal from mth

transmitter. The following optimization problem,
min
x

f(x1,x2, . . . ,xM),

s.t. xm ∈ Ψm, m = 1, . . . ,M.

(36)

can be iteratively obtained using BSUM by solving,
min
xm

um(xm; x
(i)
−m)

s.t. xm ∈ Ψm, m = 1, 2, . . . ,M

(37)

where um is local approximation of the objective function and x
(i)
−m represent the variable

blocks that are kept fixed in the current iteration. If at some point, the objective is not

decreasing at every coordinate direction, then we have obtained the optimum X? ≡ X(i+1) ,

[x
(i+1)
1

T
; x

(i+1)
2

T
; . . . ; x

(i+1)
M

T
]. The above framework is rather general, and leaves us the freedom

of how to choose the index m at i-th iteration (see [50], [55], [56] for more details).

The local approximation functions play an important role to simplify and efficiently solve the

optimization problem. In the following, we introduce some local approximation functions which

reduce the weighted `p-norm problem of (3) to simpler quadratic forms for 0 < p ≤ 1 and p ≥ 2.

1) local approximation Function for p ≥ 2: In this case, one choice for local approximation

function is using majorization function [50]. Let u(x) be a majorization (minorization) function of

f(x) and x(i) be the variable at i(th) iteration. This function must satisfy the following conditions

[57],

u(x(i)) = f(x(i)); ∀x(i) ∈ X (38a)

u(x) ≥ f(x) (minorize: u(x) ≤ f(x)); ∀x,∈ X (38b)

∇u(x(i)) = ∇f(x(i)); ∀x(i) ∈ X (38c)

u(x) is continuous ∀x,∈ X . (38d)

Lemma A.1: Let f(x) = |x|p and |x| ∈ [0, τ ] be a real-valued function with p ≥ 2. Then

u(x) = η|x|2 + ψ|x| + ν is a majorization function of f(x) where, η = τp+(p−1)|x(i)|p−pτ |x(i)|p−1

(τ−x(i))2 ,

ψ = p|x(i)|p−1 − 2η|x(i)| and ν = η|x(i)|2 − (p− 1)|x(i)|p.

proof A.2: See [17].
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Therefore when p ≥ 2, |wkrm,l(k)|p is majorized by (4) where,

ηmlk ,
τ p + (p− 1)|wkr(i)m,l(k)|p − pτ |wkr(i)m,l(k)|p−1

(τ − |wkr(i)m,l(k)|)2
,

ψmlk , p|wkr(i)m,l(k)|p−1 − 2ηmlk|wkr(i)m,l(k)|,

νmlk , ηmlk|wkr(i)m,l(k)|2 − (p− 1)|wkr(i)m,l(k)|p,

(39)

and

τ ,
(∑N−1

−N−1 |wkr
(i)
m,l(k)|p

) 1
p
. (40)

2) local approximation Function for 0 < p ≤ 1: f(X)|p→0 denotes the number of non-zero

elements of auto- and cross-correlation.

Lemma A.3: Let f(x) = |x|p be a real-valued function with 0 < p ≤ 1. The function f(x) is

majorized by η|x|2 + ν where, η and ν are determined by the following two conditions,

f(x(i)) = η(x(i))2 + ν, f ′(x(i)) = 2ηx(i)

proof: See [42].

In this regard |wkrm,l(k)|p with 0 < p ≤ 1 is majorized with the following simpler quadratic

function,

u(wkrm,l(k)) , ηmlk|wkrm,l(k)|2 + νmlk, (41)

where, the coefficients ηmlk and νmlk is obtained by solving the following system of equation

[42],
f(wkr

(i)
m,l(k)) =u(wkr

(i)
m,l(k))

∂f(wkr
(i)
m,l(k))

∂|wkr(i)m,l(k)|
=2ηmlk|wkr(i)m,l(k)|,

(42)

resulting in,
νmlk = f(wkr

(i)
m,l(k))− ηmlk|wkr(i)m,l(k)|2

ηmlk =
∂f(wkr

(i)
m,l(k))

∂|wkr(i)m,l(k)|
× 1

2|wkr(i)m,l(k)|
.

(43)

According to (43) the quadratic functions in (41), (43) are non-differentiable and singular when

wkrm,l(k) = 0. A possible solution is to incorporate a small ε > 0 that avoids this singularity

issue and use the smooth approximation functions f ε(wkrm,l(k)) as follow [42],

f ε(wkrm,l(k)) =


p

2
εp−2|wkrm,l(k)|2 |wkrm,l(k)| 6 ε

|wkrm,l(k)|p − (1− 1

p
)εp |wkrm,l(k)| > ε

(44)
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Substituting (44) in (43) we have,

ηmlk =


pε(p−2)

2
|wkrm,l(k)| 6 ε

p|wkrm,l(k)|(p−2)

2
|wkrm,l(k)| > ε

(45)

APPENDIX B

Substituting (14) in (4) and expanding u(wkrt,t(k, φ)) and u(wkrt,l(k, φ)) for 0 < p ≤ 1, we

have,

u(wkrt,t(k, φ)) =
∑2

n=−2 v̄ne
jnφ, u(wkrt,l(k, φ)) =

∑1
n=−1 ṽne

jnφ, (46)

where,
v̄−2 ,

∑N−1
k=−N+1 ηttk(a∗ttdkbttdk), v̄−1 ,

∑N−1
k=−N+1 ηttk(a∗ttdkcttdk + c∗ttdkbttdk)

v̄0 ,
∑N−1
k=−N+1(ηttk(|cttdk|2 + |attdk|2 + |bttdk|2) + νttk), v̄1 , v̄∗−1, v̄2 , v̄∗−2

ṽ−1 , 2
∑M
l=1
l 6=t

∑N−1
k=−N+1 ηtlka

∗
tldkctldk, ṽ0 , 2

∑M
l=1
l 6=t

∑N−1
k=−N+1(ηtlk(|ctldk|2 + |atldk|2) + νtlk), ṽ1 , ṽ∗−1,

For p ≥ 2, (4) is majorized by [17],

u(wkrm,l(k)) , ηmlk|wkrm,l(k)|2 + ψmlk<

w∗kr∗m,l(k)
wkr

(i)
m,l(k)

|wkr(i)m,l(k)|

+ νmlk (47)

Like wise, substituting (14) in (47) and expanding u(wkrt,t(k, φ)) and u(wkrt,l(k, φ)) for p ≥ 2,

we have,

u(wkrt,t(k, φ)) =
∑2

n=−2 ūne
jnφ + <

{∑1
n=−1 ûne

jnφ
}
,

u(wkrt,l(k, φ)) =
∑1

n=−1 ũne
jnφ + <

{∑1
n=−1 ǔne

jnφ
}
,

Defining ψ′ttk ,
ψttk

|wkr
(i)
t,t (k)|

and ψ′tlk ,
ψtlk

|wkr
(i)
t,l (k)|

, it is shown that,

ū−2 ,
∑N−1
k=−N+1 ηttka

∗
ttdkbttdk, ū−1 ,

∑N−1
k=−N+1 ηttk(a∗ttdkcttdk + c∗ttdkbttdk),

ū0 ,
∑N−1
k=−N+1(ηttk(|cttdk|2 + |attdk|2 + |bttdk|2) + νttk), ū1 , ū∗−1, ū2 , ū∗−2,

û−1 ,
∑N−1
k=−N+1 ψ

′
ttk(|cttdk|2 + c∗ttdkattdke

jφ(i)

+ c∗ttdkbttdke
−jφ(i)

)

û0 ,
∑N−1
k=−N+1 ψ

′
ttk(|bttdk|2e−jφ

(i)

+ b∗ttdkattdke
jφ(i)

+ b∗ttdkcttdk)

û1 ,
∑N−1
k=−N+1 ψ

′
ttk(|attdk|2ejφ

(i)

+ a∗ttdkbttdke
−jφ(i)

+ a∗ttdkcttdk)

ũ−1 , 2
∑M
l=1
l 6=t

∑N−1
k=−N+1 ηtlkctldka

∗
tldk, ũ0 , 2

∑M
l=1
l 6=t

∑N−1
k=−N+1(ηtlk(|ctldk|2 + |atldk|2) + νtldk)), ũ1 , ũ∗−1

ǔ−1 , 2
∑M
l=1
l 6=t

∑N−1
k=−N+1 ψ

′
tlk(|ctldk|2 + c∗tldkatldke

jφ(i)

), ǔ0 , 2
∑M
l=1
l 6=t

∑N−1
k=−N+1 ψ

′
tlk(|ctldk|2 + c∗tldkatldke

jφ(i)

)
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ǔ1 , 2
∑M
l=1
l 6=t

∑N−1
k=−N+1 ψ

′
tlk(|atldk|2ejφ

(i)

+ a∗tldkctldk)

In this regard, readily it is shown that the problem (15) is written as (16), where the coefficients

are,

vn;∈{−2,2} ,


v̄n 0 < p ≤ 1

ūn p ≥ 2
, vn;∈{−1,0,1} ,


v̄n + ṽn 0 < p ≤ 1

ūn + ũn + ûn + ǔn p ≥ 2
(48)

APPENDIX C

Substituting ejnφ = cos (nφ) + j sin (nφ) in u′(φ) and separating the real and imaginary part,

u′(φ) becomes,

u′(φ) = ξ0 cos2(φ) + ξ1 sin2(φ) + ξ2 sin(φ) cos(φ) + ξ3 cos(φ) + ξ4 sin(φ) (49)

where, ξ0 , 2={v−2 − v2}, ξ1 , 2={v2 − v−2}, ξ2 , −4<{v2 + v−2}, ξ3 , ={v−1 − v1}

and ξ4 , −<{v−1 + v1}. Using the change variable z , tan(φ
2
) and substituting cos(φ) =

(1− z2)/(1 + z2), sin(φ) = 2z/(1 + z2) in u′(φ), it is written as, u′(z) =
∑4
k=0 skz

k

(1+z2)2
, where,

s0 , ξ0 + ξ3, s1 , 2(ξ2 + ξ4), s2 , 2(2ξ1 − ξ0), s3 , 2(ξ4 − ξ2), s4 , ξ0 − ξ3 (50)

APPENDIX D

Let assume that l′ = {1, 2, . . . , L} be the indices of alphabet ΩL. Therefore the objective

function is written as,

f(l′) = f(X−t) + 2
∑M

l=1
l 6=t

∑N−1
k=−N+1 |atldk + ctldke

−j2π l
′−1
L |p

+
∑N−1

k=−N+1 |attdk + cttdke
−j2π l

′−1
L + bttdke

−j4π l
′−1
L |p

(51)

Let assume that y ∈ CN be a vector and FL{y} ,
∑N

n=1 y(n)ej2π
(n−1)(l′−1)

L be the L point DFT

operator of y. Therefore, it can be shown that all the possible values of atldk + ctldke
−j2π l

′−1
L and

attdk + cttdke
−j2π l

′−1
L + bttdke

−j4π l
′−1
L for l′ = {1, 2, . . . , L}, are obtained by FL{atldk, ctldk} and

FL{attdk, cttdk, bttdk} respectively. Therefore, the optimum index is obtained as (22).
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