
Compensating Power Amplifier Distortions on
Radar Signals via Waveform Design

Ehsan Raei, Mohammad Alaee-Kerahroodi, Bhavani Shankar M. R., Björn Ottersten
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg

Email: {ehsan.raei, mohammad.alaee, bhavani.shankar, bjorn.ottersten}@uni.lu

Abstract—This paper aims to study the distortion effect of
Power Amplifiers (PAs) on radar waveforms in terms of Inte-
grated Sidelobe Level in Single Input and Single Output (SISO)
radar systems. To this end, we consider Memory Polynomial
(MP) model as behavior of the PA which considers both non-
linearity and memory distortions. Then, we consider minimizing
the auto-correlation of the PA output in the baseband as a design
metric for compensating the distortion effect of the PA. In this
regard, we proposed an algorithm based on Coordinate Descent
(CD) method to design an M-ary Phase Shift Keying (MPSK)
waveform, which is a discrete phase waveform. Finally, in the
numerical results, we evaluate the performance of the proposed
method and compare it with Digital Predistortion (DPD) method
as a conventional approach for compensating the distortion effect
of PA.

Index Terms—Waveform Design, Power Amplifier (PA), Mem-
ory Polynomials, Optimization, Coordinate Descent (CD), M-ary
Phase Shift Keying (MPSK)

I. INTRODUCTION

Waveforms play an important role in the behavior and
performance of radar and communication systems, and their
design has gotten a lot of attention in order to improve the
performance of radar and communication systems [1]. In radar
systems, a waveform with a low auto-correlation sidelobes is
used to avoid masking weak targets in the range sidelobes of
a strong return [2], and also to mitigate the harmful effects
of distributed clutter returns near the target of interest [3].
Low auto-correlation sidelobes are desired in communication
systems for synchronization and to reduce multi-access inter-
ference [1]. On the other hand low cross-correlation level is
desired to obtain orthogonality in Code-Division Multiple Ac-
cess (CDMA) Multiple-Input Multiple-Output (MIMO) radar
systems [4]–[6]. In general, the most common metrics for
designing a waveform with good sidelobes level are Integrated
Sidelobe Level (ISL) and Peak Sidelobe Level (PSL) [2]. In
this regard, several constant modulus waveforms are known
which have low ISL/PSL, including, Barker, Linear Frequency
Modulation (LFM), Frank, and Golomb sequences.

Recently, radar technology has advanced significantly in
antenna design, Radio Frequency (RF) transceivers, and signal
processing techniques, as part of an ongoing revolution with
significant momentum. However, the destructive effects of
Power Amplifier (PA)s on transmit waveforms are unavoidable
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and serve as a source of error generation for a variety of
systems.

Conceptually, a PA is an active electronic device that
provides an amplified and undistorted version of its low-
power RF input waveform at its output. In other words PAs
should act as a wideband and linear system. However, the PAs
contain non-idealities that can cause performance degradation
of the systems they drive when deployed in the real world
[7], [8]. Such distortions can significantly impair the sys-
tem’s expected performance, particularly in radar applications
involving spectrum-sharing strategies to enable coexistence
between radar and other telecommunication systems operating
in the same frequency band. Indeed, out-of-band spurious
components have the potential to degrade the performance of
systems operating in frequency bands adjacent to the radar’s.
Furthermore, if the designed radar waveform includes notches
in the frequency spectrum, in-band distortion could seriously
compromise the depth of the nulls, resulting in spectral com-
patibility issues with overlaid systems. [9], [10]. This non-
ideality behavior is more intensive when we try to obtain
higher output power from PAs, especially near the saturation
region.

In order to compensate this non-idialities, we need to
model the PA behavior properly. In general, the non-ideality
behavior of PAs is modelled into memory-less (non-linearity)
and considering memory effect, respectively.

A. Memory-less distortion models

These models assume that the PA is only dependent on
the instant input, i.e. the PA output is independent of the
previous input samples. These models usually express the non-
ideality output of a PA as a non-linear function of its input.
Fig. 1 shows the non-linearity behavior of a PA. Based on
this figure, the PA curve is linear when the input power is
between a Sensitivity level and IP1 dB value. Beyond that,
by increasing the input level, the output level will be entered
into the non-linear region and converges to a saturation power.
This effect is usually described by the amplitude and phase
transfer characteristic of the PA. The first and the latter are
often referred to Amplitude Modulation/Amplitude Modula-
tion (AM/AM) and Amplitude Modulation/Phase Modulation
(AM/PM) conversion of the PA respectively. There are several
models to describe the non-linearity behavior of PAs including,
cubic polynomial, Saleh, Ghorbani and Rapp models, just to
list a few [11]–[13].



Fig. 1: The non-linearity behavior of PA [14].

B. Non-linearity with memory distortion models

These models not only consider the instant effect of the
input signal but also consider the effect of previous samples in
the output of PAs. There are some models to describe the non-
linearity with memory in PA, such as Volterra and Memory
Polynomial (MP) models [9], [10].

C. Digital Predistortion

To mitigate this degradation, linearization algorithms in-
cluding Digital Pre-Distortion (DPD) can be applied as part
of the transmitter or receiver chain. DPD is a cost-effective
linearization technique that aims to provide improved linearity,
better efficiency, and take full advantage of PAs. In general,
DPD applies inverse distortion, at the input signal of the PA
to cancel the distortion generated by the PA. DPD algorithms
aim to preemptively distort the waveform to be transmitted to
counter the nonlinear effects of the PA. This requires knowl-
edge about the PA characteristics accurately with effective
implementation for successful DPD functioning.

D. Contribution

Best of our knowledge, no study has been done to evaluate
the impact of PA distortion on sidelobes of radar waveform. In
this paper, via waveform design, we consider compensating the
distortion effect of PA in Single-Input Single-Output (SISO)
radar systems. In this regard, we consider the MP model
to estimate the behavior of PA and then design an M -ary
Phase Shift Keying (MPSK) waveform to obtain a low ISL
for the PA output. To optimize the waveform, we propose
an algorithm based Coordinate Descent (CD) under discrete
phase constraint. The optimization of the waveform also leads
to a significant reduction in the out-of-band emission. This
results in efficient spectrum utilization and enhances radar and
communication operations.

E. Paper Organization

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate an optimization

problem to design a waveform for compensating the harmful
effect of PA distortion. The CD framework is developed in
Section III to solve the problem efficiently. Section IV provides
numerical experiments to evaluate the performance of the
proposed method.

F. Notations

This paper uses lower-case and upper-case boldface for
vectors (a) and matrices (A) respectively. The set of complex
numbers, transpose, conjugate transpose, Frobenius norm, and
absolute value are denoted by C, (.)T , (.)H , ∥.∥F and |.|
symbols respectively. The letter j represents the imaginary
unit (i.e., j =

√
−1), while the letter (i) is used as a step of

a procedure. Finally, ⊛ denotes cross-correlation operator.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let x ∈ CN be a base-band transmitted waveform in SISO
radar system with length of N as follow:

x = [x1, x2, . . . , xN ]T ∈ CN (1)

Let us assume that y ∈ CN be the PA output when we
feed it with the waveform x. In this case considering the MP
model with non-linearity order of K and memory depth of M ,
the nth sample of PA output can be written as the following
equation [10]:

y(n) =

Q−1∑
q=0

M−1∑
m=0

aq,mx(n−m)|x(n−m)|q. (2)

In (2), aq,m are the coefficient of MP model and depend on
temperature, input power and frequency of PA.

In order to compensate for the distortion effect of PA, DPD
is one of the cost-effective linearization techniques. It features
a linearization capability to preserve overall efficiency, and it
takes full advantage of advances in digital signal processors
and A/D converters. The technique adds an expanding non-
linearity in the baseband that complements the compressing
characteristic of the RF PA. Ideally, the cascade of the pre-
distorter and the power amplifier becomes linear and a constant
gain amplifies the original input. With the pre-distorter, the
PAs can be utilized up to its saturation point while maintaining
good linearity. In general, the DPD can be seen as an “inverse”
of the PA. The DPD algorithm needs to model the PA behavior
accurately and efficiently for successful DPD deployment [7],
[8].

However, in this paper, we are interested in compensating
the PA distortion by deploying a waveform design technique.
We consider minimizing the auto-correlation sidelobes of PA
output, i.e. y = [y1, . . . , yN ]T ∈ CN . The aperiodic auto-
correlation of y is defined as:

r(l) ≜
N−l∑
n=1

yny
∗
(n+l), (3)

where l ∈ {−N+1, . . . , N−1} is the lag of cross-correlation.
The zero-lag of auto-correlation represents the peak of the



matched filter output and contains the energy of the sequence
i.e. r(0) = yHy, while the other lags (l ̸= 0) are referred
to the sidelobes. Thus, the range-ISL of waveform y can be
expressed by [15]:

ISL = f(x) ≜
N−1∑

l=−N+1

|r(l)|2 − |r(0)|2 =∥y ⊛ y∥22 − yHy

(4)
Please note that the MP coefficients are unknown and they

need to be estimated. To this end, in the first step a known
input signal is given to the PA as input then the output
is measured. Then with the known input and the measured
output, the coefficients can be estimated by Least Square (LS)
criterion [7], [8]. Let āq,m be the estimated MP coefficients
of PA. We are interested in designing a waveform with good
ISL of PA output (y). In this regard, we consider solving the
following optimization problem:

min
X

∥y ⊛ y∥22 − yHy

s.t. yn =

Q−1∑
q=0

M−1∑
m=0

āq,mx(n−m)|x(n−m)|k

s.t. xn ∈ XK , ∀n ∈ {1, . . . , N}

(5)

where XK indicates the discrete phase (MPSK) sequence
with K alphabet size. More precisely:

XK = {ejϕ|ϕ ∈ ΩK}; ΩL ≜

{
0,

2π

K
. . . ,

2π(K − 1)

K

}
.

(6)
Problem (5) is a multi-variable, non-convex and NP-hard

optimization problem. In the following, we proposed a CD-
based method to obtain a local optimum solution.

III. PROPOSED METHOD

To tackle Problem (5), instead of designing the entire vector
x, we consider designing its entries consecutively. CD frame-
work enables such an optimization by assuming one entry of
the code vector x ∈ CN as the variable and keeping the others
fixed. Subsequently, by examining all possible alphabet of
MPSK for the chosen variable, we obtain all the critical points
of the objective function with respect to that variable, and then
we update that by selecting the alphabet which leads to the best
ISL [2]. We repeat this procedure to update the other entries
until we meet the convergence criterion. There are several
rules to choose the coordinates to update at each iteration (see
[16] for more details). In the following, we enumerate some
updating rules:

• Randomized: Randomly select some coordinate to up-
date (sample with replacement), i.e., uniformly randomly
choose n at each iteration;

• Cyclic: Run all coordinates in cyclic order, n = 1 →
2 . . . → N → 1 → . . ., i.e., iterate over these N different
xn;

• Greedy (called also Maximum Block Improvement
(MBI) or Gauss-Southwell) [17]: Evaluate the objective

value by making update to each xn separately and choose
the best one;

• Parallel (Jacobi style): Parallelly update every n at each
iteration.

It is worth noting that the greedy selection rule could be costly
with a large number of blocks but has faster convergence
than randomized/cyclic selection of the variables [18]. Also,
we should be careful when using the parallel update rule.
In particular, it could happen that updating either xn or xm

(m = 1, . . . , N ) will decrease the objective, however, updating
both xn; xm will cause an increase in the objective.

In this paper, we consider using the cyclic rule for updating
the variables. To illustrate CD framework let us assume that
xd is the dth transmitted pulse (d = 1, . . . , N ) and is the only
variable at ith iteration, while the other N−1 entries are fixed;
these are stacked into the x

(i)
(−d) vector as,

x
(i)
(−d) = [x

(i)
1 , . . . , x

(i)
(d−1), x

(i−1)
(d+1), . . . , x

(i)−1
N ]T ∈ CN−1.

(7)
where the superscripts (i) and (i − 1) show the updated and
non-updated entries at ith iteration. The design Problem (5)
with respect to the variable xd can be expressed as,min

xd

f
(
xd,x

(i)
(−d)

)
s.t. xd ∈ XL

, (8)

which is still a non-convex constrained optimization problem;
however, unlike the earlier formulation, it involves only one
variable. Towards solving this, we calculate ISL for each
possible alphabet of xd and choose the one that results in the
best minimum ISL. In the next step, we perform this procedure
for the next pulse (x(d+1)) and the process is repeated till all
pulses are optimized at least once. This optimization procedure
is shown in (9) for vector x:

x
(i)
d = argmin

xd

f
(
xd,x

(i)
(−d)

)
, ∀d ∈ {1, . . . , N} (9)

where x
(i)
d denotes the optimum value of xd at the ith iteration

of the optimization procedure. Therefore the optimized vector
x with respect to dth entry at ith iteration can be obtained by:

x
(i)
(d) = [x

(i)
1 , . . . , x

(i)
(d−1), x

(i)
d , x

(i−1)
(d+1), . . . , x

(i−1)
N ]T ∈ CN .

(10)
Based on the aforementioned discussion, we propose CD

framework waveform design to derive the optimum xd un-
der discrete phase constraint. The summary of the proposed
method is given by Algorithm 1. As can be seen, the algorithm
is initialized with waveform x(0) and matrix Ā where Ā ∈
CM×Q is the estimated MP coefficients matrix of PA, where
its entries consist of āq,m. Then the algorithm chooses the
dth entry and calculates the objective value for each alphabet
and saves it in vector v. Since (5) is a discrete optimization
problem v contains the critical points of the problem with
respect to xd. Thus, the optimum solution can be obtained by
lines 9) and 10) of the algorithm. Algorithm 1 optimizes the
vector x entry by entry until all N pulses become optimized
at least once. After optimizing the N th pulse, the algorithm



Algorithm 1 : Waveform design for compensating PA distor-
tion.
Input: x(0) ∈ CN and Ā ∈ CQ×M .
Initialization: i := 0.
Optimization:

1) i = i+ 1;
2) x(i) = x(i−1);
3) for d = 1, . . . , N do
4) v = 0K ;
5) for k = 1, . . . ,K do
6) x

(i)
d = ej

2π(k−1)
K ;

7) vk = f
(
x
(i)
(d)

)
; using (4)

8) end for
9) k⋆ = argmink{v};

10) x
(i)
d = ej

2π(k⋆−1)
K ;

11) end for
12) if

∥∥∥x(i) − x(i−1)
∥∥∥ < ζ

13) Stop;
14) else
15) go to step 1);

Output: x⋆ = x(i).

examines the convergence metric. The algorithm repeats the
aforementioned steps if the stopping criterion is not met.
We consider

∥∥∥x(i) − x(i−1)
∥∥∥ < ζ for stopping criterion of

optimization, where ζ is a positive threshold, x(i) and x(i−1)

are the waveforms in (i)th and (i− 1)th iteration, i.e.:

x(i) = [x
(i)
1 , . . . , x

(i)
N ]T ∈ CN

x(i−1) = [x
(i−1)
1 , . . . , x

(i−1)
N ]T ∈ CN .

(11)

Due to the iterative improvement of CD method, this
framework guarantees that the ISL converges monotonically
to the local optimum value.

IV. NUMERICAL RESULTS

In this section, we consider evaluating the performance
of the proposed method in different aspects. In the first
step, we evaluate the convergence behavior of the proposed
method. Then we compare its performance with the DPD
method as a conventional method for compensating for the
distortion behavior of PA. To this end, we use the DPD
of communication toolbox in MATLAB to estimate the MP
coefficients and perform the DPD pre-distortion to the input
signal of PA [19], [20]. Besides, we consider the memory
depth and non-linearity order to be M = 4 and Q = 7
respectively.

As to the Algorithm 1 parameters, we consider Discrete
Phase Modulation (DPM) as the initial sequence [2]. This
sequence basically is a phase codded (MPSK) sequence (x0 ∈
CN ) with a good ISL level [2]. DPM it self is initialized
with a random phase codded which every code entry is given
by, ejϕ

(0)
n , where ϕ

(0)
n is a random real and discrete variable

uniformly distributed in set {0, 2π
K , . . . , 2π(K−1)

K }. Besides, we
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Fig. 2: Convergence of the (a) objective function and (b)
argument, with different alphabet size (N = 256, M = 4
and Q = 7)

assume that the stopping condition for Algorithm 1 is set at
ζ = 10−3 with maximum iteration of 103.

A. Convergence

Fig. 2 shows the convergence behavior of the proposed
method in different aspects. In this regard, Fig. 2a shows the
convergence of the objective function with different alphabet
sizes (K). As can be seen, for all alphabet sizes (K) the
objective function decreases monotonically and converges to
the optimum value. In addition, the larger alphabet size obtains
better performance (lower objective function). Since a larger
alphabet size is equivalent to a larger feasible set, this behavior
was expected. Fig. 2b shows the convergence of the stopping
criterion which basically is the convergence of the argument
of the proposed method. Observe that for all alphabet sizes
these curves converge to zero. As a result, Fig. 2 and Fig. 2b
indicate that the solution converges to a stationary point.

B. Comparing with DPD

This subsection compares the performance of the proposed
method and DPD in terms of ISL. Here, we assume that
a DPM sequence is the input signal of PA (and the initial
waveform of the proposed method) and we termed it as x(0).
Based on DPD technique first, we pre-distorted the input
signal (x(0)) and apply it to the PA. Then we compute the
cross-correlation of the PA output and x(0). However, in the
proposed method we minimize the ISL of PA output (y) and
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Fig. 3: Comparing the Auto-Correlation function of the pro-
posed method and DPD (N = 512, M = 4 and Q = 7)

we report its auto-correlation. Please note that unlike x(0),
y is not a constant modulus waveform, therefore for a fair
comparison, we normalized the power of y to the power of
x(0).

Fig. 3 shows the auto-correlation function of the proposed
method and DPD. As can be seen in Fig. 3a, the sidelobes
far away from zero lag (l = 0), for both methods have
similar sidelobe levels. However, Fig. 3b shows the auto-
correlation function near the zero lag. As can be seen, the DPD
method has larger sidelobes compared to the proposed method.
Besides, the proposed method has a higher gain compared to
DPD method, i.e. the proposed method offers higher peak in
zero lag.

Fig. 4 shows the averaged of ISL and the PSL of the
proposed method and DPD with different sequence length
(with 10 trials). As can be seen, the proposed method offers
lower ISL and PSL in all cases.

Fig. 5 compares the range-Doppler profile of the proposed
method with DPD. In this figure we consider nine targets with
range and velocity of ti = (ri, vi), i ∈ {1, . . . , 9}. Let us
assume that r and v be the sets of range and velocity of the
targets respectively. In this regard, we assume the following
set up:

r = {10, 12, 14, 10, 12, 14, 10, 12, 14}(km)
v = {−10,−10,−10, 0, 0, 0, 10, 10, 10}(m/sec).

Fig. 5 shows the range-Doppler profile of DPD and the
proposed method. As can be seen, the proposed method (see
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Fig. 5a) offers lower sidelobes in both range and Doppler
domain compared to DPD method (see Fig. 5b).

Spectrum sharing (shaping) is one of the common ap-
proaches for deploying coexistence between radar and other
RF transmitters (for example communication system). In this
regard, out of band mitigation is crucial in coexistence of radar
and communication system scenarios. Fig. 6 compares the out
of band spectrum of proposed method and DPD. As can be
seen, the proposed method offers lower out of band sidelobes
compared to DPD. In addition, the proposed method has a
flatter spectrum and is closer to the desired spectrum. This
shows that the proposed method uses the available band-width
more effectively compared to the DPD.

V. CONCLUSION

This paper investigated the effects of PA on ISL in SISO
radar systems. To that end, we consider the MP model to be
the behavior of the PA, which takes into account both non-
linearity and memory distortions. Then, as a design metric for
compensating the PA’s distortion effect, we consider minimiz-
ing the auto-correlation of the PA output in the baseband. In
this regard, we proposed a method based on CD for designing
a MPSK (discrete phase) waveform. Finally, in the numerical
results, we evaluate the proposed method’s performance and
compare it to the DPD method, which is a conventional
approach for compensating the distortion effect of PA. We
show that the proposed method offers lower ISL and PSL than
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DPD. In addition the proposed method has better performance
in terms of out of band spectrum mitigation.
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