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Abstract—For the estimation of targets’ states (location, ve-
locity, and acceleration) from nonlinear radar measurements,
usually, the improved version of well known Kalman filter: ex-
tended Kalman filter (EKF) and unscented Kalman filter (UKF)
are used. However, EKF and UKF approximates the nonlinear
measurement function either by Jacobian or using sigma points.
Consequently, because of the approximation of the measurement
function, the EKF and UKF cannot achieve high estimation
accuracy. The potential solution is to replace the approximation
of nonlinear measurement function with its estimate, obtained in
high dimensional reproducing kernel Hilbert space (RKHS). An
ample amount of research has been done in this direction, and the
combined filter is termed RKHS based Kalman filter. However,
there is a shortage of literature dealing with estimating the
dynamic state of the target in an indoor environment using RKHS
based Kalman filter. Therefore, in this paper, we propose the use
of RKHS based Kalman filter for indoor application. Specifically,
we validate the suitability of the RKHS based Kalman filtering
approach using simulations performed over three different target
motion models.

Index Terms—EKF, UKF, RKHS, Jacobain, Kalman

I. INTRODUCTION

In the radar tracking system, the Kalman filter and its
advanced versions, the extended Kalman filter (EKF), and, the
unscented Kalman filter (UKF), have been used extensively
for estimating the states of the moving targets and updating
the measurements [1]–[4]. Depending on the underlying target
motion model, the modeled/ estimated states include location
or velocity or acceleration and combinations thereof. If the
measurements from the radar sensor are already the noisy
state vectors, the primary Kalman filter is the optimum choice
since the states are linearly related to the measurements i.e.,
the resulting measurement function (h) is linear. However, in
practice, the radar sensors report the noisy measurements in
the spherical coordinate, composed of the radial range (r),
azimuth (θ), and elevation (φ). With the measurement in
spherical coordinate, h, relating the target’s states in 3D space
with the radar measurement is nonlinear. Therefore, the basic
Kalman filter, which is optimum for linear h, is not suitable.

To address this issue in practical radar sensors used in
various tracking applications, EKF and UKF are considered,
as they handle the non-linearity in h better. In the EKF, the h
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is approximated by its equivalent Jacobian matrix evaluated
at the predicted state vector. Similarly, with UKF, as the
name implies, the h is approximated by the unscented sigma
points. Conceptually, both EKF and UKF are based on the
approximation of nonlinear measurement function, and this
creates a scope of improving the performance of EKF and
UKF by replacing the approximation of h with its efficient
estimate (ĥ).

In the light of the above discussion, since Kalman filtering
is an iterative technique, the estimate of h can also be obtained
iteratively by the nonlinear adaptive filtering techniques based
on reproducing kernel Hilbert space (RKHS). The RKHS
based techniques are successfully applied in many nonlinear
signal processing, radar, and communication applications [5]–
[8]. The idea of combining the utilities of Kalman filtering
and RKHS based techniques is initially pursued in [9], [10].
For instance, in [9], a specific time series prediction problem
is solved utilizing RKHS based Kalman filter. Subsequently,
in [10], RKHS based kernel recursive least square (KRLS)
algorithm is used in conjunction with EKF under the assump-
tion that only radial range and the slope are available as the
sensor measurement; however, this assumption is infeasible
in practice. Despite an ample amount of theoretical work
done in [9], [10], the existing literature lacks a thorough
analysis of the proposed technique for various practical target
motion models. The indoor environment is a case in point,
where the slow (around 2 m/sec) and the target’s random
movement (especially acceleration) make the state prediction
problem challenging. The situation becomes more challenging
when the measurements from the sensors are available in
spherical coordinates, i.e., (r, θ, φ). Therefore, this paper aims
to investigate the utility of combining EKF and KRLS in such
situations. Further, in the line of the research pursued in [9],
[10], the main contributions of the paper are:

• We propose the use of the KRLS algorithm to estimate
h and use it with EKF for evaluating states of the target
moving in an indoor environment [10]. The states estima-
tion is done using the sensor measurements available in
spherical coordinates. The resulting combined filter (EKF
plus RKHS based KRLS) is termed EKF-RKHS.

• With the help of various target motion models (constant



displacement, constant velocity, and constant accelera-
tion), we validate the improved performance of EKF-
RKHS over conventional EKF. Although we have shown
the enhanced performance of EKF-RKHS for all three
models, EKF-RKHS is most primarily useful for the
constant acceleration model.

• Unlike EKF, in EKF-RKHS, as h is estimated in terms of
the hidden state vector, the EKF-RKHS could be readily
deployable in the applications where h is unknown.

The rest of the paper is organized as follows. The basic
problem formulation is described in Section II. Next, in
Section III, the proposed approach of using EKF-RKHS for the
target state estimation problem is described in detail. Further,
in section IV, simulations are performed over the practical
target motion model and comparative conclusions are drawn
between classical EKF and EKF-RKHS. Lastly, conclusions
are drawn in Section V.

Notations: Scalar variables (constants) are denoted by lower
(upper) case letters. Vectors (matrices) are denoted by bold
face lower (upper) case letters. Superscripts (.)T , (.)H and (.)∗

denote matrix/vector transpose, complex conjugate transpose
and scalar complex conjugation operation respectively. E[.]
denotes statistical expectation and R denote the set of real
numbers. In denotes the identity matrix of cardinality n.

II. PROBLEM FORMULATION

Let the evolution of target state vector with cardinality ns
(sk ∈ Rns×1) at any arbitrary time instance k be given by

sk = f(sk−1) + wk, (1)

where, sk−1 is the previous target state vector, f(·) ∈ Rns×1

governs the motion of the target, and wk ∈ Rns×1, accounts
for uncertainties in the modelling of the state model. In this
work, wk, is assumed to be Gaussian distributed with zero
mean and known covariance Qs = E[wkwk

T ], s.t. wk ∼
NR(0,Qs).

Corresponding to (1), the sensor measurements with cardi-
nality nm at kth time instance (yk ∈ Rnm×1) are given by

yk = h(sk) + vk, (2)

where, h(·) ∈ R is the nonlinear measurement function and
vk ∈ Rnm×1 accounts for the error in estimating yk using
radar sensor. In this work, vk, is assumed to be Gaussian
distributed with zero mean and known covariance Rm =
E[vkvk

T ], s.t. vk ∼ NR(0,Rm).
In (1), the components of sk depend on the type of target

motion model. In this work, to analyze the performance of
EKF and EKF-RKHS, three different practical target motion
models are considered. The associated f(sk−1) for these three
different target motion model are given by [4]:

1) Constant displacement: The target state vector is com-
posed of varying target location in 3D space i.e. sk =
[xk, yk, zk]T and at each k time instance sk is incre-
mented by the constant factor ∆s. Consequently, the
noise-free f(sk−1) is given by

f(sk−1) = sk−1 + ∆s. (3)

2) Constant velocity: In this classical setting, the tar-
get state vector is composed of dynamic target lo-
cation in 3D space and the corresponding constant
velocities (vxk, vyk, vzk) along x, y, and z axis i.e.
sk = [xk, vxk, yk, vyk, zk, vzk]T . Hence, the noise-free
f(sk−1) is given by

f(sk−1) =


1 Tcpi 0 0 0 0
0 1 0 0 0 0
0 0 1 Tcpi 0 0
0 0 0 1 0 0
0 0 0 0 1 Tcpi
0 0 0 0 0 1

 sk−1. (4)

where Tcpi is the coherent pulse interval (CPI) of the
radar sensor. It should be worth mentioning that the con-
stant velocity and constant displacement model similarly
evolve the target locations. However, the two models
differ in the content of sk. Consequently, the constant
velocity model gives more information about the target’s
states.

3) Constant acceleration: In this refined model, the target
state vector is composed of target location in 3D space,
corresponding varying velocities (vxk, vyk, vzk) and the
constant accelerations (axk, ayk, azk) along x, y, and z
axis i.e. sk = [xk, vxk, axk, yk, vyk, ayk, zk, vzk, azk]T .
Therefore, the noise-free f(sk−1) is given by

f(sk−1) = (5)

1 Tcpi 0.5T 2
cpi 0 0 0 0 0 0

0 1 Tcpi 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 Tcpi 0.5T 2

cpi 0 0 0
0 0 0 0 1 Tcpi 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 Tcpi 0.5T 2

cpi
0 0 0 0 0 0 0 1 Tcpi
0 0 0 0 0 0 0 0 1

sk−1.

The primary objective of this work is to effectively and
accurately estimate the hidden state vector (sk) from yk for
the three aforementioned motion models.

III. PROPOSED APPROACH

In this section, the proposed approach of using EKF-RKHS
to estimate the (sk) is described in detail. Firstly, a brief de-
scription of the EKF is given, followed by the implementation
of EKF-RKHS.

A. EKF

For the state and measurement model described respectively
in (1) and (2), let at kth time instance, the available estimate of
sk−1 be ŝk−1 and the corresponding error covariance matrix is
Pk−1 = E[(sk−1−ŝk−1)(sk−1−ŝk−1)T ]. The EKF propagates
ŝk−1 and Pk−1 iteratively and yield the final estimate of sk in



two steps a) prediction and b) update. In prediction step, the
EKF, predicts sk and Pk with the help of following equations:

spk = Fk−1ŝk−1,

Pp
k = Fk−1Pk−1F

T
k−1 + Qs, (6)

where Fk−1 ∈ Rns×ns is the motion model matrix and can
be obtained respectively from (3), (4), or (5), depending upon
the motion model.

After prediction, in the update step, the predictions made in
(6) are updated with the help of available measurement from
radar sensor (yk). The following equations give the update
equations of EKF:

ypk = Hks
p
k, (7)

Kk = Pp
kH

T
k (HkP

p
kH

T
k + Rm)−1,

ŝk = spk + Kk(yk − ypk),

Pk = Pp
k −KkHkP

p
k.

where Hk = ∂h(sk)
∂sk

∣∣∣∣
sk=spk

∈ Rnm×ns is the Jacobain ma-

trix of h (evaluated at prediction spk), ypk is the predicted
measurement, Kk is the Kalman gain, and ŝk and Pk are
the final estimate of sk and updated error covaraince matrix,
respectively.

From (7), it is explicit that EKF linearizes h via Jacobian,
which yields the first-order approximation of h. Consequently,
it restricts EKF from achieving the high estimation accuracy
and, in some cases, yielding inaccurate results. Also, to obtain
the Jacobian, and hence, to implement the further steps, EKF
is bound to know the exact form of h (which depends on the
radar sensor type and, in most cases, not known apriori). In
the following subsection, we present an approach to deal with
these shortcomings in EKF. We describe the implementation of
RKHS based EKF (EKF-RKHS), which first estimates the h
in RKHS using a well-known RKHS algorithm (KRLS). Sub-
sequently, the estimate of h is plugged in EKF for performing
further prediction and update.

The advantages of using EKF-RKHS over EKF are two
fold: (1) Unlike EKF, the implementation of EKF-RKHS is
not restricted to knowing the exact form of h. (2) Since, unlike
EKF, the estimate of h is used, the EKF-RKHS will yield the
estimate of sk with higher accuracy.

B. EKF-RKHS

In this subsection, the description of KRLS algorithm used
in the implementation of EKF-RKHS, is provided. Firstly,
referring to (2), the hidden state sk is mapped to a high
dimensional RKHS (H) via an unknown implicit mapping
function φ(·). Subsequently, the estimate of yk in H is given
by the well known Representer’s theorem [11] as

ŷk = 〈ω,φ(sk)〉H, (8)

where 〈(·, ·)〉His the inner product in H and ω is the unknown
weight vector in H.

In the search of the optimized value of ω and for the
available pair of yk and sk,

{
(s0,y0), . . . , (sk−1,yk−1)

}
, the

KRLS algorithm minimizes the following cost function

J (ω) = min
ω

k−1∑
j=0

|yj − ŷj |2 + λ ‖ω‖2 , (9)

where λ is the regularization factor.
Utilizing (8), yields

J (ω) = min
ω

k−1∑
j=0

|yj − 〈ω,φ(sj)〉H|
2 + λ ‖ω‖2 , (10)

The detailed steps of solving (10) is given in [12]. After
solving (10), ω is given by

ω =

k−1∑
j=0

ajφ(sj) = ak−1Φk−1, (11)

where ak−1 = [a0, . . . , ak−1] and Φk−1 =
[φ(s0), . . . ,φ(sk−1)]T . Substituting (11) in (8), yields

ŷk = [〈φ(s0),φ(sk)〉H, . . . , 〈φ(sk−1),φ(sk)〉H]aTk−1. (12)

From (12), we can readily analyze that the estimate of h at
kth time instant is given by

ĥk = [〈φ(s0),φ(sk)〉H, . . . , 〈φ(sk−1),φ(sk)〉H]. (13)

For simplifying (12), we use the Mercer’s theorem [5], which
states that the inner product between any two functions
{φ(si),φ(sj)} in H can be equivalently evaluated in Eu-
clidean space by using a reproducing kernel κ(·, ·) as

κ(si, sj) = 〈φ(si),φ(sj)〉H,

Hence, utilizing the Mercer’s theorem, the simplified form
of ĥk is given by

ĥk = [κ(s0, sk), . . . , κ(sk−1, sk)]. (14)

Form (14), we can draw an inference that h is estimated iter-
atively, and at kth instant, the estimate is based on the present
state vector sk and the past state vectors

{
s0, . . . , sk−1

}
. This

implies that at kth time instant after obtaining ŝk from EKF,
in (14), the ŝk replaces sk. Afterwards, ĥk replaces h in EKF
to do the further prediction and update steps. Henceforth, the
process repeats iteratively for k = 1, 2, . . . ,K. The pseudo
algorithm for EKF-RKHS is given in Algorithm 1, where zk,
rk, Qk, ek, and ak are as per [12].

IV. SIMULATION RESULTS AND INFERENCE

In this section, a thorough analysis of simulation results
performed over target motion models described in Section II
is provided. The performance of both EKF and EKF-RKHS
are simulated for K = 200 time instances. The three target
motion models: constant displacement, constant velocity, and
constant acceleration, are respectively termed as the scenario I,
scenario II, and scenario III. For all scenarios Tcpi = 10−3sec.
The theoretical mean square error (TMSE) is used as a metric



Algorithm 1: Implementation of EKF-RKHS
Intialization:

1 s0, y(s0), ŝ0, P0, ĥ0 = [κ(ŝ0, ŝ0)],
Q0 = (λ+ κ(ŝ0, ŝ0))−1, a0 = [1, . . . , 1]1×nm

2 for k = 1, 2, 3, · · · ,K do
3 EKF
4 Compute spk and Pp

k using (6)
5 ypk = aTk−1ĥ

T
k−1

6 Ĥk =

{(
∂ĥk−1

∂ŝk−1

∣∣∣∣
ŝk−1=spk

)
ak−1

}T
7 Compute Kk, ŝk, and Pk using (7)
8 KRLS
9 zk = Qk−1ĥ

T
k−1

10 rk = λ+ κ(ŝk, ŝk)− zTk ĥTk−1

11 Qk = r−1k

[
Qk−1rk + zkz

T
k −zk

−zTk 1

]
12 ek = yk − aTk−1ĥ

T
k−1

13 ak =

[
ak−1 − r−1k zke

T
k

r−1k eTk

]
14 ĥk = [κ(ŝ0, ŝk), . . . , κ(ŝk−1, ŝk)]
15 end

for comparing the performance of EKF and EKF-RKHS. The
TMSEs corresponding to the elements of ŝk are defined by

TMSE = E[(sk(i)− ŝk(i))2]; i = 1, 2, . . . , ns

where i denotes the ith element of sk and ŝk.TMSE(i) is
obtained by reading the diagonal elements of updated Pk.

For all scenarios, the yk is assumed to available in spherical
coordinate (as is the case in practice), i.e. yk = [rk, θk, φk]T .
Consequently, the h(sk) is given by

h(sk) =

[√
x2
k + y2

k + z2k, tan
−1

(
yk
xk

)
, tan−1 (√x2

k + y2
k

zk

)]T
.

Further, for all scenarios, we assume Qs = σ2
sIns and

Rm = σ2
mInm , where σs and σm are chosen 0.01 and

0.25, respectively. For EKF-RKHS, the most commonly used
Gaussian kernel with kernel width (σ) is used, i.e. κ(si, sj) =

exp

(
− ‖si−sj‖

2

2σ2

)
. In simulations, the λ and σ are chosen

to obtain the optimum performance of EKF-RKHS. For all
scenarios, λ and σ are fixed at 4 × 10−3 and 6, respectively.
To simulate EKF and EKF-RKHS for indoor enviorment the
target is assumed to move in 3D space along x, y, and z axis
with the maximum distance of 10 m. Also, for scenario II
and scenarios III, the maximum value of the target velocities
vxk, vyk, and vzk are limited to 2 m/sec and axk, ayk, and
azk are chosen form the bounded set [−2, 2] m/sec2. Further,
in the following subsections, the simulation setup and the
performance analysis of both EKF and EKF-RKHS for all
scenarios are discussed in detail.

A. Constant displacement (scenario I)
For scenario I, the initial value of sk i.e. s0 is chosen as

s0 = [x0, y0, z0]T and sk is obtained by advancing sk−1 as

in (1) with ∆s = [0.01m, 0.01m, 0.01m]T . The estimate ŝk
is obtained at each kth time instance using EKF and EKF-
RKHS. For both EKF and EKF-RMSE, TMSEs are obtained
along x, y, and z axis.

The estimated trajectory using EKF and EKF-RKHS, the
corresponding true trajectory (Ground truth), and measure-
ments in rectangular coordinate are shown in Fig. 1. As shown
in Fig. 1, the estimated trajectory obtained from EKF-RKHS
has a closer proximity to Ground truth in comparison to
trajectory estimated from EKF. The improved performance
of EKF-RKHS is further shown in Fig. 2, which shows the
TMSEs in estimatin of location in x , y and z axis. In Fig.
2, we observe that the TMSEs for EKF-RKHS is lower than
the TMSEs for EKF, and that the TMSEs for EKF-RKHS and
EKF converge at nearly identical time instances.

Fig. 1. Evolution of estimated trajectory in 3D space with EKF and EKF-
RKHS for scenario I.
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Fig. 2. Theoretical MSE along X, Y, and Z axis for EKF and EKF-RKHS
and corresponding to scenario I.

B. Constant velocity (scenario II)
Here, s0 = [1m, 2m/sec, 1m, 1m/sec, 1m, 0.5m/sec]T and

sk is obtained from (2).
As shown in Fig. 3, the EKF-RKHS yields the estimated

trajectory closer to the Ground truth. Further, Fig. 4 and Fig.



5 are respectively depicting the TMSEs for estimated locations
and velocities along x, y, and z axis. From Fig. 4 and Fig.
5, it is explicit that, unlike scenario I, the TMSEs for EKF-
RKHS are converging slower. However, for both locations and
velocities, EKF-RKHS achieves lower TMSEs in the x, y, and
z direction compared to EKF.

Fig. 3. Evolution of estimated trajectory in 3D space with EKF and EKF-
RKHS for scenario II.
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Fig. 4. Theoretical MSE along X, Y, and Z axis for EKF and EKF-RKHS
corresponding to scenario II.

C. Constant acceleration (scenario III)

Specific to scenario III, s0 =
[1m, 2m/sec,−2m/sec2, 1m, 1.2m/sec, 2m/sec2, 1m,
1.7m/sec,−1.5m/sec2]T . Subsequently, sk evolved using (3).

The comparative performance of EKF and EKF-RKHS are
shown from Fig. 6 to Fig. 9 in terms of estimated trajectory
and TMSEs. As depicted in Fig. 6, similar to the scenario I and
II, the EKF-RKHS yield the estimated trajectory closer to the
ground truth. Moreover, as shown in Fig. 7, unlike scenario
I and scenario II, the TMSEs corresponding to location for
both EKF-RKHS and EKF are not converging. However, the
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Fig. 5. Theoretical MSE for velocities in X, Y, and Z axis for EKF and
EKF-RKHS corresponding to scenario II.

Fig. 6. Evolution of estimated trajectory in 3D space with EKF and EKF-
RKHS for scenario III.

TMSEs for EKF-RKHS along the x and z axis are lower than
the EKF. It is also observable that the TMSE for EKF-RKHS
along the y axis is converging at a higher value than EKF. The
observed behavior of EKF-RKHS along the y axis is because
of the positive acceleration, which causes a fast movement
along the y axis.

Further, Fig. 8 and Fig. 9, depicts that the TMSEs for
velocities and accelerations are also lower for EKF-RKHS
and nearly converging as well in comparison to TMSEs
yield by EKF. Notably, as shown in Fig. 9, the TMSEs for
accelerations along x, y, and z axis is not converging for
EKF. On the contrary, EKF-RKHS yields acceleration TMSEs
not only lower than EKF but also nearly converging. In one
way, this validates the suitability of using EKF-RKHS for the
scenario where the random target motion hinders the accurate
estimation of the state vector.



0 50 100 150 200

Iteration(k)

10
-3

10
-2

10
-1

10
0

T
h

e
o

re
tic

a
l M

S
E

 (
m

2
)

EKF-TMSE-X

EKF-RKHS-TMSE-X

EKF-TMSE-Y

EKF-RKHS-TMSE-Y

EKF-TMSE-Z

EKF-RKHS-TMSE-Z

Fig. 7. Theoretical MSE for locations in X, Y, and Z axis for EKF and
EKF-RKHS corresponding to scenario III.
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Fig. 8. Theoretical MSE for velocities in X, Y, and Z axis for EKF and
EKF-RKHS corresponding to scenario III.
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Fig. 9. Theoretical MSE for accelerations in X, Y, and Z axis for EKF and
EKF-RKHS corresponding to scenario III.

V. CONCLUSIONS

Conventionally, EKF and UKF are used for the estimation
of states hidden in a non-linear measurement. However, the ap-

proximation of a non-linear measurement generally limits EKF
and UKF to achieve high estimation accuracy. To overcome
this shortcoming in EKF, the literature suggests replacing the
approximation of the measurement function with its efficient
estimate obtained in RKHS. Consequently, for the estimation
of measurement function, RKHS based KRLS algorithm has
been used; hence, the resulting filter is termed EKF-RKHS. In
this paper, we have proposed to use EKF-RKHS for estimating
the target’s state vector moving in an indoor environment.
In an indoor scene, the random motion hinders the accurate
estimation of the state vector. The situation becomes more
challenging when the measurements are available from the
sensor in spherical coordinates. Therefore, with the help of
three different motion models and using the measurements in
spherical coordinates, we have proven the suitability of EKF-
RKHS over EKF. Primarily, we have shown that in the case of
the constant acceleration model, EKF-RKHS is the preferred
choice over conventional EKF.

In the future, the extended KRLS algorithm can be used
to estimate the measurement function. Also, the lower bound
analysis of estimation accuracy achieved by RKHS based
Kalman filter is the future scope of this work.
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