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Abstract. System goals are the statements that, in the context of soft-
ware requirements specification, capture how the software should be-
have. Many times, the understanding of stakeholders on what the sys-
tem should do, as captured in the goals, can lead to different problems,
from clearly contradicting goals, to more subtle situations in which the
satisfaction of some goals inhibits the satisfaction of others. These latter
issues, called goal divergences, are the subject of goal conflict analysis,
which consists of identifying, assessing, and resolving divergences, as part
of a more general activity known as goal refinement.

While there exist techniques that, when requirements are expressed for-
mally, can automatically identify and assess goal conflicts, there is cur-
rently no automated approach to support engineers in resolving identi-
fied divergences. In this paper, we present ACORE, the first approach
that automatically proposes potential resolutions to goal conflicts, in
requirements specifications formally captured using linear-time tempo-
ral logic. ACORE systematically explores syntactic modifications of the
conflicting specifications, aiming at obtaining resolutions that disable
previously identified conflicts, while preserving specification consistency.
ACORE integrates modern multi-objective search algorithms (in par-
ticular, NSGA-III, WBGA, and AMOSA) to produce resolutions that
maintain coherence with the original conflicting specification, by search-
ing for specifications that are either syntactically or semantically similar
to the original specification.

We assess ACORE on 25 requirements specifications taken from the lit-
erature. We show that ACORE can successfully produce various conflict
resolutions for each of the analyzed case studies, including resolutions
that resemble specification repairs manually provided as part of conflict
analyses.

1 Introduction

Many software defects that come out during software development originate from
incorrect understandings of what the software being developed should do [24].
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These kinds of defects are known to be among the most costly to fix, and thus it
is widely acknowledged that software development methodologies must involve
phases that deal with the elicitation, understanding, and precise specification
of software requirements. Among the various approaches to systematize this re-
quirements phase, the so-called goal-oriented requirements engineering (GORE)
methodologies [13,55] provide techniques that organize the modeling and analysis
of software requirements around the notion of system goal. Goals are prescrip-
tive statements that capture how the software to be developed should behave,
and in GORE methodologies are subject to various activities, including goal
decomposition, refinement, and the assignment of goals [3,13,15,39,55,56].

The characterization of requirements as formally specified system goals en-
ables tasks that can reveal flaws in the requirements. Formally specified goals
allow for the analysis and identification of goal divergences, situations in which
the satisfaction of some goals inhibits the satisfaction of others [9,16]. These di-
vergences arise as a consequence of goal conflicts. A conflict is a condition whose
satisfaction makes the goals inconsistent. Conflicts are dealt with through goal-
conflict analysis [58], which comprises three main stages: (i) the identification
stage, which involves the identification of conflicts between goals; (i) the assess-
ment stage, aiming at evaluating and prioritizing the identified conflicts accord-
ing to their likelihood and severity; and (iii), the resolution stage, where conflicts
are resolved by providing appropriate countermeasures and, consequently, trans-
forming the goal model, guided by the criticality level.

Goal conflict analysis has been the subject of different automated tech-
niques to assist engineers, especially in the conflict identification and assessment
phases [16,18,43,56]. However, no automated technique has been proposed for
dealing with goal conflict resolution. In this paper, we present ACORE, the first
automated approach that deals with the goal-conflict resolution stage. ACORE
takes as input a set of goals formally expressed in Linear-Time Temporal Logic
(LTL) [45], together with previously identified conflicts, also given as LTL for-
mulas. It then searches for candidate resolutions, i.e., syntactic modifications to
the goals that remain consistent with each other, while disabling the identified
conflicts. More precisely, ACORE employs modern search-based algorithms to
efficiently explore syntactic variants of the goals, guided by a syntactic and se-
mantic similarity with the original goals, as well as with the inhibition of the
identified conflicts. This search guidance is implemented as (multi-objective) fit-
ness functions, using Levenshtein edit distance [42] for syntactic similarity, and
approximated LTL model counting [8] for semantic similarity. ACORE exploits
this fitness function to search for candidate resolutions, using various alternative
search algorithms, namely a Weight-Based Genetic Algorithm (WBGA) [29], a
Non-dominated Sorted Genetic Algorithm (NSGA-IIT) [14], an Archived Multi-
Objective Simulated Annealing search (AMOSA) [6], and an unguided search
approach, mainly used as a baseline in our experimental evaluations.

Our experimental evaluation considers 25 requirements specifications taken
from the literature, for which goal conflicts are automatically computed [16].
The results show that ACORE is able to successfully produce various conflict
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resolutions for each of the analysed case studies, including resolutions that re-
semble specification repairs manually provided as part of conflict analyses. In
this assessment, we measured their similarity concerning the ground-truth, i.e.,
to the manually written repairs, when available. The genetic algorithms are able
to resemble 3 out of 8 repairs in the ground truth. Moreover, the results show
that ACORE generates more non-dominated resolutions (their finesses are not
subsumed by other repairs in the output set) when adopting genetic algorithms
(NSGA-IIT or WBGA), compared to AMOSA or unguided search, favoring ge-
netic multi-objective search over other approaches.

2 Linear-Time Temporal Logic

2.1 Language Formalism

Linear-Time Temporal Logic (LTL) is a logical formalism widely used to spec-
ify reactive systems [45]. In addition, GORE methodologies (e.g. KAOS) have
also adopted LTL to formally express requirements [55] and taken advantage of
the powerful automatic analysis techniques associated with LTL to improve the
quality of their specifications (e.g., to identify inconsistencies [17]).

Definition 1 (LTL Syntax). Let AP be a set of propositional variables. LTL
formulas are inductively defined using the standard logical connectives, and the
temporal operators () (next) and U (until), as follows:

(a) constants true and false are LTL formulas;

(b) everyp € AP is an LTL formula;

(¢) if ¢ and b are LTL formulas, then —p, @ V 1, O and pUY are also LTL
formulas.

LTL formulas are interpreted over infinite traces of the form o = sqg s7...,
where each s; is a propositional valuation on 247 (i.e., o € 2477),

Definition 2 (LTL Semantic). We say that trace o = sq, s1,... satisfies a
formula @, written o = ¢, if and only if ¢ holds at the initial state of the trace,
i.e. (0,0) = . The last notion is inductively defined on the shape of ¢ as follows:

(0,) (le)':pﬁpesz

(b) (0,i) = (¢ V) & (0,1) = ¢ or (0,1) ¢

(c) (0,i) = =9 & (0,) =

(@) (0,)) EO¢ = (0yi+1) F¢

(e) (0,i) (¢ U ¥) & Fuzo: (0,k) E o and Vogjc<k : (0,5) = ¢

Intuitively, formulas with no temporal operator are evaluated in the first
state of the trace. Formula () is true at position 4, iff ¢ is true in position i+ 1.
Formula U 1 is true in o iff formula ¢ holds at every position until ¢ holds.

Definition 3 (Satisfiability). An LTL formula ¢ is said satisfiable (SAT) iff
there exists at least one trace satisfying .
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We also consider other typical connectives and operators, such as, A, O (al-
ways), < (eventually) and W (weak-until), that are defined in terms of the
basic ones. That is, d A = —(=¢ V ), Od = trueldp, Op = —O—¢, and
Wi = (B9) V (¢UY).

2.2 Model Counting

The model counting problem consists of calculating the number of models that
satisfy a formula. Since the models of LTL formulas are infinite traces, it is often
the case that analysis is restricted to a class of canonical finite representation of
infinite traces, such as lasso traces or tree models. Notably, this is the case in
bounded model checking for instance [7].

Definition 4 (Lasso Trace). A lasso trace o is of the form o = sg... $;(8i+1
... 8k)%, where the states sq ...y conform the base of the trace, and the loop
from state sy to state s;+1 is the part of the trace that is repeated infinitely many
times.

For example, an LTL formula O(p V ¢) is satisfiable, and one satisfying lasso
trace is o1 = {p}; {p, ¢}*, wherein the first state p holds, and from the second
state both p and ¢ are valid forever. Notice that the base in the lasso trace oy
is the sequence containing both states {p}; {p, ¢}, while the state {p,q} is the
sequence in the loop part.

Definition 5 (LTL Model Counting). Given an LTL formula ¢ and a bound
k, the (bounded) model counting problem consists in computing how many lasso
traces of at most k states exist for p. We denote this as #(p, k).

Since existing approaches for computing the exact number of lasso traces
are ineffective [25], Brizzio et. al [8] recently developed a novel model counting
approach that approximates the number (of prefixes) of lasso traces satisfying
an LTL formula. Intuitively, instead of counting the number of lasso traces of
length k, the approach of Brizzio et. al [8] aims at approximating the number of
bases of length k corresponding to some satisfying lasso trace.

Definition 6 (Approximate LTL Model Counting). Given an LTL for-
mula ¢ and a bound k, the approach of Brizzio et. al [8] approxzimates the number
of bases w = Sg ... Sk, such that for some i, the lasso trace 0 = sg ... (8;...8k)*
satisfies @ (notice that prefix w is the base of o). We denote #£APPROX (¢, k) to
the number computed by this approximation.

ACORE uses #APPROX model counting to compute the semantic similarity
between the original specification and the candidate goal-conflict resolutions.
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3 The Goal-Conflict Resolution Problem

Goal-Oriented Requirements Engineering (GORE) [55] drives the requirements
process in software development from the definition of high-level goals that state
how the system to be developed should behave. Particularly, goals are prescrip-
tive statements that the system should achieve within a given domain. The
domain properties are descriptive statements that capture the domain of the
problem world. Typically, GORE methodologies use a logical formalism to spec-
ify the expected system behavior, e.g., KAOS uses Linear-Time Temporal Logic
for specifying requirements [55]. In this context, a conflict essentially represents
a condition whose occurrence results in the loss of satisfaction of the goals, i.e.,
that makes the goals diverge [56,57]. Formally, it can be defined as follows.

Definition 7 (Goal Conflicts). Let G = {G1,...,Gy} be a set of goals, and
Dom be a set of domain properties, all written in LTL. Goals in G are said to
diverge if and only if there exists at least one Boundary Condition (BC), such
that the following conditions hold:

— logical inconsistency: {Dom,BC, N\ G;} E false
1<i<n
— minimality: for each 1 <i <n, {Dom,BC, \ G,} - false
J#i
— non-triviality: BC # —(G1 A ... \NGy)

Intuitively, a BC captures a particular combination of circumstances in which
the goals cannot be satisfied. The first condition establishes that, when BC'
holds, the conjunction of goals {G4q,...,G,} becomes inconsistent. The second
condition states that, if any of the goals are disregarded, then consistency is
recovered. The third condition prohibits a boundary condition to be simply the
negation of the goals. Also, the minimality condition prohibits that BC' be equals
to false (it has to be consistent with the domain Dom).

Goal-conflict analysis [55,56] deals with these issues, through three main
stages: (1) The goal-conflicts identification phase consists in generating boundary
conditions that characterize divergences in the specification; (2) The assessment
stage consists in assessing and prioritizing the identified conflicts according to
their likelihood and severity; (3) The resolution stage consists in resolving the
identified conflicts by providing appropriate countermeasures. Let us consider the
following examples found in our empirical evaluation and commonly presented
in related works.

Ezample 1 (Mine Pump Controller - MPC). Consider the Mine Pump Con-
troller (MPC) widely used in related works that deal with formal requirements
and reactive systems [16,35]. The MPC describes a system that is in charge of
activating or deactivating a pump (p) to remove the water from the mine, in the
presence of possible dangerous scenarios. The MP controller monitors environ-
mental magnitudes related to the presence of methane (m) and the high level of
water (h) in the mine. Maintaining a high level of water for a while may produce
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flooding in the mine, while the methane may cause an explosion when the pump
is switched on. Hence, the specification for the MPC is as follows:

Dom :O((p A O(p)) = O(O(=h))  G1:B(m — O(=p))  G2:0(h = O(p))

Domain property Dom describes the impact into the environment of switch-
ing on the pump (p). For instance, when the pump is kept on for 2 unit times,
then the water will decrease and the level will not be high (—h). Goal Gy ex-
presses that the pump should be off when methane is detected in the mine. Goal
G> indicates that the pump should be on when the level of water is high.

Notice that this specification is consistent, for instance, in cases in which
the level of water never exceeds the high threshold. However, approaches for
goal-conflict identification, such as the one of Degiovanni et al. [16], can detect
a conflict between goals in this specification.

The identified goal-conflict describes a divergence situation in cases in which
the level of water is high and methane is present at the same time in the envi-
ronment. Switching off the pump to satisfy G will result in a violation of goal
G2; while switching on the pump to satisfy G5 will violate GG;. This divergence
situation clearly evidence a conflict between goals G; and G that is captured
by a boundary condition such BC = &(h Am).

In the work of Letier et al. [40] two resolutions were manually proposed that
precisely describe what should be the software behaviour in cases where the
divergence situation is reached. The first resolution proposes to refine goal Gs,
by weakening it, requiring to switch on the pump only when the level of water
is high and no methane is present in the environment.

Ezample 2 (Resolution 1 - MPC).

Dom : O((p A O(p)) = O(O(=h)))
Gy:0(m— O(=p)) Gy:8(hA-m— Op))

With a similar analysis, the second resolution proposes to weaken G, requir-
ing switching off the pump when methane is present and the level of water is
not high.

Ezample 3 (Resolution 2 - MPC).

Dom.: O((p A O(p)) = O(O(=h)))
Gi:O(mA—=h— O(-p) G2:0(h— Olp))

The resolution stage aims at removing the identified goal-conflicts from the
specification, for which it is necessary to modify the current specification formu-
lation. This may require weakening or strengthening the existing goals, or even
removing some and adding new ones.

Definition 8 (Goal-Conflict Resolution). Let G = {G1,...,G,}, Dom, and
BC be the set of goals, the domain properties, and an identified boundary con-
dition, respectively written in LTL. Let M : S; x Sy +— [0,1] and € € [0,1] be
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a stmilarity metric between two specifications and a threshold, respectively. We
say that a resolution R = {Ry,..., Ry} resolves goal-conflict BC, if and only
if, the following conditions hold:

— consistency: {Dom, R} F~ false
— resolution: {BC, R} F~ false
— similarity: M(G,R) < €

Intuitively, the first condition states that the refined goals in R remain consistent
within the domain properties Dom. The second condition states that BC' does
not lead to a divergence situation in the resolution R (i.e., refined goals in R
know exactly how to deal with the situations captured by BC). Finally, the last
condition aims at using a similarity metric M to control for the degree of changes
applied to the original formulation of goals in G to produce the refined goals in
resolution R.

Notice that the similarity metric M is general enough to capture similarities
between G and R of different natures. For instance, M (G, R) may compute the
syntactic similarity between the text representations of the original specification
of goals in GG and the candidate resolution R, where the number of tokens edited
from G to R is the aim. On the other hand, M (G, R) may compute a semantic
similarity between G and R, for instance, to favour resolutions that weaken the
goals (i.e. G — R), or strengthen the goals (i.e. R — G) or that maintain most
of the original behaviours (i.e. #G — #R < ¢).

Precisely, ACORE will explore syntactic modifications of goals from G, lead-
ing to newly refined goals in R, with the aim at producing candidate resolutions
that are consistent with the domain properties Dom and resolve conflict BC.
Assuming that the engineer is competent and the current specification is very
close to the intended one [19,1], ACORE will integrate two similarity metrics in a
multi-objective search process to produce resolutions that are syntactically and
semantically similar to the original specification. Particularly, ACORE can gen-
erate exactly the same resolutions for the MPC previously discussed, manually
developed by Letier et al. [40].

4 ACoRe: Automated Goal-Conflict Resolution

ACORE takes as input a specification S = (Dom, G), composed by the domain
properties Dom, a set of goals G, and a set {BCY, ..., BCy} of identified bound-
ary conditions for S. ACORE uses search to iteratively explore variants of G
to produce a set R = {Ry,..., R,} of resolutions, where each R; = (Dom,G"),
that maintain two sorts of similarities with the original specification, namely,
syntactic and semantic similarity between S and each R;. Figure 1 shows an
overview of the different steps of the search process implemented by ACORE.
ACORE instantiates multi-objective optimization (MOO) algorithms to effi-
ciently and effectively explore the search space. Currently, ACORE implements
four MOO algorithms, namely, the Non-Dominated Sorting Genetic Algorithm
IIT (NSGA-III) [14], a Weight-based genetic algorithm (WBGA) [29], an Archived
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Multi-objective Simulated Annealing (AMOSA) [6] approach, and an unguided
search approach we use as a baseline. Let us first describe some common compo-
nents shared by the algorithms (namely, the search space, the multi-objectives,
and the evolutionary operators) and then get into the particular details of each
approach (such as the fitness function and selection criteria).

e ( population )( solutions ) n
initial Evolution Operators
specification
5 = (Dom, G) Mutation } [Crossover}
Resolutions
{only in GAs) No
Ry = (Dom,G")
Stop Criterion? — tee
identified R,,j (Dom,‘G")
goal-conflicts ¢
BCh, ..., BCy __'k Evaluation
[f:consistency | _f2: #BCs resolved |
[f3: syntactic similarity [14: semantic similarity|

Fig. 1: Overview of ACORE.

4.1 Search Space and Initial Population

Each individual ¢cR = (Dom, G'), representing a candidate resolution, is a LTL
specification over a set AP of propositional variables, where Dom captures the
domain properties and G’ the refined system goals. Notice that domain proper-
ties Dom are not changed through the search process since these are descriptive
statements. On the other hand, ACORE performs syntactic alterations to the
original set of goals G to obtain the new set of refined goals G’ that potentially
resolve the conflicts given as input.

The initial population represents a sample of the search space from which
the search starts. ACORE creates one or more individuals (depending on the
multi-objective algorithm being used) as the initial population by applying the
mutation operator (explained below) to the specification S given as input.

4.2 Multi-Objectives: Consistency, Resolution and Similarities

ACORE guides the search with four objectives that check for the validity of
each of the conditions needed to be a valid goal-conflict resolution, namely,
consistency, resolution and two similarity metrics (cf. Definition 8).

Given a resolution ¢cR = (Dom, G'), the first objective Consistency(cR) eval-
uates if the refined goals G’ are consistent with the domain properties by using
SAT solving.

1 if Dom A G’ is satisfiable
Consistency(cR) = ¢ 0.5 if Dom A G’ is unsatisfiable, but G’ is satisfiable
0 if G’ is unsatisfiable
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The second objective Resolved BCs(cR) computes the ratio of boundary con-
ditions resolved by the candidate resolution cR, among the total number of
boundary conditions given as input. Hence, Resolved BCs(cR) returns values be-
tween 0 and 1, and is defined as follows:

Zle isResolved(BC;, G")

k
isResolved(cR, BC;) returns 1, if and only if BC; A G’ is satisfiable; otherwise,
returns 0. Intuitively, when BC; A G’ is satisfiable, it means that the refined
goals G’ satisfies the resolution condition of Definition 8 and thus, BCj; is no
longer a conflict for candidate resolution cR. In the case that cR resolves all the
(k) boundary conditions, the objective ResolvedBCs(cR) will return 1.

With the objective of prioritising resolutions that are in some sense similar
to the original specification among the dissimilar ones, ACORE integrates two
similarity metrics. ACORE considers one syntactic and one semantic similarity
metric that will help the algorithms to focus the search in the vicinity of the
specification given as input.

Precisely, objective Syntactic(S, cR) refers to the distance between the text
representations of the original specification S and the candidate resolution cR.
To compute the syntactic similarity between LTL specifications, we use Leven-
shtein distance [42]. Intuitively, the Levenshtein distance between two words is
the minimum number of single-character edits (insertions, deletions, or substi-
tutions) required to change one word into the other. Hence, Syntactic(S, cR), is
computed as:

ResolvedBCs(cR) =

maxLength — Levenshtein(S, cR)

Syntactic(S,cR) = max Length

where maxLength = max(length(S), length(cR)). Intuitively, Syntactic(S, cR)
represents the ratio between the number of tokens changed from S to obtain cR
among the maximum number of tokens corresponding to the largest specification.

On the other hand, our semantic similarity objective Semantic(S, cR) refers
to the system behaviour similarities described by the original specification and
the candidate resolution. Precisely, Semantic(S, cR) computes the ratio between
the number of behaviours present in both, the original specification and candi-
date resolution, among the total number of behaviours described by the speci-
fications. To efficiently compute the objective Semantic(S,cR), ACORE uses
model counting and the approximation previously described in Definition 6.
Hence, given a bound k for the lasso traces, the semantic similarity between
S and cR is computed as:

, _ #APPROX(S A cR, k)
Semantic($, cR) = #APPROX(S V cR, k)

Notice that, small values for Semantic(S, cR) indicate that the behaviours
described by S are divergent from those described by cR. In particular, in cases
that S and cR are contradictory (i.e., SAcR is unsatisfiable), Semantic(S, cR) is



12 L. Carvalho et al.

0. As this value gets closer to 1, both specifications characterize an increasingly
large number of common behaviors.

4.3 Evolutionary Operators

New individuals are generated through the application of the evolution operators.
Particularly, our approach ACORE implements two standard operators used for
evolving LTL specifications [17,43], namely a mutation and a crossover operators.
Below, we provide some examples of the application of these operators, and
please refer to the complementary material for a detailed formal definition.

Fig. 2: Mutation operator. Fig. 3: Crossover operator.

Given a candidate individual ¢cR’ = (Dom, G’), the mutation operator selects
a goal ¢’ € G’ to mutate, leading to a new goal g”, and produces a new candidate
specification ¢cR” = (Dom,G"), where G” = G'[¢’ — ¢"], that is, G” looks
exactly as G’ but goal ¢’ is replaced by the mutated goal g”.

For instance, Figure 2 shows 5 possible mutations that we can generate for
formula ¢(p — Or). Mutation M1 replaces ¢ by O, leading to M1 : O(p — Or).
Mutation M2 : O(p A Or) replaces — by A. Mutation M3 : &(p — —r) replaces
O by —. Mutation M4 : O(true — Or), reduces to <Or, replaces p by true.
While mutation M5 : &(p — Oq) replaces r by gq.

On the contrary, the crossover operator takes two individuals cR' = (Dom, G1)
and cR? = (Dom, G?), and produces a new candidate resolution cR" = (Dom, G")
by combining portions of both specifications. In other words, it takes one goal
from each individual, i.e. G; € G! and G5 € G?, and generates a new goal G
that is obtained by replacing a subformula a of G; by a subformula g taken
from Go. For instance, Figure 3 provides an illustration of how this operator
works. Particularly, subformula « : p is selected from goal G; : O(p — Or),
while subformula 3 : —p is selected from goal G2 : =p A q. Hence, by replacing in
(1 subformula « by subformula 3, the crossover operators generate a new goal
G" : O(—p — Or).
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It is worth mentioning that the four multi-objective search algorithms imple-
mented by ACORE use the mutation operator to evolve the population. However,
only two of the algorithms that implement two different genetic algorithms (i.e.
NSGA-IIT and WBGA) use the crossover operator to evolve the population.

4.4 Multi-Objective Optimisation Search Algorithms

In a multi-objective optimisation (MOO) problem there is a set of solutions,
called the Pareto-optimal (PO) set, which is considered to be equally important.
Given two individuals 1 and zs from the search-space S, and f1,..., f, a set of
(maximising) fitness functions, where f; : S — R, we say that z; dominates xo
if (a) 21 is not worse than x5 in all objectives and (b) z is strictly better than
T2 at least in one objective. Typically, MOO algorithms evolve the candidate
population with the aim to converge to a set of non-dominated solutions as
close to the true PO set as possible and maintain as diverse a solution set as
possible. There are many variants of MOO algorithms that have been successfully
applied in practice [27]. ACORE implements four multi-objective optimization
algorithms to explore the search space to generate goal-conflict resolutions.
AMOSA. The Archived Multi-objective Simulated Annealing (AMOSA) [6] is
an adaptation of the simulated annealing algorithm [34] for multi-objectives.
AMOSA only analyses one (current) individual per iteration, and a new indi-
vidual is created by the application of the mutation operator. AMOSA has two
particular features that make it promising for our purpose. During the search,
it maintains an “archive” with the non-dominated candidates explored so far,
that is, candidates whose fitness values are not subsumed by other generated
individuals. Moreover, when a new individual is created that does not dominate
the current one, it is not immediately discarded and can still be selected among
the current individual with some probability that depends on the “temperature”
(a function that decreases over time). At the beginning the temperature is high,
then new individuals with worse fitness than the current element, are likely to be
selected, but this probability decreases over the iterations. This strategy helps
in avoiding local maximums and exploring more diverse potential solutions.
WBGA. ACORE also implements a classic Weight-based genetic algorithm
(WBGA) [29]. In this case, WBGA maintains a fixed number of individuals
in each iteration (a configurable parameter), and applies both the mutation and
crossover operators to generate new individuals. WBGA computes the fitness
value for each objective and combines them into a single fitness f defined as:

f(S,cR) =a * Consistency(cR) + 5 * ResolvedBCs(cR)+
v % Syntax (S, cR) + 6 * Semantic(S, cR)

where weights o = 0.1, § = 0.7, v = 0.1, and § = 0.1 are defined by default
(empirically validated), but these can be configured to other values if desired. In
each iteration, WBGA sorts all the individuals according to their fitness value
(descending order) and selects best ranked individuals to survive to the next
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iteration (other selectors can be integrated). Finally, WBGA reports all the
resolutions found during the search.
NSGA-III. ACORE also implements the Non-Dominated Sorting Genetic Al-
gorithm ITT (NSGA-III) [14] approach. It is a variant of a genetic algorithm that
also uses mutation and crossover operators to evolve the population. In each
iteration, it computes the fitness values for each individual and sorts the pop-
ulation according to the Pareto dominance relation. Then it creates a partition
of the population according the level of the individuals in the Pareto dominance
relation (i.e., non-dominated individuals are in Level-1, Level-2 contains the in-
dividuals dominated only by individuals in Level-1, and so on). Thus, NSGA-III
selects only one individual per non-dominated level with the aim of diversifying
the exploration and reducing the number of resolutions in the final Pareto-front.
ACORE also implements an Unguided Search algorithm that does not
use any of the objectives to guide the search. It randomly selects individuals
and applies the mutation operator to evolve the population. After generating a
maximum number of individuals (a given parameter of the algorithm), it checks
which ones constitute a valid resolution for the goal-conflicts given as input.

5 Experimental Evaluation

We start our analysis by investigating the effectiveness of ACORE in resolving
goal-conflicts. Thus, we ask:

RQ1 How effective is ACORE at resolving goal-conflicts?

To answer this question, we study the ability of ACORE to generate resolu-
tions in a set of 25 specifications for which we have identified goal-conflicts.

Then, we turn our attention to the “quality” of the resolution produced by
ACORE and study if ACORE is able to replicate some of the manually written
resolutions gathered from the literature (ground-truth). Thus, we ask:

RQ2 How able is ACORE to generate resolutions that match with resolutions
provided by engineers (i.e. manually developed)?

To answer RQ2, we check if ACORE can generate resolutions that are equiv-
alent to the ones manually developed by the engineer.

Finally, we are interested in analyzing and comparing the performance of the
four search algorithms integrated by ACORE. Thus, we ask:

RQ3 What is the performance of ACORE when adopting different search algo-
rithms?

To answer RQ3, we basically employ standard quality indicators (e.g. hypervol-
ume (HV) and inverted generational distance (IGD)) to compare the Pareto-
front produced by ACORE when the different search algorithms are employed.
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5.1 Experimental Procedure

We consider a total of 25 requirements specifications taken from the literature
and different benchmarks. These specifications were previously used by goal-
conflicts identification and assessment approaches [4,16,17,18,43,56].

Table 1: LTL Requirements Specifications and Goal-conflicts Identified.

Specification #Dom + #Goals #BC's Specification #Dom + #Goals #BC's
minepump 3 14 rres 4 14
simple arbiter-v1 4 28 achieve-avoid pattern 3 16
simple arbiter-v2 4 20 retraction pattern-1 2 2
prioritized arbiter 7 11 retraction pattern-2 2 10
arbiter 3 20 FIG(?I § Z
detector 2 15 1215 05 3 W
1t12dba27 ‘ 1 11 Tyil 3 5
round robin 9 12 lily15 3 19
tep 2 11 lily16 6 38
atm 3 24 1t12dba theta-2 1 3
telephone 5 4 1t12dba R-2 1 5
elevator 2 3 simple arbiter icse2018 11 20

We start by running the approach of Degiovanni et al. [17] on each subject
to identify a set of boundary conditions. Table 1 summarises, for each case, the
number of domain properties and goals, and the number of boundary conditions
(i.e. goal-conflicts) computed with the approach of Degiovanni et al. [17]. Notice
that we use the set of “weakest”! boundary conditions returned by [17], in the
sense that by removing all of these we are guaranteed to remove all the boundary
conditions computed.

Then, we run ACORE to generate resolutions that remove all the identified
goal-conflicts. We configure ACORE to explore a maximum number of 1000 indi-
viduals with each algorithm. We repeat this process 10 times to reduce potential
threats [5] raised by the random elections of the search algorithms.

To answer RQ1, we run ACORE and report the number of non-dominated res-
olutions produced by each implemented algorithm (i.e. those resolutions whose
fitness values are not subsumed by other individuals).

To answer RQ2, we collected from the literature 8 cases in which authors
reported a “buggy” version of the specification and a “fixed” version of the
same specification. We take the buggy version and compute a set of boundary
conditions for it that are later fed into ACORE to automatically produce a set
of resolutions. We then compare the resolutions produced by our ACORE and
the “fixed” versions we gathered from the literature. We basically analyse, by
using sat solving, if any of the resolutions produced by ACORE is equivalent to
the manually developed fixed version.

To answer RQ3, we perform an objective comparison of the performance
of the four search algorithms implemented by ACORE by using two standard

L A formula A is weaker than B, if B A A is unsatisfiable, i.e., if B implies A.
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quality indicators: hypervolume (HV) [62] and inverted generational distance
(IGD) [12]. The recent work of Wu et al. [61] indicates that quality indicators HV
and IGD are the prefered ones for assessing genetic algorithms and Pareto evo-
lutionary algorithms such as the ones ACORE implements (NSGA-ITI, WBGA,
and AMOSA). These quality indicators are useful to measure the convergence,
spread, uniformity, and cardinality of the solutions computed by the algorithms.
More precisely, hypervolume (HV) [42,54] is a volume-based indicator, defined
by the Nadir Point [38,62], that returns a value between 0 and 1, where a value
near to 1 indicates that the Pareto-front converges very well to the reference
point [42] (also, high values for HV are good indicator of uniformity and spread
of the Pareto-front [54]). The Inverted Generational Distance (IGD) indicator is
a distance-based indicator that also computes convergence and spread [42,54]. In
summary, IGD measures the mean distance from each reference point to the near-
est element in the Pareto-optimal set [12,54]. We also perform some statistical
analysis, namely, the Kruskal-Wallis H-test [37], the Mann-Whitney U-test [44],
and Vargha-Delaney A measure Ars [59], to compare the performance of the
algorithms. Intuitively, the p-value will tell us if the performance between the
algorithms measured in terms of the HV and IGD is statistical significance, while
the A-measure will tell us how frequent one algorithm obtains better indicators
than the others.

ACORE is implemented in Java into the JMetal framework [50]. It inte-
grates the LTL satisfiability checker Polsat [41], a portfolio tool that runs in
parallel with four LTL solvers, helping us to efficiently compute the fitness func-
tions. Moreover, ACORE uses the OwL library [36] to parse and manipulate the
LTL specifications. The quality indicators also are implemented by the JMetal
framework and the statistical tests by the Apache Common Math. We ran all the
experiments on a cluster with nodes with Xeon E5 2.4GHz, with 5 CPUs-nodes
and 8GB of RAM available per run.

Regarding the setting of the algorithms, the population size of 100 indi-
viduals was defined and the fitness evaluation was limited to a number of 1000
individuals. Moreover, the timeout of the model counting and SAT solvers were
configured as 300 seconds. The probability of crossover application was 0.1, while
mutation operators were always applied. A tournament selection of four solutions
was used for NSGA-III, while WBGA instantiated Bolzman’s selection with a
decrement exponential function. The WBGA was configured to weight the fit-
ness functions as a proportion of 0.1 in the Status, 0.7 in the ResolvedBC, 0.1
in Syntactic, and 0.1 in Semantic. The AMOSA used an archive of crowding
distance, while the cooling scheme relied on a decrement exponential function.

The case studies and results are publicly available at https://sites.
google.com/view/acore-goal-conflict-resolution/.
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6 Experimental Results

6.1 RQ1: Effectiveness of ACoRe

Table 2 reports the average number of non-dominated resolutions produced by
the algorithms in the 10 runs. First, it is worth mentioning that when ACORE
uses any of the genetic algorithms (NSGA-III or WBGA), it successfully gen-
erates at least one resolution for all the case studies. However, AMOSA fails
in producing a resolution for the 1ily16 and simple arbiter icse2018 in 2
and 1 cases of the 10 runs, respectively. Despite that Unguided search succeeds
in the majority of the cases, it was not able to produce any resolution for the
prioritized arbiter, and failed in producing a resolution in 5 out of the 10
runs for the simple-arbiter-v2.

Table 2: Effectiveness of ACORE in producing

resolutions.

Specification NSGA-III WBGA AMOSA Unguided

minepump 5.0 6.5 1.8 5.1

simple arbiter-v1 4.8 3.1 2.0 4.1

simple arbiter-v2 3.1 3.4 23 05 Table 3: ACORE effectiveness in
prioritized arbiter 3.1 3.7 2.2 0.0 .

rhiter 58 X 30 == producing an exact or more gen-
detector 4.9 438 3.2 6.1 eral resolution than the manually
1t12dba27 3.0 4.2 3.5 4.0 .

round robin 7.0 4.2 4.7 4.7 written one.

tep 6.4 4.9 2.0 7.4 Specification NSGA-III WBGA AMOSA Unguided
atm 3.9 6.3 3.3 4.5  minepump v v v v
telephone 4.7 4.4 2.2 4.5  simple arbiter-vl

clovator 5.9 5.9 3.6 48 Smplearbiter-v2 4

rres 55 5.7 14 3.3 Lrontied abiter

achieve pattern 5.0 5.9 2.5 2.8 detector v v v
retraction pattern-1 4.1 4.0 2.7 4.6  ltl2dba27

retraction pattern-2 6.1 4.8 2.6 6.0 round robin

RG2 3.3 5.2 1.5 4.3

lily01 5.1 5.1 1.5 4.1

lily02 24 3.8 1.9 1.9

lily11 7.1 5.0 2.2 5.8

lily15 6.1 4.1 1.2 5.8

lily16 3.5 3.2 0.8 3.8

1t12dba theta-2 1.9 2.8 1.9 1.2

1tl2dba R-2 1.0 2.1 1.9 2.1

simple arbiter icse2018 3.8 3.7 0.9 3.5

Second, the genetic algorithms (NSGA-IIT and WBGA) generate on average
more (non-dominated) resolutions than AMOSA and unguided search. The re-
sults point out that WBGA generates more (non-dominated) resolutions than
others in 13 out of the 25 cases, and NSGA-IIT is the one that produces more
(non-dominated) resolutions in 11 cases. Considering the genetic algorithms to-
gether, we can observe that they outperform the AMOSA and unguided search
in 21 out of the 25 cases, and coincide in one case (1t12dba R-2). Finally, the
Unguided Search generates more resolutions in 3 cases, namely, detector, TCP,
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and retraction-pattern-1. Interestingly, the different algorithms of ACORE
produce on average between 1 and 8 non-dominated resolutions, which we con-
sider is a reasonable number of options that the engineer can manually inspect
and validate to select the most appropriate one.

ACORE generates more non-dominated resolutions when adopting genetic al-
gorithms. On average, ACORE produces between 1 and 8 non-dominated res-
olutions that can be presented to the engineer for analysis and validation.

6.2 RQ2: Comparison with the Ground-truth

Table 3 presents the effectiveness of ACORE in generating a resolution that
is equivalent or more general than the ones manually developed by engineers.
Overall, ACORE is able to reproduce same resolutions in 3 out of 8 of the
cases, namely, for the minepump (our running example), simple arbiter-v2,
and detector. Like for RQ1, the genetic algorithms outperform AMOSA and
unguided search in this respect. Particularly, the Unguided Search can replicate
the resolution for the detector case, in which AMOSA fails.

Overall, the genetic algorithms can produce same or more general resolutions
than the ground-truth in 3 out of the 8 cases, outperforming AMOSA (1 out
of the 8) and unguided search (2 out of the 8).

6.3 RQ3: Comparing the Multi-objective Optimization Algorithms

For each set of non-dominated resolutions generated by the different algorithms,
we compute the quality indicators HV and IGD for the syntactic and semantic
similarity values. The reference point is the best possible value for each objective
which is 1. These will allow us to determine which algorithm converges the most
to the reference point and produces more diverse and optimal resolutions.

Hypervolume Inverted Generational Distance

Fig.4: HV of the Pareto-optimal sets Fig.5: IGD of the Pareto-optimal sets
generated by ACORE. generated by ACORE.
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Figures 4 and 5 show the boxplots for each quality indicator. NSGA-III ob-
tains on average much better HV and IGD than the rest of the algorithms.
Precisely, it obtains on average 0.66 of HV (while higher the better) and 0.34 of
IGD (while lower the better), outperforming the other algorithms.

To confirm this result we compare the quality indicators in terms of non-
parametric statistical tests: (i) Kruskal-Wallis test by ranks and (ii) the Mann-
Whitney U-test. The « value defined in the Kruskal-Wallis test by ranks is
0.05 and the Mann-Whitney U-test is 0.0125. Moreover, we also complete our
assessment by using Vargha and Delaney’s /112, a non-parametric effect size
measurement. Table 4 summarises the results when we compare pair-wise each
one of the approaches. We can observe that NSGA-III in near 80% of the cases
obtains resolutions with better quality indicators than AMOSA and Unguided
search (and the differences are statistically significant). We can also observe that
NSGA-IIT obtains higher HV (IGD) than WBGA in 66% (65%) of the cases.
From Table 4 we can also observe that WBGA outperforms both AMOSA and
unguided search. Moreover, we can observe that AMOSA is the worse performing
algorithm according to the considered quality indicators.

Table 4: HV and IGD quality indicators for the generated resolutions.

WBGA AMOSA Unguided
HV IGD HV IGD HV IGD
NSGAIII p-value|< 0.00001 < 0.00001|< 0.00001 < 0.00001|< 0.00001 < 0.00001
Aa 0.66 0.65 0.84 0.83 0.80 0.76
WBGA  p-value - -[<0.00001 < 0.00001]|< 0.00001 < 0.00001
Ay - - 0.74 0.74 0.64 0.61
AMOSA p-value - - - -[<0.00001 < 0.00001
As - - - - 0.36 0.36

Overall, both statistical tests evidence that NSGA-III leads to a set of reso-
lutions with better quality indicators (HV and IGD) than the rest of the al-
gorithms. WBGA is the one in the second place, outperforming the unguided
search and AMOSA. While AMOSA shows the lowest performance based on
the quality indicators, even worse than the unguided search in several cases.

7 Related Work

Several manual approaches have been proposed to identify inconsistencies be-
tween goals and resolve them once the requirements were specified. Among them,
Murukannaiah et al. [49] compares a genuine analysis of competing hypotheses
against modified procedures that include requirements engineer thought process.
The empirical evaluation shows that the modified version presents higher com-
pleteness and coverage. Despite the increase in quality, the approach is limited
to manual applicability performed by engineers as well previous approaches [56].

Various informal and semi-formal approaches [28,32,33], as well as more for-
mal approaches [21,23,26,30,51,53], have been proposed for detecting logically
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inconsistent requirements, a strong kind of conflicts, as opposed to this work
that focuses on a weak form of conflict, called divergences (cf. Section 3).

Moreover, recent approaches have been introduced to automatically identify
goal-conflicts. Degiovanni et al. [18] introduced an automated approach where
boundary conditions are automatically computed using a tableaux-based LTL
satisfiability checking procedure. Since it exhibits serious scaliability issues, the
work of Degiovanni et al. [17] proposes a genetic algorithm that mutates the LTL
formulas in order to find boundary conditions for the goal specifications. The
output of this approach can be fed into ACORE to produce potential resolutions
for the identified conflicts (as shown in the experimental evaluation).

Regarding specification repair approaches, Wang et al. [60] introduced ARe-
pair, an automated tool to repair a faulty model formally specified in Alloy [31].
ARepair takes a faulty Alloy model and a set of failing tests and applies muta-
tions to the model until all failing tests become passing. In the case of ACORE,
the identified goal conflicts are the ones that guide the search, and candidates
are aimed to be syntactic and semantically similar to the original specification.

In the context of reactive synthesis [22,46,52], some approaches were proposed
to repair imperfections in the LTL specifications that make the unrealisable (
i.e., no implementation that satisfies the specification can be synthesized). The
majority of the approaches focus on learning missing assumptions about the en-
vironment that make them unrealisable [4,10,11,48]. A more recent approach [8],
published in a technical report, proposes to mutate both the assumptions and
guarantees (goals) until the specification becomes realisable. Precisely, we use
the novel model counting approximation algorithm from Brizzio et. al [8] to
compute the semantic similarity between the original buggy specification and
the resolutions. However, the notion of repair for Brizzio et. al [8] requires a
realizable specification, which is very general and does not necessarily lead to
quality synthesized controllers [20,47]. In this work, the definition of resolution is
fine-grained and focused on removing the identified conflicts, which potentially
leads to interesting repairs as we showed in our empirical evaluation.

Alrajeh et al. [2] introduced an automated approach to refine a goal model
when the environmental context changes. That is, if the domain properties are
changed, then this approach will propose changes in the goals to make them
consistent with the new domain. The adapted goal model is generated using
a new counterexample-guided learning procedure that ensures the correctness
of the updated goal model, preferring more local adaptations and more similar
goal models. In our work, the domain properties are not changed and the adap-
tions are made to resolve the identified inconsistencies, and instead of counter-
examples, our search is guided by syntactic and semantic similarity metrics.

8 Conclusion

In this paper, we presented ACORE, the first automated approach for goal-
conflict resolution. Overall, ACORE takes a goal specification and a set of
conflicts previously identified, expressed in LTL, and computes a set of reso-
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lutions that removes such conflicts. To assess and implement ACORE that is a
search-based approach, we adopted three multi-objective algorithms (NSGA-III,
AMOSA, and WBGA) that simultaneously optimize and deal with the trade-off
among the objectives. We evaluated ACORE in 25 specifications that were writ-
ten in LTL and extracted from the related literature. The evaluation showed
that the genetic algorithms (NSGA-III and WBGA) typically generate more
(non-dominated) resolutions than AMOSA and an Unguided Search we im-
plemented as a baseline in our evaluation. Moreover, the algorithms generate
on average between 1 and 8 resolutions per specification, which may allow the
engineer to manually inspect and select the most appropriate resolutions. We
also observed that the genetic algorithms (NSGA-III and WBGA) outperform
AMOSA and Unguided Search in terms of several quality indicators: number of
(non-dominated) resolutions and standard quality indicators (HV and IGD) for
multi-objective algorithms.
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