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Abstract 

Plasma lipids are modulated by gene variants and many environmental factors, including diet-associated weight gain. However, understanding how 

these factors jointly interact to influence molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the BXD recombinant 

inbred family of mice to query weight gain as an environmental stressor on plasma lipids. Coexpression networks were examined in both nonobese and 

obese livers, and a network was identified that specifically responded to the obesogenic diet. This obesity-associated module was significantly associated 

with plasma lipid levels and enriched with genes known to have functions related to inflammation and lipid homeostasis. We identified key drivers of the 

module, including Cidec, Cidea, Pparg, Cd36 , and Apoa4 . The Pparg emerged as a potential master regulator of the module as it can directly target 19 of 

the top 30 hub genes. Importantly, activation of this module is causally linked to lipid metabolism in humans, as illustrated by correlation analysis and 

inverse-variance weighed Mendelian randomization. Our findings provide novel insights into gene-by-environment interactions for plasma lipid metabolism 

that may ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or treat dyslipidemia in patients. 

Published by Elsevier Inc. 
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1. Introduction 

Plasma lipids are controlled by both genetic and environmental

variables, particularly physical activity and diet. The main compo-

nents of plasma lipids are triglycerides (TG), which are involved

in energy storage, and total cholesterol (TC), which is mainly used

to synthesize cell membranes and sterols. Epidemiological studies

have shown that abnormal plasma lipid levels, such as elevated

low-density lipoprotein cholesterol (LDL) or TG, are strong risk fac-
Abbreviations: CD, Control diet; DIO, Diet induced obesity; DEGs, Differentia  

Genome-wide association studies; GTEx, Genotype-Tissue Expression; GO, Gene On  
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tors for metabolic syndrome [1] , type two diabetes [2] , atheroscle-

rosis [ 3 , 4 ], coronary artery disease [5] , and cardiovascular disease

[6–8] , the leading cause of death worldwide [9] . 

Genetic studies in humans have uncovered dozens of key regu-

lators of plasma lipid concentrations, including LDLR, APOB, APOE,

CETP, LPL, ABCA1, LCAT, and LPL [10] . Also, recent genome-wide as-

sociation studies (GWAS) have linked hundreds of genetic variants

and disease causing genes to plasma lipids levels [11–14] . For ex-

ample, 826 variants across 118 novel and 268 previously identified

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnutbio.2023.109398&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jnutbio.2023.109398
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loci were associated with lipid levels in 312,571 US veterans [14] .

In addition to human studies, extensive studies on the genetic ba-

sis of plasma lipid levels have been conducted in mouse models.

For instance, our previous studies [ 15 , 16 ] in the BXD mouse refer-

ence population have revealed several quantitative trait loci (QTLs)

genes that are associated with plasma lipid levels. In addition, ac-

cording to the Rat Genome Database (RGD, https://rgd.mcw.edu/ )

[17] , about 100 TC, 1 LDL, 60 TG, and 140 high-density lipoprotein

cholesterol (HDL)-related QTLs have been mapped on the mouse

genome. However, previous studies, taken together, explained only

a small fraction of the variation in plasma lipid levels due to po-

tential unmeasured variables, termed “missing heritability,” such as

gene-by-gene or gene-by-environment interactions [18–20] . There-

fore, we aimed to quantify how individual genes interact and

form molecular networks and how these interactions respond to

changes in environment, such as the introduction of an obesogenic

diet to address the need for clarity in genetic modifiers of plasma

lipids. 

Although reductions of dietary fat and cholesterol have positive

effects on plasma lipids at the population level, much individual

variability exists, a trend that could be explained by interactions

between diet and gene polymorphisms [21] . However, analysis of

these interactions in human populations is difficult as it is hard

to control environmental factors and access relevant tissues for

molecular analyses [22] . Murine models provide an alternative

way to dissect gene-by-diet interactions by introducing controlled

environmental perturbations into high-precision genetic reference

populations, such as the BXD strains derived from a cross between

C57BL/6J mice (B6) and DBA/2J mice (D2) with more than 20

consecutive generations [23] . Currently, more than 150 BXD stains

are available and numerous phenome data sets have been pub-

lished over the past decades, making it an invaluable resource for

system genetics studies [24] . As each BXD strain has been stably

inbred, each strain can be replicated in large numbers as desired,

facilitating precise mapping of complex traits with low to mod-

erate heritability [25] and the discovery of candidate genes and

mechanisms related to many phenotypes, including plasma lipids. 

The advantage of our approach is that compared to differential

gene expression analysis which focuses on single genes, network-

based analysis can directly link gene modules (sets of tightly corre-

lated genes) to clinical traits. In addition, network analysis of gene

expression under different conditions can be performed to identify

differential coexpression networks or modules that are specific to

particular environmental conditions [26] . To date, a number of al-

gorithms have been developed for network based analysis of gene

expression data sets [27] , such as Weighted Gene Co-Expression

Network Analysis (WGCNA) [28] . This approach has been success-

fully used to identify plasma lipid associated modules and hub

genes in human populations with hyperlipidemia [29] and dyslipi-

demia [30] and in mouse F2 populations [31] and knockout models

[ 15 , 32 ]. 

In this study, plasma lipid levels and liver transcriptomes were

examined in 42 strains of the BXD mouse population, with roughly

10 individuals of each strain separated evenly into cohorts of con-

trol diet (CD) or high-fat diet (HFD). Diet-induced obesity (DIO) re-

sulted in the differential expression of thousands of genes and al-

tered the composition of the coexpressed gene modules that were

identified using WGCNA. We analyzed network modules identi-

fied for both conditions to identify a DIO-induced gene module

that was associated with plasma lipid concentrations which con-

tained many genes that have functions related to lipid metabolism.

Bayesian network based causative analysis was conducted to de-

termine relationships among genetic variation, gene expression,

and linked phenotypes. Finally, correlation analysis confirms coex-

pression of some of these genes in humans, and inverse-variance
weighed Mendelian randomization with human Genotype-Tissue Ex-

pression (GTEx) normalized liver gene expressions and 249 body

weight- and lipid-related traits suggests that the activation of these

genes in humans might be linked to reduced free cholesterol and

lower levels of TG in very large HDL. 

2. Materials and methods 

2.1. Mice and phenotyping 

The BXD recombinant inbred (RI) mice were born and raised

at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzer-

land. Briefly, 10 males from 42 strains of the BXD family and both

parental strains (C57BL/6J and DBA/2J) were grouped into two co-

horts at 8 weeks of age, five animals per strain on a CD (6%

kcal/fat, 20% protein, 74% carbohydrate, Harlan 2018) and 5 ani-

mals per strain on HFD (60% kcal/fat, 20% protein, 20% carbohy-

drate, Harlan 06,414). All mice were sacrificed at 29 weeks of age

after fasting overnight. Under isoflurane anesthesia, blood was re-

moved from the vena cava and animals were perfused with 4 °C
phosphate-buffered saline. Tissues were taken immediately and

frozen in liquid nitrogen. The detailed procedure for plasma analy-

sis and phenotype measurement can be found in our previous pub-

lications [ 33 , 34 ]. 

2.2. Histopathologic evaluation 

Samples of the liver tissue were fixed in 4% paraformalde-

hyde, embedded in paraffin, cut, and stained with hematoxylin and

eosin (H&E). Fat was identified morphologically as sharply demar-

cated clear cytoplasmic vacuoles. Abundant lipid produces large

coalescing vacuoles that displace the nucleus to the cell margin

(macrovesicular steatosis), while smaller amounts produce small

spherical clear vacuoles scattered in the cytoplasm (microvesicu-

lar steatosis). Glycogen is differentiated morphologically as it pro-

duces ragged clear spaces that are not spherical and do not have

sharp margins or displace nuclei. 

2.3. RNA isolation and microarray 

Total RNA was extracted from 100 mg pieces of liver tissue us-

ing Trizol reagent (Invitrogen) followed by a standard phase sepa-

ration extraction using chloroform and precipitated by isopropanol.

Individual RNA samples from all mice of the same strain and co-

hort (3–5 mice) were pooled equally (by microgram of RNA) into

a single RNA sample. Pooled RNA samples were then purified with

RNEasy (QIAGEN). Agilent 2,100 Bioanalyzer was used to evaluate

RNA integrity and quality. Samples that passed quality control (RIN

> 8.0) were run on Affymetrix Mouse Gene 1.0 ST at the University

of Tennessee Health Science Center (UTHSC). 

2.4. Microarray normalization and preprocessing 

Raw microarray data from both cohorts were normalized to-

gether using the Robust Multichip Array (RMA) method [35] . The

expression data were then renormalized using a modified Z score

described in a previous publication [36] . Briefly, RMAs were first

transformed into log2-values. Then the data of each single array

was converted to Z-scores, multiplied by two, and a value of eight

was added. Before microarray data was used in the analysis dis-

cussed below, the data was filtered to remove probes that lacked

annotation or had low expression. Specifically, of the ∼35,0 0 0

probe sets on Affymetrix Mouse Gene 1.0 ST, 18,453 probes (cor-

responding to 15,754 genes) remained after removing unannotated

Affy probes and probes with mean expression level < 7. These

probes were used in subsequent analysis. 

https://rgd.mcw.edu/
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2.5. Differential expression analysis 

The Limma package from R Bioconductor [37] https://www.

nature.com/articles/nature16, 064- ref- CR35 was used for the nor-

malized microarray data to analyze differentially expressed genes

(DEGs) between HFD and CD cohorts. Genes below a Benjamini-

Hochberg false discovery rate (FDR) [38] threshold of 5% were con-

sidered DEGs. 

2.6. Gene set over-representation analysis 

To investigate the biological functions of the gene sets of in-

terest, such as the DEGs, WebGestalt ( http://www.webgestalt.org/ )

[39] , an open-source online analysis toolkit, was used for enrich-

ment analysis for Gene Ontology (GO) biological processes and

KEGG pathways. GO biological process terms were filtered to only

include terms at hierarchical level nine to limit redundancy in the

GO terms. Mouse genome was used as reference gene set and the

minimum number of genes for a category was set to five. The FDR

< 0.05 indicated significant overrepresentation in a category for

the queried genes. 

2.7. Weighted gene coexpression network analysis (WGCNA) 

We constructed gene coexpression networks for both cohorts

(CD and HFD) separately using the WGCNA v1.63 package in R

(v3.1.3) [40] . Briefly, a soft threshold power ( β = 5 for HFD and

β = 6 for CD) was selected by pickSoftThreshold based on the cri-

terion of approximate scale-free topology. Then, the signed adja-

cency matrix a ij was calculated with the following equation: 

signed 
i j 

= 

[ 

cor 
(
x i , x j 

)
+ 1 

2 

] β

where x i and x j are the i th and j th gene expression traits. Sub-

sequently, a Topological Overlap Matrix (TOM) was constructed.

Genes were aggregated into modules by hierarchical clustering

based on TOM and further refined using the dynamic tree cut al-

gorithm. We also evaluated the module-trait association by calcu-

lating the correlation coefficient between traits and module eigen-

genes (MEs), defined as the first principal component of a given

module. 

2.8. Criteria for identifying gene modules induced by HFD and 

associated with plasma lipids 

Gene modules identified by WGCNA that were both induced by

HFD and associated with plasma lipid levels were evaluated to se-

lect gene network modules. First, modules were identified in which

at least 44.5% of the genes were identified as being differentially

expressed (i.e., FDR < 0.05) because this cut-off value was twice

the percentage of DEGs in the entire data set (22.3%). Second, mod-

ules were selected that were induced only after the introduction of

HFD. We calculated the Jaccard coefficient, for each pair of mod-

ules from the two conditions with the following equation: 

J ( A , B ) = | A ∩ B | / | AB | 
where A and B are the genes from the CD and HFD modules, re-

spectively. Jaccard coefficient is a measure of similarity between

two elements. The index ranges from 0–1. The closer to zero, the

less similarity of the two data sets. For this, HFD modules with

Jaccard coefficient < 0.15 when compared with each CD mod-

ule were then selected as being induced by HFD. Third, modules
were selected that were significantly enriched with genes asso-

ciated with plasma lipid-related biological processes in GO. We

performed GO enrichment analysis to identify biological processes

that were significantly overrepresented (FDR < 0.05) among the

genes in each module. Last, we examined associations between

modules and plasma lipid phenotypes and identified modules in

which the ME was significantly correlated with these phenotypes. 

2.9. Identification of hub genes 

Module hub genes are believed to be highly connected with

other module genes and have the most significant biological im-

pact for the associated traits. Module hub genes were identified

and ranked using the following three parameters: (1) intramodular

connectivity, which refers to the connectivity between genes in the

same module; (2) gene significance, the correlation coefficient be-

tween the expression level of the gene and the phenotype; and (3)

module membership, which was obtained by correlation analysis

between the expression level of the gene and the MEs. Ideally, hub

genes should have high values of IC and low P -values for both GS

and MM. All three analyses were done with the WGCNA package. 

2.10. Protein-protein interaction (PPI) network 

We explored PPI networks for the top 30 hub genes in

HFD module M9 in the STRING database ( https://string-db.org/ )

[41] with a minimum interaction score of 0.4. 

2.11. Human GWAS 

The NHGRI GWAS Catalog ( https://www.ebi.ac.uk/gwas/ ) [42] is

a continuously updated public resource to facilitate researchers to

quickly and efficiently access current GWAS results. In order to

validate human GWAS with BXD RI model findings, we collected

GWAS signals with P -values less than 1 x 10 -6 for plasma lipid and

fasting glucose levels. 

2.12. Mammalian phenotype ontology (MPO) 

Plasma lipid, body weight, and glucose-associated genes

were retrieved from Mouse Genome Informatics ( http://www.

informatics.jax.org/ ) with the 32 MPO terms listed in Supplemen-

tary Data 1. 

2.13. QTL mapping 

QTL mapping was conducted with WebQTL in GeneNetwork

( http://www.genenetwork.org/ ). The 7,320 informative SNP mark-

ers which segregated in BXD RI strains were used for interval

mapping. Likelihood ratio statistics (LRS) were used to assess the

association or linkage between differences in traits and differ-

ences in particular genotype markers. We report quantitative trait

loci (QTLs) achieving significance (genome wide P -value < .05)

based on 2,0 0 0 permutation tests. The 1.5-logarithm of the odds

(LOD) confidence interval was used to filter the candidate genes.

In addition, phenotype-associated QTL using the Haley and Knott

method were further confirmed with GEMMA [43] , a linear mixed

model mapping algorithm that accounts for kinship among the

BXD strains. 

2.14. Causative analysis with Bayesian network modeling 

In order to investigate pathways connecting QTL genotypes,

gene expression, and phenotypes, we created Bayesian net-

work models using the Bayesian Network Webserver (BNW;

https://www.nature.com/articles/nature16,064-ref-CR35
http://www.webgestalt.org/
https://string-db.org/
https://www.ebi.ac.uk/gwas/
http://www.informatics.jax.org/
http://www.genenetwork.org/
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http://compbio.uthsc.edu/BNW/ ) [ 44 , 45 ]. Bayesian networks are

graphical models that describe the conditional dependencies be-

tween data variables, where directed edges between network vari-

ables imply causal relationships. Bayesian network model struc-

tures were learned from the data using BNW with the following

structure learning settings. Each variable had a maximum of four

direct parents in any potential model, model averaging of the 1,0 0 0

highest scoring networks was performed, and directed edges with

weights greater than 0.5 were included in the final network model.

2.15. Mapping mouse genes to human genes 

To map the mouse genes to their corresponding human genes,

we used UniProt’s “Similar proteins” field or protein BLAST ( https:

//blast.ncbi.nlm.nih.gov/Blast.cgi? PAGE = Proteins) if the former did

not provide a human protein with at least 50% identity. 

2.16. Genotype-tissue expression (GTEx) normalized liver gene 

expressions and eQTL analysis 

Normalized gene expressions were calculated by the GTEx

consortium [46] based on RNA-Seq count data in three sequential

steps: (1) genes were selected that have ≥ 0.1 transcripts-per-

million and ≥ 6 reads in ≥ 20% of the samples, (2) counts were

normalized with edgeR’s TMM normalization, and (3) normalized

expressions were inverse-normally transformed. These normal-

ized gene expressions are publicly available from GTEx through

https://storage.googleapis.com/gtex _ analysis _ v8/single _ tissue _ qtl 

_ data/GTEx _ Analysis _ v8 _ eQTL _ expression _ matrices.tar.cis-eQTLs 

(adjusted P -value < 5%) were mapped by the GTEx consortium

with FastQTL [47] based on the normalized gene expressions

and the data are publicly available at the GTEx portal through

https://storage.googleapis.com/gtex _ analysis _ v8/single _ tissue _ qtl 

_ data/GTEx _ Analysis _ v8 _ eQTL.tar . 

2.17. Mendelian randomization 

We conducted Mendelian randomization analysis using the

TwoSampleMR R package [48] . Wald ratio tests were used to calcu-

late the associations of the individual genes with the outcomes. As-

sociations between module activation and outcomes were assessed

with the inverse-variance weighted method [49] . A Benjamini-

Hochberg FDR < 5% was considered statistically significant. 

3. Results 

3.1. BXD RI mice on HFD have elevated blood lipid levels 

To characterize the effect of diet on plasma lipids, we exam-

ined 42 BXD RI strains on two diets: 41 strains were fed CD and

40 strains were fed HFD, with 39 strains overlapping in both di-

ets. These strains included 37 BXD strains and the two parental

strains (C57BL/6J and DBA/2J) fed both diets, as well as two strains

(BXD60 and BXD92a) fed only CD, and one strain (BXD50) fed only

HFD. Diet was initiated at 8 weeks of age. Male littermates from

breeding trios were used, with typically three trios per strain es-

tablished simultaneously. Thirty-two strains yielded sufficient pups

for both CD and HFD cohorts to be established concurrently (i.e.,

7–10 males born within ±2 days), while 7 strains with poor breed-

ing performance yielded CD and HFD cohorts that were separated

by birthdate. Mice were sacrificed at 29 weeks of age after fast-

ing overnight. Serum and liver were collected for phenotyping and

mRNA expression profiling ( Fig. 1 A). Overall, BXD RI strains on

HFD had a significant increase in body weight ( Fig. 1 B) and fat

mass ( Fig. 1 C) that was accompanied by a decrease in lean mass
( Fig. 1 D). Concentrations of plasma lipids, including TC, HDL, and

LDL ( Fig. 1 E-G), were significantly higher in HFD-fed mice com-

pared to CD-fed controls. Diet did not have a significant impact on

free fatty acid (FFA), TG, and basal plasma glucose levels ( Fig. 1 H-J).

3.2. BXD RI mice on HFD develop hepatic steatosis of varying severity

In order to evaluate whether HFD promotes hepatic steatosis

across the BXD strains, we performed hepatic H&E analysis. Re-

sults demonstrated that some strains, such as BXD214 ( Fig. 1 K),

displayed diffuse marked macrovesicular steatosis (accumulation of

large lipid droplets in hepatocytes), and some strains, such as BXD2

( Fig. 1 K), remain resistant to steatosis. 

3.3. Diet significantly altered lipid metabolism-related transcriptional 

profiles 

To study the impact on the heterogeneity of gene expression

induced by HFD across strains, liver transcriptomes of strains fed

CD or HFD were analyzed. The expression levels of 3,513 genes

(22.3%, Supplementary Data 2) were significantly altered in livers

of mice fed HFD (FDR < 0.05) compared to controls. Expression of

the DEGs was more likely to be upregulated in HFD than CD, as

2,109 genes of the DEGs were upregulated in HFD. 

In general, the magnitude of differences in message expres-

sion between the two groups was relatively modest, as only seven

genes had fold change (FC) expression differences greater than

2.0. The seven genes with FC > 2.0 and FDR < 0.01were Cyp2b9

(FC = 8.8, FDR = 1.76E-08), Lcn2 (FC = 3.3, FDR = 2.77E-06), Saa2

(FC = 2.3, FDR = 0.001), Serpina4-ps1 (FC = -2.3, FDR = 5.06E-

05), 9030619P08Rik (FC = 2.2, FDR = 5.42E-09), Saa1 (FC = 2.1,

FDR = 0.002), and Cd36 (FC = 2.0, FDR = 6.57E-09). In addition,

around 420 of the DEGs had 1.2 ∼ 2.0 FC with FDR < 0.05. This

group included Apoa4, Cidea, Hamp, Gsta1, Gsta2 , and mir-122 . 

In order to determine the overall functional relevance of both

upregulated and downregulated DEGs, we performed gene set

over-representation analysis, which identified 40 and 42 terms that

were significantly enriched (FDR < 0.05) for GO biological processes

at hierarchical tree level 9 and KEGG pathways, respectively. No-

tably, many of the enriched terms were related to metabolism and

plasma lipids. For example, the most enriched GO biological pro-

cess terms were Organic Acid Metabolic Process, Peptide Metabolic

Process, and Lipid Metabolic Process. Similarly, the most highly en-

riched KEGG pathway was Metabolic Pathways ( Table 1 ). 

3.4. Diet influences gene modules identified by WGCNA 

It has been widely recognized that coexpressed genes are

commonly involved in similar biological pathways or processes

[50] . Therefore, we constructed gene coexpression networks using

WGCNA with a soft-thresholding power ( β = 5 for HFD and β = 9

for CD) determined by scale-free topology ( Fig. 2 A–C and Fig. S1). A

total of 15,754 genes were parsed into 18 and 35 distinct coexpres-

sion modules for the HFD and CD cohorts, respectively (Supple-

mentary Data 2). The modules identified by WGCNA have a wide

range of sizes, with some modules containing thousands of genes

and other containing only dozens (Supplementary Data 2). To iden-

tify HFD modules that are impacted by diet, we determined the

percentage of DEGs from above within each module. The percent-

ages of DEGs in the individual HFD modules ranged from 8.2%–

70.1% ( Table 2 and Supplementary Data 2). Compared to the per-

centage of DEGs among all genes of 22.3%, there were several HFD

modules that were enriched with DEGs, including 5 modules (M7,

M8, M9, M13, and M16) that had percentages of DEGs that were

more than twice the overall DEG percentage. 

http://compbio.uthsc.edu/BNW/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_eQTL_expression_matrices.tar.cis-eQTLs
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_eQTL.tar
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Fig. 1. Effects of HFD on body weight, body composition, and plasma lipid. (A) Study design. BXD strains are crosses of C57BL/6J (B) and DBA/2J (D). BXDs and parental strains 

were divided into two diet groups. Blood serum phenotypes and liver transcriptomes of male mice were analyzed. (B–J) Boxplots showing differences between CD and HFD 

cohorts in obesity and plasma lipid-related phenotypes. ∗∗∗∗P < 0.0 0 01. (K) Histologic analysis shows heterogeneity in fatty liver across strains. Representative images for 

strains BXD214 (one and three) and BXD2 (two and four). Scale bars 500 microns (one and two) and 25 microns (three and four). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To examine the condition-specificity of the modules in the CD

and HFD cohorts, we calculated the Jaccard coefficient between

each of the modules for the two conditions. In general, the Jaccard

coefficients between the modules in the two conditions were rel-

atively low, indicating that WGCNA identified distinct modules in

the HFD and CD data ( Table 2 and Supplementary Data 3 and 4).

Specifically, the maximum Jaccard coefficient between a HFD mod-

ule and any of the CD modules was ≤ 0.15 for 12 of the HFD mod-

ules, thus we considered these 12 modules as HFD-specific. How-

ever, there were some pairs of HFD and CD modules with high Jac-

card coefficients, indicating that the module was shared between

the two diets. Module pairs with a high amount of overlap for

the two diets included the two largest modules for each diet (HFD

module M18 and CD module M33, HFD module M2 and CD mod-

ule M2), but there were also some small modules with relatively

large Jaccard coefficients. For example, HFD module M16 and CD

module M32, each of which contained ∼100 genes, had a Jaccard

coefficient of 0.38. 

Combining the modular specificity as defined by the Jaccard co-

efficient with the percentages of DEGs in each module can further

identify modules that are impacted or created by a HFD. Specifi-

cally, 5 HFD modules (M1, M6, M7, M9, and M17) had a high per-

centage ( > 44.5%) of genes that were DEGs and low ( ≤ 0.15) Jac-

card coefficients when compared with all CD modules. Therefore,
the genes within these modules are likely sensitive to changes in

diet. In contrast, HFD module M18, for example, had a low per-

centage of DEGs and high Jaccard coefficient with a CD module,

indicating that the expression and interactions of the genes in this

module were highly responsive to the different environments of CD

and HFD. 

3.5. Several modules identified by WGCNA are associated with 

plasma lipid levels in HFD condition 

In order to investigate biological functions related to the HFD

modules, we conducted GO enrichment analysis, which identified

15 modules that were significantly enriched (FDR < 0.05) in

different biological processes ( Fig. 2 C and Supplementary Data 5).

Notably, two modules, M9 and M15, were enriched with genes

involved in the lipid metabolic process and fatty acid catabolic

process, respectively ( Fig. 2 C). The genes of modules M5, M6, and

M12 were not significantly enriched with genes for any functional

annotations in our analysis. In addition, we correlated the MEs for

each module to the external phenotypes. Seven modules showed

significant correlation (FDR < 0.05) with at least one of the

investigated traits. Module M9 was associated with several of the

phenotypes of interest, with MEs that were significantly correlated

with HDL, LDL, TG, and FFA ( Fig. 2 D). 
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Table 1 

Top 10 enrichment terms of GO (biological process) and KEGG pathway for the DEGs induced by HFD in BXD RI mice. 

Term Description N. Genes FDR 

GO (Biological Process) 

GO:0 0 02376 immune system process 4 4 4 < 2.06E-14 
GO:0 0 02682 regulation of immune system process 239 < 2.06E-14 

GO:0 0 06082 organic acid metabolic process 254 < 2.06E-14 

GO:0 0 06518 peptide metabolic process 174 < 2.06E-14 
GO:0 0 0 6 629 lipid metabolic process 321 < 2.06E-14 
GO:0 0 0 6 631 fatty acid metabolic process 113 < 2.06E-14 

GO:0 0 06915 apoptotic process 362 < 2.06E-14 
GO:0 0 06952 defense response 268 < 2.06E-14 
GO:0 0 06955 immune response 255 < 2.06E-14 

GO:0 0 08219 cell death 384 < 2.06E-14 

KEGG pathway 
mmu01100 Metabolic pathways 345 2.03E-11 
mmu03010 Ribosome 60 6.65E-09 
mmu04142 Lysosome 49 4.93E-06 

mmu05204 Chemical carcinogenesis 39 1.36E-05 
mmu00260 Glycine, serine and threonine metabolism 20 4.58E-04 

mmu04210 Apoptosis 47 6.27E-04 
mmu00140 Steroid hormone biosynthesis 33 8.87E-04 
mmu00830 Retinol metabolism 33 1.34E-03 

mmu00980 Metabolism of xenobiotics by cytochrome P450 26 1.79E-03 
mmu05150 Staphylococcus aureus infection 22 2.04E-03 

Table 2 

Size and condition specificity of HFD modules. 

HFD module Number of genes 
in module 

% of module genes 
that are DEGs 

Maximum Jaccard 

coeffa 
Most similar CD 

module b 
Number of genes in 

most similar CD 

module 

M1 356 35.39 0.06 M4 261 

M2 3893 22.99 0.40 M2 3955 
M3 1402 29.32 0.14 M12 589 
M4 761 32.85 0.12 M13 142 

M5 28 28.57 0.04 M18 271 
M6 28 42.86 0.04 M31 83 

M7 12 58.33 0.02 M24 197 
M8 828 54.83 0.27 M1 366 
M9 340 54.12 0.13 M23 109 

M10 1203 23.19 0.11 M2 3955 
M11 49 8.16 0.05 M28 310 

M12 52 26.92 0.04 M20 110 

M13 86 53.49 0.09 M9 88 
M14 354 26.84 0.18 M6 129 

M15 245 31.84 0.27 M26 263 
M16 87 70.11 0.38 M32 97 

M17 119 34.45 0.07 M8 299 
M18 6719 9.23 0.74 M33 6339 

∗ Maximum value of the Jaccard coefficient between given HFD module and any CD module. 
† Identity of the CD module with the maximum Jaccard coefficient with the HFD module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. M9 is a HFD-induced specific module that is significantly 

associated with plasma lipid levels 

Based on analysis of both the condition specificity of CD and

HFD modules and associations between module genes and plasma

lipids, HFD module M9 was identified as a module that was in-

duced and specific to HFD. Module M9 was the only HFD mod-

ule that met the following criteria: it had a Jaccard coefficient ≤
0.15 when compared with all CD modules; more than 44.5% of the

genes in the module were identified as DEGs; it was significantly

associated with most plasma lipid phenotypes; and it was enriched

 

with genes involved in a relevant biological process after GO en-

richment analysis. Therefore, we sought to further investigate key

genes and interactions in module M9. 

3.7. M9 module hub genes are associated with plasma lipid levels 

Among the 340 genes in M9 module, we computed and ranked

the genes with intramodular connectivity, gene significance, and

module membership (see materials and methods). The top 30

hub genes are shown in Table 3 . Many of these, including Cidec,

Cd36, Mogat1, Slc6a8, Apoa4, Serpine1, Cidea, Pparg, and Nqo1, are
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Fig. 2. HFD module M9 is responsive to diet and associated with plasma lipids. (A) Soft thresholding index R 2 as a function of soft-thresholding power β . β = 5 indicated 

scale-free topology. (B) Mean connectivity (degree) as a function of β . (C) 18 coexpression modules identified from HFD liver transcriptome data by dendrogram branch cutting 

and their most significantly enriched GO term among discrete biological processes. (D) Associations (Pearson correlation r, with FDR in parentheses) between HFD module 

eigengenes and plasma lipid phenotypes. (E) Pparg expression across BXD strains. (F) Mean difference in Pparg expression between diets. ∗∗∗∗FDR < 0.0 0 01. (G) Protein-protein 

interaction subnetworks from the top 30 hub genes in module M9. 14 genes have predicted interaction scores > 0.4 (medium confidence). (H-I) Module M9 gene-trait heatmap 

retrieved from the MPO (H) and human NHGRI GWAS Catalog (I). Blue cells represent genes with functional roles critical or associated with the corresponding trait(s). (J) Venn 

diagram of gene overlap between MPO and GWAS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

known to regulate genes for plasma lipid metabolism ( http://www.

informatics.jax.org/ ). Additionally, all the 30 genes showed strong

correlations ( P < .05, Supplementary Data 6) with hepatic steato-

sis parameters Alanine transaminase and Aspartate transaminase.

Moreover, Pparg , a ligand-dependent nuclear hormone transcrip-

tion factor, could be a master regulator since it regulates the tran-

scription of 19 out of the 30 hub genes ( Cidec, Cd36, Serpine1, Pcx,
Cidea, Adcy6, Prune, Slc16a5, Plin4, Acot2, Slc25a10, Nqo1, Ctsd, Srxn1,

Gpx4, Slc6a8, Ly6d, Slc16a7 , and Morc4 ) directly according to the

PPAR gene database ( http://www.ppargene.org/ ) [51] . The expres-

sion level of Pparg in liver shows large variability across the BXD

strains in response to HFD ( Fig. 2 E). For instance, PParg mRNA lev-

els in BXD90 show resistance to HFD (9.8 in CD and 9.9 in HFD),

but vulnerable in BXD51 (9.1 in CD and 10.6 in HFD). Overall, Pparg

http://www.informatics.jax.org/
http://www.ppargene.org/
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Table 3 

Top 30 hub genes in M9 module. 

Symbol 
Intramodular 
connectivity 

Module 
membership 

significance 
Gene 
significance ∗ Rank 

Ly6d 1.00 0.00 9 1 

Cidec 0.88 5.61E-12 8 2 

Ctsd 0.87 4.50E-12 8 3 
Prune 0.85 2.37E-11 6 4 
Srxn1 0.85 1.85E-11 8 5 

Slc16a5 0.83 1.01E-10 10 6 
Gpx4 0.82 2.17E-10 11 7 
Srd5a3 0.82 6.82E-11 7 8 

Cd36 0.82 2.80E-10 9 9 

Plin4 0.81 2.15E-10 4 10 
Acot2 0.80 8.95E-10 7 11 
Mogat1 0.80 1.30E-09 6 12 
Slc41a3 0.79 2.45E-09 4 13 

Wfdc2 0.78 3.96E-09 6 14 
Slc6a8 0.77 2.77E-09 8 15 

Slc16a7 0.77 5.19E-09 10 16 
Apoa4 0.76 6.54E-09 8 17 
Morc4 0.76 5.22E-09 4 18 

Serpine1 0.75 5.86E-09 7 19 
Pcx 0.75 1.31E-08 4 20 

Abhd4 0.74 1.12E-08 3 21 
Cidea 0.74 3.77E-08 8 22 
Pparg 0.73 3.13E-08 5 23 

Slc25a10 0.72 3.97E-08 7 24 
Adcy6 0.72 3.67E-08 5 25 

Golt1a 0.72 2.13E-08 4 26 
Nqo1 0.72 3.86E-08 7 27 
Myo1d 0.72 4.72E-08 2 28 

Tuba8 0.72 3.49E-08 8 29 
Psap 0.71 8.07E-08 5 30 

Bold indicates known involvement in plasma lipid regulation. 
∗ Number of traits (TC, HDL, LDL, TG, FFA, body weight, body 

weight gain, and perirenal white adipose mass) significantly asso- 

ciated with the gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

showed a 1.3-fold increase in HFD mice compared with CD mice

( Fig. 2 F). 

In addition, by searching PPI networks from the STRING

database, we identified three subnetworks for the top 30 hub

genes ( Fig. 2 G). The largest one included nine genes in which

Pparg directly interacts with Cidec, Cidea, Plin4, Serpine1 and Cd36,

and with Apoa4 and Mogat1 through Cidec . The second subnetwork

included three genes: Gpx4, Nqo1 , and Srxn1, which are all involved

in antioxidant defense. These genes harbor antioxidant response

elements that are targeted by nuclear factor erythroid two–related

factor two ( Nrf2 ) [52–55] . The last subnetwork contained only two

genes: Ctsd and Psap. 

3.8. M9 module genes implicated in previous GWAS and mouse 

models 

Among the 340 M9 genes, 42 were found to be associated with

either TC, HDL, LDL, TG, FFA, glucose, body weight, and fat mass

( Fig. 2 H) in the MPO database. Furthermore, 26 genes were iden-

tified as functional genes in TC, HDL, LDL, TG, or glucose GWAS

( Fig. 2 I). Eight genes ( Tnfaip1, Apoa4, Pparg, Pltp, Cdkn1a, Gpihbp1,

Cd36 , and Lepr ) met both of these criteria ( Fig. 2 J). 
3.9. Bayesian network-based causative analysis for M9 module genes 

In order to investigate how M9 module genes cause phenotype

variation, we created Bayesian network models that included a QTL

genotype, expression of M9 module genes, and phenotypes. First,

we performed QTL mapping to identify a genomic locus (Chr11:

rs26890724 ) that controls body weight (GN:17562) and perirenal

white adipose mass (GN: 17790) ( Fig. 3 A-B). Five M9 module genes

( LOC728392, Myo1c, Flot2, Rab34 , and Tnfaip1 ) were selected that

were located within this Chr 11 QTL interval. A Bayesian net-

work model was created from these 8 variables (including the Chr

11 QTL genotype, 5 gene expression traits, and two phenotypes)

( Fig. 3 C). The structure of the network was learned from the data,

and, thus, the causal relationships (only included the genes that on

the paths from the QTL to the phenotype) shown in the network

were implied by the data. Expression of Flot2 did not influence the

phenotypes or any other network variable. For clarity, we removed

Flot2 expression from the network; the removal of this node did

not alter any edges between the other network variables. 

The Bayesian network model linking the Chr 11 QTL with body

weight and perirenal white adipose mass has a couple of interest-

ing features. First, the only direct parent of body weight in the net-

work is perirenal white adipose mass, implying that the QTL and

genes in the network do not directly influence body weight. In-

stead, these variables indirectly impact body weight through their

effects on perirenal white adipose mass. Second, one pathway links

QTL genotype and phenotype through four of the five M9 genes lo-

cated at the Chr 11 QTL. In this pathway, TNF Alpha Induced Pro-

tein one ( Tnfaip1 ) is the direct parent of perirenal white adipose

mass, indicating that Tnfaip1 is the gene in the network that most

strongly influences the phenotypes. This result is in line with our

investigation of the correlations between the M9 module genes in

the network and the phenotypes, as the correlation coefficient be-

tween Tnfaip1 and perirenal white adipose mass is greater than the

correlation coefficient between any of the other genes and pheno-

types in the network. Finally, a network edge directly links the QTL

genotype with perirenal white adipose mass, indicating that the

influence of the genotype on the phenotypes was not entirely ex-

plained by the expression of the genes in M9 model that were lo-

cated near the QTL and included in the network model. Indeed, ge-

nomic regulation of body weight is extremely complex, with many

genes interacting with each other [18–20] . Thus, other factors, such

as the expression of other genes like Pld2 that is also encoded

within our QTL region and linked to body mass, as well as pro-

teomic or other molecular level traits, may need to be considered

to fully explain the link between the Chr 11 QTL and perirenal

white adipose mass. 

3.10. Expression and association with lipid metabolism of the top 

module M9 genes in humans 

To assess the validity of module M9 in humans, we mapped the

top 30 mouse genes in module M9 ( Table 3 and Supplementary

Data 7) to their corresponding human genes. Of these 30 human

genes, 11 had at least one significant cis-eQTL in liver in the hu-

man Genotype-Tissue Expression (GTEx) database (FDR < 5%, Sup-

plementary Data 7). We then calculated the eigengene of these 11

human genes with WGCNA. All genes, except ACOT2 , correlate sig-

nificantly with the eigengene, and out of 66 pairwise comparisons

(11 genes and the eigengene), 51 had a significant Pearson correla-

tion (FDR < 5%, Fig. 4 A). This indicates that the eigengene captures

the module’s expression well and that these genes tend to be co-

expressed in humans. CTSD is the only gene that significantly cor-

relates with all other 10 genes and the eigengene. GPX4 and MO-

GAT2 are the only two genes with a significant negative correlation
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Fig. 3. Causal analysis of M9 module genes (A-B) QTL mapping for body weight and perirenal white adipose mass on chromosome 11 (C) Bayesian network structure connecting 

QTL genotype ( rs26890724 ), gene expression, and body weight (BW) and perirenal white adipose mass (PWAM) phenotypes. Numbers next to each network edges indicate edge 

confidence from model averaging of the 1,0 0 0 highest scoring networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with both the eigengene and CTSD . This overall strong degree of

correlation in human liver gene expression suggests that these 11

genes might form part of a gene coexpression module in humans

as well. 

To assess potentially causative effects of the genes in module

M9 on lipid metabolism and weight gain in humans, we used

inverse-variance weighed Mendelian randomization to link their

liver gene expressions to a set of 249 body weight- and lipid-

related traits (Supplementary Data 8) through their most signifi-

cant GTEx liver eQTLs. Our Mendelian randomization analysis re-

lies on four assumptions: (1) that the 11 genes from part of a

gene module in humans, (2) that each of the SNPs affect the ex-

pression of this gene module, (3) that the SNPs influence the out-

comes only through activation of the module, and (4) that the SNPs

are not associated with measured or unmeasured confounders. For

each gene g , the most significant cis-eQTL in liver was selected.

Fig. 4 B shows the point estimates for each gene g whereby
ˆ βg,exposure is shown on the x-axis and 

ˆ βg,outcome on the y-axis. 
ˆ βg,exposure is a summary statistic for the most significant cis-

eQTL of gene g , obtained from GTEx as explained higher. It de-

notes the average difference in normalized GTEx liver gene expres-

sion between the minor and the major allele of the corresponding

SNP. It is positive if the expression of gene g is higher in the mi-

nor allele and negative if the expression of gene g is lower in the

major allele, except for GPX4 and MOGAT2 , where we inverted the

sign because these genes correlate negatively with both the eigen-

gene and CTSD , the only gene with a significant correlation with all

other genes ( Fig. 4 A). ACOT2 does not significantly correlate with

the eigengene, but has a significant positive correlation with CTSD ,

hence, we opted not to invert its sign. 
ˆ βg,outcome is a summary statistic obtained from various sources

through the “available_outcomes” function from the TwoSampleMR

R package [48] . ˆ βg,outcome denotes the average difference in out-

come between the minor and the major allele of the corresponding

SNP. It is positive if the expression of gene g is higher in the mi-

nor allele and negative if the expression of gene g is lower in the

major allele for all genes, including GPX4 and MOGAT2 . 
The error bars in the horizontal and vertical directions denote

the asymptotic 95% confidence intervals of ˆ βg,exposure and 

ˆ βg,outcome ,

respectively (assuming normality). These were calculated based on

their estimated standard errors that were provided as summary

statistics together with the point estimates. 

CIDEC was excluded from the analysis because its only liver

cis-eQTL, rs4582033 , was palindromic with intermediate allele fre-

quencies, leaving 10 genes for the analysis. We assumed that in-

creased liver expression for each of these genes is a proxy for in-

creased module activation, except for GPX4 and MOGAT2 , whose

decreased expressions are assumed to be linked to module acti-

vation because of their significant negative correlations with the

eigengene and CTSD . Four traits were significant at 5% FDR: “TG

in very large HDL,” “Free cholesterol,” “L-lactate dehydrogenase

C chain” (negative associations with increased gene expressions

in liver ( Fig. 4 B), as well as “Urinary albumin-to-creatinine ra-

tio” (positive association with gene expressions). The last trait was

however only based on eQTLs for ABHD4 and MOGAT2 and this re-

sult is therefore less representative for the whole gene set. 

4. Discussion 

In order to investigate gene-by-diet interactions in BXD strains,

we first analyzed the impact of an obesogenic diet on plasma lipid-

related phenotypes. HFD exposure significantly increased body

weight, adiposity, and plasma lipid concentrations (e.g., choles-

terol, HDL, LDL, and TG). In addition, long-term HFD feeding in-

duced fatty liver in a heterogeneous manner, including marked

macrovesicular steatosis in some strains, such as BXD214. This phe-

notypic variability could be largely modulated by genetic factors,

as the BXD parental strain B6 is highly susceptible to diet-induced

nonalcoholic fatty liver disease (NAFLD) [ 56 , 57 ]. Thus, BXD strains

could serve as a reference population to mimic NAFLD susceptibil-

ity in natural human populations. 

Phenotypic changes in fatty liver presented herein were ac-

companied by significant changes in the liver transcriptome, re-

sulting in the differential expression of thousands of genes. Those
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Fig. 4. M9 hub genes are linked to lipid metabolism in humans. (A) Correlations between expression of human homologs of 11 M9 hub genes with each other and their eigen- 

gene. Diagonal panels show histograms and kernel density estimates of normalized expression in human liver in GTEx data. Panels in the lower triangle show bivariate scatter 

plots with a LOWESS smoother with locally-weighted polynomial regression as implemented in R’s lowess function. Panels in the upper triangle show Pearson correlation and 

significance after Benjamini-Hochberg correction (FDRs are denoted by: “no symbol”: > 0.1; “.”: < 0.1; “∗”: < 0.05; “∗∗”: < 0.01; “∗∗∗”: < 0.001). (B) Inverse-variance weighted 

Mendelian randomization suggests upregulation of M9 genes in humans reduces TG in very large HDL, free cholesterol, and L-lactate dehydrogenase C chain. The horizontal 

axis shows the effect of the most significant eQTL in liver for each gene on its expression. The vertical axis shows the effects of these eQTLs on the outcomes. P -values for 

single-SNP Wald ratio tests are given; whiskers are asymptotic 95% confidence intervals. Green slopes denote estimated causal effects: -0.0334, -0.176, and -0.0518 (FDR: 0.04 

each). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

genes were significantly involved in regulating lipid levels through

metabolic pathways as highlighted in Table 1 . The expression of

Cyp2b9, a member of the cytochromes P450 2b family, was most

affected by HFD com pared to control [58] . Cytochrome P450s

are essential for oxidizing steroids, fatty acids, and xenobiotics

in liver. RNAi-mediated Cyp2b knockdowns have enlarged livers

and increased abdominal fat deposition [59] . Furthermore, Cyp2b-

knockdown mice treated intraperitoneally with 100 µL corn oil had

elevated plasma TC, TG, HDL, HDL, and very low-density lipopro-
tein [60] . Additionally, the expression of several other cytochrome

P450s genes, such as Cyp1a2, Cyp26a1, Cypa22, and Cyp2b10,

changed significantly after HFD in our study, suggesting the cy-

tochrome P450 family plays a significant role in maintenance of

lipid homeostasis. The expression of transcripts such as Lcn2, Saa1,

and Saa2 were also elevated more than two-fold in DIO mice com-

pared to lean mice. Lcn2, which encodes Lipocalin two, is widely

expressed in various tissues, including lung, liver, thymus, kidney,

small intestine, adipocytes, and macrophages [61] . Mice carrying
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null Lcn2 alleles show potentiated DIO, dyslipidemia, fatty liver

disease, and insulin resistance [62] . The expression of Lcn2 is con-

sidered a potential biomarker for metabolic diseases [ 63 , 64 ]. Saa1

and Saa2 encode the apolipoproteins serum amyloid A1 and A2,

respectively. Altered expression of these genes has been associated

with inflammatory diseases including atherosclerosis [65] . Saa1-

and Saa2-deficient mice have increased levels of circulating TC,

but not HDL [66] . We also found several miRNAs whose expres-

sion was impacted by diet, including miR-122. miR-122 is the first

known lipid metabolism-related miRNA [67] and has been associ-

ated with hyperlipidemia [68] and fatty liver [69] . miR-122 inhibi-

tion in normal mice resulted in reduced TC levels, increased hep-

atic fatty-acid oxidation, and a decrease in hepatic fatty-acid and

cholesterol synthesis rates [70] . miR-122 inhibition in a DIO mouse

model resulted in decreased TC levels and a significant improve-

ment in liver steatosis [70] . 

However, examining differential expression of individual genes

does not fully leverage the power of the BXD family to investigate

the genetic basis of disease and phenotype differences, as this ap-

proach does not consider how conditions, such as the DIO stud-

ied here, disrupt genetic networks [71] . In our study, we used 42

BXD RI strains in two diet groups, where each isogenic strain has a

unique genetic background inherited from the parental B6 and D2

strains. This design provides the sample size and genetic variabil-

ity required for the construction of robust genetic networks using

WGCNA, a powerful tool for the identification of gene coexpres-

sion networks [40] . After using WGCNA to identify coexpression

modules for both CD and HFD groups, we used a variety of tools,

including modular specificity analysis, GO, PPI networks, and phe-

notype correlations, to investigate how these coexpression modules

respond to changes in diet and to identify the hub genes that drive

these responses. 

The coexpression modules identified by WGCNA after HFD in-

dicated strong relationships between gene expression, the quan-

titative phenotypes investigated here, and biological processes. Of

the 18 coexpression modules identified by WGCNA in the HFD ex-

pression data, module M9 was identified as an HFD-induced mod-

ule that may contain some of the keys to elucidating the relation-

ship between changes in liver gene expression and plasma lipid

phenotypes after DIO. In the PPI subnetworks constructed from

the top 30 M9 module hub genes, Pparg, Cidec, and Cidea have

the most connections with other genes. As a sensor of lipid sta-

tus in a cell, PPAR γ regulates the expression of a large number

of genes in many physiological and pathological processes, includ-

ing adipogenesis, inflammation [72] , atherosclerosis [73] , insulin

resistance [74] , glucose metabolism [75] , lipid metabolism [ 76 , 77 ],

and lifespan [78] . Our results showed that 19 out of the top 30

hub genes in M9 are directly regulated by Pparg, suggesting that

Pparg could be a master regulator of plasma lipid metabolism in

response to diet. In fact, genetic variants in Pparg interact with

diet to regulate plasma lipid levels [21] . In addition, transcriptional

activation of Pparg in the liver induces the lipogenic program to

store fatty acids in lipid droplets. Knockout of the hepatic Pparg

gene ameliorates hepatic steatosis induced by diet or genetic ma-

nipulations [79] . Hepatic PPAR γ expression is robustly induced in

NAFLD patients and experimental models [80] . Liver PPAR γ regu-

lates triglyceride homeostasis, contributing to hepatic steatosis, but

protects other tissues from triglyceride accumulation and insulin

resistance [81] . Currently, there are no FDA-approved medications

for the treatment of NAFLD, hence further understanding the regu-

latory factors for PPAR γ expression and activity will help develop

preventative and therapeutic agents [ 79 , 80 ]. Both Cidea and Cidec

belong to the cell death-inducing DNA fragmentation factor- α-like

effector (CIDE) family. CIDE are lipid droplet-related proteins which

are highly expressed in liver and brown and white adipose tissues.
CIDE proteins’ main function is to participate in lipid storage, lipid

droplet formation, and lipolysis, which impact the development

of obesity, diabetes, and liver steatosis [82–86] . Although several

studies have shown that the expression of CIDEC is positively re-

lated to PPAR γ [ 87 , 88 ], the underlying interaction remains unclear.

In addition to the Pparg subnetwork, we identified an an-

tioxidant subnetwork which contains three genes: Gpx4, Nqo1,

and Srxn1. These genes harbor antioxidant response elements

(ARE) that are targeted by NRF2 (nuclear factor, erythroid derived

two, like two) [52–55] . As a major metabolic tissue, the liver

can continuously produce reactive oxygen species which could

cause cell damage and lead to various liver diseases such as liver

inflammation, alcoholic and nonalcoholic steatohepatitis, fibrosis,

and cirrhosis. The progression from inflammation to diseased

tissue is highly impacted by oxidative stress [89] . The transcription

factor Nrf2 is a master regulator of the oxidative stress pathway

that binds to the ARE, an upstream promoter region located in

genes with anti-oxidant functions [ 90 , 91 ]. NRF2 inhibits lipid

accumulation in mouse liver after an HFD [92] and modulates

metabolic diseases such as obesity, type two diabetes mellitus,

and atherosclerosis [93] . For example, a potent NRF2-regulated

antioxidant defense enzyme, glutathione peroxidase four (GPX4)

is essential for reducing hydroperoxides in membrane lipids and

lipoproteins [94] . Decreased expression of Gpx4 in mice resulted in

increased hepatocyte apoptosis and mitochondrial damage, accom-

panied with body weight loss and death within 2 weeks [94] . Mice

with deficiency of the NRF2-dependent Nqo1, a member of the

NAD(P)H dehydrogenase family, have decreased plasma glucose,

and increased TG levels [95] . Last, the NRF2-dependent sulfiredoxin

(Srxn1) is associated with oxidative stress but is less well studied. 

To more fully exploit the potential of the BXD RI family, we

created a Bayesian network model that describes how M9 module

genes may link genotype and phenotype ( Fig. 3 ). Such models are

based on the idea that the genetic variation within a diverse popu-

lation, such as BXD mice, naturally provides perturbations that can

be used to infer causal relationships between quantitative traits

such as gene expression and phenotypes [96] . These relationships

can be learned and represented using Bayesian networks, proba-

bilistic graphical models in which a group variables are linked by

directed edges that indicate dependencies between the variables

[97] . We trained a Bayesian network here after identifying several

M9 module genes that were located near a QTL (rs26890724 on

Chr 11) that regulated two plasma lipid-related phenotypes (body

weight and perirenal white adipose mass). Thus, the Bayesian net-

work model integrated three levels of data (genotypes, gene ex-

pression, and higher order phenotypes) and indicated several inter-

esting relationships about the pathway linking genotype and phe-

notype. First, the genotype at this locus directly influenced the ex-

pression of Rab34 and LOC728392; the other M9 module genes

in the network depended on the expression of these two genes.

Second, Tnfaip1 was the M9 module gene near the QTL that had

the most direct impact on the phenotypes. Third, body weight de-

pended on perirenal white adipose mass and was not otherwise

directly influenced by the QTL genotype or other M9 module genes

in the network. Finally, the Bayesian network model suggested that

the influence of the QTL genotype on perirenal white adipose mass

was not entirely explained by the expression of the five M9 mod-

ule genes located near the QTL; thus, factors that were not in-

cluded in this network model are likely involved in the molecu-

lar pathway linking this genotype and phenotype such as visceral

white adipose depots or brown fat. By mapping the top genes of

module M9 to their human counterparts, we were able to demon-

strate that the expressions of these genes also tend to correlate

in human livers, which suggests that module M9 might be con-

served in humans. With inverse-variance weighted Mendelian ran-
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domization, we showed that the activation of such a module in

the liver is causally linked to decreased TG in very large HDL, de-

creased free cholesterol, and decreased L-lactate dehydrogenase C

chain in blood. This indicates that activating our module might re-

duce cholesterol in humans and thus forms an interesting target

against cardiovascular disease. 

In summary, by applying systems genetics analysis, we provide

evidence that plasma lipid metabolism is significantly regulated

by both HFD, which is well known, but herein we have identi-

fied key functional gene networks that provide novel insight into

lipid regulation that was previously unappreciated. One of the key

findings of the study is that, using the power of the BXD RI fam-

ily, we uncovered a plasma lipid related gene coexpression mod-

ule that was induced by DIO. Although further functional analy-

sis is needed to understand the biological mechanisms behind the

module, our findings could be beneficial for clinical diagnosis and

prevention. The study highlights the benefit of integrating differ-

ential expression, gene coexpression networks, analysis of module

hub genes, and Bayesian networks in investigations of the impact

of environment on gene expression and treatment. Such an inte-

grated analysis could be applied to the investigation of other phe-

notypes and diseases to examine the changes in gene expression

and gene networks that underlie links between variations in geno-

types and phenotypes. 
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