
1

Automated Smell Detection and
Recommendation in Natural Language

Requirements
Alvaro Veizaga, Seung Yeob Shin, Member, IEEE, Lionel C. Briand, Fellow, IEEE

Abstract—Requirement specifications are typically written in natural language (NL) due to its usability across multiple domains and
understandability by all stakeholders. However, unstructured NL is prone to quality problems (e.g., ambiguity) when writing
requirements, which can result in project failures. To address this issue, we present a tool, named Paska, that takes as input any NL
requirements, automatically detects quality problems as smells in the requirements, and offers recommendations to improve their
quality. Our approach relies on natural language processing (NLP) techniques and a state-of-the-art controlled natural language (CNL)
for requirements (Rimay), to detect smells and suggest recommendations using patterns defined in Rimay to improve requirement
quality. We evaluated Paska through an industrial case study in the financial domain involving 13 systems and 2725 annotated
requirements. The results show that our tool is accurate in detecting smells (89% precision and recall) and suggesting appropriate
Rimay pattern recommendations (96% precision and 94% recall).

Index Terms—requirement smells, requirement quality, smell detection and recommendation, natural language processing, and
controlled natural language

✦

1 INTRODUCTION

Requirements typically drive software development and are
generally expressed using natural language (NL), which is
widely used in many industrial contexts. The central role
of NL in software requirement specifications (SRSs) stems
from its usability in all application domains and its ease
of understanding by all stakeholders in software develop-
ment projects [1]. A study [2] reports that 61% of users
prefer to express requirements using NL. However, despite
its popularity, NL is highly prone to quality problems,
such as vagueness, ambiguity, complexity, and incomplete-
ness [3, 4].

One important cause of project failures in industry is
quality problems in NL requirements [5, 6]. When such
problems are not fixed early during development, they carry
over to subsequent development phases, and fixing them
becomes a costly and time-consuming process. Improving
the quality of NL requirements by identifying quality prob-
lems at early development stages is therefore a pivotal need
for successful software development.

In collaboration with an industrial partner, which pro-
vides post-trade services for various types of financial se-
curities and develops information systems to support these

• Alvaro Veizaga is with the Interdisciplinary Centre for Security, Relia-
bility, and Trust (SnT) of the University of Luxembourg, Luxembourg
(e-mail: alvaro.veizaga@uni.lu).

• Seung Yeob Shin is with the Interdisciplinary Centre for Security, Reli-
ability, and Trust (SnT) of the University of Luxembourg, Luxembourg
(e-mail: seungyeob.shin@uni.lu).

• Lionel C. Briand holds shared appointments with the Lero SFI Centre for
Software Research, University of Limerick, Ireland and the school of EECS,
University of Ottawa, Ottawa, Canada (e-mail: lionel.briand@lero.ie).
Part of this work was done when he was affiliated with the Interdisci-
plinary Centre for Security, Reliability, and Trust (SnT) of the University
of Luxembourg.

services, we noticed elevated costs associated with in-house
processes to improve the quality of NL requirements, which
typically involve several manual inspections and are thus
prone to errors. A tool that automatically detects quality
problems in NL requirements and guides analysts to im-
prove the quality of NL requirements is thus highly desir-
able.

Various approaches have been proposed to improve
the quality of NL requirements by detecting semantic and
syntactic problems, that are often referred as “smells” [7,
8, 9, 10, 11]. For example, Femmer et al. [9] introduced
Smella, an automated tool for detecting requirement smells
such as ambiguous adverbs and vague pronouns. Smella
relies on part-of-speech (POS) tagging, dictionaries, and
lemmatization. However, these approaches do not provide
recommendations to analysts on how to rewrite require-
ments in a disciplined manner to improve their quality.
Furthermore, existing work [9, 10], which detects a set of
quality problems in a requirement, still requires further
research to account for many of the recurrent problems
faced by analysts. For example, analysts sometimes describe
multiple functions in a single requirement (i.e., non-atomic
requirement), miss essential words (e.g., actors and verbs) or
even phrases (e.g., system responses), or write a requirement
following an ambiguous structure (e.g., a system response
between conditions). We note that some of these quality
problems have been studied individually in many prior
works, such as checking the completeness [12, 13, 14, 15, 16]
or ambiguity [17, 18, 19, 11, 20] of requirements. However,
compared to these research strands, there has been relatively
less focus on developing an automated solution that can
both detect and resolve multiple quality problems in a re-
quirement. Such a solution is needed to provide a complete
picture of the overall requirement quality and thus enable

2

the proposal of a solution that properly fixes all relevant
problems together.

To address the challenges stated above, we developed an
approach and tool that addresses common quality problems
in NL requirements. In particular, our work aims at assist-
ing analysts with automatically detecting quality problems
and suggesting recommendations to fix them in functional
requirements. Given our focus on information systems, a
functional requirement specifies what system response an
actor is expected to receive when providing certain inputs,
if certain conditions are met [21]. We have named our
tool Paska, which means “solution” in Quechua. In this
article, the term “smells” refers to these quality problems in
functional requirements that can lead to defects at different
levels of severity. For example, while the use of passive
voice alone in an NL requirement is not necessarily a direct
cause of defects, it can contribute to communication issues
and misunderstandings, which can in turn increase the risk
of defects. To illustrate this point, we present a real-world
example of an NL requirement provided by our industrial
partner in the financial domain, anonymized for confiden-
tiality: “When an order cancellation message is received then the
System A GUI must display the field Reason of Cancellation”.
The condition of this NL requirement “When an order can-
cellation message is received” is in passive voice. In this re-
quirement, it is difficult for stakeholders to identify the actor
receiving the “order cancellation message”, which can result
in defects in the final product. In a functional requirement,
a smell indicates a problem located in a specific word or
segment (i.e., set of words) that quality analysts should
inspect [9]. Paska detects nine smells that are commonly
present in functional requirements we analyzed in the finan-
cial domain, though they are not in any way specific to this
domain. Most importantly, Paska also provides suggestions
for fixing smells and thus improving requirement quality.

Contributions. To automatically detect quality problems
in functional requirements and provide concrete improve-
ment recommendations, our work relies on a state-of-the-art
controlled natural language (CNL) called Rimay [21], which
is used to specify functional requirements for information
systems. Rimay requires analysts to write requirements in
a disciplined manner using controlled grammar and vo-
cabulary, ensuring they follow best practices for writing
requirements. This results in writing precise, unambiguous,
complete, and atomic requirements, which in turn enables
automated analysis such as traceability analysis [22] and
acceptance criteria generation [22]. However, defining a
language like Rimay is a different problem than applying
it to detect quality problems in non-compliant requirements
and propose recommendations for their rectification. We
first define requirement smells corresponding to violations
of quality attributes, such as completeness, clarity, atomic-
ity, and correctness, which Rimay enforces when writing
requirements. Based on the Rimay grammar, we define a set
of Rimay patterns that capture recommended structures for
expressing requirements. In order to help analysts address
smells in a requirement, Paska then provides Rimay patterns
as suggestions. Analysts can then rewrite these require-
ments based on the recommended patterns. Indeed, such
patterns indicate what requirement segments are missing,
warrant change, or must be re-ordered. To automate the

detection of requirement smells and the recommendation
of Rimay patterns, Paska combines natural language pro-
cessing (NLP) techniques, including tokenization, lemmati-
zation, POS tagging, constituency parsing, glossary search,
and Tregex [23]. We note that this article not only presents
an automated method for identifying a large spectrum of
smells but, different from existing work, also provides auto-
mated and accurate guidance on how to address them.

Our empirical study is guided by the following research
questions (RQs):

RQ1) What are the NL requirement smells commonly
found in the financial domain? We answer RQ1 by iden-
tifying nine smells after analyzing a set of 1404 actual
requirements in the financial domain. The smells indicate
quality problems in requirements regarding completeness,
clarity, atomicity, and correctness. Paska is able to detect
quality problems in both individual segments of the require-
ment (segment level) and in the requirement as a whole
(requirement level).
RQ2) How can smells be detected? We answer RQ2 by
proposing an automated approach that relies on NLP meth-
ods to detect the smells in NL requirements. It combines
Tregex [23] patterns, structural patterns, rules, and glossary
search.
RQ3) How can we suggest recommendations to improve
requirement quality? We answer RQ3 by proposing an
automated approach that suggests a suitable Rimay pattern
as a recommendation for an NL requirement with smells.
Paska first analyzes the overall syntax of an NL requirement.
According to this syntax, Paska matches and suggests a
suitable Rimay pattern. Following our suggested patterns
increases the chance of fixing smells.
RQ4) Can Paska accurately indicate the occurrence of
smells? To answer RQ4, we evaluate Paska by measuring
the accuracy of identifying smells. To accomplish this, we
conducted a case study using 13 SRSs from financial appli-
cations. We compared our results against a ground truth
established manually by four annotators. Our evaluation
results suggest that Paska accurately detects smells with a
precision and a recall of 89%.
RQ5) How accurate is Paska in recommending require-
ment patterns to fix smells? RQ5 assesses how well Paska
suggests appropriate Rimay patterns to fix smells in NL re-
quirements. We compared the performance of Paska against
a ground truth matching requirements with smells and
Rimay patterns, which were manually annotated by four
annotators. The results show that Paska accurately suggests
appropriate Rimay patterns with a precision of 96% and a
recall of 94%.

To summarize, the main contributions of this work are
(1) an automated approach that detects smells in SRSs and
suggests Rimay patterns to fix these smells and (2) an
extensive industrial case study on smell detection, involving
a large set of 2725 information system requirements from
13 projects in the financial domain, to assess the accuracy
of Paska when detecting smells and suggesting patterns to
fix them. Our industrial case study is the largest to date
regarding requirements quality assurance.

Organization. The article is structured as follows: Sec-
tion 2 provides an overview of Rimay. Section 4 describes

3

REQUIREMENT: SCOPE? CONDITION_STRUCTURES? ARTICLE? ACTOR ←↩
MODAL_VERB not? SYSTEM_RESPONSE.

Listing 1: Overall syntax of a requirement in Rimay.

how we derive smells and Rimay patterns. In Section 5, we
describe Paska in detail. Section 6 evaluates Paska through
an industrial case study. Section 7 examines some issues
that impact the performance of Paska. Sections 8 and 9
discuss threats to the validity of our results and related
work. Finally, Section 10 concludes this article.

2 CONTROLLED NATURAL LANGUAGE: RIMAY

In this section, we introduce Rimay as our work relies on
it to define smells and patterns (Section 4), as well as to
identify smells and recommend patterns (Section 5). Rimay
is a controlled natural language (CNL) for writing functional
requirements in the domain of information systems [21].
Rimay applies restrictions on vocabulary, grammar, and
semantics of NL to allow analysts to write complete, unam-
biguous, and precise requirements. Rimay’s main grammar
rules are inspired by the Easy Approach to Requirements
Syntax (EARS) templates [24]. Many practitioners consider
EARS as a good trade-off between flexibility and precision,
due to EARS’s relatively low training overhead and the
quality and readability of the resultant requirements [25].
However, EARS templates, which consist of predefined sen-
tence structures with general, coarse-grained concepts and
constructs, are not amenable to the type of analyses enabling
task automation because they allow the introduction of un-
structured and ambiguous text. In contrast to EARS, Rimay
provides sentence structures with more specialized, precise,
fine-grained concepts and constructs, enabling automated
analysis such as reconciliation support between requirement
text and models [22] and automated acceptance criteria
generation [22].

Listing 1 shows the rule REQUIREMENT specifying the
overall syntax of a requirement in Rimay. The rule indicates
that the presence of SCOPE and CONDITION_STRUCTURES
is optional, whereas the presence of ACTOR, MODAL_VERB
and SYSTEM_RESPONSE is mandatory in all requirements.
In a functional requirement, an actor is expected to achieve
a system response under certain conditions. An actor is a
role played by an entity that interacts with the system by
exchanging signals, data, or information [26]. Furthermore,
requirements written in Rimay may have a scope to delimit
the effects of the system response. For simplicity, in this
study, we use “system response” to refer to a phrase con-
sisting of an actor, a modal verb, and a system response.

The Rimay grammar enables analysts to write a wide
variety of functional requirements while ensuring that they
follow recommended syntactic structures [21]. For example,
Listing 2 depicts the grammar rules for scope and condition
structures. As shown in the listing, Rimay’s grammar has
some common constructs such as MODIFIER (line 1). The
construct MODIFIER includes articles (e.g., “a”, “an”, and
“the”) and quantifiers (e.g., “each”, “all”, “none”, “only
one”, and “any”). The rule SCOPE (line 1) uses the keyword
For, along with the rules MODIFIER and TEXT.

1 SCOPE: For MODIFIER? TEXT (and MODIFIER? TEXT)?,
2 CONDITION_STRUCTURE: WHILE_STRUCTURE|WHEN_STRUCTURE|←↩

WHERE_STRUCTURE|IF_STRUCTURE|TEMPORAL_STRUCTURE
3 WHILE_STRUCTURE: While PRECONDITION_STRUCTURE
4 WHEN_STRUCTURE: When TRIGGER
5 WHERE_STRUCTURE: Where TEXT
6 IF_STRUCTURE: If PRECONDITION_STRUCTURE|TRIGGER
7 TEMPORAL_STRUCTURE: (Before|After|Every) TEXT
8 CONDITION_STRUCTURES: CONDITION_STRUCTURE ((,|and|or←↩

|,or|,and) CONDITION_STRUCTURE)*, then?

Listing 2: Syntax of scope and condition structures in Rimay.

The rule CONDITION_STRUCTURE (line 2 of Listing 2)
defines different ways to use system states, trigger events,
and features to express conditions. In a functional re-
quirement, such conditions must hold for the system re-
sponse to be triggered. Furthermore, listing 2 (lines 3-
7) shows the rules for the following condition structures:
WHILE, WHEN, WHERE, IF, and TEMPORAL structures. The
WHILE_STRUCTURE is used for system responses that are
triggered while the system is in one or more specific states.
The WHEN_STRUCTURE is used when a specific triggering
event is detected in the system. The WHERE_STRUCTURE
is used for system responses that are triggered only when
the system includes particular features. These features are
described in free form using the rule TEXT. While Rimay
provides fine-grained constructs, it still includes the rule
TEXT to handle situations where the use of free text is
necessary or desirable. The IF_STRUCTURE is used when a
specific triggering event happens, or when the system is in a
particular state before triggering any system responses. The
TEMPORAL_STRUCTURE is used when the system responses
are triggered before or after an event. Line 8 of Listing 2
shows the rule CONDITION_STRUCTURES that enables the
creation of a condition composed of two or more of the
conditions mentioned above (lines 3-7).

Table 1 lists Rimay examples of requirement condi-
tions, i.e., WHEN_STRUCTURE, TEMPORAL_STRUCTURE, and
IF_STRUCTURE, as well as SYSTEM_RESPONSE. Note that
these examples are independent from one another. The
WHEN_STRUCTURE and TEMPORAL_STRUCTURE examples
capture the events that trigger system responses, whereas
the IF_STRUCTURE example specifies a precondition re-
quired for system responses. The SYSTEM_RESPONSE ex-
ample specifies the action a user must take.

Thanks to its restrictions on vocabulary, grammar, and
semantics of NL, Rimay allows analysts to write functional
requirements that satisfy the following quality attributes:
completeness, clarity, atomicity, and correctness. Completeness
refers to the inclusion of all the information required for the
requirement to be complete. Rimay achieves completeness
by having mandatory constructs that ensure the presence of
certain contents. Note that any omission of these constructs
will result in syntax errors in a Rimay requirement, making
it syntactically incomplete. For example, Rimay does not
allow analysts to write a requirement without a system re-
sponse. Such a requirement is thus syntactically incomplete
in Rimay. Clarity refers to the usage of structures, phrases,
and words that are free of ambiguity. Rimay achieves clarity
by providing a set of predefined structures and restricted
vocabulary. Atomicity refers to ensuring that an NL require-

4

TABLE 1: Examples of when, temporal, and if conditions, as well as a system response written in Rimay.

Rimay syntax Rimay example

WHEN_STRUCTURE When System-B receives an "email alert" from System-A
TEMPORAL_STRUCTURE Before System-A sends an "Instruction" to System-B
IF_STRUCTURE If an "Instruction" contains a "Keyword"
SYSTEM_RESPONSE The User must upload the "excel file" to System-A

ment describes a single system function. Rimay enforces
that a requirement does not have more than one system
response. Correctness refers to the proper use of Rimay’s
syntax, i.e., the correct arrangements of words and phrases.
For example, Rimay does not allow the use of modal verbs
in conditions.

We note that these quality attributes, particularly com-
pleteness and clarity, align with those prominently studied
in the literature [27], indicating they correspond to com-
monly observed quality issues in requirements engineering.
Specifically, the completeness of a functional requirement
in Rimay (thereafter a Rimay requirement) is based on
prior studies [9, 10] on the internal completeness [28] of
a requirement, which concerns the self-containment of a
requirement. The clarity of a Rimay requirement is related
to research strands [19, 20] on analyzing requirement am-
biguities. We further discuss these research contributions in
Section 9. Regarding the atomicity of a Rimay requirement,
it contributes to improving the other quality attributes,
such as clarity and verifiability. For example, a Rimay re-
quirement, precisely describing a single system function,
allows for the automatic generation of acceptance criteria
for the system function [21, 22]. This, in turn, enhances the
traceability between a functional requirement in Rimay and
its associated acceptance criteria. However, the correctness
of a Rimay requirement, in this article, is different from the
notion of correctness in existing works [29], which concerns
whether a requirement accurately captures users’ needs.
In our context, as described earlier, the correctness of a
Rimay requirement pertains to the correct arrangements of
words and phrases defined in the Rimay rules. Such correct
arrangements of words and phrases enable analysts to write
requirements in a consistent and unambiguous manner.

Rimay is implemented as an add-on editor for Sparx En-
terprise Architect [30] with the following features: (a) syntax
highlighting to color requirements and format them with
different visual styles according to the elements of Rimay,
(b) error marking to automatically highlight the parts of the
requirements indicating errors, and (c) content assisting to
automatically, or on request, provide suggestions to analysts
on how to complete the statement based on the grammar
rules.

3 INDUSTRIAL PARTNER AND DATA COLLECTION

We conducted this study in collaboration with an industrial
partner, who provided the actual requirements for this study
and gave feedback while developing Paska. Below, we pro-
vide more details about the context of our study and the
dataset obtained from our industrial partner.

3.1 Industrial Partner

Our industrial partner is a leading financial company that
provides post-trade services for various types of financial
securities and develops information systems to support
these services, serving 2500 customers in 110 countries.
Specifically, our collaboration was with their specialized
financial services division. This division is responsible for
several tasks, including the development of new financial
applications, the maintenance of existing ones, and the
enhancement of applications using advanced technologies.
Their goal is to provide clients with cutting-edge solutions
while ensuring compliance with current regulations. The
teams within the division cover project management, service
operations, development, testing, and requirements analy-
sis.

The company employs a methodology rooted in best
practices and years of experience for the tasks mentioned
above. For example, financial analysts use natural language
(NL) combined with Unified Modeling Language (UML)
models to specify requirements. Their textual NL require-
ments, written in English, aim to adhere to the Rupp tem-
plate [31]. The company follows a carefully planned soft-
ware development process grounded in the V-Model [32],
tailored for stringently regulated industries such as finance.

We note that the first author was already familiar with
the development process, including requirements engineer-
ing, of the company, before starting this work, through
participating in training sessions and attending numerous
meetings. In addition, all the authors of this article inter-
acted with the industrial partner during the project period
through regular bi-weekly meetings and additional meet-
ings as needed to obtain feedback on our progress in defin-
ing the problem and developing Paska. For the meetings,
the number of industry participants varied between one
and five, depending on their availability and interests. They
collectively have over 50 years of industry experience with
significant expertise in business analysis, functional design,
project management, and requirements engineering.

The research team of this article collaborated with the
company for approximately 1.5 years. Our collaboration
covered defining the problem this work addresses, identi-
fying smells in requirements, defining Rimay patterns, and
developing an automated approach for smell detection and
pattern recommendation. Hence, our work was motivated
by practitioners’ needs and was validated in a practical
context. However, given its scale, the evaluation of the
Paska prototype was completed after the project ended,
including data annotation, implementation, and evaluation.
Since Paska is an automated analysis tool, which does not
require human intervention, we were able to successfully
evaluate Paska without significant involvement from our
industrial partner.

5

TABLE 2: Distribution of actual requirements received from
our industrial partner.

Subset SRS ID # Requirements # Words

SD

SRS1 192 6363
SRS2 188 7462
SRS3 118 5699
SRS4 161 7925
SRS5 451 22057
SRS6 294 14573

SE

SRS7 367 9512
SRS8 90 3573
SRS9 167 6211
SRS10 192 8892
SRS11 19 331
SRS12 340 15448
SRS13 146 7539

Total 2725 115585

3.2 Data Collection

To conduct this study, we first collected actual NL re-
quirements from our industrial partner. Financial analysts
provided us with a set of 13 representative SRSs, written
by different analysts and containing various numbers of
requirements. These SRSs describe various types of projects,
including functional updates to existing applications, mak-
ing existing applications compliant with new regulations,
creating new applications from scratch, and the migration
of existing applications to new platforms. We refer to these
SRSs as SRS1-SRS13, belonging to set S. They contain 2725
requirements in total, which makes this industrial case
study the largest to date regarding requirements quality
assurance.

Table 2 shows the distribution of requirements, along
with the total word count, across SRSs. We randomly split
the set S of 2725 requirements into two subsets SD and
SE , containing 1404 and 1321 requirements, respectively.
The subset SD contains SRSs SRS1-SRS6 and was used
for developing Paska (see Sections 4 and 5). The subset
SE contains SRSs SRS7-SRS13 and was used for evaluating
Paska (see Section 6).

4 REQUIREMENTS SMELLS AND RIMAY PATTERNS

This section describes the process we conducted to derive
requirements smells and patterns from NL requirements
and the Rimay language. We define a catalog of smells
that identify the syntactic and semantic errors commonly
found in NL requirements. In addition, we introduce Rimay
patterns that describe predefined structures for high-quality
requirements expressed in Rimay. These patterns will be
used as suggestions for analysts to rewrite requirements
containing smells, thereby improving the quality of the
requirements.

4.1 Requirements Smells

This section aims to answer RQ1: What are the NL require-
ment smells commonly found in the financial domain?
For RQ1, we inspected a set SD of 1404 NL requirements,
which were written by different analysts across six financial
systems, as described in Section 3.2. In order to review the

requirements in a consistent manner, we used the quality
attributes enforced by Rimay as our review criteria. These
criteria enabled us to identify requirements that have quality
problems with respect to completeness, clarity, atomicity,
and correctness. In this article, the term “requirement smell”
refers to these quality problems in functional requirements
that may lead to misunderstandings, which can, in turn,
increase the risk of defects in the product. We note that there
are existing collections of requirement smells reported in
prior work [9, 10], which are further discussed in Section 9.
Drawing upon these works, we cross-referenced our find-
ings with these existing smell collection. In our context, for
the reasons mentioned above, we apply Rimay to support a
practical solution to detect a large variety of common smells
and rectify them. Hence, we chose to inspect the 1404 NL
requirements using the quality attributes enforced by Rimay.

In our inspection process, the first author of this article
manually reviewed the requirements to uncover a list of
those that violate the quality attributes and to define a
catalog of smells. We note that this author has extensive
expertise and practical experience in Rimay from defining
the language to (re)writing requirements in it, as presented
in the author’s previous work [21]. Given this background,
the author was ideally suited to review the requirements
and pinpoint violations of the quality attributes that Rimay
enforces. We randomly divided the set SD of 1404 require-
ments into six distinct subsets for incremental inspection.
Specifically, SD

1 contains 35% of SD , and each SD
i contains

13% of SD , where i ∈ {2, . . . , 6}. We then sequentially
inspected each subset of requirements in the order SD

1 , SD
2 ,

. . ., SD
6 . During each inspection, we identified requirements

that violate the quality attributes and characterized these vi-
olations as requirement smells. For example, if an inspected
requirement had multiple actions in its system response, we
identified it as violating atomicity and characterized the vio-
lation as the non-atomic requirement smell. After inspecting
each subset of requirements, we obtained feedback from
our industrial partner to validate that the catalog of smells
we defined aligns with common errors frequently made
by analysts when writing NL requirements. In addition to
such feedback, the other authors closely monitored progress
through regular meetings. The catalog of smells was thus
continuously refined and expanded throughout the inspec-
tion process.

We applied the notion of saturation [33] to determine
when to stop the inspection process. Saturation occurs when
no new information can be gained from the data being
analyzed. We continued the inspection process as long as
we detected any instances of new smells that were not
already listed in our smell catalog. From this process, we
defined a catalog of nine smells: non-atomic requirement,
incomplete requirement, incorrect order requirement, coor-
dination ambiguity, not requirement, incomplete condition,
incomplete system response, passive voice, and not precise
verb. Table 3 lists the nine smells. The first column shows
the smell names, and the second column provides the smell
descriptions and examples. We note that the examples listed
in this table are derived from the actual requirements used
in our case study. However, they are sanitized for confiden-
tiality. The third column indicates the quality attribute that
each smell violates. What is noteworthy from the nine smells

6

TABLE 3: Catalog of nine smells. The examples in this table are derived from the actual requirements used in our case
study but are anonymized for confidentiality.

Smell name (D) Description and (E) Example Quality Attribute

Non-atomic
requirement

(D) Non-atomic requirement refers to a requirement that has more than one action in the
system response. (E) “System-A must add System-B to their downstream systems and allow System-
C to subscribe to the Reporting flow.”

Atomicity

Incomplete
requirement

(D) Incomplete requirement refers to a requirement that does not have a system response but
has other optional segments, i.e., condition and scope. (E) “When System-A receives a message
from Security Manager and if the message is part of the B-file, according to the mapping rules.”

Completeness

Incorrect order
requirement

(D) Incorrect order requirement refers to a requirement that its condition segment is located
after its system response. This arrangement of requirement segments may lead to a vague
interpretation of the condition. (E) “When the user is on the Utilities page and the user clicks on
the button “Display on main page”, System-A must open the Alert section when the user launches
System-A.”

Correctness

Coordination
ambiguity

(D) Coordination ambiguity refers to a requirement that has two or more conditions and these
conditions are connected by a coordinated conjunction “or”. (E) “When System-A performs
eligibility check for a participant or if the holding type is complex or if the holding type is simple and
the F-value is Prime, then System-B must ...”

Clarity

Not requirement (D) Not requirement refers to a statement that does not contain any requirement segment, i.e.,
scope, condition, and system response. (E) “The R6 instruction defines the original instruction.”

Correctness

Incomplete
condition

(D) Incomplete condition indicates a condition that lacks either actor or verb. (E) “Upon receipt
of a message in the message Queue, System-A must set the state to unprocessed.”

Completeness

Incomplete
system response

(D) Incomplete system response refers to a system response that lacks either an actor, a modal
verb, or a verb. (E) “When the user clicks on the Filter button, System-A opens the Filter screen.”

Completeness

Passive voice (D) Passive voice indicates that the condition or system response in a requirement is described
in the passive voice. Such requirements likely miss actors. (E) “When a rejection order is received
for a cancellation request, System-A must raise a web alert.”

Completeness

Not precise verb (D) Not precise verb refers to a verb used in the condition or system response in a
requirement that is not precise enough. Such a verb does not define a precise action. The
list of our not precise verbs includes: “accomplish”, “account”, “come”, “consider”, “default”,
“define”, “do”, “get”, “make”, “perform”, “process”, “propose”, “raise”, “read”, “support”,
and “want”. This list is curated by the analysts at our industrial partner. (E) “System-A must
be able to process System-B’s instructions with input media INPUT.”

Clarity

we identified is that they seem rather generic and probably
applicable to information systems in other domains.

The answer to RQ1 is that, based on our inspection, the
following NL requirement smells are commonly found
in the financial domain: non-atomic requirement, incom-
plete requirement, incorrect order requirement, coordi-
nation ambiguity, not requirement, incomplete condition,
incomplete system response, passive voice, and not pre-
cise verb. These smells violate atomicity, completeness,
correctness, and clarity of NL requirements. None of
these smells appears to be specific to the financial do-
main.

4.2 Rimay Patterns
This section describes the process conducted to derive re-
quirements patterns from the Rimay language. These pat-
terns describe predefined structures of Rimay concepts.
As we describe in Section 2, Rimay provides specialized
concepts and constructs to specify functional requirements.
However, Rimay does not provide patterns that guide ana-
lysts on how to rewrite a requirement with smells.

To derive the Rimay patterns, we first created a
conceptual model for capturing the concepts and their
relations underlying the Rimay language. Figure 1 shows
the conceptual model of Rimay. The model captures five
concepts to define “Requirement’ as follows: “Scope”,
“Condition Structure”, “Actor”, “Modal Verb”, and
“Action Phrase”. “Condition Structure” is further
specialized into five concepts: “While Structure”,
“If Structure”, “When Structure”, “Where Structure”,

and “Temporal Structure”. Rimay restricts the ways in
which these conditions can be expressed. For example,
“While Structure” can be used for system responses
that are triggered while the system is in a particular
state (see the relation between “While Structure” and
“Precondition” in Figure 1). The concept “Action Phrase”
is specialized into 58 concepts (e.g., “ADMIT 65” and
“BEG 58 2”) that correspond to the grammar rule names
defined in Rimay [21]. Note that the grammar rules of the
“Action Phrase” concept describe the syntactic structure
and vocabulary allowed. Figure 1 shows only a few
concepts for “Action Phrase”.

Table 4 presents examples of Rimay action phrases
corresponding to the concepts that specialize the
“Action Phrase” concept in Figure 1. For example,
“BEG 58 2” restricts the usage of the word “request”
in expressing an action phrase. Specifically, the Rimay
syntax of “BEG 58 2” restricts that “request” can be
followed by an optional modifier, a mandatory actor,
an optional “for” or “to” phrase, and an optional
“by using” phrase, in this specific order. The example
request the System to "cancel the settlement
" by using the "Order Reference" follows the
Rimay syntax. We note that the exact Rimay syntax for
action phrases, along with examples of Rimay action
phrases, is provided in the previous work on Rimay [21].

To identify Rimay patterns, we utilized both the Ri-
may conceptual model (Figure 1) and grammar. We tra-
versed the syntax tree of the grammar to derive possi-
ble combinations of Rimay concepts. In Rimay, a func-
tional requirement is composed of scope, condition, and

7

Requirement

Scope Condition_Structure Actor Modal_Verb

While_Structure If_Structure When_Structure Where_Structure Temporal_Structure

Precondition

Trigger

Free_Expression Time_Adverb

Action_PhraseNegation

ADMIT_65 BEG_58_2 BEGIN_55_1 OBTAIN_13_5_2 REMOVE_10_1 …

{XOR} {XOR}

{XOR}

0..1 0..* 1 1

1..* 1..*

1

1
1

1

1 1 1

1
0..* +System_Response1..*

1

1

Fig. 1: Rimay conceptual model.

TABLE 4: Concepts of action phrases (shown in Figure 1) and their Rimay examples (excerpted from the previous work on
Rimay [21]).

Concept Example: Rimay Action Phrase

ADMIT 65 exclude the "Gregorian dates that are not business days" in the System based on "the ←↩
relevant calendar"

BEG 58 2 request the System to "cancel the settlement" by using the "Order Reference"
BEGIN 55 1 start the "calculation of the next NAV date on daily basis"
OBTAIN 13 5 2 receive a DA_file from CFCL_IT
REMOVE 10 1 delete the "DECU field" from the "Settlement Parties block"

system response segments. These segments correspond to
the “Scope”, “Condition Structure”, and “Action Phrase”
concepts, respectively, as shown in Figure 1. According to
the Rimay grammar (see Listing 1), the scope, condition, and
system response segments of a functional requirement must
appear in that specific order. In addition, Rimay specifies
that the scope and condition segments are optional in a
Rimay requirement, while the system response segment
is mandatory. Regarding the condition segment in a Ri-
may requirement, analysts can express the following three
condition concepts: “Precondition”, “Trigger”, and “Tem-
poral Structure”. These concepts respectively correspond
to a condition in which the requirement can be invoked
(“Precondition”), an event that initiates the requirement
(“Trigger”), and a temporal event that occurs either be-
fore or after the requirement’s invocation (“Time Adverb”).
Furthermore, Rimay allows a condition segment to spec-
ify multiple conditions. Hence, in Rimay, analysts have
the flexibility to specify a condition segment as either a
precondition, a trigger condition, a time condition, or a
combination of these, referred to as multiple conditions.
Since Rimay provides analysts with 2 options for scope

(i.e., inclusion and exclusion), 5 options for condition (i.e.,
inclusion — precondition, trigger condition, time condition,
and multiple conditions — and exclusion), and 1 option for
system response (i.e., inclusion), a Rimay requirement can
be classified into 10 distinct patterns, as shown in Table 5.

Table 5 outlines the 10 Rimay patterns derived by com-
bining the concepts captured in the conceptual model of Ri-
may. The first column shows the pattern names. The second
column specifies the pattern in the Rimay syntax. Finally,
the third column indicates the combination of the Rimay
concepts used to derive the pattern. Table 5 does not include
all the keywords defined in Rimay and does not include the
templates for Action Phrases. We refer interested readers to
our previous work on Rimay [21] for a complete reference
to the concepts and constructs of the Rimay language.

The derived patterns will be used by Paska to provide
suggestions to analysts when Paska detects any smells (see
Table 3) in NL requirements. The patterns, as guidance,
are intended to help analysts rewrite the NL requirements
in Rimay to improve their quality. Indeed, such patterns
indicate what requirement segments are missing, warrant
change, or must be re-ordered. Recall that Rimay allows ana-

8

TABLE 5: Rimay patterns

Pattern Name Rimay Pattern Mapping to Conceptual Model

1. Scope and system response For each|all|... "Text" ,|then the? Actor must ←↩
<Action> (every "Text")?.

Scope, Actor, Modal Verb,
and Action Phrase

2. Scope, condition (precondi-
tion), and system response

For each|all|... "Text", if <Property> is equal ←↩
to | is less or equal to |... "Value" ,|then ←↩
the? Actor must <Action> (every "Text")?.

Scope, Precondition, Actor,
Modal Verb, and Action Phrase

3. Scope, condition (trigger), and
system response

For each|all|... "Text", when the? Actor ←↩
<Action> (every "Frequency")?,|then the? Actor ←↩
must <Action> (every "Text")?.

Scope, Trigger, Actor,
Modal Verb, and Action Phrase

4. Scope, condition (time), and
system response

For each|all|... "Text", after|before "Text" ←↩
,|then the? Actor must <Action> (every "Text")?.

Scope, Time Adverb, Actor,
Modal Verb, and Action Phrase

5. System response The? Actor must <Action> (every "Text")?. Actor, Modal Verb,
and Action Phrase

6. Condition (precondition) and
system response

If <Property> is equal to | is less or equal ←↩
to |... "Value" ,|then the? Actor must <Action> ←↩
(every "Text")?.

Precondition, Actor, Modal Verb,
and Action Phrase

7. Condition (trigger) and
system response

When the? Actor <Action> (every "Frequency")? ←↩
,|then the? Actor must <Action> (every "Text")?.

Trigger, Actor, Modal Verb,
and Action Phrase

8. Condition (time) and
system response

After|Before "Text" ,|then the? Actor must ←↩
<Action> (every "Text")?.

Time Adverb, Actor,
Modal Verb, and Action Phrase

9. Scope, multiple conditions, and
system response

For each|all|... "Text", if <Property> is equal ←↩
to | is less or equal to |... "Value" ,|and ←↩
when the? Actor <Action> (every "Frequency")? ←↩
,|then the? Actor must <Action> (every "Text")?.

Scope, Condition Structure (two
or more), Actor, Modal Verb,
and Action Phrase

10. Multiple conditions and
system response

If <Property> is equal to | is less or
equal to |... "Value" ,|and when the? Actor ←↩
<Action> (every "Frequency"),|then the? Actor ←↩
must <Action> (every "Text")?.

Condition Structure (two or
more), Actor, Modal Verb,
and Action Phrase

lysts to write requirements that satisfy the following quality
attributes: completeness, clarity, correctness, and atomicity.
Since Paska detects requirement smells that violate these
quality attributes, proposing appropriate Rimay patterns
will assist analysts in addressing the identified smells in NL
requirements. We note, however, that Paska is not designed
to automatically rewrite NL requirements in Rimay to rec-
tify any smells. Such automatic translation is probably not
possible in general as it would require automated additions
of missing segments or changes, which we leave out of the
scope of this study.

5 APPROACH

Figure 2 provides an overview of the four steps of Paska.
The inputs are (1) software requirements specifications
(SRSs) that contain a set of functional requirements, (2) Ri-
may patterns (Section 4.2), and (3) the catalog of nine smells
commonly found in NL requirements (Section 4.1).

As shown in Figure 2, in Step 1, Paska applies prepro-
cessing steps to the NL requirements extracted from the
SRSs. In Step 2, requirements are separated into segments
(e.g., scope, condition, and system response), relying on
patterns and a segment splitter. The patterns are written
using Tregex, which is a language for defining patterns in
text syntax trees. In Step 3, Paska detects smells in NL
requirements by applying several techniques, such as Tregex
patterns, structural patterns, rules, and glossary search. In
our context, a structural pattern refers to a pattern that
checks the sequence of words in a requirement. Finally,
in Step 4, Paska suggests a pattern for analysts to fix the
NL requirements with smells and convert them into Rimay.
Rimay helps reduce the risk of having quality problems in
requirements since it has precise syntax and semantics. In

this section, we describe in detail all the steps of Paska using
the running example shown in Figure 3.

5.1 Step 1: Preprocess Requirements

We apply a set of preprocessing steps to the NL require-
ments extracted from SRSs, including tokenization (dividing
the text of the requirement into tokens, such as punctuation
marks and words), post-tagging (assigning part of speech
tags to tokens, such as pronouns, verbs, and adjectives), and
constituency parsing (a process that identifies the structural
units of sentences, e.g., clause, noun phrase, verb phrase).
We also remove single and double quotes but keep the
metadata in requirements (i.e., the MS Word metadata in our
case study). Such metadata includes line breaks and bullet
points and are, in our context, useful for detecting multiple
conditions and system responses. Figure 3 (Step 1) shows
an example of a preprocessed requirement. Paska removes
the double quotes since we observe that single and double
quotation marks prevent us from correctly identifying the
structural units of the sentences when using a constituency
parsing algorithm (e.g., AllenNLP [34]).

5.2 Step 2: Separate Requirement into Segments

This step automatically separates an NL requirement into
segments (e.g., scope, condition, and system response) to
(1) analyze each segment of the requirement independently
with the purpose of finding smells (Step 3 of Figure 2) and
(2) determine the overall syntax of the requirements with
the purpose of suggesting a precise Rimay pattern (Step 4
of Figure 2). We create an automated procedure to separate
a requirement into segments using the following methods:
(1) Tregex patterns and (2) segment splitters.

9

Preprocess
Requirements1 Identify

Smells3 Suggest
Rimay Patterns4

Requirements
with smells

SRSs

Separate Requirement
into Segments2

Rimay patterns to
fix requirements

with smells

Rimay
Patterns

Smells

Fig. 2: Approach overview.

Tregex patterns. The Tregex query language allows users
to define regular expression-like patterns in tree struc-
tures [23]. Tregex is designed to define patterns that involve
the tree nodes and the hierarchical relations among the tree
nodes in the syntax tree of a requirement. To separate a re-
quirement into segments, we created a set of patterns using
Tregex. In our context, a Tregex pattern matches a specific
structure of the constituency structure of a requirement. The
constituency structures of the requirements are obtained in
Step 1 (Section 5.1).

To create Tregex patterns, we analyzed the syntax of
1404 requirements that are identical to the requirements
used in Section 4.1. The process to derive the patterns is
as follows: (1) We group the requirements that have the
same segments. A segment could be a scope, condition, and
system response. (2) We analyze the constituency structures
of the segments of each group. (3) We derive Tregex patterns
that match the constituency structure of the segments of
each group. (4) We analyze all patterns matching the same
segment across all groups, attempting to refine and merge
them, if possible. If not, a segment may have more than one
pattern.

Table 6 presents the 11 Tregex patterns that we derived
after following the process described above. In total, we
derived two patterns that detect scope (see SC1 and SC2
in Table 6), eight patterns that detect conditions (C1–C8),
and one pattern that detects system response (SR1). In the
table, for each Tregex pattern, there is an example require-
ment containing the segment matched by the pattern. The
segment is emphasized in italic.

Figure 4 shows an example of the usage of the pat-
tern C3 (see Table 6) to extract the condition of re-
quirement R from the corresponding constituency pars-
ing tree. The requirement has a scope (“For all deposi-
tories”), a condition (“when System-A receives an email
alert from System-B”), and a system response (“System-
A must create an MT530 transaction”). We note that some
concepts of requirement R are anonymized to comply with
the confidentiality agreement with our industrial partner.
The condition is composed of a subordinate conjunction
(WHADVP: “when”), a noun phrase (NP: “System-A”), and
a verb phrase (VP: “receives an email alert from System-B”).
As shown in Figure 4 (highlighted in the colored boxes), the
pattern C3 identifies a subordinate clause (SBAR) that is the
parent (<) of a Wh-adverb phrase (WHADVP), which is the
immediate left sister ($+) of a clause (S). Clause (S) is the
parent (<) of a noun phrase (NP), which is the left sister
($++) of a verb phrase (VP).

Segment splitter. We propose a segment splitter that at-
tempts to separate requirements into segments (e.g., scope,

condition, and system response). The segment splitter is
only used when all the Tregex patterns fail to identify
segments in a requirement. We note that such failures can
be caused by a malformed constituency parsing tree that
incorrectly identifies the structural units of a requirement or
a requirement structure that was not observed during the
creation of the Tregex patterns.

To create our segment splitter, we first collect the key-
words that characterize the beginning of each segment in
a requirement. These keywords include (1) for the condi-
tion: “when”, “if”, “where”, “while”, and “until”, (2) for
the scope: “for”, and (3) for the system response: “then”,
(line break), “;”, “else”, and “otherwise”. We identified
these keywords based on both the Rimay grammar and
the requirements inspected when deriving our catalog of
requirements smells (see Section 4.1). In general, such an
analysis method that relies on keywords has limitations in
terms of exhaustiveness. When needed, however, extending
our set of keywords is very straightforward.

Our segment splitter splits the requirement into seg-
ments by detecting the above keywords in the requirements
and then validates each segment. A segment is considered
valid if it has the mandatory information content (e.g.,
actor, modal verb, and verb in a system response). Table 7
shows the mandatory information content that each seg-
ment should have to be considered valid.

Finally, when segments do not comply with their manda-
tory information contents, Paska labels them as “Not
Matched”. These segments will be further analyzed to detect
smells in Step 3 (Section 5.3).

In the example shown in Figure 3 (Step 2), we first
apply all the Tregex patterns (Table 6) to the requirement.
The pattern SR1 is matched, and segments 002 and 003 are
identified as system responses. Paska then applies the seg-
ment splitter. However, the segment splitter fails to identify
segment 001, since the word “Upon” is not present in our
keyword list. Since this word describes a preposition, it can
be anywhere in a requirement and not only at the beginning
of a segment.

5.3 Step 3: Identify Smells
This section answers RQ2: How can smells be detected?
Algorithm 1 presents our automated procedure for detecting
any of the smells introduced in Section 4.1. As shown in
line 1 of the algorithm, we analyze the requirement seg-
ments obtained from Step 2 in Figure 2. To detect smells
in each segment, the procedure employs the following
techniques: Tregex patterns, structural patterns, rules, and
glossary search (see lines 3-9). Below, we describe in detail
these techniques and the smells that each of them detects.

10

Description

Upon reception of a settlement instruction from System-A, System-B must
process the settlement instruction and the input media field must be set to
“SINF” .

Requirement

Separate Requirement into Segments (Step 2)

Identify Smells (Step 3)

Preprocess Requirement (Step 1)

Tregex
pattern

002 System-B must process the settlement
instruction and

System
Response

Tregex
pattern

System
Response

Method

Not
identified

Upon reception of a settlement
instruction from System-A ,

Segment

003

001

Description

the input media field must be set to
SINF .

Requirement

002

#

003

001

System-B must process the settlement
instruction and

System Response

Description

Not matched

the input media field must be set to SINF .

System Response

Upon reception of a settlement instruction from
System-A ,

Segment
Requirement

Identify Smells (Step 3)

Incomplete
Condition

Smell#

001

Description

Not identifiedUpon reception of a settlement instruction
from System-A ,

Segment
Requirement

Smell

Passive
Voice

002

#

003

System-B must process the settlement
instruction and

System
Response

Description

the input media field must be set to SINF .

System
Response

Segment
Requirement

Non Atomic

Smell

002

#

003

001

System-B must process the settlement
instruction and

System
Response

Description

Not identified

the input media field must be set to SINF .

System
Response

Upon reception of a settlement instruction
from System-A ,

Segment

Requirement

Result: Tregex pattern IC2 (Condition no actor no verb)
matches Segment #001

 b) Apply structural patterns to the remaining segments

Result: Structural pattern #1 (Passive voice) matches
Segment #003

c) Apply rules to the requirement

Result: Requirement has two system responses which
triggers the rule non atomic

d) Search for not precise verbs in system response
segments (Glossary search)

Not
Precise
Verb

Smell

002

#

003

System-B must process the settlement
instruction and

System
Response

Description

the input media field must be set to SINF .

System
Response

Segment
Requirement

Result: The verb “process” from segment 002 is not a
precise verb

a) Apply Tregex patterns IC1 and IC2 to segments “Not
matched”

Suggest Rimay Pattern (Step 4)

Requirement

002

#

003

001

System-B must process the settlement
instruction and

System Response

Description

Incomplete
Condition

the input media field must be set to SINF .

System Response

Upon reception of a settlement instruction from
System-A ,

Segment

Rimay Pattern: 7. Condition (Trigger) and system
response

Description

Upon reception of a settlement instruction from System-A , System-B must
process the settlement instruction and the input media field must be set to
SINF .

Requirement

Fig. 3: Examples illustrating smell detection and Rimay pattern suggestions.

Tregex patterns. Recall from Section 5.2 that the Tregex
patterns match the specific structures of the constituency
parsing tree resulting from an NL requirement. While ana-
lyzing the set of requirements in Section 5.2, we observed

two groups of requirements that contain incomplete condi-
tions.

The following are two examples of these requirements:
EIC1 and EIC2. “EIC1: Upon reception from System-A the

11

TABLE 6: Tregex patterns to identify segments in requirements. The examples in this table are derived from the actual
requirements used in our case study but are anonymized for confidentiality.

ID Segment Tregex Pattern Example

SC1 Scope (PP < ((IN < For) $+ NP)) > (S < (/(RB | , | ADVP)/ $+
(NP $+ VP)))

For all the depositories, System-A must create a T30 trans-
action processing command.

SC2 Scope ((PP < ((IN < For) $+ NP)) [>- ((VP < MD) $- NP)] &!>>
PP)

System-A must create an instruction with the the remote
code value “B” for each settlement request.

C1 Condition WHADVP $+ (S <, (S < (NP $+ VP)))) > SBAR &!>> VP When System-A creates one of the following reports: list, list
with Beta, System-A must populate the field “A” in the
report.

C2 Condition ((IN < once) $+ (S < (NP $+ VP))) [> SBAR | > S] & > !VP Once System-A has successfully validated a settlement request,
System-A must send an acknowledge message to System-
B.

C3 Condition SBAR < (WHADVP $+ S < (NP $++ VP)) System-A must send a settlement request to System-B
when the contract note has been received from System-C.

C4 Condition (WHADVP $+ (S < (NP $+ VP)) !>> /(VP | SBAR)/) When the fund frequency in reference data has an empty value,
then System-A must set the fund frequency to “daily”.

C5 Condition (WHADVP !< /(of | to)/) $+ (NP $+ VP) !>> /(VP |
SBAR)/

When the user clicks on the left side menu, portfolio section,
System-A must display the portfolios.

C6 Condition (SBAR < ((WHADVP !<< that) $+ (S << (SBAR <<, /(That
| that)/) & <<, (NP $++ VP | $++ VB)))) !>> VP

When a user confirms that he wants to cancel the creation of
an account record, the System-A must delete the related
parameters recorded in account with status “draft”.

C7 Condition (SBAR < ((WHADVP !<< that) $+ (S !<< SBAR &<<, (NP
$++ VP | $++ VB)))) !>> VP

If the settlement date is present in the instruction sent to
System-A then System-A must store in data storage unit.

C8 Condition
Time

(PP < (IN < (/(̂after | before)$/) $+ (NP !< VB < NN)
)) > S

Before the System-A cutover, System-A must update the
entity-A data model.

SR1 System
Response

NP $+ (VP < (MD ?$+ ADVP $++ (VP <<, (/VB.?/ $+ (S <
(NP $++ VP)))))) > S

System-A must send the fund details report to local team daily.

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund, NP: Noun phrase,
PP: Prepositional phrase, IN: Preposition, NN: Noun, RB: Adverb, ADVP:Adverb phrase, MD: Modal, and VB: Verb

TABLE 7: Information contents characterizing the requirement segments

Segment Information Content

Scope For [each | all | none] noun
Condition [When | if | where | while | until] noun verb
System response [then | <line break> | ; | else | otherwise] noun modal-verb verb

Algorithm 1 Detect Smells in NL Requirement.

Input:
r: NL requirement

Output:
D: detected requirement smells

1: SEG ← SEPARATESEGMENTS(r) // Step 2
2: D ← {}
3: for each seg ∈ SEG do
4: Dt ← APPLYTREGEXPATTERN(seg)
5: Ds ← APPLYSTRUCTURALPATTERN(seg)
6: Dr ← APPLYRULES(seg)
7: Dg ← SEARCHGLOSSARY(seg)
8: D ← D ∪Dt ∪Ds ∪Dr ∪Dg

9: end for
10: return D

status Pending of an Instruction, then ...”. The condition of
EIC1 misses the actor and the verb. Instead of a verb, the
condition contains the noun “reception”, making it unclear
who or what is doing the receiving. “EIC2: When creating
a new participant, System-A must...”. The condition of EIC2
lacks the actor, and the verb is described using a gerund.
Missing an actor or a verb in a condition statement can result

in ambiguity and incompleteness issues in a functional
requirement. To detect such conditions, we derived two
Tregex patterns. To do so, we found a set of 55 requirements
from the 1404 requirements (i.e., SD in Section 4.1) that are
similar to EIC1 and EIC2. Next, we grouped the require-
ments into two sets. Each set shares the same information
content. Then, for each set, we derived a Tregex pattern.
Table 8 shows the two derived patterns, i.e., IC1 and IC2, to
detect incomplete conditions.

In the example shown in Figure 3 (Step 3a), Paska
matches the pattern IC2 with segment 001 “Upon reception
of a settlement instruction from System-A”. The condition
lacks the actor and the verb; therefore, the smell “Incomplete
condition” is detected.

Structural patterns. This method analyzes the segments
of a requirement using structural patterns to detect the fol-
lowing smells: “Incomplete condition”, “Incomplete system
response (SR)”, and “Passive voice”. Regarding the smell
“Incomplete condition”, recall that our Tregex patterns aim
at detecting it. However, due to various reasons, in practice,
the constituency parsing tree of a requirement may be mal-
formed. In such cases, our structural patterns are applied
to detect the smell. A structural pattern checks the presence
of certain words describing the concepts (see Figure 1) of
segments in a specific sequence.

12

S

SBAR

WHADVP S

JJ VBZ

,

System-A

 VP

must create

WRB NP VP

NP

NPNP

`NN

NP

 DT
NP

 VP

NPINNNDT

when System-A receives System-Bfrom alert an email

NNP MD

VB
NN

a MT530_transaction

Tregex pattern to extract conditions:
SBAR < (WHADVP $+ (S < (NP $++ VP)))

PP

IN NP

For all depositories

DT NNS

, .

.
,

,

R: For all depositories, when System-A receives an email alert from System-B, System-A must create a MT530-transaction.

Fig. 4: An example Tregex pattern that matches a constituency parsing tree of a condition.

TABLE 8: Tregex pattern to detect incomplete conditions

ID Tregex Pattern

IC1 ((SBAR < (WHADVP $+ (S < ((VP < (VBG $+ NP — $+ PP)) !$++ NP !$– NP)))) !>> VP)
IC2 ((PP < ((IN < Upon) $+ (NP < ((NP << NN) $++ PP)))) !>> /(VP — SBAR)/)

S: Clause, SBAR: Subordinate clause, WHADVP: Wh-adverb phrase, VP: Verb phrase, VBG: Verb gerund, NP: Noun phrase,
PP: Prepositional phrase, IN: Preposition, and NN: Noun

As shown in Table 9, we define 14 structural patterns to
detect the above smells. We analyzed the 1404 requirements
by categorizing them into different smell groups. For each
group, we inspected the requirements at the segment level
(e.g., condition and system response) based on Rimay’s
concepts and constructs and identified specific structural
patterns to detect the smells. There are eight patterns that
check for the smell “Passive voice” in the following tenses:
present simple, present perfect, past simple, and past per-
fect. In addition, we define three patterns that check for the
smell “Incomplete condition”, and three patterns to detect
the smell “Incomplete system response”.

We analyze the segments obtained from Step 2 of Fig-
ure 2 using the structural patterns. For example, the struc-
tural pattern “Passive voice #7” matches the condition of
the following requirement “When/WRB an/DT Order/NNS
has/VBZ been/VBN assigned/VBN via/IN propagation/NNP
..”. The condition contains verb “has”(v1) in the present
tense, followed by verb “been”(v3) in the past participle,
and followed by verb “assigned”(v4) in the past participle.

In the example shown in Figure 3 (Step 3b), Paska
applies our structural patterns to the segments of the re-
quirement. Specifically, the structural pattern “Passive Voice
1” matches segment 003. This segment has the verb “be”(v1)
in its base form and the verb “set”(v4) in its past participle
form.

Rules. We propose a set of rules to analyze the segments
of a requirement identified by Step 2 of Figure 2, aiming at
detecting the following smells: “Non-atomic”, “Incomplete

requirement”, “Incorrect order requirement”, “Coordination
ambiguity”, and “Not a requirement”. Our rules analyze
how the segments are connected to each other and deter-
mine the sequence of the segments of the requirement. In
the following, we describe these rules:

1) Non-atomic: The requirement has more than one seg-
ment for system response.

2) Incomplete requirement: The requirement misses the
system response segment, but it has other segments,
such as scope and condition.

3) Incorrect order requirement: The requirement has one
or more condition segments after its system response.

4) Coordination ambiguity: When the requirement has
two or more subsequent conditions, Paska extracts the
word(s) or character(s) that separate the conditions.
If the separator(s) is the conjunction “or”, then Paska
triggers the smell “Coordination ambiguity”.

5) Not a requirement: All segments of the requirement are
neither scope, condition, nor system response.

In the example depicted in Figure 3 (Step 3c), Paska
applies our rules to the requirement. The rule “Non-atomic”
identifies two system responses in the requirement that
triggers the smell “Non-atomic”.

Glossary search. This method aims to identify the smell:
“Not a precise verb”. For this purpose, we create a glossary
of verbs that do not describe precise actions, are difficult to
test, and carry several meanings. Note that these criteria are
used to define vague words in the literature [35]. For exam-
ple, according to the English dictionary, the verb “process”

13

TABLE 9: Structural patterns for smell detection

Smell # Structural Pattern Example

Passive voice

1 v1 v4 “...is taken...”
2 v1 adv v4 “...has not taken...”
3 v2 v4 “...was taken...”
4 v2 adv v4 “...was not taken...”
5 v2 v3 v4 “...had been taken...”
6 v2 adv v3 v4 “...had not been taken...”
7 v1 v3 v4 “...has been taken...”
8 v1 adv v3 v4 “...has not been taken...”

Incomplete condition 9 sc o1 “When for each subscriptions...”
10 sc v1 “When receives the subscription order ...”
11 sc n1 o1 “When the System-A seennd the subscription order ...”

Incomplete 12 md v1 “then must send the settlement request...”
system response 13 n1 v1 “System-A closes the Filter screen...”

14 n1 md o2 “System-B must sed the settlement request...”

v1: Verb base form (be | have), v2: Verb past (be | have), v3: Verb past participle (be), v4: Verb past participle, adv: Adverb
(not), sc: Subordinated conjunction, n1: Noun, md: Modal verb, o1: Other word than noun and verb, o2: Other word than
verb, p: Preposition (for), q: Quantifier, o3: Other word than noun

means “operate on (data) by means of a program”. This verb
does not provide a precise action, which makes it difficult
for an analyst to test the requirements that contain such a
verb. To create our glossary of verbs, we gather all the verbs
of the requirements used in Section 4.1. We search for verbs
that do not have precise actions and are difficult to test. Our
glossary includes the following verbs: accomplish, account,
base, come, consider, default, define, do, get, make, perform,
process, propose, make, raise, read, support, and want. Our
glossary also includes verbs that have several meanings but
only one etymology (polysemy). These verbs in our glossary
are: come and get.

We have elaborated our glossary in collaboration with
two experts working for our industrial partner. The experts
agreed that they prefer to avoid using these verbs when
specifying requirements as they are not precise enough and
are indeed difficult to test.

To detect these verbs in the requirements, Paska au-
tomatically extracts verbs from the requirement segments
condition and system response. Next, Paska obtains the
lemmas of these verbs. Finally, Paska searches for the lemma
in our glossary. If there is a match, Paska triggers the smell
“Not a precise verb”.

In the example shown in Figure 3 (Step 3d), Paska
analyzes the segments 002 and 003 because they are system
responses; then, Paska extracts the verb “process” because
it belongs to our glossary. Hence, the smell “Not a precise
verb” is detected.

The answer to RQ2 is that Paska detects smells in NL
requirements using several complementary techniques:
Tregex patterns, structural patterns, rules, and glossary
search. Paska combines these techniques to ensure that
various requirement smells are accurately identified since
no single technique is comprehensive enough to detect all
of them.

5.4 Step 4. Suggesting Rimay Patterns

This section answers RQ3: How can we suggest recommen-
dations to improve requirement quality? To suggest Rimay

Algorithm 2 Suggest Rimay Pattern.

Input:
r: NL requirement

Output:
p: suggested Rimay pattern

1: SEG ← SEPARATESEGMENTS(r) // Step 2
2: // Count segment frequencies
3: cnts ← COUNTSCOPES(SEG)
4: cntc ← COUNTCONDITIONS(SEG)
5: cntr ← COUNTSYSTEMRESPONSES(SEG)
6: // Identify condition type
7: ctype ← IDENTIFYCONDITIONTYPE(SEG)
8: // Match Rimay pattern
9: p← MATCHRIMAYPATTERN(cnts, cntc, cntr, ctype)

10: return p

patterns as recommendations, Paska analyzes the segments
of a requirement identified by Step 2 to match one of the 10
Rimay patterns (Section 4.2). The matched pattern will guide
analysts when fixing any smell detected in a requirement
and converting it into a Rimay requirement.

Algorithm 2 shows Paska’s automated procedure for
suggesting a Rimay pattern for a given NL requirement.
To identify a suitable Rimay pattern, Paska first counts
the frequencies of the segments in a requirement, since the
Rimay patterns are defined in terms of segments (see lines 1-
5). More concretely, Paska counts the number of segments—
scopes, conditions, and system responses—that appear in a
requirement. For the condition segments, Paska further clas-
sifies them into trigger, time, and precondition (Section 2)
(see lines 6-7). To identify “time condition”, Paska checks if
a segment is matched by the pattern “C8” (Table 6) in Step 2.
To identify “precondition condition”, Paska extracts the verb
phrase (VP) from a condition segment. If the VP contains
one of the operators [21], i.e., “is equal to”, “less or equal
to”, “contain”, and “have”, then the condition segment is
identified as “precondition condition”. Moreover, to identify
“trigger condition”, we extract the VP from a condition seg-

14

Requirement in Rimay

Description

Upon reception of a settlement instruction from System-A, System-B must process the
settlement instruction and the input media field must be set to “SINF” .

Requirement

Separate requirement into segments (Step 2) and Identify
smells (Step 3)

System Response003 the input media field must be set to SINF .

Incomplete
condition

Smell

001

#

002

Upon reception of a settlement instruction from
System-A ,

System Response

Description

System-B must process the settlement
instruction and

Condition inferred
from smell

Segment
Requirement

Rimay Pattern: 7. Condition (Trigger) and system response
Suggest Rimay pattern (Step 4)

When the? Actor <Action> (every "Frequency”)?, | then the? Actor must <Action> (every
"Text”)?.

Rimay Pattern

Apply the Rimay pattern to fix the requirement

When System-B receives a “settlement instruction” from System-A, then System-B must set
the “input media field” to “SINF”.

Non Atomic,
Not Precise
Verb (process),
and Passive
Voice (be set)

Fig. 5: Application of a Rimay pattern.

ment. If the VP contains verbs other than the ones used by
the “precondition condition”, then the segment is classified
as “trigger condition”. Paska also counts the frequencies of
incomplete segments with the following smells: “incomplete
condition” and “incomplete system response”. Once the
frequencies are calculated, Paska maps the frequencies to
any of the 10 Rimay patterns (see lines 8-9). Table 10 presents
the frequency of segments for each of the 10 Rimay patterns.
The first column shows the name of the pattern. From the
second to the sixth column, we show the frequency of each
segment contained in each of the 10 Rimay patterns.

In the example shown in Figure 3 (Step 4), Paska ana-
lyzes the three segments 001, 002, and 003 in the require-
ment. Segment 001 is an incomplete condition as Paska
does not detect any verb in the segment. However, the
Tregex pattern (i.e., IC2 in Table 8) identifies the smell
“Incomplete condition”, indicating that the condition uses
the noun “reception” instead of a verb. This analysis result
suggests that the verb is an action verb, indicating that it
is a condition trigger. To summarize, the requirement in
Figure 3 (Step 4) has a condition trigger and two system
responses. Since Rimay discourages analysts from writing
non-atomic requirements, Paska suggests Rimay pattern “7.
Condition(Trigger) and system response” to help analysts
rewrite the requirement.

Figure 5 illustrates how an analyst applies the
suggested Rimay pattern to address smells in an

NL requirement. Given the suggested Rimay pat-
tern “7. Condition(Trigger) and system response” (see
Table 5), the analyst rewrites the NL requirement
in Rimay to address the following smells: “incom-
plete condition”, “non-atomic requirement”, “not precise
verb”, and “passive voice”. The Rimay requirement in-
cludes the trigger condition: When System-B receives
a "settlement instruction" from System-A, ad-

dressing the “incomplete condition” smell, and the
system response: System-B must set the "input
media field" to "SINF", addressing the “non-atomic
requirement” and “passive voice” smells. In this example,
we note that the analyst identified segment 002 in the NL
requirement as unnecessary and consequently removed it.

The answer to RQ3 is that Paska suggests recommen-
dations in the form of Rimay patterns by analyzing
segments (i.e., scope, condition, and system response) in
an NL requirement. The recommended Rimay patterns
are meant to guide analysts when fixing identified smells
in an NL requirement and converting it into a Rimay
requirement. In summary, Paska indicates segments in
the requirements that may be missing, are incorrectly
ordered, or that require change.

6 EVALUATION

In this section, we describe the case study conducted to
address RQ4 and RQ5. We follow best practices for reporting
case study research in software engineering [36].

6.1 Case Study Design
Our evaluation aims to answer the following RQs:
RQ4. Can Paska accurately indicate the occurrence of
smells?
RQ5. How accurate is Paska in recommending requirement
patterns to fix smells?

To answer RQ4 and RQ5, we measured the accuracy of
Paska in detecting smells and suggesting Rimay patterns,
using an annotated dataset as a ground truth for com-
parison. To construct our ground truth GT , we annotated
the 13 SRSs (described in Section 3.2) provided by our
industrial partner. To annotate the SRSs, we had four an-
notators who manually analyzed the syntax and semantics
of each requirement to detect smells and suggest a Rimay
pattern. Sections 6.2 and 6.3 provide further details about
our annotation process and results.

Once the ground truth was completed, we developed
Paska using the development set SD of requirements (i.e.,
SRS1-SRS6), as described in Section 6.5. We then evaluated
the accuracy of Paska in detecting smells and suggesting
Rimay patterns. To this end, we compared the results ob-
tained by Paska using the evaluation set SE (i.e., SRS7-
SRS13) against the ground truth GT . We thus calculated
the accuracy of smell detection and pattern recommendation
using SE , which we report in Section 6.6.

6.2 Data Annotation
To annotate the 13 SRSs described in Section 3.2, we hired
and trained three external annotators to identify smells in

15

TABLE 10: Segment frequencies in Rimay patterns.

Pattern Scope Condition System ResponsePre-condition Trigger Time
1. Scope and system response 1 0 0 0 1
2. Scope, condition (precondition), and system response 1 1 0 0 1
3. Scope, condition (trigger), and system response 1 0 1 0 1
4. Scope, condition (time) and system response 1 0 0 1 1
5. System response 0 0 0 0 1
6. Condition(precondition) and system response 0 1 0 0 1
7. Condition (trigger) and system response 0 0 1 0 1
8. Condition (time) and system response 0 0 0 1 1
9. Scope, multiple conditions, and system response 1 2 or more 1
10. Multiple conditions and system response 0 2 or more 1

SRSs and recommend Rimay patterns to fix such smells.
Two out of the three external annotators have more than
two years of experience in requirements engineering. The
other external annotator has knowledge about the domain
of our industrial partner and also has more than two years of
experience in requirements engineering. To train the annota-
tors, we randomly selected and used 70 requirements from
SD . During the training, we applied Cohen’s kappa [37] to
measure inter-annotator agreement and obtained a score of
0.89, indicating strong agreement.

After the training, the three external annotators and the
first author of this article conducted a collective 312-hour
annotation process. We note that the annotations made by
the first author of this article are included in the subset SD

and hence were used only to develop Paska. We assigned
the SRSs to the annotators accounting for their individ-
ual situations and contracts, which resulted in different
numbers of SRSs being assigned to each annotators. The
annotators manually analyzed the syntax and semantics of
each requirement in the SRSs of SD and SE to detect smells
and assign a Rimay pattern. After the annotators completed
annotating each SRS, we analyzed the annotation results by
having an in-person monitoring session (30-60 minutes). In
each session, the annotators pointed out the requirements
that were difficult to annotate. We then discussed them to
reach an agreement on the correct annotations. Once the
annotation process concluded, we randomly selected 10%
of the requirements annotated in S for inspection. From
the analysis results, we found that most of the annotations
(more than 80%) were satisfactory, indicating agreement
among the annotators. For the unsatisfactory annotations
(less than 20%), we then identified their causes and asked
the annotators to correct them throughout all SRSs in S. We
finally accepted the annotations.

6.3 Annotated Requirements

Table 11 shows the annotation results of the smells de-
tected in S. The first column indicates the smell name.
The second through seventh columns present the number
of requirements containing the smell listed in each row for
each batch in S. The last column displays the total number
of occurrences of each of the nine smells in S. Table 11
confirms that the SRSs used in our study are highly diverse
in terms of smells since there is significant variation across
batches in terms of the distribution of smells. Further, smells
occur according to very different frequencies. We found that
“8. Passive Voice” is the smell with the highest frequency

in S (accounting for 40.9% of the requirements) while, in
contrast, we have smells such as “5. Not a requirement”,
with very low frequencies (0.28% of the requirements).

Table 12 shows the frequencies of Rimay patterns as-
signed by the annotators to requirements in S. The first col-
umn shows the Rimay pattern. The second through seventh
columns present the number of requirements assigned to
each Rimay pattern for each batch in S. The last column
displays the total number of occurrences of each of the
10 Rimay patterns in S. Table 12 suggests that, similar to
smells, the SRSs used in our case study have significant
diversity in their structural composition and patterns oc-
cur according to widely different frequencies. For example,
“10. Multiple conditions and system response” is the most
frequently assigned Rimay pattern with 803 occurrences in
set S. The least frequently assigned Rimay patterns (less
than 20 times) are “2. Scope, condition (precondition), and
system response” and “8. Condition (Time) and system
response”. In Table 12, we found that the pattern “4. Scope,
condition (Time) and system response” is not observed in S.
Recall from Section 4.2 that Rimay patterns represent valid
sequences of Rimay concepts used to write requirements in
Rimay. Even though the SRSs do not have requirements that
can be rewritten by applying this pattern, we opted to keep
the pattern in Paska to provide the complete list of Rimay
patterns.

6.4 Metrics

Our analysis of the accuracy of Paska, when detecting smells
and suggesting Rimay patterns, is based on the precision
and recall metrics. We applied Paska to the subsets of
requirements SD and SE to detect smells and suggest Rimay
patterns. We compared these results against the ground
truth GT (Section 6.1) using precision and recall. For each
smell s and Rimay pattern p, we first classified Paska’s
predictions for a requirement r into the following categories:
True positives (TP) are the correct predictions. In smell
detection, a TP occurs when Paska detects the same smell
s as the ground truth GT for requirement r. In pattern
suggestion, a TP occurs when Paska assigns the same Rimay
pattern p as GT to requirement r.
False negatives (FN) are missed annotations. In smell detec-
tion, a missed annotation occurs when Paska fails to detect
the smell s that is annotated for requirement r in the ground
truth GT . In pattern suggestion, a missed annotation occurs
when Paska fails to suggest the pattern p that is annotated
for r in GT .

16

TABLE 11: Smells - Annotation results for set S

Smell Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1. Non-atomic 14 79 107 6 23 78 310
2. Incomplete requirement 2 8 1 1 1 2 15
3. Incorrect order requirement 21 40 34 9 7 14 125
4. Coordination ambiguity 0 4 0 1 5 4 14
5. Not a requirement 2 0 0 1 1 1 5
6. Incomplete condition 18 72 70 9 49 104 322
7. Incomplete system response 4 9 0 2 1 3 19
8. Passive voice 174 219 59 33 95 141 721
9. Not precise verb 2 111 27 26 33 32 231

TABLE 12: Rimay patterns - Annotation results for set S

Rimay Pattern Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Total

1. Scope and system response 6 16 7 3 1 7 40
2. Scope, condition (precondition), and system response 9 3 0 0 0 0 12
3. Scope, condition (trigger), and system response 13 28 113 0 0 83 237
4. Scope, condition (time), and system response 0 0 0 0 0 0 0
5. System response 91 45 40 203 111 37 527
6. Condition (precondition) and system response 75 13 5 21 35 7 156
7. Condition (trigger) and system response 116 158 73 202 105 104 758
8. Condition (time) and system response 0 2 4 0 0 0 6
9. Scope, multiple conditions, and system response 5 29 86 0 4 39 163
10. Multiple conditions and system response 63 310 79 25 120 206 803

TABLE 13: Batch distribution of the SRSs in S

Subset Batch # SRS ID # Requirements

SD

1 SRS1 192
SRS2 188

2 SRS3 118
SRS4 161

3 SRS5 451
SRS6 294

SE

4 SRS7 367
SRS8 90

5
SRS9 167
SRS10 192
SRS11 19

6 SRS12 340
SRS13 146

False positives (FP) are misclassified annotations. In smell
detection, an FP occurs when Paska incorrectly indicates the
presence of the smell s that is not annotated for requirement
r in the ground truth GT . In pattern suggestion, an FP
occurs when Paska incorrectly suggests the Rimay pattern p
that is not annotated for r in GT .

Next, for each detected smell (or assigned Rimay pat-
tern), denoted by i, we calculated the precision (Pi) as
Pi = TPi/(TPi+FPi) and the recall (Ri) as Ri =
TPi/(TPi+FNi), where TPi, FPi, and FNi denote, respec-
tively, the number of true positives, false positives, and false
negatives in predicting i.

Furthermore, we calculated the overall precision as
Overall-P =

∑l
i=1 TPi /

∑l
i=1(TPi + FPi), where

i, . . . , l denote either the nine smells for smell de-
tection or the 10 Rimay patterns for pattern sugges-
tion. The overall recall was calculated as Overall-R =∑l

i=1 TPi /
∑l

i=1(TPi + FNi).

6.5 Paska Development

We employed an iterative process to develop Paska, as
depicted in Figure 6. For this iterative development, we
divided subset SD into three batches as detailed in Table 13.
Further, we also divided SE into three batches to prepare
for the possibility that Paska would not become stable after
using SD, something difficult to predict at the development
stage. However, it turned out that Paska was stable after
using SD and therefore no batches from SE were needed to
reach a stable version of Paska.

As shown in Figure 6, to build a stable version of
Paska, we followed four steps: (Step 1) We applied Paska
to a first batch of requirements listed in Table 13 to detect
smells and suggest Rimay patterns. (Step 2) We compared
our results against the ground truth by computing pre-
cision and recall. (Step 3) We evaluated Paska’s stability
by applying the concept of saturation, which determines
the point in the iterative development process of Paska
where we have analyzed a sufficient number of SRSs to
confidently identify smells and recommend Rimay patterns.
In general, saturation refers to the point in a qualitative
study when no new information emerges from the data
being analyzed, i.e., when no new properties, dimensions,
conditions, actions/interactions, or consequences are found
in the data [33]. In our context, during the development of
Paska, we determined that the saturation point was reached
when we observed stability from one batch of SRSs to the
next in terms of overall precision and recall when identify-
ing smells and recommended patterns. When such precision
and recall were significantly worse than in the previous
batch, we analyzed cases showing disagreements between
Paska and the ground truth in order to account for new
situations. (Step 4) We then improved Paska by correcting
any disagreements with the ground truth. We repeated Steps
1 to 4 using each time a new batch as listed in Table 13 until
Paska became stable. For example, the results for batch 2

17

Detect Smells
and Suggest Patterns

1 Check Tool Stability 3

Improve Tool
4

New Batch
SRSs

Compare Results
against Ground Thruth

2

Stable Tool

Tool is not stable

Tool is stable

Fig. 6: Paska development overview

were initially much worse for smell detection than those of
batch 1, whereas the results for batch 3 were right away
comparable to those of batch 2 after improvement, thus
suggesting no new situations needed to be investigated
and accounted for. Below, we describe in detail how we
improved Paska.

Table 14 shows precision (P) and recall (R) values ob-
tained by Paska, after the iterative improvement mentioned
above, for detecting smells in SD . These results were cal-
culated based on the ground truth GT . The first column
of Table 14 lists the smell names. The P and R values for
each of the nine smells found in the first batch are shown
in the second and third columns, while the fourth and fifth
columns show P and R values for the smells found in the
second batch. The sixth and seventh columns provide the P
and R values for each of the smells found in the third batch
of SD . The overall P and R values for all three batches of
SD are reported in the last two rows of Table 14.

Following the iterative development process depicted
earlier, we first developed Paska using the first batch of SD

and compared our results with GT . In the first iteration, we
obtained a precision (P) of 99% and a recall (R) of 99%. We
then applied Paska to the second batch and obtained low P
and R values (i.e., a P of 69% and an R of 58%), which were
considered unsatisfactory. To address this, we analyzed the
false positives (FP) and false negatives (FN) (described in
Section 6.4). Most of the FPs and FNs cases resulted from
new scenarios that were not considered during the analysis
of Batch 1. These new scenarios refer to requirements that re-
quire further investigation to improve Paska. We improved
Paska to support these new scenarios and detect smells
in the second batch, resulting in significant improvements
with a precision of 92% and a recall of 94%. Further, we
applied Paska to the third batch and obtained P of 90%
and an R of 88%, which were deemed acceptable. These
high precision and recall scores indicate that Paska detects
most relevant smells in requirements with low probabilities
of false positives and false negatives. At that point, we then
stopped analyzing more SRSs and improving Paska as we
reached saturation in terms of accuracy.

The precision (P) and recall (R) scores obtained by the
stable version of Paska on SD when suggesting appropriate
Rimay patterns to analysts, are presented in Table 15. P and
R values are reported for each Rimay pattern (column 1)
suggested in the first, second, and third batches (columns
2-7), as well as the overall P and R scores for Batches 1, 2,
and 3 in SD shown in the last row of the table.

Similarly to what we did for smell detection, we first
developed Paska using the first batch of SD to recommend
suitable Rimay patterns and compared our results with GT .

The results were satisfactory. We obtained a precision (P)
of 95% and a recall (R) of 92% in the first batch. Next,
we applied Paska to the second and third batches, and the
P and R values were around 90%. We therefore reached
saturation after the first batch, and no further enhancement
to Paska was necessary. In terms of the overall accuracy, the
suggestions for Rimay patterns yield an overall P of 92%
and an R of 90% (Table 15).

We note that Tables 14 and 15 show that in a few cases
there is no data to evaluate certain smells (such as “5. Not
a requirement” from Table 14) and to suggest certain Rimay
patterns (such as “4. Scope, condition (time), and system
response” from Table 15). This is indicated as N/A in the
tables when the denominators of the precision and recall
metrics are zero. We further discuss this issue in Section 7.

Paska implementation and availability. We imple-
mented Paska using Python and Java. Specifically, we uti-
lized spaCy [38], Stanford CoreNLP [39], and AllenNLP [34]
to implement the preprocessing steps (Section 5.1), includ-
ing tokenization, post-tagging, and constituency parsing,
respectively. Further, we employed the Stanford Tregex API
for Java [23] to implement the Tregex patterns (Section 5.2).
Paska is available online [40].

6.6 Analysis and Results

This section assesses the accuracy of Paska in detecting
smells in NL requirements (RQ4) and suggesting Rimay pat-
terns to analysts (RQ5). We applied Paska to the evaluation
set SE of requirements to detect smells and suggest Rimay
patterns. Recall that SE was not used when developing
Paska. We compared these results against the ground truth
GT (Section 6.1) using the precision and recall metrics
(Section 6.4).

RQ4 results. Table 16 shows precision (P) and recall
(R) values when detecting smells (RQ4). The first column
of Table 16 shows the smell name. The second and third
columns show the P and R values for each of the nine smells
found in the fourth batch. The fourth and fifth columns
show the P and R values for each of the nine smells found
in the fifth batch. The sixth and seventh columns show the
P and R values for each of the nine smells found in the sixth
batch of SE . The last row of Table 16 shows the overall P
and R values for batches 4, 5, and 6 of SE .

As shown in Table 16, we achieved a precision (P) of
87% and a recall (R) of 90% for the fourth batch, a P of 88%
and an R of 84% for the fifth batch, and a P of 91% and an
R of 91% for the sixth batch. Overall, the detection of smells
yields P = R = 89%.

18

TABLE 14: Smell detection results for set SD (development) - precision and recall. The set SD contains batches 1, 2, and 3
listed in Table 13.

Smell Batch 1 Batch 2 Batch 3 All (SD)

P R P R P R P R

1. Non-atomic 1.00 1.00 0.92 0.92 0.94 0.94 0.94 0.94
2. Incomplete requirement 1.00 1.00 0.89 1.00 1.00 1.00 0.92 1.00
3. Incorrect order requirement 0.95 0.95 0.85 0.82 0.72 0.76 0.82 0.83
4. Coordination ambiguity N/A N/A 1.00 1.00 N/A N/A 1.00 1.00
5. Not a requirement 1.00 1.00 N/A N/A N/A N/A 1.00 1.00
6. Incomplete condition 1.00 0.94 0.75 0.93 0.90 0.77 0.83 0.86
7. Incomplete system response 1.00 1.00 1.00 0.89 N/A N/A 1.00 0.91
8. Passive voice 1.00 0.99 0.98 0.95 0.93 0.90 0.98 0.96
9. Not a precise verb 1.00 1.00 0.96 0.97 0.87 0.96 0.94 0.97

Overall 0.99 0.99 0.92 0.94 0.90 0.88 0.93 0.93

TABLE 15: Rimay pattern suggestion results for set SD (development) - precision and recall. The set SD contains batches
1, 2, and 3 listed in Table 13.

Rimay Pattern Batch 1 Batch 2 Batch 3 All (SD)

P R P R P R P R

1. Scope and system response 1.00 1.00 1.00 0.88 1.00 1.00 1.00 0.93
2. Scope, condition (precondition), and system response 0.80 0.89 1.00 1.00 N/A N/A 0.79 0.92
3. Scope, condition (trigger), and system response 1.00 0.85 0.90 1.00 0.99 0.97 0.97 0.97
4. Scope, condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
5. System response 1.00 0.97 0.95 0.93 0.98 1.00 0.98 0.97
6. Condition (precondition) and system response 0.95 0.92 0.80 0.92 1.00 1.00 0.92 0.92
7. Condition (trigger) and system response 0.92 0.90 0.81 0.89 0.86 0.96 0.85 0.91
8. Condition (time) and system response N/A N/A 1.00 1.00 1.00 0.75 1.00 0.83
9. Scope, multiple conditions, and system response 0.83 1.00 1.00 0.93 0.89 0.84 0.91 0.87
10. Multiple conditions and system response 0.95 0.89 0.96 0.87 0.83 0.78 0.94 0.86

Overall 0.95 0.92 0.91 0.89 0.91 0.91 0.92 0.90

TABLE 16: Smell detection results for set SE (evaluation) - precision and recall. The evaluation set SE contains batches 4,
5, and 6 listed in Table 13.

Smell Batch 4 Batch 5 Batch 6 All (SE)

P R P R P R P R

1. Non-atomic 0.71 0.83 1.00 0.83 0.88 0.92 0.89 0.90
2. Incomplete requirement 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3. Incorrect order requirement 0.90 1.00 0.88 1.00 0.74 1.00 0.81 1.00
4. Coordination ambiguity 1.00 1.00 0.80 0.80 0.80 1.00 0.82 0.90
5. Not a requirement 1.00 1.00 0.50 1.00 1.00 1.00 0.75 1.00
6. Incomplete condition 0.90 1.00 0.75 0.67 0.85 0.87 0.82 0.81
7. Incomplete system response 1.00 1.00 0.33 1.00 0.67 1.00 0.62 1.00
8. Passive voice 0.80 0.85 0.91 0.91 0.99 0.91 0.94 0.90
9. Not a precise verb 0.96 0.88 0.97 0.85 1.00 1.00 0.98 0.91

Overall 0.87 0.90 0.88 0.84 0.91 0.91 0.89 0.89

The answer to RQ4 is that, on a large number of real
requirements from the financial domain, Paska shows
a high degree of accuracy in detecting smells in NL
requirements, with an overall precision and recall of 89%.
Therefore, Paska detects most smells in NL requirements
with a small number of false positives and false nega-
tives.

From the data in Table 16, we observe that there are
low precision (P) scores in the Batch 5 (i.e., “5. Not a
requirement” with P = 50% and “7. Incomplete system
response” with P = 33%) and Batch 6 (i.e., “7. Incomplete
system response” with P = 67%). Furthermore, we observe
a low recall (R) value in Batch 5 (i.e., “6. Incomplete condi-

tion” with an R of 67%). These are mainly caused by new
scenarios that were not observed in the SRSs (SD) used
when developing Paska and limitations of the NLP tools
employed by Paska. We further discuss the reasons for such
low precision and recall cases in Section 7.

RQ5 results. Table 17 shows the precision (P) and recall
(R) scores obtained by Paska when suggesting suitable
Rimay patterns to analysts (RQ5). Once again, the results
were calculated by applying Paska to the evaluation set
SE and comparing the results to the ground truth GT by
using the precision and recall metrics (Section 6.4). Table 17
shows, for all Rimay patterns (column 1), the P and R
values for the patterns suggested in Batch 4 (columns 2-3),
Batch 5 (columns 4-5), Batch 6 (columns 6-7), and all batches

19

TABLE 17: Rimay pattern suggestion results for set SE (evaluation) - precision and recall. The evaluation set SE contains
batches 4, 5, and 6 listed in Table 13.

Rimay Pattern Batch 4 Batch 5 Batch 6 All (SE)

P R P R P R P R

1. Scope and system response 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2. Scope, condition (precondition), and system response N/A N/A N/A N/A N/A N/A N/A N/A
3. Scope, condition (trigger), and system response N/A N/A N/A N/A 0.98 1.00 0.98 1.00
4. Scope, condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
5. System response 1.00 0.99 0.98 1.00 0.97 1.00 0.99 0.99
6. Condition (precondition) and system response 1.00 0.95 0.89 0.94 0.75 0.86 0.91 0.94
7. Condition (trigger) and system response 0.98 0.93 0.86 0.83 0.99 0.87 0.95 0.89
8. Condition (time) and system response N/A N/A N/A N/A N/A N/A N/A N/A
9. Scope, multiple conditions, and system response N/A N/A 0.80 1.00 0.94 0.79 0.92 0.81
10. Multiple conditions and system response 0.76 1.00 0.96 0.85 0.94 0.99 0.93 0.94

Overall 0.97 0.96 0.93 0.90 0.96 0.95 0.96 0.94

(columns 8-9). The last row of Table 17 shows the overall
scores of P and R for batches 4, 5, and 6 in SE . We obtained
P = 97% and R = 96% in Batch 4, P = 93% and R = 90%
in Batch 5, and P = 96% and R = 95% in Batch 6. In terms
of overall accuracy, the suggestions for Rimay patterns yield
an overall P = 96% and R = 94% (Table 17).

We note that Table 17 shows the results obtained by
applying Paska to all 1321 requirements in SE , including
requirements with and without smells. Paska is indeed
applicable for consistently rewriting requirements in Rimay,
with or without smells. If we consider only the requirements
with smells in SE , we have a subset of 1165 such require-
ments for which we obtained P = 90% and R = 87%.

The answer to RQ5 is that Paska is accurate in suggest-
ing Rimay patterns, achieving an overall precision of
96% and recall of 94%. Hence, most of the time, Paska
provides analysts with appropriate Rimay patterns to
fix smells in NL requirements, with relatively few false
positives and false negatives.

As shown in Table 17, there are low precision (P) values
in Batch 4 (i.e., “10. Multiple conditions and system re-
sponse” with a P of 76%) and the Batch 6 (i.e., “6. Condition
(precondition) and system response” with a P of 75%).
These low values are mainly caused by new scenarios that
were not observed in the SRSs SD used when developing
Paska. In Section 7, we further examine the factors that lead
to low P values. In addition, we found that some Rimay
patterns are not applicable to any of the requirements in the
SRSs SE , as indicated in Table 17 by N/A, e.g., “2. Scope,
condition (precondition) and system response”. Section 7
further discusses such situations.

Remark. In our evaluation results, we observed that
Paska obtained high overall precision and recall scores:
respectively, 89% and 89% for smell detection, and 96% and
94% for pattern suggestion. Even though we would ideally
like to achieve 100% accuracy, our results are promising and
demonstrate the potential of Paska to support requirements
quality assurance.

7 DISCUSSION

7.1 Approach Performance.
The results of RQ4 presented in Section 6 show that Paska
is accurate in terms of detecting smells in NL requirements
(P = 89% and R = 89%). However, we also observed that it
achieved low precision scores for the detection of particular
smells, “5. Not a requirement” (50% in Batch 5), “7. Incom-
plete system response” (33% in the Batch 5 and 67% in the
Batch 6), and a low recall score for detecting the smell “6.
Incomplete condition” (67% in the Batch 5). To determine
the root causes of such low precision and recall values, we
analyzed the false positives and false negatives for each of
the smells mentioned above. Note that, for the smell “5.
Not a requirement” in Batch 5, our results show 1 true
positive, 1242 true negatives, 1 false positive, and no false
negatives. For the smell “7. Incomplete system response” in
Batch 5, we have 1 true positive, 1241 true negatives, 2 false
positives, and no false negatives. Regarding the smell “7.
Incomplete system response” in Batch 6, the results have 2
true positives, 2222 true negatives, 1 false positive, and no
false negatives. For the smell “6. Incomplete condition” in
Batch 5, we obtained 33 true positives, 1184 true negatives,
11 false positives, and 16 false negatives.

5. Not a requirement. Recall from Section 4.1 that this
smell occurs when there is a statement that does not contain
any requirement segment, i.e., scope, condition, and system
response. We observed that Batch 5 has few requirements
related to the smell “5. Not a requirement”. For the smell,
Batch 5 has 1 true positive, 1242 true negatives, 1 false
positive, and no false negatives, thus giving a low precision
of 50%. The false positive (i.e., incorrectly detected smells)
was related to inaccurate POS tags assigned to the verb of
the system response. Table 18 shows requirement R1. This
requirement has only a system response. The verb of the
system response of R1 (i.e., route) was incorrectly identified
as a noun. Since no verb was found in the system response
of the requirement, Paska detected the smell “5. Not a
requirement”.

6. Incomplete Condition. Recall from Section 4.1 that
this smell occurs when the condition of the requirement
misses the verb or the actor. We observed that the cause
of false negatives (i.e., Paska failed to detect smells) was
related to scenarios not observed during the development
of Paska. For the smell “6. Incomplete condition”, Batch 5

20

TABLE 18: Examples of (anonymized) requirements that lead to Paska failing to accurately detect smells and suggest Rimay
patterns.

ID Requirement Description

R1 The System-A must route the outbound messages to System-B instead of System-C.
R2 Upon receipt of a valid C01 cancellation from System-A Participant, then the ←↩

System-B must route the cancellation to the same destination.
R3 if the System-A Order Issuer Ordering data = Value-A
R4 When the user clicks on the Edit icon of Screen-1, System-A must set in updatable ←↩

mode the following fields: • Include portfolio in the S-Order, • Alert to operations ←↩
(e.g., when Order is rejected), ...

R5 If the Participant Status = Delete, then System-A must populate the field Status ←↩
with the value inactive.

has 33 true positives , 1184 true negatives, 11 false positives,
and 16 false negatives, resulting in a low recall of 67%. All
false negatives were related to new scenarios that were not
observed during the development of Paska. Table 18 shows
an example (R3) of a false negative. The condition R3 misses
a verb and instead has the symbol “=”, which denotes
“equals to”. Furthermore, R3 is made up of a compound
noun, “System-A Order Issuer Ordering data”. According
to the POS Tagger, the word “Ordering” of the compound
noun is recognized as a verb, indicating that the condition
is complete. Therefore, Paska did not trigger any smells.
However, R3 actually misses a verb.

7. Incomplete system response. Recall from Section 4.1
that this smell occurs when the system response misses
the actor, the modal verb or the verb. We noted that the
cause of false positives (i.e., Paska incorrectly detected
smells) was the assignment of incorrect POS tags to the
verbs in the system response. Such absence of verb in the
system response triggers the smell “7. Incomplete system
response”. Regarding the smell, Batch 5 has 1 true positive,
1241 true negatives, 2 false positives, and no false negatives,
resulting in a low precision of 33%. Furthermore, for the
same smell, Batch 6 has 2 true positives, 2222 true negatives,
1 false positive, and no false negatives, resulting in a low
precision of 67%. We found that all false positives were
related to incorrect POS tags assigned to the verb in the
system response. Table 18 shows requirement R2. The verb
of the system response of R2 (i.e., route) was incorrectly
identified as a noun. Since no verb was found in the system
response of the requirement, Paska incorrectly triggered the
smell “7. Incomplete system response”.

Similarly, the results of RQ5 show that Paska accurately
suggests requirement patterns in most cases (P = 96% and R
= 94%). However, we noted that low precision scores were
obtained by Paska when suggesting requirement patterns
“10. Multiple conditions and system response” (76% in
the Batch 4) and “6. Condition (precondition) and system
response” (75% in the Batch 6). To determine the root causes
of such low precision, we analyzed cases in which Paska
yielded false positives (i.e., incorrectly suggested patterns).
Note that, for the pattern “10. Multiple conditions and
system response”, Batch 4 has 25 true positives, 421 true
negatives, 8 false positives, and no false negatives. Regard-
ing the pattern “6. Condition (precondition) and system
response”, Batch 6 has 6 true positives, 474 true negatives, 2
false positives, and 1 false negative.

Pattern: 10. Multiple conditions and system response.
This pattern is suggested when a requirement has the fol-
lowing segments: two or more conditions and a system re-
sponse. For the pattern “10. Multiple conditions and system
response”, Batch 4 has 25 true positives, 421 true negatives,
8 false positives, and no false negatives, thus obtaining a low
precision of 76%. The majority of false positives (i.e., six out
of eight) were due to new scenarios that were not observed
during the development of Paska. The remaining two false
positives were related to human errors in the annotation.
Requirement R4 in Table 18 shows an example that causes
Paska to incorrectly suggest a Rimay pattern. R4 has a
condition with a system response containing bullet points.
The second bullet point contains the condition “when Order
is rejected”, which only applies to the information in the
bullet point. However, Paska incorrectly identified it as a
condition that applies to the entire requirement; therefore,
Paska suggested the Rimay pattern “10. Multiple conditions
and system response.” Nevertheless, in reality, R4 has only
one condition.

Pattern: 6. Condition (precondition) and system re-
sponse. This pattern is suggested when a requirement has
the following segments: a condition of type precondition
and a system response. For the pattern “6. Condition
(precondition) and system response”, Batch 6 has 6 true
positives, 474 true negatives, 2 false positives, and 1 false
negative, resulting in a low precision of 75%. False positives
were related to new scenarios that were not observed during
the development of Paska. Requirement R5, in Table 18, is
an example of a false positive (R5). The condition of R5
lacks a verb; instead, R5 has the operator “=” which denotes
“equals to”. Furthermore, R5 is made up of a compound
noun, “Participant Status”. The word “Status” of the com-
pound noun is identified as a verb by the POS Tagger which
suggests that the condition is a condition of type trigger
(Section 5.4). Therefore, Paska suggested the Rimay pattern
“7. Condition (trigger) and system response”. However, the
condition of R5 is a condition of type precondition because
of the symbol “=” which denotes “equals to”.

In summary, we identified two main reasons for low pre-
cision and recall in the cases mentioned above. The first is
POS Tagger limitations: POS Tagger incorrectly assigns POS
tags to words, which causes Paska to incorrectly identify
the smells and syntax of the requirement. Paska does not
have control over the accuracy of the POS Tagger, since it
is a third-party component. Second, we found several new
scenarios that were not previously observed. These scenar-

21

ios include different structures of the requirement segments
and the presence of additional information in requirements.
We could enhance Paska to support such new scenarios.
However, some of them are examples of bad practices in
specifying requirements. For example, in requirement R4 of
Table 18, the analyst has inserted a condition as an addi-
tional information in the system response. In requirement
R5, the symbol “=” is used. However, in general, using such
symbols may result in ambiguous interpretations among
stakeholders. Hence, it is recommended to avoid using such
symbols when writing requirements to prevent confusion.

7.2 Lack of Testing Data

We observed during the development of Paska (Table 14)
the lack of testing data to evaluate some smells for certain
batches (i.e., “4. Coordination ambiguity” in batches 1 and
3, “5. Not a requirement” in batches 2 and 3, and “7. Incom-
plete system response” in Batch 3). We were unable to test
Paska in the above cases because SD lacks requirements that
contain these smells. However, the aforementioned cases
did not occur in all batches of SD . The smells detected
by Paska were all tested in at least one batch during the
development of Paska. We also noted that test data were
missing to evaluate the suggestion of some Rimay patterns
(Table 15): “2. Scope, condition (precondition), and system
response” in Batch 3, “4. Scope, condition (time) and system
response” in batches 1 to 3, and “8. Condition (time) and
system response” in Batch 1. However, the Rimay patterns
“2. Scope, condition (precondition), and system response”
and “8. Condition (time) and system response” were tested
in other batches in SD during the development of Paska.
Regarding the pattern “4. Scope, condition (time) and sys-
tem response”, although the SRSs do not have requirements
that can be rewritten by applying the pattern, we opted to
keep the pattern in Paska to support the complete list of
Rimay patterns. Recall from Section 4.2 that Rimay patterns
represent valid sequences of Rimay concepts used to write
requirements in Rimay.

Similarly, the results of RQ5 (Table 17) show that Paska
was not tested when suggesting the Rimay patterns “2.
Scope, condition (precondition), and system response” in
batches 4 to 6, “3. Scope, condition (trigger), and system
response” in batches 4 and 5, “4. Scope, condition (Time),
and system response” in batches 4 to 6, “8. Condition (time)
and system response” in batches 4 to 6, and “9. Scope,
multiple conditions, and system response” in Batch 4. Paska
could not be tested in the above cases because SE did not in-
clude requirements with the syntax necessary to suggest the
corresponding Rimay patterns. As described in Section 6.2,
the 13 SRSs used to evaluate Paska were collected from
our industrial partner, who deemed them representative of
recent SRSs and over which we had no control.

8 THREATS TO VALIDITY

Internal validity is of concern when examining causal re-
lations [41]. Our results depend heavily on the quality of
annotations, which are susceptible to annotation biases. To
minimize any potential biases, we hired three external anno-
tators who did not have access to Paska in our experiments.

To ensure the high quality of their annotations, we provided
training sessions and monitored the annotation agreement
between annotators using Cohen’s Kappa metric. To mini-
mize any biases introduced by our monitoring activities, we
limited our inspection of their annotations to the require-
ments for which the annotators indicated having difficulty
with. In addition, at the final stage of the annotation process,
we randomly selected 10% of the annotated requirements
for inspection.

In our experiments, two external annotators were em-
ployed to annotate Rimay patterns. For smells, however,
another external annotator and the first author of this article
were responsible for annotating the SRSs. To mitigate any
experimenter bias introduced by the first author, we in-
cluded the author’s annotations only in the development set
(i.e., SD described in Section 6.2) that was used to develop
Paska. Hence, our results obtained from the evaluation set
(i.e., SE described in Section 6.2) were not impacted by the
first author’s annotations.

Another threat to internal validity concerns potential
biases introduced by specific researchers. Recall from Sec-
tion 4.1 that the first author of this article defined a catalog
of nine smells that Paska detects. To mitigate this threat,
we validated the nine smells with our industrial partner to
ensure their relevance to the errors commonly observed in
NL requirements writing. Further, the other authors of this
article closely monitored the smell identification process.

Recall from Section 6.5 that we applied the concept of
saturation to develop a stable version of Paska. To make
this process rigorous and objective, we measured precision
and recall after each batch, using a separate test dataset.
The saturation point was considered to be reached when
we started to observe consistent overall precision and recall
from one batch of SRSs to the next.

Paska employs NLP techniques such as tokenization,
POS tagging, and constituency parsing, over which it does
not have direct control regarding their accuracy. Recogniz-
ing the importance of such accuracy and accounting for
the latest advances of these techniques, we implemented
Paska using well-maintained, state-of-the-art NLP libraries:
spaCy [38], Stanford CoreNLP [39], and AllenNLP [34]. Fur-
ther, these libraries have also been widely applied in various
domains [9, 19, 20]. In the end, our choice of techniques and
libraries led to an implementation showcasing high preci-
sion and recall, indicating that Paska is a promising solution.
Nevertheless, we note that supplemental preprocessing of
NL requirements (e.g., grammar corrections), which can
be executed independently of Paska, has the potential to
enhance the accuracy of these NLP techniques. Such en-
hancements could thus further optimize the performance
of Paska.

External validity concerns the degree to which our
results can be generalized to other contexts [41]. In our
experiments, we evaluated Paska using industrial SRSs that
contain NL requirements from 13 systems (SRSs) in the
financial domain. Specifically, out of the 13 SRSs, six (SD)
were used for developing Paska, and the remaining seven
(SE) were used in our evaluation to answer RQ4 and RQ5.
These requirements are however representative of a broader
class of information systems, such as those used by our in-
dustrial partner for data management, security compliance,

22

and communication. Furthermore, the requirements were
written by different analysts with different backgrounds,
which increases the diversity of the SRSs. We note that, of
the 13 SRSs, six were previously used to develop the Rimay
language [21]. From these six SRSs, two were allocated to the
development set SD and four to the evaluation set SE . For
this study, we obtained seven new SRSs from our industrial
partner. The overlap in SRSs used to define Rimay and to
develop and assess Paska is not a threat to validity since, in
this work, we assume Rimay is already valid and complete,
as previously studied, and here we only assess our ability
to detect smells and recommend patterns, clearly dividing
SRSs into development and test sets. Though our results
should be generalizable to information systems in other
domains, future investigations are nevertheless necessary to
determine how Paska fares outside finance. In the future,
despite the large number of requirements we used in our
study, when working on other SRSs, we might uncover
patterns we have not identified yet. This would require that
we augment or modify the smells related to our catalog of
patterns.

Recall from Section 5 that, to identify the beginning of
each segment and imprecise verbs in a requirement, Paska
uses keyword-based analysis techniques. These techniques
rely on glossaries that are created based on the keywords
defined in Rimay and our inspection of the representa-
tive SRSs used in our study. Furthermore, our industrial
partner validated the glossaries. However, further research
is needed in order for Paska to rely on more complete
glossaries. Due to the simplicity of the techniques, one can
easily expand our glossaries by leveraging those defined in
existing work (e.g., Smella [9] for detecting requirements
smells).

Regarding the use of Tregex, which defines regular
expression-like patterns on the syntax tree of a requirement,
incorrectly defined patterns may miss the syntax sub-trees
they aim to identify. In Paska, these inaccuracies can re-
sult in false positives and false negatives when detecting
smells and suggesting recommendations. To ensure that
we correctly defined the Tregex patterns, we used the de-
velopment set SD , which contains diverse requirements
written by various analysts for six different systems, as a
basis for defining and verifying the patterns. In addition,
we inspected the false positives and false negatives from
our experiment results on SE , which show that Paska
detected smells with a precision of 89% and a recall of
89%, while suggesting recommendations with a precision of
96% and a recall of 94%. This careful inspection indicates
that these false positives and false negatives come from
incorrect POS tags, the inclusion of symbols (e.g., “=”) in
a requirement, and annotation errors, rather than from any
potential mistakes we might have introduced in the Tregex
patterns. Nevertheless, further studies that analyze actual
requirements from different domains are needed to assess
the completeness of the Tregex patterns.

9 RELATED WORK

In this section, we compare our work with existing studies
related to improving the quality of NL requirements. In
particular, we will discuss research strands in the areas

of assisting analysts in (1) writing requirements based on
templates, (2) assuring the quality of requirements by ana-
lyzing incompleteness and ambiguity in requirements, and
(3) identifying smells in requirements.

Requirements templates. Requirements templates (e.g.,
EARS [24] and Rupp [31]) have been widely used in many
studies and in practice [3, 42, 25, 43, 21]. These templates
provide a structured approach to writing requirements,
which can help reduce ambiguity, increase clarity, and en-
sure consistency across requirements. However, since re-
quirements templates only provide coarse-grained concepts
and constructs (e.g., the EARS condition template WHEN
<event> does not specifically specify the content of the
event that initiates the requirement, allowing analysts to
introduce free text), only a limited number of automated
analysis techniques that rely on such templates have been
introduced [42]. Arora et al. [42] presented an automated ap-
proach for checking conformance to requirements templates
(e.g., EARS and Rupp). The approach relies on an NLP
technique, known as text chunking. In contrast, we rely on
Rimay, a state-of-the-art CNL for specifying requirements.
Rimay provides structures with fine-grained concepts and
constructs that enabled us to develop an automated tool
(Paska) for effectively detecting requirements smells and
providing Rimay patterns as recommendations for remov-
ing smells in requirements.

Quality assurance. Among the many strands of qual-
ity assurance research [29] in requirements engineering,
the most pertinent ones introduce automated methods for
detecting quality problems in requirements. In particular,
we discuss prior work that aims at detecting problems of
incompleteness and ambiguity in requirements.

Incompleteness analysis. Completeness of requirements is
often viewed from two perspectives: external and inter-
nal [28]. External completeness ensures that all necessary
functionalities of a system are specified in the requirements.
Many of the existing studies on the completeness of require-
ments belong to this research strand [44, 12, 13, 15, 16].
For example, Dalpiaz et al. [15] combined NLP and infor-
mation visualization techniques to identify missing require-
ments. Their approach relies on the notion of stakeholders’
viewpoints, which helps analysts identify cases in which
one viewpoint mention concepts that are not present in
other viewpoints. Arora et al. [16] empirically evaluated the
usefulness of domain models in detecting incompleteness
of requirements. They conducted experiments by seeding
some omissions to the requirements and checked whether
the domain model can be used to detect the omissions. In
contrast to these prior studies, our work is related to the
research strand on internal completeness of a requirement,
which is concerned with ensuring that the requirement is
self-contained. This means that the requirement contains
all the information contents required to express its function
completely. Recent smell detection work [9, 10] include tech-
niques to detect missing contents in a requirement, such as
measurement units and references. In contrast, Paska is able
to identify different information contents that are missed in
a requirement: i.e., (1) missing actors or verbs in conditions,
(2) missing actors, modal verbs, or verbs in system require-
ments, and (3) missing system responses in requirements,
as it relies on Rimay’s concepts and constructs. We further

23

discuss these smell detection approaches below in the smell
detection paragraphs.

Ambiguity analysis. Ambiguity is a persistent issue in NL
requirements. Hence, such ambiguity has been extensively
studied in the literature [17, 18, 19, 11, 20]. For example,
recently, Ezzini et al. [20] proposed six alternative solutions
for automating the handling of anaphoric ambiguity in
requirements. These solutions incorporate both traditional
and state-of-the-art NLP and ML techniques, such as Span-
BERT [45]. Osama et al. [19] introduced a technique for
detecting syntatic ambiguity in a requirement using scored
interpretations of the requirement, which provide users with
most likely interpretations. More precisely, the technique
relies on an NLP algorithm that generates parsing trees
with confidence scores to provide scored interpretations of
a requirement. However, the research strands in this area
differ from our work, which focuses on identifying and
addressing requirements smells.

While incompleteness and ambiguity are types of re-
quirements smells, our study aims at detecting a broader
range of smells that indicate quality problems in require-
ments and providing recommendations to solve them.
When a requirement has multiple smells, analysts need to
account for them together to obtain a complete picture of
the overall quality of the requirement, a necessary condition
to fix it properly. Paska helps analysts in this process by
automatically detecting smells and suggesting patterns to
fix them.

Smell detection. The research strands most related to
our work are those that aim at detecting smells in NL text,
such as requirements, feature requests, and use-case de-
scriptions. Below, we discuss recent studies in this research
area: two studies on NL requirements [9, 10], and two others
on feature requests [46] and use-case descriptions [47]. All
these studies shared the objectives of defining catalogs of
smells in NL descriptions and presenting automated smell
detection techniques.

Femmer et al. [9] introduced a tool, named Smella,
that detects nine smells in NL requirements: subjective
language, ambiguous adverbs and adjectives, loopholes,
non-verifiable terms, superlatives, comparatives, negative
words, vague pronouns, and incomplete references. Smella
relies on POS tagging, dictionaries, and lemmatization. Fem-
mer et al. [9] evaluated Smella on 336 requirements, 53 use
cases, and 1082 user stories collected from three companies
and several university students. Their evaluation results
showed that Smella achieved, on average, a precision of 59%
and a recall of 82%.

Ferrari et al. [10] presented an approach that detects the
following requirement smells: anaphoric ambiguity, coor-
dination ambiguity, vague terms, modal adverbs, passive
voice, excessive length, missing condition, missing unit of
measurement, missing reference, and undefined term. To
detect these smells, they defined a set of smell-detection
patterns, i.e., sequences of tokens to be matched within
a requirement, relying on NLP techniques such as tok-
enization, POS tagging, and shallow parsing. They applied
the patterns to 1866 requirements obtained from a railway
company and obtained a precision of 83% and a recall of
85%.

Mu et al. [46] introduced a tool, named NERO, that anno-
tates contents and detects smells in NL feature requests. For
content annotation, NERO uses a rule matcher developed in
their previous work [48] to classify a sentence into six cate-
gories (e.g., intent and explanation). Using NLP techniques,
such as POS tagging, regular expression, and lemmatization,
NERO detects 10 smells: vagueness, weakness, generality,
coordination ambiguity, referential ambiguity, passive voice,
missing condition, missing description, unreadability, and
partial content. To evaluate NERO, they applied it to 10
feature requests collected from an issue tracking system.

Seki et al. [47] developed a technique for detecting smells
in use case descriptions. They defined a catalog of smells
based on seven smell characteristics and five smell scopes.
The seven smell characteristics are ambiguity, incorrectness,
granularity, redundancy, lack, misplacement, and inconsis-
tency. The five smell scopes are use case, section, flow,
sentence, and word. Seki et al. [47] analyzed 30 use case
descriptions written in Japanese to define the smell catalog.
They applied Goal-Question-Metric (GQM) paradigm [49]
to automatically detect a subset of their smell catalog and
evaluated their prototype tool using eight use case descrip-
tions written in Japanese.

In contrast to these smell detection techniques, Paska
suggests appropriate requirements patterns (based on Ri-
may) to fix any detected smells in an NL requirement and
thus improve the quality of the requirement. In addition,
our work relies on a large set of 2725 information system
requirements obtained from a financial company. Our ex-
periment results show that Paska is accurate in detecting
smells with a precision and recall of 89%. It is worth noting
that existing techniques [9, 10] for detecting requirements
smells achieved significantly less accurate experimental re-
sults. Because of their different focus, Mu et al. [46] and
Seki et al. [47] evaluated their techniques on ten feature
requests and eight use case descriptions, respectively. We
defined our smell catalog based on an analysis of Rimay
and 1404 requirements, and then evaluated Paska on the
remaining 1321 requirements. We also note that 6 out of
9 smells detected by Paska are not addressed by any of
the existing works. These smells are “Incomplete System
Response”, “Incomplete Condition”, “Not Requirement”,
“Incorrect Order Requirement”, “Incomplete Requirement”,
and “Non-atomic”. These smells violate quality attributes
— completeness, clarity, atomicity, and correctness — that
Rimay enforces in writing requirements (see Section 4).

Since we defined our smell catalog by analyzing Rimay’s
concepts and constructs, Paska can only detect smells that
violate recommendations and best practices guided by Ri-
may, a language that was defined by qualitatively analyz-
ing information system requirements’ needs and practices.
Though this approach enables us to provide recommenda-
tion as Rimay patterns, we acknowledge that other smells
(e.g., non-verifiable terms supported by Smella [9]) or other
types of ambiguities (e.g., attachment and analytic ambi-
guities [19]) are not supported. However, one can easily
combine these approaches with Paska and get the combined
benefits of all these approaches.

24

10 CONCLUSIONS

The goal of our work is to better support business analysts
in the specification of natural language (NL) requirements
by detecting smells in them and by guiding the fixing of
such smells. To achieve these objectives, we propose a set of
nine smells that represent the most common syntactic and
semantic errors found in NL requirements from financial
applications. Furthermore, we derived 10 patterns aiming at
fixing the smells present in NL requirements and converting
NL requirements into requirements expressed in Rimay, a
controlled natural language (CNL) that was recently pro-
posed to help define unambiguous and complete require-
ments. We then devised an automated approach to detect
our proposed smells and suggest Rimay patterns to improve
the quality of requirements.

We evaluated Paska in a large industrial case study
involving 13 system requirements specifications (SRSs) from
information systems in the financial domain, containing
2725 human-annotated NL requirements. This evaluation
measured the performance of Paska in detecting smells and
suggesting accurate Rimay patterns. Our experiment results
show that Paska detected smells with a precision and a recall
of 89%. Furthermore, Paska suggested Rimay patterns with
a precision of 96% and a recall of 94%. Such patterns help
the analyst identify what requirement segments are missing,
warrant change, or must be re-ordered.

In future work, we intend to expand our list of smells to
provide broader coverage of smell detection. Our proposed
smells, associated with the quality attributes enforced by
Rimay, identify common problems found in the NL re-
quirements of financial applications, which in all likelihood
are not specific to that domain. However, they may not
represent all syntactic and semantic errors present across
all NL requirements. We plan to account for other quality
attributes (e.g., comprehensibility and feasibility) [29, 27] to
identify and rectify relevant requirement smells. Further-
more, it would be important to conduct a user study to
assess the economic benefits that organizations and analysts
might reap from integrating Paska into their requirements
engineering process. This would provide a more holistic
view of Paska’s utility and potential return on investment
for its users in the development of their IT systems. Lastly,
interesting research directions include the use of chatbot
interfaces and large language models (LLMs) in Paska. A
chatbot interface would allow analysts to query and receive
explanations for detected smells in real-time, thereby facil-
itating the rectification of identified issues through conver-
sational guidance. Furthermore, the use of LLMs could im-
prove Paska’s comprehension of NL requirements, enabling
the detection of additional quality issues and the suggestion
of corresponding recommendations to address them.

ACKNOWLEDGMENT

This project was supported by FNR of Lux-
embourg under the BRIDGES program (grant
BRIDGES18/IS/13234469/IMoReF), the Science Foundation
Ireland grant 13/RC/2094-2, and NSERC of Canada under
the Discovery and CRC programs.

REFERENCES

[1] K. Pohl, Requirements Engineering - Fundamentals, Prin-
ciples, and Techniques. Springer, 2010.

[2] M. Kassab, C. J. Neill, and P. A. Laplante, “State of
practice in requirements engineering: contemporary
data,” Innovations in Systems and Software Engineering,
vol. 10, no. 4, pp. 235–241, 2014.

[3] A. Mavin and P. Wilkinson, “Big ears (the return
of “easy approach to requirements engineering”),” in
Proceedings of the 18th IEEE International Requirements
Engineering Conference, 2010, pp. 277–282.

[4] D. M. Fernández, S. Wagner, M. Kalinowski,
M. Felderer, P. Mafra, A. Vetrò, T. Conte, M. Christians-
son, D. Greer, C. Lassenius, T. Männistö, M. Nayabi,
M. Oivo, B. Penzenstadler, D. Pfahl, R. Prikladnicki,
G. Ruhe, A. Schekelmann, S. Sen, R. O. Spı́nola,
A. Tuzcu, J. L. de la Vara, and R. J. Wieringa, “Naming
the pain in requirements engineering - contemporary
problems, causes, and effects in practice,” Empirical
Software Engineering, vol. 22, no. 5, pp. 2298–2338, 2017.

[5] J. J. Ahonen and P. Savolainen, “Software engineering
projects may fail before they are started: Post-mortem
analysis of five cancelled projects,” Journal of Systems
and Software, vol. 83, no. 11, pp. 2175–2187, 2010.

[6] E. C. Hull, K. Jackson, and J. Dick, Requirements Engi-
neering, 3rd ed. Springer, 2011.

[7] G. Génova, J. M. Fuentes, J. L. Morillo, O. Hurtado, and
V. Moreno, “A framework to measure and improve the
quality of textual requirements,” Requirements Engineer-
ing, vol. 18, no. 1, pp. 25–41, 2013.

[8] H. Femmer, D. M. Fernández, E. Jürgens, M. Klose,
I. Zimmer, and J. Zimmer, “Rapid requirements checks
with requirements smells: two case studies,” in Proceed-
ings of the 1st International Workshop on Rapid Continuous
Software Engineering, 2014, pp. 10–19.

[9] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder,
“Rapid quality assurance with requirements smells,”
Journal of Systems and Software, vol. 123, pp. 190–213,
2017.

[10] A. Ferrari, G. Gori, B. Rosadini, I. Trotta, S. Bacherini,
A. Fantechi, and S. Gnesi, “Detecting requirements
defects with NLP patterns: an industrial experience
in the railway domain,” Empirical Software Engineering,
vol. 23, no. 6, pp. 3684–3733, 2018.

[11] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and
L. C. Briand, “Using domain-specific corpora for im-
proved handling of ambiguity in requirements,” in Pro-
ceedings of the 43rd IEEE/ACM International Conference on
Software Engineering, 2021, pp. 1485–1497.

[12] H. Kaiya and M. Saeki, “Ontology based requirements
analysis: Lightweight semantic processing approach,”
in Proceedings of the 5th International Conference on Qual-
ity Software, 2005, pp. 223–230.

[13] A. Ferrari, F. Dell’Orletta, G. O. Spagnolo, and S. Gnesi,
“Measuring and improving the completeness of natural
language requirements,” in Proceedings of the 20th Inter-
national Working Conference of Requirements Engineering:
Foundation for Software Quality, vol. 8396, 2014, pp. 23–
38.

25

[14] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager,
“Challenging incompleteness of performance require-
ments by sentence patterns,” in Proceedings of the 24th
IEEE International Requirements Engineering Conference,
2016, pp. 46–55.

[15] F. Dalpiaz, I. V. D. Schalk, and G. Lucassen, “Pinpoint-
ing ambiguity and incompleteness in requirements en-
gineering via information visualization and NLP,” in
Proceedings of the 24th International Working Conference of
Requirements Engineering: Foundation for Software Qual-
ity, 2018, pp. 119–135.

[16] C. Arora, M. Sabetzadeh, and L. C. Briand, “An empiri-
cal study on the potential usefulness of domain models
for completeness checking of requirements,” Empirical
Software Engineering, vol. 24, no. 4, pp. 2509–2539, 2019.

[17] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry,
“Requirements for tools for ambiguity identification
and measurement in natural language requirements
specifications,” Requirements Engineering, vol. 13, no. 3,
pp. 207–239, 2008.

[18] H. Yang, A. N. D. Roeck, V. Gervasi, A. Willis, and
B. Nuseibeh, “Analysing anaphoric ambiguity in nat-
ural language requirements,” Requirements Engineering,
vol. 16, no. 3, pp. 163–189, 2011.

[19] M. Osama, A. Zaki-Ismail, M. A. Abdelrazek, J. C.
Grundy, and A. S. Ibrahim, “Score-based automatic
detection and resolution of syntactic ambiguity in nat-
ural language requirements,” in Proceedings of 2020 the
IEEE International Conference on Software Maintenance
and Evolution, 2020, pp. 651–661.

[20] S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh,
“Automated handling of anaphoric ambiguity in re-
quirements: A multi-solution study,” in Proceedings of
the 44th IEEE/ACM 44th International Conference on Soft-
ware Engineering, 2022, pp. 187–199.

[21] A. Veizaga, M. Alférez, D. Torre, M. Sabetzadeh, and
L. C. Briand, “On systematically building a controlled
natural language for functional requirements,” Empiri-
cal Software Engineering, vol. 26, no. 4, p. 79, 2021.

[22] A. Veizaga, M. Alférez, D. Torre, M. Sabetzadeh,
L. C. Briand, and E. Pitskhelauri, “Leveraging natural-
language requirements for deriving better acceptance
criteria from models,” in Proceedings of the ACM/IEEE
23rd International Conference on Model Driven Engineer-
ing Languages and Systems, 2020, pp. 218–228.

[23] R. Levy and G. Andrew, “Tregex and tsurgeon: tools
for querying and manipulating tree data structures,”
in Proceedings of the Fifth International Conference on
Language Resources and Evaluation, 2006, pp. 2231–2234.

[24] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak,
“Easy approach to requirements syntax (EARS),” in
Proceedings of the 17th IEEE International Requirements
Engineering Conference, 2009, pp. 317–322.

[25] A. Mavin, P. Wilkinson, S. Gregory, and E. Uusitalo,
“Listens learned (8 lessons learned applying EARS),”
in Proceedings of the 24th IEEE International Requirements
Engineering Conference, 2016, pp. 276–282.

[26] OMG, “Unified modeling language. version 2.5.1,”
2017, accessed 13 February 2023. [Online]. Available:
https://www.omg.org/spec/UML/

[27] L. Montgomery, D. Fucci, A. Bouraffa, L. Scholz, and
W. Maalej, “Empirical research on requirements qual-
ity: a systematic mapping study,” Requirements Engi-
neering, vol. 27, no. 2, pp. 183–209, 2022.

[28] D. Zowghi and V. Gervasi, “On the interplay between
consistency, completeness, and correctness in require-
ments evolution,” Information and Software Technology,
vol. 45, pp. 993–1009, 2003.

[29] C. Denger and T. Olsson, Quality Assurance in Require-
ments Engineering. Springer Berlin Heidelberg, 2005,
pp. 163–185.

[30] “Enterprise architect,” https://www.sparxsystems.eu/,
accessed: 2023-03-22.

[31] K. Pohl and C. Rupp, Requirements Engineering Funda-
mentals - A Study Guide for the Certified Professional for
Requirements Engineering Exam: Foundation Level - IREB
compliant. rockynook, 2011.

[32] I. Sommerville, Software Engineering, 9th ed. Dorling
Kindersley, 2011.

[33] B. Glaser and A. Strauss, The discovery of grounded
theory: strategies for qualitative research, 1st ed. Aldine
Transaction, 2017.

[34] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi,
N. F. Liu, M. Peters, M. Schmitz, and L. S. Zettlemoyer,
“Allennlp: A deep semantic natural language process-
ing platform,” in Proceedings of the 2018 Workshop for
NLP Open Source Software, 2018.

[35] D. M. Berry, E. Kamsties, and M. M. Krieger, “From
contract drafting to software specification: Linguistic
sources of ambiguity,” Handbook, pp. 1–80, 2003.

[36] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering - Guidelines and
Examples. Wiley, 2012.

[37] J. Cohen, “A coefficient of agreement for nomi-
nal scales,” Educational and Psychological Measurement,
vol. 20, no. 1, pp. 37–46, 1960.

[38] Explosion, “spacy: Industrial-strength natural lan-
guage processing in python,” https://spacy.io/, 2021,
accessed: 2023-04-03.

[39] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic de-
pendency network,” in Proceedings of the 2003 Human
Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics,
M. A. Hearst and M. Ostendorf, Eds., 2003.

[40] A. Veizaga, S. Y. Shin, and L. C. Briand,
“Paska - automated smell detection and
recommendation in natural language requirements,”
https://doi.org/10.6084/m9.figshare.22731707.v1,
2023.

[41] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case
Study Research in Software Engineering: Guidelines and
Examples, 1st ed. Wiley Publishing, 2012.

[42] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer,
“Automated checking of conformance to requirements
templates using natural language processing,” IEEE
Transactions on Software Engineering, vol. 41, no. 10, pp.
944–968, 2015.

[43] A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand, and
J. Dann, “Automated recommendation of templates
for legal requirements,” in Proceedings of the 28th IEEE

26

International Requirements Engineering Conference, 2020,
pp. 158–168.

[44] R. J. Costello and D. Liu, “Metrics for requirements
engineering,” Journal of Systems and Software, vol. 29,
no. 1, pp. 39–63, 1995.

[45] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer,
and O. Levy, “Spanbert: Improving pre-training by
representing and predicting spans,” Transactions of the
Association for Computational Linguistics, vol. 8, pp. 64–
77, 2020.

[46] F. Mu, L. Shi, W. Zhou, Y. Zhang, and H. Zhao, “NERO:
A text-based tool for content annotation and detection
of smells in feature requests,” in Proceedings of the 28th
IEEE International Requirements Engineering Conference,
2020, pp. 400–403.

[47] Y. Seki, S. Hayashi, and M. Saeki, “Detecting bad smells
in use case descriptions,” in Proceedings of the 27th IEEE
International Requirements Engineering Conference, D. E.
Damian, A. Perini, and S. Lee, Eds., 2019, pp. 98–108.

[48] L. Shi, C. Chen, Q. Wang, S. Li, and B. W. Boehm,
“Understanding feature requests by leveraging fuzzy
method and linguistic analysis,” in Proceedings of the
32nd IEEE/ACM International Conference on Automated
Software Engineering, 2017, pp. 440–450.

[49] V. R. Basili, G. Caldiera, and H. D. Rombach, “Goal,
question, metric paradigm,” Encyclopedia of Software
Engineering, vol. 2, pp. 528–532, 1994.

Alvaro Veizaga has been a research associate
at the Interdisciplinary Centre for Security, Relia-
bility and Trust (SnT), University of Luxembourg.
Alvaro received his MSc from Leibniz University
Hannover (Germany) and his Ph.D. in Computer
Science from the University of Luxembourg in
2018 and 2022, respectively. His research in-
terests are requirements engineering, software
testing, machine learning, and natural language
processing.

Seung Yeob Shin (Member, IEEE) is a Re-
search Scientist at the Interdisciplinary Centre
for Security, Reliability and Trust (SnT), Univer-
sity of Luxembourg. He received his Ph.D. de-
gree from the Laboratory for Advanced Software
Engineering Research (LASER) in the College
of Information and Computer Sciences at the
University of Massachusetts Amherst in 2016.
His research interests are in software engineer-
ing, focusing on model-driven software develop-
ment, search-based software engineering, em-

pirical software engineering, requirements engineering, and analysis of
complex systems.

Lionel C. Briand (Fellow, IEEE) is professor of
software engineering and has shared appoint-
ments between (1) School of Electrical Engi-
neering and Computer Science, University of
Ottawa, Canada and (2) The Lero SFI Centre for
Software Research, University of Limerick, Ire-
land. He is a Canada research chair in Intelligent
Software Dependability and Compliance (Tier 1)
and the director of Lero. He has conducted ap-
plied research in collaboration with industry for
more than 25 years, including projects in the

automotive, aerospace, manufacturing, financial, and energy domains.
He is a fellow of the IEEE, ACM, and Royal Society of Canada. He was
also granted the IEEE Computer Society Harlan Mills Award (2012),
the IEEE Reliability Society Engineer-of-the-year award (2013), and the
ACM SIGSOFT Outstanding Research Award (2022) for his work on
software testing and verification. His research interests include: soft-
ware testing and verification (including security aspects), trustworthy AI,
applications of AI in software engineering, model-driven software devel-
opment, requirements engineering, and empirical software engineering.
Further details can be found on: www.lbriand.info.

