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ABSTRACT  17 

Alzheimer’s Disease (AD) is a complex and multifactorial neurodegenerative disease. The 18 

current diagnosis relies on non-specific biomarkers (Aβ1-42, t-Tau, and p-Tau) measured in 19 

cerebrospinal fluid (CSF), which do not provide sufficient insights into disease progression. 20 

Studying the exposome could reveal new disease-specific biomarkers for more accurate diagnosis. 21 

In this pilot study, exposomics was performed on the CSF of three groups; AD, Mild Cognitive 22 

Impairment (MCI) due to AD, and a non-demented control group (ND), using non-target high 23 

resolution mass spectrometry (NT-HRMS) coupled with liquid chromatography (LC). An open-24 

source cheminformatics pipeline was developed using MS-DIAL and patRoon with PubChemLite 25 

for Exposomics, plus CSF- and AD-specific suspect lists. Fifteen statistically significant chemicals 26 

(nine Level l, six Level 2a) from diverse classes (amino acids, gut metabolites, sugars, 27 

environmental chemicals) were identified. Most of the relevant chemicals (thirteen out of fifteen) 28 

were detected using the Hydrophilic Interaction LC (HILIC) method. Environmental and lifestyle 29 

factors may explain some chemical differences found across groups, such as the higher levels of 30 

indole-3-acetic acid found in the AD and MCI compared to the ND group. This work provides a 31 

strong methodological basis and several promising hypotheses to upscale these efforts on larger 32 

AD cohort numbers in future studies.  33 
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INTRODUCTION  59 

Alzheimer’s Disease (AD) is a complex and multifactorial neurodegenerative disease where 60 

genetics, lifestyle and environmental factors may influence the pathogenesis. AD is the most 61 

common form of dementia, and its prevalence is expected to increase from 50 million people 62 

(2010) to 113 million by 2050 worldwide1,2. AD is often divided into three stages: (1) preclinical 63 

stage characterized by normal cognitive ability, (2) prodromal stage characterized by mild 64 

cognitive impairment (MCI) and (3) dementia stage1,3. There is a growing evidence that 65 

neuroinflammation may play a fundamental role in the pathology of the disease4,5. Alterations in 66 

the gut microbiota composition (gut dysbiosis) could change the gut barrier permeability and 67 

induce immune activation leading to systemic inflammation, which could alter the blood brain 68 

barrier (BBB) permeability, promoting neuroinflammation, and finally neurodegeneration 69 

associated to the formation of β-amyloid (Aβ) aggregates and tau neurofibrillary tangles. This can 70 

be explained by the bidirectional communication between the brain and the gut’s microbiota, 71 

known as microbiota-gut-brain-axis (MGBA)6,7.  72 

The current diagnosis for AD is based on clinical symptoms and pathological alterations such as 73 

reduced Aβ1-42 or increased p-Tau and t-Tau concentrations in cerebrospinal fluid (CSF). However, 74 

AD pathology starts decades before the clinical symptoms appear. Moreover, Aβ and tau protein 75 

are quite stable in clinical AD, and may not always differentiate AD from other forms of dementia, 76 

leading to a high rate of misdiagnosis in the early stages7,8. While elevated levels of neurofilament 77 

light (NfL) are also found in CSF of AD patients, this is also a nonspecific biomarker of 78 

degeneration since its levels are elevated in multiple neurodegenerative diseases9.  Hence, research 79 

is urgently needed to find additional and specific biomarkers that could help in an early diagnosis 80 

and better understanding of the disease progression.  81 
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CSF is the closest biological fluid to the brain and abnormalities in this matrix are directly related 82 

to pathological changes in the brain. Since it is already collected for AD diagnosis, further 83 

investigation of its chemical composition (e.g., via metabolomics and exposomics) could provide 84 

new insights to better understand disease progression. To date the number of exposomics studies 85 

in CSF samples is still very low. However, several open resources exist to support exposomics of 86 

CSF, including the CSF Metabolome database10,11, containing about 468 metabolites found in 87 

human CSF, and PubChemLite for Exposomics (PCL)12, a subset of PubChem13,14 designed to 88 

support efficient annotation in exposomics and metabolomics studies. Non-target high-resolution 89 

mass spectrometry (NT-HRMS) coupled to liquid chromatography (LC) is well suited to perform 90 

exposomics studies on CSF. Previous work focusing on Parkinson’s disease (PD) using plasma 91 

and feces described an open source workflow including MS-DIAL, patRoon and PCL, 92 

complemented with disease-specific databases and suspect lists15. The current work extends this 93 

approach to develop suspect lists and databases relevant for AD and apply this to CSF analysis. 94 

This study investigates the exposome and metabolome in the CSF of AD, MCI, and a non-95 

demented control group (ND), meaning neurological patients without dementia and without central 96 

nervous system (CNS) neurodegeneration. The additional MCI group offers the opportunity to 97 

study disease progression. CSF was analyzed by NT-HRMS coupled to two different LC methods 98 

to explore potential associations between clinical AD biomarkers (Aβ1-42, t-Tau, p-Tau and NfL) 99 

and chemicals identified in the samples. This pilot study was designed to establish methods and 100 

develop hypotheses to investigate in a larger cohort of patients in future studies. 101 

 102 

 103 

 104 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 6 

MATERIALS AND METHODS 105 

Human CSF sample collection 106 

A total of 30 CSF human samples (n = 10/group) were extracted by lumbar puncture and stored 107 

at –80 °C until analysis. Informed consent was obtained (see Ethics Declaration). CSF biomarkers- 108 

Aβ1-40, Aβ1-42, t-Tau, p-Tau, and NfL- were measured with a Lumipulse G600II analyzer 109 

(Fujirebio). See Supporting Information (SI), Section S1.1. 110 

Sample preparation 111 

The sample preparation was adapted from Song et al.16. Briefly, CSF samples were mixed with 112 

ethanol, vortexed, incubated (-20°C) and centrifuged. The supernatant was evaporated to dryness 113 

and reconstituted using Milli-Q water:MeOH:MeCN (2:1:1, v/v/v). Four different pooled Quality 114 

Control (QC) samples were prepared following published recommendations17,18 (see S1.2). The 115 

sample preparation method was first tested in artificial CSF (aCSF) samples (HelloBio Ltd, UK) 116 

using the same protocol as above, but also adding 10 µL of a polar chemical standard mixture to 117 

serve as reference standards later (see S1.3). 118 

Instrumental analysis 119 

Non-target analysis was performed as described previously15 on a Thermo Scientific Accela LC 120 

system coupled to a Q Exactive™ HF (Thermo Scientific) mass spectrometer (MS) using 121 

Electrospray Ionization (ESI) in both positive (+) and negative (-) modes. BEH C18 reversed phase 122 

(RP) and SeQuant® ZIC-pHILIC 5 µm polymer (HILIC) columns were used (in separate runs) to 123 

detect a broader range of chemicals. 124 

 125 

 126 

 127 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 7 

Data processing 128 

The raw files (“.raw”) were converted to “.mzML” using ProteoWizard MSConverter (Version 129 

3.0.20331.3768aa6e9 64-bit)19 and analyzed with MS-DIAL (version 4.90)20, MS-FINDER 130 

(version 3.52)21,22 and patRoon (version 2.1.0)23,24. MS-DIAL (using public libraries, see Table 131 

S4) combined with MS-FINDER was employed for non-target screening, while patRoon was used 132 

for both suspect and non-target screening (see S1.4).  Figure 1 shows the databases and suspect 133 

lists employed for each of the patRoon approaches; those marked with an asterisk were created in 134 

house to explore chemicals focused on AD and other related CNS diseases (see S1.5, GitLab25 and 135 

Zenodo26 repositories). 136 

 137 

Figure 1. Databases and suspect lists employed for the non-target screening (left) and the suspect 138 
screening (right) analysis with patRoon. *Indicates databases/suspect lists created for the purpose 139 
of this study25–27. See S1.5 and Table S5 for more details. 140 
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Features were annotated based on the individualMoNAscore (0-1) for patRoon, Dot product (0-142 

100) and fragment presence (0-100) for MS-DIAL, and MS-FINDER score (0-10), as previously 143 

described15,28, with slight modifications for MS-DIAL and MS-FINDER (see Table S6). 144 

OrgMassSpecR29–31 was used to calculate spectral similarity. Identifications were considered 145 

Level 1 when the match between the standard and tentative candidate (in the CSF) yielded a 146 

SpectrumSimilarity score ≥ 0.7 and the retention time (RT) shift was <1min. Xcalibur Qual 147 

Browser (version 4.1.31.9) was used to check the RT and to extract the MS/MS information.  All 148 

codes are available online25.  149 

Statistical analysis 150 

First, data was pre-processed with MetaboAnalyst 5.032,33 by filtering (interquartile range 151 

option), normalization by sum, log transformation (base 10), and pareto scaling. Then, R was used 152 

to compute one-way analysis of variance (ANOVA) with post-hoc Tukey’s Honestly Significant 153 

Difference (HSD) test for multiple comparisons. Features with post-hoc test p-values < 0.05 were 154 

considered as statistically significant. Additionally, area under the receiver operating characteristic 155 

(ROC) curves (AUC) were computed (MetaboAnalyst 5.0). The chemical was considered an 156 

excellent classifier when AUC = 1.0-0.9, and good when AUC = 0.9-0.8, following published 157 

guidelines34. Finally, linear multiple regression analysis was used (via the lm function in R) to 158 

analyze the relationship between the biomarker concentrations (Aβ1-40, Aβ1-42, p-Tau, t-Tau and 159 

NfL) and the chemical features found in CSF (see S1.6). 160 

 161 

 162 

 163 
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RESULTS 165 

Table 1 summarizes the statistically significant Level 1-2a features (p-value < 0.05) identified 166 

using at least one of the different approaches (software, database, or LC mode). The values from 167 

the method with the best peak intensities and/or p-values are presented in Table 1 for simplicity. 168 

Full results are available in Table S7-S14. Considerable efforts were made to confirm the identities 169 

of the relevant chemicals, with finally nine out of the fifteen features confirmed via reference 170 

standard, i.e., Level 1. S2.1 summarizes the identification workflow using the example cytosine 171 

(Level 2a). 172 
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Table 1. Statistically relevant features found by MS-DIAL and patRoon. Only Level 1 and Level 2a features are included. * Indicates 173 
p-value <0.05 as well as good or excellent biomarkers. (a) Mannose is grouped with its isomers glucose, galactose, and fructose as they 174 
are indistinguishable with the methods used (b) Neotame is a derivative of the IS Neotame-D3. IL = Identification Level. “LC Mode” 175 
indicates the method that provided the best peak intensities and/ or p-value (see Table S7-14 for detailed information). 176 

     
ANOVA Post-hoc test p-values AUC curves (ROC analysis) 

Chemical name mz rt (min) LC mode IL p-value MCI-AD ND-AD ND-MCI MCI-AD ND-AD ND-MCI 

Adenine 136.0617 3.42 HILIC (+) 1 0.0091* 0.9958 0.0213* 0.0174* 0.50 0.87* 0.80* 

Creatinine 112.051 3.58 HILIC (-) 1 0.0146 0.9096 0.0482* 0.0189* 0.55 0.86* 0.81* 

Diazepam 285.0787 17.11 RP (+) 2a 0.0447* 0.0373* 0.6052 0.2429 0.64 0.83* 0.5 

Cytosine 112.0505 5.9 HILIC (+) 2a  0.0253* 0.0216* 0.6122 0.1575 0.78 0.69 0.71 

Mannose (a) 179.0549 9.18 HILIC (-) 2a   0.0292* 0.7888 0.0292* 0.1164 0.52 0.91* 0.69 

Threonic acid 135.0291 10.48 HILIC (-) 1 0.0457* 0.4707 0.3345 0.0361* 0.62 0.77 0.85* 

Galacturonic acid  193.0342 12.24 HILIC (-) 1 0.0305* 0.9534 0.0753 0.0403* 0.54 0.79 0.83* 

3-hydroxybutanoic acid 
(BHBA) 103.0396 5.92   HILIC (-)  1 0.0030* 0.0042* 0.0150* 0.8637 0.89* 0.86* 0.59 

Neotame (b) 377.2062 15.89 RP (-) 2a 0.0070* 0.0229* 0.9456 0.0108* 0.77 0.61 0.86* 

Cotinine 177.1021 1.76 HILIC (+) 1 0.0284* 0.0916 0.8744 0.0320* 0.70 0.63 0.81* 

N-Acetylhistidine 196.0717 8.15 HILIC (-) 2a 0.0102* 0.0348* 0.9193 0.0141* 0.81* 0.5 0.81* 

4-Hydroxyphenyllactic 
acid (4-HPLA) 181.0495 6.46 HILIC (-) 2a 0.0285* 0.9935 0.0574 0.0455* 0.53 0.80* 0.83* 

Indole-3-Acetic Acid 
(IAA) 176.0706 13.66 RP (+)  1 0.0234* 0.7237 0.1144 0.0221* 0.57 0.82* 0.81* 

L-Valine 118.0862 6.99 HILIC (+) 1 0.0105* 0.9996 0.0224* 0.0211* 0.50 0.86* 0.84* 

L-Proline 116.07 6.92 HILIC (+) 1 0.0280* 0.0569 0.9927 0.0444* 0.83* 0.55 0.82* 

177 
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MS-DIAL identifications 178 

A total number of 149 unique features were annotated as Level 1 and Level 2a with the RP (45 179 

unique) and HILIC (61 unique) separation modes, with 43 features overlapping (InChIKeys were 180 

employed to deduplicate, see S2.2). Figure 2 shows the m/z and intensity of all the tentative 181 

candidates identified with MS-DIAL and MS-FINDER. The high confidence features (Level 1-182 

2a), consisting primarily of small molecules, generally exhibit higher peak intensities, while Level 183 

5 features are more diverse, from low to high masses, and the peak intensities are mainly low 184 

(Table S7). 185 

 186 

Figure 2. Dot plot showing the m/z distribution of the tentative annotated features, shaded 187 
according to peak intensity. Each dot represents the maximum peak intensity found in the samples. 188 
Level 1 features are confirmed by reference standard while Level 2a are based on scores. See 189 
Table S6 for detailed information about the ILs. 190 
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After performing the ANOVA post-hoc tests, 95, 111, and 571 features were identified as 191 

statistically relevant (p- value < 0.05) in the MCI-AD, AD-ND, and ND-MCI groups, respectively 192 

(Table S8). Nevertheless, only twenty features were within the high confidence range (Levels 1-193 

2a) and only twelve features were unique (first twelve rows of Table 1), as some chemicals were 194 

identified as statistically relevant by more than one LC and ionization method (e.g., adenine and 195 

cotinine were identified as relevant by both RP and HILIC). All the statistically relevant chemicals, 196 

except for cytosine, were classified as good or excellent classifiers.  197 

patRoon identifications 198 

Non-target screening 199 

There were 17 and 23 unique features annotated by RP and HILIC, respectively using patRoon 200 

non-target screening approach with the PCL database. The same features were identified with the 201 

AD-database except for metoprolol acid (Level 2a), L-beta-homolysine (Level 3a) and neotame 202 

(Level 2a). The presence of neotame was later confirmed to be as a derivative of the IS, neotame-203 

D3, employed to check the instrument performance (see S2.3 and Table S9-S10). Although only 204 

18,677 chemicals overlap between the PCL and AD-database, most of the features found in the 205 

CSF samples were within this overlap, even though PCL has many more chemicals. This implies 206 

that the AD-database provides adequate coverage, as similar results were obtained with fewer 207 

entries in the database, which ultimately led to a faster (more efficient) data analysis. 208 

After computing the post-hoc ANOVA tests, four features were found to be statistically 209 

significant using PCL. The same features were found as relevant with the AD-database except for 210 

L-proline (Table S11-S12).  Three of them were confirmed with the reference standard, (Indole-211 

3-Acetic Acid (IAA), L-valine and L-proline), last three rows of Table 1, whilst the other was 212 

annotated as Level 3a (quinoline).  213 
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Suspect screening 214 

Figure 3 illustrates the number of annotated features and overlapping in each of the different 215 

suspect lists (A) as well as the identification levels of each of the features (B), separated by HILIC 216 

(+ and -); RP results are in S2.4. Of the four suspect lists used, most of the unique features were 217 

found in the largest lists: TOP1 and HMDB-CSF. Overall, the overlap between the suspect lists 218 

was low. Interestingly, the HILIC LC method showed a considerably higher number of unique 219 

features in the HMDB-CSF suspect list, suggesting that this might be a better chromatographic 220 

approach for the CSF analysis, due to the polarity of the matrix. Additionally, more Level 1 221 

features were found using HILIC rather than RP (Table S13). 222 
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 223 

Figure 3. (A) UpSet plot representing the number of annotated features in each suspect list plus 224 
the overlap across lists. (B) Bar plots showing the identification levels of the annotated features in 225 
each suspect list. Features identified by positive and negative ionization modes were combined in 226 
these plots for simplicity, only HILIC results are shown - see S2.4, Figure S11, for RP. See S1.5 227 
for detailed information about the suspect lists. 228 

 229 
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 230 

Fifteen statistically relevant features were found by the different suspect screening approaches 231 

(Table S14). Most of the statistically relevant chemicals (thirteen) were found with the TOP1 232 

suspect list, all classified as Level 5. One Level 1 chemical was identified with HMDB-CSF and 233 

SC20, L-proline, displayed in Table 1, while one Level 3c feature (N-acetylaspartylglutamic acid) 234 

was annotated using the HMDB-CSF list (see S2.4, Figure S12). 235 

 236 

DISCUSSION 237 

This discussion focusses on the statistically significant Level 1 and 2a chemicals (Table 1) since 238 

most of the low confidence features exhibited low peak intensities (Figure 2). The discussion is 239 

divided by chemical classes, with major examples shown in Figure 4, before exploring the 240 

relationship between the CSF biomarkers (Aβ1-42, p-Tau, t-Tau and NfL) and the statistically 241 

relevant chemicals found across the groups.  242 
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 243 

Figure 4. Bar plots showing the normalized peak intensities across groups of proline (A), valine 244 
(B), creatinine (C), N-Acetylhistidine (D), IAA (E), 4-HPLA (F), BHBA (G), adenine (H), 245 
threonic acid (I), galacturonic acid (J), cotinine (K) and diazepam (L). *: p-value <0.05, NS: Not 246 
Significant differences.  247 

 248 

 249 

 250 
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Amino acids and derivatives  251 

Disrupted amino acids pathways were previously described35–37 in AD and may be related to the 252 

alteration of different neurotransmitters. Here, higher levels of proline were found in the MCI 253 

group compared to the AD and ND groups (Figure 4A). Proline is a nonessential amino acid that 254 

was already identified as possible a biomarker of AD in CSF samples35. In addition, evidence has 255 

shown that proline metabolism is related to the ageing process and plays a key role in the 256 

progression from healthy to MCI and eventually to AD36. The results here are in line with these 257 

previous studies, since the higher levels found in the MCI group might suggest that this amino acid 258 

could be a biomarker of disease progression. Since proline is classified as a “good” biomarker 259 

(AUC > 0.8), it could help to discriminate between ND-MCI groups (see S3.1, Figure S13).  260 

Valine showed statistically significant lower levels in the AD and MCI groups compared to the 261 

ND group, suggesting a progressive decrease in the disease (Figure 4B). Since AUC > 0.8 in the 262 

ND-MCI and ND-AD comparison, it may be a potential biomarker for disease progression. 263 

Decreased valine levels were already reported in AD, correlated to impaired neurotransmission 264 

and cognitive function38. This may be explained by the brain glucose hypometabolism in AD, 265 

which could lead to compensatory sources of energy, such as amino acids to form tricarboxylic 266 

acid cycle (TCA) intermediates37.  267 

Creatinine, an amino acid derivative, was found with statistically higher peak intensities in the 268 

AD and MCI groups compared to the ND group (Figure 4C), discriminating well between ND-269 

AD and ND-MCI (AUC > 0.8). Higher levels of creatinine were noted previously in the CSF of 270 

AD, possibly due to multiple factors, including the excessive use of phosphocreatine as an energy 271 

source (followed by degradation to creatinine), disruptions in the creatinine-phosphocreatine 272 
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shuttle37 and/or a compromised BBB integrity, allowing creatinine and other molecules to leak 273 

into CSF from blood 39.  274 

Statistically higher levels of N-Acetylhistidine (Level 2a), a histidine derivative, were found in 275 

the MCI group compared to the AD and ND groups (Figure 4D). Changes in this metabolite have 276 

been described in both AD40 and PD41, suggesting that the N-acetylation of amino acids may be 277 

affected in these neurological diseases. 278 

Glutamate, lysine, histidine, arginine, glutamine, serine, and phenylalanine were found with 279 

lower levels in the AD group compared to the ND, without statistical relevance. This is consistent 280 

with previous works indicating metabolic alterations in AD37,38. Interestingly, some amino acids 281 

(lysine, arginine, tyrosine, and tryptophan) showed the highest levels in the MCI group (without 282 

statistical relevance), which may reflect the compensatory mechanisms in response to early 283 

neurodegenerative changes (see S3.1, Figure S14).  284 

Gut microbiota related metabolites  285 

Statistically higher levels of indole-3-Acetic Acid (IAA) were found in the MCI group compared 286 

to ND, as well as in the AD group compared to ND (p-value = 0.1144, Figure 4E). IAA is an 287 

important microbial tryptophan metabolite which can modulate intestinal homeostasis and 288 

suppress inflammatory responses42,43. Here, IAA appears to be associated to cognitive impairment 289 

as described previously in serum samples from hemodialysis patients44. Statistically lower levels 290 

of the tyrosine metabolite, 4-hydroxyphenyllactic acid (4-HPLA), Level 2a, were found in the ND 291 

group compared to MCI (Figure 4F). This metabolite can be produced by Lactobacillus sp., as 292 

previously reported45. Changes in 4-HPLA were previously described in AD46. Both IAA and 4-293 

HPLA effectively discriminated MCI and AD, with AUC > 0.8. Changes in the gut microbiota 294 

composition and the onset of gastrointestinal symptoms are frequently observed in AD. A decrease 295 
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in the gut microbiota diversity has been reported in diagnosed patients7,47 and this might be behind 296 

the alterations in the CSF metabolites identified here.  297 

The chemical 3-hydroxybutanoic acid, also known as β-hydroxybutyrate (BHBA), was detected 298 

with statistically higher levels in the AD group compared to the MCI and ND groups (Figure 4G). 299 

With an AUC > 0.8 it can be considered a “good” classifier. BHBA is the most abundant ketone 300 

in the human circulation, can be an effective alternative energy substrate for the neurons, and may 301 

be involved in many brain functions (neurotransmission, neuroinflammation and myelination). It 302 

is possible that the higher levels found in the AD group were due to increased fat degradation and 303 

thus ketone formation, including BHBA, as physiological response to the energy shortage in the 304 

brain48. However, BHBA has been proposed as a promising therapeutic strategy for AD, as lower 305 

levels were found previously49. This is support by evidence indicating that BHBA might inhibit 306 

the NLRP3 inflammasome activation in human monocyte, reducing the neuroinflammation, hence 307 

decreasing the AD pathology49,50.  Nevertheless, although the liver is the primary source of BHBA, 308 

it has been proven that gut microbiota could induce changes in its metabolism51. Moreover, 309 

ketogenic diets, which elevate BHBA concentrations, may contribute to the higher levels observed 310 

in the AD group. Multiple factors might explain the BHBA levels found here, such that further 311 

research is needed to clarify the mechanisms in which BHBA participates in AD pathology (see 312 

S3.2).  313 

Nucleobases  314 

Adenine (Figure 4H), a purine nucleobase, was found with statistically higher levels in the ND 315 

group compared to the AD and MCI groups, as a “good” classifier. These results are consistent 316 

with previous studies performed in mice52, indicating that the purine metabolism pathway may be 317 

altered in AD and potentially play an important role in the pathogenesis.  Additionally, cytosine 318 
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(Level 2a) was found to be altered. This was also reported in urine samples53, suggesting that the 319 

pyrimidine metabolism may be altered in AD54 (see S3.3).  320 

Sugars and sugar acids 321 

Lower levels of threonic acid (Figure 4I) were found in the MCI group compared to ND. The 322 

same trend was observed between the AD and ND. Threonic acid reductions were observed in AD 323 

mice models55, and oral administration of threonic acid prevented memory decline56. In contrast, 324 

lower levels of monosaccharides (e.g., mannose) were found in the AD group (see S3.4). Changes 325 

in both monosaccharides and threonic acid, were previously reported in CSF samples of PD57. 326 

Additionally, galacturonic acid (Figure 4J), was found with statistically lower levels in the ND 327 

group compared to MCI, as well as ND compared to AD. Galacturonic acid is the major component 328 

of pectin, a polysaccharide found in fruits and vegetables, so this could also be an environmental 329 

and lifestyle chemical where e.g. the higher levels found in both AD and MCI compared to the ND 330 

group could be due to the major BBB permeability, associated to the dementia status. Hence, this 331 

could be either a biomarker or BBB dysfunction. Pectins have been shown to impact the gut 332 

microbiota, since different bacterial species can break down the pectins and provide them as 333 

nutrients for other microbes58.  334 

Environmental and lifestyle chemicals  335 

Significantly higher levels of cotinine (Figure 4K), the main metabolite of nicotine, were found 336 

in the MCI group compared to ND. The same trend was observed between the MCI and AD group. 337 

Interestingly, tobacco smoking has been correlated with a lower incidence of AD. Cotinine has 338 

shown to prevent memory loss and inhibit Aβ aggregation without the toxicity and addictive 339 

properties of its precursor (nicotine)59,60. Furthermore, diazepam (Level 2a), popularly known as 340 

“valium”, was identified with statistically higher levels in the MCI group compared to the AD. 341 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 21 

The same trend was observed between the MCI-and ND groups (Figure 4L). Cotinine and 342 

diazepam could be considered lifestyle indicators. 343 

Clinical associations between the altered chemicals 344 

Figure 5 illustrates the associations between the chemicals discussed previously and the 345 

concentrations of CSF biomarkers in AD. While age, sex and Aβ1-40 concentrations were 346 

considered as covariates to compute the different linear models, they are excluded for simplicity. 347 

Moreover, although female sex may be a risk factor for AD, sex differences are not discussed here 348 

due to the limited sample size, as well as the unbalanced number of women and men in each group. 349 

Although positive β-coefficient indicates a positive association between two variables (e.g., t-Tau 350 

concentrations and valine levels), an association does not necessarily imply causation.  351 

Briefly, this analysis showed a significant positive association between valine and t-Tau 352 

concentrations in the AD group (top right of Figure 5), while the other groups presented negative 353 

association. In contrast, valine was negatively associated with CSF Aβ1-42 concentrations (but 354 

without statistical significance). This is in line with a previous work showing that several amino 355 

acids were negatively correlated with Aβ1-4237. Indeed, proline was also negatively correlated with 356 

Aβ1-42 although it was not a significant association. Positive and significant associations between 357 

BHBA with NfL and p-Tau were found in the AD group, while a relevant negative association was 358 

found for t-Tau. Notably, one AD patient exhibited high outlier levels for NfL, BHBA, 359 

galacturonic acid and cotinine compared with the other patients in the group (see S3.5). Thus, it 360 

would be interesting to investigate in a future study whether the associations found here are due to 361 

the AD pathology or to environmental factors such as a ketogenic diet, as previously discussed. 362 

Finally, in the ND group, significant positive associations were found between adenine and NfL, 363 

and negative associations between adenine and t-Tau. This last association might suggest a 364 
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potential role of adenine in decreasing tau accumulation. The same trends were observed in the 365 

AD group, while opposite associations were noted in the MCI group. These contrasting 366 

associations in the MCI could suggest potential alterations in disease progression or underlying 367 

pathophysiological mechanisms specific to the MCI stage, which would have to be investigated 368 

further in future studies. 369 

 370 

Figure 5. Associations between the statistically relevant chemicals (Table 1) and the CSF Aβ1-371 
42, NfL, t-Tau and p-Tau concentrations for the ND, MCI, and AD groups. Color represents the 372 
log transformed β-coefficients. Positive and negative associations are indicated by the red and blue 373 
colors, respectively. See Table S15-17 for further details. 374 

 375 

 376 

 377 

 378 
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Future Perspectives 379 

This study showed different chemical alterations in the CSF of AD, MCI, and ND groups. In 380 

contrast to a previous metabolomics study on AD37, here a third group (MCI) was included to 381 

explore potential biomarkers of disease progression. Statistically higher levels of some chemicals 382 

(proline, creatinine, N-acetylhistidine, IAA, 4-HPLA, cotinine and diazepam) were observed in 383 

the MCI group compared to the others (see Figure 4). Most of the relevant chemicals were 384 

identified using the HILIC LC method (Table 1), which appears to be the most suitable method 385 

for future experiments. Overall, MS-DIAL provided a higher number of annotated chemicals; 386 

nevertheless, the combination of different software (MS-DIAL and patRoon), databases and 387 

suspect lists allowed the identification of different types of chemicals, increasing the overall 388 

understanding of the CSF metabolome/exposome. The AD-database was an efficient approach to 389 

screen for relevant chemicals in AD samples compared with PCL, as similar results were obtained 390 

with a ~10x smaller database, requiring less time for data analysis. This is consistent with our 391 

previous work15 where the PD-specific database and PCL showed very similar results. 392 

Interestingly, the cooccurrence score of the annotated features varied widely (from low to high), 393 

indicating that this may not be a suitable metric to pre-select relevant entries (see S3.6). However, 394 

the exact mass of detected chemicals was within the range of 75 to 500 Da, such that exact mass 395 

filtering could reduce the database size further (32,109 entries between 75 and 500, compared with 396 

41,917 unfiltered), and consequently, the analysis time. Level 1-2a chemicals detected here (e.g. 397 

galacturonic acid, threonic acid, N-acetylhistidine and diazepam) could help expand the current 398 

human CSF database, as they are not yet included). Environmental and lifestyle factors may 399 

explain some chemical differences found across the different groups as these factors may influence 400 

the composition and metabolic activity of the human microbiota, resulting in altered levels of some 401 
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metabolites (e.g., IAA). This highlights the possible role of the microbiota-gut-brain-axis (MGBA) 402 

in AD (see S3.2). This pilot study aims to establish methodologies and hypotheses that can be 403 

examined and validated in future studies involving a larger patient cohort and potentially other 404 

type of matrices (such as plasma or feces), which will help improve understanding of the 405 

underlying biological mechanisms and roles the chemicals and potential biomarkers identified here 406 

may have on AD progression. 407 

 408 

ASSOCIATED CONTENT 409 

Supporting Information.  410 

The following files are available free of charge on the ACS Publication website and via DOI. 411 

A Word file contains figures and additional details regarding material and methods (S1), 412 

results (S2) and discussion (S3). Figures S1-S19 as well as Table S1-1 can be found in this 413 

document. 414 

An Excel file contains supplementary tables: Tables S1-S17.  415 

The code functions, and files associated with this manuscript are provided in the ECI GitLab 416 

repository25 (https://gitlab.lcsb.uni.lu/eci/AD-CSF). The PCL database and database/suspect lists 417 

used are available for download on Zenodo26,27 (https://doi.org/10.5281/zenodo.8014420). 418 

AUTHOR INFORMATION 419 

Corresponding Author 420 

*Email: begona.talavera@uni.lu and emma.schymanski@uni.lu  421 

 422 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://gitlab.lcsb.uni.lu/eci/AD-CSF
https://doi.org/10.5281/zenodo.8014420
mailto:begona.talavera@uni.lu
mailto:emma.schymanski@uni.lu
https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 25 

Author Contributions 423 

BTA: conceptualization, data curation, formal analysis, investigation, methodology, software, 424 

validation, visualization, writing – original draft (lead), reviewing and editing. AM: formal 425 

analysis, investigation, writing- review and editing;  TC: methodology, software, writing - review 426 

and editing; LZ: methodology, software, writing – review and editing; EEB: conceptualization, 427 

resources, software, supervision, writing – reviewing and editing; MTH: conceptualization, 428 

funding acquisition, resources, supervision, writing – reviewing and editing; ELS: 429 

conceptualization, data curation, resources, software, supervision, writing – original draft 430 

(supporting), writing – review and editing.  431 

Ethics declarations 432 

Informed consent for use of samples and data for research purposes was given with the local 433 

ethics committee approval (University Hospital of Bonn Ethics Commission #279/10). This work 434 

does not contain identifiable data of the subjects or any other specific individual person’s data. 435 

Funding Sources 436 

BTA is part of the “Microbiomes in One Health” PhD training program, which is supported by 437 

the PRIDE doctoral research funding scheme (PRIDE/11823097) of the Luxembourg National 438 

Research Fund (FNR). The work of EEB, TC, and LZ was supported by the National Center for 439 

Biotechnology Information of the National Library of Medicine (NLM), National Institutes of 440 

Health. ELS acknowledges funding support from the FNR for project A18/BM/12341006, MTH 441 

acknowledges funding support from the FNR within the PEARL programme (FNR/16745220). 442 

 443 

 444 

 445 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 26 

ACKNOWLEDGMENT 446 

BTA acknowledges support from Gianfranco Frigerio during sample preparation and advice 447 

from Corey Griffith and Lorenzo Favilli during data processing/interpretation. We thank the 448 

Metabolomics Platform of the LCSB for their support with the LC-HRMS analysis and other 449 

Environmental Cheminformatics and PubChem team members who contributed to this work 450 

indirectly via other collaborative and scientific activities.  451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 27 

REFERENCES 469 

(1) Knopman, D. S.; Amieva, H.; Petersen, R. C.; Chételat, G.; Holtzman, D. M.; Hyman, B. T.; 470 

Nixon, R. A.; Jones, D. T. Alzheimer Disease. Nat Rev Dis Primers 2021, 7 (1), 1–21. 471 

https://doi.org/10.1038/s41572-021-00269-y. 472 

(2) Reveglia, P.; Paolillo, C.; Ferretti, G.; De Carlo, A.; Angiolillo, A.; Nasso, R.; Caputo, M.; 473 

Matrone, C.; Di Costanzo, A.; Corso, G. Challenges in LC–MS-Based Metabolomics for 474 

Alzheimer’s Disease Early Detection: Targeted Approaches versus Untargeted Approaches. 475 

Metabolomics 2021, 17 (9), 78. https://doi.org/10.1007/s11306-021-01828-w. 476 

(3) Vermunt, L.; Sikkes, S. A. M.; van den Hout, A.; et al. Duration of preclinical, prodromal, 477 

and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. 478 

Alzheimer’s & Dementia 2019, 15 (7), 888-898. https://doi.org/10.1016/j.jalz.2019.04.001. 479 

(4) Qian, X.; Song, X.; Liu, X.; Chen, S.; Tang, H. Inflammatory Pathways in Alzheimer’s 480 

Disease Mediated by Gut Microbiota. Ageing Research Reviews 2021, 68, 101317. 481 

https://doi.org/10.1016/j.arr.2021.101317. 482 

(5) Heneka, M. T.; Carson, M. J.; El Khoury, J.; Landreth, G. E.; Brosseron, F.; Feinstein, D. L.; 483 

Jacobs, A. H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R. M.; Herrup, K.; Frautschy, S. A.; 484 

Finsen, B.; Brown, G. C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; 485 

Petzold, G. C.; Town, T.; Morgan, D.; Shinohara, M. L.; Perry, V. H.; Holmes, C.; Bazan, N. 486 

G.; Brooks, D. J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; 487 

Dinarello, C. A.; Breitner, J. C.; Cole, G. M.; Golenbock, D. T.; Kummer, M. P. 488 

Neuroinflammation in Alzheimer’s Disease. Lancet Neurol 2015, 14 (4), 388–405. 489 

https://doi.org/10.1016/S1474-4422(15)70016-5. 490 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 28 

(6) Mulak, A. Bile Acids as Key Modulators of the Brain-Gut-Microbiota Axis in Alzheimer’s 491 

Disease. J Alzheimers Dis 2021, 84 (2), 461–477. https://doi.org/10.3233/JAD-210608. 492 

(7) Microbiota-Gut-Brain Axis in the Alzheimer’s Disease Pathology - an Overview. 493 

Neuroscience Research 2022, 181, 17–21. https://doi.org/10.1016/j.neures.2022.05.003. 494 

(8) Dhiman, K.; Blennow, K.; Zetterberg, H.; Martins, R. N.; Gupta, V. B. Cerebrospinal Fluid 495 

Biomarkers for Understanding Multiple Aspects of Alzheimer’s Disease Pathogenesis. Cell 496 

Mol Life Sci 2019, 76 (10), 1833–1863. https://doi.org/10.1007/s00018-019-03040-5. 497 

(9) Mielke, M. M.; Syrjanen, J. A.; Blennow, K.; Zetterberg, H.; Vemuri, P.; Skoog, I.; 498 

Machulda, M. M.; Kremers, W. K.; Knopman, D. S.; Jack, C.; Petersen, R. C.; Kern, S. 499 

Plasma and CSF Neurofilament Light. Neurology 2019, 93 (3), e252–e260. 500 

https://doi.org/10.1212/WNL.0000000000007767. 501 

(10) Wishart, D. S.; Lewis, M. J.; Morrissey, J. A.; Flegel, M. D.; Jeroncic, K.; Xiong, Y.; Cheng, 502 

D.; Eisner, R.; Gautam, B.; Tzur, D.; Sawhney, S.; Bamforth, F.; Greiner, R.; Li, L. The 503 

Human Cerebrospinal Fluid Metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 504 

2008, 871 (2), 164–173. https://doi.org/10.1016/j.jchromb.2008.05.001. 505 

(11) CSF Metabolome. https://csfmetabolome.ca/ (accessed 2023-06-06). 506 

(12) Schymanski, E. L.; Kondić, T.; Neumann, S.; Thiessen, P. A.; Zhang, J.; Bolton, E. E. 507 

Empowering Large Chemical Knowledge Bases for Exposomics: PubChemLite Meets 508 

MetFrag. J Cheminform 2021, 13 (1), 19. https://doi.org/10.1186/s13321-021-00489-0. 509 

(13) Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. Chapter 12 - PubChem: Integrated 510 

Platform of Small Molecules and Biological Activities. In Annual Reports in Computational 511 

Chemistry; Wheeler, R. A., Spellmeyer, D. C., Eds.; Elsevier, 2008; Vol. 4, pp 217–241. 512 

https://doi.org/10.1016/S1574-1400(08)00012-1. 513 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 29 

(14) Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; 514 

Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem in 2021: New Data 515 

Content and Improved Web Interfaces. Nucleic Acids Research 2021, 49 (D1), D1388–516 

D1395. https://doi.org/10.1093/nar/gkaa971. 517 

(15) Talavera Andújar, B.; Aurich, D.; Aho, V. T. E.; Singh, R. R.; Cheng, T.; Zaslavsky, L.; 518 

Bolton, E. E.; Mollenhauer, B.; Wilmes, P.; Schymanski, E. L. Studying the Parkinson’s 519 

Disease Metabolome and Exposome in Biological Samples through Different Analytical and 520 

Cheminformatics Approaches: A Pilot Study. Anal Bioanal Chem 2022. 521 

https://doi.org/validanti. 522 

(16) Song, Z.; Wang, M.; Zhu, Z.; Tang, G.; Liu, Y.; Chai, Y. Optimization of Pretreatment 523 

Methods for Cerebrospinal Fluid Metabolomics Based on Ultrahigh Performance Liquid 524 

Chromatography/Mass Spectrometry. Journal of Pharmaceutical and Biomedical Analysis 525 

2021, 197, 113938. https://doi.org/10.1016/j.jpba.2021.113938. 526 

(17) Broadhurst, D.; Goodacre, R.; Reinke, S. N.; Kuligowski, J.; Wilson, I. D.; Lewis, M. R.; 527 

Dunn, W. B. Guidelines and Considerations for the Use of System Suitability and Quality 528 

Control Samples in Mass Spectrometry Assays Applied in Untargeted Clinical Metabolomic 529 

Studies. Metabolomics 2018, 14 (6), 72. https://doi.org/10.1007/s11306-018-1367-3. 530 

(18) Frigerio, G.; Moruzzi, C.; Mercadante, R.; Schymanski, E. L.; Fustinoni, S. Development 531 

and Application of an LC-MS/MS Untargeted Exposomics Method with a Separated Pooled 532 

Quality Control Strategy. Molecules 2022, 27 (8), 2580. 533 

https://doi.org/10.3390/molecules27082580. 534 

(19) Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.; 535 

Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, 536 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 30 

N.; Frewen, B.; Baker, T. A.; Brusniak, M.-Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.; 537 

Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; 538 

Rainer, P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; 539 

Holly, K.; Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; 540 

Tabb, D. L.; Mallick, P. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. 541 

Nat Biotechnol 2012, 30 (10), 918–920. https://doi.org/10.1038/nbt.2377. 542 

(20) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; 543 

VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS 544 

Deconvolution for Comprehensive Metabolome Analysis. Nat Methods 2015, 12 (6), 523–545 

526. https://doi.org/10.1038/nmeth.3393. 546 

(21) Tsugawa, H.; Kind, T.; Nakabayashi, R.; Yukihira, D.; Tanaka, W.; Cajka, T.; Saito, K.; 547 

Fiehn, O.; Arita, M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation 548 

and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88 (16), 7946–549 

7958. https://doi.org/10.1021/acs.analchem.6b00770. 550 

(22) Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; 551 

Meissen, J.; Showalter, M.; Takeuchi, K.; Kind, T.; Beal, P.; Arita, M.; Fiehn, O. Identifying 552 

Metabolites by Integrating Metabolome Databases with Mass Spectrometry 553 

Cheminformatics. Nat Methods 2018, 15 (1), 53–56. https://doi.org/10.1038/nmeth.4512. 554 

(23) Helmus, R.; ter Laak, T. L.; van Wezel, A. P.; de Voogt, P.; Schymanski, E. L. PatRoon: 555 

Open Source Software Platform for Environmental Mass Spectrometry Based Non-Target 556 

Screening. Journal of Cheminformatics 2021, 13 (1), 1. https://doi.org/10.1186/s13321-020-557 

00477-w. 558 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 31 

(24) Helmus, R.; Velde, B. van de; Brunner, A. M.; Laak, T. L. ter; Wezel, A. P. van; Schymanski, 559 

E. L. PatRoon 2.0: Improved Non-Target Analysis Workflows Including Automated 560 

Transformation Product Screening. Journal of Open Source Software 2022, 7 (71), 4029. 561 

https://doi.org/10.21105/joss.04029. 562 

(25) Environmental Cheminformatics / AD-CSF · GitLab. GitLab. 563 

https://gitlab.lcsb.uni.lu/eci/AD-CSF (accessed 2023-06-12). 564 

(26) Andújar, B. T.; Mary, A.; Cheng, T.; Zaslavsky, L.; Bolton, E. E.; Heneka, M. T.; 565 

Schymanski, E. L. PubChem Lists to Study the Exposome of Mild Cognitive Impairment and 566 

Alzheimer’s Disease on Cerebrospinal Fluid, 2023. https://doi.org/10.5281/zenodo.8014420. 567 

(27) Bolton, E.; Schymanski, E.; Kondic, T.; Thiessen, P.; Zhang, J. PubChemLite for 568 

Exposomics, 2020. https://doi.org/10.5281/zenodo.4183801. 569 

(28) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. 570 

Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating 571 

Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 572 

https://doi.org/10.1021/es5002105. 573 

(29) Dodder, N.; Mullen, K. OrgMassSpecR: Organic Mass Spectrometry, 2017. https://CRAN.R-574 

project.org/package=OrgMassSpecR (accessed 2022-08-01). 575 

(30) Liao, W.-L.; Heo, G.-Y.; Dodder, N. G.; Pikuleva, I. A.; Turko, I. V. Optimizing the 576 

Conditions of a Multiple Reaction Monitoring Assay for Membrane Proteins: Quantification 577 

of Cytochrome P450 11A1 and Adrenodoxin Reductase in Bovine Adrenal Cortex and 578 

Retina. Anal. Chem. 2010, 82 (13), 5760–5767. https://doi.org/10.1021/ac100811x. 579 

(31) Hoh, E.; Dodder, N. G.; Lehotay, S. J.; Pangallo, K. C.; Reddy, C. M.; Maruya, K. A. 580 

Nontargeted Comprehensive Two-Dimensional Gas Chromatography/Time-of-Flight Mass 581 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 32 

Spectrometry Method and Software for Inventorying Persistent and Bioaccumulative 582 

Contaminants in Marine Environments. Environ. Sci. Technol. 2012, 46 (15), 8001–8008. 583 

https://doi.org/10.1021/es301139q. 584 

(32) Chong, J.; Xia, J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, 585 

and Integration with Other Omics Data. In Computational Methods and Data Analysis for 586 

Metabolomics; Li, S., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 587 

2020; pp 337–360. https://doi.org/10.1007/978-1-0716-0239-3_17. 588 

(33) MetaboAnalyst. https://www.metaboanalyst.ca/ (accessed 2022-03-10). 589 

(34) Xia, J.; Broadhurst, D. I.; Wilson, M.; Wishart, D. S. Translational Biomarker Discovery in 590 

Clinical Metabolomics: An Introductory Tutorial. Metabolomics 2013, 9 (2), 280–299. 591 

https://doi.org/10.1007/s11306-012-0482-9. 592 

(35) Ibáñez, C.; Simó, C.; Martín-Álvarez, P. J.; Kivipelto, M.; Winblad, B.; Cedazo-Mínguez, 593 

A.; Cifuentes, A. Toward a Predictive Model of Alzheimer’s Disease Progression Using 594 

Capillary Electrophoresis–Mass Spectrometry Metabolomics. ACS Publications. 595 

https://doi.org/10.1021/ac301243k. 596 

(36) Xie, K.; Qin, Q.; Long, Z.; Yang, Y.; Peng, C.; Xi, C.; Li, L.; Wu, Z.; Daria, V.; Zhao, Y.; 597 

Wang, F.; Wang, M. High-Throughput Metabolomics for Discovering Potential Biomarkers 598 

and Identifying Metabolic Mechanisms in Aging and Alzheimer’s Disease. Front Cell Dev 599 

Biol 2021, 9, 602887. https://doi.org/10.3389/fcell.2021.602887. 600 

(37) van der Velpen, V.; Teav, T.; Gallart-Ayala, H.; Mehl, F.; Konz, I.; Clark, C.; Oikonomidi, 601 

A.; Peyratout, G.; Henry, H.; Delorenzi, M.; Ivanisevic, J.; Popp, J. Systemic and Central 602 

Nervous System Metabolic Alterations in Alzheimer’s Disease. Alz Res Therapy 2019, 11 603 

(1), 93. https://doi.org/10.1186/s13195-019-0551-7. 604 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 33 

(38) Nielsen, J. E.; Maltesen, R. G.; Havelund, J. F.; Færgeman, N. J.; Gotfredsen, C. H.; 605 

Vestergård, K.; Kristensen, S. R.; Pedersen, S. Characterising Alzheimer’s Disease through 606 

Integrative NMR- and LC-MS-Based Metabolomics. Metabolism Open 2021, 12, 100125. 607 

https://doi.org/10.1016/j.metop.2021.100125. 608 

(39) Pingle, S. C.; Lin, F.; Anekoji, M.S.; et al. Exploring the role of cerebrospinal fluid as analyte 609 

in neurologic disorders. Future Science OA, 2023, 9 (4). https://doi.org/10.2144/fsoa-2023-610 

0006. 611 

(40) Human Gray and White Matter Metabolomics to Differentiate APOE and Stage Dependent 612 

Changes in Alzheimer’s Disease. Journal of Cellular Immunology 2021, 3 (6). 613 

https://doi.org/10.33696/immunology.3.123. 614 

(41) LeWitt, P. A.; Li, J.; Lu, M.; Beach, T. G.; Adler, C. H.; Guo, L.; Consortium,  the A. P. D. 615 

3-Hydroxykynurenine and Other Parkinson’s Disease Biomarkers Discovered by 616 

Metabolomic Analysis. Movement Disorders 2013, 28 (12), 1653–1660. 617 

https://doi.org/10.1002/mds.25555. 618 

(42) Sun, J.; Zhang, Y.; Kong, Y.; Ye, T.; Yu, Q.; Kumaran Satyanarayanan, S.; Su, K.-P.; Liu, J. 619 

Microbiota-Derived Metabolite Indoles Induced Aryl Hydrocarbon Receptor Activation and 620 

Inhibited Neuroinflammation in APP/PS1 Mice. Brain, Behavior, and Immunity 2022, 106, 621 

76–88. https://doi.org/10.1016/j.bbi.2022.08.003. 622 

(43) Wu, L.; Han, Y.; Zheng, Z.; Peng, G.; Liu, P.; Yue, S.; Zhu, S.; Chen, J.; Lv, H.; Shao, L.; 623 

Sheng, Y.; Wang, Y.; Li, L.; Li, L.; Wang, B. Altered Gut Microbial Metabolites in Amnestic 624 

Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host-Microbe Interplay. 625 

Nutrients 2021, 13 (1), 228. https://doi.org/10.3390/nu13010228. 626 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 34 

(44) Lin, Y.-T.; Wu, P.-H.; Lee, H.-H.; Mubanga, M.; Chen, C.-S.; Kuo, M.-C.; Chiu, Y.-W.; 627 

Kuo, P.-L.; Hwang, S.-J. Indole-3 Acetic Acid Increased Risk of Impaired Cognitive 628 

Function in Patients Receiving Hemodialysis. NeuroToxicology 2019, 73, 85–91. 629 

https://doi.org/10.1016/j.neuro.2019.02.019. 630 

(45) Mu, W.; Yang, Y.; Jia, J.; Zhang, T.; Jiang, B. Production of 4-Hydroxyphenyllactic Acid by 631 

Lactobacillus Sp. SK007 Fermentation. J Biosci Bioeng 2010, 109 (4), 369–371. 632 

https://doi.org/10.1016/j.jbiosc.2009.10.005. 633 

(46) Kori, M.; Aydın, B.; Unal, S.; Arga, K. Y.; Kazan, D. Metabolic Biomarkers and 634 

Neurodegeneration: A Pathway Enrichment Analysis of Alzheimer’s Disease, Parkinson’s 635 

Disease, and Amyotrophic Lateral Sclerosis. OMICS: A Journal of Integrative Biology 2016, 636 

20 (11), 645–661. https://doi.org/10.1089/omi.2016.0106. 637 

(47) Lin, C.; Zhao, S.; Zhu, Y.; Fan, Z.; Wang, J.; Zhang, B.; Chen, Y. Microbiota-Gut-Brain Axis 638 

and Toll-like Receptors in Alzheimer’s Disease. Computational and Structural 639 

Biotechnology Journal 2019, 17, 1309–1317. https://doi.org/10.1016/j.csbj.2019.09.008. 640 

(48) Jensen, N. J.; Wodschow, H. Z.; Nilsson, M.; Rungby, J. Effects of Ketone Bodies on Brain 641 

Metabolism and Function in Neurodegenerative Diseases. International Journal of 642 

Molecular Sciences 2020, 21 (22), 8767. https://doi.org/10.3390/ijms21228767. 643 

(49) Shippy, D. C.; Wilhelm, C.; Viharkumar, P. A.; Raife, T. J.; Ulland, T. K. β-Hydroxybutyrate 644 

Inhibits Inflammasome Activation to Attenuate Alzheimer’s Disease Pathology. Journal of 645 

Neuroinflammation 2020, 17 (1), 280. https://doi.org/10.1186/s12974-020-01948-5. 646 

(50) Reger, M. A.; Henderson, S. T.; Hale, C.; Cholerton, B.; Baker, L. D.; Watson, G. S.; Hyde, 647 

K.; Chapman, D.; Craft, S. Effects of Beta-Hydroxybutyrate on Cognition in Memory-648 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 35 

Impaired Adults. Neurobiol Aging 2004, 25 (3), 311–314. https://doi.org/10.1016/S0197-649 

4580(03)00087-3. 650 

(51) Leclercq, S.; Le Roy, T.; Furgiuele, S.; Coste, V.; Bindels, L. B.; Leyrolle, Q.; Neyrinck, A. 651 

M.; Quoilin, C.; Amadieu, C.; Petit, G.; Dricot, L.; Tagliatti, V.; Cani, P. D.; Verbeke, K.; 652 

Colet, J.-M.; Stärkel, P.; de Timary, P.; Delzenne, N. M. Gut Microbiota-Induced Changes 653 

in β-Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in 654 

Alcohol Use Disorder. Cell Reports 2020, 33 (2), 108238. 655 

https://doi.org/10.1016/j.celrep.2020.108238. 656 

(52) Esteve, C.; Jones, E. A.; Kell, D. B.; Boutin, H.; McDonnell, L. A. Mass Spectrometry 657 

Imaging Shows Major Derangements in Neurogranin and in Purine Metabolism in the Triple-658 

Knockout 3×Tg Alzheimer Mouse Model. Biochimica et Biophysica Acta (BBA) - Proteins 659 

and Proteomics 2017, 1865 (7), 747–754. https://doi.org/10.1016/j.bbapap.2017.04.002. 660 

(53) Yilmaz, A.; Ugur, Z.; Bisgin, H.; Akyol, S.; Bahado-Singh, R.; Wilson, G.; Imam, K.; 661 

Maddens, M. E.; Graham, S. F. Targeted Metabolic Profiling of Urine Highlights a Potential 662 

Biomarker Panel for the Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment: 663 

A Pilot Study. Metabolites 2020, 10 (9), 357. https://doi.org/10.3390/metabo10090357. 664 

(54) Wang, G.; Zhou, Y.; Huang, F.-J.; Tang, H.-D.; Xu, X.-H.; Liu, J.-J.; Wang, Y.; Deng, Y.-665 

L.; Ren, R.-J.; Xu, W.; Ma, J.-F.; Zhang, Y.-N.; Zhao, A.-H.; Chen, S.-D.; Jia, W. Plasma 666 

Metabolite Profiles of Alzheimer’s Disease and Mild Cognitive Impairment. J. Proteome 667 

Res. 2014, 13 (5), 2649–2658. https://doi.org/10.1021/pr5000895. 668 

(55) Park, S. J.; Lee, J.; Lee, S.; Lim, S.; Noh, J.; Cho, S. Y.; Ha, J.; Kim, H.; Kim, C.; Park, S.; 669 

Lee, D. Y.; Kim, E. Exposure of Ultrafine Particulate Matter Causes Glutathione Redox 670 

Imbalance in the Hippocampus: A Neurometabolic Susceptibility to Alzheimer’s Pathology. 671 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/


 36 

Science of The Total Environment 2020, 718, 137267. 672 

https://doi.org/10.1016/j.scitotenv.2020.137267. 673 

(56) Sun, Q.; Weinger, J. G.; Mao, F.; Liu, G. Regulation of structural and functional synapse 674 

density by L-threonate through modulation of intraneuronal magnesium concentration. 675 

Neuropharmacology 2016 108, 426-439. https://doi.org/10.1016/j.neuropharm.2016.05.006. 676 

(57) Trezzi, J.-P.; Galozzi, S.; Jaeger, C.; Barkovits, K.; Brockmann, K.; Maetzler, W.; Berg, D.; 677 

Marcus, K.; Betsou, F.; Hiller, K.; Mollenhauer, B. Distinct Metabolomic Signature in 678 

Cerebrospinal Fluid in Early Parkinson’s Disease: Early Parkinson’S CSF Metabolic 679 

Signature. Mov Disord. 2017, 32 (10), 1401–1408. https://doi.org/10.1002/mds.27132. 680 

(58) Beukema, M.; Faas, M. M.; de Vos, P. The Effects of Different Dietary Fiber Pectin 681 

Structures on the Gastrointestinal Immune Barrier: Impact via Gut Microbiota and Direct 682 

Effects on Immune Cells. Exp Mol Med 2020, 52 (9), 1364–1376. 683 

https://doi.org/10.1038/s12276-020-0449-2. 684 

(59) Echeverria, V.; Zeitlin, R. Cotinine: A Potential New Therapeutic Agent against Alzheimer’s 685 

Disease. CNS Neurosci Ther 2012, 18 (7), 517–523. https://doi.org/10.1111/j.1755-686 

5949.2012.00317.x. 687 

(60) Patel, S.; Grizzell, J. A.; Holmes, R.; Zeitlin, R.; Solomon, R.; Sutton, T. L.; Rohani, A.; 688 

Charry, L. C.; Iarkov, A.; Mori, T.; Echeverria Moran, V. Cotinine Halts the Advance of 689 

Alzheimer’s Disease-like Pathology and Associated Depressive-like Behavior in Tg6799 690 

Mice. Front Aging Neurosci 2014, 6, 162. https://doi.org/10.3389/fnagi.2014.00162. 691 

 692 

 693 

https://doi.org/10.26434/chemrxiv-2023-6j2gm ORCID: https://orcid.org/0000-0001-6868-8145 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-6j2gm
https://orcid.org/0000-0001-6868-8145
https://creativecommons.org/licenses/by/4.0/

