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Abstract

Optimizing satellite routes for multiple space debris collection and multiple on-orbit servicing can be a
very complex problem due to the large number of variables and constraints that need to be taken into account.
Factors such as the location and movement of the debris and servicing targets in the orbit, the capabilities of
the satellite, and the constraints on the satellite’s fuel and power usage all need to be considered. Additionally,
the problem may be further complicated by the need to consider multiple objectives, such as minimizing fuel
usage while maximizing debris collection or servicing coverage. Classical approach to solve this problem
includes heuristics and metaheuristics methods like Genetic Algorithm, Particle Swarm Optimization, Ant
Colony Optimization and mixed-integer programming. In the current paper, we plan to implement Quantum
annealing based algorithm for optimizing satellite routes. It is a quantum computing method that can be
used to optimize satellite routes. The principle behind quantum annealing is to use quantum-mechanical
effects to find the global minimum of a function. In the context of satellite routing, this function would
represent the cost or energy required for a satellite to travel a certain route. The satellite’s routes would be
represented by variables in the function, and the quantum annealer would use quantum-mechanical effects
to search for the lowest-energy route, which would correspond to the optimal path for the satellite to take.
We plan to use Ising model to implement quantum annealing for satellite routing. It can used to represent
the cost function as a set of binary variables interacting with each other through pairwise interactions. The
interactions between the variables would represent the different constraints and objectives of the routing
problem, such as fuel usage and debris collection. The goal would be to find the configuration of variables
that minimizes the cost function, which corresponds to the optimal satellite route. A complete mathematical
model will be generated, and numerical analysis will be performed based on the presented technique.

Keywords: Quantum computing for space, Space technology, Quantum routing algorithm , Satellite routing,
Space debris, On-orbit servicing

1. Introduction

The exponential growth in the number of satellites
and various other objects present in the Earth’s orbit
has resulted in a progressively congested space envi-
ronment. The increasing proliferation of human-made
artifacts, encompassing inactive satellites, spent
rocket stages and hardware fragments, presents a sub-
stantial hazard not only to functioning satellites but
also to the safety of future space missions [1]. Fur-
thermore, the concept of on-orbit servicing, which in-
volves the repair, refueling, and enhancement of satel-
lites that are already situated in orbit, has attracted
significant attention. Furthermore, the concept of on-
orbit servicing, which involves the repair, refueling,
and enhancement of satellites that are already situ-
ated in orbit, has attracted significant attention [2].
The utilization of dedicated satellites for the purpose
of collecting space debris and providing on-orbit ser-

vicing has emerged as a feasible solution to address
these challenges. These initiatives possess the capac-
ity to increase the operational lifespan of satellites
and reduce the probability of catastrophic collisions
occurring in orbit.

The Defense Advanced Research Projects
Agency’s (DARPA) Orbital Express mission in
2007 which demonstrated autonomous docking and
fluid transfer between two spacecraft, laying the
groundwork for future on-orbit servicing missions
[3]. NASA’s Restore-L project aimed to refuel a
government-owned satellite and demonstrate robotic
manipulation in space [4]. Commercial ventures like
Northrop Grumman and Astroscale are working on
commercial OOS solutions, such as Northrop Grum-
man’s MEV-1, which successfully docked with an
aging communications satellite [5].

Nevertheless, the process of routing and schedul-
ing these servicing satellites is not a straightforward
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task. The satellite is required to successfully traverse
a complex network of orbital trajectories, each pre-
senting distinct limitations pertaining to the princi-
ples of physics, energy management, timing synchro-
nization, and safety considerations [6]. Moreover, the
mission objectives may encompass various aspects, in-
cluding the prioritization of high-risk debris and the
optimization of fuel consumption [7]. There are sev-
eral heuristics and meta-heuristics problem-solving
methods have been proposed so far proposed in or-
der to achieve the objective while considering the con-
straints mention above. In [8], a vehicle routing prob-
lem with time windows (VRPTW)-based hybrid ge-
netic algorithm is proposed to tackle the single objec-
tive static multi-satellite collection scheduling prob-
lem (m-SatCSP). [9][10] presents an ant colony op-
timization (ACO) metaheuristic that features a spe-
cial solution representation for the fuel tanker loca-
tion and routing decision. [11] seek to maximize the
weighted number of completed tasks subject to con-
straints related to the movements of the space robots,
refueling depots, and tasks. Similarly, several other
studies present different algorithm for the problems
[12][13][14][15].

However, the task of satellite routing aims to iden-
tify the most cost-efficient and time-effective paths for
both space debris collection and on-orbit servicing.
Optimizing these routes can lead to substantial cost
savings, potentially reducing overall mission expenses
by up to 30% [16]. Current computational methods
can handle complexities involving around 400 vari-
ables within an acceptable time frame [17]. As the de-
mands for space-based services and debris mitigation
grow, the classical algorithms will soon reach their
computational limits. Looking ahead, there will be
a need for approaches that can rapidly solve prob-
lems involving thousands of variables. The increase
in the number of variables has a tendency to expo-
nentially increase the computational time required to
solve these problems on classical computers. One area
in which quantum computers exhibit significant po-
tential is their ability to address computational chal-
lenges by efficiently encoding and solving large-scale
problems [18]. This is achieved through the utiliza-
tion of quantum algorithms, such as the quantum
approximate optimization algorithm (QAOA), which
enables expedited problem-solving capabilities.

Quantum-based routing algorithms offer a promis-
ing avenue for meeting these future challenges, en-
abling quicker and more efficient optimization [19].
Currently, there are two prevailing paradigms in the
field of quantum computing: annealing-based quan-
tum computers and gate-model quantum computers
[20][21]. The preceding models are distinguished by

their utilization of quantum annealing, a technique
that yields the lowest energy state of a specified quan-
tum Hamiltonian, also referred to as an energy func-
tion. In the context of optimization problems, the
quantum Hamiltonian is established based on the fit-
ness function associated with the problem, such that
the solution to the problem is represented by the lower
energy state. Quantum-gate devices, in contrast, are
distinguished by their utilization of quantum circuits,
which consist of operations known as quantum gates.
These quantum gates can be likened to the classical
logic gates found in conventional circuits. Therefore,
the application of quantum gates in a sequential man-
ner is employed to manipulate the states of qubits
until the final solution of the problem is achieved.

In this paper, we apply quantum annealing to the
satellite routing problem with applications to space
debris removal and in-orbit servicing.

This paper is structured as follows: In Sect. 2, we
provide an basic introduction to Quantum Annealing
along with Ising model, QUBO. We have discussed
about the step by step problem formulation method-
ology in Sect. 3. In Sect. 4, we provide the results
for both classical and quantum solution. In Sect. 5,
we finally conclude the paper with the conclusion.

2. Quantum Annealing

The recent advancements in the manipulation of
quantum states have given rise to the concept of quan-
tum computation and simulation. Initially rooted in
theoretical concepts, this notion has now expanded to
promote an established sector with vast potential for
technological applications [22]. The quantum anneal-
ing technique was formally introduced in the scientific
community through the publication by [23], followed
by its practical validation by [24]. The development
and subsequent commercialization of a superconduct-
ing circuit quantum Ising glass annealing machine was
achieved by D-wave systems [25]. Subsequently, a sig-
nificant transformation has occurred as a result of a
proliferation of remarkable research papers in both
theoretical and experimental domains. The extensive
and rigorous investigations conducted over the past
two decades have ultimately resulted in the emergence
of a novel era characterized by quantum information
and technologies. The field of quantum annealing
(QA) has experienced significant growth due to the
development and commercialization of programmable
QA machines, known as quantum annealers, which
possess thousands of qubits. There are several lit-
erature which presents an overview of the QA based
protocol and delves into recent theoretical and experi-
mental advancements in QA that leverage the benefits
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of quantum tunneling for identifying the minimum of
a classical energy function [22][26][27].

2.1. Ising Model

QA usually focuses toward finding the ground state
of a generic Ising model, which may include random
biases and/or random many-body interactions [28].
In statistical mechanics, the Ising model is a mathe-
matical model used to describe how spins behave on
a lattice. It’s one of the simplest representations of
magnetism’s core physical principles. Spins are a type
of discrete variable in this model; they can take on the
values +1 (spin up) or -1 (spin down). Each of these
spins interacts with its immediate neighbors, creating
a lattice structure.

Consider an Ising Hamiltonian HP the subscript
P stands for the problem Hamiltonian. It is assumed
that HP is a classical many body Ising Hamiltonian
described in terms of the z components of the Pauli
operator

{
σz
j

}
. Consider a driver Hamiltonian HD

which is not commutative with HP and has the trivial
ground state. A simple choice forHD is the transverse
field: HD = −

∑
j σ

T
j , so that HD does not commute

with HP . The total Hamiltonian of QA is given as

H(t) = A(t)HD +B(t)HP , (1)

where A(t) and B(t) are the scheduling function
satisfying A (ti) ≫ B (ti) at the initial time ti and
A (tf ) ≪ B (tf ) at the final time tf so that H(t) in-
terpolates between HD at t = ti and HP at t = tf .
The initial state at t = ti is set at the ground state
of HD ≈ H (ti) /A (ti). If the change in H(t) with
t is considerably small, the spin state evolves adia-
batically (i.e., always stays in the ground state of the
instantaneous Hamiltonian) and arrives at the ground
state of HP at t = tf which we seek. This constitutes
the basic notion of the QA, also known as the adia-
batic quantum computation. Consider the following
Hamiltonian with ferromagnetic nearest neighbour in-
teractions in one dimension:

H = −J
∑
j

σz
jσ

z
j+1 − Γ

∑
j

σx
j . (2)

where J denotes the strength of the interaction
and Γ is the strength of the non-commuting transverse
field. Here HD = −

∑
j σ

x
j and HP = −

∑
j σ

z
jσ

z
j+1.

The transverse field Γ is annealed to reach the ground
state of HP from the ground state of HD.

The efficacy of quantum annealing (QA) is depen-
dent upon the rate at which the Hamiltonian evolves
over time. The adiabatic theorem of quantum me-
chanics establishes the criterion for adiabatic time

evolution [29].

max
[∣∣∣〈1(t) ∣∣∣dH(t)

dt

∣∣∣ g(t)〉∣∣∣]
min[∆(t)]2

≪ 1, (3)

where |g(t)⟩ and |1(t)⟩ are the instantaneous ground
and first-excited states at time t, respectively, and
∆(t) denotes the instantaneous energy gap above
|g(t)⟩. The min and max functions are taken with
respect to the variable t. Thus, roughly speaking,
QA works better for larger ∆(t).

2.2. Quadratic Unconstrained Binary Optimization
(QUBO)

Quadratic unconstrained binary optimization
(QUBO), alternatively referred to as unconstrained
binary quadratic programming (UBQP), is a com-
binatorial optimization problem that finds extensive
application in various domains, including finance,
economics, and machine learning. The QUBO prob-
lem is classified as NP-hard. In the field of theoretical
computer science, various classical problems such as
maximum cut, graph coloring, and the partition prob-
lem have been formulated in terms of embeddings into
QUBO [30].

Consider a set of binary vectors of a fixed length
n > 0 is denoted by Bn, where B = {0, 1} is the set
of binary values (or bits). We are given a real-valued
upper triangular matrix Q ∈ Rn×n, whose entries Qij

define a weight for each pair of indices i, j ∈ {1, . . . , n}
within the binary vector. We can define a function
fQ : Bn → R that assigns a value to each binary
vector through

fQ(x) = x⊤Qx =

n∑
i=1

n∑
j=i

Qijxixj (4)

Intuitively, the weight Qij is added if both xi and xj

have value 1 . When i = j, the values Qii are added
if xi = 1, as xixi = xi for all xi ∈ B. The QUBO
problem consists of finding a binary vector x∗ that is
minimal with respect to fQ, namely

x∗ = argmin
x∈Bn

fQ(x)

In general, x∗ is not unique, meaning there may be a
set of minimizing vectors with equal value w.r.t. fQ.
The complexity of QUBO arises from the number of
candidate binary vectors to be evaluated, as |Bn| = 2n

grows exponentially in n.
The Ising model and QUBO are equivalent via

a linear transformation of the variables. The bi-
nary quadratic model (BQM) class contains Ising
and quadratic unconstrained binary optimization
(QUBO) models used by samplers such as the D-Wave
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system. QUBO is very closely related and computa-
tionally equivalent to the Ising model, whose Hamil-
tonian function as defined earlier :

H(σ) = −
∑
⟨ij⟩

Jijσiσj − µ
∑
j

hjσj

with real-valued parameters hj , Jij , µ for all i, j.
The spin variables σj are binary with values from
{−1,+1} instead of B. Moreover, in the Ising model
the variables are typically arranged in a lattice where
only neighboring pairs of variables ⟨ij⟩ can have non-
zero coefficients. Applying the identity σ 7→ 2x − 1
yields an equivalent QUBO problem [31]

f(x) =
∑
⟨ij⟩

−Jij (2xi − 1) (2xj − 1)+

∑
j

µhj (2xj − 1)

=
∑
⟨ij⟩

(−4Jijxixj + 2Jijxi + 2Jijxj − Jij)+

∑
j

(2µhjxj − µhj)

using xj = xjxj

and using
∑

⟨k=ji)

=
∑

⟨ik=j⟩

=

n∑
i=1

i∑
j=1

Qijxixj + C

where

Qij =

{
−4Jij if i ̸= j∑

⟨ik=j⟩ (2Jki + 2Jik) + 2µhj if i = j

C = −
∑
⟨ij⟩

Jij −
∑
j

µhj

and using the fact that for a binary variable xj =
xjxj . As the constant C does not change the posi-
tion of the optimum x∗, it can be neglected during
optimization and is only important for recovering the
original Hamiltonian function value.

3. Problem Formulation

The problem can be viewed in the context of space op-
erations as one of planning optimal routes for on-orbit
servicing of satellites or collecting space debris. This
is similar to the Vehicle Routing Problem (VRP) in
terrestrial logistics, but with additional complexities
due to space and orbital mechanics’ three-dimensional

nature. Also, in space operations, the concept of dis-
tance goes beyond the simple spatial separation be-
tween two objects. Objects in space are not station-
ary but in orbit around celestial bodies, making it
difficult to travel between them. To move between
objects, one must consider the orbital paths of both
objects, which requires changing velocity and fuel ex-
penditure. Even if the target is at the same orbital
altitude, matching velocities are necessary for dock-
ing or transferring cargo. Velocity matching is an-
other step that requires precise control and more fuel.
Orbital manoeuvres are resource-intensive, such as
Hohmann transfers, which require careful planning
and additional fuel [32]. Therefore, minimizing dis-
tance in space operations is often a more complex
optimization problem, aiming to minimize the total
expenditure of resources, particularly fuel, required
for orbital manoeuvres and velocity matching. Time
is also a critical resource, as missions may have lim-
ited window periods. The true objective is to mini-
mize the complexity and resource expenditure of the
entire operation from start to finish.

In the context of space operations, consider a
framework is proposed wherein a central mothership,
referred to as M , serves as the central hub for all
activities related to orbital servicing and retrieval of
space debris. The mothership is stationed at a pre-
determined orbital location and is responsible for co-
ordinating servicing missions aimed at a group of ten
satellites or fragments of space debris, referred to col-
lectively as S. The objects within the domain of S
are designated for either maintenance or collection,
based on predictive requirements. In order to exe-
cute these specialized operations, M utilizes a spe-
cific group of dedicated servicing satellites, referred
to as T , which are each equipped with the necessary
capabilities for on-orbit servicing or space debris cap-
ture. The primary objective is to reduce the expenses
related to satellite maintenance and debris retrieval.
This expense may encompass various resources such
as time, fuel, or other relevant factors. We model this
problem as Vehicle Routing Problem (VRP) variant
in QUBO with the constraints. Both Classical and
Quantum solvers are used to solve this problem. We
IBM DOcplex interface coupled with the CPLEX op-
timizer as a classical solver and quantum algorithms
QAOA and VQE coupled with using conventional op-
timizers SPSA and COBYLA as quantum solution.
We present the results of each scenario in terms of
associated cost and iterations. We also visualize the
solution on a graph using NetworkX.

Our main is to minimize cost associated with ser-
vicing the satellites or collecting debris. This cost
could be time, fuel, or some other resource. Math-
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ematically, this is represented as Cij between the
ith − jth space debris or service receiver satellites,
weighted by the decision variable Xij . For our case,
to minimize the time or fuel cost for servicing a sub-
set of 10 satellites predicted to require on-orbit ser-
vicing or for collecting space debris, using 3 servicing
satellites launched from a mothership. The decision
variable xij can be defined as:

Xij =

{
1, if ij route is considered for solution

0, otherwise

Hence, we can write our objective function as: Mini-
mize

Objective = min
∑
i∈S

∑
j∈S

Cij ·Xij (5)

where Cij is the distance (or fuel cost, or time cost)
between the ith− jth space debris or service receiver
satellites. The cost function is subjected to con-
straints:

∑
i∈S xij = 1 ∀j ∈ S\{0}∑
j∈S xij = 1 ∀i ∈ S\{0} (6)

∑
i∈S xi0 = M ∀j ∈ S\{0}∑
j∈S xi0 = M ∀i ∈ S\{0} (7)

∑
i̸=V

∑
j∈V

xij ≥ r(V ), ∀V ⊆ S\{0}, V ̸= ∅ (8)

xij ∈ {0, 1} ∀i, j ∈ S

The above constraints ensure that there is only
one route towards Si and leaving Sj , all the T should
leave M and come back to M and impose the routes
must be connected respectively. Hence, we have our
objective function in QUBO form 5 subjected to con-
straints 6, 7 and 8.

Figure 1: Visualization of the complexity of the prob-
lem as a graph using NetworkX in the cool-warm color
scheme. There are 34 possible edges of the problem.
The mothership or central hub is colored in red, and
the other space debris/satellites for on-orbit servicing
are in dark blue.

4. Results

The solution of the QUBO problem 5 is examined
through the utilization of both classical and quan-
tum solvers. The comprehensive examination of the
complexities and potential solutions of the satellite
routing problem is achieved by employing both clas-
sical and quantum computational methods. By em-
ploying this dual methodology, we are able to assess
the comparative advantages and disadvantages of in-
dividual computational paradigms, thus providing a
comprehensive approach to enhancing the efficiency
of satellite routes for activities such as the collection
of space debris and the execution of on-orbit services.

4.1. Classical Solution

In the context of satellite routing for tasks such
as space debris collection or on-orbit servicing, the
QUBO model is a robust mathematical formulation
that captures the problem’s complexities. The goal
is to minimize a quadratic function with binary vari-
ables, which could represent decisions such as whether
or not to route a satellite to a specific location. When
using a classical computing approach to solve this
QUBO model, the IBM DOcplex [33] interface cou-
pled with the CPLEX optimizer [34] constitutes a
powerful toolkit.
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Figure 2: Visualization of the optimized solution from
CPLEX’s optimizers using NetworkX in the cool-
warm color scheme. The mothership or central hub
is colored in red, and the other space debris/satellites
for on-orbit servicing are in dark blue.

Once the problem is formulated as a QUBO, the
CPLEX optimization algorithm suite can be utilized.
CPLEX possesses a variety of algorithms, such as sim-
plex algorithms, interior-point methods, and branch-
and-cut algorithms, which are highly effective for
mixed-integer quadratic programming problems such
as the one we’re addressing. Due to its quadratic
terms, the QUBO model is inherently nonlinear; how-
ever, CPLEX’s optimizers are designed to efficiently
handle such complexities. Under certain conditions,
CPLEX’s classical algorithms guarantee global opti-
mally, which means that the solution you get is the
best one possible given the constraints. This reliabil-
ity is very important for operations with high stakes,
like satellite routing, where making decisions that
aren’t the best could lead to higher costs or even mis-
sion failure.

Figure. 2 shows the optimized solution of QUBO
problem 5 formed with the mentioned satellite routing
scenario. The system facilitates an optimal connec-
tion between space debris or satellites requiring ser-
vicing (S). The provided solution is considered the
best due to its ability to minimize resource consump-
tion and associated costs. The color scheme employed
in this study represents the range of costs associated
with nodes, with nodes of maximum cost depicted in
red and nodes of minimum cost transitioning to blue.
For the rest of the results, we will consider this solu-
tion an optimal solution for comparison.

4.2. Quantum Solution

After obtaining the quadratic program formulation
for our model, the Qiskit optimization library can
be employed to convert it into its QUBO representa-
tion [35]. In the present scenario, there are inequality
limitations that typically necessitate the inclusion of
additional variables, sometimes referred to as slack
variables. In the context of this particular scenario,
the quantity of variables expands from 68 to 196 in
order to account for the inclusion of inequality re-
strictions. Another limitation pertains to the number
of qubits that can be simulated. The IBM-provided
qasm − simulator, specifically in its runtime mode,
is the most practical method for simulating programs
using more than 20 qubits in the absence of a su-
percomputer. The qasm− simulatorhas a limitation
where it can only simulate a maximum of 32 qubits.
In the context of actual devices, a comparable issue
arises where our ability to do experiments is limited
to a 7-qubit device that we have access to.

As a result, we can reduce the number of variables
by selecting the optimal solution for the slack vari-
ables. We select the optimal solution for some of the
variables that reflect the routes from node i to node
j and let the quantum computer determine the opti-
mal solution for the rest: Using 7 variables, replace
the others with the optimal solution. From the 7 vari-
ables left, 3 have an optimal solution equal to 1 and 4
equal to 0. We analyzed to assess the suitability of the
existing model with perfect solutions by employing
two conventional optimizers, namely Simultaneous
perturbation stochastic approximation (SPSA) and
Constrained Optimization BY Linear Approximation
(COBYLA), for two quantum algorithms: Quantum
Approximate Optimization Algorithm (QAOA) with
2 layer repeats and variational quantum eigensolver
(VQE) with the two Local ansatz. In both cases, a
total of 1024 shots were used.
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Figure 3: Simulation for associated cost vs itera-
tion for solution by using VQE-SPSA and VQE-
COBYLA.

Figure 4: Simulation for associated cost vs itera-
tion for solution by using QAOA-SPSA and QAOA-
COBYLA.

The cost vs iteration simulation using the Varia-
tional Quantum Eigensolver (VQE) method, in con-
junction with classical Simultaneous Perturbation
Stochastic Approximation (SPSA) and Constrained
Optimization by Linear Approximation (COBYLA)
optimizers, is illustrated in Figure. 3. It is evident
that both methods yielded approximately identical
minimum costs. In contrast to VQE-COBYLA, VQE-
SPSA requires a greater number of iterations to con-
verge to the final minimum. The graphical depiction
of these concepts can be seen in Figure. 5. Based on
the analysis of Figure. 3, it can be deduced that the
outcomes of both the graphical representation graphs
and CPLEX’s optimizers resulted in an optimal solu-
tion or the same path between the starting point S,
as depicted in Figure.5.

In similar fashion, Figure. 4 illustrates the cost
versus iteration simulation utilizing the Quantum
Approximate Optimization Algorithm (QAOA), in

conjunction with classical Simultaneous Perturbation
Stochastic Approximation (SPSA) and Constrained
Optimization by Linear Approximation (COBYLA)
optimizers. It is evident that both methods do not
yield the same minimum cost in the end. The QAOA-
COBYLA algorithm achieved convergence to the fi-
nal value after 100 iterations, yielding an associated
cost of approximately −100. Despite the presence of
considerable noise during the optimization process of
the Quantum Approximate Optimization Algorithm
with Simultaneous Perturbation Stochastic Approx-
imation (QAOA-SPSA), it manages to converge to-
wards the optimal solution. The QAOA-SPSA algo-
rithm requires a greater number of iterations to con-
verge to the final cost when compared to the VQE-
COBYLA algorithm. The visual representations of
these concepts can be observed in Figure. 5. Based
on the analysis of Figure. 5, it can be deduced that
the QAOA-SPSA approach yielded an optimal solu-
tion or a path that is identical to the one predicted
by CPLEX’s optimizers, as illustrated in Figure. 2 .

5. Conclusion

In this research, we propose a framework for or-
bital servicing and debris retrieval, involving a central
mothership and dedicated satellites. The goal is to
reduce expenses related to satellite maintenance and
debris retrieval. The problem is modelled as a Vehi-
cle Routing Problem and solved using both classical
and quantum solvers. Results are presented in terms
of associated costs and iterations, and visualized on
a graph using NetworkX. Optimal outcomes are ob-
served in certain quantum algorithms, while others
do not exhibit the same level of performance. The
representation of the initial problem requires 68 vari-
ables while the QUBO representation needs 196 vari-
ables. Due to limited qubits, we reduced the number
of variables to 7 choosing the correct set of variables
for the slack variables. Nevertheless, the quantum al-
gorithm yields optimal solutions that are comparable
to those obtained from classical algorithms. This sug-
gests that the utilization of the quantum framework
may present a feasible strategy for enhancing the effi-
ciency of satellite servicing and space debris collection
missions in the near term, dependent upon the avail-
ability of quantum computers with a greater number
of qubits. This research thus lays the groundwork for
future studies that could significantly improve the ef-
ficiency and cost-effectiveness of these crucial space
operations.
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Figure 5: Visualization of solutions from VQE-SPSA, VQE-COBYLA, QAOA-SPSA and QAOA-COBYLA
optimizers using NetworkX in the cool- warm color scheme. The mothership or central hub is colored in red,
and the other space debris/satellites for on-orbit servicing are in dark blue
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