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Abstract

Quantum circuits are the fundamental computing model of quantum computing. It consists of a sequence
of quantum gates that act on a set of qubits to perform a specific computation. For the implementation of
quantum circuits, programmable nanophotonic chips provide a promising foundation with a large number of
qubits. The current study explores the possible potential of quantum circuits implemented on programmable
nanophotonic chips for space technology. In the recent findings, it has been demonstrated that quantum
circuits have several advantages over classical circuits, such as exponential speedups, multiple parallel com-
putations, and compact size. Apart from this, nanophotonic chips also offer a number of advantages over
traditional chips. They provide high-speed data transfer as light travels faster than electrons. Photons re-
quire less energy to transmit data than electrons, so nanophotonic chips consume less power than conventional
chips. The bandwidth of nanophotonic chips is greater than that of traditional chips, so they can transfer
more data simultaneously. They can be easily scaled to smaller sizes with higher densities and are more
robust to extreme temperatures and radiation than classical chips. The focus of the current study is on how
quantum circuits could revolutionize space technology by providing faster and more efficient computations
for a variety of space-related applications. All the in-depth analysis is carried out while taking currently
available state-of-the-art technologies into consideration.

Keywords: Quantum computing for space, Space technology, Quantum circuits for space , Quantum chips
for space, Quantum algorithms for aerospace

1. Introduction

In recent times, there has been a significant surge in
the development of quantum technologies [1][2]. The
application of quantum information science to practi-
cal technologies holds significant potential benefits for
specific functions in communication [3], computation
[4], and simulation [5]. The technology of quantum
computing presents a distinct approach to computa-
tional problems, allowing for more effective problem-
solving capabilities compared to present day classical
computations. In 1994, Peter Shor introduced the
Shor’s prime factorization algorithm [6], which acted
as a driving force for the progression of quantum
computing technology and the exploration of quan-
tum computers. Within the framework of quantum
computation, quantum operations are executed on
quantum registers. The quantum register is charac-
terised by the presence of quantum states that give
rise to quantum superposition. On the other hand,
in a quantum circuit, the quantum states exhibit en-
tanglement. These phenomena give rise to a system
characteristic that is fundamentally distinct from that
found in a conventional computer [7].

The current state of quantum computing (QC) has
progressed to the point where quantum computers
have demonstrated superior computational capabil-
ities compared to leading supercomputers in certain
specific challenges [8]. Additionally, the emergence of
noisy intermediate-scale quantum (NISQ) computing
systems that are accessible outside of laboratory en-
vironments has ushered in the industrialization phase
of QC [9]. The field of QC holds the potential to re-
solve computationally challenging problems that are
deemed infeasible through classical means. These
problems span across various industry sectors, includ-
ing space technology such as optimization, machine
learning, and simulation. In the field of material sci-
ence, QC finds application in various areas such as
quantum-inspired imaging techniques [10], prediction
of chemical reactivity in molecular quantum chem-
istry [11] simulation of the dynamics of molecules,
development of materials and drugs using quantum
simulations [12], and battery research [13]. QC can
be used for surrogate modeling of partial differential
equations, design optimizations for electric drives us-
ing numerical simulation and finite element methods
[14], testing of wingbox design optimization software,
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and proving correctness when designing and engineer-
ing complex structures [15]. QC also plays a great role
in the production and logistic fields, it finds applica-
tion in various fields such as fleet management, path
optimization, shift scheduling [16], decide on a pro-
duction plan given predicted customer demand [17],
supply chain planning, and vehicle routing problems
[18]. There is also a new area of research emerging
known as Quantum Machine Learning (QML) [19],
which blends Machine Learning (ML) and Quantum
Computing (QC). The objective of Machine Learn-
ing (ML) is to develop models that possess the abil-
ity to learn from past experiences, without requiring
explicit formulation. However, executing these op-
erations necessitates significant amounts of time and
computational resources. QC have the potential to
be utilized for the manipulation and analysis of ex-
tensive tensors, rendering them a highly desirable op-
tion for the integration of machine learning (ML) al-
gorithms. Multiple QML algorithms have been de-
veloped, including Quantum Principal Component
Analysis (QPCA) [20], Quantum Support Vector Ma-
chine (QSVM) [21], Quantum Reinforcement Learn-
ing (QRL) [22], Deep Quantum Learning [23] and
Kernel Methods [24].

With the growing application of QC across vari-
ous industries for practical application has led to a
surge in research on the medium to implement QC
[25] [26]. Photons have been identified as effective
and low-noise vehicles for the transmission of quan-
tum information. A photon can be used to represent
the quantum bit by encoding the information in the
polarization axis. Therefore, it can be stated that a
photon possesses the characteristics of a qubit in rela-
tion to its polarization state. A photon that is linearly
polarized can exhibit either a horizontal or vertical
polarization orientation relative to a specific direc-
tion within the plane that is perpendicular to the di-
rection of the photon’s motion. Photons also exhibit
weak coupling with their surrounding environment,
which results in the absence of decoherence problems
that are commonly observed in matter-based systems.
Consequently, there is no need to handle photons at
extremely low temperatures or in a vacuum environ-
ment [27]. Apart from this, Nanophotonic devices
integrated onto a chip, which utilize photons for infor-
mation transmission and processing at the nanoscale,
offer the benefits of high bandwidth and low energy
consumption. It provides high-speed data transfer
as light travels faster than electrons. Nanophotonic
chips possess a higher bandwidth in comparison to
conventional chips, thereby enabling them to facil-
itate the simultaneous transfer of a greater volume
of data. The researchers have recorded a new data

transmission speed record of 1.84 PB/S (petabits per
second) using a photonic device and a fiber optic con-
nection [28]. They can be also easily scaled to smaller
sizes with higher densities and are more robust to
extreme temperatures and radiation than classical
chips. The utilization of integrated optical quantum
circuits holds significant importance in the field of
quantum information science, alongside optical fiber
photonic quantum circuits, which have already been
showcased in quantum key distribution and quantum
logic gate applications [29].

There are several technical challenges associated
with modern-day space technology. The performance
of propulsion systems are a significant problem for en-
abling interplanetary space travel [30]. It is difficult to
simulate complex space systems and unknown space
environments [31]. The limitation of on-board pro-
cessing for Guidance Navigation and Control (GNC)
as well as the size of the controlling circuit unit [32]
[33]. QC promises to exceed traditional computer
technologies in terms of speed, productivity, and size.
It could be beneficial to investigate the implementa-
tion of the QC on the issues associated with modern
day space technology. QC can be used along with
the existential methods available in space technol-
ogy. Until now, the application of quantum science
in space technology has been studied from the infor-
mational point of view. It includes the application of
Quantum Key Distribution (QKD), Quantum sens-
ing and Quantum communication [34][35] [36] [37].
To the best of the author’s knowledge, there are very
few or no studies which covers the applications of the
quantum computing in the modern day space tech-
nology. Therefore, this study is the first of its kind
which presents the application of quantum computing
in space technology.

In this research, we explore the application of
quantum science in space technology from a comput-
ing perspective. We identify certain domains of space
technology that are difficult to deal with present day
classical computing methods and provide a strategy
for the application of quantum computing in such do-
mains. To utilise quantum computing for a given
problem, it is necessary to transform the problem
into a quantum-based problem by converting parame-
ters and encoding the Hamiltonian as an energy func-
tion. Once we have mapped a classical problem into
a quantum nature problem, we proceed to apply the
quantum algorithms. A quantum algorithm is typi-
cally described by a certain quantum circuit that acts
on some input quantum bits, manipulates them with
unitary operations in between, and finally terminates
with a measurement. Quantum gates are unitary op-
erators that are used to manipulate the qubits. Quan-
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tum circuits are acyclic and reversible in nature. The
fan-in and fan-out are always equal in quantum cir-
cuits, which means a qubit is never created or de-
stroyed. Depending on the nature and requirements
of the problems, different types of quantum circuits
have been proposed. In the current study, different
types of circuits are proposed for different types of
problems in space technology. The focus of the cur-
rent study is on how quantum circuits could revolu-
tionise space technology by providing faster and more
efficient computations for a variety of space-related
applications.

This paper is structured as follows: In Sect. 2, we
provide an basic introduction to Quantum comput-
ing. We have discussed about the Quantum states,
Quantum gates and gates operations in the same sec-
tion. Sect. 3 provides the introduction to the Quan-
tum algorithms with their quantum circuits. Sect.
4, we provide the various quantum algorithms along
with their operational quantum circuits. In Sect. 5,
we identified the domains of the space technology
where quantum computing could be beneficial. In
Sect. 6, we devised he methodology for application of
the quantum computing to the identified domains in
the previous section. We presented the challenges in
the application of quantum computing in space tech-
nology in Sec. 7. In Sec. 8, we finally conclude the
paper with the discussions and way forward.

2. Quantum Computing

Quantum computing is a multidisciplinary field that
encompasses physics, computer science, and mathe-
matics. It uses the principles of quantum mechanics
to provide exponential speedup which is beyond the
capabilities of classical computers. Traditional com-
puters use bits, representing discrete states of 0 or 1,
to encode and process information. While quantum
computers use quantum bits also known as qubits.
Qubit is a superposition state, representing coherent
combinations of 0 and 1 states. It is continuous and
can take infinitely many values. This property em-
powers quantum computers with high processing ca-
pabilities, enabling the exploration of multiple com-
putational paths simultaneously. Qubit is a two level
system with the states |0⟩ and |1⟩. |.⟩ is called Dirac
bra-ket notation [38], it is used to represent quantum
states. A qubit can be represented as:

|ψ⟩ = α |0⟩+ β |1⟩ (1)

α and β are complex coefficients and known as the
amplitudes of the states such that α, β ∈ C, |α|2 +
|β|2 = 1. The states |0⟩ and |1⟩ are known as com-
putational basis states, and are orthonormal basis for

this vector space. Geometrically, a qubit can be rep-
resented by a point on the unit three-dimensional
sphere known as Bloch sphere. By using the condition
|α|2 + |β|2 = 1, the Equation 1 can be written as:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (2)

θ and φ defines a certain point on the Bloch sphere
with the condition 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

Figure 1: Bloch sphere representation of a qubit [39].

Qubit can exist in a continuum of state |0⟩ and |1⟩
until it is observed. Being physical systems, qubits
can have any protocol for determining their state
imagined for them. It is merely a measurement of
the energy of the system to determine the state of the
qubit in this basis, if the states |0⟩ and |1⟩ correspond
to the spin-down and spin-up states of an electron in a
magnetic field, respectively. Measurement, according
to the postulates of quantum physics, must change
the state of a system if it is in a superposition of the
possible results of the measurement. Measurement
destroys the information stored in a qubit’s ampli-
tudes because the system collapses to the measured
state [39]. If a qubit is measured, it only ever gives
’0’ or ’1’ as the measurement result probabilistically.

Consider a two qubit system with four computa-
tional basis states |00⟩ , |01⟩ , |10⟩ , |11⟩ ,. It can adopt
any superposition of the mentioned states with all
the probability amplitudes following the normaliza-
tion condition

∑
x∈{0,1}2 |αx|2 = 1. One of the most

important two qubit state is the Bell state or Ein-
stein–Podolsky–Rosen (EPR) pair, given by:

|ψ⟩ = (|10⟩+ |01⟩)√
2

(3)

If we measure the first qubit, we obtain two pos-
sible results: 0 with probability 1/2 and 1 with prob-
ability 1/2. Any measurement on the second qubit
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will result in |1⟩ with a probability of 1 if the result of
the first measurement was |0⟩, indicating the system
collapsed to the |01⟩ system, and vice versa. This im-
plies that the results of a subsequent measurement of
the second qubit are affected by an operation applied
to the first qubit. Hence, we can say that the mea-
surement outcomes are correlated. In 1935, Einstein,
Podolsky and Rosen pointed out the strange proper-
ties of states like the Bell state. The measurement
correlations in the Bell state are stronger than could
ever exist between classical systems. It was the ini-
tial indication that quantum mechanics enables the
manipulation of information beyond the limitations
of classical world. It is the main ingredient in quan-
tum teleportation [40], super-dense coding [41] and
quantum entanglement [42]. Quantum entanglement
is essential for quantum computation. It has been
demonstrated that any quantum algorithm that does
not use entanglement may be implemented in a clas-
sical computer with no advantageous speed difference
[43]. The obvious explanation is the massive amount
of information that a quantum computer can han-
dle. If a N qubit system is not entangled, the 2N
amplitudes of its state can be characterized by the
amplitudes of each single-qubit state, that is, 2N am-
plitudes. If the system is entangled, all of the ampli-
tudes will be independent, and the qubit register will
form a 2N-dimensional vector. Similar to the struc-
ture of a classical computer, which involves an elec-
trical circuit comprising of wires and logic gates, the
structure of a quantum computer involves a quantum
circuit that comprises of wires and elementary quan-
tum gates. These components are utilized to trans-
port and manipulate quantum information. In the
next subsection, we briefly describe about the Quan-
tum gates.

2.1. Quantum Logic Gates

A quantum logic gate is a fundamental quantum cir-
cuit that operates on a limited number of qubits.
They serve as the foundation for quantum circuits
in the same way that classical logic gates serve as
the foundation for ordinary digital circuits. The key
difference is that the quantum logic gates are re-
versible in nature, unlike many classical logic gates.
In principle, it can be inferred that quantum gates do
not experience information loss. The entanglement
of qubits during their entry into the quantum gate
is maintained during their exit, thereby preserving
the integrity of their information during the transi-
tion. In contrast, numerous classical gates present in
traditional computers exhibit a loss of information,
thereby rendering them incapable of retracing their

operations. Quantum logic gates are used to manip-
ulate the quantum information (qubits), while classi-
cal logic gates are used to manipulate classical infor-
mation (bits). A rudimentary quantum circuit that
operates on a small number of qubits can be concep-
tualized as a quantum logic gate.

Figure 2: Basic quantum logic gates with single
qubit (a) Hadamard Gate (H-Gate) and two-qubits
(b) Controlled NOT gate or Feynman Gate (C-NOT
Gate).

Alternatively, the quantum logic gates can also be
represented by the their corresponding unitary matri-
ces with the dimensions depending on the number of
qubits. The postulates of quantum mechanics impose
certain conditions on the nature of quantum logic
gates in closed systems. The behavior and properties
of quantum logic gates, which serve as fundamental
building blocks for quantum computations and infor-
mation processing, are governed by these conditions.

Figure 3: Matrix equivalent of basic quantum logic
gates with single qubit (a) Hadamard Gate (H-Gate)
and two-qubits (b) Controlled NOT gate or Feynman
Gate (C-NOT Gate).

To begin with, quantum logic gates must be uni-
tary operators. This means that they maintain the
normalization of the quantum state vector, ensuring
that the probability of all potential outcomes add up
to one. Unitary transformations are reversible and
deterministic in nature, which allows the precise con-
trol of quantum states. In addition, it is essential
that quantum logic gates are capable of operating
on superposition states. The concept of superposi-
tion states enables quantum systems to exist in a co-
herent amalgamation of multiple states concurrently.
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Quantum logic gates have the capability to manipu-
late superposition states, thereby facilitating parallel
computations and the simultaneous exploration of all
potential outcomes. Moreover, quantum gates must
follow the no-cloning theorem. According to this the-
orem, it is impossible to produce a perfect copy of an
arbitrary unknown quantum state. Due to the lin-
earity and unitarity of quantum mechanics, quantum
logic gates cannot fully copy quantum information.

Quantum logic gates can also generate and ma-
nipulate entangled states. Quantum entanglement is
a fundamental phenomenon in quantum physics in
which the states of two or more particles become cor-
related in such a way that the behavior of one particle
is intrinsically related to the behavior of the other,
regardless of distance. Quantum logic gates can gen-
erate, modify, and exploit entangled states, which are
required for a variety of quantum information pro-
cessing applications. In general, the constraints im-
posed on quantum gates operating in enclosed sys-
tems guarantee unitary evolution, superposition abil-
ity, no-cloning restriction, and manipulation of en-
tanglement. These are all essential characteristics of
quantum mechanics and crucial for exploiting the po-
tential of quantum computing and information pro-
cessing.

2.2. Quantum Circuits

A quantum circuit is a network of quantum logic
gates, which operate on quantum bits or qubits. The
qubits in a quantum circuit are denoted by horizontal
lines, while the gates are represented by boxes that
operate on these lines. The qubits are subjected to
fixed transformations upon entering the gates, and
later exit the gates. The sequencing of gates and con-
nection among qubits are the key factors that deter-
mine the progression of the computation.

The construction of quantum circuits typically in-
volves the combination of fundamental quantum gates
in order to generate higher-level operations. The
realization of the intended quantum computation is
accomplished through the sequential application of
gates to the qubits in a certain order. The ultimate
state of the qubits, following to the application of
all gates, represents the outcome of the computation.
Quantum circuits are a fundamental component of
the quantum computing framework for programming
and executing quantum algorithms on quantum com-
puters or simulators. They enable the creation and
improvement of quantum technologies by providing
an organized and visual approach to express and ma-
nipulate quantum information.

Figure 4: A simple quantum circuit made up of H-
Gate and C-NOT Gate for the generation of EPR
pairs (Entanglement generation).

In Figure 4, the circuit is initialized with the two
qubit state |ψ0⟩ = |00⟩ = |0⟩⊗ |0⟩. The manipulation
of qubits through a specific gate can be represented
through their respective matrices, as illustrated in
Figure. 3. |ψ1⟩ = 1√

2
(|00⟩ + |10⟩) represents the in-

termediate state whereas |ψ2⟩ = 1√
2
(|00⟩+ |11⟩) rep-

resents the maximally entangled state or Bell state.

The extraction of information from quantum sys-
tems is obtained by quantum measurement, an im-
portant process in quantum circuits. In a quantum
circuit, this is indicated by a measurement gate or
other dedicated measurement symbol. It is typically
performed at the end of a computation or at inter-
mediate steps to obtain classical information from
the corresponding quantum state. The measurement
gate is placed at the particular qubit(s) where the
measurement is to be performed. When a qubit is
measured, the associated quantum state is collapsed
into one of its eigenstates. The measurement’s re-
sult corresponds to one of the possible eigenvalues of
the measured observable, with the chance of receiving
each eigenvalue defined by the squared magnitudes of
the corresponding coefficients of a quantum state.

Figure 5: Quantum measurement operation, where
’M’ depicts the measurement gate or measurement
symbol.
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3. Quantum Algorithms

Quantum computing is now being studied and ap-
plied in a number of fields, including communication,
quantum internet, optimization, simulation, financial
modelling, and financial modelling. To accomplish
the objectives in all of these application areas, par-
ticular quantum algorithms are needed. A quantum
algorithm is a computational method that is intended
to be implemented on a quantum computer, employ-
ing the principles of quantum mechanics in order to
solve specific problems with greater efficiency than
classical algorithms [44].

David Deutsch created one of the first quantum
algorithms in 1985, known as the Deutsch algorithm.
It was the first method to show speed improvements
over classical algorithms for a particular task [45].
The problem Deutsch’s algorithm solves the Deutsch
problem, or the Deutsch-Josza problem. The prob-
lem involves determining whether a given unknown
function is constant or balanced. A unknown func-
tion takes an input and produces an output based
on an underlying rule that is not known to the algo-
rithm. In the case of the Deutsch problem, the func-
tion takes as input a string of bits and produces a
single-bit output. In the classical world, to determine
if an unknown function is constant or balanced, one
would need to query the function twice: once with in-
put 0 and once with input 1. This would require two
function evaluations. However, Deutsch’s algorithm
solves the problem using a single function evaluation
on a quantum computer, offering a speedup over the
classical method.

Figure 6: Quantum circuit for Deutsch-Jozsa algo-
rithm. |ψi⟩ shows the qubit state after each operation
and for a given f(x), provided we have the function
f implemented as a quantum oracle, which maps the
state |x⟩|y⟩ to |x⟩|y⊕f(x)⟩, where ⊕ is addition mod-
ulo 2.

There are several other types of quantum algo-
rithms, each designed to solve specific types of prob-
lems more efficiently than classical algorithms. For

example: Quantum Simulation Algorithms simulate
quantum systems more accurately and efficiently than
classical simulations [46]; Quantum optimization al-
gorithms, such as the Quantum Approximate opti-
mization Algorithm (QAOA) to find the best solu-
tion among a large number of possible options [47];
Quantum factorization algorithms, like Shor’s algo-
rithm, provide exponential speedup over classical al-
gorithms for factoring large numbers [6]; Quantum
search algorithms, like Grover’s algorithm, are de-
signed to perform faster searches on unstructured
databases compared to classical search algorithms
[48]; Quantum Machine Learning Algorithms to im-
prove pattern recognition, data analysis, and opti-
mization tasks within the field of machine learning,
potentially providing speedup or enhanced perfor-
mance in certain cases [19]; Quantum communication
algorithms for secure transmission of information us-
ing quantum properties, such as quantum key distri-
bution [49].

4. Quantum Computing for Space Technology

In this section, we identify the major domains in space
technology that could be the best fit for the applica-
tion of quantum computing. We present a framework
to apply quantum computing to the identified prob-
lems. In general, we chose the approach described
below to apply quantum computing to space technol-
ogy:

4.1. Quantum Encoding

The process of converting data, whether classical or
quantum, into the state of a collection of input qubits.
It plays a critical role in using quantum algorithms to
solve a classical problems such as problem from space
technology. It is the initial step for execution of any
quantum computation task that processes the input
data. Every algorithm assumes a specific data encod-
ing and subsequently conducts computations on the
data. The loading process run-time is influenced by
both the chosen encoding and the data itself. Load-
ing can take an exponential amount of time in the
worst-case scenario. The criticality of this matter
lies in the fact that quantum algorithms, which offer
the potential for acceleration, require that the pro-
cess of loading data can be executed at a faster rate,
either in logarithmic or linear time. Encoding data
in qubits is not simple. Number of required qubits
and the run-time complexity for the encoding process
are the critical part of quantum ending. Current de-
vices have a finite number of stable qubits. Because
qubits decay quickly and quantum gates are prone
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Figure 7: Exemplary illustration of proposed approach for quantum computing-based space system control
architecture. Using quantum embedding techniques, the initial parameters are encoded into quantum states.
The specifically designed quantum algorithm is used to perform unitary operations on these encoded states.
Finally, during the measurement phase, the quantum states collapsed to provide classical control outputs for
the space systems.

to errors, the number of actions required to prepare
the quantum state must be kept to a minimum. A
logarithmic or linear run-time is appropriate for effi-
ciently encoding even a large number of data items.
Quantum encoding is a challenging task because of
the constraints imposed by quantum mechanics law
such as no cloning property which states that a single
quantum object cannot be replicated, which compli-
cates the encoding schemes. Quantum embedding is
one of the means by which data is encoded. Quan-
tum embedding represents classical data as quantum
states in a Hilbert space via a quantum feature map.
Few of the embedding methods used are amplitude
embedding, basis embedding, and many more. Few
of them are described in the next subsection along
with their use cases in space technology:

4.1.1. Basis Encoding

The encoding of classical information into a quantum
state through basis encoding is widely regarded as
the most straightforward and easily comprehensible
method. It links each classical input with a compu-
tational basis state of a qubit system. It encodes an
n-bit binary string x to an n-qubit quantum state
|x⟩ = |ix⟩, where |ix⟩ is a computational basis state.

The quantum state that is embedded refers to the
translation of a binary string into the corresponding
states of the quantum subsystems, on a bit-wise basis.
Basis encoding is typically employed when real num-
bers must be mathematically altered in the course of
quantum computations. In the computational basis,
such an encoding depicts real numbers as binary num-
bers before transforming them into a quantum state.

Let’s consider classical input dataset X consist-
ing of M examples, with N features each, X =
x(1), . . . , x(l), . . . , x(M), where x(l) is a N -dimensional
vector for m = 1, . . . ,M . x(l) = (b1, . . . , bn) with
each bi ∈ 0, 1 for i = 1 . . . N . The entire classical
dataset X can be encoded in quantum superpositions
of computational basis states as

|X ⟩ = 1√
M

M∑
m=1

∣∣∣x(m)
〉

(4)

As an example, let’s consider 6D pose of space-
crafts. The 6D pose of a spacecraft refers to its rela-
tive position and orientation in 3D space. It consists
of three components representing the spacecraft’s po-
sition and three components representing its orienta-
tion. The position is commonly described using three
Cartesian coordinates (x, y, z), while the orientation
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is commonly represented by Euler angles (ψ, θ, ϕ)
or quaternion parameters q̃ =

[
q1 q2 q3 q4

]
.

It can be computationally demanding, especially for
real-time applications that require fast and accurate
pose updates. The computational complexity for pro-
cessing the 6D pose of a spacecraft depends on various
factors, including the specific algorithms and tech-
niques used for processing, the complexity of the sen-
sor data, the desired accuracy, and the computational
resources available onboard.

The inherent complexity and computational chal-
lenges associated with classical methods make 6D
pose estimation an ideal candidate for quantum com-
puting applications. Let’s encode a 6D pose data
of spacecraft into qubits. Consider two vectors p̃ =[
x y z

]
and õ =

[
ψ θ ϕ

]
, which represent

the spatial and angular configuration of the space-
craft. The corresponding basis encoding uses three
qubits to represent as

|Ψ⟩ = 1√
2
|xyz⟩+ 1√

2
|ψθϕ⟩ (5)

where, |xyz⟩ and |ψθϕ⟩ will take the form de-
pending on the nature of p̃ and õ vectors. Let
us consider

[
ψ θ ϕ

]
=

[
−0.2 0.1 0.3

]
and[

x y z
]
=

[
0.7 −0.6 0.8

]
. It is necessary

to initially convert the given data into a binary se-
quence. This involves a binary fraction representa-
tion with a precision level of τ = 4, with the first bit
serving to encode the sign. The quantum superposi-
tions of computational basis states for the 6D pose of
the spacecraft can be written as:

|Ψ⟩ = 1√
2
|010111100101100⟩+ 1√

2
|100110000100100⟩

(6)

4.1.2. Amplitude Encoding

In the amplitude encoding, amplitudes of the quan-
tum system are used to represent data values. A
quantum system is described by its wave-function
Ψ which also defines the measurement probabilities.
The utilisation of amplitude encoding is an essential
requirement for numerous quantum machine learn-
ing algorithms. The main advantage of utilising am-
plitude encoding is that a dataset comprising M in-
puts, each with N features, can be encoded using only
n = log(MN) qubits. A normalized classical N di-
mensional datapoint x is represented by the ampli-
tudes of a n-qubit quantum state |ψx⟩ as

|ψx⟩ =
N∑
i=1

xi|i⟩ (7)

where N = 2n, xi is the i-th element of x, and |i⟩
is the i-th computational basis state. Let’s consider
the same classical dataset X which was considered in
the previous case. The conversion of the given in-
formation into quantum information can be achieved
through amplitude encoding as well. Its amplitude
embedding can be easily understood if we concate-
nate all the values x(m) together into one vector, i.e.,

α = Cnormx
(1)
1 , . . . , x

(1)
N , . . . , x

(M)
1 , . . . , x

(M)
N

where Cnorm is the normalization constant; this vec-
tor must be normalized |α|2 = 1. The corresponding
quantum information can be represented in the com-
putational basis as

|X ⟩ =
2n∑
i=1

αi|i⟩, (8)

where αi are the elements of the amplitude vector α
and |i⟩ are the computational basis states. The num-
ber of amplitudes to be encoded is N ×M .

Consider the four-dimensional quaternion vector
q̃ =

[
0.625 0.3 0.4 −0.6

]
, we want to encode

it using amplitude embedding. The first step is to
normalize it, i.e., qnorm = 1. The corresponding am-
plitude encoding uses two qubits to represent qnorm
as

|ψq⟩ = 0.625 |00⟩+ 0.3 |01⟩+ 0.4 |10⟩ − 0.6 |11⟩ (9)

4.1.3. Angle Encoding

In angle encoding, the phase information of quantum
states is used to encode the classical data. In angle
encoding, the phase information of quantum states
is used to encode the classical data. In angle encod-
ing, the phase information of quantum states is used
to encode the classical data. This type of encoding
is important for processing data in quantum neural
networks. Angle encoding is performed by applying
a gate rotation about the x− axis Rx(X ) or y− axis
Ry(X ) , where X is the value to encode.

|X ⟩ =
n⊗
i

R (xi) |0n⟩ (10)

where R can be one of Rx, RyRz. Con-
sider the amplitude encoding example if we want
to encode the corresponding quaternion q̃ =[
0.625 0.3 0.4 −0.6

]
in angle encoding. We

can individually represent a qubit corresponding to
each queternion as[

cos(0.625)|0⟩
sin(0.625)|1⟩

]
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Similarly, angle encoding rotates every qubit
around X − axis (if we choose Rx) for degree equal
to the each quaternion. The corresponding quantum
state can be written as

4⊗
i=1

Ry (xi) |1111⟩ (11)

Aside from the strategies mentioned above, there
are several other encoding techniques that can be
used to encode classical information into qubits. Such
as Instantaneous Quantum Polynomial or IQP style
quantum encoding, Hamiltonian Evolution Ansatz
Encoding etc. It is worth mentioning that all of the
embedding techniques uses a specific method or for-
mula for encoding. For example with IQP, a classical
dataset X can be encoded in qubits as follows

|X ⟩ =
(
UZ(x)H

⊗n
)r |0n⟩ (12)

where r is the depth of the quantum circuit, indi-
cating the repeating times of UZ(x)H

⊗n. H⊗n repre-
sents a layer of Hadamard gates acting on all qubits.
UZ(X ) plays a vital role in IQP encoding scheme and
can be expressed as:

UZ(X ) =
∏

[i,j]∈S

RZiZj
(xixj)

n⊗
k=1

Rz (xk) (13)

where, S is the set containing all pairs of qubits
to be entangled using RZZ gates. First, we consider
a simple two-qubit gate: RZ1Z2(θ). Its mathematical

form e−i θ
2Z1⊗Z2 can be seen as a two-qubit rotation

gate around ZZ, which makes these two qubits en-
tangled.

4.2. Quantum control architecture

The overall structure and organisation of the systems
and components responsible for guiding and manag-
ing the spacecraft’s operations is referred to as the
control architecture. It consists of a number of sub-
systems and functions that coordinate to ensure the
spacecraft’s stability, attitude control, trajectory, and
overall mission objectives. It provides a framework for
implementing control algorithms, coordinating sys-
tem components, and managing the flow of infor-
mation. When designing a control architecture, ba-
sic arithmetic operations play a crucial role such as
system modeling, controller design, and performance
analysis. Similar to classical computing, in quantum
computing, an adder is a fundamental building blocks
for quantum control architecture which performs ad-
dition of quantum states.

Quantum addition circuits are mainly classified
into two kinds: 1) Toffolli-adder circuits, which em-
ploy solely classical reversible gates (CNOT and Tof-
foli), and 2) QFT-adder circuits, which use the quan-
tum Fourier transformation. The QFT transfers a
quantum state from the time domain to the frequency
domain, allowing frequency components and phase in-
formation to be extracted. QFT-adders are consid-
ered to be NISQ-compatible due to their depth and
gate counts [50]. In QFT-adder circuits, the QFT is
applied to the input quantum states that represent
the numbers to be added. By conducting the QFT
on these states, the Fourier amplitudes corresponding
to the sum of the numbers can be derived. This en-
ables for parallel computation and can provide speed
advantages for certain applications. The circuit for
QFT-adder are shown in Figure. 8.

Figure 8: Quantum circuit for 6-qubits QFT-adder.
The initial qubits from 0 to 6 are to be added while
7 to 10 qubits are for the measurement purpose.

As shown in Figure.8, a sequence of quantum gates
applied to the set of input qubits during process while
the QFT and Inverse-QFT are only applied on qubits
to be measured. Similarly, a QFT-based multiplier
circuits can be described for the multiplication of
quantum states. The circuit for QFT-adder are shown
in Figure. 9.

Figure 9: Quantum circuit for 6-qubits QFT-
multiplier. The initial qubits from 0 to 6 are to be
multiplied while 7 to 10 qubits are for the measure-
ment purpose.

Note that both QFT-adder as well as QFT-
multiplier takes |0⟩ or |1⟩ computational basis of the
quantum states as their inputs. Therefore, it is nec-
essary to convert the classical states into the corre-
sponding quantum states. We have already discussed
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about various quantum embedding techniques along
with their working principles in Section. 4.1. As both
of the operation requires computational basis as their
inputs therefore Basis Encoding (as described in Sec-
tion. 4.1.1) could be the best fit. It encodes a classical
input with a computational basis state of a qubit sys-
tem. Once we have classical states in |0⟩ or |1⟩ compu-
tational basis and basic arithmetic quantum circuit,
we can proceed to design the control architecture.

Proportional-Integral-Derivative (PID) con-
trollers have found extensive use in various applica-
tions within space technology such as Spacecraft Atti-
tude Control, Thruster Control, Solar Array Tracking
and Temperature Control. PID controllers provide a
balance of simplicity and efficiency in controlling vari-
ous subsystem of space technology. Their widespread
use in aerospace applications is a evidence to their
robustness, flexibility and ability to deliver precise
power in dynamic and complex space environments.
A PID controller is a control algorithm that utilizes
feedback to regulate a system’s behavior. It consists
of three components: Proportional (P) Control, Inte-
gral (I) Control and Derivative (D) Control. A simple
time-domain PID controller can be represented as:

u(t) = Kp × e(t) +Ki ×
∫ t

0

e(t)dt+Kd
d

dt
e(t) (14)

where u(t) is the control output to be implemented to
the plant in order to compensate the error e(t) where
e(t) = r(t) − y(t) and Kp, Ki and Kd are the con-
stant gains for the proportional, integral and deriva-
tive components of the controller respectively.

Approximating the integral and the derivative
terms to get the discrete form, using:∫ t

0

e(t)dtσ ≈
n∑

k=0

e(k)

de(t)

dt
≈ e(n)− e(n− 1)

T
t = nT

(15)

Where n is the discrete step at time t. It can be
represented as:

u(n) = Kpe(n) +Ki

n∑
k=0

e(k) +Kd(e(n)− e(n− 1))

(16)
Where:

Ki =
KpT

Ti
Kd =

KpTd
T

We can design corresponding Quantum-PID
(QPID) by utilizing the QFT-adder and multiplier.

Each component of the discrete PID can be modelled
separately and ultimately they can be integrated to-
gether.

Figure 10: Quantum circuit for Proportional control.

Figure 11: Quantum circuit for Proportional control.

Figure 12: Quantum circuit for Derivative control.

Proportional Control : Kp ∗ e(n)

Integral Control : Ki ∗ (e(n) +
n∑
0

e(n− 1))

Derivative Control : Kd ∗ (e(n)− e(n− 1))

Similarly, quantum logic gates can be used to
design other complex control techniques for space
technology such as Model Predictive Control (MPC),
Adaptive Control, Sliding Mode Control (SMC), Lin-
ear Quadratic Regulator (LQR) and Linear Quadratic
Gaussian (LQG) control.

4.3. Quantum Optimization

The implementation of quantum computing princi-
ples and algorithms to solve optimization problems
more effectively than classical computing approaches
is referred to as quantum optimization. Quantum
optimization algorithms leverage the properties of
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Figure 13: Illustration of quantum computing based Proportional-Integral-Derivative (QPID) controller.

quantum mechanics, such as superposition and en-
tanglement, to explore and evaluate multiple opti-
mized solutions simultaneously. Quantum optimiza-
tion has the potential to optimize complex problems
that seems infeasible or time-consuming for classi-
cal computers. There are several quantum optimiza-
tion techniques such Quantum Approximate Opti-
mization Algorithm (QAOA), Quantum Annealing,
Quantum Variational Optimization, QuantumWalks,
Adiabatic Quantum Optimization. There exist sev-
eral optimization problems which are impossible or
computational intensive to solve with classical com-
puters in space technology such as Satellite Schedul-
ing Problem, Satellite Constellation Design, Launch
Vehicle Payload Integration, Mission Planning and
Resource Allocation, Trajectory Optimization, Space-
craft Routing Problem, Satellite Network Design, Or-
bital Slot Assignment, Mission Sequencing Problem.
In the next subsections, a few of the quantum op-
timization techniques are described along with their
use cases in space technology.

Let us discuss QAOA and its applications in space
technology. The Quantum Approximate optimization
Algorithm (QAOA) is a quantum optimization algo-
rithm that can run on present day NISQ devices and
has a wide range of applications [47]. It was proposed

by Edward Farhi in 2014, and its goal is to approxi-
mate the solution of combinatorial optimization prob-
lems. Many combinatorial optimization problems are
NP-complete or even NP-hard, implying that classical
computers may be unable to solve them efficiently. A
more efficient technique is to identify the approximate
optimal solution to such situations.

QAOA can find an approximate optimal solution
of such combinatorial optimization problem.

In the initial step of QAOA, a cost Hamiltonian
HC and a mixer Hamiltonian HM is formulated based
on the nature of the problem such that the ground
state of HC encodes the optimized solution to the
given problem while the ground state ofHM should be
easily preparable state. Then the circuits correspond-
ing to eiαnHM and eiγnHM are constructed known as
cost and mixer layers with some parameters α and
γ respectively. An operator U(γ, α) is prepared with
the repeated application of the cost and mixer layers
with repeating parameter n ≥ 1 as shown below:

U(γ,α) = e−iαnHM e−iγnHC ...e−iα1HM e−iγ1HC (17)

n is also known as depth of the QAOA circuit. An
initial state |ψ0⟩ is prepared and U(γ,α is applied on
this state. A classical optimization technique is used
to optimize the parameters γ,α. For some value of
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Figure 14: A quantum-classical architecture showing the application of Quantum Approximate optimization
Algorithm (QAOA) for the spacecraft trajectory optimization.

optimal parameters γ∗,α∗, it represents the ground
state of HC . Once the circuit has been optimized,
measurements of the output state reveal approximate
solutions to the given optimization problem. In sum-
mary, the formulation of cost and mixer Hamiltonians
is the beginning step for QAOA. We then employ time
evolution and layering to build a variational circuit
and optimise its parameters. The process concludes
with measurement from the circuit to obtain an ap-
proximate solution to the optimization problem.

Consider a simple spacecraft trajectory and model
HC which can be optimized with QAOA, the corre-
sponding trajectory can be also modelled as:

HC =
∑

[L(x(t), y(t), z(t))+

λ(t)TG(x(t), y(t), z(t), u(t))]
(18)

where, HC represents the Hamiltonian i.e, the to-
tal energy or cost of the spacecraft trajectory. L
represents the Lagrangian term, which represents the
immediate cost or penalty associated with the space-
craft’s state variables (position, velocity, etc.) and
control inputs (maneuvers, thrust, etc.) at each time
step t. λ(t) represents the costate or Lagrange mul-
tiplier, which is associated with the dynamic con-
straints or state equations that govern the motion of
the spacecraft. It is used to enforce the constraints,
such as collision avoidance (e.g., where the constraint
is that the signed distance between the spacecraft’s
geometry and the obstacles stays positive). G repre-
sents the dynamic constraint equations that describe
the spacecraft’s motion, linking the state variables
(position, velocity, etc.) and control inputs (maneu-
vers, thrust, etc.) at each time step t. These con-

straints relate the current state and control inputs to
the derivatives or rates of change of the state vari-
ables. It includes equations of motion, kinematic re-
lationships, and other physical or operational con-
straints. The Lagrangian term L typically includes
components that capture the desired behavior or per-
formance criteria, such as distance from a target po-
sition, fuel consumption, time, etc. This term repre-
sents the immediate cost or penalty associated with
the current state and control inputs. The costate or
Lagrange multiplier λ(t) is introduced to enforce the
dynamic constraints or state equations that govern
the spacecraft’s motion.

The Hamiltonian HC represents the sum of the im-
mediate costs captured by the Lagrangian term L and
the penalties associated with enforcing the dynamic
constraints through the Lagrange multiplier λ(t) and
the dynamic constraint equations G. Depending on
the mission objective and constraints, the Lagrangian
term L, costate λ(t), and dynamic constraint equa-
tions G will vary. By optimizing the Hamiltonian,
one can find the optimal trajectory that minimizes
the overall cost or maximizes a desired performance
criterion.

Most of the other quantum optimization algo-
rithms work in a similar structure as described by
the quantum-classical architecture in the Figure.14.
A Hamiltonian corresponding to the system must
be modelled along with the dynamical constraints
and penalties imposed on it. Some of the potential
applications of quantum optimization algorithms for
addressing optimization problems encountered in di-
verse areas of space technology are presented in the
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Use Case in Space Technology Quantum Optimization Algorithms
Trajectory Optimization Quantum Approximate Optimization Algorithm (QAOA): Involves

defining objective functions and constraints, mapping it onto the
QAOA framework, designing a quantum circuit, and iteratively up-
dating parameters.
Quantum-Inspired Genetic Algorithm (QIGA): Involves chromo-
some encoding, quantum-inspired genetic operations, fitness eval-
uation, genetic evolution, and convergence and solution analysis.
It considers mission requirements, fuel consumption, travel time,
radiation exposure, and natural evolution.
Quantum Annealing : Involves mapping to the Ising model. The
goal is to minimize energy and find the ground state of the op-
timized spacecraft trajectory. Translate the problem formulation
into a Hamiltonian, which governs the annealing process. After
completing the process, post-process and analyze the obtained so-
lution to extract the optimized trajectory.

Routing and Scheduling Quadratic Unconstrained Binary Optimization (QUBO): Involves
defining variables, objective functions, and constraints. The objec-
tive function captures optimization goals, while constraints capture
communication requirements, data relay, and task coordination.
The problem is converted into a binary quadratic equation, and
solved using classical solvers or quantum annealing hardware.
Quantum-inspired Particle Swarm Optimization (QPSO): Formu-
late the spacecraft routing and scheduling problem as an opti-
mization problem, using particles as potential solutions. Initial-
ize particles, update positions using classical and quantum-inspired
mechanisms, evaluate fitness, track global best, introduce quantum-
inspired techniques, and iteratively optimize.

Mission Planning Quantum-enhanced reinforcement learning (QRL): Encode states
and actions using quantum-inspired techniques, design a quantum
circuit for policy learning, simulate environment dynamics, enhance
exploration and exploitation, optimize policy and reinforcement
learning objectives, and evaluate the effectiveness of the policy.
Quantum Approximate Optimization Algorithm (QAOA): Formu-
late spacecraft mission planning as an optimization problem con-
sidering objectives, constraints, resources, and requirements. Map
the problem onto the QAOA framework, design a quantum circuit,
and execute the QAOA algorithm iteratively to find the optimal
mission plan. Post-process and analyze the optimized plan for fea-
sibility, scalability, and performance.

Onboard Power Management Quantum-inspired Simulated Annealing (QISA): Initialize the sys-
tem with an initial power allocation and usage configuration, use
quantum-inspired perturbation to introduce exploratory changes,
evaluate energy, perform simulated annealing iterations, control
cooling schedule, and analyze solutions. Quantum-inspired simu-
lated annealing techniques incorporate quantum-inspired concepts
within classical optimization algorithms, resulting in performance
improvements depending on the problem’s complexity.

Table 1: The following table presents some of the potential applications of quantum optimization algorithms
for addressing optimization problems encountered in diverse areas of space technology.

Table. 1. The quantum optimization algorithms are
generally used to find the ground state of the prob-
lem hamiltonian which in turn provides the optimized
solution of the system. Some quantum optimiza-
tion algorithms accept a specific type of Hamiltonian
known as Ising Hamiltonian. The Ising Hamiltonian

is widely used in the field of optimization, particularly
in the context of Ising models and quantum anneal-
ing. It represents the energy or cost function associ-
ated with the system composed of interacting spins
or qubits. Any general hamiltonian can be modelled
as the Ising Hamiltonian with little modification.
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4.4. Quantum Machine Learning

Quantum Machine Learning (QML) is an interdis-
ciplinary field that blends the concepts of quantum
physics and machine learning to generate novel algo-
rithms and approaches for data analysis and pattern
recognition [51, 52]. It aims to harness the power of
quantum computing to enhance and speed up tradi-
tional machine learning tasks by utilising quantum
parallelism and quantum entanglement.

Quantum machine learning methods, including
quantum kernel methods, involve a quantum embed-
ding of classical data and evaluation of an objective
function applied to the embedding. The aim is to as-
certain whether a quantum advantage exists in a par-
ticular problem that the objective function describes.
A rigorous test was conducted by Google Quantum AI
[53] to compare a quantum embedding, kernel, and
data set to classical kernels, assessing potential quan-
tum advantage across objective functions. A geomet-
ric constant g is defined, which quantifies the amount
of data that could theoretically close the gap. This
technique helps determine if a quantum solution is
right for a given problem based on data constraints.
The geometric test revealed that existing quantum
kernels often had memorization-based geometry, lead-
ing to the development of a projected quantum ker-
nel. This representation allows for better integration
with classical non-linear kernels, allowing for a better
description of non-linear functions, reduced resource
consumption, and better generalization at larger sizes
as shown in Figure. 15. This approach also expands
the geometric g, ensuring the greatest potential for
quantum advantage.

Figure 15: Illustration of projected quantum kernel
approach proposed in [53].

Machine learning typically involves handling a
vast amount of data and designing algorithms that
are able to handle and process these datasets rapidly.
A n-classical bit register can only store a n-size bi-
nary string, whereas a n-qubit register can store a 2n

n-size binary string by encoding the information in
the amplitudes as described in Section 4.1.2. There-
fore, quantum registers possess a significantly higher
capacity to process data compared to classical reg-
isters. However, the extraction of multiple strings
poses a significant challenge due to the phenomenon
of state collapse during measurement, resulting in the
retrieval of only a single amplitude or string. How-
ever, these qubits possess inherent parallelism, en-
abling the development of algorithms capable of si-
multaneously processing all 2n strings. This parallel
processing capability yields an exponential improve-
ment in computational speed compared to classical
algorithms.

There exist four distinct strategies for integrating
machine learning and quantum computing, which de-
pend on the classification of the data source as either
classical (C) or quantum (Q), as well as the computa-
tional system employed for data processing, classified
as either classical (C) or quantum (Q) as depicted in
the Figure.16. (i) The Classical-Classical approach
(CC) involves utilising classical algorithms that have
been influenced by the principles of quantum me-
chanics, quantum processing, or quantum informa-
tion. These algorithms are commonly referred to as
quantum-inspired algorithms. They are designed to
be implemented on classical computers and operate
using classical data. (ii) The Classical-Quantum ap-
proach (CQ) involves the application of quantum ma-
chine learning algorithms to classical data in order to
achieve efficient machine learning tasks. In general,
the objective is to explore quantum renderings of clas-
sical machine learning techniques and existing quan-
tum algorithms. The aim is to identify approaches
that can effectively perform machine learning tasks
and offer quantum advantages over classical algo-
rithms. (iii) The Quantum-Classical approach (QC)
involves the application of classical machine learn-
ing methods and algorithms to quantum data, en-
abling quantum computers to acquire knowledge and
extract meaningful information from this data. (iv)
The Quantum-Quantum approach (QQ) is a theoreti-
cal framework that is used to analyse and understand
quantum phenomena. This approach involves the use
of both quantum algorithms and quantum data. In
essence, the QML algorithms engage in the manip-
ulation of quantum states with the purpose of com-
prehending the fundamental patterns and acquiring
knowledge about the data.
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Figure 16: Illustration of four distinct ways to com-
bine the fields of quantum computing and machine
learning, along with categories marked that have po-
tential applications in space technology. The first
letter indicates whether the system under study is
classical or quantum, while the second letter specifies
whether a classical or quantum information process-
ing unit is used.

In the field of space technology, there exist classi-
cal systems that employ two out of four techniques,
namely CC and CQ, which have proven to be highly
valuable. Based on the Quantum inspired machine
learning (CC Approach), Quantum Inspired Neural
Networks (QNNs) with Quantum computing and a
multi-agent system were proposed, which resulted in
a quicker training time due to the tremendous paral-
lel processing capacity [54]. Quantum Translations of
machine learning algorithms (based on the CQ tech-
nique): This machine learning approach entails creat-
ing quantum counterparts of normal machine learn-
ing algorithms and applying them to machine learn-
ing issues. The advantage of this approach is that it
can provide exponential speedup, where quantum k-
means clustering is used, as well as better privacy be-
cause only an exponentially small percentage of data
is analysed, hence improving data security.

QML algorithms possess an outstanding data han-
dling capacity, rendering them suitable for diverse
applications within the domain of space technology.
These applications encompass Satellite Communica-
tion and Networking, Space weather prediction, dis-
aster monitoring, Spacecraft GNC, Satellite Image
Analysis, Astronomical Data Analysis, Space Debris
Tracking, Collision Avoidance, Anomaly Detection
and Fault Diagnosis, Space-based sensing and remote
sensing.

Quantum machine learning (QML) possesses nu-
merous potential applications in space technology,
specifically in the domain of spacecraft image process-
ing. Few of the potential applications are presented
in the Table. 2. QML leverages the phenomenons
of quantum mechanics in image processing that offers

several potential benefits over classical image process-
ing. Quantum computers possess the capability to
execute specific calculations at a significantly faster
pace compared to classical computers. Quantum al-
gorithms intended for image processing tasks can take
advantage of this increased computational capacity to
process and analyse satellite photos more effectively.
This can lead to faster image processing, enabling
real-time or near-real-time analysis of the captured
satellite data. Quantum superposition allows simulta-
neous processing of multiple image pixels or features,
enabling parallel computation and accelerating pat-
tern recognition tasks. This capability significantly
improves both the effectiveness and speed of analysis,
thereby facilitating the accurate analysis of spacecraft
images. In contrast, quantum interference utilises the
constructive or destructive interaction between quan-
tum states to amplify signals corresponding to rel-
evant patterns while suppressing noise or irrelevant
features. The deliberate enhancement of significant
patterns serves to enhance the accuracy and reliabil-
ity of pattern recognition.

Additionally, quantum entanglement captures
complex interaction among image pixels or features.
By considering the interdependencies and correla-
tions within the image data, quantum algorithms
can achieve more accurate and robust pattern recog-
nition. Entanglement facilitates the identification
of hidden patterns and uncovers subtle relationships
that may be challenging for classical algorithms to de-
tect. Quantum algorithms can produce more accurate
and resilient pattern identification by taking into ac-
count the interdependencies and correlations within
image data. The phenomenon of entanglement en-
ables the recognition of hidden patterns and reveals
sophisticated connections that may be challenging for
classical algorithm to detect. Let us briefly examine
some of the potential benefits.

4.4.1. Quantum Encryption and Compression

The concept of quantum encryption and compres-
sion involves the process of transforming data into a
low-dimensional representation of the corresponding
quantum states. A variety of quantum image encryp-
tion and compression schemes have been proposed by
researchers, including Qubit Lattice [55], Real Ket
[56], Entangled Image [57], FRQI (Flexible Represen-
tation of Quantum Images) [58], NEQR (Novel En-
hanced Quantum Representation of Digital Images)
[59], GQIR (Generalised Quantum Image Represen-
tation) [60], JPEG based [61] and others. Let us see
the compression and decompression in detail using
JPEG based quantum algorithm.
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QML Algorithms Potential applications in space technology
Quantum Support Vector Machine
(QSVM)

It could be used in space applications to categorise celestial objects,
analyse satellite photos, and detect anomalies in telemetry data.
The potential advantage of QSVM is its capacity to effectively com-
pute kernel functions using quantum methods, which could lead to
faster and more accurate classification.

Quantum Neural Networks
(QNNs)

QNNs possess the capability to augment a wide range of space-
related endeavours. The potential applications of it encompass
pattern recognition in astronomical images, enhancement of satel-
lite communication systems, and optimization of spacecraft control
systems. Quantum neural networks (QNNs) have the capability to
capture intricate quantum correlations, thereby exhibiting the po-
tential to outperform classical neural networks in specific domains.

Quantum Clustering Algorithms Quantum clustering algorithms have the potential to be utilised
in the analysis of extensive datasets obtained from space missions,
including satellite telemetry data and astronomical observations.
Algorithms such as quantum k-means clustering have the capabil-
ity to discern patterns, group data points that exhibit similarity,
and extract significant information for various purposes, such as
anomaly detection or data classification.

Quantum Data Compression Quantum-inspired algorithms, such as Quantum Singular Value De-
composition (QSVD) and Quantum Principal Component Analysis
(QPCA), have the potential to facilitate the compression of exten-
sive quantities of satellite imagery, telemetry data, and scientific
measurements. This compression capability would result in reduced
storage demands and improved efficiency in data transmission pro-
cesses.

Quantum Bayesian Networks Bayesian networks are a type of probabilistic graphical model that
is employed for the purpose of representing and conducting rea-
soning about uncertain relationships that exist among variables.
Quantum Bayesian networks possess the potential to serve as effec-
tive tools for the modelling and analysis of intricate space systems.
Their utilisation can facilitate various tasks, including fault diag-
nosis, risk assessment, and decision support, within the domains of
satellite operations and space mission planning.

Quantum Kalman Filters and
Quantum Particle Filters

Quantum Kalman Filters can help with the tasks like spacecraft
navigation, space debris tracking, and satellite attitude determi-
nation. By fusing data from sensors like star trackers, IMUs, and
GNSS, they can estimate spacecraft position, velocity, and attitude
with greater precision, even in measurement noise or uncertainties.
Quantum Particle Filters enhance state estimation in nonlinear and
non-Gaussian systems. These filters can assist in localizing space-
craft or satellites, coordinate sensor measurements, and create ac-
curate maps of surrounding terrain.

Quantum Feature Selection Quantum feature selection algorithms, such as QuantumMutual In-
formation Maximisation (Q-MIM), have the potential to be utilised
for the purpose of extracting informative features from space-
related data. This application can prove beneficial in various tasks,
including but not limited to anomaly detection, data classification,
and dimensionality reduction.

Table 2: Table presents some of the potential applications of Quantum Machine Learning (QML) in space
technology.

Consider a grey scale image as shown in Figure. 17. The initial step is to encode information us-
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ing Discrete cosine transform. The image is split
into blocks of 8 × 8 pixels, and each block (denoted
as f(i, j), i = 0, 1, · · · , 7, j = 0, 1, · · · , 7) undergoes
the discrete cosine transform (DCT) to get frequency
spectrum F (u, v) as shown in Equation. 19.

F (0, 0) is the direct-current coefficient, and the
bigger u and v, the higher frequency components
F (u, v). Although humans have excellent contrast
sensitivity, we struggle to determine the precise mag-
nitude of high-frequency variations in brightness. As
a result, it is possible to drastically cut down on the
data included in the high-frequency parts.

F (u, v) = c(u)c(v)

7∑
i=0

7∑
j=0

{
f(i, j) cos

[
(i+ 0.5)π

8
u

]

× cos

[
(j + 0.5)π

8
v

]
(19)

where u = 0, 1, · · · , 7, v = 0, 1, · · · , 7, and

c(u) =

{ 1
2
√
2
, u = 0

1
2 , u ̸= 0

To accomplish this, we divide each frequency-domain
component by its associated constant and round the
results to the nearest integer. This process is known
as Quantization. It is represented by 8 × 8 matrix
in which the elements control the compression ra-
tio, with larger values producing greater compression.
The quantized DCT coefficients are computed as:

FQ(u, v) = round

(
F (u, v)

Q(u, v)

)
(20)

During quantization, many of the e higher fre-
quency components are rounded to zero,and many of
the rest become small positive or negative numbers,
which take fewer bits to represent. Due to the trun-
cation of numerous coefficients to zero values in the
DCT image, the treatment of zero coefficients differs
from that of non-zero coefficients. The data is en-
coded utilising a Run-Length Encoding (RLE) algo-
rithm. The Run-Length Encoding (RLE) algorithm
provides a measure of the number of consecutive oc-
currences of zero values in an image. The compression
achieved by RLE is directly proportional to the length
of these consecutive runs of zeros. One potential
method for extending the duration of runs involves re-
arranging the coefficients within the zigzag sequence,
as depicted in Figure 17. These coefficients are finally
normalized and embedding into corresponding quan-
tum states using amplitude encoding as described in
Section. 4.1.2. As, we can encode 2n classical input
parameters in n-wire quantum circuits. Therefore,

we require 5 wires to encode the 21 elements of final
normalized vector. Hence, the proposed algorithm
compressed 21 values to 5 values, resulting in 76%.

In order to decompress and retrieve the pixel val-
ues for the purpose of displaying the image on a
screen, the inverse process is performed. At the end of
each wire, a Pauli-Z measurement operator converts
the embedded quantum data back to the classical do-
main. Rearrange the compressed data to 8× 8 blocks
and multiply each 8 × 8 block with the quantization
matrix Q.

F ′(u, v) = FQ(u, v)×Q(u, v) (21)

Performing inverse DCT (IDCT) to each 8 × 8
block to get the recovered pixel value f ′(i, j) :

f ′(i, j) =

7∑
u=0

7∑
v=0

{c(u)c(v)F ′(u, v)

× cos

[
(i+ 0.5)π

8
u

]
cos

[
(j + 0.5)π

8
v

] (22)

where i = 0, 1, · · · , 7, j = 0, 1, · · · , 7, and

c(u) =

{ 1
2
√
2
, u = 0

1
2 , u ̸= 0

}

4.4.2. Quantum Convolutional Neural Network

The majority of image processing approaches make
use of the Artificial Neural Network (ANN), notably
the Convolutional Neural Network (CNN). In space
technology, ANN and CNN have several applications
such as anomaly detection [62], space debris detec-
tion [63], space object tracking [64], spacecraft pose
estimation [65], spacecraft component detection [66]
etc. Classical CNNs are a type of artificial neural net-
work that can identify specific features and patterns
in a given input. As a result, they are frequently
utilised in image identification and audio processing.
In CNN, the input image is processed by a succes-
sion of alternating convolutional (C) and pooling (P)
layers, which recognise and associate patterns to a
specific subclass. The final output is provided by
fully connected layer (FC) supplies. QCNN exhibit
analogous behaviour to classical CNN [67]. Initially,
the pixelated image is encoded into a quantum circuit
by employing a predetermined feature map. Follow-
ing the encoding process of our image, we proceed
to implement a sequence of alternating convolutional
and pooling layers. Through the implementation of
these alternating layers, the dimensionality of our cir-
cuit is diminished until it reaches a single qubit. The
input image can be classified by evaluating the out-
put of this remaining qubit. Parametrized circuits
are present in each layer, allowing us to modify the
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Figure 17: Illustration of Quantum Encryption and Compression architecture based on classical compression
JPEG algorithm. The proposed algorithm compressed 21 values to 5 values, resulting in 76%.

final output by modifying the values of individual pa-
rameters. These settings are modified during QCNN
training to minimise the loss function.

Figure 18: The QCNN architecture comprises a con-
volutional layer responsible for identifying new state,
followed by a pooling layer that decreases the sys-
tem’s dimensions [67].

Let’s do a conceptual analysis of using QCNN for
spacecraft component detection. The initial step is
to gather a dataset of spacecraft images with various
components of interest. These photos can be captured
by spacecraft cameras or received from other sources.
Annotate the photos using bounding box coordinates
or pixel-level labels to show the location of each com-

ponent such as developed in [68]. The next step is
quantum data encoding. Using quantum data encod-
ing techniques, transform the input spacecraft photos
into a quantum representation. This procedure turns
visual input into a quantum state that can be pro-
cessed by a QNN. To represent images in a quantum
manner, many encoding approaches, such as ampli-
tude encoding or quantum feature mapping as de-
scribed in Section. 4.1. Then, construct the quantum
convolutional layers of the QNN architecture. These
layers use convolutions on quantum-encoded data to
extract features and find patterns important to space-
ship components. Quantum gates and circuits are
used to execute convolution operations, capturing the
quantum character of the data. Use quantum pool-
ing procedures to lower the dimensionality of the fea-
ture maps created by convolutional layers. Quantum
pooling approaches, such as quantum max pooling or
quantum average pooling, can be used to downsam-
ple the features while keeping the quantum qualities.
Create quantum classification layers to produce pre-
dictions and detect spaceship components. Quantum
operations and measurements are used to extract the
essential information from the quantum state and de-
termine the presence and placement of the compo-
nents within the images. The final step is to train the
QNN by optimising the parameters of the quantum
gates or circuits using quantum optimization tech-
niques. Quantum algorithms, such as quantum gra-
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dient descent or variational quantum algorithms, can
be used to update quantum parameters depending on
a given cost function. The training approach seeks to
minimise the discrepancy between anticipated compo-
nent positions and ground truth annotations. Once
trained, the QNN may be used to process new satel-
lite photos and find the components of interest. The
QNN analyses the quantum-encoded image data and
outputs the expected locations or labels of the iden-
tified components.

4.5. Quantum implementation

In the field of classical information theory, the notion
of the universal computer can be defined through var-
ious models that are equivalent in nature, each corre-
sponding to distinct scientific methodologies. From
a mathematical perspective, a universal computer
refers to a device that possesses the ability to compute
partial recursive functions. In the field of computer
science, the Turing machine is commonly employed
as the preferred conceptual model. Alternatively, an
electrical engineer may refer to logic circuits, while a
programmer is likely to favour a universal program-
ming language [69]. These are fundamentally compa-
rable in the framework of classical computation, pro-
ducing the same outcomes yet relying on quite differ-
ent underlying formalisms.

This oneness is less clear in the field of quantum
computation. As an illustration, a quantum com-
puter’s fixedpoint algorithm might incorporate a su-
perposition of all fixed points, not just the stable
one achieved via repetitive replacement. This im-
plies that various classical formalisms may generalise
to the quantum domain in diverse ways. Multiple
state-of-the-art models have been proposed for quan-
tum computing. These models employs diverse ap-
proaches for the representation, manipulation, and
execution of quantum information and computations.
Some of the major models are Circuit models [70],
Topological Model [71], Quantum Turing Machine
(QTM) [72], QCL (quantum classical language) [73],
Quantum annealing and annealers [74] and Quantum
Hopfeld model [75].

The primary area of investigation in this present
study relates to the quantum circuit model. In the
following section, we will examine the topic in a com-
prehensive manner. The circuit model of quantum
computation is one of the most extensively used and
researched models. It represents quantum algorithms
as a series of quantum gates applied to qubits. The
functional and practical viability of quantum com-
puters requires technology for the formalisation of a
set of operators that is essential in mimicking quan-

tum parallelism behaviour, thus a model for perform-
ing quantum algorithms mapping for the design of
formalised quantum hardware schemes. The circuit
model of quantum computation provides a versatile
framework for building and implementing quantum
algorithms. It permits precise control over the growth
of qubits and the execution of complicated quantum
calculations. It can be also utilised to create standard
quantum processors and quantum chips.

In order to realise circuit-based quantum com-
puting, it is crucial to develop dedicated hardware
platforms for the purpose of manipulating and con-
trolling qubits. The generation and sustaining of
qubits, which serve as the fundamental components
of quantum information, pose numerous difficulties
owing to the delicate characteristics of quantum sys-
tems and their vulnerability to external disturbances
[76]. There exist various challenges associated with
the qubits, including but not limited to decoherence,
error correction, scalability, qubit connectivity, and
readout and measurement. Several qubit modalities
are now being researched by industry and academia
for quantum computing applications. These modali-
ties include superconducting qubits, silicon quantum
dots, trapped ions, neutral atoms, photonic qubits,
nitrogen vacancy centers, and topological qubits.

Quantum chips envisioned for space technology
applications must meet specific requirements due to
the unique challenges and limits of the space envi-
ronment. Considerations for quantum chips in space
technology include radiation hardening, remote pro-
gramming, power efficiency, size, weight, and integra-
tion as shown in Figure. 19. Photonic qubits are a
promising strategy for developing quantum comput-
ing that takes advantage of the features of photons
as qubits. While photonic qubits have distinct ad-
vantages such as reduced sensitivity to decoherence
and the capacity to transport quantum information
over great distances via optical fibres. A novel pro-
grammable nanophotonic chip hardware-software sys-
tem has been recently introduced for the purpose of
executing many-photon quantum circuit operations
through the use of integrated nanophotonics as shown
in Figure. 20 [77].
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Figure 19: The schematic representation essential
characteristics for the successful deployment and op-
eration of quantum chips in space technology appli-
cations. They handle the particular challenges and
limits of the space environment, enabling space mis-
sions to perform reliable and precise quantum com-
putations.

This system consists of a programmable chip that
operates at room temperature and is interfaced with
a fully automated control system. The aforemen-
tioned system facilitates the execution of quantum
algorithms by remote users. The algorithms necessi-
tate the utilization of up to eight modes of strongly
squeezed vacuum, which are initialized as two-mode
squeezed states in single temporal modes. Addi-
tionally, the system comprises a fully general and
programmable four-mode interferometer and a pho-
ton number-resolving readout on all outputs. Using
strong squeezing and high sampling rates has made
it possible to find multi-photon events with more
and faster photons than any other programmable
quantum optical demonstration before. The pro-
grammable nature of the hardware allows for remote
configuration through a customized application pro-
gramming interface, facilitating deployment for cloud
accessibility. The core of the device is only about
10mm×4mm photonic chip. Due to all these features,
it can be said to be the ideal platform as of now for
practically implementing quantum circuits for space
technology.

Figure 20: The schematic representation of the chip,
derived from a micrograph of the physical device,
illustrates the presence of fibre optical inputs and
outputs. Additionally, the chip incorporates on-chip
modules responsible for coherent pump power distri-
bution, squeezing, pump filtering, and programmable
linear optical transformations [77].

4.6. Challenges

Quantum computing is an emerging area of research
and development. The field is undergoing rapid evo-
lution, with the continuous emergence of novel tech-
nologies and platforms. Academic researchers are
continuously engaged in the exploration of novel algo-
rithms aimed at performing complex computations,
optimization, minimising errors, achieving greater
scalability, and improving control over quantum sys-
tems. Several software tools and programming lan-
guages, such as Qiskit and Cirq, have been created
to enhance the process of designing and simulating
quantum algorithm by circuits. Although significant
progress has been made in achieving impressive re-
sults in quantum supremacy at a technical level [78]
[8], there are still several challenges that need to be
addressed in order to effectively apply these results
to large-scale practical implementation of quantum
computing. Additionally, due to the unique char-
acteristics and limits of the space environment, the
implementation of quantum computing in space tech-
nology presents extra challenges as depicted in Fig-
ure. 19. Therefore, the development of quantum com-
puting hardware that is appropriate for utilisation in
space applications poses a significant challenge. In
order to facilitate space missions, it is imperative to
utilise quantum processors that possess characteris-
tics such as miniaturisation, lightweight construction,
and power efficiency. These processors must also be
capable of enduring the challenging environmental
conditions encountered in space, which include radi-
ation exposure, extreme temperature variations, and
mechanical strains. The attainment of necessary tech-
nological advancements in the domains of quantum
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chip design, fabrication, and packaging holds crucial
importance. Apart from this, space missions can last
for a long time. Maintaining long-term stability and
dependability in quantum systems is difficult. Main-
taining the reliability of quantum computations dur-
ing the mission requires careful management of fac-
tors such component ageing, drift in system parame-
ters, and deterioration of quantum coherence.

In addition to technical challenges, the implemen-
tation of quantum computing in space technology
encounters several non-technical challenges as well.
The development of quantum computing technologies
for space applications necessitates substantial finan-
cial investments and resources allocation. Ensuring
sufficient financial resources, fostering partnerships
among research institutions, industry stakeholders,
and space agencies, and optimising resource alloca-
tion are critical non-technical obstacles. Policy and
regulatory considerations must be taken into account
when deploying quantum computing technologies in
space. These considerations encompass various as-
pects, ensuring responsible and secure use of quantum
technologies, data security, and international cooper-
ation.

In order to successfully integrate the quantum
computing in space technology, the active participa-
tion of policymakers, regulatory bodies, funding agen-
cies, industry leaders, and stakeholders are required.
This collaborative effort is crucial in establishing a
conducive environment that supports the effective im-
plementation of quantum computing in the field.

4.7. Discussion

We have presented the potential applications of quan-
tum computing for space technology, such as quantum
optimization of spacecraft trajectories, QML for com-
pression and encryption, QCNN for spacecraft image
processing, and a quantum computing-based control
architecture for the attitude control of spacecraft. We
have presented the corresponding conceptual analysis
for the application of quantum algorithms to a few
open problems in space technology.

The proposed quantum computation algorithms
are implementable on quantum circuits, which in turn
can be implemented on any available quantum hard-
ware. We have discussed the hardware realisation of
the proposed quantum algorithms in space technol-
ogy, considering several constraints, particular chal-
lenges, and limits of the space environment We have
also presented the current best platform for the possi-
ble implementation of the proposed quantum comput-
ing algorithms on a re-programmable nanophotonic
chip developed in [77]. Overall, quantum computing

holds tremendous potential for applications in space
technology. By exploiting the quantum nature of the
world, quantum computing opened a new area of re-
search in space technology.
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