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Abstract—The advent of Satellite as a Service (SaaS) platforms
has empowered satellite service providers (SPs) to rent portions
of satellite capacity from infrastructure providers (IPs) to cater
to the diverse demands of their users across multiple satellite
services. To effectively manage costs and maintain a high Quality
of Experience (QoE) for numerous concurrent connections,
SPs should secure flexible capacity from IPs. However, the
irregular and unpredictable nature of traffic demands from
various applications complicates the capacity-renting framework.
This study presents a dynamic capacity allocation framework
that efficiently handles diverse traffic flows with varying arrival
rates, aiming to minimize rental costs while meeting blocking
probability and QoE requirements. Utilizing the 𝑀𝑡/𝑀𝑡/1 queuing
model and a continuous-time Markov chain, the technical
designs are framed as a statistical optimization problem. In
this context, the system waiting-queue lengths are estimated using
the transient probabilities of Kolmogorov equations. Subsequently,
cumulative distribution functions are employed to re-formulate
this stochastic optimization problem into a convex form, which
can be tackled through the Lagrangian duality method.Through
extensive simulations and numerical assessments, we illustrate
our method’s efficacy, with the proposed algorithm outperforming
benchmarks by reducing costs by up to 9.85% and 3.1%.

Index Terms—Time-varying queuing, capacity allocation, block-
ing probability, QoE-based optimization, satellite as a service.

I. INTRODUCTION

SATELLITE communication (SatCom) systems are becom-
ing important to provide global connectivity with a wide

range of applications requiring high availability and resilience
to critical areas that are unreachable by the current terrestrial
networks [2]–[4]. The growing attention on the dynamic
SatCom systems supporting service-aware communications and
seamless coverage, as well as its associated implementation
costs, has inspired a number of big names in the industry to
develop new “satellite-as-a-services” (SaaS) business platforms
[5], [6]. Such a platform comprises infrastructure providers
(IPs) - the owners of the SatCom systems, and the service
providers (SPs) which may rent certain satellite capacity from
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the IPs to provide different services to their end users [1], [5],
[7], [8]. This novel paradigm can enable the IPs to access
new markets and it can release the SPs from investing a huge
amount of money in order to build dedicated satellites [9].
With the fluctuating demands from various applications and
services, there’s a growing interest in developing a flexible
capacity renting mechanism for the SPs. This mechanism
is expected to allow the SPs to obtain capacity as needed
rather than committing to a fixed amount. Such flexibility can
boost network utilization, enhance revenue for the IPs, and
help the SPs save the costs while ensuring the user Quality
of Experience (QoE) [10]. However, to establish such an
optimal capacity renting framework between the IPs and SPs,
one should carefully manage and analyze a vast number of
simultaneous data flows, each with distinct QoE requirements
[11]. Specifically, the SPs must swiftly make provisions on the
required capacity while still guaranteeing the desired QoE for
their users. On the SatCom IPs side, to realize the dynamic
capacity allocation mechanism, the advanced digital transparent
payloads (DTP) using “defacto” platform can be deployed [12],
[13]. Based on this, the satellites can assign capacity across
beams effectively and route traffic of various types efficiently.

To ensure effective network resources renting from the IPs
and optimal capacity allocation for customer communication
services, the SPs have to cope with multiple challenges in
maximizing their profit [9], [14]. Herein, the business problems
at the SPs include (but are not limited to) capacity estimation
accommodating the irregular and unpredictable “time-varying”
data traffic from heterogeneous apps/services, and efficient
management of rented resources during both peak and off-peak
periods to reduce costs [15], [16]. Additionally, maintaining
or expanding the customer base is a significant business
challenge for both the IPs and SPs, and satisfying the diverse
QoE requirements of customers is a key point of resource
management that should be addressed carefully. Furthermore,
the IPs and SPs should also establish an agreement detailing the
speed of capacity adjustments and the maximum capacity SPs
are allowed to use [7], [14]. Consequently, the development of
a dynamic, cost-effective, QoE-aware network resource renting
mechanism in SatCom systems has emerged as an interesting
and compelling research topic for both IPs and SPs. Facilitated
by the challenging problem, this paper focuses on designing a
new QoE-aware cost-minimizing capacity-renting framework
in SaaS-enabled multi-beam SatCom systems.

In the realm of wireless communication, the QoE at users can
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be affected by a variety of factors, ranging from signal strength,
data rate consistency, and connection reliability, to service
interruptions [17]. Among these aspects, a critical determinant
of QoE in the SatCom schemes is the end-to-end latency where
extended delay can significantly compromise a user’s overall
experience. While all QoE issues are essential, reducing the
latent period is paramount [17]. It is worth noting that the
end-to-end data transmission latency encompasses both the
signal propagation delay and the waiting time during which
data resides in the system buffer before transmission [18],
[19]. However, in SatCom schemes, mitigating the propagation
delay poses a formidable challenge due to the Line-of-Sight
(LoS) connection and almost-fixed distances between the
satellite and user terminals. This inherent physical limitation
demands innovative solutions to ensure consistent and efficient
communication, enhancing the overall user experience.

In light of this challenge, our study focuses on addressing
the QoE issue by modeling it in terms of the waiting time of
data packets in the system buffer. This approach underscores
the significance of minimizing delays to improve overall user
satisfaction. At a specific time instance, the waiting time of
one beam is related to the stochastic queuing length which can
be managed by dynamically allocating the capacity for the data
transmission corresponding to this beam when the data arrival
rates vary. In general, a longer queuing length returns a higher
network congestion probability and a longer service time that
the users may suffer because the data spends more time in
the buffer before being processed and transmitted. When the
queuing length approaches a limit, the waiting time may exceed
users’ tolerance; hence, the QoE rate can degrade. In addition,
when the queue length violates the maximum buffer size of the
system in some critical scenarios, the satellite system can be
overloaded and the operating system can be blocked, resulting
in packet loss. To cope with such an issue and conserve the
required QoE, one demands a higher allocated capacity to
increase the service rate. On another hand, letting the system
operate with very short queuing lengths may imply that an over-
needed amount of capacity is allocated, and the renting cost
must increase. Then, our work aims to propose a novel dynamic
capacity planning model that minimizes the total renting cost
of SPs while maintaining a target blocking probability of the
system and a target queuing delay requirement of customers.

A. Related Works

The majority of existing frameworks for SatCom resource
allocation have primarily focused on maximizing overall power
and spectrum utilization efficiency. Different techniques have
been used, such as non-convex optimization for flexible power
and capacity assignment [20], beam illumination and selective
precoding [21], and joint beam selection and precoding [22].
The work in [20] focused on satellite–user association-oriented
capacity allocation to minimize the total uplink transmit power
for integrated satellite-terrestrial networks (ISTN). Research
on QoE-aware dynamic capacity allocation to maximize
user satisfaction in Orthogonal Frequency Division Multiple
Access (OFDMA) terrestrial networks considering time-varying
channels has been conducted [23], [24]. These approaches aim
to satisfy the overall demand by improving power, capacity, or

both utilization efficiency. However, all previous works consider
average beam demand which does not change over time. In
addition, the cost of satisfying this demand, the QoE of users,
and the amount of system capacity that remains unused is not
well-documented in the literature. Other studies have discussed
profit opportunities associated with 5G infrastructure dynamic
leasing [14] and revenue management in SatCom systems [25].

Previous research has also applied different queue models for
end-to-end latency estimation, capacity allocation, packet loss
minimization, and buffer bloat prevention in various wireless
communication systems. For example, the 𝑀/𝐺/1 queue model
has been used to estimate transient queue length [26], latency
estimation [27]–[29], the 𝐷/𝐷/𝐾 queue model for dynamic
buffer sizing [30], the 𝐺/𝐺/1 queuing model for Quality of
Service (QoS) analysis [31], and the 𝑀/𝐺/∞ queue model to
estimate the minimum required system capacity [32]. While
these studies use different queue models to maintain QoS in
different wireless systems, they fail to consider the QoE of
users and the time-varying nature of average arrival rates.

In other areas, time-varying queue model-based resource
allocation has been explored [33]. For example, in [34], [35]
the application of different time-varying queue models in large-
scale service systems such as customer contact centers and
hospital emergency departments is discussed. In these works,
iterative staffing algorithms (ISA) are developed to optimize
the staff levels at the customer center to satisfy the stochastic
waiting time requirement of customers. Herein, the state-of-
the-art 𝑀𝑡/𝑀/𝑆(𝑡) queue model is exploited where the 𝑀𝑡
indicates time-varying Poisson arrivals, and the 𝑆(𝑡) indicates
time-varying servers and the 𝑀 indicates a constant serving
capacity of the servers in every staffing interval. Then, an effi-
cient time-varying human-resource-management framework is
established by iteratively determining the staff level at a specific
time. Similarly, the authors in [36] also employed 𝑀𝑡/𝑀/𝑆(𝑡)
to develop a Deep-Reinforcement-Learning based framework to
optimize the beam-hopping strategy adapting with time-varying
data traffic flows coming to the multiple-beam SatCom systems.
Next, [37] describes how time-varying 𝑀𝑡/𝐺/∞ queue models
can be applied to staffing and capacity planning of cloud
services and protective equipment management in hospitals
during the outbreak of a disease. All works given in [34], [35],
[37] focus on a fixed processing rate at one serve (staff). On a
different approach, the changeable processing rate mechanism
is studied in [38] where the 𝑀𝑡/𝑀𝑡/1 queue model is used
for efficient resource allocation in industrial production by
estimating the stochastic probability of the system queue length.
However, this work mainly focuses on developing the admission
control strategy for network-slicing systems. Consequently,
there is a very limited number of works considering multiple
traffic flows accessing satellite systems as time-varying queue
models and exploiting this to develop a QoE-aware dynamic
capacity renting and allocation mechanism for the SPs to in
multiple-beam SatCom systems. Therefore, the work in this
paper aims to fill this gap in the literature.

B. Contributions

Our paper aims to propose a novel QoE-aware flexible
capacity renting framework for SaaS-enabled multiple-beam
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SatCom systems to effectively manage the renting costs at
the SPs. By employing the stochastic queuing theory, we first
formulate the problem as a stochastic optimization problem.
This allows us to examine the impact of system and user
requirements on the rent cost and the trade-off between them,
thereby assisting SPs in predicting the capacity they need
to request IPs to maintain a satisfied customer base while
minimizing rent costs. Our key technical contributions in this
article can be summarized as follows:

• First, we express the traffic flows using a time-varying
(𝑀𝑡/𝑀𝑡/1) queuing model and estimate the stochastic
queue length of packets waiting in the system by using
the continuous-time Markov chain (CTMC). The analysis
results are then employed to formulate a stochastic
optimization problem for QoE-aware dynamic capacity
allocation that includes queue status-based dynamic spec-
trum sharing among adjacent beams of the same cluster
to minimize cost. The problem aims to help SPs to be
able to efficiently allocate capacity and reduce un-utilized
capacity as well as their rent costs.

• Next, we estimate the stochastic blocking probability and
the probability of violating the waiting-time requirement
over the observation period, which allows SPs to predict
the impact of capacity allocation decisions on user
experience. We further analyze the trade-off between
maintaining user satisfaction and capacity rent cost in
SatCom systems will assist SPs in determining the optimal
balance between these two objectives, based on which
we provide a closed-form solution based on Lagrangian
duality making use of the estimated blocking probability.

• For comparison purposes, we introduce a greedy algorithm
and modify the ISA frameworks in [34], [35] to suit our de-
sign requirements. The proposed algorithms are validated
through numerical results and Monte Carlo simulations
using practical simulation parameters. The numerical
and simulation outcomes have effectively confirmed the
theoretical soundness of our proposed frameworks.

In summary, our proposed approach is based on the stochastic
queuing theory and aims to assist satellite service providers
in predicting the capacity they need to maintain a satisfied
customer base while minimizing rent costs by using a QoE-
aware dynamic capacity allocation model. Preliminary studies
related to this objective were presented in [1]. This current work
further extends our previous results by regarding multi-beam
settings with cross-beam interference avoidance constraints,
presenting robust theorem analysis, and delivering more solid
numerical and simulation demonstrations alongside added
benchmark comparisons. The rest of the paper is organized
as follows. In Section II, the system model and problem
formulation are described. The queuing stochastic analysis
and problem approximation are discussed in Section III. In
Section V, the numerical results are discussed. Finally, Section
VI concludes the paper. For notation, scalars are represented
in a normal italic font such as 𝑊 and 𝑢, while the vectors and
matrices are in bold, i.e., W and u. In addition, sans serif
font is utilized to denote the “suffix” abbreviations, such as,
𝑊 total, 𝑄max. For ease of reference, a list of key notations used

TABLE I: List of Key Notations

Notation Definition
𝐵 Total number of virtual beams
𝐶 Number of adjacent beam clusters
𝐾 Number of cycles
𝐿 Normalized packet length (bits) (bps)
𝑀 Number of time slots per cycle 𝐾

𝑃𝑛,𝑏 (𝑡 ) Probability of 𝑛 packets in beam 𝑏 at time 𝑡
𝑃̂𝑛,𝑏 (𝑡 ) Approximated number of packets in beam 𝑏 at time 𝑡
𝑃̄Blk Target blocking probability
𝑃̄QoE Target QoE requirement violation probability
𝑄max Maximum buffer length
𝑄QoE Target queue length
𝑄𝑏 (𝑡 ) Queuing length of data flows in beam 𝑏 at time 𝑡
𝑆 Number of data flows per beam
𝑆𝑏
𝑘

Number of capacity packages in beam 𝐵 at cycle K
𝑇 Total observation time (seconds)
𝑇TS Time slot duration (seconds)
U Adjacency matrix
u𝑐 𝑐-th row of U

𝑉𝑏
QoE,𝑘 Max QoE violating probability for beam 𝑏 at cycle 𝐾
𝑉𝑏

bl,𝑘 Maximum blocking probability in beam 𝐵 at cycle 𝐾
W Matrix containing all 𝑊𝑏

𝑘
’s

𝑊 total Total available capacity of the satellite (bps)
𝑊 (𝑡 ) Total rented capacity at time 𝑡
𝑊𝑏 (𝑡 ) Capacity rented for beam 𝑏 at time 𝑡 (bps)
𝑊𝑏

𝑘
Capacity rented for beam 𝑏 at cycle 𝑘 (bps)

W𝑘 Vector of rented capacity at cycle 𝑘 (bps)
𝜆𝑏𝑠 (𝑡 ) Arrival rate data packets of flow 𝑠 to beam 𝑏

𝛽𝑏 , 𝜁 𝑐 Lagrangian multipliers
𝜌𝑏 (𝑡 ) Beam 𝑏 utilization at time 𝑡
Λ𝑏 (𝑡 ) Total arrival rate to beam 𝑏

𝛾 Price per Mbps

Cycle 1 Cycle(K-1)Cycle 3Cycle 2 Cycle K...

(k-1)M kM...

Wmax

W(t)
Demand

M 2M 3M

Time (ms)

C
ap
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Fig. 1: Capacity allocation for time-varying demand.

in this paper is provided in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We examine a SaaS platform in a multi-beam geostationary
satellite (GEO) communication system where the overall
available capacity of a GEO satellite is owned by an IP that
can be rented by SPs1 The study focuses on a scenario where a
specific SP2 rents a time-varying amount of capacity from the
IP to provide broadband services to multiple users randomly
distributed across 𝐵 beams. Let 𝑊 (𝑡) (bps) represent the total
capacity rented by the SP from IP to serve all traffic flows across
all beams. Each beam is assigned a portion of this capacity,
denoted by 𝑊𝑏 (𝑡), which can range from 0 to 𝑊 (𝑡), i.e.

1It is worth noting that the results can be applied to other SaaS-enabled
Non-geostationary satellite (NGSO) systems with multiple satellites as well.

2The work can be efficiently scaled up for a general scheme consisting of
multiple SPs as well.
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Fig. 2: The footprints of clusters containing 𝐽 adjacent beams with non-overlapping frequency allocation.

0 ≤ 𝑊𝑏 (𝑡) ≤ 𝑊 (𝑡). The network operates in a time-slot manner,
with each time slot having a duration of 𝑇TS as the transmission
time. Due to possible processing speed capability limitations of
DTP reconfiguration combined with the consequent signaling
through the tracking, telemetry, and command system (TT&C)
links [12], it is assumed that 𝑊𝑏 (𝑡) remains constant for a
cycle duration of 𝑀 time slots. 𝑊𝑏 (𝑡) can only be reset at time-
slot indices 𝑡𝑐 ∈ {0,𝑀 , 2𝑀 , ..., 𝑘𝑀 , ...} and 𝑊𝑏 (𝑡) = 𝑊𝑏 (𝑘𝑀)
if 𝑡 ∈ ((𝑘 − 1)𝑀𝑇TS, 𝑘𝑀𝑇TS] where 𝑘 = 1, 2, ...,𝐾. We refer
to 𝑊𝑏 (𝑘𝑀) as 𝑊𝑏

𝑘
, which represents the allocated capacity

of beam 𝑏 in cycle 𝑘 . The design framework considers a
monitoring period of 𝐾 cycles, equivalent to a total operation
time of 𝑇 = 𝐾𝑀𝑇TS (seconds).

Let 𝑓 (𝑋) stand for the cost function corresponding to 𝑋

(bps) that the SP rents from IP. Normally, 𝑓 (𝑋) is a monotonic
increasing function with respect to 𝑋 which reflects the idea
that renting more capacity incurs more rental cost. Then, the
total renting cost that the SPs have to pay to the IP during 𝑇
seconds can be expressed as,

𝐹𝑆𝑃 = 𝑓

(∫ 𝑇

0
𝑊 (𝑡)𝑑𝑡

)
= 𝑓

(
𝐵∑︁
𝑏=0

𝐾−1∑︁
𝑘=0

𝑀𝑇TS𝑊
𝑏
𝑘

)
. (1)

A. Capacity Allocation and Frequency Reuse

To address the strong cross-beam interference between adja-
cent beams, a dynamic multi-color capacity allocation policy is
employed in this multi-beam transmission system. This differs
from traditional color-reuse schemes, where the spectrum is
equally distributed. Here, the spectrum is freely allocated to
beams, ensuring that different and non-overlapping frequency
bands are assigned to two arbitrary adjacent beams. It follows
that the sum of capacity assigned to any cluster of 𝐽 adjacent
beams must not exceed the maximum available spectrum band
capacity. For instance, Figs. 2a and 2b demonstrate settings of
3 and 4 adjacent-beam clusters with non-overlapping spectrum.

For a specific beam pattern, let 𝐶 be the number of available
𝐽-adjacent-beam clusters and U ∈ {0, 1}𝐶×𝐵 be the adjacency
matrix. In the 𝑐𝑡ℎ row of U, only 𝐽 elements corresponding
to the indices of 𝐽 adjacent beams of cluster 𝑐 are set to one,
while the others are set to zero. The dynamic multi-color reuse

capacity allocation requirement can then be described by the
following constraint:

UW𝑘 ≤ 𝑊 total1𝐶×1, (2)

where W𝑘 =
[
𝑊1
𝑘
, ...,𝑊𝑏

𝑘
, ...,𝑊𝐵

𝑘

]𝑇 , 𝑊 total (bps) indicates the
maximum reusable capacity available per cluster, and 1𝐶×1
stands for a one-vector with size of 𝐶 × 1.

B. Queuing Model

From user perspective, a single device can generate multiple
data packets that correspond to various applications operating
on it concurrently. It’s assumed that packets corresponding
to a specific application type have identical packet sizes.
Consequently, the number of packets resulting from a particular
application, which is run by several devices concurrently, can
be consolidated into a traffic flow with a projected arrival rate.
This number of packets adheres to a random process, with
the estimated arrival rate serving as the mean value [39]–[41].
This work deals with heterogeneous time-varying traffic rates
generated by different applications such as voice, video streams,
and web browsing. To handle this, the demands from end users
are modeled as multiple queues accessing each beam. The data
flows are classified based on their corresponding statistical
parameters, such as arrival rates and packet lengths. In this
model, the arrived packets are processed based on the basic
first-come first-served strategy.

Consider 𝑆 data-flows corresponding to 𝑆 services tending
to access each of 𝐵 beams as shown in Figure 3. We further
assume that the flow 𝑠 carrying data packets of 𝐿𝑠-bit length
comes to beam 𝑏 at a time 𝑡 following an independent Poison
process3 [39]–[42] with a time-varying arrival rate of 𝜆𝑠 (𝑡),
i.e., 𝜆𝑠 (𝑡) is the number of packets that changes over the time.
The total arrival rate in bits per second to a beam becomes

Λ𝑏 (𝑡) =
𝑆∑︁
𝑠=1

𝜆𝑏𝑠 (𝑡)𝐿𝑠 . (3)

3The traffic-flow arrival rates of some typical use cases for the next-
generation communication services, such as Internet of Things with small
packets and virtual-image communication, have been reported to follow the
Poisson process [39]–[42].
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Fig. 3: Capacity allocation for a queued flow of packets in multiple
beam satellite networks.

Suppose that a packet of 𝐿 bits is a normalized processing unit
in this SatCom system. As a result, the arrived data can be
divided into packets of 𝐿 bits for transmission. Consequently,
the total arrival rate in terms of the number of packets at beam
𝑏 can be determined as

𝜆𝑏 (𝑡) = Λ𝑏 (𝑡)/𝐿. (4)

Additionally, the service rate for all flows entering beam 𝑏 at
any time 𝑡, which is estimated as the number of packets based
on the corresponding allocated capacity, can be expressed as,

𝜇𝑏 (𝑡) = 𝑊𝑏 (𝑡)𝑇TS/𝐿. (5)

Remark 1. The users’ demands in terms of QoS can be
captured by the traffic flow model. For instance, a higher
transmission rate can be equated to an elevated arrival rate
(𝜆𝑏𝑠 (𝑡) is scaled-up) or an extended packet size (𝐿𝑠 is set to a
larger value). Moreover, rapid time-varying requirements can
be depicted by a more fluctuating function of the time-varying
arrival rate setting, 𝜆𝑏𝑠 (𝑡).

C. QoE Requirement and Problem Formulation

In this section, we aim to ensure that the allocated capacity
for every beam does not become a bottleneck violating the
required QoE. Here, we probabilistically model the QoE
requirements in the manner of transmission delay (waiting
time) for the users in each beam with the queuing length of
packets available in the data buffer corresponding to that beam
transmission.

Specifically, let 𝑄𝑏 (𝑡) denote the queuing length of data
packets stored in the buffer of beam 𝑏 at time 𝑡. Then, one
denotes 𝑃𝑛,𝑏 (𝑡) = 𝑃𝑟 (𝑄𝑏 (𝑡) = 𝑛) as the probability that there
are 𝑛 packets in the buffer of beam 𝑏 at time 𝑡. As discussed
in [33], due to the time-varying arrival rate models, 𝑃𝑛,𝑏 (𝑡)
can be expressed as a function of 𝑡. Assuming that users in all
beams have the same waiting time tolerance which corresponds
to a QoE threshold of queuing length 𝑄QoE. The experience
of network utilization is considered “acceptable” by the users
if the probability of that such threshold is violated is less than
a commitment factor 𝑃̄QoE, i.e., 0 < 𝑃̄QoE < 1. Therefore, the
design in this work focuses on keeping the probability that

the queue length surpasses 𝑄QoE packets over the window
time of [0,𝑇] less than 𝑃̄QoE for all the beams, which can be
expressed as

1
𝑇

∫ 𝑇

0
𝑃𝑟

{
𝑄𝑏 (𝑡) ≥ 𝑄QoE

}
𝑑𝑡 ≤ 𝑃̄QoE,∀𝑏. (6)

One further assumes that the length of every beam buffer is
limited by 𝑄max, so-called the maximum buffer length. Herein,
it also needs to ensure that the queue length at every beam
does not surpass 𝑄max beams as much as possible, otherwise,
the processing of all data flows to the particular beam will
be blocked. Regarding the network admission requirements,
our design needs to maintain the blocking probability below
a predetermined threshold for every time slot [42]. This
requirement can be cast by the following constraint,

𝑃𝑟
{
𝑄𝑏 (𝑡) ≥ 𝑄max

}
≤ 𝑃̄Blk ∀(𝑡, 𝑏), (7)

where 𝑃̄Blk is the target blocking probability. Taking into
account that 𝑃𝑟

{
𝑄𝑏 (𝑡) ≥ 𝑁

}
= 1−∑𝑁

𝑛=1 𝑃𝑛,𝑏 (𝑡), our technical
designs can be formulated into a statistical optimization
problem as follows.

min
W

𝑓

(∑︁
∀𝑏

∑︁
∀𝑘
𝑀𝑇TS𝑊

𝑏
𝑘

)
(8a)

s.t. constraint (2),
𝑄max∑︁
𝑛=0

𝑃𝑛,𝑏 (𝑡) ≥ 1 − 𝑃̄Blk,∀(𝑡, 𝑏), (8b)

1
𝑇

∫ 𝑇

0

(
𝑄QoE∑︁
𝑛=0

𝑃𝑛,𝑏 (𝑡)
)
𝑑𝑡 ≥ 1 − 𝑃̄QoE,∀𝑏, (8c)

where W represents the matrix containing all 𝑊𝑏
𝑘

’s. As
observed, this presents a stochastic optimization problem
wherein the constraints correspond to a random process. The
primary challenge in resolving this problem stems from the
statistical formulas articulated in constraints (8b) and (8c). In
this context, while the problem data remains uncertain, the
queuing model incorporating the Poisson process, as discussed
in Section II-B, serves as the foundation for our solution
framework.

Remark 2. It is worth noting that 𝑓 (𝑋) is an increasing
function so the SP has to pay more if it rents more capacity.
Hence, problem (8) is equivalent to the following,

min
W

𝑀𝑇TS

∑︁
∀𝑏

∑︁
∀𝑘
𝑊𝑏
𝑘

s.t. constraints (2), (8b), and (8c).
(9)

III. QUEUING STOCHASTIC ANALYSIS AND PROBLEM
APPROXIMATION

A. Time-Varying Queuing Stochastic Brief Discussion

The total demand in each beam, which is the sum of arrivals
of all data flows, varies over time and can be modeled as a
continuously varying arrival rate. Consequently, the number of
packets in the buffers in each time slot is a stochastic process.
To model this behavior, we represent the number of packets at
each time slot as a CTMC, as shown in Fig. 4. This stochastic
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1 2 3 n n+1

p(1,b), 𝛍b(t)  

p(0,b), 𝛬b(t) p(1,b), 𝛬b(t)

p(2,b), 𝛍b(t)  

p(2,b), 𝛬b(t) p(n-1,b), 𝛬b(t) p(n,b), 𝛬b(t)

p(n+1,b), 𝛍b(t)  p(n,b), 𝛍b(t)  p(3,b), 𝛍b(t)  

Fig. 4: Queue state transition diagram of beam 𝑏.

process can be described using a system of ordinary differential
equations (ODEs) known as the Kolmogorov equations [33],
and the queue length follows a birth-death process. The
transient solution of the Kolmogorov equation yields the
stochastic queue length values as:

𝜕𝑃0,𝑏 (𝑡)
𝜕𝑡

=


−𝜆𝑏 (𝑡)𝑃0,𝑏 (𝑡) + 𝜇𝑏 (𝑡)𝑃1,𝑏 (𝑡), if 𝑛 = 0,
𝜆𝑏 (𝑡)𝑃𝑛−1,𝑏 (𝑡) + 𝜇𝑏 (𝑡)𝑃𝑛+1,𝑏 (𝑡)

−(𝜆𝑏 (𝑡) + 𝜇𝑏 (𝑡))𝑃𝑛,𝑏 (𝑡), if 𝑛 > 0,
(10)

where
𝜕𝑃0,𝑏 (𝑡)
𝜕𝑡

indicates the derivative of 𝑃𝑛,𝑏 (𝑡) at time 𝑡.
However, since the Kolmogorov equation does not yield explicit
solutions for the transition probabilities, various more suitable
methods have been developed to approximate the solutions, as
described in [33], [38], [43]. Denote 𝑄(𝑡) as the queue length
at time 𝑡. Then, the transient probabilities can be approximated
by a cumulative distribution function given by:

𝐹 (𝑄, 𝑡) = 𝑃𝑟 (𝑄(𝑡) ≤ 𝑄). (11)

The expected value of the queue distribution at the buffer of
beam 𝑏 provides,∫ 𝑛+1

𝑛

𝐹 (𝑄, 𝑡)𝑑𝑄 ≈ 𝑃𝑛,𝑏 (𝑡). (12)

The beam utilization at any time slot t is calculated as,

𝜌𝑏 (𝑡) = 𝜆𝑏 (𝑡)
𝜇𝑏 (𝑡)

. (13)

The continuous-model approximation is exact in steady-state
[38]. Therefore, the approximated probability of the availability
of 𝑛 packets in the buffer system of beam 𝑏 at any time slot 𝑡
can be expressed as

𝑃̂𝑛,𝑏 (𝑡) =
∫ 𝑛+1

𝑛

𝐹 (𝑄)𝑑𝑄 = 𝜌𝑏 (𝑡)𝑛 (1 − 𝜌𝑏 (𝑡)). (14)

B. Problem Approximation

This section exploits the continuous-model approximation in
(14) to express the stochastic queue length in terms of capacity
and express the constraints as a function of capacity 𝑊𝑏

𝑘
.

Expressing 𝜇𝑏 (𝑡) in (5) in terms of𝑊𝑏
𝑘

for 𝑡 ∈ ((𝑘 − 1)𝑀 , 𝑘𝑀)
and 𝑘 ∈ {1, ..,𝐾}, one can rewrite (14) as,

𝑃̂𝑛,𝑏 (𝑡) = 𝑔𝑛,𝑏 (𝑊𝑏
𝑘 , 𝑡)

=

(∑𝑆
𝑠=1 𝜆

𝑏
𝑠 (𝑡)𝐿𝑠

𝑇TS𝑊
𝑏
𝑘

)𝑛 (
1 −

∑𝑆
𝑠=1 𝜆

𝑏
𝑠 (𝑡)𝐿𝑠

𝑇TS𝑊
𝑏
𝑘

)
, ∀(𝑘 , 𝑏).

(15)
Since the beams can not serve beyond their maximum capacity,
the system utilization constraint needs to satisfy 𝜌𝑏 (𝑡) ≤ 1 [38].
Otherwise, 𝜌𝑏 (𝑡) > 1 indicates the system is over-congested
and users are blocked from accessing the corresponding beam.

Letting Ω𝑘 denote the set
(
(𝑘 − 1)𝑀 , 𝑘𝑀

]
, one can restate

problem (9) as,

min
W

𝑀𝑇TS

𝐵∑︁
𝑏=1

𝐾∑︁
𝑘=1

𝑊𝑏
𝑘 (16a)

s.t. constraint (2),
𝑄max∑︁
𝑛=0

𝑔𝑛,𝑏 (𝑊𝑏
𝑘 , 𝑡) ≥ 1 − 𝑃̄Blk,∀𝑘 ,∀𝑏 and 𝑡 ∈ Ω𝑘 , (16b)

1
𝑇

𝐾∑︁
𝑘=1

∫ 𝑘𝑀

(𝑘−1)𝑀

𝑄QoE∑︁
𝑛=0

𝑔𝑛,𝑏 (𝑊𝑏
𝑘 , 𝑡)𝑑𝑡 ≥ 1 − 𝑃̄QoE,∀𝑏,

(16c)

0 ≤ 𝜌𝑏 (𝑡) ≤ 1, ∀𝑡,∀𝑏. (16d)

IV. DYNAMIC CAPACITY ALLOCATION DESIGN

In this section, we aim to explain the step-by-step approach
to find the optimal dynamic capacity allocated across all beams.

A. Problem Convexity Characterization

In order to solve problem (16), we first characterize its
convexity. To begin with, we first define the lower bound
capacity amount required per cycle in which 𝜇𝑏 (𝑡) is fixed by
considering the following proposition.

Proposition 1. Constraints (16b) and (16d) in problem (16)
can be merged into one constraint as

𝑊𝑏
𝑘 ≥ 𝛼𝑏𝑘 = max

(
𝛼𝑏𝑘,1,𝛼𝑏𝑘,2

)
,∀𝑘 ,∀𝑏, (17)

where 𝛼𝑏
𝑘,1 = max𝑡∈Ω𝑘

𝐿𝜆𝑏 (𝑡)/𝑇TS,
𝛼𝑘,2 = max𝑡∈Ω𝑘

𝐿𝑔−1
𝑄max

(1 − 𝑃̄Blk, 𝑡)/𝑇TS, and 𝑔−1
𝑄max

(𝑃̄Blk, 𝑡) is
the inverse function of

∑𝑄max
𝑛=0 𝑔𝑛,𝑏 (𝑊𝑏

𝑘
, 𝑡).

Proof: The proof is given in Appendix A
In the next move, based on the result of this proposition and

the fact that (17) is a linear constraint, we state the convexity
of problem (16) in the following theorem.

Theorem 1. Problem (16) can be transformed into the
following optimization problem which is convex,

min
Wb

∑︁
∀𝑏

∑︁
∀𝑘
𝑀𝑇TS𝑊

𝑏
𝑘 (18a)

s.t. constraint (17),∑︁
∀𝑘
𝑧𝑘 (𝑊𝑏

𝑘 ) ≥ 1 − 𝑃̄QoE, (18b)

where 𝑧𝑘 (𝑥) = 𝑀𝑇TS/𝑇 − 𝐴𝑏
𝑘
/
(
𝑇𝑥𝑄QoE+1) .

Proof: The proof is given in Appendix B
Thanks to Proposition 1 and Theorem 1, one can state that

(16) is equivalent to convex problem (18). In the following
section, a dynamic resource allocation algorithm is proposed
by developing an optimization-based approach to obtain the
optimal solution of this problem.
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B. Duality-based Dynamic Capacity Allocation Algorithm

1) Duality Approach: We first define the Lagrangian func-
tion L associated with (18) as,

L(W, 𝛽, 𝜁) = 𝑀𝑇TS
∑

∀(𝑏,𝑘 )
𝑊𝑏
𝑘
+ ∑

∀(𝑘,𝑐)
𝜁 𝑐

(
u𝑐W𝑘 −𝑊 total

)
− ∑

∀𝑏
𝛽𝑏

(∑
∀𝑘
𝑧𝑘 (𝑊𝑏

𝑘
) − 1 + 𝑃̄QoE

)
, (19)

where 𝛽𝑏 and 𝜁 𝑐 are the Lagrangian multipliers; u𝑐 stands
for the vector generated from the 𝑐-th row of U; and W𝑘 =

[𝑊1
𝑘
,𝑊2

𝑘
, ...,𝑊𝐵

𝑘
]𝑇 . Then, the dual function of 𝑊𝑏

𝑘
can be

defined as the minimum of the Lagrangian function as,

g(𝛽) = min
W

L(W, 𝜷, 𝜻) s.t. (17). (20)

To find the best lower bound that can be obtained from the
Lagrange dual function, the dual problem can be written as,

max
𝛽𝑏 ,𝜁 𝑐

g(𝛽, 𝜁) s.t. 𝛽𝑏 ≥ 0, 𝜁 𝑐 ≥ 0. (21)

Since problem (18) is convex, the dual-gap between the primary
and dual problem is zero [44]. In the following, one will
describe a searching approach to define the optimal solution.
In particular, the dual problem is always convex, g(𝛽𝑏, 𝜁 𝑐)
can be maximized by using the standard sub-gradient method
where the dual variables 𝛽𝑏 and 𝜁 𝑐 are first initialized to
random values in the dual feasibility region of 𝛽𝑏 > 0, 𝜁 𝑐 > 0,
g(𝛽𝑏, 𝜁 𝑐) > −∞ [45]. The dual variables can be iteratively
updated as follows:

𝛽𝑏[ℓ+1] =

[
𝛽𝑏[ℓ ] − 𝛿[ℓ ]

(
𝐾∑︁
𝑘=1

𝑧𝑘 (𝑊𝑏
𝑘 ) − 1 + 𝑃̄QoE

)]+
, (22)

and 𝜁 𝑐
𝑘,[ℓ+1] =

[
𝜁 𝑐
𝑘,[ℓ ] + 𝛿[ℓ ]

(
u𝑐W𝑘 −𝑊 total

)]+
, (23)

where the suffix [ℓ] represents the iteration index, 𝛿[ℓ ] is the
step size, and [𝑥]+ is defined as max(0, 𝑥). This sub-gradient
method guarantees the convergence for any initial primary
point of {𝑊𝑏

𝑘
}’s if the step-size 𝛿[ℓ ] is chosen appropriately

so that 𝛿[ℓ ]
ℓ→∞−→ 0 such as 𝛿[ℓ ] = 1/

√
ℓ [44], [46].

2) Solving the optimization problem related to dual function:
This section focuses on minimizing the Lagrangian function,

min
W

L(W, 𝜷, 𝜻) s.t. constraint (17). (24)

Proposition 2. The optimal solution of (24) is given as

(𝑊𝑏
𝑘 )
★ = max(𝛼𝑏𝑘 , 𝑊̂𝑏

𝑘 ), (25)

where,

𝑊̂𝑏
𝑘 =

{
𝛽𝑏𝐴𝑏𝑘 (𝑄QoE+1)/

[(
𝑀𝑇𝑝+

𝐶∑︁
𝑐=1
𝜁 𝑐𝑈𝑐,𝑏

)
𝑇

]}1/(𝑄QoE+2)

, (26)

𝐴𝑏
𝑘

is as defined in (49) and 𝑈𝑐,𝑏 is the element on row 𝑐 and
column 𝑏 of matrix U.

Proof: The proof is given in Appendix C.

Algorithm 1 DUALITY-BASED DYNAMIC CAPACITY ALLO-
CATION

1: Initialization:
• Choose initial dual vector values 𝛽𝑏 and 𝜁 𝑐.
• Select a tolerate 𝜖 , step size 𝛿, and set Δ1 = 1, Δ2 = 1
ℓ = 0.

• Define U , 𝑊 total and provide values for 𝑄QoE, 𝑃̄Blk,
𝑃̄QoE and 𝑄max.

2: while Δ1 > 𝜖 and Δ2 > 𝜖 do
3: Given 𝛽𝑏[ℓ ] and 𝜁 𝑐[ℓ ] , define (𝑊𝑏

𝑘
)★’s as in (25) and (26).

4: Based on (𝑊𝑏
𝑘
)★’s, update 𝛽𝑏[ℓ+1] as in (22).

5: Based on (𝑊𝑏
𝑘
)★’s, update 𝜁 𝑐[ℓ+1] as in (23).

6: Re-set Δ1 := |𝛽𝑏[ℓ+1] − 𝛽
𝑏
[ℓ ] |.

7: Re-set Δ2 := |𝜁 𝑐[ℓ+1] − 𝜁
𝑐
[ℓ ] |.

8: Set ℓ := ℓ + 1.
9: end while

10: Return W★
𝑘
.

Algorithm 2 GREEDY-BASED DYNAMIC CAPACITY ALLOCA-
TION

1: Inputs:
• Provide initial values for 𝜆𝑏

𝑖,𝑘 , 𝐿𝑠 .
• Provide values for 𝑄QoE, 𝑃̄Blk, 𝑃̄QoE and 𝑄max.

2: for 𝑏 = 1 to Number of beams do
3: for 𝑘 = 1 to Number of cycles do
4: Calculate 𝛼𝑘,1,𝛼𝑘,2,𝛼𝑘,3 .
5: Calculate max(𝛼𝑘,1,𝛼𝑘,2, 𝛼𝑘,3).
6: end for
7: end for
8: Return W★.

3) Proposed Duality-based Algorithm: Thanks to the duality
approach, the optimal solution of problem (18) can be obtained
by alternatively solving problem (24) - the right-hand-side of
(20) - as presented in Proposition 2, and updating Lagrangian
multipliers 𝛽𝑏 and 𝜁 𝑐 as in (22) and (23) in each iteration
until the convergence. The optimization-based approach is
summarized in Algorithm 1 where the iteratively solving
process can be stopped when the gaps Δ1 =

∑𝐵
𝑏=1 |𝛽𝑏[ℓ+1]−𝛽

𝑏
[ℓ ] |

and Δ2 =
∑𝐶
𝑐=1 |𝜁 𝑐[ℓ+1] − 𝜁

𝑐
[ℓ ] | are sufficiently small.

C. Greedy Algorithm

To mitigate the complexity of solving our problem given
in the previous section, this section introduces a straightfor-
ward and efficient greedy algorithm. As evident, the primary
challenge in addressing problem 16 arises from the coupling
of all 𝑊𝑏

𝑘
throughout the entire time window 𝑇 as illustrated

in (16c) for each beam. In particular, directly handling this
constraint needs to consider the average probability of QoE
violation across the entire time window 𝑇 . To simplify this
process, we disregard the average value, prompting the system
to meet the QoE requirement at every given moment. As such,
constraint (16c) is replaced by a more stringent version, which
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is presented as follows:

𝑄QoE∑︁
𝑛=0

𝑔𝑛,𝑏 (𝑊𝑏
𝑘 , 𝑡) ≥ 1 − 𝑃̄QoE,∀𝑘 ,∀𝑏 and 𝑡 ∈ Ω𝑘 . (27)

This new constraint is similar to (16b). By employing the same
approach handling (16b) given in Proposition 1, we first define
the maximum arrival rate over one cycle as,

𝜆𝑏𝑖,𝑘 = max
𝑡∈Ω𝑘

𝜆𝑏𝑖 (𝑡). (28)

Then, the new constraint in (27) can also be translated into,

𝑊𝑏
𝑘 ≥ 𝛼𝑏𝑘,3 = max

𝑡∈Ω𝑘

𝐿𝑔−1
𝑄QoE

(
1 − 𝑃̄QoE, 𝑡

)
/𝑇TS. (29)

Thanks to Proposition 1, we are able to estimate the required
capacity of each beam over every cycle by taking the maximum
capacity that satisfies the problem constraints. That is,

(𝑊𝑏
𝑘 )
★ = max

(
𝛼𝑏𝑘,1,𝛼𝑏𝑘,2,𝛼𝑏𝑘,3

)
. (30)

The greedy algorithm is summarized in Algorithm 2.

D. Other Benchmark Algorithm

This subsection introduces another benchmark solution for
comparison purposes, which is developed by adapting the ISA
given in [34]. The ISA is well-established for time-varying
human resource management to satisfy the stochastic waiting
time requirement of customers. In [34], the 𝑀𝑡/𝑀/𝑆(𝑡) queue
model is employed where the serving capacity of one server
(or employees) is fixed (𝑀) while the number of servers
(employees) can be varied over the time. Herein, 𝑆(𝑡) represents
the number of allocated employees at time 𝑡, and the ISA
is designed to determine 𝑆(𝑡) coping with the time-varying
customer arrival rate efficiently.

As can be seen, the queuing model utilized in [34] is different
from our 𝑀𝑡/𝑀𝑡/1 scheme which is related to one server with
variable serving capacity. Hence, in order to modify this work
to address our problem, we assume that the capacity amount
allocated to beam 𝑏 in cycle 𝑘 can be represented by a number
of “fixed capacity packages”. Let 𝑊0 (bps) be the capacity
of one such package, and 𝑆𝑏

𝑘
denote the number of capacity

packages assigned for beam 𝑏 in cycle 𝑘 . Then, we have,

𝑊𝑏
𝑘 = 𝑆

𝑏
𝑘𝑊0. (31)

In addition, the processing rate corresponding to one package
can be estimated as

𝜇0 = 𝑊0𝑇TS/𝐿. (32)

Now, we can employ the ISA to optimize {𝑆𝑏
𝑘
}’s by regarding

the constraints (8b) and (8c) instead of the stochastic waiting
time as designed in [34]. Specifically, at the initialization,
{𝑆𝑏
𝑘
}’s are randomly selected and then adjusted over iterations.

There are two components to define 𝑆𝑏
𝑘

in every iteration 𝑖,
the first is 𝑆𝑏bl,𝑘 (𝑖) - being updated according to the blocking
probability requirement, and the latter is 𝑆𝑏QoE,𝑘 (𝑖) - being
adjusted due to QoE-related demand. Here, constraint (8c)
is considered for every cycle to update 𝑆𝑏QoE,𝑘 (𝑖). To ensure

Algorithm 3 ISA-BASED CAPACITY ALLOCATION

1: Input:
• Initialize a vector of the number of packages 𝑆𝑏

𝑘
(0).

• Set values of 𝑃̄Blk , 𝑃̄QoE, 𝜇0, Δ and Δ0, 𝜖1 = 10−4 ,
counter 𝑖 = 0.

2: while Δ > 𝜖1 and Δ0 > 𝜖1 do
3: For every 𝑡 ∈ Ω𝑘 , calculate 𝜌𝑏 (𝑡) = 𝜆𝑏 (𝑡)/(𝜇0𝑆

𝑏
𝑘
(𝑖))

and 𝑃̂𝑛,𝑏 (𝑡) according to (14).
4: Calculate 𝑉𝑏bl,𝑘 (𝑖) as in (35) and 𝑉𝑏QoE,𝑘 (𝑖) as in (38).
5: Calculate ψ𝑏bl,𝑘 (𝑖) as in (34) and ψ𝑏QoE,𝑘 (𝑖) as in (37).
6: Calculate 𝑆𝑏bl,𝑘 (𝑖 + 1) as in (33) and 𝑆𝑏QoE,𝑘 (𝑖 + 1)

according to (36).
7: Set Δ = |𝑉𝑏QoE,𝑘 (𝑖) − 𝑃̄QoE |.
8: Set Δ0 = |𝑉𝑏bl,𝑘 (𝑖) − 𝑃̄Blk |.
9: Set 𝑖 = 𝑖 + 1.

10: Set 𝑆𝑏
𝑘
(𝑖) = max

{
𝑆𝑏bl,𝑘 (𝑖 + 1), 𝑆𝑏QoE,𝑘 (𝑖 + 1), 𝑆𝑏

𝑘
(0)

}
.

11: end while
12: Return W𝑏

𝑘
= 𝐿𝜇0S𝑏

𝑘
/𝑇TS.

compliance with the blocking probability requirement stated
in (16b), 𝑆𝑏bl,𝑘 (𝑖) is updated as follows:

𝑆𝑏bl,𝑘 (𝑖 + 1) =
{
⌈𝑆𝑏bl,𝑘 (𝑖)ψ

𝑏
bl,𝑘 (𝑖)⌉ if ψ𝑏bl,𝑘 (𝑖) ≥ 1,

⌊𝑆𝑏bl,𝑘 (𝑖)ψ
𝑏
bl,𝑘 (𝑖)⌋ otherwise,∀𝑘 ,

(33)

where ⌈.⌉ and ⌊.⌋ indicate the ceil and floor operators and
ψ𝑏bl,𝑘 (𝑖) is the blocking-probability influence factor correspond-
ing to 𝑆𝑏

𝑘
(𝑖) and 𝑃̄Blk. In particular, ψ𝑏bl,𝑘 (𝑖) can be given as

ψ𝑏bl,𝑘 (𝑖) = 1 +
𝑉𝑏bl,𝑘 (𝑖) − 𝑃̄Blk

𝑃̄Blk𝑖
,∀𝑘 , (34)

where 𝑉𝑏bl,𝑘 (𝑖) indicates the maximum blocking probability
during cycle 𝑘 corresponding to 𝑆𝑏

𝑘
(𝑖). Specifically, 𝑉𝑏bl,𝑘 is

given as follows:

𝑉𝑏bl,𝑘 = max
𝑡∈Ω𝑘

𝑄max∑︁
𝑛=0

𝑃̂𝑛,𝑏 (𝑡)
���
𝑊𝑏

𝑘
=𝑊0𝑆

𝑏
𝑘
(𝑖)

. (35)

Similarly, the 𝑆𝑏QoE,𝑘 (𝑖) in iteration 𝑖 is updated as follows:

𝑆𝑏QoE,𝑘 (𝑖 + 1) =
{
⌈𝑆𝑏QoE,𝑘 (𝑖)ψ

𝑏
QoE,𝑘 (𝑖)⌉ if ψ𝑏QoE,𝑘 (𝑖) ≥ 1,

⌊𝑆𝑏QoE,𝑘 (𝑖)ψ
𝑏
QoE,𝑘 (𝑖)⌋ otherwise,∀𝑘 ,

(36)
where ψ𝑏QoE,𝑘 (𝑖) is a QoE-related influence factor correspond-
ing to 𝑆𝑏

𝑘
(𝑖) and 𝑃̄QoE. Here, ψ𝑏QoE,𝑘 (𝑖) is expressed as,

ψ𝑏QoE,𝑘 (𝑖) = 1 +
𝑉𝑏QoE,𝑘 (𝑖) − 𝑃̄QoE

𝑃̄QoE𝑖
,∀𝑘 , (37)

where 𝑉𝑏QoE,𝑘 (𝑖) indicates the maximum probability of violating
the target QoE requirement during cycle 𝑘 with 𝑆𝑏

𝑘
(𝑖) as

𝑉𝑏QoE,𝑘 = max
𝑡∈Ω𝑘

𝑄QoE∑︁
𝑛=0

𝑃̂𝑛,𝑏 (𝑡)
���
𝑊𝑏

𝑘
=𝑊0𝑆

𝑏
𝑘
(𝑖)

. (38)
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In addition, to meet the condition 𝜌𝑏 (𝑡) ≤ 1 of (16c), it is
essential to carefully set 𝑆𝑏

𝑘
in a way 𝜇0𝑆

𝑏
𝑘
≥ 𝜆𝑏 (𝑡) for every

𝑡 ∈ Ω𝑘 . Then, 𝑆𝑏
𝑘

can be updated as

𝑆𝑏𝑘 (𝑖) = max
{
𝑆𝑏bl,𝑘 (𝑖 + 1), 𝑆𝑏QoE,𝑘 (𝑖 + 1), 𝑆𝑏𝑘 (0)

}
(39)

Accordingly, the adapted ISA is summarized in Algorithm 3.

E. Complexity Analysis

The complexity of Algorithm 1 arises from calculating 𝛼𝑏
𝑘

and also processing a number of loops in each of that 𝛽𝑏[ℓ ] ,
𝜁 𝑐[ℓ ] , and (𝑊𝑏

𝑘
)★ are estimated as given in (22), (23), (26),

respectively. As given in (17), the complexity of estimating
𝛼𝑏
𝑘

is the order of O
(
𝐾𝐵𝑀𝑄2

max
)
. Regarding the effort of

estimating 𝑧𝑘 (𝑊𝑏
𝑘
) and

∑𝐾
𝑘=1 𝑧𝑘 (𝑊𝑏

𝑘
), the complexity due to

equation (22) can be given as O
(
𝐾2𝐵𝑀𝑄QoE

)
. Similarly, the

complexity due to equation (23) is the order of O(𝐾𝐵𝐶). Next,
the complexity due to equation (26) is associated with the sum-
mation of 𝐶 elements and a power-of-𝑄QoE calculator. Hence,
the computation effort for calculating

{
𝑊̂𝑏
𝑘

}
’s corresponding to

𝐵 beams and 𝐾 cycles can be the order of O (𝐾𝐵(𝐶 +𝑄QoE)).
One assumes that implementing Algorithm 1 required ℓ (1)

iterations to get convergence and obtain the solution, the
overall complexity of the algorithm taking the highest degree
polynomial becomes

𝑋Alg.1 =

O
(
𝐾𝐵

[
𝑀𝑄2

max + ℓ (1)(𝐾𝑀𝑄QoE + 2𝐶 +𝑄QoE)
] )

. (40)

This shows that our problem can be easily solved and converged
in a polynomial amount of computation time. Considering the
greedy algorithm, one can see that the outcome can be obtained
by estimating 𝛼𝑘,1,𝛼𝑘,2,𝛼𝑘,3. According to (17) and (29), the
required computation effort for implementing Algorithm 2 can
be described as

𝑋Alg.2 = O
(
𝐾𝐵𝑀 (𝑄2

max +𝑄2
QoE)

)
. (41)

Consequently, we study the complexity of the ISA method.
As summarized in Algorithm 3, the process of ISA method
encompasses multiple loops of estimating 𝑆𝑏

𝑘
through equations

(33) and (36). In each loop, the heaviest task of determining
𝑆𝑏
𝑘

replies on calculating 𝑉𝑏bl,𝑘 and 𝑉𝑏QoE,𝑘 in (35) and (38),
respectively. Therefore, the complexity of ISA can be given as

𝑋Alg.3 = O
(
ℓ (3)𝐾𝐵𝑀 (𝑄2

max +𝑄2
QoE)

)
. (42)

This has shown a relatively low computation effort. While both
the greedy and ISA approaches are simpler than the duality
method, we favored the latter because of its superior efficiency,
as showcased in Section V-B. Moreover, the duality method,
unlike some algorithms which may require exponential time
to converge, promises convergence in polynomial time. This
not only ensures more predictable computational demands but
also bolsters its viability as an optimal approach for real-world
applications.

Fig. 5: Considered GEO beam footprint pattern with 𝑁 = 10.

TABLE II: Simulation parameters.

Parameters Considered values
Cycle duration (𝑀) 10 minutes
Normalized packet length (𝐿) 64 (KBytes) [47]
Maximum buffer size (𝑄max) 30 packets 2 MB [48]
Total available capacity of the satellite (Gbps) 2.1 Gbps [49]
Number of beams (𝐽) per cluster 3 [50]
Number of virtual beams (𝑁 ) 10 [51]
Number of cycles (𝐾) 6
Number of time slots 180000
Price per Mbits (𝛾) 0.1 Euros [52]
Random (𝑟𝑏𝑠 ) [1 − 4]
Random (𝑎𝑏𝑠 ) [0 − 1]
Random phase (𝜙𝑏

𝑠 ) [1 − 360] degrees
Target blocking probability (𝑃̄Blk) 0.01 [53]
Time slot duration (𝑇TS) 20 ms [54]

V. PERFORMANCE EVALUATION AND NUMERICAL
RESULTS

In this section, we simulate and analyze a time-varying
queuing model to estimate the stochastic blocking probability
over time and to find the optimal capacity that can satisfy the
defined QoE and blocking probability requirements.

A. Simulation Setup and Parameters

In this subsection, we conduct a Monte Carlo simulation
consisting of 5000 independent data trials. The simulation
includes generating random arrival rates based on a time-
varying Poisson process [39]–[41] for various time slots, as well
as assigning time-varying service rate values for different cycles.
In each iteration, the arrival rate function is chosen to represent
time-varying demand that varies between zero and the assumed
system’s maximum capacity, using a sinusoidal representation
as described in [55]. Three data flows are generated for every
beam and the corresponding time-varying arrival-rate functions
for beam 𝑏 are given as

𝜆𝑏𝑖 (𝑡) = 𝑟𝑏𝑖 (1 + sin(𝑎𝑏𝑖 𝑡 + 𝜙𝑏𝑖 )), (43)

where suffix 𝑖 stands for data flow 𝑖 and 𝑟𝑏
𝑖

is an influencing
factor corresponding to the average number of arriving packets
at time 𝑡, 𝑎𝑏

𝑖
is a positive number influencing the periodicity

of the arrival time of packets, and 𝜙𝑏
𝑖

’s are phase shift angles.
Here, 𝑟𝑏

𝑖
is selected randomly in a range of [1, 4] so that the

average of the total demand (
∑𝑆
𝑠=1 𝐿𝜆

𝑏
𝑠 (𝑡)/𝑇TS) is not greater

than the assumed beam capacity of 700 Mbps as presented
in [49]; 𝑎𝑏

𝑖
is selected randomly a range of (0, 1] as in [56],
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Fig. 6: The diagram of obtaining numerical, analysis, and simulation
results.
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Fig. 7: Running time versus the number of cycles (𝐾).

[57], while 𝜙𝑏
𝑖

is chosen randomly within [0, 360] to ensure all
flows have different peak and off-peak periods. The remaining
parameters provided in Table II are adopted for all simulations
unless specified otherwise.

By utilizing the mean arrival rate function obtained from
the Monte Carlo trials and the service rate values obtained
from the optimal allocated capacity according to (5), we
compute the queue length, blocking probability, and the
probability of violating QoE requirements for each time slot
𝑡. The simulation results as compared to the analytical results
are explained in the next sub-section for different values
of the considered parameters. Regarding the renting cost
function 𝑓 (𝑊), we exploit a linear form as 𝑓 (𝑊) = 𝛾𝑊

[7], [58] where 𝛾 represents the price per capacity unit, i.e.,
Euros/Mbits. Additionally, Fig. 6 illustrates the diagram of
obtaining numerical, analysis, and simulation results in this
section. As can be seen, Algorithms 1-3 are first employed to
determine the rented capacity solutions based on which the
costs can be calculated. They are so-called numerical results
which are demonstrated in Figs. 7-13. Furthermore, the capacity
outcomes are utilized to obtain the analysis results by using
(15), which are illustrated in Figs. 14 and 15. Additionally,
the Monte Carlo simulation results based on the numerical
capacity solutions are illustrated in Figs. 14-17.

B. Numerical Results and Discussion

This section first shows the running time and convergence of
the proposed algorithm, then we investigate the effect of varying

parameters, namely 𝑄QoE, 𝑃̄Blk, 𝑄max, 𝑃̄QoE, and 𝐾, on the
optimal allocated capacity and total renting cost to meet the
time-varying demand. Assuming both polarizations are used in
all beams, we can put a minimum of 3 adjacent beams per clus-
ter to avoid cross-beam interference [50]. Hence, our numerical
results are based on 3-beam clustering framework arrangement
with 10-beam footprints as described in Fig. 5. In particular,
there are 10 clusters in this beam pattern setting which are
(1, 4, 5); (1, 2, 5); (2, 5, 6); (2, 3, 6); (3, 6, 7); (4, 5, 8); (5, 8, 9);
(5, 6, 9); (6, 9, 10) and (6, 7, 10). Accordingly, constraint (2)
corresponding to cycle 𝑘 is demonstrated as

©­­­­­­­­­­­­­­­«

1 0 0 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0
0 1 1 0 0 1 0 0 0 0
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(44)
Fig. 7 shows the running time of duality, greedy and ISA

algorithms with varying values of 𝐾, using Matlab (tic-toc
method) on an Intel(R) Core(TM) i7 processor. The plot for
the duality algorithm indicates that it is close to the expected
polynomial time complexity which is proportional to power 2
of the size of cycles, which confirms the analysis results given
in Section IV-E. Next, we present the convergence plot of our
proposed algorithm alongside the benchmark ISA in Fig.8. The
figure in 8b illustrates the changes in capacities assigned to
the beams when Algorithm 1 is implemented. As shown, the
assigned capacity for each beam decreases before stabilizing at
its minimum value across iterations. Moreover, different beams
necessitate various numbers of iterations to reach convergent
capacity values. Similarly, the fluctuations in the total number
of packages allocated to all beams in Fig. 8a are the result
of employing Algorithm 3 across iterations. The consistent
increment or decrement by 1 package in the plot arises from
the rounding effects in the expression (33) of Algorithm 3.

Figs. 9a and 10a show the total allocated capacity
per cycle (

∑𝐵
𝑏=0𝑊

𝑏
𝑘

) and the total capacity rental cost
(
∑𝐵
𝑏=0

∑𝐾
𝑘=0 𝛾𝑀𝑇TS𝑊

𝑏
𝑘

) obtained by using the Lagrangian
duality, ISA and greedy algorithms at varying 𝑄QoE values,
respectively. The parameters 𝑄max = 32, 𝑃̄Blk = 0.01,
𝑃̄QoE = 0.05, 𝐾 = 12, and 𝑇TS = 20 𝑚𝑠 have been taken into
account. Here, one assumes that the capacity of one package
is set to 5 Mbps for implementing ISA algorithm, which is
equivalent to the scenario of the transmission over a 1 MHz
sub-channel with 32-QAM modulation at acceptable signal-
to-noise ratio [59]. The study results indicate that a system
catering to users with a higher tolerance for waiting requires
less capacity and thus incurs lower costs. Moreover, higher
values of 𝑄QoE and 𝑄max can lead to lower required capacity,
resulting in smaller costs.

Figs. 9b and 10b show the sum of optimal allocated capacity
per cycle and total rental cost of all beams, respectively, when
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Fig. 8: Convergence plot.
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(c) Considering different values of 𝑃̄Blk.
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(d) Considering different values of 𝑃̄QoE

Fig. 9: Optimal allocated capacity to satisfy the time-varying arrivals (demand).

varying 𝑄max while keeping other parameters (𝑄QoE = 15,
𝐾 = 12, 𝑃̄Blk = 0.01, and 𝑃̄QoE = 0.05) constant. The
results obtained through the Lagrangian duality and ISA
method indicate that allowing more packets stored during
congestion requires less allocated capacity. In contrast, the
greedy algorithm assumes the maximum capacity required to

meet the target 𝑄QoE requirement, neglecting the buffer size
and its influence on capacity allocation. The figures also reveal
that a larger buffer size and greater queuing delay tolerance
result in lower allocated capacity and rental costs.

Fig. 9c demonstrates the allocated capacity per cycle at
various 𝑃̄Blk values using the Lagrangian duality, ISA, and
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Fig. 10: Total renting cost of the optimal allocated capacity to all beams.

greedy algorithms at 𝑄max = 32, 𝑄QoE = 20, 𝑃̄QoE = 0.05,
and 𝐾 = 12. The Lagrangian duality and ISA approaches show
that systems with lower blocking probability requirements have
greater allocated capacities than those with higher blocking
probabilities. However, the greedy algorithm provides the
same optimal capacity for all 𝑃̄Blk values, as it only considers
the maximum value associated with queuing delay violations
and not with blocking probability. This makes our model
more efficient in accounting for blocking probability. Fig. 10c
shows the relationship between blocking probability and total
rental costs at different 𝑄QoE values. As can be seen, the
lower blocking probability requirements return higher allocated
capacities and costs. For example, based on the obtained results,
an increase in 𝑃̄Blk from 0.01 to 0.05 results in a cost reduction
of approximately 5%, while an increase from 0.01 to 0.1 leads
to a reduction of 7.23%.

Next, Figs. 9d and 10d depict the relationship between
𝑃̄QoE and total allocated capacity as well as rental costs
obtained by implementing the three algorithms. As expected,
the outcomes of all three algorithms imply that a smaller
probability of violating the QoE requirement necessitates the
SP to allocate a higher capacity and, conversely, less capacity
for a higher probability of violation. For instance, the obtained

result indicates, an increase in 𝑃̄QoE from 0.01 to 0.05 results
in a reduction of the renting cost by 6.11%.

Figs. 11 and 12 present the total allocated capacities per
cycle and the associated renting costs for the three algorithms
for various values of 𝐾 . From the figures, it’s evident that when
𝐾 rises, there’s a decrease in the optimal capacity allocation.
This trend suggests that a more adaptive system can fulfill
demand using less capacity, leading to reduced costs. For
instance, results show that when 𝐾 increases from 6 to 18, the
renting cost drops by 11.38%, and a surge from 12 to 18 results
in a decline of 6.1%. Parameters for this analysis, including
𝑄max = 32, 𝑄QoE = 20, 𝑃̄Blk = 0.01, and 𝑃̄QoE = 0.05, were
consistently considered.

The results, as depicted in all the above figures, highlight
the superiority of the duality method over both ISA and greedy
algorithms in terms of flexibility and adaptiveness. For instance
based on the obtained result and for the case where 𝑄max = 32,
𝑄QoE = 20, 𝑃̄Blk = 0.01, 𝑃̄QoE = 0.05 and 𝐾 = 6, the proposed
model can meet the requirement at a 9.85% and 3.1% lower
cost compared to the greedy and ISA algorithms. However,
as 𝐾 increases, the greedy algorithm becomes as efficient as
the proposed method, as larger values of 𝐾 represent nearly
immediate capacity changes, which are ideal conditions for
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Fig. 11: Sum of the optimal allocated capacity of all beams at different
values of 𝐾 .
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Fig. 12: Total renting cost versus 𝐾 .
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Fig. 13: Optimal capacity allocation to beams in the same cluster for
different arrival rates.

greedy algorithms to perform well.
We need to examine if the capacity is shared among beams

based on corresponding demand. We also need to assess
whether the proposed model meets the requirements discussed
in Section II-C. Fig. 13 displays the demand per beam as a
function of the mean arrival rate (𝐿𝜆𝑏 (𝑡)/𝑇TS) and the optimal

TABLE III: 𝑃̄QoE values at 𝑄 ≥ 𝑄QoE = 20 threshold using
optimal capacity.

𝑄QoE 20 24 28 32

Duality Analysis 0.01 0.0066 0.0025 0.0016
Simulation 0.0093 0.0061 0.0021 0.0014

Greedy Analysis 0.0089 0.0052 0.0019 0.0011
Simulation 0.0083 0.0048 0.0017 0.0010

ISA Analysis 0.009 0.0062 0.0020 0.0013
Simulation 0.0086 0.0059 0.0018 0.0012

allocated capacity to different beams in a random cluster
consisting of beams 2, 3, and 6. In every cycle, a higher
capacity is assigned to the beam with the highest arrival rate,
which corresponds to the highest demand, as demonstrated in
the figure. This allocation meets the requirements in equation
(2). For this demonstration, the parameters used are 𝑄max = 32,
𝑄QoE = 20, 𝑃̄Blk = 0.01, 𝑃̄QoE = 0.05, and 𝐾 = 12.

The Figs. 14a, 14b and 15 depict the mean blocking
probability over time for a randomly selected beam, the
average of the mean blocking probability of all beams, and
the mean QoE requirement violation probability respectively.
The target blocking probability of 𝑃̄Blk = 0.01 was set with
the parameters 𝑄max = 32, 𝑄QoE = 20, 𝑃̄QoE = 0.05, and
𝐾 = 6. The results show that all techniques satisfy the blocking
probability requirement. Figures 14a, 14b, 15, and Table III
clearly illustrate the close alignment between our analytical
and simulation methods. Furthermore, the minor differences in
average blocking probability and queue length across various
beams, as depicted in Figs. 16 and 17, affirm the accuracy
and validity of our proposed method. This shows an effective
integration of the inherent randomness and stochastic nature
of user traffic demands for capacity management. Additionally,
Table III shows that the queuing delay requirement is duly
met across all instances of 𝑄 surpassing the threshold 𝑄QoE.
Interestingly, the greedy and ISA algorithms result in lower
blocking and QoE violation probabilities than the proposed
duality method. Similarly, the greedy and ISA algorithms result
in lower queuing length than the proposed duality method as
shown in Fig. 17. This is because of that these benchmarks
return the higher assigned capacity for beams.

C. Discussion on Feasibility of Practical Implementation

The simulation results underscore the computational effi-
ciency of the proposed method, demonstrating its capability to
adeptly manage the dynamic and fluctuating traffic demands
inherent to SatCom systems. Specifically, as illustrated in
Fig. 7, the method takes mere minutes (under 100 seconds
when 𝐾 ≤ 12) to determine the optimal amount of rented
BW over a one-hour time window. It’s pertinent to highlight
that this execution time can be further trimmed when the
proposed algorithm runs on a more powerful industrial-grade
computer. Such a run-time is practically viable, allowing
the SPs to ascertain the necessary capacity prior to entering
rental agreements with the IPs. Another pivotal factor for
the successful implementation of our proposed algorithm in
the practical systems is a deep understanding and accurate
estimation of the time-varying arrival rate function, specifically,{
𝜆𝑏𝑠 (𝑡)

}
’s. However, within the scope of this study, one does

not delve into traffic model estimation. Several existing studies,
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Fig. 14: Blocking probability achieved by analysis and simulation.
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Fig. 15: Average probability of QoE violation for all beams.
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Fig. 16: CDF of blocking probabilities over time-window of beams
1, 2, 3, 6, 8.

including those by [60]–[62], have dedicated efforts to unpack
this intricate domain. Their insights suggest that a machine-
learning-based model, which adjusts based on real-time data
and historical patterns, could be the most efficient way to
determine the stochastic information of the network traffic.
The prospect of capacity management informed by traffic flow
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Fig. 17: Mean value of queue length over time-window 𝑇 and 5000
trials due to beams 1 − 5.

predictions is intriguing and is a topic we intend to address in
future studies.

VI. CONCLUSION

In conclusion, this paper has proposed a novel and efficient
dynamic capacity allocation model for multi-beam GEO
satellite systems. The method aims to minimize the renting
cost while ensuring the target blocking probability and QoE
violation requirements. Traffic arrivals are modeled using the
𝑀𝑡/𝑀𝑡/1 queueing model, and the stochastic queue length was
estimated using the CTMC. The optimization problem has been
solved using the Lagrangian duality method and the obtained
results demonstrate its effectiveness and superiority over the
benchmark ISA and greedy algorithms. Future work can include
the extension of this model to a more complex network
architecture, for example, the integration of the proposed model
with terrestrial networks for a more comprehensive solution.
Additionally, exploring the potential of machine learning
techniques to further optimize the capacity allocation process
can also be of great interest. Furthermore, considering the
impact of flow prioritization and different traffic characteristics
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on the proposed model can provide deeper insights into the
system’s behavior and enhance its practicality.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Denote 𝜇𝑏 (𝑡) = 𝜇𝑏
𝑘

in cycle 𝑘-th. We also
have 𝜌𝑏 (𝑡) = 𝜆𝑏 (𝑡)/𝜇𝑏

𝑘
, ∀𝑡 ∈ Ω𝑘 and 𝜇𝑏 (𝑡) =

𝑊𝑏 (𝑡 )𝑇TS
𝐿

.
Then, constraint (16d) can be transferred into the following
requirement

𝑊𝑏
𝑘 ≥ 𝛼𝑏𝑘,1 = max

𝑡∈Ω𝑘

𝐿𝜆𝑏 (𝑡)/𝑇TS. (45)

Similarly, the constraint (16b) will be equivalent to

𝑊𝑏
𝑘 ≥ 𝛼𝑏𝑘,2 = max

𝑡∈Ω𝑘

𝐿𝑔−1
𝑄max

(1 − 𝑃̄Blk, 𝑡)/𝑇TS. (46)

The results given in (45) and (46) yield the lower bound of
𝑊𝑏
𝑘

as 𝛼𝑏
𝑘
= max

(
𝛼𝑏
𝑘,1,𝛼𝑏

𝑘,2

)
, which has completed the proof

of Proposition 1.

APPENDIX B
PROOF OF THEOREM 1

Proof: Let 𝑦𝑄QoE (𝑊𝑏
𝑘

, 𝑡) =
∑𝑄QoE
𝑛=0 𝑔𝑛,𝑏 (𝑊𝑏

𝑘
, 𝑡). Taking

𝑌𝑏 (𝑡) = 𝐿𝜆𝑏 (𝑡)/𝑇TS, one can express 𝑦𝑄QoE (𝑊𝑏
𝑘

, 𝑡) as,

𝑦𝑄QoE (𝑊
𝑏
𝑘 , 𝑡) = 1 −

(
𝑌𝑏 (𝑡)/𝑊𝑏

𝑘

)𝑄QoE+1
. (47)

Hence, we can see that 𝑦𝑄QoE (𝑊𝑘 , 𝑡) is a concave function with
respect to 𝑊𝑘 for any value of 𝜆𝑏 (𝑡) that satisfies 𝜆𝑏 (𝑡)/𝜇𝑏

𝑘
<

1. Using notation 𝑦𝑄QoE (𝑊𝑘 , 𝑡), we further denote 𝑧𝑘 (𝑥) =
1
𝑇

∫ (𝑘+1)𝑀
𝑘𝑀

𝑦𝑄QoE (𝑥, 𝑡)𝑑𝑡. Again taking the integral with respect
to 𝑡, we have

𝑧𝑘 (𝑊𝑏
𝑘 ) = 𝑀𝑇TS/𝑇 − 𝐴𝑏𝑘/

(
𝑇 (𝑊𝑏

𝑘 )
𝑄QoE+1

)
, (48)

where

𝐴𝑏𝑘 =

∫ 𝑘𝑀

(𝑘−1)𝑀
𝑌𝑏 (𝑡)𝑄QoE+1𝑑𝑡. (49)

Similar to 𝑦𝑄QoE (𝑊𝑏
𝑘

, 𝑡), 𝑧𝑘 (𝑊𝑏
𝑘
) is also a concave function of

𝑊𝑘 . Then, constraint (16c) can be rewritten as
∑

∀𝑘 𝑧𝑘 (𝑊𝑏
𝑘
) ≥

1 − 𝑃̄QoE, since it is in the form of a concave function greater
than a constant, it must be convex. Constraints (16b) and
(16d) that are merged to (17) and equation (2) are also linear
constraints. Hence, problem (16) must be convex.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: As can be observed, the minimum value of
L(W, 𝜷, 𝜻) can be defined by equating the partial derivative
of L(W, 𝜷, 𝜻) with respect to 𝑊𝑏

𝑘
to zero, i.e.,

𝜕L(W, 𝜷, 𝜻)
𝜕𝑊𝑏

𝑘

= 𝑀𝑇𝑝 −
𝛽𝑏𝐴𝑏

𝑘
(𝑄QoE + 1)

𝑇 (𝑊𝑏
𝑘
)𝑄QoE+2

+
∑︁
∀𝑐
𝜁 𝑐𝑈𝑐,𝑏 = 0.

(50)
The solution of this equation can be described as

𝑊̂𝑏
𝑘 =

{
𝛽𝑏𝐴𝑏𝑘 (𝑄QoE + 1)/

[(
𝑀𝑇𝑝 +

𝐶∑︁
𝑐=1

𝜁 𝑐𝑈𝑐,𝑏

)
𝑇

]}1/(𝑄QoE+2)

.

(51)

Then, by considering constraint (17), the optimal value of
𝑊𝑏
𝑘

can be expressed as in (25), which completes the proof of
Proposition 2.
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