Check for
Updates

Demonstrations

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

BugDoc: A System for Debugging
Computational Pipelines

Raoni Lourenco
New York University
raoni@nyu.edu

Abstract

Data analysis for scientific experiments and enterprises,
large-scale simulations, and machine learning tasks all entail
the use of complex computational pipelines to reach quanti-
tative and qualitative conclusions. If some of the activities in
a pipeline produce erroneous outputs, the pipeline may fail
to execute or produce incorrect results. Inferring the root
cause(s) of such failures is challenging, usually requiring
time and much human thought, while still being error-prone.
We recently proposed a new approach that makes prove-
nance to automatically and iteratively infer root causes and
derive succinct explanations of failures; such an approach
was implemented in our prototype, BugDoc. In this demon-
stration, we will illustrate BugDoc’s capabilities to debug
pipelines using few configuration instances.

CCS Concepts

« Information systems — Data provenance.

ACM Reference Format:

Raoni Lourenco, Juliana Freire, and Dennis Shasha. 2020. BugDoc:
A System for Debugging Computational Pipelines. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384692

1 Introduction

Computational pipelines are widely used in many do-
mains, from astrophysics and biology to enterprise analytics.
They are characterized by interdependent modules, associ-
ated parameters, and data inputs. Results derived from these
pipelines form the basis for conclusions and, often, actions. If
one or more modules in a pipeline produce erroneous or un-
expected outputs, these conclusions may be incorrect. Thus,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14-19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. .. $15.00
https://doi.org/10.1145/3318464.3384692

Juliana Freire
New York University
juliana.freire@nyu.edu

2733

Dennis Shasha

New York University
shasha@courant.nyu.edu

it is critical to identify, understand, and correct the causes of
errors and unexpected behavior.

Discovering the root cause of failures in a pipeline is chal-
lenging because problems can come from many different
sources, including bugs in the code, input data, software
updates, and improper parameter settings. Connecting the
erroneous result to its root cause is especially difficult for
long pipelines or when multiple pipelines are composed since
these entail cascading dependency chains.

In previous work [14], we proposed and implemented new
methods to debug machine learning pipelines that automati-
cally and iteratively identify one or more minimal causes of
failures, thereby avoiding the tedious and error-prone task
of manually tuning and executing new pipeline instances to
test and derive new hypotheses for the failures. We have ex-
tended this initial work and built BugDoc [15], a system that
identifies root causes for errors in general computational
pipelines (or workflows).

In this demo, we showcase the capabilities of BugDoc by
inviting participants to play a game of finding root causes:
they will compose configuration instances and compete against
our method. We will present comparisons with the instances
crafted by human players and those derived by BugDoc to
demonstrate its benefits. Additionally, participants will have
the opportunity to work cooperatively with BugDoc on real-
world problems.

2 BugDoc

Figure 1 shows the high-level architecture of BugDoc.
Given (i) a computational pipeline description, collection of
programs connected together that contains a set of manipula-
ble parameters; (ii) a set of pipeline instances, i.e., provenance
that stores values for the parameters of all pipeline runs and
their outcome; and (iii) an arbitrary evaluation function that
determines whether the pipeline results are acceptable or not,
our goal is to find the minimal root causes of these results by
iteratively executing new pipeline instances. In what follows,
we give a brief overview of our debugging methodology. For
a more detailed discussion, see [14, 15].

Identifying Root Causes. Consider the example in Fig-
ure 2, which shows a generic template for a machine learn-
ing pipeline and a log of different instances that were run
with their associated results. The pipeline reads a data set,

https://doi.org/10.1145/3318464.3384692
https://doi.org/10.1145/3318464.3384692
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3384692&domain=pdf&date_stamp=2020-05-31

Demonstrations
Provenance

=

Figure 1: BugDoc: overview of the approach.

Pipeline __,|
description Root cause

Evaluation
function

—_—

splits it into training and test subsets, creates and executes an
estimator, and computes the F-measure score using 10-fold
cross-validation. A data scientist uses this template to under-
stand how different estimators perform for different types
of input data, and ultimately, to derive a pipeline instance
that leads to high scores.

Analyzing the provenance of the runs, we can see that
gradient boosting leads to low scores for two of the data sets
(Iris and Digits), but it has a high score for Images. By contrast,
decision trees worked well for both the Iris and Digits data
sets, and logistic regression leads to a high score for Iris.

This may suggest that there is a problem with the gradient
boosting module for some parameters, that decision trees pro-
vide a good compromise for different data, and that logistic
regression is good for the Iris data. Because each of these
runs used different parameters for each method depending
on the data set, a definitive conclusion has to await additional
testing of these hyperparameters. But doing so manually is
time-consuming and error-prone.

Provenance of pipeline execution can help users derive
hypotheses for the causes of the observed behavior and pro-
vide hints for debugging. In fact, provenance has been used
to explain errors in computational processes that derive
data [8, 19]. to predict whether a pipeline will fail [3], and to
identify the cause of problems by computing the differences
between good and bad runs of a pipeline [6]. However, as
this example illustrates, to test hypotheses and derive more
complete (and accurate) explanations, new pipeline instances
must be executed that vary the different components of the
pipeline. But doing this manually is both time consuming
and error prone.

Software testing automatically generates test suites for
specific purposes, such as for generating new test cases for
existing test suites [12]. The goal is to determine whether
bugs are present, not what causes them. Techniques for sta-
tistical debugging [13, 20] and bug localization [1, 2, 10] aim
to identify the bugs, but they are often application-specific
or require a user-defined test suite.

Efficient techniques have also been proposed to optimize
hyperparameters in machine learning methods [4, 5, 7, 17,
18]. However, while these identify a good set of parameter

2734

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Read Data H Train TES[H Estimation H Compute
Split Score

Instance |Data Estimator Library Version |5core | Evaluation

CP, Iris Logistic regression 1.0 0.9 Success

CP, Digits Decision tree 1.0 0.8 Success

CP, Iris Gradient boosting 2.0 0.2 Failure

CP, Digits Gradient boosting 2.0 0.3 Failure

CP, Iris Decision tree 1.0 0.7 Success

cP, Images | Gradient boosting 1.0 0.9 Success

Figure 2: Machine learning pipeline and the prove-
nance of multiple runs.

values, they do not derive explanations for why the values
are selected. Also, existing approaches make assumptions
(e.g., smoothness) about the distribution of parameter values
that do not hold in our setting, since we are dealing with
arbitrary computations and not learning a classifier.
BugDoc automates the process of deriving root causes for
problems in pipelines. It does so without any knowledge of
the internal code of the computational processes: it views
pipelines as black boxes and observes only their inputs and
outputs. Trying all possible combinations of parameters and
values leads to a combinatorial explosion of pipeline execu-
tions and is thus not a practical solution. In addition, causes
for errors can include multiple parameters, each of which
may have large domains. BugDoc uses an iterative strategy
that is provably efficient (possibly linear in the number of
parameters) and provides concise explanations.

Iterative Debugging. BugDoc combines two iterative de-
bugging algorithms. The first, called Shortcut, discovers de-
finitive root causes (or bugs) consisting of a single parameter-
value (formally, parameter-equality-value) or a single con-
junction of parameter-values. The second, called Debugging
Decision Trees, discovers more complex definitive root causes
involving multiple parameters and possibly inequalities.

In operation, BugDoc first runs the Shortcut algorithm.
Shortcut applies heuristics to select and test combinations
of parameter-value pairs. Under reasonable assumptions,
it finds minimal definitive root causes, using a number of
pipeline instances proportional to the number of parameters.

When there are few parameters, BugDoc runs the Debug-
ging Decision Trees algorithm — starting from the results of
the pipeline instances run by the Shortcut algorithm and
using the parameters of the pipeline as features and the eval-
uation of the instances as the target. BugDoc uses decision
trees in an unusual way. We are not trying to predict whether
an untested configuration will lead to succeed or fail, but
use the tree to discover short paths, possibly characterized
by inequalities, that lead to fail. Those will be our suspects.
For that reason, we build a complete decision tree, i.e., no
pruning. The main advantage of Debugging Decision Trees is
that it can identify root causes that depend on inequalities.

Demonstrations

Front-end

/ VisTrails \

Back-end

S

Figure 3: Demo Prototype: BugDoc combined with the
open-source VisTrails system.

Explanation Simplification. Causes for errors can include
multiple parameters, each of which may have large domains.
It is thus essential to give concise explanations so that the
user can both understand and act on them. Because the re-
sults of the Debugging Decision Trees algorithm consist of
disjunctions of conjunctions, they may contain redundan-
cies, which BugDoc simplifies using the Quine-McCluskey
algorithm [11].

3 Demonstration Description

The goal of our demo is to allow users to compare a manual
approach to debugging with BugDoc’s iterative approach. To
do so, we will first present a training example similar to the
pipelines described by Figure 2, where we will explain the op-
erations the participants can perform: Parameter exploration
(Section 3.1), and instance exploration (Section 3.2). Then
we will invite the participants to, initially, compete against
(Section 3.3), and later cooperate with (Section 3.4) BugDoc
to debug pipelines, displaying all instance configurations
tried and their result.

For this demo, BugDoc was integrated with the VisTrails
system [9] in order to take advantage of its provenance capa-
bilities and its interface for parameter exploration, as shown
in Figure 3.

3.1 Parameter Exploration

VisTrails provides a parameter exploration interface that
allows the user to explore the parameter space by binding
parameters to a range of values. This bulk operation makes it
possible to generate and run several different instances auto-
matically. Our interface re-uses two of the main components
of Parameter Explorer: canvas and parameter list.

Input parameters that may be set during a pipeline execu-
tion appear in the parameter list (Figure 4 top right) and they
can be dragged and dropped into the canvas (Figure 4 left).
The pipeline view (Figure 4 right-bottom) indicates which
modules each parameter belongs to.

2735

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

= ol
=

History Search Explore Provenance

Mashup | Dedug

Pipeline

Debug: ROOT + 461
PythonSource(2) :: Shuffle Output [x
Boolean [True,False]

1) :: Estimator | x
string | [Logistic Regression’, ‘Decision Treel] |

Canvas

Estimator
onSource
‘Shuffie Output

ataset

Parameter
List

Figure 4: Parameter Exploration in VisTrails.

Once the parameters are on the canvas, the participants
may adjust their range or specify a list of values to be ex-
plored. This operation creates a space consisting of the Carte-
sian product of the values for each parameter. This space
will be used in the scenarios in Sections 3.3 and 3.4.

3.2 Instance Exploration

By exploring pipeline instances, a user can obtain informa-
tion that helps in the formulation of hypotheses about the
root causes of failure. BugDoc displays the instances in a
table, as shown in Figure 5. Using this table, participants can
inspect the different executed instances and their outcome,
i.e., the results of the evaluation function. Configurations can
be sorted and filtered by parameter-values, results (success
or failure), and also by origin, a field that identifies the
cohort of the instances (i.e., if they were derived by the same
parameter exploration/user or generated by BugDoc).

3.3 Competitive Scenario

We create artificial problems based on the crime mystery
game of Clue (or Cluedo) [16]. For each problem, there is a
list of categorical variables, representing the parameters of
a pipeline, and a conjunctive subset of variable-value pairs
that are necessary and sufficient for a crime to happen, rep-
resenting the root cause of a failure in the pipeline.
Participants will be asked to try to solve a problem (sam-
pled at random) using fewer instances than BugDoc. They

origin Estimator Library Version Dataset result

demo_
20
10

demo_user_2 Logistic regression Iris Failure

demo_user_2 Decision tree Iris Success

demo_user_2 Decision tree 20 Iris Failure

demo_user_3 Logistic regression 10 Iris Success

demo_user_3 Logistic regression 1.0 Digits Success

Previous Page 5 of 12 5rows ¥ Next

Figure 5: Instance Exploration.

Demonstrations

will create sets of instances through the VisTrails parame-
ter exploration interface and run them by clicking on the
Execute button in VisTrails toolbar (Figure 4 top). All exe-
cuted combinations are shown in the instances exploration
table indicating if they led to a crime or not, so the partic-
ipant can hypothesize. At any point, one is able to guess
a root cause by inputting a textual conjunctive clause of
parameter-value pairs.

When a participant guesses, we run BugDoc allowing it to
test at most the same number of instances tried so far, the
configurations generated by BugDoc are added to the table,
and its answer is revealed. BugDoc will have no knowledge
of the instances created during the manual exploration. If
neither the debuggers have found the minimal answer, the
game can continue, or we just let BugDoc run until the end.

3.4 Cooperative Scenario

After competing against BugDoc, participants will be invited
to work cooperatively with it in order to debug real-world
pipelines consisted of larger parameter spaces, containing
categorical values and real numbers, and possibly presenting
inequalities in their root causes of failure.

The parameter explorer will be used to prune the search
space that BugDoc is allowed to test, distinctly from the previ-
ous scenario, when the Execute button is hit, our algorithms
will choose which instances to try next (observing the value
constraints) instead of a Cartesian product. Participants may
decide the maximum number of instances BugDoc can create
in each iteration; the selected instances are then executed
and added to the instances exploration table.

BugDoc will output the best hypothetical root causes it
is able to formulate with the given budget if the minimal
definitive root cause of the real-world problem is not found
the participant will be able to redefine the parameter space
and continue the debugging process.

4 Conclusions

In this demonstration, we showcase the ability of Bug-
Doc to find minimal definitive root causes in computational
pipelines or workflows, either autonomously or coopera-
tively. BugDoc analyzes previously executed computational
pipeline instances, selectively executes new pipeline instances,
and finds minimal explanations. This proposal has presented
an overview of the design principles behind the Shortcut and
Debugging Decision Trees algorithms that have been shown,
in our prior work [14], to outperform the state of the art in
both number of instances required and F-measure. Our demo
allows participants to compete or cooperate with BugDoc.

Acknowledgments. This work has been supported in part
by NSF grants MCB-1158273,10S-1339362, and MCB-1412232,
CNPq (Brazil) grant 209623/2014-4, the DARPA D3M pro-
gram, and NYU WIRELESS. Any opinions, findings, and con-
clusions or recommendations expressed in this material are

2736

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

those of the authors and do not necessarily reflect the views
of funding agencies.

References

[1] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-Ray: Automat-
ing Root-Cause Diagnosis of Performance Anomalies in Production
Software. In Proceedings of USENIX OSDI. 307-320.

[2] Mona Attariyan and Jason Flinn. 2011. Automating Configuration
Troubleshooting with ConfAid. ;login: 1 (2011), 1-14.

[3] Anju Bala and Inderveer Chana. 2015. Intelligent Failure Prediction
Models for Scientific Workflows. Expert System Applications 3 (Feb.
2015), 980-989.

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl. 2011.
Algorithms for Hyper-Parameter Optimization. In Proceedings of NIPS.
2546-2554.

[5] J.Bergstra, D. Yamins, and D. D. Cox. 2013. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures. In Proceedings of ICML. 115-123.

Ang Chen, Yang Wu, Andreas Haeberlen, Boon T. Loo, and Wenchao

Zhou. 2017. Data Provenance at Internet Scale: Architecture , Experi-

ences, and the Road Ahead. In Proceedings of CIDR. 1-7.

[7] Nima Dolatnia, Alan Fern, and Xiaoli Fern. 2016. Bayesian Optimiza-

tion with Resource Constraints and Production. In Proceedings of ICAPS.

115-123.

Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Di-

vesh Srivastava. 2014. Interpretable and Informative Explanations of

Outcomes. Proceedings of VLDB Endowment 1 (Sept. 2014), 61-72.

[9] Juliana Freire, David Koop, Emanuele Santos, Carlos Scheidegger, Clau-
dio T. Silva, and H. T. Vo. 2011. The Architecture of Open Source
Applications - Chapter 23. VisTrails. Computer (2011), 367-386.

[10] Muhammad Ali Gulzar, Siman Wang, and Miryung Kim. 2018. BigSift:
Automated Debugging of Big Data Analytics in Data-Intensive Scalable
Computing. In Proceedings of ESEC/FSE. 863-866.

[11] Jiangbo Huang. 2014. Programing implementation of the Quine-
McCluskey method for minimization of Boolean expression. CoRR
(2014), 1-22. arXiv:1410.1059

[12] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2018. Causal Test-
ing: Finding Defects’ Root Causes. CoRR (2018), 1-12. arXiv:1809.06991

[13] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael L
Jordan. 2005. Scalable Statistical Bug Isolation. In In Proceedings of
ACM SIGPLAN. 15-26.

[14] Raoni Lourenco, Juliana Freire, and Dennis Shasha. 2019. Debugging
Machine Learning Pipelines. In Proceedings of DEEM.

[15] Raoni Lourengo, Juliana Freire, and Dennis Shasha. 2020. BugDoc:
Algorithms and a System to Debug Computational Processes. In Pro-
ceedings of ACM SIGMOD.

[16] Leon Petrosjan and Vladimir V Mazalov. 2007. Description of Game
Actions in Cluedo. In Game theory and applications. Vol. 11. 1-28.

[17] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In Proceedings
of NIPS. 2951-2959.

[18] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Md. Mostofa Ali Patwary, Prabhat Prabhat, and
Ryan P. Adams. 2015. Scalable Bayesian Optimization Using Deep
Neural Networks. In Proceedings of the ICML. 2171-2180.

[19] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. 2015. Data X-
Ray: A Diagnostic Tool for Data Errors. In Proceedings of ACM SIGMOD.
1231-1245.

[20] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex
Aiken. 2006. Statistical Debugging: Simultaneous Identification of
Multiple Bugs. In Proceedings of ICML. 1105-1112.

[6

—

[8

—

http://arxiv.org/abs/1410.1059
http://arxiv.org/abs/1809.06991

	Abstract
	1 Introduction
	2 BugDoc
	3 Demonstration Description
	3.1 Parameter Exploration
	3.2 Instance Exploration
	3.3 Competitive Scenario
	3.4 Cooperative Scenario

	4 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 12
 Mask co-ordinates: Horizontal, vertical offset 38.99, 714.86 Width 529.78 Height 21.19 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 12

 CurrentAVDoc

 38.9919 714.8639 529.7808 21.1913

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 3

 1

 HistoryList_V1
 qi2base

