arXiv:2111.02508v1 [cs.LG] 3 Nov 2021

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

IDDO DRORI idrori@nyu.edu
YAMUNA KRISHNAMURTHY yamuna@nyu.edu
REMI RAMPIN remi.rampin @nyu.edu
RAONI DE PAULA LOURENCO raoni @nyu.edu
JORGE PIAZENTIN ONO jorgehpo@nyu.edu
KYUNGHYUN CHO kyunghyun.cho@nyu.edu
CLAUDIO SILVA csilva@nyu.edu
JULIANA FREIRE juliana.freire@nyu.edu
ABSTRACT

We introduce AlphaD3M, an automatic machine learning (AutoML) system based on meta rein-
forcement learning using sequence models with self play. AlphaD3M is based on edit operations
performed over machine learning pipeline primitives providing explainability. We compare Al-
phaD3M with state-of-the-art AutoML systems: Autosklearn, Autostacker, and TPOT, on OpenML
datasets. AlphaD3M achieves competitive performance while being an order of magnitude faster,
reducing computation time from hours to minutes, and is explainable by design.

1 Introduction

Automatic machine learning (AutoML) aims to learn how to learn. Given a dataset, a well defined task, and performance
criteria, the goal is to solve the task with respect to the dataset while optimizing performance. Existing systems have
focused on a relatively small set of machine learning primitives, with a few tasks (Feurer et al., 2015), or on a small set
of datasets (Chen et al., 2018), or on numerous datasets within specific domains (Olson and Moore, 2016).

DARPA’s Data Driven Discovery of Models (D3M) program pushes this vision further and proposes to develop
infrastructure to automate model discovery, i.e., solve any task on any dataset specified by the user. Using a broad set
of computational primitives as building blocks, the D3M system should synthesize a pipeline and set the appropriate
hyper-parameters to solve a previously unknown data and problem. The D3M system also has a user interface that
enables users to interact with and improve the automatically generated results (Blei and Myth, 2017).

Inspired by AlphaZero (Silver et al., 2017), we frame the problem of pipeline synthesis for model discovery as a
single-player game (McAleer et al., 2018): the player iteratively builds a pipeline by selecting among a set of actions
which are insertion, deletion, replacement of pipeline parts. An inherent advantage of this approach is that at the end
of the process, once there is a working pipeline, it is completely explainable, including all the actions and decisions
which led to its synthesis. Another advantage is that our approach leverages recent advances in deep reinforcement
learning using self play, specifically expert iteration (Anthony et al., 2017) and AlphaZero (Silver et al., 2017), by using
a neural network for predicting pipeline performance and action probabilities, along with a Monte-Carlo Tree Search
(MCTY), as illustrated in Figure 1 (left), which takes strong decisions based on the network. The process progresses by
self play with iterative self improvement, and is known to be highly efficient at finding a solution to search problems
in very high dimensional spaces. We evaluate our approach using the OpenML dataset on the tasks of classification
and regression, demonstrating competitive performance and computation times an order of magnitude faster than other
AutoML systems.

Each of the existing AutoML systems uses any one of the following key elements individually: differentiable program-
ming, tree search, evolutionary algorithms, and Bayesian optimization, to find the best machine learning pipelines for a
given task and dataset. Differentiable programming, of which neural network backpropagation is a special case, is used
for learning feature extraction and estimation (Ganin and Lempitsky, 2015) and for end-to-end learning of machine
learning pipelines with differentiable primitives (Milutinovic et al., 2017). Bayesian optimization methods are used for

mailto:idrori@nyu.edu
mailto:yamuna@nyu.edu
mailto:remi.rampin@nyu.edu
mailto:raoni@nyu.edu
mailto:jorgehpo@nyu.edu
mailto:kyunghyun.cho@nyu.edu
mailto:csilva@nyu.edu
mailto:juliana.freire@nyu.edu

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

action probabilities
predicted pipeline evaluation

[| AlphaZero | AlphaD3M]
Neural Monte Carlo Game Go, chess AutoML
Network Tree Search Unit piece pipeline primitive
State configuration meta data, task, pipeline
Action | move insert, delete, replace
Reward | win, lose, draw | pipeline performance

self play training examples
actual pipeline evaluations

Figure 1: AlphaD3M iterative improvement (left); AlphaD3M game representation (right).

hyper-parameter tuning (Bergstra and Bengio, 2012). Both AutoWEKA (Kotthoff et al., 2017) and Autosklearn (Feurer
et al., 2015) extend the application of these techniques to the selection of the model in addition to the hyper-parameter
values, solving the combined algorithm selection and hyper-parameter optimization problem by fitting probabilistic
models capturing the relationship between parameter values and performance measures using a Gaussian Process,
Random Forest, or tree-structured Parzen estimator (Bergstra et al., 2011). Auto-Tuned Models (Swearingen et al., 2017)
represent the search space as a tree with nodes being algorithms or hyperparameters and searches for the best branch
using a multi-armed bandit. TPOT (Olson and Moore, 2016) and Autostacker (Chen et al., 2018) uses evolutionary
algorithms to generate machine learning pipelines while optimizing their hyperparameters. TPOT represents machine
learning pipelines as trees, whereas Autostacker represents them as stacked layers.

Our goal is to search within a large space for the machine learning, and pre and post processing primitives and parameters
which together constitute a pipeline for solving a task on a given dataset. The problem is that of high dimensional
search. Although the datasets differ, the solution pipelines contain recurring patterns. Just as a data scientist develops
intuition and patterns about the pipeline components, we use a neural network along with a Monte-Carlo tree search in
an iterative process. This combination results in the network learning these patterns while the search splits the problem
into components and looks ahead for solutions. By self play and evaluations the network improves, incorporating a
better intuition. An advantage of this iterative dual process is that it is computationally efficient in high dimensional
search (Silver et al., 2017).

2 Methods

Following dual process theory, we solve the meta learning problem by sequence modeling using a deep neural network
and Monte Carlo tree search (MCTS) (Silver et al., 2017; Anthony et al., 2017). This section describes our representation,
followed by details of the neural network and MCTS.

2.1 Representation

Figure 1 (right) illustrates a high level analogy between a two player competitive game and our single player pipeline
synthesis game, including state, action, and reward. A pipeline is a data mining work flow, of pre-processing, feature
extraction, feature selection, estimation, and post-processing primitives. Algorithm 1 describes our pipeline state
representation. Our architecture models meta data and an entire pipeline chain as state rather than individual primitives.
A pipeline, together with the meta data and problem definition is analogous to an entire game board configuration. The
actions are transitions from one state (pipeline) to another.

2.2 Neural Network

AlphaD3M uses a recurrent neural network, specifically an LSTM. Let fy(s) = (P(s,a),v(s)), where P(s, a) is the
action probabilities and v(s) the evaluation score of the model predicted by the network f with parameters 6, for a
given dataset D and task T, for a given state s. The neural network predicts the probabilities over actions ¢ which lead
to sequences S that describe a pipeline, which in turn solves the given task on the dataset. The network inputs are
training examples (s;, 7¢, €;) from games of self play, where s, is the state at time ¢, 7; the policy estimated by MCTS,
and e, the actual pipeline evaluation at the end of the game. The state s; is composed of a vector encoded as described
in Algorithm 1. The network outputs are probabilities over actions P(s, a), and an estimate of pipeline performance v.

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

Algorithm 1 Pipeline Encoding

Given datasets D, tasks T, and a set of possible pipeline sequences S1, . . ., Sy, from the available machine learning,
and data pre and post processing primitives.

* For each dataset D; and task T}:
1. Encode dataset D; as meta data features f(D;).
2. Encode task T}.

3. Encode the current pipeline at time ¢ by a vector .S;.
4. Encode action f,(.St), so policy m maps (f(D;), Tj, S¢) to fo(S1), .-, fa(Sn).

We optimize the network parameters 6 by making the predicted model S match the real world model R and the predicted
evaluation results v match the real world evaluation e, by minimizing the cross entropy loss between S and R, and
the mean squared error between v and e. We add an /5 regularization term for the network parameters 6 to avoid
over-fitting and an ¢; regularization term which prefers simple pipelines. Thus our network fy is trained by minimizing
the following non-linear loss function using stochastic gradient descent:

L(0) = Slog R+ (v —€)* + a||f]|2 + BI|S||1. (1)

2.3 Monte Carlo Tree Search

Our algorithm takes the predictions (P(s, a), v(s)) of the neural network and uses them in a MTCS by running multiple
simulations to search for a pipeline sequence R with a better evaluation. The search result R improves upon the
predicted result S given by the network by improving the network policy using the update rule:

N(s)

U(s,a) = Q(s,a) + cP(s, a)m,

)

where (s, a) is the expected reward for action a from state s, N (s, a) is the number of times action a was taken from
state s, N (s) the number of times state s was visited, P(s, a) is the estimate of the neural network for the probability
of taking action a from state s, and c is a constant which determines the amount of exploration. At each step of the
simulation, we find the action a and state s which maximize U (s, a) and add the new state to the tree if it does not exist
with the neural network estimates (P (s, a),v(s)) or call the search recursively otherwise. Next, the model represented
by R is realized and applied to the data to solve the task, resulting in a better evaluation e which is the result of running
the generated pipeline R on the data and task. Thus the real world search provides us with (R, €), where R is the real
world model, consisting of machine learning primitives, and e the real world evaluation of the model and pipeline using
those primitives on the data and task.

The neural network predictions, the MCTS model, and the real world evaluation, together, define a loss function shown
in Equation 1, which is minimized to improve the neural network parameters. This process continues iteratively until
the best model, which automatically solves the task, is found.

Inspired by the neural editor (Guu et al., 2018) we use edit operations that make the pipeline generation explainable by
design. For each iteration of self play the MCTS searches the possible valid pipelines. For each state or pipeline the
next possible states or pipelines are limited to those derived from the edit operations of the current state.

3 Results

The data consists of 313 different tabular datasets, of which 296 are from OpenML (Vanschoren et al., 2014). We
considered classification, both binary (121 datasets) and multi-class (108 datasets), and univariate regression tasks (84
datasets). Baseline pipelines were constructed using sklearn SGD estimators for classification and regression, and an
annotated tabular feature extractor which uses linear SVC, Lasso, percentile classification or regression estimators from
sklearn.

Figure 2 compares performance between AlphaD3M and SGD which is the baseline pipeline. Each of the 180 points
represents a classification task on a different OpenML dataset. The datasets for which AlphaD3M performs better than
SGD are shown by green circles and those for which SGD performs better are shown by red crosses. Figure 2 shows
that AlphaD3M performs better than baseline for 75% of the datasets, both are comparable for 18% of the datasets, and
performs worse for only 7% of the datasets. Figure 3 shows the normalized difference in cross validation performance

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

e
o
o
o
o
o
5}
00
00
Y
X
AN

o
°, sy
0.9 @ % 8%
G
o o 9/@2)«
0.8 o o © P
oo [} 5
X
S
4 2
g 07 © P %}’ X
£ o o 0/0’0 @99‘& N X
o o
€06 O F" X
o o KX
5 g X
- .
Sos 7 <
a Py
rd -0 "
< 04 s X
o e %
< 7 o
[T
~
7 09 o
- .
0.2 o 7
.
.
.

0.1

00,
0001 02 03 04 05 06 07 08 09 10
SGD Performance

Figure 2: AlphaD3M vs. SGD performance for 180 classification tasks on OpenML datasets.

AdaBoost XOo® O
Decision Tree XICO @O0 O O o)
Gaussian Naive Bayes |0 O
Gaussian Process XX O

KNN X 0 00 C 00
Linear SVC X0 o
Logistic Regression X Xammw
MLP VMO OO0 o
Multinomial Naive Bayes X X0
Quadratic Discriminant Analysis XX@®»O O O
Random Forest XXxmo®wo O o0 0 O
SVC X0 o (¢}
-0.2 0.0 0.2 0.4 06 0.8 1.0 1.2 14 16 18 2.0 22 24 26 2.8

(t-b)/Ib]

Figure 3: Comparison of normalized AlphaD3M performance ¢ with SGD baseline performance b by estimator.

of AlphaD3M ¢ and SGD baseline b for a classification task for 180 datasets, split according to the estimators used by
AlphaD3M, demonstrating better performance across diverse estimators.

Figure 4 compares performance between different AutoML methods: Autosklearn, TPOT, and Autostacker, and our
method AlphaD3M, for a number of common OpenML datasets, which serve as representative benchmark datasets
for AutoML systems (Olson et al., 2017; Olson and Moore, 2016; Chen et al., 2018). For each method and dataset,
we compute the performance mean and standard deviation by repeated evaluation. As shown in Figure 4 our method,
AlphaD3M, is competitive with other approaches. All four methods are competitive and on par, as their performance
including confidence intervals intersect; whereas SGD and Random Forest are not competitive with the leading AutoML
methods.

AlphaD3M is implemented using PyTorch. Our implementation takes advantage of GPUs while training the neural
network and uses CPUs for the MCTS. Table 1 compares the running time of TPOT, Autostacker, and AlphaD3M on
the same datasets, along with the corresponding speedup factors. Table 1 shows that AlphaD3M performs on average
an order of magnitude faster, reducing computation time from hours to minutes.

4 Conclusions

We introduced AlphaD3M, an automatic machine learning system with competitive performance, which is an order of
magnitude faster than existing state-of-the-art AutoML methods, reducing computation time from hours to minutes. We

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

Dataset Method
breast AlphaD3M - -4
cancer Autosklearn —_ —
Autostacker = b

hill AlphaD3M . #
Autosklearn
valley Autostacker et
TPOT | —
monks AlphaD3M
Autosklearn

=

Autostacker

R |- 4

TPOT

pima AlphaD3M LR
Autosklearn = —
Autostacker o ket

bt —i

spectf AlphaD3M H—4
Autosklearn — b
Autostacker e ——t
TPOT — !

vehicle AlphaD3M L J
Autosklearn -t
Autostacker — J
TPOT I —

0.05 0.10 0.15 0.20 0.25 030 0.35 040 045 050 0.55 060 0.65 070 0.75 0.80 0.85 0.90 0.95 1.00
Performance

Figure 4: Comparing between performance of AutoML methods on OpenML datasets.

Table 1: Running time comparison (in seconds and speedup factors).

Dataset/Method TPOT Autostacker AlphaD3M Speedup vs TPOT Speedup vs AS

breast cancer 3366 1883 460 7.3 4
hill valley 17951 8411 556 322 15.1
monks 1517 1532 348 4.3 4.3
pima 5305 1940 619 8.5 3.1
spectf 4191 1673 522 8 3.2
vehicle 16795 4010 531 31.6 7.5

presented the first single player AlphaZero game representation applied to meta learning by modeling meta-data, task,
and entire pipelines as state.

References
T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search. In Conference on Neural
Information Processing Systems, 2017.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research,
2012.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. Conference on Neural
Information Processing Systems, 2011.

D. M. Blei and P. Myth. Science and data science. In Proceedings of National Academy of Sciences, 2017.

B. Chen, H. Wu, W. Mo, I. Chattopadhyay, and H. Lipson. Autostacker: A compositional evolutionary learning system.
The Genetic and Evolutionary Computation Conference, 2018.

M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter. Efficient and robust automated
machine learning. In Conference on Neural Information Processing Systems, 2015.

Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. International Conference on Machine
Learning, 2015.

K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang. Generating sentences by editing prototypes. Transactions of the
Association for Computational Linguistics, 2018.

L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-WEKA 2.0: Automatic model selection
and hyperparameter optimization in WEKA. The Journal of Machine Learning Research, 18(1), 2017.

S. McAleer, F. Agostinelli, A. Shmakov, and P. Baldi. Solving the Rubik’s cube without human knowledge. arXiv
preprint arXiv:1805.07470, 2018.

M. Milutinovic, A. G. Baydi, R. Zinkov, W. Harvey, D. Song, and F. Wood. End-to-end training of differentiable
pipelines across machine learning frameworks. In International Conference on Learning Representations, 2017.

ALPHAD3M: MACHINE LEARNING PIPELINE SYNTHESIS

R. Olson and J. Moore. TPOT: A tree-based pipeline optimization tool for automating machine learning. In International
Conference on Machine Learning, 2016.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. Pmlb: a large benchmark suite for
machine learning evaluation and comparison. BioData mining, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel,
et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. Conference on Neural
Information Processing Systems, 2017.

T. Swearingen, W. Drevo, B. Cyphers, A. Cuesta-Infante, A. Ross, and K. Veeramachaneni. ATM: A distributed,
collaborative, scalable system for automated machine learning. In IEEE International Conference on Big Data, 2017.

J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. OpenML: networked science in machine learning. ACM
SIGKDD Explorations Newsletter, 15(2), 2014.

	1 Introduction
	2 Methods
	2.1 Representation
	2.2 Neural Network
	2.3 Monte Carlo Tree Search

	3 Results
	4 Conclusions

