
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 318–343. DOI:10.46586/tches.v2023.i4.318-343

LPN-based Attacks in the White-box Setting
Alex Charlès1 and Aleksei Udovenko2

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg, alex.charles@uni.lu
2 University of Luxembourg, Esch-sur-Alzette, Luxembourg, aleksei.udovenko@uni.lu

Abstract. In white-box cryptography, early protection techniques have fallen to
the automated Differential Computation Analysis attack (DCA), leading to new
countermeasures and attacks. A standard side-channel countermeasure, Ishai-Sahai-
Wagner’s masking scheme (ISW, CRYPTO 2003) prevents Differential Computation
Analysis but was shown to be vulnerable in the white-box context to the Linear
Decoding Analysis attack (LDA). However, recent quadratic and cubic masking
schemes by Biryukov-Udovenko (ASIACRYPT 2018) and Seker-Eisenbarth-Liskiewicz
(CHES 2021) prevent LDA and force to use its higher-degree generalizations with
much higher complexity.
In this work, we study the relationship between the security of these and related
schemes to the Learning Parity with Noise (LPN) problem and propose a new auto-
mated attack by applying an LPN-solving algorithm to white-box implementations.
The attack effectively exploits strong linear approximations of the masking scheme
and thus can be seen as a combination of the DCA and LDA techniques. Different
from previous attacks, the complexity of this algorithm depends on the approximation
error, henceforth allowing new practical attacks on masking schemes which previously
resisted automated analysis. We demonstrate it theoretically and experimentally,
exposing multiple cases where the LPN-based method significantly outperforms LDA
and DCA methods, including their higher-order variants.
This work applies the LPN problem beyond its usual post-quantum cryptography
boundary, strengthening its interest for the cryptographic community, while expanding
the range of automated attacks by presenting a new direction for breaking masking
schemes in the white-box model.
Keywords: White-box Cryptography · Cryptanalysis · LPN · DCA · LDA ·
Masking · Dummy Shuffling

1 Introduction
The seminal works of Chow, Eisen, Johnson, and van Oorschot [CEJvO02, CEJv03]
presented a cryptographic model called white-box, where the attacker has knowledge of the
attacked cryptographic primitive and has total access to its implementation. This model
reflects the problem raised by Digital Rights Management and Mobile Payment applications,
where the attacker can be an untrusted user having direct access to these implementations.
The works proposed white-box implementations of the AES [AES01] and the DES [Nat79]
block ciphers claiming security against key recovery attacks. Later, these and newer
schemes [XL09, Kar11] were broken by a variety of attacks [BGEC04, DRP13, LRD+14].

Recently, Bos, Hubain, Michiels, and Teuwen [BHMT16] proposed a new automated
attack called Differential Computation Analysis (DCA) that could break most previous
white-box countermeasures without any knowledge of the protection scheme being employed.
This attack is an application of Differential Power Analysis (DPA) from the side-channel
field [KJJ99] to the white-box setting. The ISW masking scheme [ISW03] is one of the
main countermeasures against the DPA attack in the side-channel studies, and it is natural

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.318-343
mailto:alex.charles@uni.lu
mailto:aleksei.udovenko@uni.lu
http://creativecommons.org/licenses/by/4.0/

Alex Charlès and Aleksei Udovenko 319

to apply it to the white-box implementations. However, in the white-box model, the
attacker has the capacity to probe every intermediate value without any noise. This
observation led to a new attack called Linear Decoding Analysis (LDA) [GPRW20, BU18]
that breaks white-box implementations protected by the ISW masking (or, more generally,
any linear masking scheme).

Biryukov and Udovenko then proposed a masking scheme employing a quadratic
monomial [BU18], hence resisting LDA attacks, while if employed alone being weak to
DCA. Seker, Eisenbarth, and Liskiewicz upgraded the scheme (which we call SEL-masking)
by allowing it to have an arbitrarily large amount of linear shares, protecting it also from
DCA attacks [SEL21]. In addition, they generalized the construction to higher degrees but
only provided concrete gadgets for the cubic variant, provably secure against a quadratic
generalization of the LDA attack. Furthermore, Biryukov and Udovenko showed in [BU21]
that dummy shuffling technique also prevents LDA, but has to be combined with the ISW
masking to prevent DCA. The scheme introduces copies of the function’s implementation
(called slots), but only one of them is processing the actual input, while the others process
pseudorandom data. The right slot is chosen pseudorandomly depending on the input.

The works [GPRW20, BU21] proposed Higher Degree Decoding Attack (HDDA) /
higher-degree algebraic attack, that, for a degree O, can break any masking scheme with
the decoding function of algebraic degree at most O. In addition, a standard side-channel
attack against the ISW masking is the higher-order DPA. Its adaptation to the white-box
context is called Higher-Order Differential Computation Analysis (HODCA), and was
studied in [BRVW19, GRW20, TGCX23]. An order-O HODCA can break any masking
scheme with at most O linear shares, even if it is applied on top of dummy shuffling. The
works [GRW20, TGCX23] also showed that when data-dependency information from the
implementation is available, the higher-order attack variants can be significantly improved.
Effectively, the data-dependency information allows to reduce the attacked window size
(Subsection 2.4).

For an example, consider a sensitive binary variable s protected with quadratic SEL-
masking with 3 linear shares:

s = x1 ⊕ x2 ⊕ x3 ⊕ x4x5

A white-box implementation employing this scheme and exposing all the shares can be
broken using HODCA of order 3 since there are 3 linear shares and their XOR-combination
x1 ⊕ x2 ⊕ x3 correlates to the sensitive variables s. It it also susceptible to the degree-
2 HDDA, since the degree of this polynomial in F2[x1, x2, x3, x4, x5] is two. However,
HODCA and HDDA have exponential complexity in their order/degree, rapidly becoming
infeasible.

Previous works [BU18, BU21] suggested the possibility of applying the Learning
Parity with Noise (LPN) techniques to the white-box setting. The idea is that a nonlinear
countermeasure can still be approximated by a linear one. In the example above, s is equal to
x1⊕x2⊕x3 in 25% of the time (whenever x4x5 = 0). The LDA countermeasures (including
[SEL21]) already gave lower bounds on the approximation error of their gadgets/circuits
by linear functions. However, the application of the LPN method to the white-box
setting has not yet been studied, and these bounds so far played an abstract role as it is
completely unclear how they relate to the theoretical and practical security of white-box
implementations employing these protections.

Our contribution The main contribution of this work is the confirmation, development,
and demonstration of the applicability of the LPN attack in practice. We denote our
resulting instantiation by WBLPN to distinguish it from the general LPN problem. We
analyze and benchmark the attack on several use cases, in theory and in practice, and
outline directions for strengthening countermeasures. Our main motivation is to better

320 LPN-based Attacks in the White-box Setting

understand the feasibility of LPN attacks in order to design new countermeasures such as
higher-degree masking schemes.

The WBLPN attack can be viewed as a combination of the LDA and DCA attacks. It
is most efficient in cases when the masking decoding polynomial can be well approximated
by a linear function. The complexity of the WBPLPN attack does not directly depend on
the number of linear shares (but may do so indirectly through the window size), which is its
main advantage over HODCA. Our results show that LPN-based attacks are often practical
and pose new threats to countermeasures previously deemed secure against automated
attacks such as (HD)DA and (HO)DCA. In particular, counter-intuitively, the generalized
masking scheme from [SEL21] gets weaker against the WBLPN attack as its degree grows;
the dummy shuffling scheme from [BU21] may be weak against the WBLPN attack when
a very small number of dummy slots is used.

1. (White-box LPN attack) We show and formalize how various white-box countermea-
sures can be modeled as an LPN problem, and how algorithms for solving LPN can
be applied to break various protections. For illustration and benchmark purposes,
we focus on the general SEL-masking family of schemes [SEL21], but also consider
the dummy shuffling protection [BU21].

2. (LPN attack instantiation) We instantiate the WBLPN attack with the Pooled
Gauss algorithm [EKM17], which is highly efficient for small LPN instances arising
in practical white-box attacks. In particular, we show how it can be adapted to
account for the specifics of the white-box setting.

3. (Complexity analysis and comparison) We compare the complexities of the new
WBLPN attack against the (HO)DCA and (HD)DA in the cases of SEL-masking
schemes and dummy shuffling, both theoretically and experimentally1. The compari-
son clearly demonstrates cases when the WBLPN attack is outperforming alternative
techniques.

4. (Countermeasures) We discuss potential countermeasures against the white-box LPN
attack and show how to amplify the approximation error of a nonlinear masking
scheme by composing it with a linear masking scheme.

5. (Higher-degree WBLPN) Finally, we discuss a higher-degree generalization of the
WBLPN attack and its potential targets.

Outline After explaining the white-box context in Section 2 and presenting the state-of-
the-art automated attacks in Section 3, we show in Section 4 how an LPN-problem-solving
algorithm can be used to perform an automated attack in the white-box context. We then
recall and adapt in Section 5 the Pooled Gauss algorithm [EKM17] to give a concrete
LPN-based white-box attack. Section 6 follows up with a detailed performance comparison
of attacks. In Section 7, we discuss how to secure countermeasures against the LPN attack.
Finally, in Section 8 we describe higher-degree generalization of the LPN attack.

2 Preliminaries
2.1 Notations
Given a vector or a list L of n elements, we denote by L[i], 1 ≤ i ≤ n, the ith element of this
list/vector. Given a list of n elements L = (L[1], · · · , L[n]), we denote the concatenation
of a new element to this list by ||, such that L||a = (L[1], · · · , L[n], a). Similarly, given

1The source code is available at https://github.com/cryptolu/whitebox-LPN .

https://github.com/cryptolu/whitebox-LPN

Alex Charlès and Aleksei Udovenko 321

two lists or vectors L1 = (L1[1], · · · , L1[n]) and L2 = (L2[1], · · · , L2[m]), we denote their
concatenation by the same operator: L1||L2 = (L1[1], · · · , L1[n], L2[1], · · · , L2[m]).

Given a pair of non-negative integers n, k, 0 ≤ k ≤ n, we define
(
n
≤k
)

=
∑k
i=1
(
n
i

)
.

The finite field of size 2 is denoted by F2. Addition and multiplication in F2 correspond
respectively to the Boolean XOR and AND operations. The n-dimensional vector space
over F2 is denoted by Fn2 . Given two vectors ~v1, ~v2 ∈ Fn2 , we denote the inner product by
〈~v1, ~v2〉 =

∑n
i=1(~v1[i] + ~v2[i]) ∈ F2. For a vector ~v ∈ Fn2 , we denote its Hamming weight

by HW(~v) =
∑n
i=1 ~v[i] ∈ N. The matrix multiplication constant ω defines the complexity

O(nω) of matrix inversion, when n is the dimension of the matrix. For practical dimensions,
Strassen’s algorithm is the best option and has ω ≈ 2.8.

Any Boolean function f : Fn2 → F2 can be uniquely expressed in its algebraic normal
form (ANF), which is a multivariate polynomial over F2:

f(x) =
∑
~u∈Fn2

λ~u~x
~u =

∑
~u∈Fn2

λu

n∏
i=1

xuii ∈ F2[x1, . . . , xn]/(x2
1 − x1, . . .)

where λ~u ∈ F2 are the coefficients depending on f . By the degree of f we understand the
total degree of its ANF:

deg f = max
~u:λ~u=1

HW (~u)

The Walsh transform f̂ : Fn2 → Z of a Boolean function f : Fn2 → F2 is defined by

f̂(a) =
∑
x∈Fn2

(−1)〈a,x〉⊕f(x) = |{x ∈ Fn2 | 〈a, x〉 = f(x)}| − |{x ∈ Fn2 | 〈a, x〉 6= f(x)}|

It can be computed in time O(n2n) using Fast Walsh-Hadamard Transform (FWHT)
[FA76].

2.2 Masking schemes
White-box protected implementations come with different protection techniques such as
code obfuscation, control flow obfuscation and protection, virtualization, fault countermea-
sures (for examples see [GPRW20, GRW20, BDG+22, BBD+22]). However, the nonlinear
masking schemes [BU18, SEL21] and dummy shuffling [BU21] so far are the only known
provable countermeasures against algebraic attacks.

Consider a Boolean circuit implementation of cryptographic primitive. A masking
scheme represents all intermediate binary variables by multiple shares, and a specific
function is used to combine these shares into the original value. For example, in the
quadratic masking scheme from [SEL21], an intermediate Boolean variable s can be
represented by four or more shares, such as s = x1 ⊕ x2 ⊕ x3x4, with all shares except
x1 being generated (pseudo)randomly, and x1 chosen such that it makes the expression
equal to s. Since we will focus on breaking masking schemes in an automated way, we will
assume that shares of sensitive values are exposed by the implementation in unknown but
fixed locations of the program.

A masking scheme also comes with gadgets, which replace gates in the original circuit.
For instance, if two sensitive bits s1 and s2 are masked with the masking scheme above,
the gadget XOR will take as input the 4 shares of s1 and 4 shares of s2 and compute
shares y1, y2, y3, y4, such that y1 ⊕ y2 ⊕ y3y4 = s1 ⊕ s2. Gadgets need to satisfy certain
security requirements. However, implementations of gadgets are irrelevant to our attacks
and are out of the scope of this work. Note that they are relevant in data-dependency
attacks [GRW20, TGCX23].

Definition 1. For a given n-share masking scheme, its masking scheme polynomial is
defined as the corresponding decoding function as a polynomial in F2[x1, · · · , xn].

322 LPN-based Attacks in the White-box Setting

Definition 2. By the degree of a masking scheme we call the degree deg(P) of its masking
scheme polynomial P ∈ F2[x1, · · · , xn].

Definition 3. Given a masking scheme polynomial P ∈ F2[x1, · · · , xn], we denote the
linear part of P by lin(P) ∈ F2[x1, · · · , xn] and call it the linear part of the masking
scheme.

Definition 4. We denote the masking scheme polynomial consisting of ` different linear
shares and one monomial of degree d that is not divisible by any of the variables of its
linear part by P`,d:

P`,d = x1 + · · ·+ x` + x`+1x`+2 · · ·x`+d ∈ F2[x1, · · · , x`+d]

For instance, P2,3(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3x4x5 has deg(P2,3) = 3 and
lin(P2,3) = x1 ⊕ x2. More generally, deg(P`,d) = d and lin(P`,d) contains ` variables.
The masking scheme polynomials of the ISW scheme can be expressed by P`,0 for a positive
integer `. Similarly, the scheme of [BU18] has masking scheme polynomial P1,2. Finally,
the generalized SEL-masking scheme includes all P`,d, ` ≥ 1, d ≥ 2, although [SEL21]
provided concrete gadgets and security proofs only for d ∈ {2, 3}.

2.3 Dummy shuffling
Dummy shuffling [BU21] is an alternative protection against the LDA attack. In the side-
channel setting (see [HOM06, VMKS12]), shuffling is used to increase measurement noise,
strengthening masking schemes. In the white-box setting, shuffling offers strong protection
against LDA. Dummy shuffling introduces copies of the function’s implementation (called
slots), but at each execution only one of them processes the actual input (the right slot),
while the others process pseudorandom data (dummy slots). The right slot is chosen
pseudorandomly depending on the input. The scheme of [BU21] also manipulates the
slots’ implementations to ensure the non-degeneracy of dummy slot computations, which
is required for provable security against LDA.

2.4 Sliding window in white-box
Given a white-box implementation with employed countermeasures, an attacker generates
T random plaintexts and encrypts them using the implementation, while recording all
computed intermediate values for each of the T encryptions. These records are called
(computational) traces. The ith bit of the tth trace, t ∈ {1, · · · , T}, corresponds to the
binary value of the ith node of the implementation encrypting the tth plaintext.

Some algorithms such as the one that we will present in Section 5, but also LDA (c.f.
Subsection 3.3), HDDA (c.f. Subsection 3.4) and HODCA (c.f. Subsection 3.2) have high
complexity in the number of nodes that they process; making them impractical in time
for processing full implementations at once. These algorithms are therefore used with a
sliding window method. For a sliding window of window size W, an attacker considers all
the values of the first W nodes in the T traces files, applies the analysis, then moves the
window by a certain number of nodes, and repeats until all nodes are processed. For T
traces, the very first window of size W can be expressed as a matrix as followed:

N =


node 1 node 2 · · · node W

trace 1 N1,1 N1,2 . . . N1,W
trace 2 N2,1 N2,2 . . . N2,W

...
...

...
...

...
trace T NT,1 NT,2 . . . NT,W

 =
[−→
N1, · · · ,

−−→
NW

]

Alex Charlès and Aleksei Udovenko 323

Ni,j corresponds to the bit value of the node j during encryption of the plaintext of the
trace i. After the first window is shifted by S bits, the new window has the first column
equal to −−−→N1+S = (Ni,1+S)i∈{1,··· ,T}.

Definition 5. The nth node vector, denoted by −→Nn ∈ FT2 , contains all the values taken by
the nth node during the cipher of the T plaintexts.

When data-dependency information in the implementation is available (for example,
when the implementation is represented by a Boolean circuit), the sliding window method
can be replaced by non-linear and more effective methods of choosing attack windows
(see [GRW20, TGCX23]). Our attack is independent of the method of choosing the
attacked windows, and we expect the data-dependency-enhanced version of HODCA (c.f.
Subsection 3.2) to compare to the data-dependency-enhanced version of WBLPN (c.f.
Subsection 5.2) similarly to how HODCA compares to WBLPN. In this work, we focus on
applications of the attacks to a single window.

2.5 Selection function
To determine the secret key hidden within a white-box implementation, the attacks require
a selection function. This function has the same input as the studied implementation, is
parameterized by a small portion of the secret key, and typically outputs an intermediate
value used in the reference, unprotected implementation. For instance, in the case of AES,
the most widely used selection function is (for example) the first output bit of an S-box of
the first round. However, we have to consider all 256 possible values of the involved key
byte. This leads to 256 different selection function candidates. Each such function can
be computed by XORing of the key byte candidate to the corresponding plaintext byte,
applying the S-box to the result, and returning the first output bit.

Since we assume that a masking scheme has been applied to the implementation and
in particular to this sensitive bit, we are sure that for at least one key byte guess k, there
exists a combination of nodes corresponding to the input of the masking scheme polynomial
that is equal to the result of the selection function for any chosen plaintext. If there is
no such combination of vectors, we can conclude that we made an incorrect key byte
guess, reducing the possible key space. We will denote the set of all key byte guesses
by K = {1, . . . , |K|}. In the case of the AES, minimally, |K| = 16 · 256, as there are 256
different key byte values per each of the 16 byte positions. This set can be made larger
to increase the coverage, by considering all output bits of the S-box and/or their linear
combinations.

Definition 6. We denote the selection function applied to a plaintext p, for a key guess
k ∈ K by Fk(p).

If we denote the list of plaintexts by P , with P [i] being the plaintext used to create
the ith trace, then for T traces and the set K of all key guesses, we can write the matrix of
selection vectors:

S =


key guess 1 key guess 2 · · · key guess |K|

trace 1 F1(P [1]) F2(P [1]) . . . F|K|(P [1])
trace 2 F1(P [2]) F2(P [2]) . . . F|K|(P [2])

...
...

...
...

...
trace T F1(P [T]) F2(P [T]) . . . F|K|(P [T])

 =
[−→
S1,
−→
S2, · · · ,

−−→
S|K|

]

Definition 7. Selection vector −→Sk is the vector of the output values of the selection
function Sk for the T plaintexts, for a given key guess k ∈ K.

324 LPN-based Attacks in the White-box Setting

3 Previous Works
In this section we present state-of-the-art of masking-scheme-breaking algorithms, though
these algorithms can also break other obfuscation techniques, such as byte/nibble encodings
[ABMT18, RW19].

3.1 Differential Computation Analysis (DCA)
Differential Computation Analysis [BHMT16] is an attack introduced by Bos, Hubain,
Michiels, and Teuwen, derived from the gray-box Differential Power Analysis attack
[KJJ99].

For the sake of the explanation, let us study the AES block cipher protected with a
masking scheme polynomial P1,2 (c.f Definition 4), which transforms a sensitive bit s to
s = x1⊕x2x3. In the implementation, we know that there exists a node n that corresponds
to the share x1. Since x2x3 = 0 three-quarters of the time, the node n will take the value
of s also three-quarters of the time.

The problem is that s is unknown since we don’t know the hidden key employed to
cipher. To find a key byte, we will choose the selection function that reproduces the
first round of the AES for a single byte: given a key byte guess k ∈ {0, · · · , 255}, a byte
position b ∈ {0, · · · , 15} and a plaintext, we compute the XOR of k with the bth byte of
the plaintext, then apply the AES S-box to return the first bit of the result. This bit is
dependent on the key and will help us distinguish a correct key guess from an incorrect
one.

In fact, for the correct key byte guess k and the correct byte b, the results of the
selection function in the traces correspond to the value of a masked sensitive bit s and
therefore will be three-quarters of the time matching the value of the node n corresponding
the share x1 of s. Contrariwise, if the guess is not correct, we can expect it to match the
value of the node n one-half of the time on average.

To exploit this distinguisher, we can compute the correlation of all node vectors (c.f.
Subsection 2.4) with all selection vectors (c.f. Subsection 2.5). For each of the 16 byte
positions b, we keep the highest correlation value and its corresponding key byte guess k.
With enough traces, we then deduce the key hidden in the algorithm.

This attack breaks masking schemes with masking polynomials with linear parts
containing only one monomial. For instance, to apply the masking scheme polynomial P`,0,
the `− 1 of these shares are generated randomly, and the last one is computed such that
it makes the result equal to s. Therefore, none of these shares correlate with s, making
this attack ineffective against masking schemes with linear parts containing more than one
monomial.

3.2 Higher Order DCA (HODCA)
To allow the DCA to break masking schemes with linear parts containing O > 1 linear
shares, a solution would be to create all m-node XOR-combinations for m ∈ {1, · · · ,O},
and compute for all of them their correlation with every selection vector. This attack
is called Higher-Order DCA (HODCA) and was studied in the white-box setting in
[BRVW19].

Definition 8. The order O of a HODCA attack defines the number of node vectors that
are combined together with bitwise XOR2 before computing their correlation with the
selection vectors.

2Other combination functions may be used in HODCA, but we restrict to XOR for the purposes of this
work.

Alex Charlès and Aleksei Udovenko 325

There exists
(#N
≤O
)
O-node XOR-combinations. The number of nodes #N of an

algorithm may be quite large, making this algorithm impracticable in time for large #N .
To avoid this, a sliding window method with window size W ≥ O can be used to try to
catch the linear part of a sensitive bit s, which limits the amount of created vectors to(W
≤O
)
.

For instance, if the masking scheme polynomial P2,2 is employed, a binary variable
s is represented by four shares (x1, x2, x3, x4) such that s = x1 ⊕ x2 ⊕ x3x4. As in the
basic DCA attack, we can choose the same selection functions. Then, using a sliding
window, we aim to find the shares x1 and x2 among other unrelated nodes within a single
window. This is achieved by performing the second-order DCA by computing the

(W
≤2
)

XOR combinations of all pairs of node vectors. One of them will be equal to −→N1 ⊕
−→
N2, the

XOR of the node vectors of x1 and x2. Since x3x4 = 0 three-quarters of the time, the
XOR of the node vectors −→N1 ⊕

−→
N2 will also match three-quarters of the time (and thus

correlate) with the correct selection vector. Like in the DCA attack, this allows us to
recover the corresponding part of the key.

Proposition 1. HODCA of order O breaks masking scheme polynomials P`,d with ` ≤ O.

3.3 Linear Decoding Analysis (LDA)
Linear Decoding Analysis attack was proposed in [GPRW20]. Let us consider the masking
scheme polynomial P3,0 transforming a sensitive bit s to s = xa ⊕ xb ⊕ xc applied to the
AES. As in the DCA attack, we will consider the same selection function and try to recover
the key bytes.

We know that for a correct key guess and a correct byte position, there exists a linear
combination of 3 node vectors −→Na,

−→
Nb,
−→
Nc corresponding to the three shares of s equal

to the corresponding selection vector −→Sk. If we denote the total number of nodes by #N ,
to recover this combination among all other unrelated node vectors, we search for ~x such
that:

N~x =
[−→
N1, · · · ,

−→
Na, · · · ,

−→
Nb, · · · ,

−→
Nc, · · · ,

−−−→
N#N

]
~x = −→Sk

Since #N can be very huge, we will use a sliding window algorithm to reduce the cost
of the algorithm. For each window, we will go through all selection vectors, and try to
solve the linear system. If we find a solution, either we succeeded to find one of the 16 key
bytes, or it is a false positive and we should increase the total number of traces.

However, this attack only breaks masking schemes of degree at most 1. Indeed, a
masking scheme polynomial having a degree superior to one makes the equations non-linear,
avoiding using linear algebra to solve them.

3.4 Higher Degree Decoding Analysis (HDDA)
As well as for the HODCA attack, given a window containing W node vectors, to allow
LDA breaking schemes of degree O > 1, we can compute and add to the matrix all

(W
≤O
)

AND-combinations of node vectors.

Definition 9. The degree O of an HDDA attack defines the number of node vectors that
are combined with bitwise AND before solving the LDA matrix equation for every selection
vector.

If we take the same masking scheme polynomial example for HODCA, P2,2 transforms
a bit variable s into four shares, such as s = x1 ⊕ x2 ⊕ x3x4. Taking the same selection
function as for LDA, we can catch within the same window all of its shares x1, x2, x3, and
x4 among other unrelated nodes. Then, we can compute the

(W
2
)
AND-combinations of

all pairs of node vectors and concatenate them to the T ×W matrix.

326 LPN-based Attacks in the White-box Setting

One of these newly added vectors will be −→N3 ∧
−→
N4, the AND of the node vectors of x3

and x4. Therefore, for the selection vector −→Sk corresponding to the correct key guess k,
we can find the solution −→N1 ⊕

−→
N2 ⊕ (−→N3 ∧

−→
N4) = −→Sk using the same linear algebra as the

regular LDA attack, which indicates that the chosen k may be a correct key guess.

Proposition 2. HDDA of degree O breaks masking schemes of degree at most O, including
all masking scheme polynomials P`,d with d ≤ O.

4 Security of White-box Countermeasures as an LPN Prob-
lem

In this section, we will first present in Subsection 4.1 the Learning Parity with Noise
problem in the general case, as well as its expression in matrix form when asking the oracle
for multiple queries. Then, after defining the noise rate of a masking scheme polynomial,
we explain in Subsection 4.2 that searching for combinations of node vectors for a masking
scheme polynomial of noise rate τ in a window of sizeW can be related to an LPN instance
of dimension W and noise rate τ .

4.1 Learning parity with noise problem
Definition 10. The LPNk,τ problem comes with two parameters: the dimension k and
the noise rate τ , 0 ≤ τ < 1/2. The goal is to retrieve a secret ~x ∈ Fk2 generated uniformly
at random, by having access to an oracle returning ~a ∈ Fk2 and b ∈ F2, such that:

〈~a, ~x 〉+ e =
[
a1 · · · ak

] x1
...
xk


where ~a ∈ Fk2 is sampled uniformly at random on each query, and e ∈ F2 is sampled at
random with Pr[e = 1] = τ on each query.

After T queries, we can collect the sampled vectors ~a in a matrix A, the sampled errors
e in a vector ~e, and the results b in a vector ~b. Since the searched solution vector ~x does
not change, we obtain a matrix-vector formulation of the problem:

A~x+ ~e =

 a1,1 · · · a1,k
...

...
...

aT,1 · · · aT,k


x1

...
xk

+

e1
...
eT

 =

b1
...
bT


where (in the standard LPN problem) Pr[ai,j = 1] = 1/2 for all i, j, and Pr[ei = 1] = τ for
all i.

We write (A,~b)← LPNT
k,τ to denote the matrix-vector representation of T samples.

4.2 Relation between LPN and White-box Countermeasures
Case of masking schemes Let us suppose that we have a window containing (among
other unrelated nodes) all the shares of the masked sensitive bit s corresponding to the
resulting bit of a selection function F (c.f. Subsection 2.5). Assume that the masking
scheme polynomial P ∈ F2[x1, · · · , xn] is known. The goal is to find if there exists
a combination (−→N1, · · · ,

−→
Nn) of n different node vectors among the W available in the

window and a selection vector −→Sk such that P (−→N1[t], · · · ,−→Nn[t]) = Fk(t) = −→Sk[t] for all
t ∈ {1, · · · , T}.

Alex Charlès and Aleksei Udovenko 327

The key idea to conceive the relation between this problem and LPN is to understand
that we can consider the non-linear monomials of the masking scheme polynomial as noise.

Definition 11. We denote the noise rate of a polynomial P ∈ F2[x1, · · · , xn] by τ =
P(
⊕

m∈Mm(x) = 1), withM being the set of monomials in P of degree strictly greater
than 1. IfM is empty, then τ = 0.

Remark 1. This definition suffices for the masking polynomials P`,d. More generally, the
noise rate of a polynomial P could be defined by the error of its best linear approximation,
which in turn can be computed from the maximum absolute value of the Walsh transform
P̂ of P (computed in time O(n2n)): τ = 1/2− 2−n−1 ·maxa∈Fn2 ,a6=0 |P̂ (a)|.

Proposition 3. For any ` ≥ 1, d ≥ 2, the scheme polynomial P`,d (c.f Definition 4) has
noise rate τ = 1

2d .

For a hypothetical masking scheme with the masking scheme polynomial

P (x1, x2, x3, x4, x5, x6) = x1 ⊕ x2x3 ⊕ x4x5x6

we would have noise rate

τ = P(x2x3 ⊕ x4x5x6 = 1)
= P(x2x3 = 1)P(x4x5x6 = 0) + P(x2x3 = 0)P(x4x5x6 = 1) = 5/16

In general, if all monomials of degree superior to two are uncorrelated, one can use
the piling-up lemma [Mat94] to compute the noise rate of a given polynomial. For any
masking scheme, it is always possible to compute the probability of the nonlinear part to
be equal to zero from the full truth table, either by direct computations or by the FWHT
algorithm.

So, given a n-bit input chosen uniformly at random in Fn2 and an n-share masking
scheme polynomial P , there is a probability 1− τ that higher-degree monomials can be
ignored in the computation, meaning that the computation is effectively linear. In this
case, given lin(P), the polynomial consisting of all monomials of P of degree 1, among all
x ∈ Fn2 there is a probability 1− τ that P (x) = lin(P)(x).

Case of dummy shuffling Consider an implementation protected by the linear ISW
masking with ` shares and dummy shuffling with t dummy slots (in addition to the right
slot). The linear combination of all the ` shares inside one slot correlates to the protected
sensitive value, since it is precisely equal to the sensitive value when the slot is right
(probability 1

t+1) and equal to a random unrelated value otherwise (probability t
t+1). If the

sum of the shares is balanced when the slot is dummy (i.e., is equal to 1 with probability
1/2), then we get the noise rate τ = t

t+1 ·
1
2 . However, the construction of [BU21] allows

intermediate functions with weight 1/4. Such functions have an error of only 1/4 when
the selection function is equal to 0. Therefore, the noise rate τ can in principle drop to
τ = t

t+1 ·
1
4 , which is the lower bound proven in [BU21]. Thus, the actual value of τ can

lie in the range
[

t
t+1 ·

1
4 ,

t
t+1 ·

1
2

]
, depending on the protected circuit and details of the

linear masking. From the designer’s perspective, the pessimistic value τ = t
t+1 ·

1
4 should

be studied. From the attacker’s perspective, this value might not always be reachable and
so τ = t

t+1 ·
1
2 has to be used to ensure the success of the attack.

Modeling the problem by LPN We have seen that in the LPN problem, one can ask for
any number of noisy linear equations. This will correspond in the white-box context to
creating as many traces as needed. We will denote this number of traces / noisy linear
equations by T . Similarly, we have also seen that the study in the white-box context will

328 LPN-based Attacks in the White-box Setting

be performed within a sliding window. This almost (c.f. Subsection 5.2) corresponds to
the dimension of the LPN problem. We will denote the window size by W.

Denoting the trace matrix part in the window by M , we can write the problem as
follows:

M ~x+ ~e =


−→
N1[1], · · · −−→

NW [1]
...

...
...

−→
N1[T], · · · −−→NW [T]


 x1

...
xW

+

e1
...
eT

 = −→Sk

with Pr[ei = 1] = τ for all i ∈ {1, · · · , T}

For a key byte guess k ∈ K, we are searching for the best linear combination of the
columns of the sliding window matrix M , represented by the vector ~x, such that we
minimize the Hamming Weight (HW) of ~e = M−→x + −→Sk. Searching for such a linear
combination is equivalent to solving LPN, as we want to find ~x while not knowing ~x and ~e,
the latter being the error vector caused by the noise of the masking scheme polynomial’s
approximation.

With the Law of Large Numbers, if all the linear shares are contained within this
window, there exists, for enough traces and a correct key byte guess k, ~x such that
HW(M~x+−→Sk) −→ τ T when the number of traces T → +∞. Conversely, if at least one of
the linear shares is not contained in the window or for a wrong key byte guess, we can
expect HW(M~x+−→Sk) −→ T/2 for any ~x and k when the number of traces T → +∞. For a
constant τ < 1/2, these two distributions can be distinguished with a sufficient number T
of traces.

5 Adapting the LPN-solving Pooled Gauss Algorithm
In this section, we instantiate the LPN attack using a basic Pooled Gauss algorithm
(generally considered as folklore knowledge and analyzed in [EKM17]), which can also
be considered as the LPN version of the Information Set Decoding (ISD) algorithm by
Prange [Pra62]. We present the modifications brought to the Pooled Gauss algorithm
to make it work efficiently in the white-box context. Although more powerful advanced
LPN algorithms exist, they may introduce unnecessary complexity and are unlikely to
provide significant speedups at small-size instances occurring in the white-box setting.
Consideration of these algorithms is left as future work.

5.1 Description of Pooled Gauss for pure LPN
Pooled Gauss is a folklore algorithm studied more formally in [EKM17]. For an LPN of
dimension W and noise rate τ , the idea is to first ask the LPN oracle for O(W2) noisy
linear equations and store them in a matrix Mpool and a vector ~bpool. From Mpool, we can
choose randomly a sample of W equations, giving us a sub-matrix Ms of size W ×W and
a vector ~bs corresponding to the chosen sample. If Ms is not invertible, then we sample
another one until we find an invertible one. We have (1− τ)W chance that all of these W
equations have the noise equal to zero. When this happens, using Gaussian elimination,
we can find the solution ~x to the system Ms~x = ~bp.

We can now ask the LPN oracle for m new noisy linear equations that we store in a
m×W matrix Mv and a vector ~bv. Then we verify that HW(Mv~x+~bv) is approximately
equal to τm, rather than to m/2. If this holds, we consider that we solved the LPN
instance; otherwise, at least one of our noisy equations of our selected sample might have
a noise equal to one. In that case, we sample another couple of matrices and vectors from

Alex Charlès and Aleksei Udovenko 329

the same pool, and verify it with newly generated Mv and ~bv, until we find a solution to
the LPN instance.

More precisely, rather than verifying that HW(Mv~x+~bv) is approximately equal to τT ,
the authors of [EKM17] propose two parameters α and β, which correspond respectively to
the probability of rejecting the right solution and the probability of accepting an incorrect
solution. These parameters are used to determine a threshold c and a value m which are
used to determine if we accept or not a solution:

m :=


√

3
2 ln(1

α) +
√

ln(1
β)

1
2 − τ


2

(1)

c := τm+

√
3
(

1
2 − τ

)
ln
(

1
α

)
m

After finding a solution ~x and generatingMv and~bv, we will use the threshold parameter
c to verify if HW (Mv~x+~bv) ≤ c. If so, we return ~x as the solution, otherwise, we choose
another sample and redo the previous steps. The procedure is summarised in Algorithm 1.

Algorithm 1 PooledGauss
Input: τ , W, α = 1

2W , β =
(1−τ

2
)W , and an access to an LPNW,τ oracle

Output: ~x, solution of the LPN instance

1: m :=
(√

3
2 ln(1

α)+
√

ln(1
β)

1
2−τ

)2

2: c := τm+
√

3
(1

2 − τ
)

ln
(1
α

)
m

3: (Mpool,~bpool)← LPNW
2

W,τ
4: do
5: do
6: Ms ← W different randomly-chosen rows of Mpool
7: while Ms /∈ GLW(F2)
8: ~bs ← the W elements of ~bpool corresponding to the randomly-chosen rows of Mpool

9: ~x := M−1
s
~bs

10: (Mv,~bv)← LPNm
W,τ

11: while HW(Mv~x+~bv) > c
12: return ~x

5.2 Adaptation of Pooled Gauss to white-box cryptography
Avoiding XOR of nodes To adapt Pooled Gauss to the white-box model, we first need
to reduce the input window to the subset of the columns that span the column space and
are linearly independent. The analyzed white-box implementation may contain some XOR
gates, which implies that some nodes are the sum over F2 of two closely-located nodes.
This generates a lot of windows where some of the columns are linearly dependent, which
prevents finding a sample of rows that forms an invertible matrix. We will denote the
number of linearly independent columns of a window of size W by W ′, which corresponds
to the effective dimension of the LPN problem.

Adding a stop condition In the standard LPN problem, it is guaranteed that there exists
a solution, whereas, in our white-box problem, it is likely that a given window does not

330 LPN-based Attacks in the White-box Setting

contain all the linear shares of the sensitive bit of a selection function. Therefore, we need
to determine the number of attempts A to find a solution in a sample having an invertible
matrix.

Definition 12. We denote the probability parameter of finding at least one noise-free
matrix after A iterations by pnfm.

Since the probability of having a noise-free sampled matrix is (1− τ)W , the probability
of finding at least one noise-free matrix after A attempts is pnfm = 1− (1− (1− τ)W)A.
Knowing pnfm, we can determine

A = ln(1− pnfm)
ln(1− (1− τ)W) ≈

− ln(1− pnfm)
(1− τ)W (2)

(using ln(1 + x) = x + O(x2)), the number of attempts of trying to find a solution ~x
corresponding to an invertible sampled matrix Ms necessary to achieve pnfm chance of
having at least one of these sample matrices being noise-free.

Avoiding false-positives For the same given window, we need to solve Pooled Gauss not
once, but for every key guess of a set K, which has an impact on the threshold c. Indeed,
since we will repeat Pooled Gauss on the same window |K| times, it increases the probability
of finding a false positive. β being the probability of accepting an incorrect solution should
be adapted such that after |K| iterations of Pooled Gauss it is equal to the value that it has
in the original algorithm. Therefore, we have the same computation (c.f. Equation 1) for
the threshold c, and the same probability of rejecting the correct solution α, while having
β changed from β = 1

A ·
1

2W =
(1−τ

2
)W (in [EKM17]) to β = 1

A·|K| ·
1

2W = 1
|K| ·

(1−τ
2
)W .

Determining the number of traces We denote the number of traces of the pool used
for the samples generation by Tp and the number of traces needed to verify a solution
of a sample by m; such that T = Tp + m. The separation is done for the theoretic
independence assumption. In practice, the samples can be drawn from all the T traces; it
is only important to exclude the initial sample from the verification step.

For the latter, we need to create traces to allow the verification of our found solution ~x
following Pooled Gauss algorithm with our modified β (c.f. Subsection 5.2). This value is
given by m, following the computation given in Equation 1, but for β = 1

|K| ·
(1−τ

2
)W .

For the former, we need to choose several traces that avoid the collision of samples and
ensure not too much noise. It is important to say that this parameter does not have any
impact on the time complexity (c.f Subsection 5.5), but only on memory usage, which is
not significant for this algorithm. Therefore, by choosing for instance Tp = 5W, we can
ensure that the number of rows that have noise would be approximately τTp. Similarly,
since we can create

(
Tp
W
)
different combinations of W rows from Tp available ones, by

choosing Tp big enough to avoid having too much noise by chance, we already lower enough
the probability of finding a collision.

In practice, one can choose T = m +W, and sampling the matrix Ms from the T
traces, and use the T −W remaining one to verify the found solution.

5.3 Optimizations with linear algebra
Since we perform Pooled Gauss for each of the key possibilities of the key guesses set
K, instead of finding A invertible matrices from different samples for each of the |K| key
guesses, we can use the same invertible matrix for each of the key guesses. Since the same
invertible matrix is used for the |K| key guesses, we can compute its inverse once and use
it for all the remaining computations.

Alex Charlès and Aleksei Udovenko 331

Let us denote the W ×W sampled matrix from the Tp ×W array containing traces for
sampling Mpool by Ms, and the vector of the W respective entries of Spool by −→Ssk, for a
given key guess k ∈ K. Likewise, let us denote the m×W verification matrix consisting
of the m dedicated traces by Mv, and its corresponding selection vector by −→Svk . Let us
denote the matrix containing all selection vectors for sampling (resp. verifying) by Ss
(resp. Sv). Finally, let ~x be the searched linear combination of the matrix that minimizes
the Hamming weight of the error vector ~e = ~es||~ev, where the Pooled Gauss algorithm
aims for ~es = 0. Then, we have:

~es ?= 0

~ev

 =

Ms

Mv

 [~x]+


−→
Ssk

−→
Svk

 =

Ms

Mv

 [M−1
s

] [
Ms

] [
~x
]

+


−→
Ssk

−→
Svk


=

 IdW

MvM
−1
s

[−−→Msx
]

+


−→
Ssk

−→
Svk


We now are searching for −−→Msx minimizing the total weight. Because the upper part
of the first matrix became the identity, then −−→Msx has to be equal to −→Ssk (under the
hypothesis ~es = 0). Therefore, the total weight that we want to minimize depends only on
~ev =

[
MvM

−1
s

]−→
Ssk +−→Svk , and has to be smaller than the threshold c defined in Equation 1.

Since we will have to find an ~x for each of the key possibilities of the set K, we can
write the problem as:Ms

Mv

−→x1 · · · −−→x|K|

+


−→
Ss1 · · ·

−−→
Ss|K|

· · ·
−→
Sv1 · · ·

−−→
Sv|K|


=

 IdW

MvM
−1
s

−−−→Msx1 · · ·
−−−−→
Msx|K|

+


−→
Ss1 · · ·

−−→
Ss|K|

· · ·
−→
Sv1 · · ·

−−→
Sv|K|


For the same reason, we can fix −−−→Msxi to

−→
Svi , for i ∈ {1, · · · , |K|}, which gives us:

MvM
−1
s

[−→
Ss1 · · ·

−−→
Ss|K|

]
+
[−→
Sv1 · · ·

−−→
Sv|K|

]
= MvM

−1
s Ss + Sv = E

If one of the columns of the resulting m× |K| matrix E has Hamming weight less than
the threshold c, then its corresponding key guess becomes a good candidate. If none of
the columns satisfy this inequality, then we might have chosen a noisy sample, or at least
one share of the researched sensitive bit is not contained in the current window. The
probability of the former should be negligible according to the chosen number of traces.

5.4 Resulting algorithm
Algorithm 2 presents WBLPN algorithm for a single window. This algorithm needs to
have for input the different probabilistic parameters to ensure its success m, c, Tv and A,
as well as two arrays M and S containing respectively the traces and the selection vectors.

The algorithm begins by separating the traces and selection vector values in two groups
of length Tp and m: respectively one for sampling, the other for verifying solutions found.
Thereafter, it will iteratively create a W ×W matrix Ms from the traces for sampling
until Ms is invertible. Once an invertible sampled matrix Ms is found, the algorithm gets

332 LPN-based Attacks in the White-box Setting

their corresponding selection vectors in the form of W × |K| matrix Ss. The algorithm
now computes the matrix E following Subsection 5.3 to observe if one of the resulting
columns of E has a Hamming weight less than c. If so, the key guess corresponding to the
same column in S might be a correct guess.

Algorithm 2 WBLPN
Inputs:

• window size W
• expected maximum noise rate τ
• number of key guess possibilities |K|
• number of traces used to sample m (c.f. Equation 1)
• threshold value c (c.f. Equation 1)
• number of traces used to verify a solution Tv
• required number of attempts A to achieve pnfm chance of finding a solution
• (m+ Tp)×W array M containing the traces, with columns linearly independent
• (m+ Tp)× |K| array S containing their corresponding selection vectors

Output: A value of k ∈ {1, · · · , |K|} such that the kth column of S is a solution vector
corresponding to a correct key guess, if it exists.

1: Mpool ← the first Tp traces values of M
2: Spool ← the first Tp traces values of S
3: Mv ← the last m traces values of M
4: Sv ← the last m traces values of S
5: for i ∈ {1, · · · ,A} do
6: do
7: Ms ← W different randomly-chosen rows of Mpool
8: while Ms /∈ GLW(F2)
9: Ss ← the same subset of W rows constituting Ms from Spool

10: E ←MvM
−1
s Ss + Sv

11: for j ∈ {1, · · · , |K|} do
12: if the Hamming Weight of the jth column of E is ≤ c then
13: return the jth element of K
14: end if
15: end for
16: end for

It is very important to highlight that the array M should contain linearly independent
columns to allow the algorithm to create invertible matrix samples Ms, as explained in
Subsection 5.2. If this requirement is not met, the algorithm will not finish. In order to
make WBLPN work, we need to remove linearly dependent columns. This implies that the
dimension of the LPN problem may decrease below the expected dimension W . Therefore,
in order to save time in practice, all parameters m, c, Tv and A should be precomputed for
all window sizes w ≤ W , allowing to reduce the computation time of the algorithm if some
XOR node vectors are present inside a given window..

Remark 2. In the real case, the noise rate of a masking scheme polynomial may not be
known. Fortunately, executing the algorithm for a noise rate τ ensures that it will work
for any noise rate τ ′ ≤ τ . Similarly, the attack does not require the knowledge of the
actual masking scheme or countermeasure used and will succeed in all cases with the
approximation error below τ .

Alex Charlès and Aleksei Udovenko 333

5.5 Time complexity for a single window
First, we recall the complexity analysis of PooledGauss for LPN from [EKM17]. They
set α = 1/2W , β = 1

A ·
1

2W =
(1−τ

2
)W , so that m = O

(
−W ln(1−τ)

(1/2−τ)2

)
traces are required to

ensure strong enough filtering of wrong solutions. Since we need to test a factor of |K|
times more candidate solutions (most of which are wrong), we need to set β = 1

A·|K| ·
1

2W .
Note that the factor 1

2W was added in [EKM17] to ensure that the probability of failure
decreases exponentially with W , while it in fact suffices to fix a constant failure probability
(e.g. 2−64), which although does not change the asymptotic complexity.

Recall that the algorithm runs for A iterations of sampling a square submatrix of the
trace matrix, with A = O((1− τ)−W) (the hidden constant depends on the desired success
rate). In each iteration, the following main steps are performed:

1. Computation of M−1
s ∈ FW×W2 , with complexity O(Wω), where ω is the matrix

multiplication constant.

2. Computation of Mv ×M−1
s , where Mv and the resulting matrix have sizes m×W.

Since m >W , this can be done in at most
⌈
m
W
⌉
matrix multiplications of sizeW×W .

The complexity is thus O(Wω−1m) = O
(
Wω · − ln (1−τ)

(1/2−τ)2

)
.

3. Computation of (Mv ×M−1
s) × Ss, which is the product of m ×W and W × |K|

matrices. Since m >W and assuming |K| >W, the multiplication can be done in
W ×W blocks in time O

(
Wω · mW ·

|K|
W

)
= O

(
Wω−1 · |K| · − ln (1−τ)

(1/2−τ)2

)
.

Note that without the optimization from Subsection 5.3, this operation would
essentially be expressed as |K| matrix-vector products costing O(m · W · |K|) =
O
(
W2 · |K| · − ln (1−τ)

(1/2−τ)2

)
. Therefore, the optimization saves the factor W3−ω. For

example, using practical Strassen’s algorithm, the savings factor is about W0.2.

The other operations such as the addition of m× |K| matrices and scanning for low-
weight columns are negligible compared to the operations outlined above. Assuming
|K| >W, the complexity is dominated by the third step.

We conclude with the final time complexity O
(
Wω−1

(1−τ)W · |K| ·
− ln (1−τ)
(1/2−τ)2

)
. Note that the

last term is upper bounded by 4.6 for τ ≤ 1/4 and so can be ignored for low error rates
(this covers the cases of our interest, as higher error rates are too expensive to solve in a
practical time).

6 Time Comparison of WBLPN with HODCA and HDDA
In this section, we compare our implementations of Pooled Gauss for white-box cryptog-
raphy, HODCA, and HDDA. We first compare WBLPN with HDDA, as they both do
not depend on the linear part of the masking scheme polynomial and show that WBLPN
is more interesting for breaking P`,d with d ≥ 3. Thereafter, we compare WBLPN with
HODCA. As the complexity of WBLPN is dependent on the non-linear part and the
complexity of HODCA on the linear part, we cannot do the same comparison as for HDDA,
but we show that WBLPN proposes competitive times compared to HODCA for reasonable
window sizes.

The time measurements of Figure 1, Figure 2 and Figure 3 are recorded for |K| = 4096, as
it is the usual number of key guesses for the AES. We set pnfm = 0.999 (c.f. Subsection 5.2).
Each time measurement is an average of 20 iterations. For each of these iterations, we
generated a fresh window uniformly at random and then recorded the time of running a
given attack, which puts WBLPN in its worst-case scenario.

334 LPN-based Attacks in the White-box Setting

Indeed, as mentioned in Subsection 5.2, many nodes are the result of the XOR of two
other nodes that can be contained within the same window. Since WBLPN gets rid of
these node vectors, it decreases the dimension of the LPN problem, and with it its overall
computation time. With randomly-generated traces, it is unlikely that a whole column of
a trace is the linear combination of other columns. Therefore in these tests, WBLPN will
most often work with an LPN dimension equal to the window size.

Furthermore, we are only using the guaranteed noise rate defined by the masking
expression, while for defensive purposes we could pessimistically use the proven lower
bounds for analysis (which may or may not happen in practice, and depend on the gadgets
and their configuration), and potentially get better attacks.

All the computations are done on a 12th Gen Intel(R) Core i7-1265U 1.80 GHz CPU,
with 32 GB of RAM on WSL 2 running Ubuntu 22.04 on Windows 10. All of these
three implementations3 are done in SageMath [Sag22] and are not employing any specific
optimizations.

The implementation of HODCA might be slower in SageMath than HDDA and WBLPN,
due to the optimized linear algebra computations of SageMath. However, this does not
change their complexities, and therefore the tendency of having WBLPN faster than
HODCA and HDDA for P`,d with d being chosen big enough.

6.1 Comparison of WBLPN and HDDA
The cost of WBLPN and HDDA algorithms both do not depend on the linear part of a
masking scheme polynomial, facilitating their comparison. Indeed, HDDA depends on the
degree of a masking scheme polynomial, while WBLPN depends on its noise rate. Both
noise rate and degree are dependent only on the non-linear part of the masking scheme
polynomial.

As explained in Subsection 3.4, the order O of the algorithm determines the maximum
degree of the masking scheme that the algorithm can break. In particular, if we take
the masking scheme polynomial P`,d (c.f Definition 4), then we would need an HDDA
attack of degree at least O = d. Its time cost increases exponentially with the degree, and
polynomially with the window size (for a fixed d). Therefore, increasing d will drastically
increase the cost of HDDA.

On the other hand, we have seen in Subsection 5.5 that WBLPN is exponential in the
window size depending on the noise rate τ : the lower τ is, the more effective the algorithm
is, while remaining exponential. Therefore, since P`,d has a noise rate τ = 1

2d , the higher
d is, the faster WBLPN is; which is the opposite case for HDDA. Thus, we can state
that there exist window sizes and a degree d for a masking scheme polynomial P`,d where
WBLPN would be more effective than HDDA for reasonable window sizes.

For WBLPN, the number of traces is a variable dependent on parameters Tp and m.
The former does not have any impact on the time and the latter is computed as a function
of W and τ . For HDDA, the number of traces depends only on the degree O and the
window size W , and is given by

(W
≤O
)

+ 30 =
∑O
i=1
(W
i

)
+ 30, which ensures probability of

false positives to be below 2−30. We can remark that the required number of traces for
HDDA becomes problematic with the increasing of its degree and window size.

Each of the four graphs of Figure 1 shows the time comparison of HDDA and WBLPN
for the average of 20 time measurements, for different window sizes and degrees d of P`,d.

We can confirm the tendency of HDDA to be more time-consuming as we increase the
degree; while observing the opposite for WBLPN. We can also observe that for masking
scheme polynomials P`,2, HDDA is outperforming WBLPN for any window size. However,
for masking scheme polynomials P`,d, d ≥ 3 the cost of HDDA continues to increase with

3The source code is available at https://github.com/cryptolu/whitebox-LPN

https://github.com/cryptolu/whitebox-LPN

Alex Charlès and Aleksei Udovenko 335

5 10 20 30 40 500

20

40

60

80

100

120

T
im

e
(s
ec
on

ds
)

WBLPN, τ = 2−2

HDDA, Degree = 2

5 10 20 30 40 500

20

40

60

80

100

120
WBLPN, τ = 2−3

HDDA, Degree = 3

5 10 20 30 40 500

20

40

60

80

100

120

Window size

WBLPN, τ = 2−5

HDDA, Degree = 5

5 10 20 30 40 500

20

40

60

80

100

120

Window size

T
im

e
(s
ec
on

ds
)

WBLPN, τ = 2−4

HDDA, Degree = 4

Figure 1: Comparison of the average time (in seconds) of HDDA and WBLPN as the
function of the window size. Each of the graphs compares HDDA of degree d and WBLPN
of noise rate τ = 1

2d required to break P`,d. The average is taken over 20 measurements.
The curves are added for visual purposes.

the degree, while the cost of WBLPN decreases and outperforms HDDA for reasonable
window sizes.

Figure 1 shows that for τ = 1
4 , the WBLPN algorithm is impracticable for window

sizes greater than 20. Hence the masking scheme [SEL21] given by the masking scheme
polynomial P`,2, ` ≥ 2 should not be broken by our algorithm, but rather with HDDA of
degree 2. However, in the case of P`,3 (the main scheme of [SEL21]), WBLPN significantly
outperforms HDDA for the observed window sizes.

Note that in the dummy shuffling model from [BU21], there exists no fixed function
to decode the sensitive value (since the shuffling flags are not included in the model and
can potentially be protected). Therefore, HDDA of any order O can not attack dummy
shuffling, while WBLPN can. We give more details in comparison of WBLPN and HODCA
in the following.

Experimental attack on [SEL21]: For the publicly available SEL implementation4 of
nonlinear degree d = 3 and with 4 linear shares with window size 30 we successfully
recover the keys with WBLPN using τ = 2−3. For such parameters, for our non-optimized
implementations HDDA of degree 3 takes 13.16s per window and

(30
≤3
)

+ 30 = 4555 traces,
HODCA of order 4 takes already 12 minutes for 100 traces per window, which is not even
enough to avoid false-positives. Finally, WBLPN with τ = 1

8 takes 8.4 seconds and 915
traces (WBLPN and HDDA are faster than in our general benchmarks, due to the removal

4Available at https://github.com/UzL-ITS/white-box-masking

https://github.com/UzL-ITS/white-box-masking

336 LPN-based Attacks in the White-box Setting

of the linearly dependent node vectors to reduce the dimension). If SEL of degree 4 was
available, for a single window of size 25 HDDA of degree 4 would take at most about 10
minutes (and 22 GB of RAM), whereas WBLPN of noise rate τ = 1

24 would take at most
1.73 seconds (and negligible memory usage).

6.2 Comparison of WBLPN and HODCA
Case of SEL-masking As for HDDA attack, the time of HODCA is polynomial in the
window size and exponential in its order O. However, contrarily to HDDA, we cannot
compare HODCA with WBLPN in their order/noise rate, as the noise rate of WBLPN
depends only on the non-linear part of the masking scheme polynomial, while the order of
HODCA depends only on the linear part of it.

5 10 15 20 25 30 35 40 45 500

10

20

30

40

50

60

70

80

90

100

110

120

Window size

T
im

e
(s
ec
on

ds
)

WBLPN, τ = 2−2

WBLPN, τ = 2−3

WBLPN, τ = 2−4

WBLPN, τ = 2−5

HODCA, Order = 2
HODCA, Order = 3
HODCA, Order = 4
HODCA, Order = 5

Figure 2: Comparison of the average time (in seconds) of HODCA of different degrees and
WBLPN for different noise rates as a function of the window size. The average is taken
over 20 measurements. The curves are added for visual purposes.

We benchmarked our implementations of WBLPN and HODCA. The results are given
in Figure 2. This comparison shows that for τ = 1

2d , d ≥ 3, the WBLPN algorithm is
outperforming HODCA of order three or greater for reasonable window sizes.

For the HODCA attack, we performed the time comparison for a constant number of
traces equal to 100. Indeed, the number of created node vectors increases with the order,
increasing with it the probability of finding false positives. However, the noise rate of
P`,d will diminish with d, decreasing the number of traces required to ensure observe the
correlation.

Case of dummy shuffling Consider an implementation protected by linear ISW masking
with ` shares and dummy shuffling with t dummy slots. The HODCA needs order ` to
capture all the shares inside one slot, which when combined would correlate to the shared
sensitive value. The work [BU21] proves a lower bound on the noise rate τ ≥ 1

4 ·
t
t+1 . In

particular, for t = 1 dummy slot, we have τ ≥ 1
8 . Assuming the lower bound is reached,

the WBLPN can attack the scheme given that all the ` linear shares are contained in a

Alex Charlès and Aleksei Udovenko 337

small window, for example, the window of size 40 requires 2 minutes of processing (see
Figure 2), while HODCA would quickly become infeasible with the growth of `. On the
other hand, when the number of dummy slots increases, the noise rate bound τ raises to
τ ≥ 1

4 . This significantly slows down WBLPN where only the window of size 18 can be
covered in 2 minutes (using our implementation of the PooledGauss algorithm). Although
an optimized low-level implementation could increase the feasible range of window sizes
for the attacks, the steep exponential growth clearly shows that the range is very small.
We conclude that dummy shuffling has to be used with a sufficient number of dummy slots
and linear shares at the same time, to prevent both HODCA and WBLPN attacks.

7 Countermeasures against White-box LPN
Two main directions of securing implementations against WBLPN are increasing the window
size required for the attack and the error rate of the protections, since the complexity is
proportional to (1 − τ)−W = 2−W·log(1−τ): it is exponential in the window size and in
− log(1− τ). Bringing τ closer to 1/2 brings this complexity factor closer to 2W .

From the designer’s perspective, enforcing a large window size in attacks is a challenging
problem, and can partly be achieved by code/circuit obfuscation techniques, dummy
operations, randomization of gadgets, etc., as well as using linear masking of high orders.
This direction is out of the scope of this work.

Designing nonlinear countermeasures is a difficult problem as well, and so far there are
only a few studied candidates [BU18, SEL21, BU21]. As our work shows, the resistance of
the SEL-masking to WBLPN decreases with the growth of the scheme’s degree. Therefore,
dummy shuffling is the only current potential candidate for a high-degree countermeasure
resisting WBLPN, as discussed in the previous section. However, we also propose a general
technique for raising the noise rate of a masking scheme.

7.1 Amplifying noise rate of a masking scheme
In [BU18], it was suggested to use a combination of nonlinear and linear masking schemes.
However, the composition details were partially discussed only later in [GRW20]. We will
now observe that the composition order affects crucially the resistance to the WBLPN
attack.

Nonlinear-then-linear composition The first option is to apply linear masking on top of a
nonlinear masking scheme. Since the linear shares can be recombined by the WBLPN attack,
the original nodes of the nonlinear masking scheme’s gadgets are accessible. Therefore,
this composition order preserves the masking scheme polynomial’s noise rate τ .

Linear-then-nonlinear composition In this option, the implementation is first protected
by linear masking, with nonlinear masking applied on top of it. Assuming each circuit’s
gate is protected by independent shares, we can show that the noise rate of the nonlinear
masking scheme can be amplified.

Proposition 4. Let P ∈ F2[x1, . . . , xn] be a masking scheme polynomial with noise rate
τ . For an integer t ≥ 1, define the masking scheme polynomial Pt ∈ F2[x1, . . . , xtn] by

Pt = P (x1, . . . , xt)⊕ P (xt+1, . . . , x2t)⊕ . . . P (xtn−t+1, . . . , xtn)

Then, the noise rate τt of Pt is given by τt = 1
2 (1− (1− 2τ)t) .

Proof. Since Pt consists of the addition of t polynomials of independent sets of variables,
the best linear approximation of Pt is composed of the best linear approximation of each

338 LPN-based Attacks in the White-box Setting

application of P . Thus, the noise rate can be computed using Matsui’s piling-up lemma
[Mat94] (note that the bias is equal to 1/2− τ).

Example 1. Let us consider the application of the BU-masking scheme P1,2 on top
of the ISW linear masking Pt,0. That is, an original intermediate value s is shared as
s = x1 ⊕ . . .⊕ xt, which is then shared as

s = (x1,1 ⊕ x1,2x1,3)⊕ (x2,1 ⊕ x2,2x2,3)⊕ · · · ⊕ (xt,1 ⊕ xt,2xt,3)

By using τ = 1/4 (for P1,2) in the proposition, we obtain that the resulting masking
scheme polynomial has the noise rate τt = 1

2 −
1

2t+1 , which gets exponentially close to 1/2
with increasing t. This countermeasure already reaches the noise rate τ = 0.4375 for P1,2
applied to only 3 linear shares with P3,0. Observing in Figure 2 that WBLPN cannot be
performed in practice for a noise rate τ = 1/4 and window size W = 20, we can infer that
WBLPN would also not be doable in practical time for such noise rate and for a window
size that would ensure catching all 9 shares of this masking scheme at once in a practical
context.

Remark 3. Proposition 4 only proves the noise rate of the masking scheme polynomial,
not of the gadgets or their compositions. Designing masking schemes with high-error full
algebraic security is yet an open problem.
Remark 4. Unfortunately, this approach does not work for dummy shuffling, since the
assumption of Proposition 4 does not hold: the nonlinear shares of each of the linear shares
are not independent: inside each slot, they are either all correct, or random. Therefore,
the noise rate stays the same.

8 Higher-Order White-Box LPN
In this section, we present a higher-order generalization of WBLPN, which is similar to
how HDDA generalizes LDA.

We start by describing a higher-order White-Box Pooled Gauss. Similarly to HODCA
(c.f Subsection 3.2) and HDDA (c.f. Subsection 3.4), given a window of sizeW , for an order
O we increase the window by adding

(W
≤O
)
AND combinations of up to O node vectors in

the window. This increases the algorithm’s time cost as the time complexity of WBLPN is
increasing exponentially with the window size (c.f. Subsection 5.5). However, all degree-O
monomials of the masking scheme polynomial will be included in the window, and thus
will not be considered as noise anymore. This higher-order version can be considered as a
trade-off between increasing the window size and reducing the noise rate. Observing in
Figure 2 how the noise rate has a huge impact on the time cost, this solution remains
realistic.

We will extend the previous Definition 11 of the noise rate of a polynomial, to allow it
to define higher-order noise rates:

Definition 13. We denote the noise rate of order O of a polynomial P ∈ F2[x1, · · · , xn]
by: τO = Px∈Fn2 (

⊕
m∈MO m(x) = 1), with MO the set of monomials of degree strictly

greater than O that are contained in P . IfMO is empty, then τO = 0.

Since we are increasing the dimension of the LPN problem from W to
(W
≤O
)
, we should

compute the probabilistic parameters m, c, Tv and A accordingly to this extended window
size. This is reflected in Algorithm 3, which we call HO-WBLPN.

It is also important for this algorithm to work to redo the step of reducing the columns
of the window presented in Subsection 5.2, as it is likely that one of the nodes of the
window is the AND of some two nodes also contained in the window.

Alex Charlès and Aleksei Udovenko 339

Algorithm 3 HO-WBLPN
Inputs:

• order O
• window size W
• expected maximum O-order noise rate τO
• number of key guess possibilities |K|
• number of traces used to sample m for order O
• threshold value c for order O
• number of traces used to verify a solution Tv for order O
• number of attempts A to achieve chance pnfm of finding a solution for order O
• (m+ Tp)×W array M containing the traces, with columns linearly independent
• (m+ Tp)× |K| array S containing their corresponding selection vectors

Output: A value of k ∈ {1, · · · , |K|} such that the kth column of S is a solution vector
corresponding to a correct key guess if it exists.

1: Mexpanded ←M

2: for all
(W
≤O
)
combinations C of columns of M do

3: Mexpanded ←Mexpanded || the vector resulting of the AND of the columns C
4: end for
5: Mexpanded ← the basis of the column space of Mexpanded
6: return WBLPN(Number of columns of Mexpanded, τO, |K|,m, c, Tv,A,Mexpanded, S)

Potential applications The masking scheme from Section 7 (Example 1) is quadratic,
and thus has the second-order noise rate τ2 = 0, as it does not contain any monomial of
degree greater than 2. If a noise rate of order O of a masking scheme polynomial is equal
to zero, it is sufficient to use plain HDDA of degree O (c.f Subsection 3.4) to break it.

However, consider a hypothetical masking scheme with the polynomial

P̃ = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5x6 ⊕ x7x8 ⊕ x9x10x11x12x13x14x15

Since P̃ contains 4 linear monomials, to break this scheme, HODCA needs to be of order 4.
Likewise, P̃ has algebraic degree equal to 7, so HDDA also needs to be of order 7 to break
it, which is not practical. Finally, the noise rate of this polynomial τ ≈ 0.254, which, as
we saw in Section 6 would be very heavy for WBLPN for a window size W ≥ 20. However,
since τ2 = 1

27 , the second order HO-WBLPN is very effective. This is illustrated in the left
graph of Figure 3, where we can observe HO-WBLPN being faster than order-4 HODCA
and noise rate 0.25 WBLPN, for reasonable window sizes.

Similarly, [SEL21] only proved τ ≥ 1
16 for their cubic scheme’s gadgets, and the second-

degree noise-rate τ2 ≥ 1
212 . If we compare third degree HDDA, WBLPN with τ = 1

16 , and
second order HO-WBLPN with τ2 = 1

212 that break it, we can observe in the right graph
Figure 3 that both LPN-based methods outperform HDDA for reasonable window sizes,
while having similar time, which shows the in-practice applicability of HO-WBLPN.

The used noise rates τ = 1
16 , τ = 1

212 correspond to a hypothetical attack based on the
proven bound of [SEL21]. The main goal of this thought experiment is to illustrate the
utility of HO-WBLPN for designers in evaluating provable security of a countermeasure.

Time Complexity of HO-WBLPN We showed in Subsection 5.5 that WBLPN has
complexity O

(
Wω−1

(1−τ)W · |K| ·
− ln (1−τ)
(1/2−τ)2

)
, and we can use this estimation to determine the

complexity of HO-WBLPN of order O. Indeed, instead of having the first-order noise rate
τ , it would rather have the order-O noise rate τO (the minimum approximation error of
the masking scheme polynomial by a degree-O function). Likewise, for a window size W,

340 LPN-based Attacks in the White-box Setting

5 10 15 20 25 30 35 40 45 500
2
4
6
8

10
12
14
16
18
20

Window size

T
im

e
(s
ec
on

ds
)

Attacks on masking scheme polynomial P̃

HODCA, Order = 4
WBLPN, τ = 0.250
Order-2 HO-WBLPN, τ2 = 2−12

5 10 15 20 25 30 35 40 45 500
2
4
6
8

10
12
14
16
18
20

Window size

Attacks on cubic SEL masking

HDDA, Degree = 3
WBLPN, τ = 2−4

Order-2 HO-WBLPN, τ2 = 2−7

Figure 3: Comparison of the average time (in seconds) of the three possible attacks on the
example masking scheme polynomial P̃ on the left graph; and of the three possible attacks
on the cubic version of SEL masking scheme. The average is taken over 20 measurements.
The error bars represent the minimum and the maximum measured times.

it will increase it to
(W
≤O
)

=
∑O
d=0

(W
d

)
= O(WO) (ignoring small d-dependent constants)

before applying the WBLPN algorithm.
This extension of the window also costs

(W
≤O
)
m = O(WOm) XOR bit-wise operations,

which is dominated by the cost of performing WBLPN on this increased window. Therefore,
we can deduce that the complexity of HO-WBLPN of order O is:

O

(
W(ω−1)·O

(1− τO)WO
· |K| · − ln (1− τO)

(1/2− τO)2

)

9 Conclusion
With the effectiveness of automated masking-scheme-breaking algorithms in white-box
cryptography, the need for new masking schemes resistant to such attacks rose. We showed
that our new algorithm WBLPN has a competitive time cost compared to such attacking
schemes while having a complexity dependent on a different parameter: the noise rate.
Therefore, we expect our result to force future studies of white-box masking schemes
showing their resistance to this attack by studying their noise rate with respect to the
efficiency of WBLPN.

We decided to adapt Pooled Gauss algorithm to the white-box context, but an interesting
way of pushing forward this study would be to compare other LPN-solving algorithms
for small dimensions. Furthermore, to relate the LPN problem to the white-box context,
we supposed that the noise is generated randomly, whereas it is not the case with the
white-box setting, and therefore we are still not using all the information at our disposal.

Acknowledgments We thank the anonymous reviewers and the shepherd Estuardo
Alpírez Bock for their insightful comments and suggestions. This work was supported by
the Luxembourg National Research Fund’s (FNR) and the German Research Foundation’s
(DFG) joint project APLICA (C19/IS/13641232).

Alex Charlès and Aleksei Udovenko 341

References
[ABMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.

On the ineffectiveness of internal encodings - revisiting the DCA attack on
white-box cryptography. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18, volume 10892 of LNCS, pages 103–120. Springer, Heidelberg, July
2018. 324

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November
2001. 318

[BBD+22] Guillaume Barbu, Ward Beullens, Emmanuelle Dottax, Christophe Giraud,
Agathe Houzelot, Chaoyun Li, Mohammad Mahzoun, Adrián Ranea, and
Jianrui Xie. ECDSA white-box implementations: Attacks and designs from
CHES 2021 challenge. IACR TCHES, 2022(4):527–552, 2022. 321

[BDG+22] Sven Bauer, Hermann Drexler, Max Gebhardt, Dominik Klein, Friederike Laus,
and Johannes Mittmann. Attacks against white-box ECDSA and discussion
of countermeasures: A report on the WhibOx contest 2021. IACR TCHES,
2022(4):25–55, 2022. 321

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white
box AES implementation. In Helena Handschuh and Anwar Hasan, editors,
SAC 2004, volume 3357 of LNCS, pages 227–240. Springer, Heidelberg, August
2004. 318

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential
computation analysis: Hiding your white-box designs is not enough. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS,
pages 215–236. Springer, Heidelberg, August 2016. 318, 324

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang. Higher-
order DCA against standard side-channel countermeasures. In Ilia Polian and
Marc Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages 118–
141. Springer, Heidelberg, April 2019. 319, 324

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for
white-box designs. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer,
Heidelberg, December 2018. 319, 321, 322, 337

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
219–248. Springer, Heidelberg, October 2021. 319, 320, 321, 322, 327, 335, 336,
337

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003. 318

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Digital Rights
Management Workshop, volume 2696 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2002. 318

342 LPN-based Attacks in the White-box Setting

[DRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao-Lai
white-box AES implementation. In Lars R. Knudsen and Huapeng Wu, editors,
SAC 2012, volume 7707 of LNCS, pages 34–49. Springer, Heidelberg, August
2013. 318

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 486–514. Springer, Heidelberg, August 2017. 320, 328, 329, 330,
333

[FA76] Fino and Algazi. Unified matrix treatment of the fast Walsh-Hadamard
transform. IEEE Transactions on Computers, C-25(11):1142–1146, 1976. 321

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How
to reveal the secrets of an obscure white-box implementation. Journal of
Cryptographic Engineering, 10(1):49–66, April 2020. 319, 321, 325

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures. IACR TCHES, 2020(3):454–482, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8597. 319, 321, 323,
337

[HOM06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An AES smart
card implementation resistant to power analysis attacks. In Jianying Zhou,
Moti Yung, and Feng Bao, editors, ACNS 06, volume 3989 of LNCS, pages
239–252. Springer, Heidelberg, June 2006. 322

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003. 318

[Kar11] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In Kyung-
Hyune Rhee and DaeHun Nyang, editors, Information Security and Cryptology
- ICISC 2010, pages 278–291, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg. 318

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999. 318, 324

[LRD+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 265–285. Springer, Heidelberg, August 2014. 318

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, EUROCRYPT’93, volume 765 of LNCS, pages 386–397. Springer,
Heidelberg, May 1994. 327, 338

[Nat79] National Institute of Standards and Technology. FIPS-46: Data Encryption
Standard (DES), 1979. Revised as FIPS 46-1:1988, FIPS 46-2:1993, FIPS
46-3:1999. 318

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transac-
tions on Information Theory, 8(5):5–9, 1962. 328

https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597

Alex Charlès and Aleksei Udovenko 343

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR TCHES, 2019(2):225–255, 2019. https://tches.iacr.org/index.php/
TCHES/article/view/7391. 324

[Sag22] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.7, Release Date: 2022-09-19), 2022. https://www.sagemath.org.
334

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box
masking scheme resisting computational and algebraic attacks. IACR
TCHES, 2021(2):61–105, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8788. 319, 320, 321, 322, 335, 337, 339

[TGCX23] Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie. Higher-order DCA
attacks on white-box implementations with masking and shuffling countermea-
sures. IACR TCHES, 2023(1):369–400, 2023. 319, 321, 323

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 740–757. Springer, Heidelberg,
December 2012. 322

[XL09] Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In
2009 2nd International Conference on Computer Science and its Applications,
pages 1–6, 2009. 318

https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://tches.iacr.org/index.php/TCHES/article/view/8788

	Introduction
	Preliminaries
	Notations
	Masking schemes
	Dummy shuffling
	Sliding window in white-box
	Selection function

	Previous Works
	Differential Computation Analysis (DCA)
	Higher Order DCA (HODCA)
	Linear Decoding Analysis (LDA)
	Higher Degree Decoding Analysis (HDDA)

	Security of White-box Countermeasures as an LPN Problem
	Learning parity with noise problem
	Relation between LPN and White-box Countermeasures

	Adapting the LPN-solving Pooled Gauss Algorithm
	Description of Pooled Gauss for pure LPN
	Adaptation of Pooled Gauss to white-box cryptography
	Optimizations with linear algebra
	Resulting algorithm
	Time complexity for a single window

	Time Comparison of WBLPN with HODCA and HDDA
	Comparison of WBLPN and HDDA
	Comparison of WBLPN and HODCA

	Countermeasures against White-box LPN
	Amplifying noise rate of a masking scheme

	Higher-Order White-Box LPN
	Conclusion

