
NLAC: A Self-Maintained Trust Overlay for the
XRP Ledger

Flaviene Scheidt de Cristo∗, Arno Geimer∗, Radu State∗
∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg

Email:{flaviene.scheidt, arno.geimer, radu.state}@uni.lu

Abstract—This paper presents NLAC, a framework for cre-
ating, managing, and maintaining trusted Unique Node Lists
(UNLs) for the XRP Ledger. NLAC consists of three modules
that automate the generation of UNLs, including membership
management, classification, and grouping. The framework uses
layered Token-Curated Registries (TCRs) and an optimization
algorithm to ensure the dispersion of authority within the UNL
space. NLAC improves the safety and liveness of the XRP
Ledger by achieving maximum trust in the UNL space.

Index Terms—XRPL, unstructured p2p, trust overlay,
blockchain

I. INTRODUCTION

Since the release of Bitcoin [1] several blockchains have
been proposed in different shapes and flavors. Being one of
the first, the XRP Ledger (XRPL) is today well established
in this middle, with a market capital of 25B1. Its unique
consensus mechanism [2] also makes the XRPL a faster
and less resource-intensive system, breaking away from the
traditional Proof of Work. However, there is a discussion
about how much permissionless and distributed the validation
process actually is.

The XRP Ledger Consensus Protocol (XRP LCP) is con-
sidered a Byzantine-fault Tolerant type of consensus, using
quorums of trusted subnets to validate ledger versions. In
this context, a validator node must declare a Unique Node
List (UNL), comprising a list of peers trusted to not collude
to defraud the ledger. Although every node has the power
to choose its own trusted list, in reality, some scenarios may
cause the ledger to fork or stall [3] and a minimum overlap
between two or more lists is necessary to ensure safety and
liveness of the network. By safety, we mean that nothing bad
will happen, while liveness ensures that something good will
eventually happen [3].

In this work, we propose NLAC (nested, layered, auto-
matic, continuous), a framework not only for automatically
generating single trusted UNLs, but also for creating, manag-
ing and maintaining the entire UNL space. NLAC comprises
three modules that manage membership, classification, and
grouping of nodes into trusted lists without human interven-
tion by using layered Token-Curated Registries (TCRs) and
optimization to achieve maximum trust on the UNL space
while guaranteeing better dispersion of authority.

1According to https://cryptoslate.com/coins/ on 4/april/2023

II. BACKGROUND

A. The XRP Ledger Consensus Protocol

In the XRP LCP, trust relies upon the so-called Unique
Nodes Lists, encompassing a static set of validators believed
not to collude to manipulate or break the consensus process.
In this scenario, trust is said to be collective, which means
that there is no individual trust in validators. Instead, we
expect the entire UNL set to behave in a non-byzantine
way [2]. To achieve this goal, each node declares its trust
in a subnetwork of validators represented by a UNL, the
agreement between these nodes being the source of truth on
the ledger.

Open Establish Accept

Fig. 1. Simplified State Machine for the XRP LCP with the three main
phases and its transitions.

The XRP LCP works as a replicated state machine, as
shown in Figure 1. In a simplified way, the consensus
round starts with the open state, when every node opens a
new version of the ledger locally. The next phase is called
establish and comprises the voting process. First, the nodes
aggregate all transactions received asynchronously during
the previous round into a set called proposal. Proposals are
broadcast through the network. Nodes receive these propos-
als, comparing their own sets solely with those received from
their trusted peers. If there are disjoint sets - called disputes
-, the nodes analyze whether the disputed transactions are
present in the majority of the proposals received from their
UNLs. In the affirmative case, the transaction is included in
a new proposal. The process repeats until 80% of the UNL
agrees on a set of transactions. Each node then applies the
agreed set to the local open ledger in the next phase: accept.
This threshold is called the trust threshold, representing the
number of honest nodes required to keep the ledger safe
while making progress.

B. The Trust Overlay

We call trust overlay the entire space of trust relationships
between nodes established by the UNLs declared. Certain
overlap conditions must be met between trusted sets to979-8-3503-2687-1/23/$31.00 ©2023 IEEE

guarantee the liveness, safety, and performance of the ledger.
With a loosely connected trust overlay, validators would take
longer to agree on a final ledger version due to clustering
and the difficulty of transactions reaching distant nodes. A
highly connected network, however, has the disadvantage of
high message overhead, increasing latency, and, as a result,
landing on the same problem of increasing the time needed
to agree on closing a ledger or even increasing the possibility
of a stall or fork [4].

Four primary works address the issue of the minimum
intersection area between UNLs required to ensure safety
and liveness. The first whitepaper released [2] presented
the following formulation for the minimum overlap required
(wi,j) between two UNLs i and j:

|UNLi ∩ UNLj | ≥ wi,jmax(|UNLi|, |UNLj |)∀i, j

This work concludes wi,j >= 0.2, which means that the
overlap should be greater than 20% of the size of the largest
UNL, assuming 0.2 ∗ ntotal to be the minimum UNL size,
being ntotal the total number of nodes participating in the
network. Later, an independent analysis by Armknecht et al.
[5] showed that the 20% overlap may not be sufficient to
reach consensus, increasing the minimum required overlap
to 40%.

The current whitepaper [6] was released in 2018, stating
that the intersection area between two UNLs should be
superior to 90%, also pointing out a specific case where
even with a 99% overlap, the ledger progress could stall.
This work was the first to propose the use of a unique UNL.
Another independent analysis by Christodoulou et al. [7]
tackles the UNL overlapping problem using an empirical
approach, showing that the minimum UNL overlap can
be relaxed when there are less than 20% malicious nodes
present. This work suggests space for optimizations on the
minimum UNL overlap, also suggesting the necessity of a
malicious node estimator to relax the overlap.

III. PROBLEM DEFINITION

Based on the studies presented, the XRP Ledger Foun-
dation curates and maintains a main UNL, advising all
participants to put their trust in this list [8]. Given these
guidelines, as of February 2023, the trust overlay of the
XRPL network comprises a core of 34 validators connected
in a complete graph. This structure and governance method
leads to some considerations about the dispersion of authority
in the current implementation of the XRPL.

Vergne [9] presents a discussion about the concept of
authority dispersion by breaking it into two definitions:
decentralization and distribution. While decentralization is
defined as the dispersion of coordinated communications,
distribution is characterized by the diffusion of the decision-
making process among stakeholders. Applying those defini-
tions to the scenario proposed, decentralization tells us about
how the network is structured and how the communication
between nodes occurs, while distribution is about who has
the power to make decisions.

The XRPL network is built upon an unstructured p2p
system, duly considered decentralized since there is no cen-
tral authority coordinating the way information is exchanged
between participants. However, it does not have robust means
to dynamically rearrange its trust overlay. The solution
adopted in the event of a partial outage is the Negative
UNL (nUNL) [10], which puts trusted validators that are
believed to be malfunctioning in a list of nodes that will be
ignored during the consensus process. The nUNL is designed
to handle limited disruptions, and the addition and removal of
nodes from the main UNL still require manual intervention.
This notion opposes what is commonly agreed on in terms
of decentralization, derived from the work of Baran [11],
which points out the ability of a network to delegate routing
decisions under adverse conditions. The trust overlay lacks
the ability of self-arrangement, leaving the decision to reroute
the trust in the hands of human actors.

There are two instances in which the XRPL network
presents low degrees of distribution; first, on the trust overlay
itself, with the core of 34 nodes that do not delegate the
decision-making and listen only to themselves. This closed
system allows non-UNL nodes solely to transmit transactions
and to relay proposals and validations generated by trusted
validators. The second instance is on the curation of the
main UNL, relying on a central authority to decide who are
the trustable nodes and how many of them are necessary
to keep the network alive and safe while maintaining good
performance.

We can then argue that the trust overlay of the XRPL
has a low dispersion and could benefit from higher de-
centralization. In addition to the overlapping issue, these
characteristics also arise from the lack of appropriate tools
and techniques that allow the automatic and safe generation
and maintenance of trusted validator lists. Such techniques
would support the implementation of a model closer to what
is conceptually described in the XRP LCP specifications
[3], providing higher authority dispersion on the consensus
process.

On top of that, nodes in the XRPL also do not have
incentives to be part of the main UNL and behave correctly.
Unlike other consensus mechanisms, such as Proof-of-Work
and Proof-of-Stake [12], the XRPL does not issue rewards
for validating ledgers. The only incentive a node has to
become a validator is to help keep the network secure and the
ledger progressing without forks. However, the requirements
to become a trusted validator are expensive in terms of
computational resources [13] [14]. That being said, even
trusted nodes have no incentive to continue to behave in the
best interest of the ledger.

To date, there has been only one proposal for automatic
UNL generation. Ripple+ [15], between other improvements
brings a mechanism to select UNLs based on a structure
of core and leaf nodes. The solution, however, implements
changes to the core of the consensus process, delegating
authority to the called core nodes. Our work aims to propose
a framework for the generation and maintenance of UNLs on

top of the already existing consensus algorithm.

IV. PROPOSAL

A. Properties

1) Nested: Since UNL overlap is still an open topic in
XRP LCP research and a crucial requirement for the trust
overlay, we propose a solution that allows nesting. When
several lists of nodes are picked from a random graph,
representing each set as a linear structure may not satisfy
the overlapping requirement. And more than that, it gives no
control over the number of nodes at the intersection of such
sets.

A nested structure as a tree is more suitable for this
representation, as we may represent every UNL as a tree and
the set of all UNLs as a forest. Overlapping this forest gives
us a directed acyclic graph (DAG) as shown in Figure 2. This
structure provides flexibility in choosing the intersection size
between two or more UNLs and the general percentage of
overlap of the entire space. More details are given in the next
section.

Roots

Layer 1

Layer 2

Layer 3 Low Trust

High Trust

Fig. 2. DAG formed after grouping the nodes into lists represented by trees

2) Layered: The nodes in the XRPL network have no
direct incentive to become validators [16]. Consequently,
there is no mechanism to incentivize validators to behave
in the best interest of the network once they are added
to the main UNL. We propose a reputation-based system
comprising layers of trust. This structure is the foundation
for developing an awarding system that gives monetary
incentives to nodes to grow their good reputations.

3) Autonomous: The curation and maintenance of the
main UNL are manual, with nodes sending their candidacy
for manual consideration. We need a solution able to self-
curate to ensure more reliability and greater authority disper-
sion and autonomy. We then need a solution that can control
the amount of overlap between the lists and the mobility
between layers without human intervention. To tackle this is-
sue, we propose the use of Token-Curated Registries (TCRs)
[17]. TCRs are lists curated in a decentralized way, using
tokens to reward curators and incurring monetary penalties
for low-quality content and bad curation.

TCRs allow us to have an automatic and transparent
process for generating, curating, and maintaining UNLs. It
also gives us tools to control layers, using some smarter
implementations, such as Nested and Layered TCRs [18]
[19]. Another advantage is the possibility of implementing a
rewarding system based not only on good behavior but also
on good curation.

4) Continuous: The XRPL is built on top of an unstruc-
tured p2p network. As such, it comprises a dynamic system
with nodes joining and leaving at any rate. Participants
may also suffer from malicious intrusions, bad network
conditions, and a variety of other byzantine behaviors. To
account for this dynamic scenario, UNLs must adapt flexibly
without compromising safety and liveness.

Nodes must be continuously observed and easily removed
from trusted positions, providing the trust overlay the ability
to self-arrange. We propose the use of continuous TCRs,
giving token holders the ability to challenge validators that
perform below the threshold of their layers [20].

B. Architecture
To fulfill the desired properties described above, we

propose a framework based on the architecture shown in
Figure 3. This section briefly describes each component and
the interaction between them. We further expand on how they
work and their concepts in the three following sections.

Membership GroupingClassification

Fig. 3. NLAC Modules Architecture

The first component, called Membership, comprises a layer
in which the validators are selected to be part of the UNL
space. The UNL space encompasses all validators considered
trustworthy by the network. Currently, the XRPL network
already has the UNL space created, with 34 nodes manually
selected to be part of the trusted set. In this work, we propose
the use of Token-Curated Registries [17] to create the UNL
space without human interference.

After defining the membership in the set, we move on to
the next component: Classification. The idea is to classify
all validators present in the UNL space into trust levels
according to a score obtained by their peers. The nodes at
higher levels are said to be more reliable than the nodes at
lower levels. These higher-level nodes have fewer chances to
behave in a byzantine way.

Having the UNL space classified in layers of trust, we need
to group validators into lists to guarantee the dispersion of
authority, hence the Grouping module. NLAC organizes lists
as trees, taking advantage of the trust layers generated in the
above component. These trees overlap each other, forming
a Directed Acyclic Graph (DAG) in the form of a forest,
as shown in Figure 2, which means that some nodes will
be part of two or more lists. To ensure reliability, highly
trustable nodes are near the roots, and less trustable nodes
stay in the leaves.

V. MEMBERSHIP

A. Token-Curated Registries
In its most naı̈ve form, TCRs are simple publicly curated

lists. Listees have no direct monetary reward, but indirect

gains for figuring on high-quality lists. Take the example
of a list of the best European universities in a certain
field. Figuring on this list may ensure the universities a
higher number of applications and higher investments in the
particular field.

Each list usually has an associated token. To participate in
the curation, one needs to possess a certain amount of tokens.
Token holders can vote and challenge candidacies. To apply
to the list, a user needs to stake a certain amount of tokens,
which are held in a pool associated with the candidate and
are untouched until the candidacy process is over.

During the candidacy period, any token holder can chal-
lenge the entry if they judge the candidate as not suitable for
the list. To issue a challenge, the holder must stake tokens
within the pool. All holders can vote to accept or reject the
challenge. If the majority votes to accept the challenge, the
challenger receives the staked tokens back, plus a reward for
good curation. The candidate, for its part, loses its staked
tokens and is not included in the list. However, if the holders
vote to reject the challenge, the challenger is the one who
loses the stake. In this situation, the conclusion is the same as
if no challenge has been issued during the candidacy period:
the candidate receives their tokens back and gets included in
the list.

B. UNL Membership

To figure in the space of trusted validators, a node must
stake a minimum amount of tokens within a token pool; Then
a candidacy period starts. During this period, the node is
evaluated by its peers, who will construct the first reliability
score. The proposals formed by this node are only observed
for scoring and will not be taken into consideration until the
node is included in the NLAC structure.

At the end of the evaluation period, the upper layer nodes
can challenge the candidate if the guidelines [13] were not
met or if the reliability score is lower than a certain threshold.
All the nodes that were observing the candidate can vote to
reject or accept the challenge. Note that it is not reasonable to
have all validators in the trust overlay evaluating a candidate.
This approach would require candidates to transmit their
messages to the entire network, causing a high message
overhead. The proposal for NLAC is that only a subset of
validators observe and evaluate the candidate.

If not challenged, the candidate receives the staked tokens
back and is included as a leaf, considering the balance of
the tree, so UNLs have approximately the same size. If a
challenge is issued, the appointed curators vote to determine
the outcome. In case of dismissal, the challenger loses
their tokens; the candidate receives their tokens back and
is included as a leaf. In case of acceptance, the challenger
receives their tokens plus a reward, and the candidate is not
included on any list, losing the stake.

After inclusion, the new listee will continue to be observed
by the appointed peers. These peers may change as the tree
adapts to the conditions of the network. If the validator
starts presenting byzantine behavior, if the guidelines cease

to be followed, or in case of complete disconnection, any
appointed peer may issue a challenge. Acceptance of the
challenge means complete removal of the validator from the
DAG, which means that there is no downward movement. A
node in a higher position has more to lose than a node present
at a lower level, guaranteeing that highly trusted validators
will continue to act honestly on behalf of the ledger.

VI. CLASSIFICATION

The Classification module serves not only as a necessary
step for guaranteeing minimal levels of trust in each UNL but
also as a mechanism for rewarding trustable nodes. The idea
is to employ a Layered TCR [18] to incentivize the nodes to
behave honestly to be promoted to higher levels, resulting in
monetary rewards for curating lower levels.

In its current implementation, the XRPL network employs
a Reliability Measurement mechanism to identify faulty
nodes that should be added to the nUNL. This measurement
comprises the percentage of times a validator issued a
validation that is agreed upon by the network to be true,
considering the last 256 ledger versions. Each node computes
the reliability score for each of its peers using the following
equation [10]:

Reliability = Va ÷ 256

Being Va the total number of validations received from
a given peer that a node judges to be true considering its
ledger versions. When the reliability score of a peer falls
below 50%, the node can submit a proposal to add the said
peer to the nUNL. The network must reach a consensus on
adding or removing validators from the nUNL.

Although this mechanism works well for temporary dis-
ruptions, it does not permanently remove or add validators
to the UNL space, its sole purpose is to tell the network to
temporarily ignore proposals and validations coming from
faulty nodes. We propose an extension of the nUNL, in
which we use a measurement similar to the reliability score
to classify nodes into layers of trust, with more trustable
nodes placed into higher layers.

The movement between layers can happen only upward to
guarantee that nodes that become untrustable for a prolonged
time are automatically removed from the UNL space, so
nodes have an extra incentive to behave in the best interest of
the ledger. The upward movement happens in two instances,
first when a node applies to be promoted to higher levels,
and second when a high-level node is removed or promoted,
and there is a node in the immediate level below that fulfills
the minimum score required.

When a node applies for promotion, it must stake tokens
within the pool and go through the same process described
in the previous section. In the event that another node is
removed or promoted, another node can propose a validator
that it believes to be the best candidate for promotion. Again,
by staking tokens within the pool and going through the
curation process. In the same way, if the score of a node
falls below the threshold set for the layer it sits on, a node

on the levels above can propose its removal by staking tokens
and going through the same process.

The reason for not automatically promoting nodes as soon
as they reach the minimum score required for a given layer
is to promote rewards for nodes on higher levels to curate the
UNL space. Every proposal to modify the space in any way
requires tokens to be staked, and, safe from unchallenged
additions, rewards to be issued. This method rewards good
curation and monetizes the participation of nodes in the UNL.
It also provides incentives for nodes to behave correctly to
maintain higher levels, where they can receive rewards for
curating lower levels.

The number of levels and minimum score required, as
well as a more in-depth study on the most suitable way
to score nodes, is not the focus of this work. Further work
on this topic is still necessary, considering the underlying
characteristics of the XRPL network.

VII. GROUPING

The final module comprises the most important part of
the NLAC framework. It is where trustable validators are
combined into lists with the goal of better distributing the
decision power while keeping the maximum possible trust in
the system. To achieve that, we employ optimization methods
to maximize the total trust of the system, considering each
layer of trust generated in the previous module.

Figure 2 shows the structure that we aim to achieve after
optimizing the set. The black circle represents the root of
the forest from which all lists derive. In the illustration, we
show four lists, each of them rooted in what we represent
as black squares. Each trusted validator is represented by a
white circle. By traversing each tree, we obtain the UNLs
we seek to represent. The entire forest shows how the lists
overlap each other to create a tightly connected space while
maintaining a certain degree of dispersion.

There are three layers of trust represented, with the higher
levels closer to the root. The closer a node is to the leaves, the
lower its reliability score. To avoid low-trust nodes being the
majority on a list or being in too many lists at once, NLAC
limits the maximum number of low-trust nodes in each UNL,
meaning that the number of leaf nodes should also be limited,
so we can avoid the scenario of low-trust nodes massively
skewing the total trust of the system.

A. Mathematical Model

We generated a mathematical model for grouping the
validators according to the trust layers fulfilling some con-
ditions modeled as constraints while trying to achieve the
maximum total trust in the system. We modeled the structure
representing the UNL memberships as the matrix X with

xij =

{
1 if nodei ∈ UNLj

0 otherwise
(1)

Thus, the row i represents the node i and the column j
represents the UNL j, i ∈ {1, ..., N} and j ∈ {1, ...,M}
with N the number of nodes in the UNL space and M the

number of UNLs to be generated by the optimizer. Let K
be the maximum number of layers generated in the previous
module. Consider the trust vector y with yi ∈ {1, ...,K},
where node i belongs to trust level k.

Maximizing the total trust of the system amounts to finding
Xopt with

Xopt = argmax
X∈{0,1}N×M

||yTX||2 (2)

To simplify the model, we do not employ the reliability
score generated internally by each node for their peers
because different nodes may have different scores for each
validator. The average score of a node is already reflected
in the level they occupy, which is agreed upon by the entire
network.

The trivial solution for this objective function is Xopt
being the matrix of ones. This, however, does not fulfill the
dispersion requirement imposed previously. For this reason,
we impose the following constraints:

First, we want to enforce a minimum size U for each UNL:

||Xej ||1 ≥ U ∀j ∈ {1, ...,M} (3)

with || . ||1 being the L1-norm and ej ∈ RM the j-th basis
vector.
We want to guarantee that any two UNLs have a minimum
overlap P :

(Xep)
TXeq = eTp X

TXeq ≥ P ∀ p, q ∈ {0, ..,M} (4)

Considering that all nodes have the same voting power, to
guarantee that low trust nodes will not be part of too many
UNLs and skew the power balance, we limit the number
of UNLs a node can be part of based on the trust level it is
part of. Let Lk be the parameter that identifies the maximum
number of UNLs a node at the trust level k can be part, with
k ∈ {0..K}.

||eTjkX||1 ≤ Lk, jk ∈ {1, ..., N} (5)

Another important limitation is the maximum number of
nodes in a given layer a UNL can have. Let Qk be the
maximum number of nodes of trust level k the UNL j may
have, then:

||vTk Xej ||1 ≤ Qk ∀k ∈ {1, ...,K} (6)

where

(vk)i =

{
1 if Node i belongs to trust level k
0 otherwise

B. Experimental Evaluation

We tested2 the above formulation using Pyomo [21] with
the cplex solver [22] on a Core™ i7-8665U CPU@1.90GHz
× 8 machine with 16GB of RAM running Ubuntu 22.04.2
LTS. We fixed the values of U = N ∗ (1/3) and K = 4,

2Code available at https://github.com/FlavScheidt/NLACOptimization

TABLE I
TRUST OPTIMIZATION EVALUATION

N M P Total Trust Constraints Variables Time
24 8 80% 280 121 193 0.05s
24 16 90% 280 193 385 0.05s
32 16 80% 436 209 513 0.39s
32 24 90% 436 281 769 4.38s
64 16 80% 712 273 1025 0.55s
64 32 90% 872 417 2049 18.47s

also distributing the nodes randomly through the layers. The
values for the vectors L and Q were L = [16, 8, 4, 2] and
Q = [12, 8, 4, 2]. These values were empirically obtained on
a testnet of 24 nodes and 8 UNLs.

Table I shows the results of six combinations of M , N ,
and P , considering that these values can change depending
on the state of the network. The goal of the optimization is
to group N validators into M lists respecting the previous
constraints while maximizing the trust of the system. The
table also shows how many constraints and variables were
generated by the model and the solution time.

The total trust of the system naturally grows as a function
of N , however, it does not seem to be affected by M when
N < 64. The total solution time is also not affected by M
when M < 24. It is important to note that for N = 64 and
M = 32 the solution time may be longer than is feasible
for a distributed solution based on the XRP LCP. However,
when M > 2 the complex scenario needs a deeper analysis,
as shown previously in Section II. That being said, our tool
provides means for maximizing trust, but some parameters
require a more in-depth analysis.

VIII. CONCLUSION & FUTURE WORK

Overall, NLAC represents an important step forward in the
development of the XRP Ledger. By providing a framework
for automatic curation and self-arrangement, NLAC enhances
the unique features of the XRP Ledger Consensus Protocol,
while addressing key issues related to trust and dispersion
of authority, as well as delineating a mechanism for imple-
menting a rewarding system on the network.

NLAC comprises three main modules, all with tunable
parameters, leaving space for further improvements as the
network evolves. These modules were constructed based on
four desirable properties derived from the characteristics of
the XRP Ledger trust overlay: nesting, layering, autonomy,
and continuity. The first module employs Token-Curated
Registries to establish membership in the UNL space, fol-
lowed by the second module, which uses layered Token-
Curated Registries to create levels of trust. These levels are
then used in the last module, where nodes are grouped into
different lists, following guidelines to achieve maximum trust
while guaranteeing a better dispersion of authority.

However, future work is to be done on the subject.
NLAC still lacks a more detailed analysis of its behavior
in a production unstructured p2p network. Having tunable
parameters, further analysis of the ideal values for each
network configuration is also necessary.

ACKNOWLEDGMENT

We thankfully acknowledge the support from the RIPPLE
University Blockchain Research Initiative (UBRI) for our
research.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: www.bitcoin.org

[2] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol
consensus algorithm,” 2014. [Online]. Available: https://ripple.com/
files/ripple\ consensus\ whitepaper.pdf

[3] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security analysis of
ripple consensus,” 2020. [Online]. Available: https://arxiv.org/abs/
2011.14816

[4] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. S. Hua, H. Chen, K. C. Li,
and H. Jin, “Towards a trust-enhanced blockchain p2p topology for
enabling fast and reliable broadcast,” IEEE Transactions on Network
and Service Management, vol. 17, pp. 904–917, 6 2020.

[5] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,
“Ripple: Overview and outlook,” vol. 9229. Springer Verlag, 2015,
pp. 163–180.

[6] B. Chase and E. MacBrough, “Analysis of the xrp ledger consensus
protocol,” 2018. [Online]. Available: https://arxiv.org/abs/1802.07242

[7] K. Christodoulou, E. Iosif, A. Inglezakis, and M. Themistocleous,
“Consensus crash testing: Exploring ripple’s decentralization degree in
adversarial environments,” Future Internet, 2020. [Online]. Available:
www.mdpi.com/journal/futureinternet

[8] “Run rippled as a validator,” accessed: 2022-07-28. [Online].
Available: https://xrpl.org/run-rippled-as-a-validator.html

[9] J.-P. Vergne, “Decentralized vs. distributed organization: Blockchain,
machine learning and the future of the digital platform,” Organization
Theory, vol. 1, p. 263178772097705, 10 2020.

[10] “Negative unl,” accessed: 2023-02-14. [Online]. Available: https:
//xrpl.org/negative-unl.html

[11] P. Baran, “On distributed communications networks,” IEEE transac-
tions on Communications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[12] V. Buterin, “What proof of stake is and why it matters,” Bitcoin
Magazine, vol. 26, 2013.

[13] “The foundation unique node list,” accessed: 2023-03-31. [Online].
Available: https://foundation.xrpl.org/unl/

[14] “System requirements,” accessed: 2023-03-31. [Online]. Available:
https://xrpl.org/system-requirements.html

[15] C. Ma, Y. Zhang, B. Fang, H. Zhang, Y. Jin, and D. Zhou, “Ripple+:
An improved scheme of ripple consensus protocol in deployability,
liveness and timing assumption,” CMES - Computer Modeling in
Engineering and Sciences, vol. 130, pp. 463–481, 2022.

[16] “Introduction to consensus,” accessed: 2022-09-13. [Online].
Available: https://xrpl.org/intro-to-consensus.html

[17] M. Goldin, “Token-curated registries 1.0,” 2017, accessed:
2022-09-13. [Online]. Available: https://medium:com/@ilovebagels/
token-curated-registries-1-0-61a232f8dac7

[18] M. Lockyer, “Token curated registry (tcr) design patterns,” 2018,
accessed: 2022-10-19. [Online]. Available: https://hackernoon:com/
token-curated-registry-tcr-design-patterns-4de6d18efa15

[19] D. de Jonghe and F. Gong, “The layered tcr,” 2018, accessed:
2022-10-19. [Online]. Available: https://blog.oceanprotocol.com/
the-layered-tcr-56cc5b4cdc45

[20] S. de la Rouviere, “Continuous token-curated registries: The
infinity of lists,” 2017, accessed: 2023-02-15. [Online]. Available:
https://shorturl.at/bAISZ

[21] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L.
Nicholson, J. D. Siirola, J.-P. Watson, and D. L. Woodruff, Pyomo–
optimization modeling in python, 3rd ed. Springer Science & Business
Media, 2021, vol. 67.

[22] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

