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Coulomb drag of viscous electron fluids: Drag viscosity and negative drag conductivity
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We show that Coulomb drag in bilayer systems in the regime of electron hydrodynamics leads to additional
viscosity terms in the hydrodynamic equations, the drag, and drag-Hall viscosities, besides the well-known
kinematic and Hall viscosities. These additional viscosity terms arise from a change of the stress tensor due to
the interlayer Coulomb interactions. All four viscosity terms are tunable by varying the applied magnetic field
and the electron densities in the two layers. At certain ratios between the electron densities in the two layers, the
drag viscosity dramatically changes the longitudinal transport resulting in a negative drag conductivity.
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Introduction. Several decades ago, Gurzhi imagined an
ideal metal from which all impurities and scatterers (e.g.,
phonons) were removed and which contained only electrons
interacting among themselves [1]. In this case, the electrons
behave collectively like a viscous fluid with a resistivity de-
termined by their viscosity, which is inversely proportional
to temperature [2]. This result differs starkly from that in a
normal metal whose resistivity increases with temperature due
to electron-phonon interactions. Such hydrodynamic electron
flows have been realized in clean samples of GaAs [3] and
more recently in graphene [4–6], PdCoO2 [7], and in Weyl
semimetals [8].

The viscous hydrodynamic regime can give rise to many
surprising transport phenomena in graphene such as, for
instance, an increase of the thermal conductivity and a break-
down of the Wiedemann-Franz law [4], an increase of the
electrical conductance of a constriction due to superballistic
viscous flow [9,10], or a nonlocal negative resistance [6]. In
topological materials, quantum geometry can also lead to a
peculiar electron flow [11,12]. As the viscosity plays a cen-
tral role in the transport of electrons in the hydrodynamic
regime, it is natural to ask how we can manipulate the viscos-
ity experimentally. It is well-known that to a certain extent,
the viscosity can be controlled by varying the temperature,
the carrier density, and the impurity concentration [13,14]. On
the other hand, applying a magnetic field not only modifies
the viscosity but also introduces an additional Hall viscosity
in the hydrodynamic equations [13,15–17].

If one places two layered metals parallel to each other
and applies a current in one (the active) layer, the interlayer
Coulomb interaction will induce a drag voltage in the other
(the passive) layer [18,19]. If we consider the two metals
in such a Coulomb drag setup as viscous electron fluids,
we can ask if the viscosities of the two metals are modified
due to the interlayer Coulomb interaction [20]. Furthermore,
one could expect that the hydrodynamic equations might be
modified because additional viscosity terms emerge from the

interlayer Coulomb interaction similar to the case of Hall
viscosity.

In this paper, we show that two viscosity terms emerge in-
deed in the magneto-transport of viscous fluids in a Coulomb
drag setup. For this purpose, we solve the coupled kinetic
equations for the electrons in the two layers that interact via
Coulomb interactions. The angular harmonics of the nonequi-
librium distribution function give access to macroscopic
quantities, including the stress tensor in the linear-response
and low-temperature limit (with Fermi energy EF � T ). The
effects of intra- and interlayer Coulomb interactions on the
stress tensor lead to the conventional viscosity and the drag
viscosity, respectively, in the Navier-Stokes equations (NSEs).
In the presence of a magnetic field, these intra- and interlayer
interactions will additionally induce the Hall and the drag-
Hall viscosities.

We show that the resulting four viscosities are tunable by
varying the ratio of the electron densities in the two layers
and the magnetic field strength. Equipped with these four
viscosities, we apply the NSE to Coulomb drag in a Hall bar
geometry, where the boundary conditions lead to Poiseuille
flow. Such flow has been observed in many experiments,
including graphene and Weyl semimetals [21,22]. We show
that in a certain range of density ratios, the drag viscosity
balances the stress force from the kinematic viscosity in the
passive layer and becomes stronger than the drag force. This
situation causes the electrons in the passive layer to flow
opposite to the flow in the active layer, a phenomenon which
gives rise to a negative drag conductivity (see Fig. 1). Under
an applied magnetic field, the transverse electric field shows
a sign change due to the drag-Hall viscosity and is tunable by
varying the density ratio.

Previous works have found negative drag conductivities in
different coupled systems such as 2D-3D systems [23], 1D-1D
nanowires [24], and 2D-2D systems [25]. The negative drag
in the present work has a different origin from the negative
drag in nanowires reported in Ref. [24] because the latter
requires a low density and a high magnetic field. In contrast,
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FIG. 1. Coulomb drag setup: An electric field E a
x x̂ is applied

to the active layer causing a Poiseuille current profile Ja (y)x̂. This
current induces electron motion in the passive layer controlled by
the drag coefficient γ

p
d and the drag viscosity ν

p
d . When the electron

density of the passive layer is much higher than that of the active
layer, γ

p
d becomes very small and Jp changes signs. The magnetic

field Bz ẑ and horizontal flow Jλ(y)x̂ cause a charge buildup and a
transversal electric field Eλ

y ŷ that can be used to probe the drag-Hall
viscosity νλ

dH .

the negative drag presented in this work occurs at high density
EF > T and does not require magnetic field. We argue that the
negative drag in double bilayer graphene found in Ref. [25]
might be explained by our results because it was observed at
intermediate temperatures (T ≈ 100 K) and at Fermi energies
EF � kBT where viscous hydrodynamic flow and momentum
drag are expected.

Viscosities due to Coulomb drag. The system we consider
consists of a pair of two-dimensional metallic layers separated
by a distance much shorter than the screening length. To
ensure hydrodynamic electron flow, we assume that the metals
are clean such that the intra- and interlayer Coulomb scatter-
ing rates are much faster than those due to electron-impurity
and electron-phonon scattering. Moreover, we consider an in-
plane applied electric field in the active layer and allow for an
applied out-of-plane magnetic field B = Bzẑ (see Fig. 1). The
macroscopic dynamics of hydrodynamic electrons at small
flow velocity can then be described by the linearized NSE,
derived in the Supplemental Material (SM) [26],

∂t uλ = e

αm
Eλ + ωcuλ × ẑ − γ λ

d (uλ − uλ̄) + f λ
visc, (1)

f λ
visc = νλ∇2uλ + νλ

H∇2(uλ × ẑ)

+νλ
d ∇2uλ̄ + νλ

dH∇2(uλ̄ × ẑ), (2)

where uλ(r, t ) is the drift velocity of electrons in the active
and passive layers, λ ∈ {a, p} (where we use λ̄ to designate
the opposite layer), γ λ

d is the rate of interlayer scattering
and known as the drag coefficient and e and m are electron
charge and band mass, respectively. As shown in the SM [26],
the equation is also valid for Dirac electrons, in which case
m = pF /vF corresponds to the effective cyclotron mass. The
band parameter α = 1 for a parabolic band and α = 2 for a
linear band. Moreover, νλ is the kinematic viscosity, which is
inversely proportional to the rate of intralayer scattering γ λ

ee,
νλ

H is the Hall viscosity which is proportional to the cyclotron
frequency ωc = eBz/mc, c being the speed of light. νλ

d ∝ γ λ
d is

the drag viscosity, and νλ
dH ∝ ωcγ

λ
d is the drag-Hall viscosity.

The total electric field in a given layer is denoted by Eλ =
Eλ + αm

e ∇Pλ = −∇ϕλ, where Eλ is the externally applied

electric field and ∇Pλ is the gradient of pressure. The presence
of the drag viscosity νλ

d and the drag-Hall viscosity νλ
dH in the

NSE is one of main results in this work. In Eq. (1), we have ne-
glected momentum relaxing (MR) scattering due to phonons
or impurities. However, we show in the SM that allowing for
weak MR scattering will not change the results qualitatively
as long as the system remains in the hydrodynamic regime
[26].

The electron-electron interaction rate in a 2D electron gas
is related to the density as γ λ

ee ∝ T 2/Eλ
F ∝ 1/n̄λ, where n̄λ

is the carrier density. The drag coefficient γ λ
d are tunable

by varying interlayer spacing and density [27–30]. Further-
more, as we show in the SM [26], all four viscosities
νλ, νλ

d , νλ
H , νλ

dH are adjustable by varying the density ratio
r = n̄a/n̄p, the ratio 	d = γ a

d /γ a
ee, and the strength of the

magnetic field ω̃c = ωc/γ
a
ee as follows:

νa = ν0

g
(1 + 	d )(r2(1 + 2	d ) + (2ω̃c)2),

νp = ν0

rg
r(1 + 	d )(1 + 2	d + (2ω̃c)2),

νa
d = rνp

d = ν0

rg

√
r	d (r(1 + 2	d ) − (2ω̃c)2),

νa
H = ν0

g
2ω̃c

(
r	2

d + r2(1 + 	d )2 + (2ω̃c)2),
ν

p
H = ν0

rg
2ω̃c

(
r	2

d + (1 + 	d )2 + (2ω̃c)2
)
,

νa
dH = rνp

dH = ν0

rg
2ω̃c

√
r	d (1 + r)(1 + 	d ), (3)

where g = r2(1 + 2	d )2 + [2r	2
d + (1 + r2)(1 + 	d )2]

(2ω̃c)2 + (2ω̃c)4 and ν0 = (va
F )2/(4γ a

ee) is the kinematic
viscosity at vanishing magnetic field and drag coefficient
[13,31]. We simplify the notation by measuring passive
layer properties with respect to those of the active layer,
γ a

ee,d = γee,d = γ
p
ee,d/r and va

F = vF = √
rvp

F . In the limits
of ω̃c � 1, νλ and νλ

d take simple forms νa = r2νp =
ν[1 − O(ω2

c )], where ν = ν0(1 + 	d )/(1 + 2	d ) and νa
d =

rνp
d = νd/(r3/2)[1 − O(ω̃2

c )], where νd = ν0	d/(1 + 2	d ).
In the same limits, νλ

H and νλ
dH are proportional to

ω̃c[1 − O(ω̃2
c )].

In Fig. 2(a), we show the kinematic viscosity of the ac-
tive layer as a function of the magnetic field. The dashed
line refers to the limit of vanishing drag coefficient γd = 0
whereas the solid lines with different colors correspond to
different density ratios r = n̄a/n̄p and fixed 	d = 0.5. We
normalize all viscosities with respect to ν0. In the presence
of drag, the viscosity decreases similarly to the case of MR
scattering. Changing the density in the passive layer does not
change significantly the viscosity in the active layer as shown
by the behavior of νa versus r. At large magnetic fields, the
viscosity decreases following the trend 1 − O(ω̃2

c ), leading to
a negative magnetoresistance ∝ B2

z in the viscous fluid [15].
The viscosity of the passive layer in Fig. 2(e) shows a similar
ωc dependence as νa but is proportional to r−2, implying the
shown density dependence of the viscosity. The drag viscosi-
ties νλ

d in Figs. 2(b) and 2(f) vanish at zero drag γd = 0 and
strongly depend on density ratio r with different dependencies
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FIG. 2. The viscosities in both layers. (a), (e) The kinematic viscosity νλ; (b), (f) the drag viscosity νλ
d ; (c), (g) the Hall viscosity νλ

H ; and
(d), (h) the drag-Hall viscosity νλ

dH in the active and passive layers, respectively, for different magnetic fields, drag coefficients 	d = γd/γee,
and density ratios r = n̄a/n̄p. In (b), (c), (e), and (g), we have multiplied the red lines (	d = 0.5 and r = 0.1) by the factors written in the plot.
Here ν0 = (va

F )2/(4γ a
ee).

in active and passive layers. νλ
d can even become negative at

large enough magnetic fields ω̃c = √
r(1 + 2	d )/2.

The Hall viscosity νa
H ∝ ω̃c[1 − O(ω̃2

c )] shows a mono-
tonic increase with ωc as long as ωc � γee. At larger ωc,
it reaches a peak and reduces to zero. ν

p
H shows a similar

qualitative ωc dependence as νa
H with quantitative differences

in the r dependence [Fig. 2(g)]. A nonzero drag Hall viscosity
νλ

dH requires both ωc and γd to be simultaneously nonzero
[Figs. 2(d) and 2(h)]. By changing the density ratio r, the
drag-Hall viscosity νa

dH can be made larger than νa
H .

Effects on Poiseuille flow. Next, we specialize Eq. (1) to
the case of steady-state Poiseuille flow in a narrow strip along
the x direction. We apply an electric field Ea = E a

x x̂ in the
active layer and set Ep = 0. In the presence of an applied
vertical magnetic field, a transversal electric field Eλ

y builds
up that ensures zero Hall current (uλ

y = 0) at equilibrium as
imposed by the boundary conditions. We obtain the following
equations for the longitudinal component (see SM [26] for
details):

γd (ua − up) = ν∂2
y ua + νd

r
√

r
∂2

y up + e

αm
E a

x , (4)

rγd (up − ua ) = ν

r2
∂2

y up + νd√
r
∂2

y ua, (5)

where we have made the ansatz that uλ = (uλ, 0) and assumed
a fully developed flow where uλ(y) is independent of x. In that
case, ∇ → ∂y and we have taken ωc/γee � 1 to simplify the
r dependence of the coefficients. It is important to note that at
small ωc, the effect of the magnetic field is negligible in the
longitudinal motion. For Dirac fermions with linear spectrum,
one needs to replace

√
r → 1, which is related to va

F /v
p
F , in

the denominators of Eqs. (4) and (5). Hereafter, we focus only
on the case of parabolic band.

Examining the dynamics in the passive layer using Eq. (5),
one finds that up will be parallel to ua due to the drag force
(∝ γd ) if one disregards the νd term. In the presence of νd

and at small r, however, the drag force becomes negligible in
comparison to the viscosity term. As a result, it emerges from
Eq. (5) that the νd term will enforce a balance of stress forces
with the ν term, resulting in opposite curvatures of the velocity
profiles ua and up along the transversal direction y (see Fig. 1).
In the case of no-slip boundary condition at the edges, the
velocities vanish at the edges such that uλ(±wh) = 0, where
wh = W/2 is the half width of the system, while the velocity
reaches a maximum at the center, thus creating a parabolic
Poiseuille profile along y. The opposite curvatures of the
velocity profiles between the two layers entail that ua(y) and
up(y) have opposite signs. One might argue that the balance
of stresses arising from ν and νd can be diminished by in-
ducing a pressure gradient ∇Pp or an internal electric field in
the passive layer. However, this effect is weak in the limit
where the flow is incompressible and kept at a constant tem-
perature along the flow. In the following, we will see that the
negative drag persists in a large window of r and even for
r = 1.

For general values of r, the solutions of Eqs. (4) and (5) are
ua,p = u0 (̃u+ ± ũ−)/2, where u0 = eE a

x w2
h/(mν) and

ũ− = 1 + r3/2ν̃d

γ̃d (1 + r3 + 2r3/2ν̃d )

(
1 − cosh(q̃y)

cosh(q)

)
, (6)

ũ+ = (1 − ỹ2)ξ +
(

1 − r3

1 + r3 + 2r3/2ν̃d

)
ũ−, (7)
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FIG. 3. (a) Conductivity σ a and (b) drag conductivity σ p as a
function of r = n̄a/n̄p for several values of γ̃d . In this plot, we
have used νd/ν = 1/3 and σ0 = nae2w2

h/(3mν ). The dashed lines
correspond to γ̃d = 0.1 and neglect the drag viscosity.

and

q̃ =
(

γ̃d (1 + r3 + 2r3/2ν̃d )

1 − ν̃2
d

)1/2

,

ξ = r3

1 + r3 + 2r3/2ν̃d
. (8)

Here, we used the dimensionless parameters ỹ = y/wh, ν̃d =
νd/ν, and γ̃d = γdw

2
h/ν = 	dW 2/(l2

eẽν), where lee = vF /γee

and ν̃ = ν/ν0. Writing the averaged charge current across the
transversal direction y ∈ [−wh,wh] as 〈Jλ〉 = n̄λe〈uλ〉, where
〈O〉 = 1

2

∫ 1
−1 dỹO and defining the normal and the drag con-

ductivities as σλ = 〈Jλ〉/E a
x , we obtain

σ a = n̄ae2w2
h

mν

[
1

3
ξ + 〈̃u−〉

(
1 + r3/2ν̃d

1 + r3 + 2r3/2ν̃d

)]
, (9)

σ p = n̄pe2w2
h

mν

[
1

3
ξ − 〈̃u−〉

(
r3 + r3/2ν̃d

1 + r3 + 2r3/2ν̃d

)]
. (10)

In Fig. 3, we plot σ a,p as a function of density ratio r for
several values of γ̃d and a fixed parameter ν̃d = 1/3 corre-
sponding to γd/γee = 0.5. The dashed lines correspond to the
case when we neglect νd . By increasing γ̃d , σ a decreases,
indicating the increase of the drag resistance. At small r, the
drag resistance from the other layer is very strong, leading
to small values of σ a. In the nonviscous regime γ̃d � 1 (the
blue line), we can see a monotonic increase of σ a as func-
tion of r which saturates at σ0 = nae2w2

h/(3mν) for large r
where the effect of the drag force is minimal. The scale factor
σ0 is the conductivity of the viscous fluid without the drag
effect, which takes the shape of a Drude conductivity where
the effective lifetime depends on the channel width and the
viscosity τν = w2

h/(3ν). In the highly viscous regime, γ̃d � 1
(black line), the drag viscosity can enhance the conductivity
at small r originating from the second term of Eq. (9), see the
dashed line when νd = 0.

The impact of νd is most pronounced for the drag con-
ductivity σ p, see Fig. 3(b). At small density ratio r and in
the viscous regime γ̃d < 1, σ p becomes negative signifying
a counterflow in the passive layer with respect to the active
one. At r = 0, σ p becomes zero because the drag coefficient
rγd vanishes, and it vanishes as well at very large r because

FIG. 4. (a) Hall angles at the first layer tan θa/ω̃c and (b) at the
the second layer tan θp/ω̃c as a function of r = n̄a/n̄p for several
values of γ̃d = 	dR. Here ω̃c = ωc/γee and 	d = 0.5. The dashed
lines are for γ̃d = 0.1 and neglecting the drag-Hall viscosity νdH = 0
and the dotted lines are for γ̃d = 0.1 and νdH = 0 and νd = 0.

np → 0, see Eq. (10). A negative σ p occurs in the viscous
regime when the effect of the γd term is smaller than those
of the ν and νd terms, see Eq. (5), causing opposite signs of ua

and up due to the stress balance. Indeed, when we set νd = 0,
σ p never reaches a negative value (dashed line). Overall, the
value of |σ p| is typically smaller than that of σ a but at large
γ̃d , σ p/σ a can approach unity at r = 1.

We note that the ratio of length scales W/lee as well as 	d

become key to observing the negative drag conductivity. The
strongly interacting regime at low densities should be avoided
because it entails a large value of γ̃d which will hamper
the negative drag. It is thus preferable to be near the Fermi
liquid regime with W/lee ≈ 1. 	d has been estimated in the
SM to be around 0.5 for double bilayer graphene separated
with a distance of 1 nm and surrounded by hexagonal boron
nitride dielectrics [26]. This will yield γ̃d = 2/3. The negative
drag conductivity we found may have already been observed
in double bilayer graphene in Ref. [25]. In that work, the
negative drag occurs at temperatures around 100 K, which is
the typical parameter regime for hydrodynamics transport. At
r = 1, the drag resistivity was found to be negative at densities
corresponding to Fermi energies EF � kBT .

One can also consider the transverse component in Eq. (1)
to relate the velocity along the strip uλ with the perpendicular
electric field Eλ

y due to the magnetic field:

νλ
H∂2

y uλ + νλ
dH∂2

y uλ̄ = e

m
Eλ

y − ωcuλ. (11)

Since uλ is proportional to E a
x , one can measure the Hall angle

tan θλ = Eλ
y /E a

x . Utilizing Eqs. (6) and (7), we obtain tan θλ

as shown in Fig. 4. At small magnetic field ωc/γee = ω̃c � 1,
tan θλ is linearly proportional to the strength of the magnetic
field ω̃c. The polarity of E a

y is less sensitive to r but more sen-
sitive to the change of the factor R = W 2/(l2

eẽν) represented
by γ̃d = R	d in Fig. 4. On the other hand, in the passive layer,
Ep

y changes signs when changing r but is less sensitive to the
change of γ̃d . The presence or absence of νd and νdH also
changes the polarity of Ep

y as shown in the dashed and dotted
lines in comparison to the solid line.

Conclusion. Starting from the kinetic equation for two
metallic layers interacting via the Coulomb interaction, we
have shown that viscous hydrodynamic transport in such a
Coulomb drag setup is characterized by four viscosities: the
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kinematic, Hall, drag, and drag-Hall viscosities. Those vis-
cosities are tunable by varying parameters such as the applied
magnetic field, the charge density ratio in the layers, and
the drag coefficient (interlayer spacing). We showed that the
drag viscosity can lead to a counterflow between electrons in
the passive layer and the active one in the viscous regime.
This phenomenon can be measured via a negative drag con-
ductivity σ p and is independent of the magnetic field in the
small-field regime ωc � γee. In the presence of a magnetic

field, the polarity of the Hall fields Eλ
y can be altered by

varying the density ratio to probe the presence of the drag-Hall
viscosity.
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