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Abstract
Malicious and coordinated attacks are happening increasingly often, and have tar-
geted critical systems such as nuclear plants, public transportation systems, hos-
pitals and governments. Because critical infrastructures must be resilient against
advanced and persistent threats, a common architecture of choice to mitigate those
hazards are distributed systems, more specifically Byzantine fault-tolerant state-
machine replicated(BFT-SMR) systems. In this PhD thesis, we propose solutions
to critical challenges in the field of distributed systems, focusing on creating adap-
tive algorithms and protocols to strengthen the resilience state-of-the-art systems.
The first challenge is how to ensure the security and reliability of critical infrastruc-
tures against advanced and persistent attacks at various threat levels. To address
this, we present ThreatAdaptive, a novel BFT-SMR protocol that automatically
adapts to changes in the anticipated and observed threats in an unattended man-
ner. ThreatAdaptive proactively reconfigures the system to cope with the faults
that one needs to expect given the imminent threats. It threreby avoids the lim-
itations of traditional BFT-SMR protocols that require either by design a high
fault threshold or a trusted external reconfiguration entity. Our results show that
ThreatAdaptive meets the latency and throughput of BFT baselines while adapting
30% faster than previous methods, providing a more efficient and secure solution
for critical infrastructures. The second challenge is how to optimize the perfor-
mance of a distributed system in the presence of unreliable nodes. To address this,
we propose a method for automatic reconfiguration based on a 3D virtual coordi-
nate system (VCS) that allows correct nodes to detect and eliminate inconsistent
latencies and protect system performance against Byzantine attacks. We evaluate
our reconfiguration baseline, Geometric, on three real-world networking datasets
and show that it protects performance up to 78% better than previous solutions
and provides the closest representation of real-world connections. Our proposed
solutions provide a more reliable and secure approach to automatic reconfiguration
in distributed systems. Overall, this thesis makes a significant contribution to the
field of distributed systems by proposing novel solutions to two critical challenges:
ensuring the security and reliability of critical infrastructures and optimizing the
performance of distributed systems in the presence of unreliable nodes.
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Chapter 1

Introduction

Malicious and coordinated attacks are happening increasingly over the last decades,
and have targeted critical systems such as nuclear plants [FMC11], public trans-
portation systems [MP17], hospitals [SS16] and governments [Tan11]. Many of
these attacks compromised a substantial proportion of the machines within the
target infrastructure. It is, therefore, necessary for organizations to regularly check
the integrity of their system and implement protective measures. However, as the
number of infrastructures rises, it also increases the stack of software and the
complexity of code executed at these instances, making surveillance and manual
mitigation of attacks an extremely difficult task [Acc20]. Instead, systems should
be able to function independently, in a distributed manner, and without constant
oversight during periods of persistent and ongoing incidents [Gor+11].

Distributed systems can be converted into resilient and available systems even
if fully connected by potentially unreliable nodes. The consistency of correct deci-
sions or progress obtained by systems like these can be attested as fault-tolerant
when an agreement involving a majority of votes is reached. Majority voting is
achieved in the system using a consensus protocol. By reaching an agreement,
servers decide distributively on actions the system will execute.

Byzantine Fault-Tolerant State Machine Replication (BFT-SMR) allows the
implementation of fault-tolerant distributed systems or services, by replicating
data over multiple servers and coordinating client request-reply interactions with
those servers [CL99]. BFT-SMR Protocols are usually configured with n ≥ 3f + 1
servers to tolerate up to f Byzantine faulty servers. These protocols are widely
used in blockchain systems, distributed databases, cloud computing, military and
aerospace systems, and others. They can also incorporate different consensus
mechanisms, such as majority voting or weighted voting, to reach an agreement
among servers.

Weighted voting is a decision-making method in which each group member is
assigned a certain number of votes, based on their level of authority, knowledge,
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wealth, or expertise. This approach is commonly used in organizations and com-
mittees where specific individuals have more resources than others. The purpose
of weighted voting is to ensure that the most informed and qualified members
have a more significant say in the decision-making procedure, leading to more ef-
ficient and effective decision-making [Ber+20]. In distributed systems, it can be
represented by servers with more processing power, better location, or better In-
ternet connection [Gif79]. One potential drawback of weighted voting is that it can
lead to uneven representation or discrepant voting power among group members.
Therefore, it is essential to carefully consider the criteria used to assign weight and
ensure that they are fair and reflective of the group’s goals and objectives.

Static voting assignment algorithms [SB15b] use hard-coded predetermined
information for all the sites connected to the system. With autonomous voting
reassignment [BGS89], each server can change its voting power by requesting that
to other servers, and they would, after enough votes, grant it the required voting
power. There are dynamic weighted quorum majority systems where Byzantine
servers can isolate themselves by partitioning the network or where one server can
consolidate all voting power at once [Dav89; JM90] and become a single point of
failure. Knowing that dynamically changing voting power is a task that involves
many caveats, like by how much the voting power will be changed and by whom,
still it was observed that it could enable systems to achieve better throughput
and latency [Ber+20] when compared to other methods. Improvements were also
seen when the variables that increase voting power are related to the reliability or
availability of servers [CAA89]. Servers belonging to distributed systems will cast
votes for requests usually issued by clients, but one of the most important request
types, in order to adapt systems, is the reconfiguration request.

Reconfiguration is a mechanism used by BFT protocols to prevent malicious
servers from manipulating systems decisions or when changing the set of servers
that participate in a consensus protocol is needed [CL99]. This dynamic mem-
bership feature is important to adapt the system to network changes or to main-
tain high levels of availability and fault-tolerance by removing from the system
faulty or compromised servers and it is supported by several BFT protocols like
Hotstuff [Yin+19], Tendermint [BKM18] and BFT-SMaRt [BSA14b]. Distributed
systems can operate reconfigurations unattended when built with a focus on the
system’s adaptability [Sil+21].

The primary contribution and overall hypothesis which this thesis answers is
the following: by prioritizing adaptability during the design of BFT-SMR pro-
tocols, it is possible to enable their unattended operation to obtain improved
performance, increased robustness and enhanced resilience even in the presence of
powerful threats and coordinated attacks. To achieve this, the adaptation process
itself must remain robust against attacks, to which this thesis contributes as well.
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1.1 Thesis Outline
This thesis is organized as follows:

• Chapter 2 provides the background knowledge and motivation to support
this thesis. We first introduce the building blocks concepts and works used
as the basis for this work.

• Chapter 3 introduces our Threat Adaptive BFT-SMR protocol. We draw
attention to the existing issues that our protocol addresses and examine the
current solutions available within the field of distributed systems. We finish
this chapter by explaining in detail the benchmarking results achieved by
our Threat-Adaptive protocol.

• Chapter 4 presents challenges and our solutions for latency-aware automatic
reconfiguration protocols. We explain how the concept of a 3D virtual coor-
dinate system (VCS) can improve systems with latency-based optimization.
We also compare and evaluate the accuracy of our methods against state-of-
art baselines using real-world datasets.

• Chapter 5 discusses integrating the solutions presented by Chapters 3 and 4
in one BFT protocol that optimizes resources dynamically at runtime using
not only the threat level but also a trustworthy latency matrix as input. This
protocol would also be able to return the system to safer configurations if
needed without relying on consensus. By combining this dynamic optimiza-
tion with the methods developed in Chapter 4 for creating more efficient
system configurations, the protocol achieves robust self-regulation, efficient
resource utilization, and improved performance.

• Chapter 6 complete this Thesis by providing a conclusion summary of the
challenges encountered and our findings. We discuss the implications and
potential impact of this research and we close this chapter by suggesting
possible future works in the field of distributed systems.

1.2 Contributions
Contribution 1: The Development of a novel Threat-Adaptive BFT-SMR protocol
that safely reconfigures itself to tolerate an increasingly powerful adversary.

• Key features: Our protocol enables servers to agree on more resilient fall-
back reconfigurations proactively and dynamically optimizes the system’s
performance by reducing the number of servers.
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• Evaluation results: Our approach shows comparable throughput and latency
to non-adaptive baselines in stable phases, with reconfigurations 30% faster
than previous methods.

Contribution 2: The creation of new latency sanitization methods to mitigate
the effect of coordinated latency collusion attacks in distributed systems.

• Key features: Our methods require reported latency information to be con-
sistent in a multidimensional virtual coordinate space.

• Method 1: Geometric finds the new positions for each and every server by
identifying the point of intersection between the references of where is the
target node to all other servers.

• Method 2: RndSamp similar to Geometric finds the new positions for each
and every node by identifying the point of intersection between the references
of other servers, with the difference being that RndSamp generates 3d points
and checks whether they intersect sufficient references.

• Method 3: Inspired by byzantine gradient averaging of MT-KRUM, our third
method uses the makes a Byzantine 3D coordinate aggregation in order to
mitigate the impact of faulty servers on the final latency matrix.

• Evaluation results: Our methods are able to protect latency after recon-
figuration against Byzantine servers up to 95% better than state-of-the-art
solutions.

1.3 Work submissions
This section summarizes the submission status of the work developed during this
thesis:

• Accepted at Symposiun on Reliable Distributed Systems(SRDS 2021).

1. Title: Threat Adaptive Byzantine Fault Tolerant State-Machine Repli-
cation
Authors: DS Silva, R Graczyk, J Decouchant, P Esteves-Veríssimo, M
Völp;

• Ongoing

1. Title: Robust and Automatic Reconfiguration for BFT State-Machine
Replication Systems;

2. Title: Dynamic and Accountable Reconfiguration for BFT State-Machine
Replication Systems;
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Chapter 2

Related work

In this chapter, we will review works on which this thesis is based or which are
related to it. The research scope of this work encompasses various areas, includ-
ing Byzantine Fault-Tolerant State Machine Replication (BFT-SMR), Adaptive
BFT-SMR protocols, Speculative Agreement protocols, Throughput-Based Op-
timization Protocols, Weighted Voting Consensus, Latency-Based Optimization
Protocols, and Virtual Coordinate Systems. BFT-SMR protocols form a funda-
mental part of the discussion, focusing on fault-tolerant replication techniques that
ensure the system’s consistency and integrity in the presence of Byzantine faults.
Adaptive BFT-SMR protocols are designed to dynamically adjust their features
or configurations in order to achieve more performance or resilience. Speculative
Agreement protocols explore the concept of optimistic confirmation and efficient
consensus mechanisms that allow for faster transaction confirmation. Throughput-
Based Optimization Protocols aim to maximize system throughput by optimizing
resource allocation and coordination strategies. Weighted Voting Consensus tech-
niques assign different weights to participants in the consensus process, providing
flexibility and prioritization. Latency-Based Optimization Protocols focus on min-
imizing network latency to improve overall system performance. Lastly, Virtual
Coordinate Systems leverage virtual coordinates to estimate network distances and
enable efficient communication protocols. Valuable insights and knowledge that
contribute to the development of this thesis topic will be clearer after examining
these various works, the different approaches and techniques listed that address key
challenges in the field of resilient distributed systems, and consensus algorithms.
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2.1 Byzantine Fault-Tolerant State Machine
Replication(BFT-SMR)

BFT-SMR protocols are commonly designed to be operated on systems with
n ≥ 3f + 1, where n is the total number of servers and f is the number of faulty
replicas the system can cope with. The terminology for servers on BFT protocols
can vary, the terms "nodes" or "replicas" are also used depending on the specific
research paper or line of research being discussed. These protocols, when combined
with reconfiguration techniques, can be used to tolerate powerful adversaries. The
diversification of the software stack used by servers can also help the system to
avoid single-point-of-failure problems, increasing the difficulty of exploiting soft-
ware errors and reutilizing this knowledge to attack other parts of the system.
Therefore, applying these techniques together would make BFT-SMR protocols
more robust and resilient.

2.1.1 Practical Byzantine Fault Tolerance(PBFT)

Practical Byzantine Fault Tolerance (PBFT) [CL99] is considered to be the first
practical BFT-SMR consensus algorithm designed to provide fault tolerance in
environments with realistic system assumptions where nodes may exhibit arbi-
trary and malicious behavior. PBFT is designed to function effectively with asyn-
chronous and unreliable networks, which means that a message can be delayed as
an artifact of loaded networks, it can be dropped, duplicated, tampered with, or
delivered out of order. PBFT ensures consensus among a group of replicated state
machines by employing a three-phase protocol that consists of a pre-prepare, pre-
pare and commit phase. During protocol execution, client requests are multicasted,
assigned sequence numbers, validated by replicas, and eventually committed for
execution. PBFT guarantees safety and liveness properties as long as the num-
ber of faulty nodes remains below one-third of the total network size. However,
PBFT suffers from high communication complexity, as it requires 3f + 1 repli-
cas to tolerate f faulty nodes, resulting in increased message overhead. Despite
this drawback, PBFT has had a significant impact on the field of distributed sys-
tems and has inspired subsequent research efforts to improve the scalability and
performance of Byzantine fault-tolerant consensus algorithms. Its robust fault tol-
erance mechanisms and provable properties make PBFT a notable contribution to
the field of distributed systems, serving as a foundational algorithm for designing
secure and reliable consensus protocols.

PBFT ensures the integrity and reliability of its consensus protocol through
safety and liveness properties. Safety in PBFT guarantees that all correct replicas
agree on the same sequence of requests and the resulting state, even in the presence
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of Byzantine faults. It also ensures that replicas do not diverge or reach conflicting
conclusions. Liveness, on the other hand, ensures that the protocol continues to
make progress and eventually reaches a decision, even in the face of potential
faults or delays. In PBFT, liveness guarantees that client requests are eventually
processed, responses are generated, and the system remains responsive despite the
presence of faulty or slow nodes. By satisfying both safety and liveness properties,
PBFT provides a robust and fault-tolerant consensus protocol that can withstand
malicious behavior and maintain the consistency and progress of its replicated
state machine infrastructure.

In addition to its support for deterministic state machine replication algo-
rithms, PBFT incorporates an important mechanism called View Change. View
Change is a process that enables the system to recover from faults or to change a
faulty leader from its role, helping to maintain the safety and liveness properties of
the protocol. In PBFT, a view is essentially a period identifier during which a spe-
cific primary replica is responsible for processing client requests and coordinating
the consensus protocol. However, in the event that the primary replica becomes
faulty or unresponsive, the system needs to transition to a new view with a differ-
ent primary replica. This is where View Change comes into play when a replica
suspects that the primary replica is faulty, it initiates a view change by broadcast-
ing a view change message to other replicas. Upon receiving a sufficient number of
view change messages, the replicas collaborate to establish a new view and select
a new primary replica. This process ensures that the consensus protocol can con-
tinue even in the presence of faulty primaries, maintaining the desired properties
of safety and liveness. By incorporating View Change, PBFT enhances the fault
tolerance capabilities of the protocol and ensures the consistency of operations
across all correct replicas.

2.1.2 Proactive Resilience through architectural hybridiza-
tion

While PBFT addresses fault tolerance specifically within the consensus protocol,
there are other ways of making distributed systems more resilient, considering the
overall system architecture and proactive measures to prevent and mitigate faults.
The proactive resilience design and methodology were built to achieve exhaustion-
safe systems[SNV06]. Every distributed system that has by design a finite amount
of resources will hit exhaustion after a variable amount of runtime execution, given
that every system is susceptible to failures and Byzantine fault-tolerant systems
can only withstand f failures. One of the main aspects of this methodology is that
the system have to have a way of recovering its nodes or its parameters periodically,
bringing them to a safe state or rejuvenating these resources, this practice is called

7



proactive recovery. Many studies [Her+95; Her+97] suggest that this periodic
refresh of the system is more effective than waiting for failures to happen or to be
detected and then reacting.

Rather than simply trying to prevent or react to damage, proactive resilience
involves creating structures that make systems adaptable and can recover quickly
from damage with the help of architectural hybridization. Distributed systems
usually have many uncertain characteristics and assumptions, like working with
unreliable networks, and communicating messages between distinct or individual
pieces of equipment or between different applications. However, there are also
predictable and trustworthy parts, one way of leveraging that is with the use of
hybrid components interconnected or the use of a wormhole subsystem[Ver03].

The Proactive Resilience Model (PRM) utilizes a combination of proactive re-
covery practices and architectural hybridization to create exhaustion-safe systems
that are resilient to failure. Given that, in practice, proactive rejuvenation can
not be coordinated properly in fully asynchronous systems[SNV05], the wormhole
subsystem could provide the synchrony and security properties required to enable
the system to recover safely. Therefore, throughout the contributions of this thesis,
we will be leveraging the concepts of proactive rejuvenation and hybridization in
order to make our systems and protocols more resilient.

2.1.3 Lazarus

Although the Proactive Resilience Model focuses on proactive strategies for im-
proving system resilience through architectural hybridization and adaptive mech-
anisms, Lazarus[GBN19] presents an innovative approach to employ and manage
diversity in Byzantine Fault-Tolerant systems automatically. Despite potential
malicious attacks or failures, BFT systems rely on replicas to reach a consensus.
However, these systems are vulnerable to attacks, and the system should guarantee
that these faults are independent. Lazarus aims to enhance the resilience of BFT
systems by introducing automatic diversity management techniques. It follows a
hybrid fault model where each replica has a Local Trusted Unit(LTU) responsible
for receiving messages from the system controller that is continuously being fed
information from trusted sources on whether the software components used by
replicas are at certain risk. Based on these assessments, Lazarus dynamically ad-
justs the replica configuration to maximize their diversity. It strategically selects
replicas with different characteristics, such as hardware, software, or network en-
vironments, to minimize the impact of correlated failures or attacks. The selection
process is guided by a diversity metric quantifying the dissimilarity between repli-
cas. Through the automatic management of diversity, Lazarus enhances the fault
tolerance and security of BFT systems, reducing the vulnerability to coordinated
attacks and increasing their resilience. Experimental evaluations demonstrate the
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effectiveness of Lazarus in improving the system’s ability to tolerate malicious be-
havior and maintain high availability. By automating the diversity management
process, Lazarus simplifies the deployment and maintenance of BFT systems, al-
lowing them to adapt to dynamic environments and effectively withstand diverse
attacks or failures.

2.2 Adaptive BFT-SMR protocols

Throughout this section, we will discuss various related works that also provide
support for the works of this thesis, highlighting their contributions to the advance-
ment of Byzantine fault tolerance. Traditional BFT-SMR protocols statically de-
fine a value for the size of the system and how many faulty replicas the system will
be able to withstand during design time, which limits their performance during
deployment time when compared to less resilient systems. Although dual mode
and abortable protocols can switch modes at runtime, they usually maintain a
constant fault threshold f , which constrains their performance optimization ca-
pabilities. Architectural hybridization can help distributed systems to minimize
the number of messages required for consensus while maintaining fault tolerance
guarantees, thereby improving efficiency and facilitating scalability. These adapt-
able features are iteratively important improvements over classical protocols like
PBFT and Paxos that will lead to more modern and robust systems closer to
achieve dynamic adaptive fault tolerance.

2.2.1 Abstract and Aliph

When designing BFT protocols and applying them to different applications, it
is normal to feel the need to improve the protocol our tailor it to the target
application, and this specialization can have its cost. Protocols that passed the
scrutiny of time and were extensively tested, like PBFT and Zyzzyva have massive
codebases, and calculating the possible outcomes of a specific change has on the
whole protocol is not practical. Abstract [Gue+10] was designed to solve these
issues because it enables the system to have different protocol solutions for different
deployment challenges.

Abstract stands for Abortable Byzantine Fault-Tolerant State Machine Repli-
cation and it leverages on system’s reconfiguration to provide new adaption pos-
sibilities. The authors further create AZyzzva and Aliph which have an Abstract
instance and multiple protocols that can be switched during runtime execution
of the distributed system. These protocols can have different objectives like op-
timizing for safety or optimizing for throughput, even with their own agreement
techniques widening even more the scope of capabilities.
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The switch between protocols or instances could be done safely, but it was still
a static design-time solution. In the case of Aliph, for example, it was initially able
to switch between the protocols Quorum and Chain. However, if we wanted to
add another protocol to the mix we would not be able to because it was something
statically defined, Aliph could change from Quorum to Chain automatically but
it was not able to add another protocol to the list dynamically. This is also a
common problem for dual-mode protocols.

2.2.2 MinBFT

The use of hybrid components can be seen as strong assumption when compared
with the possibility of having abortable protocols, but it can also bring problems
with it, like having limiting processing power and restricted storage. Addressing
these problems, the authors create Unique Sequential Identifier Generator(USIG),
their own Trusted Computing Base(TCB) for MinBFT [Ver+11], one using very
minimal code base and small number of operations. USIG aligned with the re-
duction of request stages required by MinBFT and MinZyzza impacts directly the
protocol’s latency expected.

Architectural hybridization used by MinBFT enables it to only require 2f + 1
replicas to withstand f replicas. The unique identifier provided by the trusted
component remove the system’s requirement of having f replicas in the intersection
of quorums to be able to detect equivocation happening. The trusted component
also allows MinBFT to have one stage less than PBFT on its normal-case execution
because it can use USIG operations to uniquely identify messages.

MinBFT showed it is possible for a distributed system to have Byzantine fault
tolerance without using three times the number of nodes to cope with f faults with
the add of a minimal hybrid element. It was also showed that the communication
steps could be reduced from 5 to 4 in normal-case execution and from 4 to 3 on
more speculative executions of their protocols. Networks with chaotic amount of
load and shortcomings like the Internet today benefits a lot from protocols like
those, that spend less traffic with messages and requires less resources to provide
services in a distributed fashion.

2.2.3 CheapBFT and ReBFT

Dual-mode protocols usually operate, with one of the protocols being the safest
configuration of the systems, and the other part is the efficient version where the
protocol achieves higher throughput values. CheapBFT [Kap+12a] is a dual-mode
protocol where the system can either operate with CheapTiny, the most resource-
efficient protocol, or to safely switch, using their own protocol, to MinBFT, a
heavier but safer protocol.
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The transition from one execution mode to another execution mode is done by
a panic message issued either by clients or replicas. This change can be motivated
by protocol’s slow progress, in the case where clients do not receive f+1 matching
replies, or by safety where replicas become suspicious about faults happening in
the system. Either way, an agreement is needed to seal the abort history of which
messages were executed up to that point, enabling the system to continue its
execution from a checkpoint to where the next payload protocol starts.

CheapBFT applies architectural hybridization called CASH in a similar manner
of MinBFT’s USIG, while both CASH and USIG are used to ensure that messages
are uniquely identified during runtime execution of consensus algorithms. CASH
uses an FPGA or a hardware-based mechanism to generate unique, increasing
counters, while USIG uses a software-based mechanism to generate unique, se-
quentially increasing identifiers, and they both employ a specific type of signature.
Though both mechanisms prevent equivocation from happening, CheapBFT ben-
efits from using a lighter version of the protocol when there are no faults on the
system, and as soon as entities suspect that faults are happening, the protocol
agrees on requests executed and moves to a heavier and safer payload protocol.

ReBFT [DCK15] or the updated version of CheapBFT comes also to enhance
the efficiency of Byzantine Fault Tolerant (BFT) systems by optimizing resource
utilization. BFT systems ensure consensus among replicas in the presence of faulty
or malicious nodes, but they often suffer from high communication and computa-
tion overhead. Several techniques proposed by other works can be used to save
resources with ReBFT like batching requests and using hashes instead of PRE-
PREPARE and COMMIT requests. Additionally, it also allows a speculative ex-
ecution technique where replicas can concurrently execute requests that do not
conflict with each other, reducing the average consensus latency considerably. An-
other key aspect is the global commit history mechanism, which dynamically en-
ables passive replicas to become active, passive replicas are nodes that were once
not participating in consensus but were present the whole time at the system’s
network and infrastructure. Experimental evaluations demonstrate significant im-
provements in resource efficiency without compromising the fault tolerance and
security of BFT systems. By minimizing communication costs, optimizing com-
putation, and adapting resource usage, ReBFT provides a practical framework for
achieving resource-efficient Byzantine fault tolerance, making BFT systems more
scalable and practical for real-world applications.

2.2.4 BFTSmart

Despite the astonishing amount of classical distributed system’s algorithms pub-
lished before BFTSMaRt [BSA14b], they were the first to make publicly available
a full fledge open source library that would enable the creation of many other BFT
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Figure 2.1: Comparison between different consensus algorithms, Crash fault-
tolerant consensus does not require the write phase, different from Byzantine fault-
tolerant consensus and both supported by default on BFTSMaRt library.

protocols. They choose to use a high level object-oriented language to increase the
simplicity of the code, facilitate the re-use, to provide a library with a possibly
smaller codebase. The modularity applied speeds up the creation of new protocols
that improve specific aspects of the field, it gets easier to prototype, test new ideas
without dealing with core mechanics of the system like the consensus algorithm
if your new technique does not innovate on that. Replicas can be instantiated in
different cores allowing this library to use industrial servers with strong processing
power at full capacity and given that usually they have access to a well-connected
network it also makes it easier to test and evaluate new developments. The ex-
change of messages or requests between entities and the ordering of these requests
was also designed to be modular in the same way the fault model was programmed
to be flexible, whether your system works with messages in batches or streamline
of requests, whether it was thought to withstand crashing or Byzantine replicas.
BFTSMaRt should be able to accommodate new protocols particularities without
deeper changes.

All other BFT protocols explained before are using statically defined configu-
rations for the size of the system and how many faults it will be able to withstand.
BFTSMaRt [BSA14b] has its own module responsible for managing dynamic group
membership actions and its own protocol to be able to add and remove replicas
at runtime. The library does also uses a multi-threading approach where each
replica can be using several threads depending on the amount of work services and
operations are requiring from it, this way there is no throughput interferences if
the replica is receiving too many requests because processing requests do not stall
replicas’ progress.

BFT-SMaRt library offers modularity and adaptability, making it a power-
ful tool for implementing both Crash Fault Tolerant (CFT) and Byzantine Fault
Tolerant (BFT) consensus. It provides the flexibility to configure the consensus
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behavior at the design stage, allowing developers to seamlessly switch between
CFT and BFT modes by simply changing the configuration settings. This mod-
ularity enables system designers to choose the appropriate level of fault tolerance
based on their application requirements. In CFT mode, BFT-SMaRt provides
crash fault tolerance, where nodes can crash but do not exhibit Byzantine behav-
ior, on this mode requests need also one phase less 2.1. In BFT mode, it guarantees
Byzantine fault tolerance, allowing for the presence of malicious or faulty nodes.
BFT-SMaRt’s out-of-the-box capabilities in providing both CFT and BFT con-
sensus, combined with its modular design, make it a versatile solution that can
be tailored to various fault tolerance requirements. The simplicity applied to the
development of BFTSMaRt made it to remain relevant even after half a decade of
scrutiny from research and time. As result there is almost as many fork protocols
as it can gets, with many of these adapting this library to be optimized for specific
problem or application already existent, like wide-area application, throughput
optimized protocols and latency-based optimized systems.

2.2.5 Adapt

Adapt[BGS15a] brings the adaptivity of systems to a higher level with its dy-
namically change of protocols on-the-fly, can be seen as a much improved version
of Aliph, but it has much more to it. The creative combination of Byzantine
fault-tolerant design with artificial intelligence brings a different perspective to
the solution on how to tackle system’s adaptability problem. This time differently
from Aliph because Adapt has a list of available protocols that can be updated
during runtime execution of the payload protocol, given the system manager pro-
vides numerical descriptions of the algorithm’s features. It also adds an extra layer
to answer the decision task of whether to abort the running protocol and go to the
next one and to which protocol of the available ones it should change to.

Adapt may have dynamic switching mechanism, however the protocol depends
strictly on the weights distributed in the characteristics of Throughput, Latency
and Capacity. They have to do some training prior to run the real SMR system
also to train the Machine Learning algorithm to better define values or weights
for each one of the features. This partially restricts the dynamism of the system
because if the administrator wants to add a brand-new protocol to the mix, he
better give it accurate weights otherwise he could easily transform the dynamic
change in a single point of failure of the system. Therefore, it is not clear how the
addition of new protocols would be made, but it still expands possibilities to make
BFT protocols more adaptive.

There are always two BFT protocols running with the same set of replicas
one PBFT instance accounting for the quality control algorithm QCS and the
other works with clients and requests like classical distributed systems are used
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to. Adaptation here comes at the expense of throughput and latency to enable the
system to take a distributed decision on which protocol would be the best fit to
the system right at this specific moment. Adapt as well as Aliph, slightly achieve
Adaptive Fault Tolerance one of the goals of this thesis, almost by accident because
this adaptive improvement comes from the fact that different protocols implies on
different system characteristics, like the fault threshold non-hybrid BFT systems is
usually 3f+1, speculative protocols can have 2f+1 and so on, this work basically
achieves adaptive fault tolerance by consequence.

2.3 Speculative Agreement protocols

We will describe here briefly how important Speculative agreement protocols are,
their importance on pushing Byzantine fault tolerance to the masses given that
they spend in normal-case scenarios less resources than PBFT for example. One of
the critical challenges in distributed systems is reaching consensus in decision tasks
among the distributed, interconnected nodes. To address these scalability issues,
researchers have proposed speculative agreement protocols, which aim to reduce
the communication overhead and increase the throughput of BFT-based consensus
algorithms. These protocols leverage the speculative execution of transactions or
requests to achieve faster agreement on the state of the system while maintaining
the same level of security as BFT-based protocols.

2.3.1 Zyzzyva

In classical Byzantine Fault Tolerant (BFT) protocols, consensus must be reached
in order to move from one request to the next. The system or clients wait for
a majority of votes to make progress, this process can be time-consuming and
resource-intensive. Zyzzyva [Abr+17a] aims to reduce this overhead by allowing
nodes to execute transactions speculatively or without first receiving confirmation
from almost the whole system before moving to the next transaction. This protocol
uses a combination of two-phase voting and speculative execution, in the first
phase, nodes broadcast their transactions to the network and collect votes from a
subset of other nodes. These votes are used as a preliminary confirmation for the
transaction, enabling the node to execute it speculatively. In the second phase,
the node sends the transaction to all other nodes in the network and collects their
votes. Only if the votes confirm the preliminary votes, the transaction will be then
committed to the blockchain.
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2.3.2 Thunderella

Combining speculative execution from Zyzzyva with the dual mode protocols
architecture and we have Thunderella[PS18] where authors introduced a hybrid
blockchain protocol that combines optimistic confirmation with a fallback mech-
anism for situations where optimistic confirmation is not feasible. Thunderella
leverages a simple committee signature scheme and an asynchronous consensus
protocol to achieve fast confirmation when favorable conditions are met, such as
having a majority of honest network participants and an honest leader proposing
transactions. In these cases, transactions can be quickly confirmed in just two
rounds of communication. However, in less common scenarios, Thunderella falls
back to an underlying traditional blockchain mechanism, such as proof of work
or proof of stake. It can use proof-of-work as a slower fallback path and still
optimistically confirm transactions much faster using the asynchronous consensus
protocol when an accelerator node and three-fourths of an elected committee are
honest. This hybrid approach allows Thunderella to balance between efficiency
and security, leveraging speculative execution by optimistically confirming trans-
actions in the fast path under favorable conditions, while still having a reliable
and secure fallback mechanism in the slow path. By employing both optimistic
and fallback strategies, Thunderella provides a flexible and efficient solution for
blockchain consensus, addressing the need for instant confirmation while maintain-
ing the robustness and resilience required in various scenarios.

2.4 Throughput-Based Optimization Protocols

Distributed systems will always face the challenge of maintaining high throughput
while ensuring availability and safety. Byzantine fault tolerance (BFT) consen-
sus algorithms are commonly used to address this challenge, but they can suffer
from low throughput due to the communication overhead involved on the many
stages required in the consensus process. To overcome this limitation, works have
being proposed using throughput-based optimization procedures. Identifying the
primary as a bottleneck, these protocols aim to increase the throughput of BFT-
based consensus algorithms, usually by doing a view change where the next primary
should have better processing and network capabilities than the actual primary.
Prime, Aardvark, and RBFT are examples of protocols that make use of those per-
formance measurements to achieve better throughput and in this section, we will
explore these protocols in more detail and discuss their advantages and limitations.
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2.4.1 Prime

A Byzantine primary can stall system’s progress and jeopardize system’s perfor-
mance purposely. Prime[Ami+10] comes to address the performance degradation
when under attack problem that happens on many known BFT protocols by peri-
odically measuring primary’s rate of ordering requests and measuring the latency
between primary and pairs, in order to reconfigure the system to a more optimal
state. These measurements allow the protocol to compute the maximum delay sep-
arating the sending of two ordering messages performed by a correct primary. The
main objective of the protocol becomes to reduce this maximum delay as much as
possible, improving as a consequence system’s throughput, but this is only possible
with correct round-trip-time measurements between pairs, even when Byzantine
nodes are involved.

In classical distributed systems, protocols usually require the primary to be
computationally very powerful and very well-connected to the rest of the nodes,
because in many of those its primary’s responsibility to prepare messages to be
executed. The task of preparing messages involves two actions, the first one is to
give a unique number to every request and keep track of these numbers to enable
future primaries to continue from the numbers used, the second one is to send this
message uniquely identified to every other replica on the network. When these two
actions are well executed for a sequence of requests is when the system can reach
its full throughput capacity. However, if the primary is faulty or lagging because
of its own infrastructure, the system will be subsequently running at speeds far
from optimal.

Prime applies periodic measurements to primary and the other nodes on the
network, seeking to find the best suitable primary for this protocol execution mo-
ment. A primary with good processing capabilities should be able to order requests
quickly and if its latency on messages exchanged with other replicas is good enough
it will remain being the primary, otherwise after a period of time the system will
change it automatically. The view change procedure done by PBFT was one of
the heaviest parts of the protocol and done only when really required, here this
procedure is way quicker, and it is actually preferred to spend resources changing
primary than to hold protocol execution with a slow or badly connected node. It
is then extremely important to Prime that replicas could measure precisely the
round-trip-time of messages exchanged, if monitoring is inaccurate, part the ro-
bustness promised is lost, and it was seen that one faulty client and one faulty
primary are able to degrade 22% of Prime’s performance.
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2.4.2 Aardvark

The ordering and forwarding requests to the respective replicas are responsibilities
of a primary and they are not easy tasks to be performed fast at the system
scale during runtime, Aardvark [Cle+09] addresses these problems by pushing
the system to achieve higher and higher throughput numbers periodically. The
performance requirements are updated every couple of seconds, and the leader at
this moment in time has to be able to keep up, if it is not able to, the system will
then reconfigure and change the leader. Eligible primaries will have their speed
of ordering requests measured together with latency measurements between pairs,
like in Prime, in order to enable the system to reconfigure to better configurations.
It was also observed in this work that a malicious primary could still degrade the
system’s progress, but less when compared to Prime.

Aardvark leads the system to make a view change eventually by periodically
checking the processing speed and quality of the network connection of the primary.
The throughput expected from the protocol increases every period of time, decided
at designing time, until the primary fail to fulfill the requirements, when this
happens a view change is issued. Even with the system not processing any request
during view change, the authors showed that Aardvark is still more efficient and
more resilient to faults compared to Zyzzyva and PBFT.

There are protections built in place to protect system’s progress from overload
from clients or even from servers trying to spam the network or the system with
fake requests. Aardvark also makes use of resource scheduling, separating the
workload in different queues protecting the system against Byzantine clients trying
to flood the system and also from replicas that may send to many messages given
an arbitrary number of requests. It is also applied many checks to the request like
the black list check that avoids blacklisted nodes from keep attacking the system,
mac, sequence and retransmission check that protects the system against nodes
re-sending the same messages or requests just to stall system’s progress or to cause
resource overload and many others interesting assertions are applied by Aardvark.

2.4.3 RBFT

Prime and Aardvark pushed the limits of the system’s throughput to a greater
level when compared with PBFT, they also showed that they are also more re-
silient but systems with dynamic load seem to be more prone to performance
degradation caused by faulty entities. During attacks over those situations Prime
decreases its performance in 78% and Aardvark 87%. Redundant Byzantine Fault
Tolerance(RBFT)[AMQ13] comes as an alternative protocol to improve the for-
mer approaches, being able to hold system’s performance under attack in scenarios
where the request size varies or where it is at least bigger than 0 KB, which is
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usually where huge performance numbers come from. RBFT follows an interesting
and different infrastructure where each replica or server runs its own BFT protocol
and there is a master instance of this protocol running on top of everything.

Changing the primary seems to improve the system if the next primary can
be faster than the last one, problems start to happen if the measurements done
were not accurate, leading the system to be guided by a faulty primary. One
way to dodge the problem is to keep modifying primaries, like Spinning does but
eventually, the system will elect a Byzantine replica as primary and the protocol
should have protections in place to counter what ever possible damage a faulty
primary can cause. Also, a faulty server or client should not have too much space
to lie smartly and to not get caught by diminishing system’s performance.

2.5 Weighted Voting Consensus

Weighted voting is a time-honored approach to making decisions that involve al-
lotting each member of a group a certain number of votes, which are based on
their expertise, wealth, level of authority, or knowledge [CP13]. This technique
is frequently employed in various committees and organizations where certain in-
dividuals have access to more resources than others. In distributed systems, this
can be represented by replicas that have more computational power, a superior lo-
cation, or better network connectivity [Gif79]. The primary objective of weighted
voting is to ensure that the most knowledgeable and competent members wield
more influence in the decision-making process, resulting in more effective and ef-
ficient decision-making[Ber+20]. However, one potential drawback of this method
is that it can result in uneven representation or disparities in voting power among
group members. Therefore, it is necessary to carefully consider the criteria used
to assign weight and ensure that they are equitable and aligned with the group’s
goals and objectives.

2.6 Latency-Based Optimization Protocols

Another way of increasing the throughput is usually to reduce the time it takes
the system to reach a consensus in a distributed system, and that is the objec-
tive behind protocols using latency-based optimizations. These protocols work by
identifying the root cause of latency, which could be attributed to factors such as
network latency, processing delays, or message transmission times. By address-
ing the underlying cause of latency or empowering nodes better connected, these
protocols aim to reduce the time it takes for a consensus to be reached while
maintaining safety and availability. WHEAT [SB15a] and AWARE[Ber+19], for
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instance, reduce the time to reach agreement by using a weighted voting scheme
where nodes are split into two groups, and they do not need the majority of nodes
to vote requests but a voting power threshold to be reached. Kauri[NMR21], on
the other hand, uses a pipeline technique to scale the dissemination of requests and
achieves by consequence also better latency values. Overall, these latency-based
optimization protocols are promising solutions to the challenge of achieving faster
consensus in distributed systems.

2.6.1 WHEAT

Traditional distributed algorithms for geo-replicated state machine replication in-
frastructures rely on theoretical models like Mencius [Bar08] and EPaxos [MAK13],
do not fully capture the complexities of real-world systems. In WHEAT [SB15a]
authors evaluated their distributed system in a close scenario to what is seen as
real-world deployment example. This was the first protocol to use a weighted vote
assignment scheme that impacts directly the fault threshold and the quantity of
spare replicas required to improve consensus’s latency and protocol throughput.
To have good representations of the network connection between servers and en-
able the protocol to work efficiently with its workload, in WHEAT the latency
measurements are done by system administrators at system’s start. During their
evaluation from the outcomes observed in both experimental setups the crash
fault-tolerant scenario and the Byzantine fault-tolerant one, authors concluded
that co-locating clients with the leader does not necessarily result in a latency
improvement for replicated state machines. Instead, the placement of the leader
in the host with superior connectivity to the remaining replicas may lead to more
consistent enhancements. Therefore, the advantage of reaching the leader quickly
is not as crucial as locating the leader in the server with faster connection links
to the other replicas. The most interesting counter-intuitive innovation WHEAT
shows is the capability of reducing protocol latency by adding more spare replicas
to the system.

2.6.2 AWARE

AWARE[Ber+19] can be considered an updated version of WHEAT, much more
capable and much more dynamic. This protocol was also created with a focus in
geo-replicated applications, where the latency discrepancies resulting from servers
connected at WAN in different locations are much greater than applications in-
terconnected to local area networks. It uses weighted quorum like in WHEAT,
but this time voting power is being updated on the fly or during the runtime of
the protocol, it is also being updated autonomously without the need of system
administrators involved. These changes happen proactively every period defined
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Figure 2.2: Classical consensus algorithms use egalitarian quorum where
⌈
n+f+1

2

⌉
replicas have to vote to reach consensus, in AWARE’s weighted quorum agreement
can be reached even with 2f + 1, usually requiring way less replicas.

during the designing time, and the system stops executing requests to execute the
MonitoringWindow procedure where weights might be re-balanced. The criteria
being used to provide more voting power to one arbitrary replica is the network
connection with other nodes, better-connected nodes receive more voting power,
and worst-connected nodes will receive less voting power. This difference in weights
makes the quorum formation much more variable, which is seen as a characteristic
that leads the system to more efficiency.

The MonitoringWindow is the procedure that happens every period of time
defined during system’s designing time, during this phase all nodes measure the
round-trip-time of messages between them and others in a pair-wise manner.
AWARE’s standard period for MonitoringWindow is one after one execution per
second, by the results of their experiments it seems to be enough to make the
system optimal without spending too many resources or wasting valued payload
protocol time. During the execution of this phase, the protocol stops executing
payload requests and messages exchanged result on latency measurements that
will further end up in a latency matrix. Before deciding on the next weight distri-
bution that will favor the system and make it runs faster, nodes have to agree on
the latency matrix, they start by sharing their local values and then they agree on
a common matrix. Given that at this part of the procedure enough nodes have the
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same measurement matrix, they can calculate the most optimal next configuration
by themselves. The optimal configuration or close to optimal weight distribution
is calculated by every replica using Simulated Annealing, where for each configu-
ration is calculated how much it would be its consensus latency and gathering the
distribution of all these values the annealing algorithm would enable replicas to
find a good approximation of the global optimum. To close this procedure, they
should agree on the next configuration, issuing with that a reconfiguration request,
that will move every corresponding node to a new view.

In AWARE the voting weight distribution is split between two groups the
one having minimal voting power called Vmin and the one having maximal voting
power called Vmax. Nodes that are reportedly worst-connected with the rest of the
network receive Vmin voting power, nodes are shown good network performance
during the MonitoringWindow will receive maximal voting power. Vmin is equal to
1 and Vmax = 1+ ∆

f
, where ∆ is the number of spare replicas connected also to the

system. Usually in classical distributed systems the more replicas a system has
the more latency it will take to reach an agreement, but as observed in WHEAT
the use of spare replicas together with weighted consensus improves the latency of
payload protocol and AWARE as an updated version of WHEAT does also have
the same advantage.

In conclusion, AWARE is an enhanced and dynamic version of WHEAT, de-
signed specifically for geo-replicated applications that experience significant la-
tency discrepancies due to wide area network connections. It utilizes weighted
quorums, with voting power updated autonomously during runtime based on the
network connections of each node. The protocol includes a MonitoringWindow
procedure to measure latency and calculate an optimal weight distribution us-
ing Simulated Annealing. By splitting voting power into minimal and maximal
based on network performance, AWARE achieves improved efficiency and reduced
consensus latency compared to other classical distributed systems, making it a
valuable solution for geo-replicated applications.

2.6.3 Kauri

While AWARE focuses on adaptively adjusting voting weights according to node’s
network connectivity, Kauri relies on latency between nodes and processing time to
disseminate and aggregate messages in a pipeline architecture to achieve scalable
Byzantine fault-tolerant consensus in distributed systems. Kauri employs a combi-
nation of dissemination and aggregation trees to efficiently propagate and gather
information across the network. Dissemination trees are responsible for broad-
casting messages from the leader to all nodes, while aggregation trees are used to
collect and combine individual responses from nodes. These trees are dynamically
constructed and adapt to changes in the network, ensuring efficient message dis-
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semination and aggregation. To ensure the security and reliability of the consensus
process, Kauri utilizes cryptographic techniques such as digital signatures and ver-
ifiable secret sharing. These mechanisms prevent malicious behavior and ensure
the integrity of messages exchanged among nodes. Experimental evaluations con-
firm Kauri’s scalability, outperforming existing BFT consensus protocols in terms
of throughput and latency while maintaining strong consistency guarantees.

Dissemination and aggregation trees serve as decisive components of Kauri for
efficient message propagation and information gathering. Dissemination trees are
dynamically constructed hierarchical structures that facilitate the broadcasting of
messages from the leader to all nodes in the network. Differently from a star
topology in Kauri each node in the dissemination tree receives messages from its
parent and forwards them to its children, ensuring reliable and efficient commu-
nication across the network, without broadcasting. Conversely, aggregation trees
collect and combine individual responses from nodes, enabling the formation of
a consensus on the collected information. These trees adapt to changes in the
network topology and facilitate parallel processing, allowing for overlapping op-
erations and reducing the overall consensus time. By leveraging dissemination
and aggregation trees, Kauri achieves scalable and fault-tolerant consensus, en-
suring consistent knowledge propagation and efficient information gathering in
large-scale distributed systems. The construction and maintenance of these trees
involve careful algorithms and protocols to optimize efficiency, fault tolerance, and
load balancing, enhancing the protocol’s overall performance and reliability.

2.7 Virtual Coordinate Systems

Virtual Coordinate Systems (VCS) such as Vivaldi [Dab+04] and Newton [Sei+13]
are innovative approaches that aim to provide efficient and scalable solutions for
network coordinate estimation in large-scale distributed systems. VCS algorithms
seek to assign synthetic coordinates to network nodes based on network latency
measurements, allowing nodes to estimate their relative positions in a coordinate
space with good accuracy and a low error rate. Vivaldi, for instance, employs a
spring-mass model where nodes iteratively adjust their virtual coordinates to min-
imize the discrepancy between estimated and actual latencies. On the other hand,
Newton leverages Newton’s laws of motion to compute node coordinates, simulat-
ing a physical force-based model where nodes attract or repel each other based on
latency measurements. These VCS algorithms offer scalable solutions by enabling
a reference set of nodes to estimate distances and paths in the absence of global
knowledge or complete knowledge of where exactly is each and every node. They
have been applied in various distributed systems, including peer-to-peer networks
and content delivery networks, to improve routing efficiency, resource allocation,
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and fault tolerance. While each VCS algorithms have its unique characteristics,
they all contribute to the advancement of network coordinate estimation tech-
niques and they will further, in this thesis, play an essential role in enhancing the
performance and scalability of large-scale distributed systems.

2.7.1 Vivaldi

Vivaldi is a virtual coordinate system or an algorithm capable of issuing syn-
thetic coordinates to nodes in the network, based on the latency matrix where
each value is the pairwise measurement between every two nodes present in the
system. It adopts a distributed approach to address the limitations of centralized
systems, employing a spring-mass model where nodes are assigned virtual coor-
dinates. These coordinates represent the node’s position in a high-dimensional
coordinate space. Through periodic exchange of coordinates between a reference
set neighboring nodes, Vivaldi uses latency measurements to iteratively adjust
the virtual coordinates, minimizing the discrepancy between estimated and actual
latencies. This decentralized and iterative process allows nodes to gradually con-
verge to a configuration that accurately reflects the network topology. Vivaldi’s
decentralized nature enables scalability and adaptability, making it resilient to
network dynamics such as node failures or additions. The accuracy and efficiency
of Vivaldi have been validated through extensive evaluations, making it a valuable
tool for improving routing efficiency, load balancing, and resource allocation in
various domains, including content delivery networks, peer-to-peer systems, and
overlay networks.

The algorithm utilizes a spring-mass model shown in Figure 2.3 where a force
vector is used to estimate network distances between nodes. Each node maintains
a set of coordinates that represent its position in a virtual coordinate space. The
force vector consists of attractive and repulsive forces that guide the movement of
nodes towards an optimal configuration. By iteratively adjusting the coordinates
based on these forces, the algorithm aims to achieve an accurate representation
of the network topology. Additionally, the algorithm incorporates an adaptive
timestep mechanism to dynamically adjust the rate at which nodes update their
coordinates. The timestep determines the speed at which nodes converge to their
optimal positions. Nodes more confident of their coordinates or with more stable
latencies have smaller timesteps, allowing them to converge more slowly and re-
duce unnecessary coordinate oscillations. On the other hand, nodes with volatile
latencies have larger timesteps, enabling them to adapt more quickly to changing
network conditions.
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Figure 2.3: The mass-spring model is inspired by physics, where each node in the
network is treated as a mass connected to other nodes by virtual springs. The
model assumes that nodes strive for an equilibrium state where the forces exerted
by the springs and their distances are balanced.

2.7.2 Newton

Newton extends on Vivaldi presenting a novel approach to secure virtual coordi-
nate systems by leveraging physical laws. VCS algorithms, which assign virtual
coordinates to network nodes based on latency measurements, are susceptible to
malicious attacks that aim to manipulate node positions and disrupt network oper-
ations. In response, Newton introduces a physical force-based model where nodes
simulate the attraction and repulsion forces based on their estimated latencies. By
enforcing Newton’s laws of motion, nodes iteratively adjust their virtual coordi-
nates to minimize the discrepancy between estimated and actual latencies. This
approach enhances the security of VCS by utilizing physical laws as a fundamen-
tal constraint, making it challenging for malicious nodes to alter their positions
without affecting the overall consistency of the coordinate system. Newton also
introduces mechanisms to handle potential inconsistencies caused by adversaries,
allowing nodes to detect and mitigate malicious behavior. Experimental evalua-
tions demonstrate the effectiveness of Newton in providing secure virtual coordi-
nates, resisting attacks, and maintaining the accuracy of the coordinate system.
By combining physical laws with virtual coordinates, Newton offers a promising
solution for enhancing the security and reliability of distributed systems, particu-
larly in scenarios where the integrity of node positions is crucial, such as overlay
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networks, peer-to-peer systems, and content delivery networks.
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Chapter 3

Threat adaptive Byzantine fault
tolerant state-machine replication

Critical infrastructures have to withstand advanced and persistent threats, which
can be addressed using Byzantine fault tolerant state-machine replication (BFT-
SMR). In practice, unattended cyberdefense systems rely on threat level detectors
that synchronously inform them of changing threat levels. However, to have a
BFT-SMR protocol operate unattended, the state-of-the-art is still to configure
them to withstand the highest possible number of faulty replicas f they might
encounter, which limits their performance, or to make the strong assumption that
a trusted external reconfiguration service is available, which introduces a single
point of failure. In this chapter, we present ThreatAdaptive the first BFT-SMR
protocol that is automatically strengthened or optimized by its replicas in reaction
to threat level changes. We first determine under which conditions replicas can
safely reconfigure a BFT-SMR system, i.e., adapt the number of replicas n and
the fault threshold f , so as to outpace an adversary. Since replicas typically
communicate with each other using an asynchronous network they cannot rely on
consensus to decide how the system should be reconfigured. ThreatAdaptive avoids
this pitfall by proactively preparing the reconfiguration that may be triggered by
an increasing threat when it optimizes its performance. Our evaluation shows that
ThreatAdaptive can meet the latency and throughput of BFT baselines configured
statically for a particular level of threat, and adapt 30% faster than previous
methods, which make stronger assumptions to provide safety.

3.1 Introduction

Cyber infrastructures, which are used in domains such as finance, public admin-
istration (e-government), social networks, or e-health, as well as cyber-physical
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systems (CPS), such as the power grid or autonomous vehicles, increasingly face
cyber attacks of various threat levels [Coo14]. Some of these attacks might suc-
cessfully compromise a subset of the machines used in an infrastructure, which
imposes periodical verification of a system’s integrity and protection measures.
However, the nature of cyber-physical systems, and the increasing complexity of
both cyber-physical and cyber-only systems prevent manual attack surveillance
and mitigation [Acc20]. Instead, systems have to operate through times of ongo-
ing and possibly persistent incidents autonomously and unattended.

Fluctuations in the threat a system faces naturally arise from variations of
environmental effects (e.g., radiation levels vary while planes taxi on ground and
during flight [Jon05]), or when it comes to attacks, from the number and skill
of adversarial actors having put their attention to a system and from the sophis-
tication of the tools they use. In practice, cyber physical systems rely on threat
detectors [11] that indicate the level of threat they are facing and that allows them
to automatically adapt their performance and resilience.

As discussed briefly on Chapter 2, Byzantine fault-tolerant state machine repli-
cation (BFT-SMR) [CL+99], combined with rejuvenation [SNV06] and diversifi-
cation methods [Hos+18; GBN19] can be combined and used to replicate servers
and tolerate powerful adversaries. BFT-SMR protocols are typically configured
with n≥ 3f+1 replicas to tolerate the largest number f of faulty replicas [CL+99]
it might encounter, and require 2k additional replicas (i.e., n≥3f+2k+1) if up to
k replicas are simultaneously rejuvenated every TR seconds [SNV06]. However, the
latency and throughput of BFT-SMR systems deteriorate when f increases. Our
work is the first to allow BFT-SMR protocols to safely adapt to evolving threats
by leveraging threat detectors.

Traditional protocols [CL+99] define a value for f once and for all at deploy-
ment time, and therefore have a lower performance than less resilient systems.
Adaptive protocols [Ber+19] reclaim some performance, but they also maintain f
constant. To some extent, dual mode and abortable protocols [Kap+12a; DCK15;
Aub+15; BGS15b] can optimize their performance by executing a protocol switch
at runtime, but they also keep the fault threshold f constant. On the other hand,
group membership protocols adjust the system and quorum sizes using consen-
sus [Cha+96; Rei96b; DGM02]. However, group membership protocols cannot
guarantee that the system will enter a sufficiently resilient configuration before it
gets compromised, in particular when network synchrony is lost. Finally, relying
on an external reconfiguration service introduces a single point of failure.

Fortunately, as we show in this chapter, it is possible to circumvent the limita-
tions of these approaches by leveraging threat detectors, which provide a lightweight
trusted functionality. Threat detectors issue warnings well in advance of imminent
increases of adversarial strength [MC14; Deh18; Boe18; 16]. However, threat detec-
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tors also report about threat level decreases, when there is room for optimization.
On this chapter, we describe how to adapt distributed systems to fluctuat-

ing adversarial threats. We start by carefully analyzing the timing properties a
threat detector should have to allow the system to react in time to adversarial
strength increases. Building on those insights we describe a reconfiguration pro-
tocol, ThreatAdaptive, which allows the replicas of a system to: (i) use consensus
to agree on and switch to a less resilient, but better performing configuration
that is still resilient enough when possible; and (ii) return to a configuration that
is strong enough, which has been agreed upon during the optimization phase,
when the threat detector informs them about an imminent increase of adversarial
strength. ThreatAdaptive allows a BFT-SMR protocol to save the resources it
does not require to ensure safety at a given moment in time while increasing its
efficiency by operating with fewer active replicas whenever possible.

Overall, this chapter makes the following contributions: (i) We establish when
and how it is safely possible to reconfigure BFT protocols when the adversarial
strength evolves over time. (ii) We present ThreatAdaptive, a BFT reconfiguration
protocol that allows replicas to optimize its use of system resources and increase
its resilience threshold(with respect to the perceived adversarial strength). (iii)
We implement our Threat-Adaptive system design and evaluate its performance.

This chapter is organized as follows. §3.2 presents our system model and objec-
tives. §3.3 discusses threat detectors and presents the required conditions for the
safe reconfiguration of a BFT-SMR protocol that relies on rejuvenation. §3.4 de-
scribes our threat-adaptive reconfiguration protocol for BFT-SMR protocols. §3.5
presents our performance evaluation. §3.7 concludes this chapter.

3.2 System Model and Problem Statement

3.2.1 System Model

We assume a replicated service for which replicas coordinate agreement using a
payload BFT-SMR protocol. We use PBFT [CL+99] for illustration purposes, but
our dynamic membership protocol is generic and can be applied to other BFT-
SMR protocols, or even to reliable broadcast protocols [Gue+20]. Replicas are
interconnected by a partially synchronous network. We assume the availability
of strong cryptographic primitives and abstract from the steps necessary to es-
tablish trust in replicas and their key material, initially and after they have been
rejuvenated.

The configuration of a BFT-SMR system is captured by a tuple (Ni, fi, qi, ki, TR,i),
where Ni is the set of active replicas that execute the payload protocol, fi is the
fault threshold, qi is the quorum size, and, to support rejuvenation, ki and TR,i
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respectively denote the number of replicas that can be rejuvenated simultaneously
and the time a proactive rejuvenation of ki replicas takes. After a duration of⌈
ni

ki

⌉
TR,i, the system has proactively rejuvenated all ni replicas once, and at most

ki simultaneously. In general, the values of ki and TR,i can be freely chosen as long
as one takes into account that replicas cannot be rejuvenated arbitrarily quickly.

For simplicity, we focus here exclusively on homogeneous payload protocols
(i.e., there are no trusted components that replicas can use for the payload pro-
tocol, but they rely on a threat detector for reconfigurations), where qi≤ni−fi
and 2qi−ni≥fi+1 must hold for safe and live configurations, which implies that
ni≥3fi+2ki+1 and qi≥2fi+ki+1. We assume an initial set of replicas Nmax and
define a World Configuration Cmax =(Nmax , fmax , qmax , kmax , TR,max ) as the initial
system configuration. We require the world configuration to be safe, live and ca-
pable of masking faults and rejuvenating replicas as this will be the configuration
the system returns to in the most severe circumstances. During times when the
system experiences synchrony, group membership protocols can be used to adjust
this world configuration. Finally, we assume that the system is equipped with a
threat detector (TD), which we discuss in §3.3.

3.2.2 Threat Adaptive Reconfigurations

We consider an adversary whose strength evolves over time. We consider two ways
in which this evolution can happen: i) the adversary can corrupt less or more
replicas overall (the adversarial fault threshold fadv evolves); and ii) the adversary
requires less or more time to corrupt fadv replicas. We capture those two aspects
in the notion of adversarial strength, which is a function TA(t, f) of time t and
fault threshold f . We do not instantiate the strength function for our analysis (cf.
§3.3).

The system can be configured to run the payload protocol either more efficiently
or with more resilience. A replica r transitions through configurations and into
a passive but responsive operation mode [Kap+12a; DCK15], e.g., a deep sleep
mode with wake-on-LAN, if it is not involved in the current configuration (i.e., if
r /∈Ni). We assume that passive replicas are correct upon wake up and substantiate
this assumption by frequently rejuvenating passive replicas. Such a rejuvenation
is only limited by the rejuvenation time TR and not by ki. Passive replicas can be
rejuvenated simultaneously.

Classically, system reconfigurations are decided by a system administrator.
We opt for an automatic and internal reconfiguration orchestrated by the repli-
cas themselves. Assuming an external reconfiguration service only relocates the
problem we tackle, since this service has to be safe at all times. In order not to
introduce a single point of failure, this service would also need to be replicated
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and either configured to the maximum fault threshold or have the capability to
reconfigure itself.

Our goal is to define a resilient system able to automatically react to evolving
threats safely and rapidly enough to outpace the adversary in its attempt to com-
promise the system. Replicas reconfigure the system to counter imminent threats,
or to optimize its performance when it is safely possible, based on a threat detec-
tor’s signal. We call reactions and optimizations the adaptations in consequence
of an increasing or decreasing adversarial strength, respectively.

3.3 Threat Detectors and Requirements for Adapt-
ing to Changing Adversarial Strength

This section first discusses threat detectors. We then present our threat model,
which encapsulates the notion of a changing adversary, and state more precisely
the threat detector requirements (i.e., how well in advance it should warn of a
treat change) using the proactive recovery threat model.

3.3.1 Threat Detectors

Threat detectors are fundamentally different from intrusion detectors. Whereas
the latter has to identify whether parts of the system have been compromised,
threat detectors merely have to assess the risk of severe faults happening.

Threat levels have been defined by Singer as a product of the estimated capa-
bilities of malicious actors and their intent [Sin58]. Defense against cybersecurity
threats requires identifying such actors, their points of entry, attack vectors and
known vulnerabilities of the system to protect. The perception of adaptive threats
requires continuous monitoring of changes of malicious actor capabilities (i.e.,
whether new, exploitable vulnerabilities have been exposed or old ones patched),
as well as changes of a malicious actor’s intent (system in focus of enemy military
or intelligence actors, higher/lower black market financial incentives for breaching
the system).

The answer to this threat perception challenge lies in implementing Cyber
Threat Intelligence, which allows for continuous and responsive cybersecurity in-
formation collection, dissemination and processing, and, as a result, enables edu-
cated decisions on how to prepare the system to face (perceived) threats [Boe18].
Operational frameworks (STIX) and standards of information exchange (TAXII)
have been designed to automatically evaluate threat levels [Qam+17]. Open threat
feeds [Gou; 11] are already available and the feasibility of such systems is confirmed
by their existence in the frameworks of notable institutions like the Bank of Eng-
land [16].
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3.3.2 Centralized Threat Detectors

Centralized threat detectors are a possible solution for enhancing the resilience of
distributed systems and two existent solutions that could be integrated are threat-
intelligence providers like FireEye and ThreatConnect. These platforms enable
organizations to proactively detect, analyze, and respond to cyber threats, ulti-
mately strengthening the security posture of distributed systems. Being used as
tools in threat intelligence-based frameworks, they promote collaboration, knowl-
edge sharing, and preparedness, allowing organizations to improve their incident
response capabilities and develop effective countermeasures. The European frame-
work for threat intelligence-based ethical red-teaming framework TIBER-EU pro-
vides a comprehensive standardized framework for risk assessment, centralized
continuous monitoring, and event response coordination in the financial sector.

FireEye can test your’s systems defenses and help improve its security posture
by conducting TIBER-EU tests that mimic the tactics, techniques, and proce-
dures of real-life attackers, revealing the strengths and weaknesses of system’s
infrastructure and enabling it to reach a higher level of cyber maturity. FireEye
and its consultants’ team use cyber threat intelligence to develop and execute
their testing plans. This process ensures that the testing efforts, findings, and
observations are aligned with the tested entity’s real-world threat profile. FireEye
monitors hundreds of threat groups, including over 40 advanced persistent threat
groups, ten financial threat groups, and hundreds of uncategorized groups. Com-
prehensive profiles of these threat groups are built and maintained and include
target industries, attack motivation, tools, and procedures.

Differently from FireEye, ThreatConnect is not an application but more like
a platform that offers centralized threat intelligence services. It aggregates data
from various sources, including open-source intelligence, commercial feeds, and
internal sources, to provide comprehensive and contextualized threat intelligence.
ThreatConnect’s capabilities give organizations a holistic view of the threat land-
scape, identify potential risks, and prioritize mitigation efforts across distributed
systems. ThreatConnect also facilitates proactive threat hunting and incident re-
sponse by correlating threat intelligence with security events and indicators of
compromise. By centralizing threat intelligence management, organizations can
streamline their incident response efforts, making them more coordinated and ef-
ficient. This centralized approach helps to identify and respond to threats across
distributed systems, ensuring a unified and cohesive defense strategy.

During the development of this work, we took as an assumption the existence
of a threat detector connected to replicas sending the actual threat level. One
possible idea, out of the scope of this thesis, would be to integrate FireEye or
ThreatConnect, acting as a trusted centralized controller resembling what was
done in Lazarus [GBN19], enabling a robust threat intelligent approach to secu-

31



rity and resilience. Even more, advances could be made if we connect the diversity
management provided by the trusted controller in Lazarus. The centralized threat
detection and incident response capabilities of FireEye and ThreatConnect would
ensure a comprehensive defense against potential attacks and vulnerabilities. The
combination of diverse replicas, continuous monitoring, and threat-intelligence ap-
plications would help the distributed system designers to identify and create mit-
igation mechanisms capable of responding to threats proactively, enhancing the
overall resilience and security of the BFT systems.

3.3.3 Distributed Threat Detectors

FireEye and ThreatConnect are tools that can act as a centralized threat-intelligence
applications, but Byzantine fault-tolerant systems should be able, in the forceable
future, to distribute the threat detection skills over the replicas on the network. We
could consider two fault models one homogeneous with the threat detector being
as trustworthy as any other replica or a hybrid fault model where the threat detec-
tor would be a hardware component attached to each and every replica. Without
the presence of trusted component means that threat detectors would have their
own network and their own BFT protocol running, like Quality Control System
(QCS) network works in Adapt to update their machine learning weights. With
threat detectors being a trusted component, we could think of them sharing any
threat suspicions with others whenever any different status is detected, in a better
be safe than sorry way. Each model has its own implications and benefits.

In the homogeneous fault model, threat detectors function as independent en-
tities with dedicated networks and BFT protocols. They utilize their local knowl-
edge and detection capabilities to identify potential threats within their replicas.
Drawing inspiration from the QCS network in the Adapt system, threat detectors
can dynamically update the number of faulty replicas or which threat level the
system is handling at this moment. These actions could bring the system to safer
or more efficient configurations.

The hybrid fault model involves integrating trusted threat detectors as hard-
ware components within each replica. These threat detectors can share their threat
suspicions with other replicas in real-time whenever they detect a different status
or abnormal behavior. This collaboration ensures that any potential threats or
anomalies are promptly communicated across the network, allowing all replicas to
remain informed and take necessary precautionary measures.

By distributing threat detection skills over the replicas, BFT systems can
achieve several benefits. First, the system becomes more resilient to attacks, as the
compromise of a single replica or threat detector does not compromise the entire
system’s detection capabilities. Second, the distributed nature of threat detection
ensures scalability, allowing the system to handle large-scale deployments with
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ease. Third, it promotes adaptability and agility, as threat detectors can update
their detection algorithms independently, keeping pace with evolving threats.

For the sake of this chapter, the threat detector (TD) used on our experi-
ments generates and delivers indications of changes in the perceived adversarial
strength TA to replicas. TD endpoints at each replica are connected through a
synchronous network, that is separated from the regular partially synchronous
network that replicas use for the payload protocol. This separated network is a
wormhole [Ver06], which on our system is primarily used for sending TD signals,
but is also is used for waking up passive replicas and could also be used for sending
state update packages that keep passive replicas up to date with the last executed
commands from payload protocol.

3.3.4 Adversarial strength

We now determine how much in advance replicas should be informed of an in-
creasing adversarial strength so that they can reconfigure the system to maintain
it safe. Sousa et al. [SNV06] assume that during any time interval of duration
TA the adversary can compromise at most f replicas. A system with n replicas
is then said to be exhaustion safe if all faulty replicas are repaired faster than
TA. In the absence of perfect failure detectors, this can be achieved by rejuve-
nating all n replicas proactively faster than TA. For example, if k replicas can be
rejuvenated simultaneously well within TR, the system is exhaustion safe if and
only if

⌈
N
k

⌉
TR ≤ TA. In this scheme, the number of replicas should be at least

n ≥ 3f + 2k + 1 to ensure safe and live quorums.
We extend Sousa et al.’s model and their exhaustion safety notion by character-

izing the combined adversarial strength TA as a function of time t. However, while
their adversary model faces systems with a constant fault threshold f , we strive
for systems that adapt f in response to changing adversarial strength. There-
fore, to understand how strong an adversary of strength TA(t) is against different
configurations of the systems, TA(t) must itself be a function mapping each con-
figuration’s fault threshold f to the length of the time interval during which no
more than f replicas can be compromised. That is, TA(t, f) resembles Sousa et
al.’s time interval for an adversary with strength TA(t) at time t when it faces a
system that is capable of tolerating up to f simultaneous faults.

Definition 1 (Adversarial strength). Let TA : R×N → R be a function that maps
every point in time t ∈ R and every f ∈ N to a duration TA(t, f) such that at time
t the adversary cannot corrupt more than f replicas before a duration TA(t, f)
has elapsed. We shall assume in this work that TA remains constant for extended
periods of time and that the duration of such a period Pi = [ti, ti+1) is larger than
TA(t, f) for all involved fault thresholds f (e.g., when the system transitions from

33



Figure 3.1: Time to compromise before, during and after the increase of adversarial
strength at tincrease . During red-dashed intervals, the adversary cannot compromise
more than f replicas. The length of intervals including tincrease is not known
precisely and hence requires careful consideration.

f1 to f2). We call TA(t, f) the strength of the adversary during this period against
a system with fault threshold f .

In the following, for simplicity, we shall write TAi
(f) instead of TA(t, f) where

t ∈ Pi and TAi+1
(f) for TA(t, f) while t ∈ Pi+1, to denote these noticeable changes

in the adversarial strength during subsequent periods of time Pi, Pi+1. We say
that the adversary becomes stronger relative to a given f if it evolves from being
characterized by TAi

and is now characterized by TAi+1
where TAi+1

(f) < TAi
(f).

We define similarly a weaker adversary. We require TAi
to be monotonic (i.e.,

TAi
(f0) ≤ TAi

(f1) for all f0 ≤ f1), but make no further assumptions on TAi
(such

as linearity).
We define the time an adversary takes to corrupt f replicas:

Definition 2 (Time-to-compromise intervals). A time-to-compromise interval [tl, tr)
is any interval, between tl and tr such that the adversary cannot corrupt more than
f replicas. If TAi

remains constant between tl and tr it implies that tr−tl ≤ TAi
(f).

The duration of time-to-compromise intervals that include a change in the
adversary’s strength requires careful consideration. We denote by TAi→Ai+1

(f)
the adversarial strength over such an interval and require only that TAi

(f) ≥
TAi→Ai+1

(f) ≥ TAi+1
(f). Fig. 3.1 illustrates this point.

In the following, we discuss how a system can react to an increasing adversar-
ial strength, namely: i) by increasing the rejuvenation rate; or ii) by activating
additional replicas. For each situation, we describe how the system should be re-
configured, and obtain a temporal bound before which the reconfiguration should
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Figure 3.2: Increase of adversarial strength.

be effective. We finally combine both results to identify all possible reconfigura-
tions of the system.

3.3.5 Accelerating rejuvenation

Let us assume an adversary that becomes stronger at time tincrease , characterized
through the functions TA0 and TA1 . In particular, we have TA0(f) ≥ TA1(f). We
first study how and when the rejuvenation parameters can evolve so that no more
than f replicas are simultaneously faulty. This situation is illustrated in Fig 3.2.

Exhaustion safe systems allow up to f faults to happen in any window of size
TA0(f) that starts before t−A0 = tincrease−TA0(f), and in any window of size TA1(f)
that starts after tincrease , provided the system is as well exhaustion safe with the
adjusted rejuvenation rate and the strong adversary. We now investigate what
happens over the time intervals where the adversary becomes stronger, i.e., those
that contain tincrease. Those intervals start at a time t such that t−A0 < t < tincrease ,
and have a duration comprised between TA1(f) and TA0(f). We can therefore over-
approximate the adversary’s strength and state our first theorem:

Theorem 1 (Reacting by accelerating rejuvenation). From an exhaustion safe
configuration (N, f, q, k0, TR0), if the adversary’s strength evolves from TA0 to TA1

at time tincrease , the system remains safe if it is reconfigured to an exhaustion safe
configuration (N, f, q, k1, TR1), where

⌈
|N |
k1

⌉
TR1 ≤ TA1(f) before tincrease − TA1(f).

Proof. We know that before tincrease , the additional adversary strength has no
effect. Therefore, there exists an interval included in TI = [t−A0 , t−A1 = tincrease −
TA1(f)] such that the time-to-compromise windows that start in this interval (e.g.,
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Figure 3.3: More frequent rejuvenation to counter a stronger adversary. A blue
rectangle shows the rejuvenation of a replica.

at t′ ∈ [t−A0 , t−A1 ]) cannot compromise the system in less than tincrease − t′ because
this window is entirely included in the interval where the adversary is still weak.

The existence of this interval allows us to derive the point in time when the
system has to adjust its proactive rejuvenation rate to counter the increase of
adversarial strength. Having over-approximated the adversary’s strength with
TA1(f) for any window that starts after t−A1 , any attack launched during any of
these windows is countered by rejuvenating all replicas in N faster than TA1(f)

(i.e., after adjustment,
⌈
|N |
k1

⌉
TR1 ≤ TA1(f) holds, which guarantees exhaustion

safety for all sliding windows after t−A1).

The system does not have to switch to this rate before t−A1 because all time-
to-compromise windows that start in the interval TI contain interval [t−A1 , tincrease ]
during which all n replicas are rejuvenated. The time-to-compromise windows that
start earlier than t−A0 find all replicas repaired before tincrease since we assume
the weak system to be exhaustion safe while the adversary is weak, and their
possible overlap with interval [t−A1 , tincrease ] only speeds up rejuvenation, Figure 3.3
illustrates this point. It is important to note that despite the change of rejuvenation
parameters of the configuration (from k0 to k1 and from TR0 to TR1), the order in
which replicas are rejuvenated must be preserved.
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Figure 3.4: Adding replicas to counter a stronger adversary.

3.3.6 Adding replicas

Replicas cannot be rejuvenated arbitrarily fast. For example, Garcia et al. found
that rejuvenating a replica running Ubuntu 16.04 requires 40s [GBN19]. Therefore,
it might happen, that a system is already rejuvenating replicas as fast as possible.
In this case, it will no longer be possible to react only by accelerating the reju-
venation rate. Fortunately, the system can also react to an increasing adversarial
strength by increasing its fault threshold, i.e., by adding replicas. 3.4 illustrates
this strategy and Theorem 2 captures its effectiveness.

Theorem 2 (Reacting by adding replicas). From an exhaustion safe configuration
C0 = (N0, f0, q0, k, TR), if the adversarial strength evolves from TA0 to TA1 at time
tincrease , the system remains exhaustion safe if it is reconfigured before tincrease to
a configuration C1 = (N1, f1, q1, k, TR), such that C1 is exhaustion safe relative to
the stronger adversary (i.e.,

⌈
|N1|
k

⌉
TR holds), provided that TA0(f0) ≤ TA1(f1), and

replicas continue to be rejuvenated in the same order.

Proof. The system starts with n0 = |N0| replicas and fault threshold f0, and is
reconfigured to involve n1 = |N1| replicas with fault threshold f1. Let tswitch be the
point in time where the system starts reconfiguring itself, and teffect the time when
the new configuration is operational and capable of tolerating f1 faults. During a
time-to-compromise window that starts before teffect − TA0(f0) the replicas in N0
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are rejuvenated by the rejuvenation scheme of the weak configuration. Similarly,
time-to-compromise windows that start after teffect are exhaustion safe by our
assumption that the strong configuration fulfills this property.

We now consider the windows that overlap with teffect . Let us assume that f1
was chosen so that f0 < f1 and TA0(f0) ≤ TA1(f1), and that the rejuvenation order
of replicas is maintained through the reconfiguration. In this case, any window
that starts before teffect and goes beyond tincrease does not lead to the compromise
of more than f1 replicas.

The windows that start in [teffect − TA0(f0), teffect ] overlap with the new con-
figuration. However, their length is larger than TA1(f1), because the adversary’s
strength over them is sometimes lower than TA1 . However, since replicas that get
activated at teffect are correct, maintaining the same rejuvenation order ensures
that the replicas that were active in the previous configuration, and which might
be faulty, are rejuvenated first. In fact one could regard such a correct instantiation
as a free simultaneous and instantaneous rejuvenation at teffect . As a consequence,
no more than f1 replicas get compromised within any window of size TA1(f1) that
starts after teffect − TA(f0), since all n1 replicas in N1 are rejuvenated in such a
window.

3.3.7 Accelerating rejuvenation and adding replicas

We have seen that the system can adjust the rejuvenation rate to TA1(f1) before
time tincrease − TA1(f1) so that the |N0| replicas are rejuvenated over all time-to-
compromise windows located before or containing tincrease (Theorem 1). We have
also seen that replicas can be added so that they are active before tincrease , so that
the |N1| replicas are rejuvenated over all time-to-compromise windows that start
after tincrease (Theorem 2). These results can be combined as follows.

Theorem 3 (Reacting by accelerating rejuvenation and adding replicas). From an
exhaustion safe configuration (N0, f0, q0, k0, TR0), if the adversarial strength evolves
from TA0 to TA1 at time tincrease , the system remains safe if it is reconfigured to an
exhaustion safe configuration (N1, f1, q1, k1, TR1), where

1. f1 is such that f0 ≤ f1 and TA0(f0) ≤ TA1(f1)

2. the rejuvenation frequency is changed before tincrease−TA1(f1) so that
⌈
|N1|
k1

⌉
TR1 ≤

TA1(f1)

3. the passive replicas become active before tincrease

4. replicas that appear in both configurations are rejuvenated in the same order
after teffect

Proof. by Theorem 1 and 2.
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3.3.8 Consistent and Synchronized Information of Replicas

In addition to advance notice, consistency of the information replicas receive and
possible synchronization requirements are further concerns to be considered in
the threat detector network. Clearly, if all replicas receive the same information
about imminent increases/decreases of adversarial strength at the same time, no
confusion can arise when some lagging replicas are still reacting while others al-
ready optimize their configuration. However, such a time synchronized response
introduces significant complexity and overhead in the threat detector wormhole.

In Section 3.4.4, we therefore show how our protocol avoids this complexity, by
first returning to the strongest required configuration since the replica last reacted
to increasing threats before allowing this replica to advance with optimizations
since then. Threat detectors inform replicas about both the strongest required
configuration and whether it is safe to enter the targeted configuration during
optimization.

3.4 A Threat-Adaptive Reconfiguration Protocol
Assuming the availability of a threat detector that reports threat increases suf-
ficiently in advance, as discussed in the previous section, we now present our
reconfiguration protocol that replicas use to reconfigure the system.

3.4.1 Intuition

Receiving an adversarial strength decrease signal from the threat detector allows
replicas to optimize performance and switch into a more efficient configuration
that involves fewer active replicas and possibly an adjusted rejuvenation scheme.
If threat detection provides replicas with sufficient confidence that TA remains
stable for a significant duration, they can optimize their performance by execut-
ing the payload in a less resilient but more efficient configuration. In the event
of threat-level increasing, the system switches back to the former safer configura-
tion, executing the payload in a more resilient but less performant configuration.
Replicas involved in this configuration remain active and return to the payload
protocol after adopting the rejuvenation scheme of this configuration. Replicas
not involved in this configuration silence themselves by not participating on pay-
load protocol, but remain attentive to activation requests. In the meantime, they
rejuvenate themselves without coordinating with other replicas to remain available
(remember, in configuration Ci active replicas are limited to rejuvenate at most ki
replicas at a time; passive replicas are not constrained in this way).

After the threat-detector wormhole informs the replicas about an imminent in-
crease of adversarial strength, correct replicas must react within a bounded amount
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of time (see Section 3.3.5), which, as we have seen, rules out using consensus. Key
to circumventing this impossibility is the observation that the decision about how
to react to a given threat can be already taken well before the threat manifests
itself. In this chapter, we will suggest preparing for the reaction to increasing
adversarial strength well ahead when reaching consensus about how to optimize.
Clearly, a first decision must be taken at this point in time, but it is as well
possible to revisit this decision several times during the execution of the target
configuration (e.g., to compensate for permanent failure in passive replicas).

For simplicity, in this chapter we shall only discuss reaction by returning to
the very same configurations from where the system came from. That is, if the
system, starting in the world configuration Cmax progressed through a sequence of
configurations C1, C2, . . . Ci, where Ci is the current configuration. It will react by
returning along this chain (i.e., from Ci to Ci−1 to Ci−2, . . .) until it has reached
a configuration that is capable of withstanding the currently reported adversarial
strength. Since any such chain starts with Cmax , which is by definition the most
resilient configuration, it is always possible to find such a configuration, provided
the system can withstand an adversary of this strength in the first place.

3.4.2 Reaching Consensus for Optimizations

The goal of our reconfiguration protocol is to safely transition the system from
its current configuration Cs to a proposed new configuration Ct, which is resilient
enough to withstand the current adversary of decreased strength. At the same
time, the protocol prepares for a later increase of adversarial strength by creating
the possibility to return to Cs and to previous configurations in the chain without
having to reach consensus. In general, the replica set Nt of configuration Ct does
not need to be a subset of the current configuration’s replica set Ns. In particular,
quorums formed in Nt do not have to be safe quorums in Ns and vice versa.

Our reconfiguration protocol has the following properties.
P.1 Replicas can prove to lagging replicas (and clients) that Ct is the next config-
uration.
P.2 If Ct becomes active, enough replicas in this configuration must know it so
that they can report any progress made in Ct in case the system requires to return
to Cs. Otherwise replicas in Cs or in a previous configuration would wait forever
for the progress of Ct and the system would not be live.
P.3 If Ct becomes active, enough replicas in Cs need to know about this fact so that
no quorum can be formed in Cs to agree on a second configuration C ′

t. Otherwise,
both Ct and C ′

t could become active simultaneously and the system would not be
safe (i.e., clients could receive inconsistent replies if both Ct and C ′

t return to the
payload protocol).
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1 reconfiguration(v,seq):
2 // leader sl ∈ Ns

3 compute Ct

4 propose ⟨PrePrepareCfg , l, v, seq , Cs, Ct⟩σ(sl)
5 // backups si ∈ Ns

6 relay PrePrepareCfg as ⟨PrepareCfg , i, v, seq , Cs, Ct⟩σ(si)
7 // all replicas si, sl ∈ Ns

8 wait for qs matching Pre/PrepareCfg messages
9 if TD.is_valid(Ct)

10 send ⟨CommitCfg , i, v, seq ,Cs→t⟩σ(si)
11 to all replicas in Ns ∪Nt

12 // new mode replicas sj ∈ Nt

13 wait for qs matching CommitCfg messages
14 if Cs→t is valid
15 send ⟨ConfirmCfg , j, v, seq ,Cs→t⟩σ(sj)
16 to all replicas in Ns

17 // witnesses si ∈ Ns

18 wait for nt matching ConfirmCfg messages
19 send ⟨AckCfg , i, v, seq ,Cs→t⟩σ(si) to all replicas in Nt

20 if si /∈ Nt wait passively for Ct to return
21 // new mode replicas sj ∈ Nt

22 wait for qs matching AckCfg messages
23 resume payload in Ct with view v + 1

Figure 3.5: Reconfiguration Protocol.

We provide P.1 thanks to configuration certificates Cs→t, which loosely resemble
view-change certificates of PBFT. To enforce P.2 all nt = |Nt| replicas of the target
configuration Ct need to participate in a configuration certificate such that at least
nt − ft correct replicas are able to report any progress made in Ct. The payload
protocol liveness is guaranteed despite waiting for a response from all nt replicas
in Ct, as long as subsequent optimization attempts are interleaved with minimal
progress in the payload protocol. Note that an optimization may never succeed
if target configurations continue to include non-responsive replicas, but the above
guarantees progress nonetheless. Property P.3 requires a quorum of replicas in the
source configuration Cs to witness the activation of Ct. We shall return to this
aspect in 3.4.5.

Fig. 3.5 shows the pseudocode of our optimization reconfiguration protocol.
Let sl be the current leader of the payload protocol (i.e., the xth replica in the
set Ns where x = v mod |Ns|). We assume that the leader sl progressed in view v
to request sequence number seq − 1 and proposes with seq the reconfiguration of
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the system as ⟨PrePrepareCfg , l, v, seq , Cs, Ct⟩σ(sl) (Ln 4). Here ⟨. . .⟩σ(si) denotes
a message signed by replica si. Cs, Ct are the source and target configurations.
Proposing this configuration in view v and with sequence number seq ensures that
backups (i.e., non-leader replicas) will try to optimize the system at the same
relative point in time. Following PBFT, backups relay the leader proposal as
⟨PrepareCfg , i, v, seq , Cs, Ct⟩σ(si) (Ln 6) before both leader and backups in Cs wait
for qs matching PrePrepageCfg and PrepareCfg messages from different replicas
(Ln 8). Forming configuration change certificate Cs→t out of these qs messages,
the replicas in Cs validate with their threat detector TD, whether Ct is a valid
configuration given the current adversarial strength (Ln 9) and if so, they send this
certificate in a CommitCfg message to both the replicas of the source configuration
and all target configuration replicas (Ln 10), which wake up passive replicas in Nt.

Replicas of both configurations then proceed with a handshake to transition
the system to Ct. Replicas of the target configuration Ct confirm the receipt
of a valid configuration change certificate (Ln 14) and the replicas in the source
configuration Cs acknowledge the receipt of such confirmations from all replicas
in Ct (Ln 18-19). We call witnesses the source configuration replicas that have
seen these confirmations. Whereas target configuration replicas resume execution
of the payload protocol in view v + 1 (Ln 23), replicas that are not in the target
configuration become passive but they can still react to messages (Ln 20).

For better readability, we omit timeout handling in Fig. 3.5. All participating
replicas (i.e., all si∈Ns and after activation all sj∈Nt) set a timer when engaging in
the configuration change. Timeouts cause replicas to abort their attempt to change
to configuration Ct, which typically leads replicas in Cs to retry the configuration
change. However, there are two exceptions: (i) having sent AckCfg witnesses wait
for replicas from Ct to return, even if their timeout fires (Ln 31). This ensures
that progress in the target configuration Ct is not lost; and (ii) replicas in the
target configuration Ct return if the timeout fires during the configuration change
(see 3.6 and Ln 24–29). They will stop doing so after having received qs matching
AckCfg messages, which marks a successful reconfiguration.

3.4.3 Reacting to Increasing Adversarial Strength

Reaction closely resembles the switch protocol of ReBFT [DCK15] extended
to traverse the chain of visited configurations to the more resilient one(see Sec-
tion 3.3).

Once in the targeted safe configuration, replicas resume executing the payload
protocol, possibly after catching up with the progress their peers made relative to
the history, which has to be done using the synchronous wormhole. The construc-
tion of local histories lhj and the application of the global history gh depend on
the payload protocol (Ln 27, 35). For example, for PBFT, the latest checkpoint
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24 on TD strength increase or reconfig timeout:
25 // replica sj ∈ Nt in view v at seq
26 stop payload protocol
27 create local history lhj
28 send ⟨History , j, v, seq + 1, lhj⟩σ(sj) to all replicas in Ns

29 stop processing view v messages
30 // replica si ∈ Ns

31 wait for qt History messages
32 from different replicas (=Fig.4 Line 22)
33 combine lhj into global history gh
34 if Cs is strongest visited
35 apply gh
36 resume in Cs with view v + 1
37 else continue returning to the next config.
38 in the chain with lhi = gh

Figure 3.6: Protocol to react to increasing adversarial strength, by returning from
Ct to the configuration Cs that activated Ct.

and the progress made since then have to be reported. Prepared messages (i.e.,
those receiving qt matching PrePrepare or Prepare messages from replicas in Ct)
are executed. Client requests not in this state are proposed again by the leader of
the current configuration. The combined global history merely reports all received
local histories and confirms with the signature of si the transition if Cs is not the
strongest visited.

Notice that although the return may proceed through several configurations in
the chain, only the final configuration will resume the payload protocol. Moreover,
the replicas initiating this process will continue being rejuvenated in the pattern
of their configuration while it is active. All other replicas and those that become
passive will undergo frequent reconfigurations without first having to coordinate
with others. Therefore, between the moment where the reconfiguration starts
tswitch and the moment teffect where it is effective even if multiple configurations
are passed, Theorems 2 and 3 hold because none of these transitionally passed
configurations become active in the sense of entering the payload protocol.

To prevent a client from ever accepting replies from a faulty quorum of replicas,
in particular after a threat increase, replicas drop the private key they were using to
interact with the client when they receive a threat increase notification. Replicas
then generate a new set of keys to interact with the clients and broadcast the
public keys to other replicas. To identify the currently active configuration, clients
contact the world configuration and successively walks down the optimizations.
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Note that we could also rely on a forward-secure digital signature scheme [KT20]
to replace the keys of replicas.

3.4.4 Lagging Replicas and Successive Reconfigurations

One important detail concerns passive or lagging replicas that have not been able to
enter the current configuration before the system optimizes to decreasing threats.
Without further precautions, faulty replicas could activate a configuration with
the lagging replicas while agreeing on a different operation to activate with the
replicas that aim to optimize the system. To avoid this issue, replicas do not en-
gage in optimizations before they have returned to the stronger configuration that
can withstand the increasing adversarial strength. (see Section 3.3.8). From this
configuration, lagging replicas follow the configurations the system was reconfig-
ured into until they reach the currently active configuration or become passive in
the progress. Only in this active configuration will they resume participating in
potential optimizations.

The amount of requests executed in other system configurations can increase
severely, the time being used to install payload checkpoint updates into passive
replicas when reconfiguring toward resilience. An alternative could be to have a
deadline for optimized configurations, and whenever it expires, the system would
automatically reconfigure back, enabling passive replicas to catch up without jeop-
ardizing liveness. Another alternative would be to keep sending checkpoints every
x amount of requests from the leader to passive replicas, avoiding, in this way, the
cumulative difference between executed requests on active and passive replicas.

3.4.5 Witnesses

To conclude the discussion of our protocol, let us give further details on the witness
role (Ln 17–20) and show how it ensures property P.3, i.e., safety and liveness of
the system.

Liveness. Replicas in the target configuration Ct react to increasing adversar-
ial strength once they receive qs matching CommitCfg messages (Ln 13). However,
they only start processing the payload protocol after receiving the same number
of qs matching AckCfg messages (Ln 22). This step ensures that replicas from Ct

will already return control to Cs, even if they are not yet ready to advance to en-
tering the payload protocol. Conversely, witnesses in Cs will only acknowledge the
configuration transition if they are sure that enough replicas in Ct will report the
progress Ct might make (Ln 13ff). This is the case after all nt replicas confirmed,
because then nt−ft ≥ qt correct replicas are guaranteed to communicate back their
progress. In combination, this ensures liveness, even if the target configuration Ct

is only partially activated.

44



Safety. We have to ensure that no two configurations ever execute the pay-
load protocol (i.e., configurations may only be simultaneously active as part of the
above transition protocols). Witnesses ensure this by refusing to participate in
re-executing the reconfiguration protocol in 3.5 (e.g., for agreeing on a different
configuration in case the optimization failed) unless the activated target configu-
ration returned. For a partially activated target configuration (i.e., one receiving
only fewer than qs acknowledgments from witnesses), this is the case after the
reconfiguration timeout expires. But in this case, already nt replicas of Ct con-
firmed, which guarantees that those witnesses that have acknowledged Ct receive
a correct history (although with no progress made since the payload protocol did
not restart). This refusal to participate in a re-election before Ct returns ensures
safety.

Replay Attacks. Replay attacks would not lead to the activation of two con-
figurations. Key to preventing such replay attacks is the fact that to obtain all
messages required for the activation (i.e., qs AckCfg messages), a quorum in Ct

must confirm this configuration. From this moment onward, replicas no longer re-
act to messages with the confirmed view v after replicas in Ct returned (see Line 32
in 3.6). Moreover, correct witnesses do not produce AckCfg messages before they
receive confirmation from Ct. Consequently, if the required messages are available,
Ct can be activated only until the point in time when Ct returns, but such a return
is necessary for the witnesses to resume in the protocols of Fig. 3.5 and 3.6 and
hence to agree on a different configuration to activate.

3.5 Performance Evaluation

Setup. We implemented our reconfiguration protocol, which we name Threat-
Adaptive, on top of BFT-SMaRt [BSA14a]. For our experiments we use 4 Ubuntu
18.04+ desktops each equipped with an Intel i7 6th generation processor and 8 GB
of memory. The desktops are interconnected with a Linksys WRT54G router. For
each experiment, replicas are evenly distributed on the machines. We ran BFT-
SMaRt’s microbenchmarks with 160 clients that send 100 Bytes requests every
150ms to keep replicas continuously busy. Messages are delivered in batches of
1024 and experiments start with fresh views. Our goal is to demonstrate that
despite the threat adaptation mechanisms we described, the performance of the
payload protocol is maintained close to the respective native configurations.

Baselines. We compare the performance of Threat-Adaptive to the following
five baselines.

1. BFT-SMaRt-4 and BFT-SMaRt-10 are unmodified BFT-SMaRT [BSA14a]
deployments with n=4 (i.e., f=1) and n=10 (i.e., f=3) without rejuve-
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Protocol Safety depends on
BFT-SMaRt-4 #faults ≤ 1
BFT-SMaRt-10 #faults ≤ 3
StoppableBFT sysadmin being faster than at-

tackers to reconfigure (not guar-
anteed)

Group Membership reaching consensus during attack
(not guaranteed)

ReBFT #faults ≤ f (mode if
#faults̸=0)

Speculative #faults≤ f (gracious execution
if #faults=0)

ThreatAdaptive (this
work)

Safe if TD signal arrives early
enough so that Thm. 3’s condi-
tions are verified.

Table 3.1: Safety conditions of the protocols considered.

nation (i.e., k=0). BFT-SMaRt-6 and BFT-SMaRt-12 are the equivalent
configurations (i.e., f=1 or 3) with rejuvenation and k=1.

2. StoppableBFT stops the system execution before restarting it in a new con-
figuration. This protocol emulates the unrealistic scenario where a sysadmin
would immediately reconfigure the system before each threat increase.

3. GroupMembership is a consensus-based reconfiguration protocol, similar to
Rampart et al. [Rei96a].

4. ReBFT [DCK15] is the optimistic mode of BFT-SMaRt where the system
runs with n−f replicas (here 7), but would need to return to a configuration
with n = 10 replicas to handle faults.

5. Speculative implements an optimization presented where clients wait for
3f+1 replies [Abr+17b]. Replicas rollback and re-execute requests if these
replies are not received within a bounded time.

Metrics. We measure the throughput and latency of the payload protocol, in
particular when reconfigurations happen, and the delay that is required to react
to increasing threat levels. We measure latency as the average time required to
process all client requests received within a one second interval at the replica side.
To improve the readibility of the graphs, we plot the average of 11 measurements
per sliding-window and indicate the standard deviation σ in the figure captions.
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Figure 3.7: Latency with increasing adversarial strength. σ=3 during transitions,
and 2 otherwise (no rejuvenation).

3.5.1 Reacting to Increasing Threat Levels

We first consider the situation where the threat level increases. Fig. 3.7 illustrates
ThreatAdaptive’s latency when the threat level increases from f=1 to 2 at 110s,
and from f=2 to 3 at 230s. ThreatAdaptive’s latency evolves from the one of BFT-
SMaRt-4 before 110s to the one of BFT-SMaRt-10 at 230s, while obtaining an
intermediary performance between 110s and 230s, and remains stable despite the
reconfigurations. Protocols with a lower latency are those that do not guarantee
safety or that are executing without faulty replicas. To clarify this point, we
summarize in Table 3.1 the safety conditions for the baselines and ThreatAdaptive
in that situation. The GroupMembership and the BFT-SMaRt-4 baselines may no
longer be safe in the scenario we consider, and StoppableBFT would be safe only
if the administrator reacts quickly enough. GroupMembership replaces replicas
using consensus, which would always finish in time if consensus is provided as
a functionality of a synchronous wormhole. ThreatAdaptive assumes a simpler
synchronous wormhole whose task is to inform replicas sufficiently in advance of
a threat level increase so that histories can be transmitted in time (through the
synchronous wormhole) to the replicas involved in the next configuration. We now
precise this condition.

3.5.2 Outpacing Adversaries

Table 3.2 shows the time required for ThreatAdaptive to return to a safe configura-
tion after the adversarial strength increases. We evaluate two extremes supported
by our witness scheme: (i) inclusive returns from Ct to an inclusive configuration
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System Recfg. increasing f (n=3f+1)
1 → 2 2 → 3 3 → 4 4 → 5

GroupMembership 3561 3656 3825 3948
ThreatAdaptive (inclusive) 2404 2445 2589 2781

ThreatAdaptive (overlapping) 2690 2856 3012 3379

Table 3.2: Reaction time (teffect−tswitch) in ms (no rejuvenation).
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Figure 3.8: Throughput with optimizations at 110s and 200s (no rejuvenation,
σ=65 at 110s and 200s, and 34 otherwise).

Cs, where Nt ⊆ Ns; and (ii) overlapping returns to a configuration that activates
passive replicas that have never been active in previous configurations. The in-
clusive scheme outperforms GroupMembership by 30% since the reconfiguration
decision is made in advance. As expected, replicas si that remain active in both
configurations (i.e., si ∈ Nt ∩ Ns) speed up the reconfiguration process. These
results precise condition 3 of Theorem 3 to indicate the time required for replicas
to transmit their histories and for passive replicas to become active. For example,
the threat detector would need to inform replicas that the threat level evolves from
f=1 to 2 only 3,561 ms in advance with the GroupMembership baseline, whereas
with our approach (with the inclusive witness scheme) only 2,404 ms would be
required.

3.5.3 Optimization Reconfiguration

We now consider the case where the threat level decreases from f=3 to 2 at 110s,
and from f=2 to 1 at 230s. Fig. 3.8 shows that the throughput of ThreatAdaptive
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Figure 3.9: Latency of ThreatAdaptive and the 5 baseline protocols (no rejuvena-
tion, σ ≤ 3).

during two optimization reconfigurations is similar to the two BFT-SMaRt base-
lines (i.e., BFT-SMaRT-10 and BFT-SMaRT-4) when they are configured for a
similar threat level. In addition, between 110s and 230s ThreatAdaptive is able to
use 7 replicas, which provides a better latency and throughput than BFT-SMaRt-
10 and is safe, contrary to BFT-SMaRt-4 in that interval.

For the same experiment, Fig. 3.9 illustrates the latency of the protocols.
ThreatAdaptive comes close to the BFT-SMaRt baselines when the threat level
allows it. In the second phase, we see slightly higher latencies than StoppableBFT,
this is because outliers present in StoppableBFT reconfigurations were averaged
out (i.e., masked in the sliding window average). StoppableBFT’s restart costs are
much higher than other protocols because the payload protocol has to be stopped,
reconfigured and relaunched, which is much slower than executing view changes.

3.6 Challenges faced during the development with
BFTSMaRt

Programming using the BFTSMaRt Library, particularly in the implementation
of the BFT-SMaRt-v1.0-beta version, presents several challenges. One significant
challenge encountered is the tendency of this version to switch leaders frequently,
which hampers the system’s progress during experiments. In order to overcome
this issue, the solution found was to silence certain leader change methods within
the library, like this one on Figure 3.10 responsible for forwarding requests to the
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Figure 3.10: The code snippet handles timed-out requests in a system during
leader change protocol execution in BFTSmart Library. It checks if there are
pending requests, logs the timed-out requests, forwards non-timed-out requests to
the leader, marks them as timed out, and removes them from the pending requests
list. This process ensures effective management of pending requests and maintains
system progress even if a leader change is happening.

leader. Selectively loosening deadlines involving the detection of faulty leaders
was also helpful, the system could continue to function and make advancements
in the experimental setup. These changes were extremely important on helping
the development and debugging of our solutions during implementation. Another
notable challenge involves the requirement of a Trusted Third Party (TTP) class
called TTPReceiverThread to facilitate the addition and removal of replicas. This
reliance on a specific component adds complexity to the programming process, as
it necessitates the proper implementation and management of the TTPReceiver-
Thread class. There was also something like a proper time to add and remove
replicas noticed, for example if the system was in the middle of a reconfiguration
or a view-change the procedure of adding or removing would probably fail. The in-
clusion of such a class indicates the importance of a trusted entity in the operation
and maintenance of the BFTSmart Library, further emphasizing the intricacies
involved in programming with this particular library.

There were also challenges concerning the process of transitioning replicas from
a passive mode to an active state and vice versa. The described procedure of ac-
tivating and deactivating replicas, as required by the system, led to errors related
to replicas catching up. These errors likely involved difficulties in synchronizing
the state of the replicas and ensuring that they were up-to-date with the lat-
est changes. Managing the activation and deactivation of replicas while ensuring
proper synchronization is a complex task that requires careful attention to detail.
This problem highlights the intricacies of implementing a full-fledged distributed
system framework like BFTSMaRt and the need for meticulous handling of replica
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state transitions to avoid errors and maintain the system’s integrity.
There were instances where the reconfiguration procedure took an excessive

amount of time, adversely affecting the experiment. This delay resulted in all repli-
cas initiating a continuous catching-up process in a loop, leading to disruptions
and potentially invalidating the experiment’s results. Dealing with the extended
reconfiguration time and mitigating the repetitive catching-up process requires
careful consideration and optimization of the system’s configuration mechanisms.
This issue underscores the importance of efficiently managing reconfiguration in
distributed systems protocols to ensure smooth execution and reliable system be-
havior.

The modularity found on BFTSMaRt is one of its kind, and without all the
documentation and experienced distributed systems authors behind it, it would
be way harder to create new BFT protocols extending from this library. These
challenges highlight the complexities involved in programming real-world deploy-
ment distributed systems software like BFTSmart Library and the need for careful
consideration and adjustments to ensure smooth operation and progress within a
distributed system environment.

3.7 Final Remarks
In this Chapter, we established the conditions that allow a BFT-SMR protocol,
which potentially rejuvenates its replicas, to safely reconfigure itself to tolerate
an increasingly powerful adversary based on a threat detector that communicates
synchronously with replicas. We designed ThreatAdaptive, a novel BFT-SMR
protocol that proactively agrees on more resilient fall-back reconfigurations before
optimizing its configuration. Our results allow a protocol to dynamically and
safely optimize its performance by reducing the number of replicas that actively
participate in the protocol’s execution. ThreatAdaptive is the first protocol that
guarantees safe reconfigurations directly executed by the replicas assuming that a
threat increase signal is received sufficiently in advance. Our experiments showed
that our threat adaptive protocol achieves a throughput and latency comparable
to the non-adaptive baselines in stable phases, and that reconfigurations are 30%
faster than using previous methods, which make stronger assumptions to provide
safety.
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Chapter 4

Robust and Automatic
Reconfiguration for BFT
State-Machine Replication

As shown in Chapter 3, not all nodes in an adaptive distributed system have the
same role at all times. In this chapter, we will take a look at other factors that
can impact replicas differently, such as workload shifts and changes in network
properties, and how they can be used to optimize the system. These changes
present an opportunity to minimize the system’s latency by reconfiguring it when-
ever necessary. Ideally, these reconfigurations should be automatically determined
and executed by the nodes themselves, eliminating the need for human interven-
tion. To achieve this, pairs of nodes can measure and report their communication
latency, generating a node-to-node latency matrix. This matrix can then be used
as input for an optimization algorithm, ensuring that the system’s latency remains
optimized at all times. Workloads may shift and network properties change for
various reasons. These changes allow a system’s latency to be minimized by re-
configuring it, whenever network properties evolve. Ideally, these reconfigurations
should be automatically decided and executed by the nodes themselves, so that
the system’s latency remains optimal at all times without requiring human inter-
vention. To do so, pairs of nodes would measure and report their communication
latency to produce a node-to-node latency matrix that would then be given as in-
put to an optimization algorithm. Unfortunately, in practical settings one cannot
assume that all nodes are correct. In particular, Byzantine nodes might report
incorrect latencies, or even collude to lead the system towards a configuration
with poor performance. In this chapter, we first confirm this intuition by evalu-
ating the negative effects of coordinated attacks on a state-of-the-art automatic
reconfiguration method. We start by projecting nodes latencies into a 3D space
using a virtual coordinate system (VCS). In this space, distances between nodes
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resemble node-to-node communication latencies, and latency changes resemble the
movements of nodes in this space. From this projection, we derive two methods
that allow correct nodes to eliminate inconsistent latencies. This is possible be-
cause movements in the VCS need to remain coherent from the point of view of
correct nodes, which is more difficult to manipulate in a multidimensional space.
We introduce three new latency sanitization methods that aggregate the informa-
tion coming from a tampered latency matrix and output a much more accurate
version of it. Our evaluation of three real-world networking datasets reveals that
the resultant latency matrix sanitized by our methods is up to 86% more accu-
rate than previous solutions, providing much more precision to reconfigurations of
latency-based optimization protocols.

4.1 Introduction

Latency and throughput of network links are two predominant factors contributing
to a distributed system’s overall performance. Optimizing them remains, until
today, a subject of active research, in particular to compensate change. Indeed,
distributed systems change in consequence of their nodes assuming different roles,
which in turn affects how significantly their connectivity contributes to the overall
system performance. Workloads may shift, for example to follow regional day-
night cycles, and network properties may fluctuate in response to internal and
external events.

A prominent example of nodes changing roles is leadership change in Byzan-
tine Fault-Tolerant State Machine Replication (BFT-SMR) protocols when rotat-
ing [Ver+09] or when electing a new leader in case the current replica in this role
is suspected faulty. Leaders typically send and receive significantly more messages
than other replicas and should therefore ideally be well-connected to other replicas
and active clients.

Considering link properties when performing such reconfigurations allows a
distributed systems to keep operating near its optimal latency, in particular if
optimizations are performed automatically by the nodes of the system and with-
out human intervention. To perform such optimizations in an automated and
unattended manner, pairs of nodes would measure their communication latency
and share these values to form a system-wide node-to-node latency matrix. This
matrix is subsequently passed to optimization algorithms to identify optimal con-
figurations. The literature reports several such optimizations, including leader
election [ED18], consensus group formation [LV16] and various network level op-
timizations, such as latency-aware routing [Ari18] and multicast [Le+13].

Unfortunately, distributed systems and infrastructures are increasingly exposed
to malicious and coordinated attacks. This is while growing complexity compli-
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cates manual supervision and attack resolution [Acc20], which asks for automated
and unattended mitigation [Gor+11]. Cyberattacks may affect all nodes of a dis-
tributed system, all components of such nodes and all functionality executed by
them, including the systems’ latency optimization strategy. The goals of such la-
tency attacks are plentiful and range from denying service to gaining competitive
advantages, possibly in preparation of subsequent attacks.

In this chapter, we focus on a specific form of latency attacks, called latency
collusion attacks. The goal of adversaries mounting such attacks is to place com-
promised nodes into a favorable role to more severely affect the system once these
nodes start acting in a Byzantine manner. Compromised nodes might report
carefully-crafted false node-to-node latency information and thereby trick the sys-
tem’s latency optimization algorithm into granting them a favorable role without
raising suspicion. Then in that role, they might jeopardize the performance of the
system, by delaying responses, by jamming nearby nodes or by ceasing cooperation
when it is most critical for the system [Sin+08]. Compromised nodes might also
lead the system in a configuration where its latency is increased, in which case
they do not even have to stop participating to degrade the system’s performance.

In this chapter, we set out to mitigate the effects of latency collusion attacks
by making it more complicated for compromised nodes to report false node-to-
node latency information. The contributions of this chapter can be summarized
as follows:

• We start in Section 4.2 by showing that state-of-the-art automatic reconfig-
uration methods for a BFT-SMR system are indeed vulnerable to attacks
that aim at manipulating the timing information on which these methods
base their optimization.

• Section 4.3 gives an overview of the System model and the mechanism of a
MonitoringWindow assumed by our protocol in this chapter, and also what
are the assumptions that enable our system to work.

• In Section 4.4, we leverage findings from Vivaldi [Dab+04] and explain how
the 3d projection of a virtual coordinate system (VCS) can help mitigating
latency collusion attacks in the latency matrix. On the VCS, distances be-
tween nodes resemble node-to-node communication latencies and movements
of nodes resemble latency changes. Since these movements must be coherent
from the point of view of correct nodes, it is much harder for an adversary
to manipulate this multidimensional space and hence forge node-to-node la-
tencies. We introduce two new approaches leveraging the VCS to enable
latency-based optimization systems to make more robust decisions.

• We evaluate our methods in Section 4.5 on three real-world networking
datasets.
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Section 4.6 draws conclusions and gives directions for future work.

4.2 Impact of Latency Collusion Attacks

Latency collusion attacks aim at placing compromised nodes in Rmax to then, in
a subsequent step, disrupt or slow down the distributed system and the service it
provides. Let us return to AWARE to understand the impact of such an attack.
Reporting pair-wise low latencies among faulty replicas and high latencies when
communicating with healthy replicas, adversaries may trick AWARE’s optimiza-
tion algorithm into selecting faulty replicas for the best-connected group(Rmax)
and hence into assigning them the higher voting weight Vmax. The worst case oc-
curs if half of the replicas receiving Vmax are faulty. This is because if these replicas
cease to cooperate, higher costs will occur since consensus must be reached among
many replicas outside Rmax and among the remaining healthy replicas in Rmax.
Figure 4.1 illustrates this effect1. In the figure, we plot throughput (i.e., the num-
ber of operations per second) for a system of 13 nodes (we observe similar effects
also for systems of a different size). Results show that under attack when AWARE
needs to operate with replicas outside Rmax the time to throughput drops from 60
operations per second to 20. Our goal is to avoid such attacks and the performance
degradation they entail.

The methods described in this chapter enhance the resilience of systems that
apply latency-based optimizations against coordinated attacks by implementing
effective latency matrix sanitization algorithms. Former works, like AWARE and
Kauri, described systems capable of improving the system’s latency and through-
put by applying latency optimization techniques. What is not covered by them
is if their replicas fail to measure round-trip time as a consequence of collusion
attacks. In the presence of such attacks, the once great optimization becomes a
hurdle. The impact of this obstacle on the system’s progress is significant be-
cause there are times when it can cause a complete pause in the system’s progress.
Therefore our approach offers distributed systems a more robust optimization by
providing the system with more accurate knowledge of its point-to-point real-world
communication latencies.

4.3 System Model and Monitoring Window

We consider a distributed system comprised of N = 3f+1+∆ nodes that tolerate
up to f Byzantine nodes, and that has ∆ additional nodes, all n perform pairwise

1Measurements were performed on a Dell Precision 7920 Rack running openjdk 17.0.5 on
Ubuntu Linux 18.04.6 LTS. We deploy clients and replicas on the different cores of this system.
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Figure 4.1: Effect of a latency collusion attack on AWARE. On the left, the per-
formance of AWARE is shown as operations per second assuming all nodes with
weight Vmax collaborate. During that time, adversaries have influenced AWARE’s
latency optimizing algorithm to also grant the f Byzantine nodes this maximum
weight. The moment these f nodes cease to collaborate, at request 145, the per-
formance drops as consensus requires including also nodes with Vmin and more in
total.
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Figure 4.2: Illustration of our fault-tolerant reconfiguration pipeline that nodes
independently and automatically execute.

node-to-node latency measurements to optimize the overall system’s latency and
improve its service. More precisely, we assume that this service can be provided
with optimal latency by a subset Rmax of well-connected replicas. Optionally, the
system may still be able to provide the service using other subsets of nodes, albeit
at reduced performance or while generating other undesirable costs.

We assume a partially synchronous system, so that consensus can be reached.
We do not constrain the topology of the network, but assume that any two nodes
can communicate with each other. Differently from [Obe+16] on our system,
the network links properties may improve or worsen over time. While nodes in
the distributed system have to measure these pairwise latencies, we do not want
to constrain adversaries and assume them to have full knowledge over the true
latencies between nodes at all times. We do so assume for this chapter that the
adversary cannot manipulate the network and modify the latency of links. We
shall return to this assumption as part of our future work.

AWARE [Ber+20] is an example of such a system. It implements BFT-SMR us-
ing two kind of weights: Vmax and Vmin. Well-connected nodes (i.e., those with low
node-to-node latencies) receive a higher weight Vmax and participate in AWARE’s
weighted consensus algorithm. Weights are distributed such that agreement among
nodes in Rmax suffice to reach consensus, but AWARE is also able to reach consen-
sus using a larger number of nodes, by including nodes outside Rmax. In the latter
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case, performance degrades as more communication is required to reach agreement
among this larger set of nodes. Other examples of latency optimizing systems in-
clude blockchain-algorithms such as hyperledger [Fos+20] that elect replicas to
form the consensus group and that would have to re-elect a different group if repli-
cas cease to cooperate or distributed systems that silence not so well-connected
nodes [Kap+12b], but are prepared to reactivate them in case active nodes fail.

We exemplify how our methods work by applying them on AWARE’s settings.
AWARE periodically performs automatic reconfigurations during a phase called
MonitoringWindow. The first latency measurements are already done on system
setup like in WHEAT [SB15b]. To reach an agreement in a weight voting scheme,
replicas have to sum more voting power than a threshold, that for AWARE consists
of 2(f + ∆) + 1. Nodes must agree on a common latency matrix that will later
help define the best weight configuration. The weight configuration of a system of
(3f+1+∆) replicas is a composition of two subsets, the first called Rmax composed
by the 2f best-connected replicas, according to the latency matrix, and Rmin

composed by the other (f + 1 + ∆) replicas. The system may experience latency
inconsistencies caused by network artifacts and/or by the action of Byzantine
replicas, tampering with their latency matrix in an attempt to portray them as
best-connected replicas on the network. The system’s designer defines the period
in which replicas update their latency matrix, ranging from 500ms to one second.
Whenever this period of update expires, replicas start this monitoring phase. This
window can be subdivided in the following four steps, illustrated by Figure 4.2.

Step 1: Measure. In this stage, replicas broadcast their latency measure-
ments to each other and store these values on matrix M . These measurements
are done by sending one MONITORING message from each and every replica that
should respond as quickly as possible. When those replicas receive their answer
for its monitoring request, timestamped correctly, they will store the round-trip
time it took for this specific replica receiver. Correct or Byzantine replicas cannot
send responses faster than the network time required, because there is a challenge-
response mechanism on every measurement message, forcing replicas first to receive
the message with the challenge and then respond to the replica sender that re-
quested a response in the first place. These latency measurements are broadcasted
and stored in a matrix locally on every replica.

Step 2: Optimize. With the latency matrix ready the next step is to sani-
tize their matrix, execute our 3d fault-tolerant vector approximation algorithms
and start the local optimization process executed by every replica. Sanitization, in
AWARE, is done by applying the following operation M̂ [i, j] = max(M [i, j],M [j, i])
to every term belonging to the matrix [Ber+20]. Here is where our latency al-
gorithms make the difference, because this sanitization method is not resilient
against collusion of latency measurements between Byzantine nodes. Therefore,
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every replica executes our latency correction techniques locally in order to obtain
a much more accurate latency matrix. Replicas finalize this step by executing
simulated annealing to find the best weight configuration possible, the one with
the best consensus latency, using current corrected values as input.

Step 3: Vote. Now that every replica found locally a configuration with the
fastest consensus latency, they need to agree about that. Byzantine replicas could
try to tweak their selection of the best configuration, but it does not change a
thing for the system because replicas will run a consensus on which is the best
configuration. The agreement also uses a weighted voting scheme, and with that,
as soon as the voting power threshold is met, replicas will start reconfiguring the
system.

Step 4: Reconfigure. On the last step, replicas will have the checkpoint
of a well-succeeded monitoring window with the agreed best consensus latency,
and if the system performs correctly, they will issue a reconfiguration request. A
subsequent consensus after the voting step can be required to verify whether the
consensus latency promised was matched. In case performance does not match the
latency expected by a threshold defined by the system designer, the system will
then leave this MonitoringWindow process with the same configuration it started,
not to jeopardize safety for performance. The system designer could also configure
greater consequences to change the simulated algorithm by adding more inputs,
like for example which replicas are finishing the processing of requests first. Adding
more measurements could incline the simulated annealing algorithm to statistically
decrease the chance of choosing arbitrary replicas to have more voting power on
the next MonitoringWindow.

4.4 Latency matrix sanitization

A latency matrix is composed of columns representing how one node is seen by
everyone else in the system and rows that depict how every node in the system
is seen from one node’s perspective. The projection of the node-to-node latency
matrix into a virtual coordinate space follows the projection suggested by Dabek
et al. [Dab+04] for the Vivaldi system. Vivaldi’s algorithm is executed once during
system setup and the original virtual 3d coordinates are shared. Our algorithm
assesses each column and virtually emulates the viewpoint of every network node
towards the corresponding node represented by that column.

The nodes receive at deployment time an initial latency matrix. From this
matrix, nodes obtain the initial position of the nodes in a virtual coordinate space.
This initial matrix is assumed to be correct. Later on, before each reconfiguration,
each node maintains a latency matrix that is collectively formed at the beginning
of the Monitoring Window phase. The network latency between every two nodes
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is measured by the involved parties and reported to all other nodes. During the
Measure step, Byzantine nodes can tamper with their own latency measurements
being reported. After the nodes agree, through consensus, on a latency matrix,
each node executes a latency sanitization algorithm on the latency matrix, making
it more accurate.

Our sanitization methods rely on virtual coordinate systems. Indeed, when one
only considers the latencies to detect discrepancies, nodes can collude or lie, and
it would not be possible to detect these deviations. This occurs because only the
replicas that are reporting their latencies are able to do so, and it is not possible,
from the point of view of correct nodes, to detect whether one or all of the two
reporting nodes is faulty. However, in a virtual coordinate system, it is possible for
nodes to analyze whether or not the latency changes that are reported by others
seem coherent from their point of view.

After executing Vivaldi’s algorithm with the latency matrix as input, each
replica will have its VCS representation, where every replica has a 3d coordinate,
in a way that the distance between every pair of nodes is represented by a round-
trip-time measurement. If the latency matrix is correct, all replicas will have the
same 3d coordinates for every replica on the system. However, if the values in
the latency matrix differ for any reason, there will be different 3d positions for the
same node, and nodes will have to agree on an approximation of these 3d positions.
We created two variants of a novel 3d approximation agreement algorithm based
on geometry from the information given by VCS, and we also created a baseline
inspired by the state-of-the-art robust aggregation algorithm MT-KRUM [Bla+17]
as a latency matrix sanitization technique.

4.4.1 Spheres intersection

Comparing points in a 3d space to determine the correct positions of nodes despite
Byzantines is not an easy task. The 3d coordinates of a replica should make sense
with the values represented in the latency matrix, so that it does not appear to be
in two different places at the same time. We have to find the point of intersection
between sufficiently enough correct representations. For example on Figure 4.3
to determine replica R2’s position we would have to find the intersection between
the perspective of every other replica besides R2. For our algorithms Geometric
and RndSamp we choose to represent these perspectives as Spheres, where every
Sphere has as its center the 3d coordinate of a replica, and the radius is represented
by the RTT between those two replicas. During the setup of the system, the
Spheres are generated by GeneratingSpheres1 function using the original latency
matrix as input.
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Figure 4.3: Illustration of the sphere intersection method that identifies compatible
reported latencies using 3d coordinates, given by Vivaldi’s 3d model. The column
for node R2 contains the RTT reported between R2 and all other nodes.

Algorithm 1: GeneratingSpheres uses Vivaldi’s algorithm to provide
3d coordinates for every node given a latency matrix as input. Our
methods use a Sphere abstraction to represent every node, where the
Sphere’s center is the 3d position of a node given by Vivaldi, and the
radius is the RTT between the two nodes in which the latency change
is being analyzed.

Input : Virtual 3d coordinates, Latency Matrix, n, f,nodei
Output: List of Spheres

1 spheres_list = []
2 for nodej in node_ids do
3 rtt = latencies[nodej][nodei]
4 center = coords[nodej]
5 radius = rtt
6 sphere = Sphere(center,radius)
7 spheres_list.append(sphere)
8 end
9 return spheres_list
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4.4.1.1 Geometric and Random Sampling

Our first latency correction algorithm computes the intersection of spheres to verify
whether the latencies reported between a given target node and all the other
remaining ones seem to indicate that it is faulty. This verification is executed for
each node in the system. The spheres we consider are defined as follows. One
sphere is created for each of the n − 1 nodes that verify the latencies of a target
node. This sphere is centered at the 3d coordinate provided by Vivaldi’s algorithm,
and its radius is equal to the RTT between this node and the one being verified.
Since latency indicates the distance in the VCS between two nodes, from the point
of view of each of the n − 1 nodes, the target node position should be located in
an intersection between these Spheres. Therefore, if in n− f − 1 spheres there is
no intersection point, then we consider that the target node’s reported position is
inaccurate.

The Geometric solution illustrated by Algorithm 2 iteratively computes the
intersections of spheres, which are either empty, contain a single point or form
a circle. In case an intersection is equal to a circle, we continue computing its
intersection with the remaining spheres. For example, if spheres from replicas r1
and r3 intersect in a circle, then this circle will be tested for intersection against
other spheres. The result of a circle-sphere intersection is either empty or a point.
Whenever the algorithm finds one point that belongs in the intersection of n−f−1
spheres it finishes the evaluation of the latencies of a target node and moves to
the next one. In terms of complexity, for each column of the latency matrix
our algorithm computes in the worst case

(
n−1
2

)
sphere-sphere intersections times(

(n−1)/2
2

)
circle-sphere intersections. However, in the average case, solutions are

found using less than 10 ∗
(
n−1
2

)
iterations. Figure 4.3 illustrates the evaluation

of the latency matrix by our abstraction where column R2 shows the connectivity
from every node with node 2.

Our geometric solution finds the approximation of R2’s position by finding
the intersection between all the spheres, where each sphere is centered on the
node’s Vivaldi’s 3d position and with a radius equal to the RTT to this node.
Exemplified by Figure 4.3 and pseudocode 2 the algorithm starts by looking at
spheres S12 and S32, i.e., R2’s 3d coordinate from the perspective of R1 and R2’s
3d coordinate from the perspective of R3, and finding the intersection of these
spheres to determine the position of this node. Repeating this procedure for n− f
nodes results in a close approximation of R2’s position, which is then used to
recompute the latencies between nodes in the latency matrix as their distance in
the VCS. Once sanitized, the latency matrix can then be used in the latency-based
optimization. The geometric solution might fail to find a large enough intersection
of spheres if the VCS is too imprecise. In this case, we progressively increase the
radius of the spheres until a satisfying intersection can be found.
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Algorithm 2: Geometric finds the most plausible 3d position of a
target node in a virtual space by finding a point that belongs in
enough spheres centered around other nodes and whose radius are
equal to the RTT with the target node.

Input : n, f, List of Spheres, Latency Matrix
Output: 3d Coordinate

1 # Drop f extreme coordinates
2 spheres = dropfDistantSpheres(n,f,spheres)
3 # Find all intersections between spheres
4 combinations =

(
spheres

2

)
5 circles = []
6 for combination in combinations do
7 if combination.intersect() then
8 circles.append(combination)
9 end

10 end
11 # Find intersections between circles and spheres
12 points = []
13 for circle in circles do
14 for sphere in spheres do
15 intersection = sphere.intersect(circle) if intersection then
16 points.append(intersection)
17 end
18 end
19 end
20 # Find intersections between intersection points and spheres
21 points = []
22 for p in points do
23 for sphere in spheres do
24 intersection = sphere.intersect(point) if intersection then
25 intersection_count++
26 end
27 if intersection_count > f then
28 return p
29 end
30 end
31 end
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Algorithm 3: RndSamp finds the most accurate 3d position of
one node in a virtual space by looking into points on the surface
of spheres and checking which point belongs to the largest number
of intersections.

Input : n, f, List of Spheres, Latency Matrix
Output: 3d Coordinate

1 # Drop f extreme coordinates
2 dropfDistantSpheres(n, f, spheres)
3 # Randomly generate points on Spheres surface
4 points = []
5 for s in spheres do
6 for 1000 times do
7 α = random(0, 360)
8 β = random(0, 360)
9 dx = s.radius ∗ cosα ∗ cos β

10 dy = s.radius ∗ sinα
11 dz = s.radius ∗ sinα ∗ cos β
12 p = Point(s.x+ dx, s.y + dy, s.z + dz)
13 points.append(p)

14 end
15 end
16 # Find intersections between points and Spheres
17 for p in points do
18 intesection_count = 0
19 for sphere in spheres do
20 if sphere.intersect(p) then
21 intesection_count++
22 end
23 if intesection_count > f then
24 return p
25 end
26 end
27 end
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The RndSamp solution finds an approximation of R2’s position without exactly
computing the intersection of spheres. Instead, it randomly generates points on
the surface of spheres to find the first it intersects the most with. Exemplified
by Figure 4.3 and pseudocode 3 the algorithm starts by looking at spheres S12

and S32 and it then generates points on the surface of these spheres and tests if
these particular points belong in both spheres and in other spheres. Repeating
this process for n − f nodes results in an accurate approximation of where R2
is located in the 3d space. This approach might seem inefficient but it takes on
average the same time as our geometric solution and yields better results against
specific coordinated attacks. By applying both of these methods, each replica is
able to achieve a latency matrix that portrays a more accurate representation of
the point-to-point connections between replicas in the system when compared to
former methods.

4.4.2 Latency matrix correction: Byzantine gradient aver-
aging

Replicas are represented by 3d coordinates in the virtual coordinated system, to
approximately identify other replica positions they have to be able to average
out Byzantine connection measurement reported values. MT-KRUM [Bla+17]
is a robust fault-tolerant aggregation technique, that cleverly combines gradients
computed by nodes in order to mitigate the impact of Byzantine nodes. In our
context, when studying the latencies of a target node, a gradient is a vector that
is located on the line that connects them, and whose direction and length are
computed based on the latency change between them. All nodes reconcile their
gradients through Byzantine gradient averaging and determine the most plausible
location of the target node in the 3d space. The Byzantine gradient average method
works as follows after computing all gradients, the average of the gradients is
computed, and all gradients are ordered according to their distance to this average.
The top k smallest scoring gradients are kept for aggregation and their mean is the
final gradient that indicates the movement of the target node in the 3d space. This
procedure enables MT-KRUM to exclude vectors that are too far away from the
average coordinate reducing the damage capabilities of Byzantine measurements.
Once the location of the target node is determined its latencies with all other nodes
are recomputed and inserted in the latency matrix. Once sanitized, the latency
matrix can then be given as input to the optimization process.
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4.5 Performance Evaluation

Setup. We implemented the centralized version of the Vivaldi algorithm, which
is executed by each node to calculate the VCS on the system setup. We are using
three different datasets: i) the first one, CloudPing2, contains latency measure-
ments coming from Amazon EC2 instances around the globe; ii) the second one is
the well known King dataset [GSG02], which has already been used in the litera-
ture to demonstrate the limits of the Vivaldi virtual coordinate systems; and iii)
the Wondernetwork dataset3, which comes from a large global networking solution
provider, with up to date data from many different sites. These three datasets rep-
resent a good variety of latency values and are a good reflection of the real-world
topologies that nodes have on publicly available and global services.

Solutions and baselines. We implemented our 3d approximate agreement
algorithms, Geometric and RndSamp, which are respectively described in pseu-
docodes 2 and 3. We compare these solutions to MTKRUM 4 adapted to our
solution needs, because it is also a d-dimensional approximate agreement tech-
nique and to AWARE [Ber+20], because it is a well known BFT protocol with
open codebase that apply latency-aware optimizations to their replicated reconfig-
uration mechanism. In our experiments, we are simulating systems that contain
from n = 7 nodes, where 2 nodes might already collude, to n = 31 nodes where
up to 10 nodes could be reducing the latency between themselves in a coordinated
attack. In general, one experiment is subdivided in rounds where collisions follow
powers of 2, in the first round there faulty replicas will divide their latency by 2,
on the next round they will divide their latency by 4 and so on until 128. Our goal
is to demonstrate that our 3d vector averaging techniques can help the system to
progress by reducing the impact that coordinated Byzantine nodes could have on
latency-aware optimized reconfigurations.

Coordinated Attacks. Coordinated attacks can occur in many different sce-
narios. We consider three representative scenarios in our experiments: i) Byzantine
nodes can directly collude to modify their reported communication latencies (sim-
ple instantaneous attack); ii) with their processing power Byzantine nodes could
try to change the latency matrix with more arbitrary changes to push the system
to pick a configuration where they have more voting power (sophisticated attack).
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Figure 4.4: The Mean Squared Error(MSE) distance between the sanitized latency
matrix and the one reported by the nodes depending on system sizes varying from
f = 0 to 10 (n = 3f + 1 + ∆) with the CloudPing dataset after our Simple
Instantaneous attack.
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4.5.1 Simple instantaneous attack

On this first simple attack, the objective of the Byzantine nodes is to reduce the
latencies they report between themselves to portray them as being better con-
nected than other replicas. The results of this attack are indicated in Figure 4.4
where we measured the mean squared error(MSE) distance between the original
latency matrix and the latency matrix that is obtained by the attack following
our sanitization methods. Our solutions Geometric and RndSamp maintain a low
error comparable to the one obtained by MT-KRUM, the 3d Byzantine gradi-
ent aggregation method. All our solutions improve over AWARE’s sanitization
method.

Because we are analyzing this attack as its impact in a 3d virtual coordinated
space, the outcome of this simple attack would be that Byzantine nodes would
get nearer and nearer from each other in the VCS. Once again, let us argue that
it would not be possible to detect this simple attack if we were trying to correct
Byzantine latencies only based on the reported latency matrix, because it would
not be possible to distinguish between an attack happening and the network la-
tencies normally evolving. After executing our solutions the system is capable of
accurately reaching the decision about the nodes final positions.

The results from Figure 4.4 are that the system using our latency sanitization
methods will have a much more accurate latency matrix. The struggle suffered
using AWARE’s baseline against this coordinated attack is present from f = 2 to
f = 10 showing that their sanitization method is not resilient enough. The results
obtained by RndSamp are good if compared with AWARE but not as good as
Geometric and MT-Krum that achieve latency matrices up to 95% more accurate.
Also Geometric seems to do even better when operating in a network where the
RTT between nodes varies more, something further illustrated in Table 4.4. On
this table, we are indicating in % how much better our solutions perform compared
to AWARE’s sanitization method during a simple instantaneous attack with all
three datasets and all solutions.

4.5.2 Optimized instantaneous attack

In this second attack type, the objective of the Byzantine nodes remains the same,
but they can report reduced or increased latencies with any other node of the
system. They determine how to do so by running an optimization algorithm to
lead the system in the worst configuration they can. Byzantine nodes rely on a

2https://www.cloudping.co/grid
3https://wondernetwork.com/pings
4https://github.com/LPD-EPFL/AggregaThor/blob/master/aggregators/krum.py
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Table 4.1: Latency matrix distance reduction (in %) during an Simple Instan-
taneous Attack and using our sanitization methods (Geometric, RndSamp, MT-
Krum) compared to the state-of-art (AWARE) over all datasets used.

Sys. Parameters 3f+1+∆
Datasets CloudPing King Wonder
Geometric 91.97% 77.55% 95.51%
RndSamp 86.29% 36.4% 77.67%
MT-KRUM 95.97% 77.16% 95.07%
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Figure 4.5: The Mean Squared Error(MSE) distance between the sanitized latency
matrix and the one reported by the nodes depending on system sizes varying from
f = 0 to 10 (n = 3f+1+∆) with the Wondernetwork dataset after our Optimized
Instantaneous attack.
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Table 4.2: Latency matrix distance reduction (in %) during an Optimized In-
stantaneous Attack and using our sanitization methods (Geometric, RndSamp,
MT-Krum) compared to the state-of-art (AWARE) over all datasets used.

Sys. Parameters 3f+1+∆
Datasets CloudPing King Wonder
Geometric 93.67% 76.55% 95.99%
RndSamp 81.43% 31.36% 77.67%
MT-KRUM 96.14% 76.12% 95.59%

simulated annealing (SA) algorithm to execute this attack. SA usually is used
for finding or approximating the global optimum of any given function, and it
was used in AWARE to enable replicas to choose the best possible configuration.
In this attack, Byzantine nodes are using SA to find the global optimal change
they can apply to portray them as being better connected. In Figure 4.5, our
solutions Geometric and RndSamp showed severe improvement over AWARE and
comparable progress to MT-KRUM implementation.

The results from Figure 4.5 are that systems using our latency sanitization
methods are resilient even to more intelligent attacks. AWARE’s implementations
seem to have a tough time against coordinated attacks of any kind, with smaller
system’s configuration like f = 2 to more resilient configurations like f = 10.
Again the results obtained by RndSamp are good if compared with AWARE but
not as powerful as MT-Krum and Geometric that achieve latency matrices with
up to 95% more accuracy on their node-to-node connection values. Geometric
and MT-Krum keep operating with good resilience against attacks on network
topologies where the RTT has more variance, as illustrated in Table 4.4. Once
again, we summarized the results of this attack with all three datasets and all
solutions into Table 4.2 for better readability. This Table also indicates in % how
much better our solutions perform compared to AWARE’s sanitization method
during an optimized attack.

4.5.3 Impact on configuration latency

During an Optimized Instantaneous attack, the impact caused on the configuration
selected as the best one is meaningful since Byzantine nodes can still increase
their voting power. Experiments showed that this attack, when optimized for this
purpose, can change the combination of nodes chosen as the best connected replicas
in the system, and usually attributes a larger weight to Byzantine nodes. However,
because our protocol follows AWARE directives on this regard, which means that
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there are 2f nodes with a larger weight, the system will never be dominated in
voting power by faulty nodes.

In AWARE coordinated attackers could stall the system’s progress indefinitely
by tweaking the latency matrix and consequently holding half of the voting power.
Our solutions fix this problem by dramatically reducing the damage they could do
on the latency matrix, so that Byzantine nodes would rarely represent 50% of the
replicas with more voting power set.

We envision that one could address this worst case scenario using a subsequent
consensus and a reputation mechanism. The nodes would have to verify whether
the performance promised by the reconfiguration was actually achieved and, later
on, the system could then decide whether to stay in this configuration or to restart
the reconfiguration procedure. A complementary scheme would penalize through
a reputation scheme the nodes that were previously selected as being well con-
nected and guarantee that future reconfiguration would decrease the probability
to select the same nodes. This method might lead the system to choose slower
configurations rather than the fastest possible but it would make the latency-aware
optimization subsystem more resilient over the long run.

4.5.4 Deviations over multiple reconfigurations

Former works allow collusion not only to happen but also to persist on the latency
matrix over reconfigurations, and because of that, they are doomed to experience
more significant damages than our methods. In our experiments, every recon-
figuration happens as if it was the first because Byzantine nodes cannot hold
onto leverage acquired from one reconfiguration to another. For the MT-KRUM
solution, in a system with classical distributed systems configuration, every recon-
figuration procedure is unique, or there are no traces of Byzantine tweaking on the
latency matrix. For Geometric and RndSamp there are usually slightly tampered
values on the latency matrix with 3f + 1 + ∆ or more resourceful systems, but
even after multiple reconfigurations the interference on the system’s progress is
negligible. Therefore our solutions do not suffer from deviations in the latency
matrix over multiple reconfigurations.

4.5.5 Sanitization running time

Other works applied fast sanitization methods that were as simple as matrix ad-
ditions, but in consequence these protocols are prone to coordinated attacks. By
applying our techniques, the time dedicated for the sanitization of the latency
matrix is increased. In our experiments, we found that AWARE’s sanitization
method can take on average 500ms. Our solutions are heavier and can take at
most 3 times more time to sanitize the latency matrix, which however remains
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practical. The latency matrix sanitization process takes visibly more time, but it
does not disrupt the system. Using our solutions the system can keep progressing
even in the most adversarial scenarios that a fault-tolerant distributed system may
face.

4.6 Final Remarks
In this Chapter, we introduced two novel methods to mitigate the effect of la-
tency collusion attacks. Adversaries mount attacks of this kind on distributed
systems with a built-in latency optimization mechanism to place compromised
nodes in favorable roles from where they have greater effects in subsequent at-
tacks. Our methods complicate the reporting of false node-to-node latency in-
formation through colluding Byzantine nodes, by requiring reported latency in-
formation to be consistent in a multidimentional virtual coordinate space. The
first requires latency-representing spheres to move consistently whereas our sec-
ond method leverages gradient aggregation algorithms for detecting and correcting
false latency information. Our performance evaluation over three real-world net-
working datasets showed that our approach protects latency after a reconfiguration
against Byzantine nodes up to 95% better than previously published state-of-the-
art solutions.

As future work, we plan to extend our approach to other measures commonly
used when reconfiguring distributed systems, such as throughput and the energy
supply of nodes. Moreover, we plan to return to the quite restrictive assumption
that adversaries cannot affect network latencies. Given a traffic shaping mecha-
nism, pairs of nodes should be able to measure connection latencies, while antici-
pating the maximal allowed adversarial interference by such mechanisms.
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Chapter 5

Threat-Resilient BFT-SMR
Protocol: Robustness through
Adaptive Measures

BFT protocols are known for using too much resources and that is one of the rea-
sons why they are not mainstream yet, with the developments shown on Chapter 3
this work introduced a protocol capable of optimizing resources at runtime, instead
of having the protocol configurations hard-wired and pre-fixed during architecture
designing time. We also showed that the same protocol capable of optimizing its
configuration automatically would also be able to return the system back to safer
configurations, if needed, without requiring consensus to take immediate action.
Instead of only quantitatively changing configurations where only the size of the
system is changed, we could use the techniques developed in Chapter 4 to cre-
ate more optimal and minimal system configurations where replicas are chosen
qualitatively by how fast they are interconnected with other nodes and using our
methods, we can create more efficient quorums extracting even more performance
from the payload protocol. Another adaptive measure found during the develop-
ment of our solutions is the strong correlation between replicas that finish requests
first and the fastest replicas on the network. Integrating all these solutions enables
the system to make more robust optimizations, self-regulating itself in an unat-
tended manner, allowing an efficient resource use of the system’s infrastructure
even on safer configurations, and also with the addition of reputation the system
can get progressively better and more efficient over time.
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Figure 5.1: Using our methods systems can reconfigure themselves to move it-
eratively from bigger and slower configurations like n = 21 to faster and optimal
configurations like n = 9. When going down in configurations most of target Rmax

will remain the same as source Rmax, with the exception of the two slowest replicas
from Rmax that will be having their voting power downgraded to Vmin.

5.1 Proactive Reconfiguration for Performance Op-
timization

We assume that for every period of x amount of time(decided by the system
designer) a MonitoringWindow will be executed, like in AWARE, and this is the
moment where our system should strive for optimization. Connecting our Threat
Detector also to this system would provide a better grasp of when is the right
moment for optimizing the system. When the reconfiguration goal is optimization
the system respects the monitoring window period. It will then further, re-calculate
the latency matrix and apply our sanitization methods from Chapter 4 to take a
more robust decision on the configuration change.

When optimizing systems infrastructure, the replicas that make up the Rmax(2f)
set in the source configuration will also make up the Rmax in the target config-
uration as shown in Figure 5.1. The two slowest replicas in Rmax of the source
configuration will become Rmin on the target configuration. The f +∆+1 fastest
replicas from Rmin on the source configuration will be going to the target configu-
ration, also on Rmin. Taking these replica allocation decisions will not only shrink
the system on the number of replicas, but also on the choice of which replicas
remain active. The nodes not included in the target configuration will become
passive, like in ThreatAdaptive, and they will be further re-activated when the
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system needs them.
A valid assumption we can make is that ∆ = f always. The reason behind

this is that in AWARE, it is necessary for Vmax to be greater than Vmin in order to
enable a more varied quorum formation. Knowing that Vmax = 1+ ∆

f
, the number

of spare replicas is at least f .
Right after optimizing system’s configuration the consensus latency promissed

can be easily tested by checking which replicas are finishing the first consensus
after reconfiguration and how long did it took to reach agreement. If it takes less
than expected, it is even better for the system and there is no reason to reconfigure
back or again, but if new configuration does not deliver the new efficient consensus
latency proposed than the system could reconfigure it back to a safer configuration.
Checking the consensus latency on the agreements after a reconfiguration was not
cover by AWARE and it is actually a good way of guaranteeing that the system
is not doing fake optimizations or optimizations that would stall more system’s
progress than help.

5.2 Determining Conditions for Safe Reconfigura-
tion

Differently from optimization, the system does not need to wait for a Monitoring-
Window to happen to move the infrastructure to a safe state and possibly save
the system from increasing adversarial strength scenario. Reconfiguration with
safety goal is triggered by the Threat Detector signal, if the system is or the re-
gion where the system is becomes attacked, TD will signalize that threat level is
high, meaning that the system should protect itself. If the threat level does not
change, the system will keep going up on reconfigurations and whenever reaches
the safest configuration then the system will re-calculate the latency matrix and
apply our sanitization methods, only after that the system will be well-prepared
to take the decision on the next configuration change.

When reconfiguration towards safety happens, the replicas that make up the
Rmax(2f) set in the source configuration, that is now the most efficient one, will
also make up the Rmax in the target configuration, but now the two fastest replicas
from Rmin will be also being part of Rmax as shown in Figure 5.3. All the replicas
from Rmin on the source configuration will be going to the target configuration also
on Rmin and there will be more ∆ passive replicas being re-activated. Taking these
replica allocation decisions will increase the system’s redundancy capabilities and
its robustness against increasing adversarial strength. There will still be enough
passive nodes that can be re-activated on each step of reconfiguration, like in
ThreatAdaptive, and they will be further re-activated when more resilience to
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Figure 5.2: Using our methods systems can reconfigure themselves to move from
smaller and insecure configurations like n = 9 to safer and reliable configurations
like n = 21. When going up in configurations, most of the target Rmax will remain
the same as source Rmax, except for the two fastest replicas from Rmin that will
be having their voting weights upgraded to Vmax.

faults is required.

The fact of having ∆ = f can be seen as increasing expenditure of resources,
but it can bring improvements to the infrastructure. As observed in WHEAT, in
fault-tolerant weighted voting schemes to have more replicas makes consensus to
be reached faster. In the case of reconfiguring the system in chase of safer con-
figurations, the system actually speeds up, when compared to egalitarian quorum
configuration of the same size, and increase resilience at the same time.

After reconfiguring the system’s configuration towards safety, the system will
consult the threat detector again to see whether it should keep reconfiguring to
safer configurations or it can start executing the payload protocol again. If the
threat level is still high, the system will keep reconfiguring and awakening pas-
sive replicas, but if the threat level went from high to medium depending on the
system’s designer choice the system can stay on the same configuration or keep re-
configuring until it hits the safest configuration. MonitoringWindows are stopped
until the system returns to normal payload execution, the latency matrix is also
not updated during this procedure because it is still not the right time to strive
for efficiency but to strengthen the system against increased adversarial strength.
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Figure 5.3: Nodes accumulate reputation points by finishing consensus messages,
who finishes the first earns more points. Here in this example, the first replica
r0 will have n summed to the actual reputation value because it was the first
replica to finish, r1 the second replica finishes in the second position and earns
n − 1 points, and so on. Every MonitoringWindow, each node, will have its own
reputation array that reflects the quality of the interconnection between replicas
from another perspective.

5.3 Reputation improves consensus latency over
time

If every node takes note of which replicas are finishing consensus first and add an
arbitrary value to the reputation of nodes proportionally to their performance, the
system achieves a reputation array that reflects the latency matrix information
from a different perspective. Having those two inputs the system could easily
detect discrepancies on the latency measurements done, because how come nodes
X and Y can have really good rtt values if when checking the reputation array
replicas see them as badly connected. Once these co-relations are detected the
system can wisely reconfigure to a safer configuration given that faulty replicas
possibly in Rmax have been tampering with the latency measurements on the
former MonitoringWindow.

We could also add this reputation array as input of simulated annealing to
improve safety and efficiency of the result found by the jumps of this optimization
algorithm. The system would not be only looking for the most efficient voting
weight distribution between nodes but also the most trustworthy efficient config-
uration, given that configurations in which nodes with highest reputations are in
Rmax would be preferred.
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Figure 5.4: Nodes are able to evaluate the efficiency of a potentially more resilient
target configuration, when reconfiguring towards safety, using an updated latency
matrix. If the current target configuration does not meet the efficiency criteria,
replicas could collectively agree that there are superior configuration choices avail-
able, and if the threat level is not excessively high, replicas could be allowed to
reconfigure to the new target configuration.

5.4 Adaptive Measures: Strengthening BFT-SMR
against Threats

Imagine the scenario where the Threat Detector was triggered and the system has
to reconfigure itself to more resilient configuration, as explained already, using our
methods this can be done at runtime without waiting for an agreement, because
nodes initially agreed on which configuration to come back when the system was
optimizing. The system before reconfiguring could calculate based on the latency
matrix if this more resilient target configuration is efficient enough using a thresh-
old, if it is then the system continues reconfiguring like before, but if its collectively
verified that there are better choices as configurations and the threat level is not
extremely high, replicas could then agree in a new configuration to go. The prob-
lem is that requiring a system to reach consensus in a scenario where adversarial
strength can be increasing is dangerous and three different outcomes can happen.
The first outcome is that if everything works correctly, agreement can be reached
and the system switches to a different combination of nodes like in Figure 5.4 when
reconfiguring from n = 9 to n = 13.

The second outcome is that what if the strength of the adversary is worse than
expected and replicas can not reach agreement on which configuration to go. For
that matter the system has to have a timeout on this change of thoughts about
which configuration to go and if it runs out of time the system should follow the
old configuration agreed. In the end is better to go to a not optimal configuration
than miss the system adaptation completely, that’s why this timeout is required
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and can save the system in an almost deadlock situation.
The third outcome is the one that should be mostly avoided, and happens

in the case that adversary is more powerful than expected such that it can lean
the consensus to be reached towards a doomed configuration. An intelligent and
coordinated attack unexpected by the Threat Detector could try to mess up the
latency matrix, by applying collusion to every pair of faulty replicas and also
increasing the latency against some correct target replicas, the fastest ones on the
network usually, doing that attackers could try to make the system agree on the
configuration they wanted instead of the right one. One of the core assumptions
of BFT protocols is that the number of faulty replicas does not surpass f, but
in the case of this scenario faulty replicas from different configurations could be
combined to invalidate this assumption or even faulty passive replicas can also
never re-activate and perhaps make the system lose its majority. Our system can
avoid this outcome by rejuvenating passive replicas before joining or whenever
they get re-activated rejuvenation should the first thing to be executed.

5.5 Conclusion

In conclusion, the proposed system offers a comprehensive solution for system
reconfiguration, addressing both optimization and safety goals. During periodic
MonitoringWindows, the system focuses on optimization by recalculating the la-
tency matrix and applying sanitization methods from Chapter 4. This allows
for robust decision-making regarding configuration changes, leading to improved
system performance.

Reconfiguration with a safety goal does not require waiting for a monitoring
window like defined by ThreatAdaptive in Chapter3. Instead, it is triggered by
the Threat Detector, signaling an increase in the threat level. This proactive ap-
proach enables the system to move to a more resilient configuration promptly,
potentially saving the system from increasing adversarial strength scenarios. Once
the threat level is identified and remains unchanged, the system continues to re-
configure gradually moving towards the safest configuration or it can stay on the
same configuration depending on its design. The system will only be deciding
on the next configuration change when it’s safe to do it, then it will recalculate
the latency matrix and applies the sanitization methods, ensuring a well-prepared
reconfiguration process.

The system also leverages reputation arrays to gain insight into the intercon-
nection between nodes from a different perspective. By attributing reputation
scores to nodes based on their performance, the system can identify discrepan-
cies when compared to the latency measurements. Inconsistencies between good
latency values and poor reputation scores indicate potential tampering or faulty
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replicas.
Furthermore, the proposed system avoids the potential dangers of requiring

consensus in an environment where adversarial strength may be increasing. In-
stead, it allows for collective verification and agreement on new configurations
without relying on consensus. This dynamic reconfiguration process enables the
system to adapt to changing circumstances efficiently and effectively. In summary,
the proposed system combines optimization and safety-oriented reconfiguration
techniques, leveraging MonitoringWindows, threat detection, reputation arrays,
and latency-based optimizations. This comprehensive approach ensures improved
system performance, robust decision-making, and efficient adaptation to changing
threat levels, ultimately enhancing the overall resilience of the system.
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Chapter 6

Conclusions and Future Work

This thesis presents resilient adaptation techniques for critical infrastructures in
the face of advanced threats. It makes substantial contributions to the field of
Byzantine fault-tolerant state-machine replication (BFT-SMR), specifically through
the introduction of the Threat Adaptive protocol explained in Chapter 2 3 and
advancements in latency optimization for distributed systems covered by Chapter
3 4. Threat Adaptive automatically adjusts its configuration based on threat level
changes, allowing it to outpace adversaries, optimize performance, and adapt faster
than previous methods while maintaining comparable latency and throughput to
statically configured BFT baselines. We have presented two novel approaches
that address critical challenges and improve the robustness and performance of
distributed systems that apply latency-based optimizations. In Chapter 5, we
combined the ideas and methods from both works into a single protocol and had a
glimpse of the possible advantages and results of all these novel adaptation tech-
niques combined could bring.

Firstly, we established the conditions for safe reconfiguration in a BFT-SMR
protocol, enabling it to adaptively tolerate increasingly powerful adversaries based
on the detected threat level. This led to the design of ThreatAdaptive, a ground-
breaking BFT-SMR protocol that proactively agrees on resilient fall-back recon-
figurations before optimizing its configuration. Our results demonstrate that
ThreatAdaptive allows dynamic and secure performance optimization by reduc-
ing the number of actively participating servers. It is the first protocol that en-
sures reconfigurations towards safety to be executed by servers without the need
for consensus to be reached, assuming detected threat level signals are received
in advance. Experimental evaluations confirmed that our threat adaptive proto-
col achieves comparable throughput and latency to non-adaptive baselines while
achieving reconfigurations 30% faster than previous methods with stronger safety
assumptions. Possible extensions to ThreatAdaptive include extending or changing
its fault model from homogeneous to hybrid with the inclusion of trusted compo-
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nents to allow either smaller system configurations or to act as the distributed
threat detector to be present on each and every replica, another possible future
work could be to consider a weaker threat detector model.

Secondly, we introduced three novel methods to mitigate the impact of latency
collusion attacks, which adversaries employ to exploit distributed systems with
latency optimization mechanisms. Our methods make it difficult for faulty nodes
to report false node-to-node latency information by requiring consistency in a mul-
tidimensional virtual coordinate space. The first latency sanitization algorithm,
called Geometric, verifies the accuracy of latencies reported between a target node
and other nodes in a system. It uses spheres to represent the distances between
nodes, where the center of these spheres is defined by the VCS 3d position of
each and every node, and the radius is represented by the round-trip time (RTT)
between an arbitrary node and the others in the network. The new position of
the target node is determined by identifying the point of intersection among a
sufficient number of spheres. The second method called RndSamp is similar to
the first with the main difference being the method utilized to calculate the in-
tersection between n spheres. The third method is inspired by byzantine gradient
averaging of MT-KRUM, that in our scenario is used in a virtual coordinated sys-
tem with 3D coordinates in order to mitigate the impact of faulty nodes on the
final latency matrix. Gradients, representing one node position calculated from
the latency measurements between nodes, are computed and reconciled through
Byzantine gradient averaging to determine the plausible location of a target node
in 3D space. The sanitized latency matrix, obtained by recomputing latencies and
aggregating them, is then used as input for the optimization process. Performance
evaluations using real-world networking datasets demonstrated that our three ap-
proaches could provide up to 95% better protection against Byzantine nodes in
terms of latency after reconfiguration, surpassing state-of-the-art solutions. Pos-
sible extensions to this work could involve using a punishing and rewards system
to increase or decrease the impact of faulty servers when aggregating possible
coordinates for an arbitrary node.

In future work, we plan to extend our approaches to incorporate other adap-
tation mechanisms commonly used in distributed systems, such as reputation and
accountability. Reputation systems can be used during the payload protocol to
indicate to the system which inputs should be taken more seriously, also there
seems to be a strong correlation between nodes that broadcast the reply of a re-
quest first and the fastest nodes in the network. This can be further exploited
to be used together with the measured latency matrix to make it even closer to
the real latency matrix. Accountability could be attested to protocols that use
latency-based optimizations, where for example, 1 or 2 agreements after reconfig-
uring the system, servers could regard consensus latency closely whether to check
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if the optimization was worth it. If the latency promised as optimization was
delivered, the system could generate a certificate signed by servers to verify that
every step of the optimization process happened correctly. Overall, the findings
presented in this thesis advance the understanding and practical implementation
of threat-resilient BFT-SMR protocols and effective mitigation techniques against
coordinated latency collusion attacks. The proposed solutions contribute to devel-
oping more secure, adaptive, and efficient distributed systems, paving the way for
further research in this evolving field.
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