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Prelude

Picture your body as a big puzzle crafted from tiny pieces known as cells. Think of these
cells as the essential building blocks that create who you are. Now, envision these cells
dwelling in a cozy, bustling neighborhood. This community is called the Extracellular

Matrix, or ECM for short. The ECM is like the open space between the cells, but it’s not
just emptiness – it’s brimming with a variety of useful materials. It’s a complex network
formed from tiny fibers that encircle your cells, acting like a sturdy framework to support them.
Imagine it as a vast interconnected web that holds everything in place. However, this web
is not merely a quiet background. It is a dynamic environment that cells interact with; this
interaction is really crucial for many of your body’s activities, such as healing, growth, and
overall well-being. At the same time, cells communicate with each other by using this intricate
fiber web. This communication helps cells understand what they should do and when as well as
how to collaborate effectively.
Scientists have always been curious about how individual cells in our bodies interact with each
other; and indeed, cells interact through various ways. For example, cells can push or pull
on each other, a bit like a team collaborating to shift objects or reshape their environment.
When cells push and pull, they create patterns which look like bands that interconnect them.
These bands are in essense lines where ECM fibers are packed together and align with each
other, forming paths that join the cells and help them in processes like movement, invasion,
and growth. When cells communicate by pushing and pulling, they are sending signals about
how things are going in our body. By understanding these signals and the modifications they
do, scientists can get clues about our health. If something is not working right, these signals
might change, and we can catch problems earlier.
Figuring out how all of this works means understanding how the ECM and its constituent
fibers behave. In the past, scientists examined how these tiny fibers function and discovered
some interesting things about them; these fibers have a special structure that affects how they
behave when they’re being pulled or squeezed. But, as much as we have learnt for these fibers,
we still do not fully understand how cells can modify them in a way that serves their purpose.
So, in this study, we try to fill this gap. We created mathematical and computational models to
investigate how these fibers respond when cells pull on them and, in addition, how they interact
with each other. We imagine that these fibers harden when pulled but become floppy when
pushed. Our computer simulations reveal that, when things get squeezed, the floppy fibers lead
interesting changes in the ECM .
Our findings are essential because they can help us understand better how our tissues form and
change. Our research gives new ways to explore how cells change the fiber web around them
and how this affects their interaction. We are actually diving into a world of insights that can
make us healthier, improve medical treatments, and even inspire new inventions.
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Abstract

One of the key questions in cellular biology revolves around comprehending the intricate
interplay between an individual cell and its neighboring counterparts within a tissue.
Beyond the cell’s innate genetic blueprint, external influences, such as those exerted by its

microenvironment, drive most of its functions. The main component of this microenvironment is
the Extracellular Matrix (ECM), a convoluted network of fibrous proteins which interact directly
with cells. The ECM serves as a scaffold that facilitates intercellular signal exchange, including
biomechanical forces. Cells actively respond to mechanical action and induce deformation
patterns which take the form of bands that interconnect neighbouring cells. These bands include
tracts of elevated matrix densification and fiber alignment and orchestrate vital cellular processes
like migration, invasion and proliferation, while there is strong evidence of their contribution
to intercellular communication. Unraveling the mechanisms underpinning these phenomena
equates to deciphering the mechanical properties of ECM and by that, the mechanical traits of
its constituent fibers.
Prior research into the mechanics of fibers has uncovered unusual mechanical phenomena driven
in part by their inherent hierarchical structure. These phenomena encompass unique behaviors
such as unstable responses of fibers when subjected to compressive loads. This instability is
characterized by transitions from heightened fiber stiffness (in which the fiber becomes harder)
to the loss of fiber stiffness (causing the fiber to become less stiff and buckle).
In light of these findings, we have developed models that encompass the distinct intrinsic
characteristics of fiber structure and mechanics, and investigate deformations of the Extracellular
Matrix (ECM) induced by cells. We have analyzed and modelled the mechanical properties
of the ECM from a macroscopic perspective. Our fundamental assumption is that individual
fibers can withstand tension but buckle and collapse when subjected to compression.
We compare two families of fiber mechanics models: Family 1, characterized by stable responses
of individual fibers under compression, and Family 2, exhibiting unstable responses of individual
fibers under compression. Our simulations expose diverse compression instabilities inherent to
each Family. These instabilities lead to the formation of densely packed ECM regions, featuring
strongly aligned fibers. These regions emanate either from individual contractile cells or join
neighboring cells, mirroring observations from experiments. We show that both fiber alignment
and ECM densification are prevented in the absence of elevated compression.
Our models demonstrate that material instabilities wield a dominant role in the mechanical
behavior of the fibrous ECM. Despite substantial disparities in the responses of the two model
families, our research underscores the pivotal role played by compression instabilities in the
behavior of fibrous biological tissues. This has implications to a number of cellular and tissue
processes, particularly in understanding cancer invasion and metastasis. Our findings introduce
novel perspectives for investigating how fibers respond to deformations induced by cells and
the ensuing implications for biomechanical interactions between cells.
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Introduction

Οὐθὲν γάρ μάτην ἡ φύσις ποιεῖ

Ἀριστοτέλης, Πολιτικά I

The study of biomechanics and its concepts are traced back to Aristotle (384-322 B.C.)
and his classic On the Parts of Animals. Biomechanics is mechanics applied to biology.
Specifically, it involves the exploration of the arrangement, function, and movement of

living systems, spanning various scales from complete organisms to organs, cells, and even the
smallest parts within cells. The motivation behind studying biomechanics is to understand how
living things move and function and stems from realizing the fact that biology can no longer be
understood without it. The field seeks to understand the normal, or sometimes the abnormal,
functions of living things, their organs, and tissues under the presence of stimuli, and propose
methods of artificial intervention. A very intriguing revelation that interconnects the fields of
mechanics and biology is Robert Hooke (1635-1703). The English polymath gave us not only
the so-called Hooke’s law in mechanics but also coined the term cell* in his book Micrographia
(1665), during his observations that led to the development of the classical cell theory.

The cell is the fundamental building block of life. Cellular fate processes constitute a
fundamental system of complex cascades of intracellular signalling pathways and interactions
between cells and their microenvironment. Variations in the cellular microenvironment due to
biochemical, mechanical and topographical signals regulate fundamental cell functions such
as state, movement, shape and adhesion. Cells are continually faced with the complex task of
sensing these variations and processing the signals internally through signal transduction and
gene regulatory networks. However, each cell is not only controlled by its microenvironment but

* from Latin cellula, meaning ”small room”
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at the same time induces changes and modifications to it. This creates a dynamic relationship
between cells and their surrounding environment, with the Extracellular Matrix (ECM) being a
key element in this interaction. This interplay is of great interest as it modulates cell motility and
migration in normal and pathological conditions, tissue morphology and cell-cell communication.
But most importantly it entails the presence of forces and thus, mechanotransduction processes.

In this chapter, we introduce the Extracellular Matrix (ECM) and its characteristics
that orchestrate specific mechanotransduction processes. We report important outcomes of
these processes and present experimental cases that highlight their contribution specifically to
intercellular communication which triggered the research herein. The chapter closes with the
significance of studying this particular aspect of cell-ECM interaction.

Figure 1.1. Under the microscope: a glimpse inside our tissues. Schematic depic-
tion of the dynamic cellular microenvironment and its major component, the fibrous
Extracellular Matrix (ECM).
Created with BioRender.com
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Figure 1.2. The microstructure of a collagen network. Temperature dependence of
the microstructure of collagen networks at different temperatures indicated above each
column (units of ◦C). Upper row: Confocal reflection images depicting an open network of
collagen fibril bundles at 22◦C. Note that the network becomes more homogeneous and
progressively denser as temperature increases. Middle and lower row: Scanning electron
microscopy images at two different magnifications. The scale bars represent 20 mm (upper
and middle rows) and 200 nm (lower row).
Reproduced from [36].
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1.1 The Extracellular Matrix, a critical regulator of
developmental dynamics

Figure 1.3. The Extracellular Matrix.
An example of a collagen matrix (blue
fibers) and a cell (in red).
Reproduced from [10].

The Extracellular Matrix, an enigmatic
tapestry woven into the very fabric of
life, is a realm unseen yet profoundly
felt. It is the silent architect, sculpt-
ing the stage upon which the drama
of cells unfolds. Like a poet’s ink, it
composes the verses of tissue, a sym-
phony of fibers, sugars, and proteins,
where cells take their cues and dance
their destinies. Within this intricate bal-
let, a narrative of adhesion, growth, and
transformation plays out, whispered by
the matrix’s tactile whispers. A canvas
for life’s vibrant hues, it is a sanctu-
ary of support and a realm of revela-
tion, where biology’s secrets are elegantly
penned.

From a scientist’s perspective, cells and
tissues hold great intrigue due to their unique
blend of impressive mechanical resilience
alongside the ability to expand, alter form,
and respond to surroundings. This special mix of strength and flexibility is vital for sustaining
life. In fact, cells and tissues endure substantial mechanical forces, underscoring the significance
of their mechanical robustness for survival and ability to adjust. For instance, lung epithelial
cells experience significant tensile stresses with each breath we take [10]. As we move, our
muscles, tendons, and skin stretch, while cartilage gets compressed. Cells and tissues manage
these mechanical demands effectively, thanks to filamentous protein networks that serve as a
highly effective form of structural support.

The extracellular matrix (ECM) (Fig. 1.2 - 1.3) is an intricate random network of fibrous
proteins, such as collagen and elastin, organized in a tissue-specific manner and composed of
an array of macromolecules with distinct physical and biochemical properties. While playing a
fundamental role as the physical foundation for cellular components, the ECM also triggers
vital chemical and mechanical signals necessary for tissue development and homeostasis. It
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is also involved in repairing damaged tissue; abnormal changes in the matrix may lead to
the development of certain diseases. In cancer, for instance, changes in the ECM physiology
affect how cancer cells grow and spread [71]. At its core, the ECM is made up of water,
fibrous proteins, and polysaccharides. Nevertheless, each type of tissue possesses an ECM that
holds a distinct topology and structure. This uniqueness is established as the tissue develops,
involving an interactive exchange of both mechanical and chemical signals among different
cellular elements (like epithelial, fibroblast, and endothelial components) and the evolving
protein environment. This bi-directional crosstalk between living cells and the ECM modulates
various cellular functions such as proliferation, gene expression, differentiation and motility.
Essential aspect of this crosstalk refers to the mechanical state of the matrix. Cells have the
ability to perceive and react to the physical properties of the matrix by producing forces.
Simultaneously, they detect any changes happening in their surroundings. This capacity of cells
to recognize and respond to mechanical action in their environment is termed as mechanosensing.

Mechanosensing is a fundamental biological process that plays a crucial role in various phys-
iological and developmental processes. At the cellular level, mechanosensing involves specialized
proteins and structures that are capable of converting mechanical stimuli into biochemical
signals. These mechanosensitive proteins are typically located on the cell membrane or within
the cytoskeleton. They can sense a wide range of mechanical forces, including tension, com-
pression, shear stress, and fluid flow. Key components of mechanosensing are integrins (Fig.
1.4), transmembrane proteins that connect the ECM to cell’s cytoskeleton. When mechanical
forces are applied to the ECM, integrins undergo conformational changes, transmitting the force
to the cytoskeleton and initiating a signaling cascade within the cell through mechanotrans-
duction, a process through which cells convert mechanical forces into biochemical signals and
cellular responses [41]. Mechanotransduction is a complex and dynamic process that involves
a network of mechanosensitive proteins, signaling molecules, and downstream effectors. This
process enables cells to actively detect and respond to physical cues from their surroundings
[53]. This helps with the morphogenesis, development, and adjustment of tissues to cope with
shifts in mechanical conditions. The signaling pathways activated by mechanotransduction
ultimately lead to specific cellular responses. The way cells react can differ based on the specific
cell type and situation. However, typically, these responses involve adjustments in cell shape,
movement, growth, specialization, release of signal substances, or modifications in the ECM.
Most importantly, these responses influence how cells interact with each other. Cells are not
isolated entities but exist in a dynamic environment where they interact with neighboring cells.
These interactions involve biochemical exchange, physical contacts as well as mechanical forces,
which can influence cellular behavior and communication. Cells can both transmit and receive
mechanical cues, allowing them to coordinate their responses with neighboring cells. Mechanical
forces generated by one cell can be transmitted through the extracellular matrix to neighboring
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cells, altering their behavior. Similarly, cells can sense mechanical cues from their surroundings
and respond by adapting their own mechanical properties and signaling activities.

Figure 1.4. Integrins anchor the cells to the matrix. A scheme of cell surface integrin
binding to ECM fiber protein.
Source: Owen Mason, Lecture The ECM, Cell Adhesion, and Integrins.

The physical signals present in the Extracellular Matrix (ECM) have a central role in
coordinating how cells act and how tissues change over time. Thus, the ECM is not a passive
structural scaffold, but rather a dynamic interface that actively communicates with cells through
mechanical signals. These cues encompass a spectrum of mechanical forces, including tension
and compression, that deform the matrix in interesting ways and bring about unique patterns
with significant implications.
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1.2 Tales from Biology

The Extracellular Matrix (ECM) is a landscape where tales of fundamental cellular functions
such as adhesion, migration, and growth are written. The mechanical cues in the ECM are
like verses etched into life’s parchment, their eloquence shaping tissues, sculpting destinies,
and writing tales of health and malady. A certain tale arises from a profound dialogue that
unfolds between neighboring cells, a communication far beyond spoken words. In this unspoken
language, tissues form, wounds heal, and whispers of diseases arise. The cell-cell mechanical
communication within the Extracellular Matrix is a ballet of forces, a choreography of touch
that shapes life’s narrative, transforming biology into an orchestra where each note is felt, not
just heard.

The mechanical dialogue between cells and the ECM is dearly important as it regulates
a number of cellular processes [15, 56]. Ranging from cell motility and migration in physio-
logical [45, 58] and pathological [59, 61, 64, 79] conditions, stem cell differentiation [17, 22],
as well as cell and tissue morphology [31, 70, 74, 83], the force-generated crosstalk between
cells and matrix underlies important aspects of cell and tissue dynamics. Important fea-
ture of this crosstalk is the intrinsic actomyosin machinery which enables cells to contract.

Figure 1.5. Two ganglia connected by a tract of
cells and fibers. Early observations of a dense pat-
tern consisting of roughly parallel lines that connect
two contracting clusters. Weiss called this pattern
bridge. Cells from both ends were observed to enter
the bridge and travel towards the opposite center.
Reproduced from Paul Weiss, 1934.

By contracting, cells pull at the
fibers on which they are attached.
As cells contract their microenviron-
ment, it triggers a series of actions
that lead to notable alterations in
structure that can stretch over dis-
tances equivalent to tens of cell di-
ameters [29, 31, 52, 81]. These phe-
nomena lay the groundwork for far-
reaching cell-cell mechanical com-
munication, a process that mechan-
ically bridges distant cells, orches-
trating intricate processes like capil-
lary sprouting [42] and synchronized
beating [50]. This cell-induced ten-
sion in the matrix results in the for-
mation of some very special struc-
tures that entail fiber rearrange-
ments. The importance of the appearance of such structures lies in experimental observations
since as early as the previous century, which revealed a strong relation of these structures with
cell orientation, motility and coordination with other cells.
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Back in 1934, Paul Weiss in his work In vitro experiments on the factors determining the
course of the outgrowing nerve fiber examined the leading role of mechanical structures in
orienting the growth of nerves. He started with the assumption that nerve fibers in tissue
culture should be subjected, if possible, to all of the following conditions: chemical, electrical
and mechanical, which were then believed to guide the nerve growth of neuroblasts. However,
due to his past experience with different cell types, he believed that the mechanical factor
would be the most important one; his previous results demonstrated that “cell patterns in vitro
arise on the basis of corresponding structural patterns in the medium in which the cells move
and grow”. Remarkably, his experiments with neuroblasts exposed additional important aspects.
When neuroblasts were cultured alone, the nerve fibers grew in various directions without any
noticeably preferred orientation. However, where neuroblasts were mixed with proliferating
glial cells, their nerve fibers tended to follow paths where significant tension was generated.
The contrast between the reactions of pure nerve cultures and mixed nerve cultures provided
an important clue. It was observed that the necessary tension to create guiding structures
in the environment only occurs when some form of contraction is present, induced when the
rapidly growing glial cells in the mixed cultures kept dehydrating their surrounding medium by
absorbing enough water from the surrounding extracellular matrix, leading it to contract or
shrink.

Figure 1.6. Definite orientation of cells and
nerve fibers along the organized bridge.
Higher magnification of Fig. 1.5 depicting cells and
nerve fibers moving along parallel lines over the
bridge that interconnects the two centers.
Reproduced from Paul Weiss, 1934.

Strikingly, apart from this orienta-
tion effect guided by tensional pull,
Weiss’ experiments with neuroblasts
exposed an additional prominent
aspect: the formation of con-
necting tracts between two con-
tracting cell clusters. When he
wondered what must be the system
of tensions arising from two cen-
ters of contraction and carried on
with the experiments, he exposed a
unique structural reorganization of
the medium: a dense arrangement
of nearly parallel lines that link the
two contracting centers. He called
this characteristic pattern bridge, as
it not only seemed to connect the

two clusters but served as a highway that cells from both ends use, move along it and finally
reach the opposite center. His observations, though, did not stop there. Apart from the definite,
sharp orientation of the cells and fibers along the organized ‘bridge’ one is struck also by the
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fact that cells and their nerve fibers grew much farther in that particular direction than in any
other. This specific finding indicated that growth consistently improves in the ’organized’ parts
of the medium. Weiss further explained that this growth enhancement along the organized
areas is mostly because the cells in those regions have a smoother access to the nutritious
and growth-promoting fluids present in the medium. This smoother access is a result of the
unique mechanical characteristics of the ’organized’ zones themselves. This particular study not
only revealed these unique observations but most importantly showed that, both the directive
and growth-promoting effects, which create straight links of cells and fibers connecting two
growth centers, can be adequately understood by considering the mechanical restructuring of
the medium, including the formation of the ’bridge’, excluding any other chemotactic events.
But why? Well, the explanation lies in the necessary presence of contractile activity. ‘Bridges’
connecting two cell cultures arose only when both cultures kept dehydrating their surrounding
medium and, in turn, this dehydration shrinkage would result in tensile tractions. In experiments
with cultures containing only neuroblasts, no contractility and thus no tension were induced
and, consequently, no ‘bridge’ formed; there was not any trace of mutual influence between the
two cell centers with regard to orientation and growth rate of the outgrowing nerve fibers. On
the contrary, nerve fibers of neuroblasts exhibited a rather haphazard distribution, with no
inclination to deviate from their random courses and orient toward the neighboring culture.
Noticeably, the resulting irregular pattern of the nerve fibers was not different from what it
would be expected if the two centers had been cultivated each in a separate medium. As a
result, the nerve fibers in these conditions didn’t show any tendency to align with the opposing
culture. This strongly suggested that their orientation was indeed influenced by the presence of
underlying oriented structures, provoked by the cells’ own contracting activity in the related
cultures, which was prompted by the dehydration of the metabolic medium. Weiss attributed
the contractility and its important effects to the presence of glial cells and particularly their
proliferation that induced dehydration of the substrate.

Decades after this classic work of Weiss, Stopak and Harris in 1982 and their seminal work
in [74] demonstrated that Weiss’ proposed dehydration theory is inadequate to explain the
distortion of collagen gels around clusters of cells. Through experiments involving hygroscopic
salts and rapidly growing but weakly contractile transformed fibroblasts, they established
that these distortions in collagen structure are not caused by dehydration or other chemical
changes resulting from cell metabolism. Instead, these distortions stem directly from the effects
of cell contractility. In fact, their findings revealed that the distinctive distortion caused by
glial cells, as compared to neuroblasts, is attributed to the greater contractile strength of the
former, rather than their rate of growth as Weiss had suggested. Specifically, their observations
highlighted that it was the connection between glial cells and the surface they adhere to, coupled
with the contractile forces generated during their movement, that led to the deformation of
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the substrate. Notably, these specific experiments unveiled two distinct forms of substrate
deformation associated with glial cells (Fig. 1.7):

• compression wrinkles appeared directly underneath individual cells, running perpendicular
to the cells’ long axes, and to their direction of locomotion

• tension wrinkles extended radially outward from the edges of the cells, and formed parallel
to the cells’ long axes.

Furthermore, they conducted experiments using explants containing fibroblasts. When two
explants were cultured together in the same dish, the collagen fibers reoriented themselves to
align parallel with the line connecting the two cell clusters. This area of alignment formed a
discontinuous tract that extended linearly through the matrix, approximately one-third the
diameter of each explant.

Figure 1.7. Wrinkles emanate from a single gan-
glion. Matrix distortion around a single ganglion
(bright body in the center). We observe the wavy
lines which surround the ganglion, termed as wrin-
kles. The wrinkles emanating radially and extend
a few millimeters outward from the ganglion are
tension wrinkles, whereas compression wrinkles take
on a more intricate arrangement that surrounds the
ganglion circumferentially. Scale bar equals 1 mm.
Reproduced from [74].

Importantly, this realignment of col-
lagen between the explants led to
the alignment of fibroblasts and
prompted their movement towards
the adjacent explant. While this
new alignment pattern formed be-
tween the explants, the original ra-
dial alignment in the form of wrin-
kles remained unaffected on the op-
posite sides of the explants (Fig.
1.8). On these sides, extra pathways
of well-aligned collagen developed,
extending over significant distances
toward the edge of the substrate.
These supplementary collagen tracts
exhibited a similar appearance, den-
sity, and width to the ones that
emerge between the explants. Fi-
nally, when additional explants were
dispersed within a collagen gel, they
formed a pattern comprising a series
of axial traction fields and collagen
alignment linking pairs of nearest
neighbors.

This study overall highlighted two important aspects of extracellular matrix cell-induced
deformations. To begin with, the ability to contract is crucial for the striking spatial arrangements
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of increased density and fiber alignment. Secondly, in the regions between explants, the
centripetal force orchestrates the alignment of collagen fibers into linear pathways. However, in
the immediate vicinity of the explants, this traction effect results in the compression of collagen
fibers, forming a compact, capsule-like circumferential enclosure.

Figure 1.8. Axial fiber alignment between explants. When two explants were cultured
together, collagen fibers underwent realignment, arranging themselves parallel to the axis
that connected the explants. This aligned region was observable as a discontinuous dense
segment cutting straight across the matrix. The width of this aligned area was roughly
one-third the diameter of an individual explant. Scale bar equals 1mm.
Reproduced from [74].

The essential findings described above were backed up by more recent studies. In particular,
Provenzano et al. in [61] showed that when collagen fibers align perpendicular to the boundary
of tumor-explants, it encourages local invasion of both human and mouse mammary epithelial
cells (Fig. 1.10). They explain that cells achieve this by using their contractility to rearrange
the extracellular matrix (ECM), aligning the collagen framework. This alignment offers a
pathway that guides cell movement, as cells make use of these organized pathways like roadways.
Additional cancer studies have demonstrated the preference of tumor cells to invade along
densified regions of ECM [19, 61, 84]. In another pivotal study, Notbohm et al. in [52] conducted
experiments with contractile fibroblasts and revealed that densified bands of aligned fibers
were spotted to join individual cells as well (Fig. 1.9). They reported measurements of three-
dimensional matrix displacements induced by cells and documented the following observations:

i. Displacements decrease at a considerably slower rate with increasing distance from the cell
compared to what linear elasticity would predict.
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ii. Densification of the matrix and pronounced fiber alignment occur specifically within bands
that connect individual cells. These densified bands were termed tethers.

iii. Cells react to localized tension by extending protrusions towards each other, a response
guided by the densely aligned fibers present within these tethers.

Figure 1.9. Cells extend protrusions towards each other along densified matrix
regions. Pairs of cells 5,6 and 7 hours after they have been seeded in a fibrin matrix.
The cells induce tensile forces to the matrix which result in tethers that connect the two
cells. White regions indicate high density of fibers. The cells grow protrusions along the
tethers.
Reproduced from [52].

Whether they are called “bands”, “tethers”, “wrinkles”, or “bridges”, these striking structural
patterns exhibit intensified fiber alignment and substantial material densification due to cell
contractility and mechanosensing processes. While the exact mechanism leading to their
development remains unestablished, the provided evidence strongly suggests their involvement
in mechanical intercellular communication, as well as cell motility and invasion, and underscores
the importance of understanding the mechanism behind their formation. To achieve this,
it becomes imperative to elucidate ECM behavior when subjected to cell-induced forces by
unveiling its mechanical properties that facilitate such deformations.
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Figure 1.10. Carcinoma cells invade into aligned collagen matrix. Carcinoma cells
primarily exhibited invasive behavior within aligned regions of the matrix. This obser-
vation implies that the radial alignment of collagen fibers offers directional guidance
through distinct alignment of the collagen matrix. The extent of migration into these
aligned regions significantly surpassed the migration seen in cells invading regions with
low alignment.
Reproduced from [61].

1.3 A symphony of mechanical traits within the Extracellular
Matrix

Within the ECM, mechanical cues, like ancient scrolls of wisdom, convey tales of tension,
compression, and gentle caresses. These cues are not mere vibrations lost in the void; they
are the architects of cellular destiny, guiding dances of adhesion, migrations of purpose, and
metamorphoses of growth. Imperative it becomes to delve into the subtle undertones, the
intricate symphony detailing the mechanical properties of the ECM. A necessary precursor to
this endeavor resides in unfurling the tapestry of its structural essence, a canvas inherently
shaped and reshaped through the caress of traction fields woven by the orchestrating cells. This
indispensable groundwork shall discern the profound artistry of cells, shaping their surroundings
with purposeful intent; a prelude necessary to fathom the orchestration of ECM deformations.

It is crucial to investigate and comprehend the subtext that describes the mechanical traits of
the ECM and supports the promotion of a desired cell function. Essential prerequisite to this
is to explore ECM structural characteristics and how they are being deformed as a result of
traction fields that cells create. These factors taken together will aid our understanding in how
cells alter the environment around them to drive a particular function, which in some cases
leads to the emergence of a disease.

Across diverse tissues, the mechanical properties of the ECM exhibit variability and assume
a pivotal role in tissue development, homeostasis, and disease processes. In general, the ECM’s
key mechanical traits encompass the following:

• Remodelling: The ECM exhibits the ability to remodel. As we have extensively disscussed
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in (1.2), cells can actively modify the composition and organization of the ECM in response
to mechanical cues and other stimuli. This remodeling capability allows tissues to adapt to
changing mechanical environments and is crucial during processes such as wound healing,
tissue regeneration, and tissue remodeling in response to disease or injury.

• Elasticity and Stiffness: ECM stiffness describes how resistant it is to deformation
under applied forces. The ECM can exhibit a wide range of stiffness, from soft and
compliant (e.g., brain tissue) to stiff and rigid (e.g., bone tissue) [30]. This stiffness is
determined by the composition, organization, and crosslinking of ECM components. The
ECM’s elasticity describes its ability to return to its original shape after deformation, and
it is influenced by factors such as the density of crosslinks and the presence of elastic fibers
like elastin. ECM stiffness and elasticity play a critical role in cell adhesion, migration,
differentiation, and tissue integrity and homeostasis.

• Nonlinearity: The ECM displays nonlinear mechanical behavior [34, 80], meaning its
response to forces is not strictly proportional. The fibrous matrix displays a nonlinear
elastic response that is manifested by strain stiffening in tension [32, 57, 75, 78, 80]
and compression softening due to buckling [8, 40, 49, 52]. These effects stem from the
mechanical behavior of the individual fibers that constitute the matrix. Fibrous proteins
exhibit a unique nonlinear behavior which is attributed their natural structure. We will
discuss later more details on this.

• Anisotropy: Many tissues display anisotropic behavior [24, 54], meaning that their
mechanical characteristics change based on the direction in which forces are applied. For
example, tendons have higher stiffness along the direction of collagen fibers, enabling them
to resist tensile forces efficiently. Anisotropy arises from the organization and alignment
of ECM fibers within tissues.

• Heterogeneity: The ECM is remarkably diverse in terms of its composition, structure,
and mechanical properties [47]. Different regions of a tissue or even adjacent ECM
components can exhibit variations in stiffness and other mechanical characteristics. This
heterogeneity affects how mechanical forces spread within tissues, which can strongly
impact how cells behave and how tissues function.

The intricate mechanical behavior of the Extracellular Matrix (ECM) is ascribed to an interplay
of factors, encompassing the physiology, organization, and interactions of its diverse components.
Thus, in order to unveil the profound mechanics of the ECM under loading, we need to investigate
its composition and the structural characteristics of the individual fibers.

The physical composition of the ECM is not only tissue-specific, but is also noticeably
heterogeneous. The ECM is made up primarily of two types of large molecules: proteoglycans
(PGs) and fibrous proteins. The primary fibrous proteins in the ECM include collagens, elastins
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and fibronectins [20]. Proteoglycans, in the form of a hydrated gel, occupy most of the extracel-
lular space within the tissue. The role of fibrous proteins is primarily structural. They provide
strength and resistance to stresses and they contribute overall in maintaining tissue homeostasis.

Collagen
Collagens (Fig. 1.2), which constitute the core structural component of the ECM, provide
strength under tension, givern cell adhesion, aid in chemotaxis and movement, and guide tissue
growth [67]. Collagen fibers are made up of collagen molecules that assemble into a hierarchical
structure. Collagen fibers contribute to the mechanical strength and stability of tissues. Their
structural arrangement allows them to resist tensile forces, providing tissues with resistance
against stretching and deformation. Collagen fibers undergo continuous remodeling throughout
life to maintain tissue homeostasis and repair damage. Specialized cells called fibroblasts are
responsible for synthesizing and remodeling collagen fibers. During tissue repair processes, new
collagen is deposited to replace damaged or degraded fibers, helping to restore tissue structure
and function. Collagen associates with elastin, another crucial fiber within the ECM.

Elastin
Elastin fibers are a type of fibrous protein found in the extracellular matrix (ECM) of various
tissues. They are primarily responsible for providing elasticity, resilience, and recoil properties
to tissues that require flexibility and stretching capabilities. Elastin fibers are most abundant in
tissues such as the skin, lungs, blood vessels, and elastic cartilage. Elastin fibers provide tissues
with the ability to stretch and deform under mechanical forces and then return to their original
shape. This elasticity is crucial for maintaining tissue integrity, allowing tissues to expand and
contract, and ensuring proper functioning of organs like the lungs and blood vessels. Elastin
fibers store mechanical energy during deformation and release it during recoil, contributing to
the efficient functioning of elastic tissues.

Fibronectin
Fibronectin (FN) is pivotal in adjusting cell attachment and function. Moreover, it directly
contributes to the organization of the interstitial ECM. Cellular forces can stretch FN multiple
times its original length, as observed in [72]. This stretching unveils concealed integrin-binding
sites within FN, which leads to a wide range of alterations in cell behavior. These changes
highlight FN’s role as an extracellular mechanoregulator.

Fibrin
Fibrin, yet another fibrous protein, is crucial for maintaining homeostasis and plays a significant
role in processes like blood clotting, wound healing, and various other biological functions and
medical conditions [35]. Within a blood clot, a network of fibrin forms the sturdy backbone,
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offering mechanical support and durability. This fibrin network acts like a structure that
captures blood cells, platelets, and other elements, forming a clot. It serves as a scaffold for
repairing and regenerating tissue, enabling cells to move into the wounded area and encourage
healing.

Figure 1.11. Fiber hierarchical structure. Illustra-
tion of fibrin fibers and their hierarchical architecture:
at the top, fibers are collections of protofibrils (shown
in the middle); these protofibrils, in turn, are made up
of two partially aligned strands of fibrin monomers, as
depicted at the bottom.
Reproduced from [57].

Fibrous proteins exhibit a hierarchical structure that aligns with their specialized roles
in providing mechanical support, elasticity, and structure to various biological tissues. This
hierarchy encompasses different levels of organization, each contributing to the protein’s overall
function. Specifically, the extracellular polymers form complex filaments with an exceptionally
structured molecular arrangement, driven by particular interactions among the component
proteins. For instance, fibrin fibers are made up of collections of protofibrils (Fig. 1.11, middle).
These protofibrils, in turn, consist of two strands of fibrin monomers arranged in a staggered
manner (depicted at the bottom of Fig. 1.11). These monomers are composed of three pairs
of polypeptide chains named Aa, Bb, and g. These chains are folded into a central E-region
and two outer D-regions. This intricate arrangement gives fibrin fibers a multifaceted and
hierarchical structure. Similarly, collagen’s hierarchical organization spans multiple levels. This
intricate organization grants collagen its unique ability to endure tension, making it a principal
contributor to tissue strength. In bone, it provides rigidity; in skin, it maintains elasticity; in
tendons, it confers tensile strength. The hierarchical structure of fibers becomes of paramount
importance when subjected to loading, as it directly influences their mechanical response,
durability, and ability to withstand forces. The arrangement of different structural levels, from
the molecular to the macroscopic, allows fibers to absorb and dissipate energy, preventing
sudden fractures or deformations. This is particularly crucial in materials like bones and tendons,
which experience varying and dynamic loads. In essence, the hierarchical structure of fibers
under loading conditions ensures that biological tissues can effectively handle physiological
stresses. This organized architecture prevents structural failure, maintains tissue function, and
enables the seamless adaptation of tissues to changing mechanical demands.
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1.3.1 When fibers bear the weight

When fibers bear the weight of the world, they become tales of strength and resilience, em-
bodying the secrets of fortitude woven into their very essence. Amidst the trials of ten-
sion and the dance of compression, fibers are the protagonists in a story of endurance.
They harmonize with the demands of the world, each strain etching its chapter into their
very being. With every load they bear, they reveal the artistry of their hierarchical de-
sign, distributing the burdens of existence with an elegance that belies their simplicity.

Figure 1.12. Fibers buckle under
compression. Alterations in the
structure of a fibrin network as it un-
dergoes various levels of compression.
We witness a single fiber (blue boxes)
undergoing a gradual series of buck-
ling. With an escalation in the level
of compression, the fiber takes on an
increasingly distinct curve, and the
network becomes tightly packed.
Reproduced from [40].

The way natural fibrous matrices respond to
mechanical forces is directly linked to how their
individual fibers react mechanically. Thus, in order
to explore ECM deformations, we need to address
how a single fiber behaves when subjected to ex-
ternal forces. As discussed above, one of key me-
chanical traits of the ECM refers to nonlinearity:
in general, the fibrous matrix exhibits nonlinear
elastic responses, which are evident through the
effects of compression softening and tension stiff-
ening. We saw that rather than homogeneous rods,
ECM fibers have a bundle-like morphology (Fig.
1.2) characterized by a complex hierarchical struc-
ture (Fig. 1.11) [10, 57]. This assembly gives rise
to unexpected mechanical effects when fibers are
subejcted to external forces. In particular, sub-
jected to large strains, fibers can be extremely
extensible without breaking [10] and they stiffen
with increasing tension [32, 78]. When tension in-
creases, the stiffness or resistance to deformation
also increases. Initially, when the material is under
low levels of tension, the fibers may have a loose
or random arrangement. When tension is exerted,
the fibers start to elongate and align themselves in
the direction of the applied force. This alignment
and stretching increase the effective stiffness of the
fibers, resulting in a higher overall stiffness of the
matrix. Matrices stiffen as they are being increas-
ingly deformed, in order to prevent deformations
that could threaten the structural integrity of a
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tissue. The characteristic where stiffness grows as deformation increases is referred to as strain
stiffening and is a vital mechanical trait of fibrous matrices.

Previous studies [7, 11, 13, 34, 39] verified that fibrous matrices exhibit lower stiffness in
compression than in tension. And indeed, the cases where fibers are subjected to compressive
forces are particularly interesting. Fibers under compression buckle, losing stiffness and eventu-
ally collapsing [9, 43, 52, 66]. In Fig. 1.12 (Fig. 5 in [40]) we see an example of fiber buckling.
The blue boxes emphasize a single fiber that gradually buckles under varying compressive
strains within a fibrin network. As the degree of compression within the network intensifies,
the individual fiber displays a growing curvature, ultimately culminating in its complete col-
lapse (buckling). The reduction in stiffness when the matrix is subjected to compressive forces
is known as compression softening. However, when it comes to compression, things are not trivial.

Fibers become unstable under compressive loading
Lakes et al., in [43] studied compressive behavior in the larger scale of open cell foams. Their
experiments revealed multiple regimes of force-stretch* response marked by a nonlinear soften-
ing instability in compression. The cause of the instability was identified as buckling of fibers
or polyhedral fiber elements [43]. The same theory, i.e. fiber buckling, was used in [40] and
their experiments with fibrin networks to describe the behavior we see in Fig. 1.12. Through
these experiments, two distinct transitions between softening and hardening were unveiled
as the networks underwent compressive loads. Specifically, softening emerged at lower and
intermediate levels of compression, whereas hardening became prominent with greater degrees
of compression. These experiments highlighted that the softening of the fibrin network resulted
from the buckling and bending of individual fibers when subjected to compression (Fig. 1.12).
In both cases, the material instabilities were identified as a special nonlinearity in individual
fibers under compression. The fundamental ingredient of this nonlinearity is a non-monotonic
microscopic force-stretch response marked by a softening-stiffening (hardening) transitional
response to compression. This means that a fiber under compression shows resistance to a
compressive force (becoming stiffer) before it collapses (buckling).

More recently, Tarantino and Danas performed uniaxial compression experiments on beams
with hierarchical structure [76] that resembles the hierarchical structure of fibers. These
experiments revealed a post buckling response that is much more unstable than that of
homogeneous (non hierarchical) beams. This response remarkably involves a transition from
hardening to softening with increasing compression.

Overall, these studies highlight that the mechanics of single fibers under compression is
far more complicated. Fibers exhibit unstable behavior under compression, as this hardening
regime, where they resist the compressive loading, that proceeds their collapse (softening) leads
to unexpected effects.

* stretch: measure of extension, the ratio between the final and the initial length of a material line
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1.4 Crafting the fiber symphony: a journey through virtual
realms

Fibers bow and sway, revealing the secrets of their vulnerability and resilience. Meanwhile,
tension paints a portrait of adaptability, where the matrix learns to waltz gracefully between
rigidity and compliance. This ballet of mechanics, guided by the cells’ gentle embrace, weaves
the narrative of tissue’s strength, responsiveness, and its delicate equilibrium between creation
and adaptation. Emerging like starlight, computational models assume the mantle of essential
companions in exploring the intricate dance of ECM deformations, gifted with the power to
choreograph complex mechanical phenomena.

How fiber mechanics entangles with cell-induced deformations? In other words, consider-
ing what we know so far about the behavior of individual fibers under loading, how can we
investigate cell-induced deformations and predict certain patterns that have been observed and
analyzed experimentally?

Computational models arise to this aid as essential tools for investigating ECM deformations
due to their ability to simulate complex mechanical behaviors, bridge knowledge gaps, and
offer insights that are challenging to obtain through experiments alone. Several key reasons
underscore the importance of using computational models in studying ECM deformations:

• Complexity: The ECM is a intricate arrangement of fibrous proteins and cells. Compu-
tational models can capture this intricate structure and simulate the interactions between
its components, providing a holistic view of the mechanical behavior.

• Predictive Insights: Computational models allow researchers to predict how the ECM
will respond to different loading conditions, aiding in understanding how tissues react to
mechanical forces and guiding potential interventions or treatments.

• Inaccessible Scales: Some aspects of ECM behavior occur at microscopic or molecular
scales, making direct experimental observation difficult. Computational models can
simulate these scales, providing insights into behaviors that are challenging to measure
experimentally.

• Time Efficiency: Simulating ECM deformations computationally can be much faster
than conducting physical experiments, enabling researchers to explore a wide range of
scenarios in a shorter time frame.

• Understanding Mechanisms: Computational and mathematical models allow re-
searchers to isolate specific mechanisms contributing to ECM deformations, aiding in
deciphering complex mechanical responses. Furthermore, they facilitate the exploration of
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how different parameters, such as material properties or loading conditions, affect ECM
behavior. This helps identify critical factors influencing deformations.

In essence, computational models serve as virtual laboratories, enabling researchers to explore
and understand the mechanics of the ECM across different scales, loading conditions, and
scenarios. They complement experimental techniques, enhance our understanding of tissue
behavior, and offer valuable insights for biomedical research, tissue engineering, and clinical
applications.

When it comes to computations, mathematical models that describe the constitutive
mechanical behavior of a fiber are being used. A constitutive relation for a fiber is a mathematical
description that defines the mechanical response of the fiber under different loading conditions. In
essence, it outlines how the fiber’s deformation and stress are related to the applied forces. This
relation provides a quantitative understanding of how fibers behave under various mechanical
scenarios. The importance of a constitutive relation for fibers lies in its ability to capture the
intricate mechanical behavior of these essential structural elements. Fibers are not simple linear
materials; they exhibit complex nonlinear responses, including phenomena like strain stiffening,
fiber reorientation, and buckling.

In summary, a constitutive relation for fibers is a mathematical framework that allows us to
understand, model, and predict the complex mechanical behavior of these critical components of
the extracellular matrix. It bridges the gap between experimental observations and theoretical
understanding, facilitating advances in fields ranging from biology and medicine to biomechanics
and tissue engineering.
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1.5 Summary

In preceding sections, we unveiled instances of the intricate mechanical conversation between
cells and the ECM. In particular, we illuminated the role of the intrinsic actomyosin machinery,
enabling cellular contractions that, in turn, exert tractions upon the fibrous ECM. This dynamic
interplay manifests as spatial patterns of localized deformation [26, 52, 71, 74, 77]. While the
exact mechanism for the formation of these patterns remains elusive, compelling evidence
supports their pivotal role in intercellular mechanical communication, cell motility and invasion.
These patterns are characterized by fiber alignment and profound material densification,
localized within tethers linking neighboring cell assemblies such as tumors [31, 71] or individual
cells [52, 77]. These tethers stand as bands of heightened density, up to three to fivefold denser
than the surrounding matrix.
At the core of investigating these phenomena lies the mechanical symphony of natural fibrous
matrices, orchestrated by the behavior of their intrinsic fibers. Consequently, the exploration of
ECM deformations rests upon understanding the individual fiber’s response to external forces.
With this in mind, we delved into the nonlinear elasticity of fibers, a characteristic unveiled
by prior investigations [34, 80]. This quality sheds light on why cell-induced deformations
reverberate far beyond the confines of cell boundaries [52, 69] facilitating profound intercellular
exchanges. Later on, we discussed that this nonlinearity is manifested by strain stiffening in
tension [32, 57, 75, 78, 80] and buckling of fibers in compression [8, 40, 49, 52]. Amidst this
exploration, we cast a spotlight on an intriguing facet of fiber mechanics: the traces of instability
that surface when fibers are subjected to compressive loads [26, 43, 76]. Finally, we touched
upon how the combination of computational models and constitutive relations of fiber behavior
can contribute to deepening our comprehension of ECM mechanics amidst the transformative
dance orchestrated by cell-induced deformations.

Given the aforementioned context, the primary aim of this thesis is to construct models that
encompass the distinctive innate traits of fiber morphology and mechanics. Through this, the
thesis endeavors to unravel the intricate interplay of compression instability, shedding light on
the deformation patterns entwined with ECM densification, the emergence of tethers, and the
alignment of fibers.
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Scope of the thesis

τὸ γὰρ μὴ τυχόντως ἀλλ᾽ ἕνεκά
τινος ἐν τοῖς τῆς φύσεως ἔργοις
ἐστὶ καὶ μάλιστα· οὗ δ᾽ ἕνεκα
συνέστηκεν ἢ γέγονε τέλους,
τὴν τοῦ καλοῦ χώραν εἴληφεν.

Ἀριστοτέλης, Περὶ ζῴων μορίων

Studying Extracellular Matrix (ECM) deformations holds profound significance as it
unveils the choreography of life’s intricate mechanics. By delving into how this dynamic
web responds to forces, we decipher the language of tissues, unveiling secrets crucial

for both health and disease. Understanding ECM deformations unravels the essence of tissue
development, function, and dysfunction. It paves the path to therapeutic insights, enabling
us to intervene and heal when this delicate dance falters. In this exploration lies the bridge
between biology and mechanics, weaving a tapestry of knowledge that enriches our grasp of
life’s intricacies.

Considering the unique mechanical characteristics exhibited by fibers in tension and com-
pression —namely, strain stiffening and buckling— numerous models have been developed
over recent decades [2, 24, 27, 44, 48, 52, 65, 66, 73, 82]. These models strive to replicate
ECM responses under cell-induced loading and to delve into the intricate phenomena of fiber
alignment, tether creation, and the far-reaching propagation of forces and displacements. Despite
delving into the nonlinear facets of fiber behavior, these methodologies are constrained by their
focus on stable fiber responses and occasionally modest deformations. However, it is essential
to note that none of these studies have ventured to address fiber instability.
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The work presented herein attempts to fill this gap. Considering the unique innate traits
of fiber morphology and mechanics, our objective is to develop models that account for these
features. Our aim here is to scrutinize the significance of fiber compression instabilities in
shaping the deformation patterns associated with ECM densification, the emergence of tethers,
and the alignment of fibers.

We introduce two distinct families of fiber constitutive relations, each possessing unique
nonlinear and stability attributes. Within Family 1, stiffness exhibits a positive but decreasing
trend as compression intensifies. On the other hand, Family 2 entails a stretch instability
phase, where stiffness becomes negative at extreme compressions. Family 1 embodies the
traditional view of post-buckling behavior and is similar with models that have been used in
[2, 24, 27, 44, 48, 52, 65, 66, 73, 82], while Family 2 is a more radical model, incorporating
recent experimental observations on buckling of hierarchical beams [76].

The aim of this work is to develop macroscopic models and perform simulations with the
two constitutive families, in order to:

• capture the formation of tethers that bridge contracting centers, as well as the wrinkles
emanating around each center, as observed in [26, 74, 77],

• capture fiber enhanced alignment,

• investigate the property of long-range mechanosensing,

• explore fiber compression instabilities and their implication in the phenomena above.
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Modelling the Extracellular Matrix

ἀρχὴ γὰρ λέγεται μὲν ἥμισυ
παντὸς ἐν ταῖς παροιμίαις
ἔργου [...] τὸ δ᾽ ἔστιν τε, ὡς ἐμοὶ
φαίνεται, πλέον ἢ τὸ ἥμισυ [...]

Πλάτων, Νόμοι/ΣΤ'

This chapter contains the methodology followed in order to build the proposed compu-
tational and mathematical models. The first section introduces how we construct an
artificial network that represents the fibrous matrix. The next sections concentrate on

the mechanical characteristics of fibers, the notion behind their modelling and introduce the
model families and the mechanisms each tackles. The section closes with the formulation of the
computational problem. Theoretical background is provided when necessary.

Notation:
α . . . lower case letters denote a constant scalar
x . . . bold lower case letters denote vectors
X . . . bold upper case letters denote tensors
I . . . identity tensor
xi . . . i component of vector x
X i j . . . i j component of tensor/matrix X
IRn . . . n-dimensional Real Vector Space
G(·) : IRn → IRn . . . vector function of n variables
G(·) : IRn → IR . . . scalar function of n variables
The definitions of various concepts are introduced according to the textbooks [1], [28], [37].
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3.1 Constructing a fibrous matrix

The Extracellular Matrix (ECM) is the primary load-bearing scaffold within animal tissues.
This scaffold is a complex three-dimensional network composed of collagen, elastin, and various
other fibrous proteins that provide structural support and regulate various cellular functions in
tissues and organs. This fibrous network possesses a geometrically intricate structure that varies
among the various animals tissues and is not well established. Thus, as the in vivo geometry
and topology of ECM are not clearly defined, it is frequently required to employ an artificial
geometric representation of the fibrous matrix (Fig. 3.1).

Figure 3.1. Geometrical representation of a natural fibrous matrix. In order to
model the ECM, it is typical to construct geometric representations. These representations
are networks of segments which correspond to fibers; the ‘fibers’ in these representations
are assumed to have a consistent diameter, resulting in an identical force-extension
behavior for each segment.
Image of the narural collagen network reproduced from [36].

We assume that the ECM is a homogeneous isotropic elastic material equivalent to a uniformly
distributed network of segments which correspond to fibers as depicted in Fig. 3.1. In particu-
lar, we represent the natural ECM as a circular discretized domain which is partitioned into
triangular elements (Fig. 3.5).

Let Ω be a domain, subset of IRn with non-empty interior. A discretization of Ω consists of
subdomains which are defined as:
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Definition 3.1. A subdivision of a domain Ω is a finite collection of element domains K i.
These elements must be located in such a manner that there are no empty spaces between them
and that they do not overlap:

i. Int(K i) ∩ Int(K j) =;, ∀i 6= j

ii. ∪K i =Ω

where Int(K i) is the interior, i.e. set of all points in the element K i, except those which are
located on the surface.
If P is the set of all nodes of the discretized domain Ω, then each node pk ∈ P has a unique
global index k = 1, . . . , N, where N is the number of all nodes in the whole discretized domain.

Figure 3.2. Triangulation of
a square domain in IR2.

A common discretization is a triangulation, in which each
element is a triangle:

Definition 3.2. A triangulation of a domain Ω is a subdivi-
sion consisting of triangles having the property that no vertex
of any triangle lies in the interior of an edge of another triangle.

A discrete setting adopts the physical aspects of a continuum body. In continuum mechanics
materials are modelled as a continuous mass called bodies, which are regions Ω⊆ IR3, where
position vectors x ∈Ω are identified with material points. Thereby, a body consisting of material
points can adopt different states in presence of stimuli, such as forces and heat. These various
regions are called configurations. In particular, in the absence of applied forces bodies have
the so-called natural state, which we call reference configuration. Then, the various states
that a body can occupy are described using deformations from this natural state, defining a
deformed configuration.

Definition 3.3. Deformation: A deformation f :Ω→Ω∗ is a mapping that maps the reference
region Ω onto the deformed region Ω∗.
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Figure 3.3. Deformation of a continuum body in two dimensions. The body occu-
pies the regions Ω,Ω∗ ⊆ IR2 in reference and deformed configurations respectively. A
material point has position vector x in the reference configuration, while in the deformed
configuration its position is given by the position vector y. The mapping Ω→ Ω∗ is
described by the deformation f : IR2 → IR2, x→ y or y= f(x).

If x ∈Ω is the reference position of a material point then y= f(x) ∈Ω∗ is the position vector of
the same point in the deformed configuration.
The vector u(x) represents the displacement of point x, mathematically defined as the dif-
ference between the final and initial position of a particle:

u(x)= y−x

(3.1) u(x)= f(x)−x

As it appears, a discrete domain is represented by a lattice consisting of triangular elements.
Each vertex corresponds to a vector with initial position pk ∈ IRn for a n-dimensional network,
where k = 1, . . . , N, with N to be the total number of vertices. A discrete setting adopts the
physical aspects of a continuum body:

• The deformation function f is a piece-wise affine mapping from initial position pk to a
new position p′

k.

• The displacement u is the difference between these two positions p′
k−pk, for each node k.

For a discrete setting such our ECM representation (Fig. 3.5), forces are considered to act only
at the nodes of the network so that the edges, which correspond to network’s fibers, are being
either pulled or compressed. Triangle vertices, where fibers terminate, are the nodes of the
network, so that fiber length corresponds to the length of the segment between two nodes. If the
deformed-position vectors of the fiber end points (nodes) are xi and x j and the undeformed
fiber length is l i j, then we define the effective stretch λ for a single fiber as the distance between
its endpoints divided by its undeformed (reference) length (Fig. 3.4):

(3.2) λi j =
|xi −x j|

l i j
,
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Hence, we have the following cases:

• λ > 1, (tensile stretch) the fiber is under tension

• λ < 1, (compressive stretch) the fiber is being compressed

• λ = 1, (undeformed) the fiber is relaxed.

����
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����
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Figure 3.4. Effective stretch λ of a sin-
gle fiber. λ is defined as the ratio of de-
formed to reference (l0) distance of a fiber’s
endpoints. From left to right: a relaxed
fiber with length l0, a fiber under tension
(λ> 1) and a buckled fiber under compres-
sion (λ< 1). The cyan arrows represent the
applied loads at the fiber’s endpoints.

3.2 Modelling the fibers

Figure 3.5. ECM representation in our
models. A circular domain partitioned
into triangular elements, representing the
fiber network. Each of the three sides of
an element represents an individual fiber.

When dealing with computations, mathemat-
ical models are employed to depict the inher-
ent mechanical characteristics of a fiber. A
constitutive relation for a fiber serves as a
mathematical framework that defines how the
fiber responds mechanically to different types
of loading. Essentially, it delineates the con-
nection between the fiber’s deformation and
the applied forces. This relationship offers a
quantitative insight into how fibers react to
diverse mechanical situations and it is a func-
tion of the applied force on a fiber and its
stretch as response to this force.

We start by defining the energy of a single
fiber which can can be written as W(λ) as a
function of effective stretch λ. When the fiber
is in tension, it is straight and λ equals the
actual stretch, while W(λ) equals the elastic
energy due to stretching of the fiber. When the
fiber is in compression, it may be buckled, in
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which case the elastic (mostly bending) energy
of the fiber can still be expressed as a function W(λ) of the distance between its endpoints, hence
of the effective stretch λ (Fig. 3.4). In that case W(λ) is chosen to embody the post-buckling
response of the fiber. If the deformed-position vectors of the fiber end points (nodes) are xi

and x j and the undeformed fiber length is l i j, the energy of the fiber is

(3.3) W
( |xi −x j|

l i j

)
,

the quantity within parentheses above being the effective stretch λ of the fiber between nodes i
and j. The force-stretch relation of a single fiber is given by S = S(λ), where

(3.4) S(λ)= dW(λ)
dλ

,

is the fiber force which is non-dimensionalized after dividing by a coefficient with dimensions of
the force.

3.2.1 Network elastic energy

Figure 3.6. Example of potential paths
for a particle to move from point A
to point B. All require the same amount
of work, if the exerted force is conservative.
Thus, the elastic potential energy depends
only on the points A, B and not on the
path that the particle followed.

Physical systems tend to a state of mini-
mum energy. Essentially, in a discrete set-
ting the lowest energy conformation is the
set of lengths and angles between the nodes
which minimize the forces that would other-
wise be pulling them together or pushing them
apart.

We have defined our representation of the
ECM as a finite collection of triangular ele-
ments that discretize a circular domain. In
such a discretization, each node corresponds
to a position vector. The coordinates of each
vector are described according to a well de-
fined vector space. This means that in n-
dimensions, each node is described by a n-
coordinates. The set of all coordinates in the
structure correspond to the degrees of freedom
of the particular problem.

Definition 3.4. The degrees of freedom for a given problem are the number of independent
problem variables which must be specified to uniquely determine a solution.
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Each vertex in a n-dimensional domain has n-degrees of freedom. Let E(x) be the elastic
potential energy function where x is a vector of all nodal positions. Thereby, if N is the total
number of vertices of the domain, the vector x is a n×N dimensional vector and refer to the
degrees of freedom set. Each xi, i = 1,2, . . . , N is an independent variable for the minimization
problem.
The elastic potential energy E(·) is the stored energy of a system that depends only on the
relative position of its particles. The potential energy arises in systems with particles that exert
forces on each other. It is equal to the negative of the work done by these forces which depends
only on the initial and final positions of the particles. These forces, are called conservative
forces. If the exerted force is known, and is a conservative force, then the potential energy can
be obtained by:

(3.5) E =−
∫ xf

xi

Fdx

where xi,xf are the reference and final position vectors of the system, respectively. In Fig. (3.6),
xi corresponds to the position vector of a particle at A on which a force is applied and xf

corresponds to the position vector the particle obtains at B, under the work of the applied
force.

For a discrete system, the total network energy is a summation over the individual energy of
its edges and depends solely on the reference and final positions of the nodes:

(3.6) E(x1, ...,xN)=
F∑

k=1
W(x1, ...,xN)

here F is the number of edges, N the number of nodes in the network.

3.2.2 Constitutive Families

The significance of a constitutive relation for fibers lies in its capacity to capture the intricate
mechanical behavior of these vital structural components. However, fibers are not simple linear
materials; instead, they exhibit intricate nonlinear responses. As we discussed in the previous
chapter, these responses encompass the phenomena of strain stiffening and compression softening
due to buckling. Furthermore, when subjected to compression, fibers exhibit material instabilities
that arise from a special nonlinearity manifested by their intricate hierarchical composition. The
significant ingredients in this nonlinearity lie in the non-monotonic microscopic stress-stretch
response in one dimensional elastic bars as a key feature for material phase transitions [18], as
well as a transition from hardening to softening for high enough compression of hierarchical
beams [76].
Driven by the aforementioned studies along with previous works that highlighted the contribution
of fiber buckling under compression in ECM densification and fiber alignment [26, 52, 66],
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we have developed models that accounts for the unique intrinsic features of fiber morphology
and mechanics. In particular, we have implemented two different families of fiber constitutive
relations with distinct nonlinearity and stability features. In particular:

• Family 1 corresponds to the traditional view of post-buckling behavior of solid homoge-
neous beams as studied in [52, 66]. In homogeneous beams, stiffness decreases gradually
with compression but it remains positive, marking a stable behavior in compression. When
a beam is subjected to an increasing load, it initially remains in a straight, stable state.
However, once a certain critical load is reached, the beam can undergo buckling, where
it loses its stiffness. During post-buckling, the beam can adopt a variety of shapes and
configurations, and it may still be able to carry some load.

• Family 2 is proposed ad hoc and means to resemble the post-buckling behavior of
structures with hierarchical assembly. It is a more radical model which considers the
recent experimental observations in [76] on buckling of hierarchical elastic beams. This
study highlights that, in contrast to a non-hierarchical beam, the hierarchically structured
beam, when subjected to compression, displayed more catastrophic buckling modes. In
particular, they documented a gradual transition from a positive to a negative slope of
the stress-strain response with increasing compression. Consequently, the stress-strain
response was characterized by the presence of a limit load when sudden strong softening
was observed. The negative stiffness in these observations underscores an unstable behavior
under compression. Another example of this instability entails a drinking straw which
experiences sudden stiffness loss due to collapse of its hollow cross-section.

Each model in the proposed constitutive families arises from the one dimensional force-stretch
response of a single fiber. Our models were designed as such to capture fiber stiffening in tension
(λ> 1) [32, 78], but also softening in compression (0<λ< 1) due to buckling [26, 52, 66].
We propose the following families of models:

(3.7) Family 1: S = S1k(λ)=λk −1, k = 1,3,5,7

which includes the linear case (k=1) and Family 2:

(3.8) Family 2: S = S2k(λ)=λk −λk−2, k = 5,7.

For all models (except for the linear one S11), there is stiffening in tension. The difference
between the two constitutive families lies in compression (Fig. 3.7). In all nonlinear Family 1
models, force S and stiffness dS/dλ both increase monotonically with increasing stretch λ. For
the linear model S11 the stiffness remains constant. However, stiffness decreases monotonically
with compression — as λ decreases to zero — until it vanishes in the crushing limit λ→ 0

(Fig. 3.7a). At this limit, force reaches a plateau where it remains approximately constant as
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λ→ 0. Models of Family 1 differ in how abrupt the loss of stiffness is and at which level of
compressive stretch it occurs. Thus, Family-1 fibers can sustain a limited amount of compressive
force even after buckling. Family-1 behavior is consistent with experiments and simulations
of post-buckling in certain homogeneous nonlinear elastic beams [14]. The linear model with
its constant positive stiffness is an exception, intended to model fibers that do not buckle in
compression.

Family-2 models were designed to capture the material instability under compression (as
discussed in Chapter 1, When fibers bear the weight). Stiffness decreases monotonically with
decreasing λ < 1, describing a fiber that initially resists the compressive load, after which
stiffness becomes negative with further compression, entering a compression instability regime
(negative stiffness) up to final collapse as λ→ 0 (Fig. 3.7b).
Suppose one of the models from eq. (3.7) or (3.8) has been chosen. The corresponding elastic
energy of a fiber is then given by:

(3.9) W(λ)=
∫ λ

1
S(γ)dγ

with a minimum at λ= 1 when the fiber is unstretched. Let λ j be the stretch of fiber j, where
j = 1, 2, ..., F and F is the total number of fibers in the network. Therefore, the total fiber
network strain energy eq. (3.6) is equal to

(3.10) E(x1, ...,xN)=
F∑

k=1
W(λk)=

N∑
i=1

N∑
j=1

ki jW
( |xi −x j|

l i j

)

where F is the number of fibers, N the number of nodes and ki j = 1 if there is a fiber joining
nodes i and j, 0 otherwise.
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Figure 3.7. Constitutive family models. For all models (except for the linear S11),
there is stiffening in tension. The difference between the two constitutive families lies in
compression.
(a) Family 1: S1k(λ)=λk −1, k = 1,3,5,7.
In all nonlinear Family 1 models, force S and stiffness dS/dλ both increase monotonically
with increasing stretch λ. Stiffness decreases monotonically with compression -as λ

decreases to zero. Force reaches a plateau where it remains approximately constant as
λ→ 0. Models of Family 1 differ in how abrupt the loss of stiffness is and at which level
of compressive stretch it occurs. Thus Family-1 fibers can sustain a limited amount of
compressive force even after buckling.
(b) Family 2: S2k(λ)=λk −λk−2, k = 5,7.
Stiffness decreases monotonically with decreasing λ < 1 as the fiber initially resists
the compressive load, after which stiffness becomes negative with further compression,
entering a compression instability regime (negative stiffness) up to final collapse as λ→ 0.

3.3 Problem Formulation

3.3.1 Cell Models

Let us assume that a homogeneous fibrous matrix is defined within a domain Ω and is described
by one of the models in (3.7) or (3.8). We motivate our model by considering cell-induced
displacements within the matrix. In particular, we are interested in deformations caused by
the contraction of embedded cells. Cells are modelled as circular cavities within the domain Ω.
The i th cavity has radius r i, i = {1,2,3, ...n}. In order to simulate cell contraction, the simplest
way is to impose boundary conditions to the corresponding cavity (Fig. 3.8a). A homogeneous
contraction corresponds to a radial contractile displacement of magnitude r i− r′i, where r′i
is the radius of the deformed i th cavity. The vector function gi(x) is the displacement vector
for a given position vector x on the undeformed cell boundary. The displacements with radial
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symmetry are given by:

(3.11) gi(x)= u(r i)
r i

x

where

(3.12) u(r i)=−u0, u0 > 0

is the inward radial displacement (cell contraction). Note that for u0 < 0 the eq. (3.12) denotes
an outward radial displacement and the cell expands. Simulations with n cells involve n distinct
cavities with the same contractile displacement applied on the boundary of each.

As mentioned above, the natural ECM in our simulations is introduced as a circular domain
partitioned into triangular elements. Let us assume the circular matrix has a radius R. The
centre of the circular cavity representing the cell coincides then with the centre of the matrix
(Fig. 3.7b). Thus, the domain containing the fiber network is an annulus with rc < r < R, where
rc is the cell radius and r = |x| is the radial distance from the domain centre of the node with
position vector x. The boundary conditions in eq. (3.11) are applied on the nodes of the cavity.

� �

Figure 3.8. Cell models in the fiber network. (a) A circular cell with radius r i is
attached to the matrix (green area). After the cell contracts homogeneously, it occupies the
area of the dashed circle with radius r′i. For a given position vector x on the undeformed
cell boundary (bold circle), gi(x) denotes the radial displacement vector. (b) Example of
our 2D discrete fiber network containing one cell. Each edge corresponds to an individual
fiber. The cavity represents a cell with undeformed radius rc.
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3.3.2 Preserving Orientation

Revisiting once more the continuum theory and the deformation of bodies, recall in eq. (3.1)
the vector u(x) representing the displacement of point x, defined as the difference between the
final and initial position of a particle, eq. (3.1): u(x)= f(x)−x, where f(·) is the deformation.
If we apply the gradient with respect to x to the above equation, we get that:

∇f(x)=∇u(x)+∇x

(3.13) F=∇u+I

where F=∇f(x) is the Deformation Gradient Tensor, with components:

(3.14) Fi j = ∂ f i

∂x j
i, j = 1,2,3

The deformation gradient F determines local length ratios (deformed/reference length) as well
as other geometric changes such as changes in angles or rotations.
Essentially, the deformation Gradient F=∇f(x) is a matrix, since f is a vector function. Taking
the determinant detF, we have the Jacobian Determinant J of the mapping f which defines
the local volume ratio of the transformed volume devided by the reference volume
of a small region around a material point with reference position vector x.

Now that we have defined the deformation gradient F and the geometrical meaning of its
determinant, we can refer to the properties of a deformation f defined in domain Ω:

(i) f is 1-1, globally invertible, and onto.

(ii) f ∈ C1(Ω), i.e. is continuously differentiable.

(iii) The Jacobian Determinant J= det∇f(x)> 0,∀x ∈Ω.

The positive determinant in (iii) is essential as it ensures that orientation in the deformed
configuration will be preserved. In the opposite case, J= det∇f(x)< 0, a deformation would
include material snap-through which involve interpenetration of matter and orientation reversal,
both physically unacceptable. Zero determinants are not accepted either, as they refer to matters
squeezed down to zero volumes. This condition regarding orientation-preservation corresponds
to a natural physical constraint in elasticity as well as in many other fields.

The Jacobian determinant is the ratio of deformed volume to the reference one, which in two
dimensions is the ratio between the corresponding oriented areas. For a triangulized domain,
the Jacobian determinant is defined at each triangle, given the initial and final position vectors
of their respective nodes. In particular:
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Consider the following domain consisting of two elements, K1 and K2. Assume that a force
acting to a node of the network, induces changes that lead to the deformed domain on the
right:

p1 p2

p3

p4

lo

K1

K2

p′
1 p′

2

p′
3p′

4

L

K ′
1

K ′
2

Figure 3.9. Reference and deformed configurations of two triangular ele-
ments.

As depicted in the schematic, each element is defined by nodes pk, each of which corresponds
to a position vector with coordinates (xk, yk). We focus on element K1, defined by p1,p2,p4.
The area of K1 will be given by the cross product of the vectors a,b as defined below:

p1 p2

p4

b

a
K1

a= (a1,a2) and b= (b1,b2), where a1,a2,b1,b2 are com-
puted by the coordinates of p1,p4 and p1,p2 as:

a= (a1,a2)= (x4 − x1, y4 − y1)

b= (b1,b2)= (x2 − x1, y2 − y1)

In mathematics, the cross product is a binary operation on two vectors in three-dimensional
space IR3. Given two linearly independent vectors a and b, the cross product, a×b, is a vector
that is perpendicular to both a and b. The magnitude of the resulting vector equals the area of
a parallelogram with the vectors for sides, as depicted in the latter schematic.
In a two-dimension space, we introduce the cross product of two vectors, as a scalar :

(3.15) a×b= εi jaib j

where i, j = 1,2 and εi j is the altenator or permutation symbol, in two dimensions, defined as:

εi j =


0, if i = j
1, if i and j are in cyclic order
−1, if i and j are in anticyclic order

In particular, we have:

a×b= ε11a1b1 +ε12a1b2 +ε21a2b1 +ε22a2b2
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where, from the definition above, ε11,ε22 are zero, while ε12 = 1 and ε21 =−1, so we end up with:

a×b= a1b2 −a2b1

or equivalently,

(3.16) a×b=
∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣= Aab

where Aab is scalar and denotes the area of the parallelogram that a and b form. So, the area
of the triangle K1 will be

K1 = Aab

2
Accordingly, we compute the area Aa′b′ defined by the a′ and b′ in order to gain the area of
deformed element K ′

1, using the formula (3.16) for a′ and b′.

Thus,
K ′

1 =
Aa′b′

2
p′

1 p′
2

p′
4

b′

a′ K ′
1

The Jacobian determinant of element K1 will be:

J = K ′
1

K1

or in terms of the vector product for any triangular element with a and b be its two undeformed
vector sides, and ā, b̄ be its deformed sides, we have:

(3.17) J = (ā× b̄) ·k
(a×b) ·k

where k is the out-of-plane vector. Hence, we overall have the following cases:

• J > 1, triangle expansion

• 0 < J < 1, triangle compression

• J = 1, triangle undeformed

• J < 0, orientation reversal, i.e. folding over and interpenetration of matter.

Our initial attempt is to impose displacements on cell boundary nodes, as defined in Section
3.11, Cell Models and minimize the total network energy E(x1, . . . ,xN ) with respect to all
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positions of interior nodes xi, as defined in eq. (3.10). However, allowing for large cell-induced
contractile deformations can result in nonphysical solutions due to interpenetration of matter.
As there is no resistance to fibers crossing through one another in the model, this occurs when
triangular elements fold over and snap through to the other side. Examples are shown in Fig.
A.1 with rectangular triangularized structures where the fibers (edges) behave as linear springs.
The orientational change is an instance of the well-known snap-through instability of structural
mechanics, e.g. [55], and shows that the energy E is non-convex and likely to have multiple
local minima, as well as unstable extrema, even in the case of linear models (as shown in Fig.
A.1).
However, these solutions are physically unacceptable and thus, we introduce an energy penalty
term to rule them out. This penalty prevents two fibers with a shared node from collapsing into
each other. This situation would correspond to the oriented area of the associated triangular
element approaching zero and then becoming negative when the orientation is reversed.

Penalizing the Jacobian in order to preserve orientation
We defined above in eq. (3.17) the Jacobian determinant as the ratio of deformed to undeformed
oriented triangle area. Recall that negative J denotes orientation reversal of the respective
elements, i.e. folding over and interpenetration of matter. The penalty term is chosen as a
function of J,

(3.18) Φ(J)= e−Q(J−b), b,Q > 0

Thus Φ(·)→ 0 as J →∞ and becomes very large for J < 0 (Fig. A.2). Thus, it serves in maintain-
ing positive orientation in the network, as negative orientation (J < 0) is costly in energy. For
elements with positive area ratio, Φ(J) is very small, thereby having essentially no contribution
to the network’s total energy. Physically it corresponds to fibers resisting being crushed together
when network elements are on the verge of collapsing and adjacent fibers come into contact.

Consequently, the modified network potential energy in (3.10) takes the final form:

(3.19) Ê(x1, ...,xN)=
F∑

j=1
W(λ j)+

K∑
k=1

Ak ·Φ(Jk)

where F is the total number of fibers in the network, K the total number of elements, W(λ j)

the potential energy of an individual fiber, Ak the reference area that element k occupies and
Jk its oriented area ratio.
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3.3.3 Instability Mechanisms

Nonconvexity due to Large Rotations
Even if the single fiber energy W(λ) from (3.9) is strictly convex with a minimum at λ= 1, the
corresponding energy in eq. (3.3) is a nonconvex function of nodal position vectors xi because
of rotational invariance (Fig. A.3, see also Fig. 4 in [21]). This occurs even for the linear fiber
model (k = 1 in (3.7)). It is a source of nonconvexity of the total energy Ê related to geometric
nonlinearity, and is typically entirely missed when small rotations are assumed.

Element Collapse Instability
Before a triangular element that consists of three fibers (Fig. 3.10a) undergoes snap-through (its
oriented area changes signs) it buckles, or collapses, when a node touches the opposite side. This
is actually an unstable equilibrium of the triangle energy which is thus a nonconvex function of
element oriented area ratio J. Compressing an element triangle along its height (Fig. 3.10a), we
observe that the energy of the triangle as a function W(J) is minimal and vanishes at J = 1 and
at J =−1 (Fig. 3.10b) after the triangle has snapped-through to its mirror image. Since W(J)

is odd it must be nonconvex with an unstable equilibrium at J = 0. In our model, such total
collapse is prevented by the penalty term Φ(J), but bistability and noncovexity of the penalized
energy W(J)+Φ(J) remains (Fig. 3.10c), with an additional, highly compressed solution for
some values of compressive force (Fig. 3.10d). This occurs in both model families, even in
the linear model; it is an example of the well-known snap-through instability of structural
mechanics, e.g., [55].

In order to identify this instability mode in our simulations we define the densification ratio %:

Definition 3.5. The densification ratio % is defined for each triangular element to be the
ratio of deformed to reference density of a hypothetical continuum deforming as the triangle.

This results in:

(3.20) %= 1/J.

We observe that the snap-through element buckling just described is attributable to the loss of
convexity due to large rotations discussed before. The energy of a triangular element with fixed
base as a function of the opposite nodal position is a sum of two sombrero-like energies with
different centers and has precisely two global minima giving rise to the bistable form in (Fig.
3.10b).

Modelling the Extracellular Matrix Chrysovalantou Kalaitzidou



41

Fiber Collapse Instability
In Family-2 networks there is an additional instability: when a fiber is compressed past the point
where the slope of the S(λ) curve becomes negative (Fig. 3.7b), it enters an unstable regime,
tending to collapse to zero effective stretch. For example, the unstable regime for S(λ) = λ7

−λ5 is 0<λ≤ 0.85. Clearly, fiber collapse would imply area collapse of any element (triangle)
with this fiber as a side (Fig. 3.10e). Eventually the penalty term eq. (3.18), (3.19) restabilizes
the element (triangle) against total collapse. An unstable regime remains in general, rendering
fiber compression response essentially biphasic, similar to Fig. 3.10d.
To summarize, all fiber networks are susceptible to element collapse (triangle buckling) instability.
Family-2 networks suffer from an additional fiber collapse instability brought about by total
loss of strength due to buckling of hierarchical fibers. Simple geometry shows that fiber collapse
implies element collapse (Fig. 3.10e), but not vice versa (Fig. 3.10f).

3.3.4 Formulation, software and statistical analysis

By expressing stretches λ j and Jacobians Jk in terms of variable nodal positions xi, i = 1, ..., N,
we express the total energy Ê in eq. (3.19) as a function Ê(x1, ...,xN ) of nodal positions. See eq.
(3.10) for the first term. The boundary conditions are applied on the cell-boundary nodes and
simulate cell-contraction, as described in Section 3.3.1. We then perform energy minimization
on Ê. For the energy minimization procedure the nonlinear conjugate gradient (NCG) method
has been employed [51]. The choice of a NCG method is favored when dealing with non-convex
functions due to their robustness in navigating complex and non-convex landscapes. Other
methods, such as Newton, rely on the positive definiteness of the Hessian matrix, making them
prone to convergence issues or even divergence in non-convex scenarios. In contrast, NCG
algorithms exploit conjugate directions to approximate descent directions, allowing them to
effectively explore non-convex spaces without requiring explicit knowledge of the Hessian or its
eigenvalues. This makes NCG methods more versatile and reliable in optimizing non-convex
functions, as they can gracefully handle regions of the objective function that may exhibit
varying degrees of curvature or non-convexity.

The computational model has been implemented in Python [62]. The triangulation has been
implemented in FEniCS [3] and the optimization method (nonlinear conjugate gradient) has
been provided by SciPy [38]. The statistical analysis has been done in R [63] and for multi-group
comparisons we used one-way analysis of variance (ANOVA). Illustrations and simulations
visualization have been created with Python, R and ParaView [4].
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Figure 3.10. Instability mechanisms. (a) Element collapse Instability (snap-through of
triangular elements) under compressive force S (cyan) b) Energy of a triangular element
as a function of its oriented area ratio J. Note nonconvexity and two-well structure. (c)
Dotted line: as in (b) for J > 0. Solid line: energy with penalty Φ(J) added. (d) Penalized
energy has two stable equilibria J0 and J1 under suitable compressive force (equal to the
slope of the red straight line) (e) Fiber collapse (red fiber) causes triangular element area
collapse. (f) The converse is not true. Triangular element collapse can happen without
fiber collapse.
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3.4 Summary

Remodelling of the Extracellular Matrix (ECM) through cellular forces leads to unique defor-
mation patterns, characterized by increased matrix densification and fiber alignment. These
patterns play pivotal roles in intercellular communication [31, 52, 74, 77], as well as cell motility
and invasion [19, 61]. To investigate these cell-induced ECM deformations, we have developed
a discrete model that considers individual fibers and their inherent mechanical properties.

Figure 3.11. Schematic summary of the current study.

The core assumption of our study is that the mentioned phenomena result from material
instabilities, primarily induced by a specific nonlinearity manifested by fiber buckling under
compression. We have integrated two distinct families of fiber constitutive relations into our
model, each with its unique nonlinearity and stability characteristics.
The first family (Family 1) exhibits a positive but diminishing stiffness as compression increases,
representing the conventional perspective on post-buckling behavior. The second family (Family
2) introduces a more radical model, reflecting recent experimental findings related to the
buckling of hierarchical beams. In this model, Family 2 includes a stretch instability phase,
where stiffness turns negative at extreme compressions. We then perform extensive simulations
of a fiber network containing one or more contracting circular cells, analyze the behavior of all
studied models and juxtapose our results with previous models and experimental observations.
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Main Outcomes

Οὐδὲν ἀτέκμαρτον, οὐδὲν
τυφλόν

Πλούταρχος

This chapter encompasses the primary results extracted from our simulations. Com-
mencing with single contracting cell simulations, we subsequently broaden our analysis
to encompass multi-cellular systems. We dissect our discoveries in alignment with

the objectives of the present research. In each instance, we underline the relevance of our
findings, noting instances where they harmonize or diverge from prior models and experimental
investigations.

4.1 Family-2 models exhibit pronounced patterns of localized
densification, while Family-1 models display more
moderate variations

4.1.1 Densified bands emanate from single-contracting cells

We simulate a single cell contracting within a fibrous network for each one of the models
introduced in eq. (3.7) for Family 1, and in eq. (3.8) for Family 2. Simulations at 50% cell
contraction exhibit patterns of highly localized, severe densification shown in Fig. 4.1a-c, Fig.
4.2a-c. These patterns take the form of bands, emanating from the periphery of the contracting
cell into the surrounding matrix. Plotting the densification ratio of each element versus distance
from the cell shows that in Family-2 models, highly densified elements have densification ratio
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%≈ 3 and reach up to six cell radii into the ECM (Fig. 4.1c). In contrast, Family-1 densified
triangles are confined within two cell radii (Fig. 4.1a,b), with densification ratio % at most 2.

The distribution of fiber stretches within the deformed networks illustrates similarities and
differences between models (Fig. 4.1d-k, Fig. 4.2d-k). Fibers under tension (λ> 1) align roughly
with the radial direction, forming continual paths that propagate a few cell diameters into the
matrix (Fig. 4.1d-f, Fig. 4.2d-f). This happens regardless of the model, though in Family-2
simulations the paths extend further into the matrix (Fig. 4.1f, Fig. 4.2f). When it comes to
compressed fibers, things differ significantly between models (Fig. 4.1g-k, Fig. 4.2g-k). Fibers
under compression (λ< 1) are oriented close to the angular direction, forming loops around the
cell (Fig. 4.1g-k). Within each of these loops, and close to the cell boundary, the stretch is nearly
uniform for Family-1 models (Fig. 4.1g,h). Similar behavior is seen in [24, Fig. 6]. Simulations
with Family 2 exhibit two differences: the distribution of compressive stretch around the cell is
strongly inhomogeneous (Fig. 4.1k), and the maximum compression is up to twice as high as
in Family-1 simulations, 60% compressive strain (or stretch λ ≈ 0.4) compared to 30% (λ ≈
0.7) for Family 1 (colorbars in Fig. 4.1g-k and Fig. 4.2g-k). Compressed Family-2 fibers are
still roughly in the angular direction. The most compressed fibers occur within narrow bands
emanating radially from the cell and reaching as far as 6 deformed cell radii into the matrix
(Fig. 4.1k,m, Fig. 4.2k,n). Furthermore, in Family 2, network triangles comprising the densified
bands are excessively compressed (Fig. 4.1m), as they contain fibers that have nearly collapsed.
Fibers under tension are aligned along the axis of densification bands, roughly perpendicular to
fibers under compression (Fig. 4.1n). When the densification ratio of the networks in Fig. 4.1c
is compared to the compressed fiber distribution of Fig. 4.1k, it becomes clear that regions of
localized excessive densification (%≈ 3) coincide with the bands containing severely compressed
fibers (Fig. 4.1c,k-n, Fig. 4.2c,k).

In Family-1 simulations, severe compressive stretch is not observed at 50% contraction level,
with λ remaining above 0.7, compared to 0.4 for Family 2. Densified zones are much shorter
and confined to the immediate vicinity of the cell (Fig. 4.1a,b, Fig. 4.2a,b) with triangles less
compressed (% at most 2 compared to 3 for Family-2).
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Figure 4.1. Fiber collapse instability and severe localized densification - Part I.
Simulations with a single cell at 50% contraction with Family-1 models λ−1 and λ5 −1
and Family-2 model λ7 −λ5. (a-c) Densification ratio of triangular elements (color plot)
in deformed networks (d-f) tensile stretches and (g-k) compressive stretches in deformed
fibers (m) stretch of deformed fibers and (n) radial orientation distribution of fibers
within the densified bands in Family-2 case (c).
Colorbars: (a-c) densification ratio ρ of the deformed networks, (d-k) fiber stretch λ.
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Figure 4.2. Fiber collapse instability and severe localized densification - Part II.
Complementary to Fig. 4.1 containing simulations of a single cell at 50% contraction
with Family-1 models λ3 −1 and λ7 −1 and Family-2 model λ5 −λ3. (a-c) Densification
ratio of triangular elements (color plot) in deformed networks. (d-f) Tensile stretches
and (g-k) compressive stretches in deformed fibers. (m) Minimum contraction required
for densification to be evident for each one of the models studied. (n) Simulations with
various models of one cell contracting at 50%; x axis: triangular element distance from
cell center, y axis: element densification ratio.
Colorbars: (a-c) densification ratio % of the deformed networks, (d-k) fiber stretch λ
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4.1.2 Intercellular tether formation in multi-cellular systems

We report on simulations involving a pair of cells contracting at 50% of their initial radius,
separated by either 6rc or 4rc, where rc is the cell radius (Fig. 4.3, Fig. 4.4, Fig. 4.5). What
distinguishes these from singe-cell simulations is the spontaneous appearance of intercellular
tethers, composed of thin, roughly parallel bands of high densification and fiber alignment, that
connect the two cells (Fig. 4.3c, Fig. 4.4c). When cells are separated by a larger distance, 6rc,
tethers are generated only with Family-2 models. Additional densified bands emanate radially
from each cell (Fig. 4.3c, Fig. 4.4c) as before. In contrast, in Family-1 simulations, matrix
densification is limited close to the cell boundary and cells remain isolated and disconnected
(Fig. 4.3a,b, Fig. 4.4a,b). When cells are closer together, tethers are generated by all models,
even the linear one (Fig. 4.5). In this case, we observe that they are substantially stronger
in Family-2 simulations, as they extend from one cell to the other and are noticeably wider
compared to Family-1 tethers (Fig. 4.5a-c).

When tethers form, we observe a fraction of fibers, located almost entirely in the intercellular
region, to be highly stretched (Fig. 4.5d-f). These fibers are densely packed and aligned with
the horizontal direction passing through the cell centers, generating straight paths of fibers
connecting the two cells. These paths comprise the tether. At the same time, fibers under
extreme compression occupy the same region as the tensile ones, but their orientation is nearly
perpendicular to the paths of the tensed and aligned fibers (Fig. 4.5g-k). This is true for all
models, though fiber compression magnitude is almost twice as large with Family 2, reaching
approximately 70% compression (Fig. 4.5k). This indicates that in Family-2 tethers, compressed
fibers are well within the regime of the fiber collapse instability. In addition, we observe highly
compressed fibers within the densified bands that emanate radially from the cell periphery (Fig.
4.5k).

When cells are separated by a greater distance, 6rc, and tethers are generated only with
Family-2 models, fiber stretches highlight a significant difference between families (Fig. 4.3d-k,
Fig. 4.4d-k). In Family-2 simulations, fiber distributions and orientations within the tether
are the same as for shorter distances (Fig. 4.3f,m, Fig. 4.4f,k). For Family-1 models, this is no
longer true, as the fiber paths are disrupted and tensile stretches are distributed in a broader
region between cells, without the strong alignment we have with Family-2 models (Fig. 4.3d,e,
Fig. 4.4d,e). This is reflected in angle distributions of the tensile fiber orientation, which are
substantially different across models within the intercellular region (Fig. 4.4m). This distribution
is more localised for Family-2 models, consistent with greater alignment.
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Figure 4.3. Intercellular tether formation - Part I. Simulations with two cells contract-
ing at 50%, for three different models (three columns in a-k). Cell centers are separated
by 6rc, where rc is the undeformed cell radius. (a-c) densification ratio of triangular
elements (color plot) in deformed networks (d-f) tensile stretches and (g-k) compressive
stretches of deformed fibers (m) orientation distribution of deformed fibers within the
densified zones (tether and radial bands) in Family-2 case (c) and within the highlighted
non-densified zones. Horizontal direction is the one parallel to the axis connecting the
cell centres. Radial direction is the one passing through the cell centre.
Colorbars: (a-c) densification ratio % of the deformed networks, (d-k) fiber stretch.
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Figure 4.4. Intercellular tether formation - Part II. Complementary to Fig. 4.3
containing predictions for the remaining models. Simulations with two cells contracting
at 50%. Cell centers are separated by 6rc, where rc is the undeformed cell radius. (a-b)
densification ratio of triangular elements (color plot) in deformed networks (d-f) tensile
stretches and (g-k) compressive stretches of deformed fibers. (m) Orientation distribution
of fibers under tension (stretch λ> 1) within the intercellular region across all models.
Each violin corresponds to each one of the models studied and shows the distribution of
fiber horizontal direction (in degrees), ∗∗∗p−value < 0.001
Colorbars: (a-c) densification ratio of the deformed networks, (d-k) fiber stretch.
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Excessively tensed fiber angles within the densified region are narrowly distributed about
zero (horizontal direction through cell centers) (Fig. 4.3m). Compressed fibers are distributed
about 80−90◦ within the densified region, compared to a uniform distribution in non-densified
regions (Fig. 4.3m). On the contrary, compressive stretches in Family-1 models are confined to
concentric loops around each individual cell instead of the region between cells, and oriented in
the circumferential direction (Fig. 4.3g,h, Fig. 4.4g,h).

The previous findings hold for 50% contraction. When cells contract more, tethers are
eventually generated for Family-1 models as well. In Fig. 4.6 we present the case of Family-1
model S(λ) = λ5 −1 (eq. (3.7), Fig. 3.7c) with two cells separated by 6rc at four contraction
levels 45%, 55%, 65% and 75%. We observe that densification between the two cells progressively
strengthens. Fiber compression in the cell-cell vicinity is ever-increasing with contraction level,
resulting finally in a solid tether at 75% contraction (Fig. 4.6d).

Working in the same manner for each model separately, we have tested different contraction
levels ranging from 5% to 80% decrease in cell radii, for multiple distances separating the two
cells. Results are summarized in Fig. 4.6e. In particular, for each model we obtain a curve
that indicates the minimum contraction cells should undergo to produce a tether, expressed
as a function of cell distance. That is, above each curve a tether is predicted to form for the
respective model. Clearly, Family-2 models are able to sustain tether formation for moderate
contraction levels ≤ 50%, and for relatively large cell-cell distances (up to 11rc). On the contrary,
regarding Family-1 models for the same contraction levels ≤ 50%, a full tether is formed when
cells have a distance at most 5rc.
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Figure 4.5. Intercellular tether formation - Part III. Simulations with two cells
contracting at 50%. As in Fig. 4.3, Fig. 4.4 except that cell centers are separated by 4rc,
where rc is the undeformed cell radius. (a-b) densification ratio of triangular elements
(color plot) in deformed networks (d-f) tensile stretches and (g-k) compressive stretches
of deformed fibers. We observe densification around each cell boundary, which extends
towards the neighboring cell. Tethers are rather weak for Family-1 cases (a-b) and signif-
icantly stronger with Family-2 (c). Within tethers, densification ratio is three times larger
than the rest of the matrix. In the intercellular region, fibers under tension are directed
towards the neighboring cell so that they form continual paths connecting the two cells.
In these paths, fibers under tension are almost perfectly aligned with the horizontal line
connecting the two cells. In Family-2 case (f) excessive tensile stretches are concentrated
only within the tether-region. Severely compressed fibers (g-k) locate in the intercellular
domain, being roughly perpendicular to fibers under tension.
Colorbars: (a-c) densification ratio of the deformed networks, (d-k) fiber stretch.
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Figure 4.6. Tether formation in Family-1 networks. Simulations with two cells con-
tracting at different levels in a Family-1 network (model S(λ)=λ5 −1). Cell centers have
distance 6rc, where rc is the undeformed cell radius. (a-d) Densification ratio color plot of
triangular elements (up), tensile (middle) and compressive (bottom) stretches of deformed
fibers at each contraction step. (e) Contraction versus cell-cell distance required
for tether formation in various models. Simulations with two cells contracting in
the range 5%−80% decrease in cell radius (y axis). Cells are separated by a distance
proportional to cell undeformed radius r (x axis). Each curve corresponds to a different
model and depicts the minimum contraction level required for a solid tether joining the
cells as a function of distance separating them.
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4.1.3 Bridges across multi-cellular systems

We proceed by exploring simulations with more than two cells contracting in regard to matrix
densification. We start with two cells separated by a certain distance (Fig. 4.7a) and consecutively
induce cells in the matrix, with the same level of contraction as the reference pair. The distance
between the initial cells is kept constant for all ensuing simulations (Fig. 4.7, b to e). Starting
with the initial pair (Fig. 4.7a), we observe matrix densification between the two contractile
cells and radial densified emanations around each one of them. When a third cell is added
to the contractile pair, it attracts the matrix away from the tether bridging the original pair
and, thus, the tether becomes less intense (Fig. 4.7b). As more cells are progressively induced,
matrix densification between the first pair decreases accordingly, until it is finally vanished (Fig.
4.7, b to e). In addition, these simulations depict the preference of each cell to bond with the
nearest adjacent cell. For example, when a third cell is induced in the matrix (Fig. 4.7b), it
interconnects with the nearest neighbouring cell, while we observe a weak yet visible tendency
towards the cell located further. But when a cell is added in the vicinity of these non-connected
cells, we see tethers formed between the new entry and each one of the cells in concern, as the
former is close enough to apply pulling forces that induce matrix densification (Fig. 4.7d).

Figure 4.7. Axial fields of densification which interconnect nearest neighbors.
Simulations with identical cells at 50% contraction and model S(λ)=λ7 −λ5. We start
with two cells separated by 5rc, where rc is the undeformed cell radius (a) and sequentially
add one cell at a time (b-e). The initial tether in (a) weakens as more and more cells
are introduced in the system, until it vanishes (e). Cells show preference to their nearest
neighbour in order to interconnect.
Colorbar: densification ratio of the deformed networks.
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4.2 Contrasting the threshold levels for the emergence of
densification within the two model families

4.2.1 Fiber collapse instability is accountable for the sudden growth of
localized densification bands

Given that the primary disparity between the two model families lies in the unstable compression
regime in Family-2 models, where the S(λ) curve has negative slope (Fig. 3.7b), the outcomes in
Section 4.1 imply that fiber collapse instability is accountable for the sudden growth of localized
densification bands. To assess this conjecture, we employ simulations to explore the network’s
response under incremental cell contraction, and capture the onset of densified band formation.

Figure 4.8a-e presents a Family-2 network with a cell undergoing contraction at five
successive stages, spanning from 20% to 40% reduction in the cell reference radius. Initially, as
contraction progresses, the densification ratio of essentially the same few triangles proximal to
the cell increases linearly with cell contraction (Fig. 4.8a-d) up to 35%. Remarkably, at the
next level of (40%) contraction, densified bands around the contracting cell have appeared,
extending noticeably further into the matrix (Fig. 4.8e). Below each plot of Fig. 4.8a-e, in a
”tree diagram”, we plot the stretch of each individual fiber (abscissa) versus distance from the
cell center (ordinate) for each contraction level; color indicates orientation relative to the radial
direction. The evident asymmetry near the base of each tree at larger contractions shows the
difference of compressive versus tensile stretches. Tensile stretches λ> 1 grow gradually with
increasing contraction. In fibers under compression (λ< 1), the stretch first decreases slowly,
with only a few fibers in the unstable regime λ< 0.85 (red dotted line), all of whom are close to
the cell up to 30% contraction. At 35% there is a steep increase in the number of fibers below
the threshold, with stretches down to 0.4 and reaching more than 6 cell radii into the network
by 40% contraction. Going back to the respective densification ratio configurations, we observe
that the jump in fiber compressive stretch and the abrupt appearance of densified bands occur
at the same contraction level between 35% and 40%.

This trend in densification localization is reflected in plots of the maximum over the network
of the densification ratio inverse 1/%max, and the minimum stretch λmin, at each contraction
level (Fig. 4.8f). We note that 1/%max = Jmin, the minimum area ratio, corresponding to
the most compressed triangular element. The densification ratio first increases slowly with
contraction, then there is a steep rise between 35 and 40% contraction, the level at which
extensive localized densification is spotted (Fig. 4.8e). The minimum fiber stretch follows exactly
the same behavior as 1/%max, the two curves in Fig. 4.8f being nearly identical. Initially, λmin

decreases approximately linearly with contraction, namely the minimum stretch occurs at the
cell boundary as dictated by the boundary conditions

(4.1) λmin = 1−γ,
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with γ the fractional cell diameter decrease. Then there is a sudden drop in stretch magnitude
at 35−40% contraction, exactly the level of sudden 1/%max drop in Fig. 4.8f and band growth
in Fig. 4.8e. This shows that element densification is driven by fiber collapse as explained in
Fig. 3.10f. We recall also Fig. 4.1m showing a collapsed red fiber within each densified green
triangle (see Section 3.3.3., Fiber collapse instability)

The behavior of Family-1 networks is different (Fig. 4.8g, Fig. 4.9, Fig. 4.10). The minimal
stretch λmin follows (4.1) all the way up to the largest simulated contraction (red line in Fig.
4.8g), occurs on the cell boundary, and is equal to cell boundary contraction prescribed by
boundary conditions. This shows that fiber collapse is not observed, as expected. In contrast, the
maximal densification ratio does undergo a sudden leap (1/%max drop in Fig. 4.8g) as in Family-2
models, albeit at a higher contraction level of γ≈ 45%−50%. This is evidence of an element
collapse instability (see Section 3.3.3.) that is weaker and requires higher cell contraction than
the fiber collapse instability of Family-2 models. Notably, this instability occurs in the linear
fiber model S(λ)=λ−1 (Fig. 4.9) as well as the nonlinear ones (Fig. 4.10).
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Figure 4.8. Progressive cell contraction and densification localization - Family 2.
(a-e) Simulations with Family-2 model S(λ)=λ7 −λ5 of a cell contracting in the range
5%−80%. Top: densification ratio % color plot at each indicated contraction step. Bottom:
tree diagrams, fiber distance from cell center versus fiber stretch for all fibers in the
network at each contraction step, x axis: fiber stretch, y axis: fiber distance from cell
center. (f,g) Maximum densification ratio inverse 1/%max and minimum stretch value
λmin over the network at each contraction level, for (f) Family-2 S(λ)=λ7 −λ5 and (g)
Family-1 S(λ) = λ−1. Note that 1/%max = Jmin. Red solid line: cell boundary stretch
imposed by boundary conditions.
Colorbars: Densification ratio % and fiber radial orientation (in degrees).
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Figure 4.9. Progressive cell contraction and densification localization - Family 1.
Complementary to Fig. 4.8. Simulations with the linear Family-1 model S(λ)=λ−1 of
a cell contracting in the range 5%−80%. Top: densification ratio % color plot at each
indicated contraction step. Middle: tree diagrams, fiber distance from cell center versus
fiber stretch for all fibers in the network at each contraction step, x axis: fiber stretch, y
axis: fiber distance from cell center. Bottom: triangular element distance from cell center
versus densification area ratio, x axis: densification area ratio %, y axis: triangular element
distance from cell center.
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Figure 4.10. Progressive contraction and densification in single-cell simulations.
As contraction level rises, densification strengthens in the close proximity of the cell for
Family-1 models in (a-b). The bands consisting of densified elements do not propagate far
from the cell boundary, reaching as far as 3 deformed cell radii at 80%. On the contrary, in
Family-2 simulations (c-d) densification is evident at much lower contraction levels, 35%.
With increased contraction, more densified bands are generated and extend substantially
further into the matrix. Colorbar: densification ratio % of deformed networks.
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4.2.2 Identifying instabilities in the emergence of tethers

What are the mechanisms responsible for the significant differences between tethers in the two
Family models? We have witnessed how fiber and element collapse instabilities emerge due
to single-cell contractions. Following the prominent differences between the two families with
respect to tether formation, we report here observations of pairs of cells undergoing progressive
cell contraction. Extremely compressed fibers occur in Family-2 tethers (λmin ≈ 0.3) but not in
Family 1, where λmin ≈ 0.6 (Fig. 4.11a,b). In Family 2, fiber collapse (extreme fiber compression,
sudden λmin drop in Fig. 4.11b) occurs at the same time as extreme densification (sudden 1/%

drop , Fig. 4.11b). On the contrary, in Family 1, we see extreme densification without fiber
collapse (Fig. 4.11a). In Family 2, most collapsed triangles within the tether contain a highly
compressed fiber, oriented within 45° of the vertical (Fig. 4.11d as in Fig. 3.10e). In contrast, in
Family-1, collapsed triangles have nearly horizontal bases, while the other two sides are under
moderate compression, and are closer to horizontal than vertical after collapse (Fig. 4.11c as
in 3.10g). These findings indicate that fiber collapse instability is the main player in Family-2
tethers, whereas the dominant role in Family-1 tethers is played by element (triangle) collapse
instability.
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Figure 4.11. Mechanisms of densification within tethers in the two Families.
(a-b) Maximum densification ratio inverse 1/%max and minimum stretch value λi

min
over the network at each contraction level excluding fibers on the cell boundary, for
Family-1: S(λ)=λ−1 and Family-2: S(λ)=λ7 −λ5 respectively. Note that 1/%max = Jmin.
Red solid line: cell boundary stretch imposed by boundary conditions. (a) Element area
collapse (yellow dots) occurs without fiber collapse (blue dots), indicating element collapse
instability. (b) Densification (yellow dots) occurs simultaneously with fiber collapse (blue
dots), suggesting fiber collapse instability. (c-d) Stretch of fibers (red: compression; green:
tension) at 80% contraction within a Family-1 tether (c) and Family-2 tether (d). Note
scarcity of compressed fibers despite presence of collapsed triangles in (c), indicating
element collapse instability. In contrast, in (d) most collapsed triangles contain a highly
compressed fiber, pointing towards fiber collapse instability.
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Figure 4.12. Compression instability as dominant mechanism in ECM deforma-
tions. Progressive contraction of two cells with Family-2 model S(λ) = λ7 −λ5. In the
left column, we observe the emergence of the tether bridging the cells (color plots of
densification ratio). At each contraction state, and beneath each of the densification plots,
we depict the stretches of the fibers comprising the densified elements. Note the excessive
fiber alignment within the densified regions (horizontal alignment across the tether, radial
alignment around the contracting cells). In the right column, we depict the fibers of the
solid tether in reverse order, i.e. at each state, we mark the fibers that comprise the
tether at the final contracted state 80%, to inspect the behavior of individual fibers as the
contraction intensifies. With increased contraction, more individual fibers appear to be
extremely compressed, λ< 0.6, which means that they are well within the regime of fiber
collapse instability. As compressed fibers and subsequent triangles collapse, fibers under
tension align almost perfectly in the horizontal direction, forming well-defined fiber paths
that bridge the cells. These observations reveal that (i) the formation of the densified
zones is a direct consequence of fiber compression instability, and (ii) fiber instability
leads to the close alignment of fibers within the densified regions. Overall, alignment and
densification are observed to be integral components of the same underlying mechanism.
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4.3 Long-range mechanosensing

4.3.1 Two fields of displacement propagation

In order to further characterize the deformations due to a single contracting cell, it is essential
to explore how fast or slow the induced displacements decay for each one of the proposed
constitutive models. The quantification of displacements propagation over the disk provides
an insight into cell’s zone of influence, its relevance to cell-contraction and the possible ef-
fects of network’s size. Thereby, we consider cell contractions in the range of 5% to 80% at
different domain sizes, ranging from 5rc to 15rc, where rc is the cell radius, and fit the radial
displacements of the network vertices to:

(4.2) u(r)∝ Ar−n

where u(r) is the radial component of displacement for each node and r denotes its distance
from the center of the contracting cell. Parameters A and n are constants and n > 0 is the decay
power. Linear elasticity predicts n = 1 in two dimensions, therefore we expect n to deviate
from the linear elastic solution, providing evidence that our model captures the slow decay of
displacements in natural ECM networks. Indeed, we report the decay power n to be substantially
lower than one, regardless the constitutive model. Previous studies predicted the presence of
two [24] or more [82] distinct domains of the decay scaling. These domains were defined such as
to discriminate between a near-field regime, where the displacements decay slow with n < 1 in
(4.2), and a far-field regime, where displacements were generally considered to decay with n = 1,
pointing out a transition from a nonlinear to a linear ECM elastic behavior. Here, we argue
that this transition cannot be arbitrarily considered at the same distance from the contracting
cell at all cases, i.e. ruling out the domain size and the magnitude of cell-contraction. Thus,
we devise an iterative method to find the radius R∗ at which the total mean squared error of
the fitted displacements is minimized, with displacements at distance r ≤ R∗ fitted to eq. (4.2)
while for those at distance r > R∗ we explore the following cases:

u(r > R∗)∝ A2r−1(4.3)

u(r > R∗)∝ A2r−1 +Br(4.4)

u(r > R∗)∝ A2r−m +Br(4.5)

While the aforementioned studies, used solely eq. (4.3) to describe the far-field as linear elastic,
here we examine the behavior of the material at this regime using the general elastic solutions
in eq. (4.4), (4.5). In Fig. A.5 and Fig. 4.13, we summarize our results when exploring the
decay power in either one regime, i.e. the whole matrix, or in two regimes, using the method
described above and each of the eq. (4.3-4.5) for the radial displacements in the second regime.
We identify two regimes to describe better the propagation of displacements, as the errors of
fits with any of the above cases are significantly lower (P < .0001) than the ones gained when
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we considered the whole domain with eq.(4.2). Results discussed here concern Family-2 model
S(λ) = λ5 −λ3, however they are common for all constitutive models. More importantly, we
report the significance of eq. (4.4), (4.5) in describing the behavior in the far-field compared to
previously reported eq. (4.3). Even if the difference between these two fitting power-laws is not
statistically significant, it is remarkable to note the behavior of decay power m in the far-field.
The decay power m in the far-field (Fig. 4.13c), is greater than 0.8 or close to linear elastic
solution m = 1, mainly for the largest domains, with clear dependence on cell-contraction. As
domain size decreases and for contraction levels ≥ 40% power m shows a denoting decrease.
These findings, demonstrate the importance of exploring the decay parameter m in the far-field
rather than assuming linear elastic behaviour at all cases. We note that even though the main
zone of influence of the contracting cell appears to be the highly nonlinear near-field, the
magnitude of contraction apparently affects the far-field as well.
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Figure 4.13. Cell contraction and displacements decay. (a-b) Decay power in near-
field at contraction levels ranging from 5% to 80%, for 16 network (domain) sizes. We
observe a monotonic decrease in the decay as contraction progresses, regardless the
domain size, for contractions ≤ 50% (a) while at more extreme contraction levels (b)
displacements’ propagation does not show the same variation. (c) Decay power m in
the far-field. As the domain size increases, the decay power m is close to elastic solution
m = 1. (d) x-axis: decay power n in near-field, y-axis: decay power m in far-field. The
mark size denotes the contraction levels in the range discussed above. We observe that
the two decay powers tend to be equal at small contraction levels in large domain sizes
and at large contraction levels in small domain sizes, which denotes that in the former
case the matrix resembles a linear material while in the latter exhibits high nonlinearity
in its whole domain. Colormap in all subfigures denotes the matrix radius.

Focusing on the nonlinear near-field, we report that decay power decreases linearly with
contraction for the linear case S(λ)=λ−1 and contraction levels ≤ 50%. This linearity is also
evident, yet vaguely disrupted, for family-1 models S(λ)=λk−1, with k = 3,5. For models λ7−1,
λ5 −λ3 and λ7 −λ5 the linearity is evidently lost, and we have a monotonic decrease in decay
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power. This behavior is the same regarding the domain size. For extreme contraction levels,
> 50%, the monotonic decrease is lost and we observe a plateau in decay n, as it deviates only
slightly. This is true for any constitutive relation. These observations are summarized in Fig.
4.14, by taking the mean decay value over all simulated domain sizes at each contraction level.
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Figure 4.14. Cell contraction and mean decay power in the near-field. Mean decay
power in near-field over 16 domain sizes at contraction levels ranging from 5% to 80%.
Decay power decreases linearly with contraction, at least for contraction levels that
reach 50%, for Family-1 models apart from Sλ = λ7 −1. For the latter along with the
Family-2 models there is a monotonic decrease in the decay power. In general, the decay
is substantially lower than one (linear elastic solution) even for the linear case.
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Adding another dimension

οὐ δεῖ τὰς λεωφόρους βαδίζειν
ὁδούς

Πυθαγόρας

Expanding upon the foundation laid in Chapter 3, we took the initial two-dimensional
model and extended it to three dimensions. The 3D model retains the same assumptions
regarding individual fiber mechanics. Before we embark on an exploration of the intricacies of
this extended model, let us first illuminate the rationale guiding its inception.
The ECM in biological tissues is inherently three-dimensional. Using a 3D model allows us to
represent the complex spatial arrangement of ECM fibers and their interactions with cells in a
way closer to reality. The advantages of going beyond two-dimensions can be summarized as:

• Biological tissues have intricate architectures with cells embedded within a 3D ECM
network. This complexity cannot be fully captured in a 2D model, which assumes a flat,
planar structure.

• Many biological processes, such as cell migration, tissue development, and wound heal-
ing, occur in three dimensions. Studying ECM deformations in 3D provides a more
physiologically relevant context for understanding these processes.

• The mechanical behavior of ECM fibers, can vary significantly in different directions.
A 3D model allows for the accurate representation of anisotropic (direction-dependent)
material properties.
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• Creating functional tissues or organs in the lab requires 3D models to mimic the natural
tissue environment. Understanding ECM deformations in three dimensions is critical for
designing and optimizing tissue engineering strategies.

Figure 5.1. ECM representation in three dimensions. A two-dimensional fibrous
matrix has been represented as a circle of radius R discretized into triangular elements
whose edges correspond to individual fibers. In this network, each cell is modelled as
a circular cavity of radius rc. Consequently, in order to expand our networks to three
dimensions, we define the ECM as a sphere of radius R where cells are modelled as
smaller spheres (with radius rc << R) embedded in the 3D network. Just like our 2D
networks, the 3D representations are networks of segments which correspond to fibers;
recall that the ‘fibers’ are assumed to have a consistent diameter, resulting in an identical
force-extension behavior for each segment.

The ECM in three dimensions
We have represented the two-dimensional ECM as a discrete domain, represented by a circular
lattice of radius R consisting of triangular elements (Fig. 3.5). Expanding this setting to three-
dimensions involves a geometrical rearrangement that keeps the initial 2D symmetry. Thus, the
3D representation of the natural ECM is a three-dimensional analogue to a two-dimensional
circle: a sphere of radius R where cells are modelled as smaller spheres of radius rc (Fig. 5.1).
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The discretization of a spherical domain corresponds to its division into tetrahedral elements.
Each tetrahedron is a polyhedron composed of four triangular facets, six straight edges, and
four vertices (Fig. 5.2).

Figure 5.2. Network discretization in three dimensions. A three-dimensional fibrous
matrix is represented as a sphere of radius R discretized into tetrahedral elements. Each
tetrahedron is composed of four triangular facets, four vertices and six edges which
correspond to individual fibers.

Each vertex corresponds to a vector with initial position pk ∈ IR3, where k = 1, . . . , N, with N

to be the total number of vertices. Just like the two-dimensional problem, forces are considered
to act only at the nodes of the network so that the edges, corresponding to network’s fibers,
are being either pulled or compressed. Recall that:

• λ > 1, (tensile stretch) the fiber is under tension

• λ < 1, (compressive stretch) the fiber is being compressed

• λ = 1, (undeformed) the fiber is relaxed.

The 3D problem formulation follows the two-dimensional as described in Chapter 3. In particular,
we impose boundary conditions on the boundary nodes of the cell-spheres in order to simulate
cell-contraction and the optimization problem minimizes the total energy of the system, as
defined in eq. (3.19):

(5.1) Ê(x1, ...,xN)=
F∑

j=1
W(λ j)+

K∑
k=1

Ak ·Φ(Jk)
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where F is the total number of fibers in the 3D network, K the total number of tetrahedral
elements, W(λ j) the potential energy of an individual fiber, Ak the reference volume that
element k occupies and Jk its volume ratio.

Recall that the Jacobian determinant J was defined in 2D eq. (3.17) as the ratio of deformed
to undeformed oriented triangle area. Accordingly, in three-dimensions J is defined as ratio
of deformed to undeformed oriented tetrahedral volume. In order to keep consistency between
the two approaches — two and three dimensions — in maintaining positive orientation in the
network, we make use of the same penalty term as a function of J, as defined in eq. (3.18):

(5.2) Φ(J)= e−Q(J−b), b,Q > 0

5.1 Preliminary results

Adhering to the same methodology employed in two dimensions, we proceed to conduct
simulations involving either a singular cell or pairs of cells undergoing contraction within a
fibrous network for each of the models introduced in eq. (3.7) for Family 1, and in eq. (3.8)
for Family 2. When considering solitary cells, it is pertinent to note that the centers of both
the cell-sphere and the domain-sphere coincide. In case of pairs of cells, the centers of the
cell-spheres coincide with the plane that passes through the center of the domain-sphere. It
is worth mentioning that visualizing simulations in a three-dimensional matrix proves to be
quite intricate. To delve into the phenomenon of matrix densification, we captured planes of
the deformed matrix. Each of these planes intersected through the centers of both the domain
and the cells, effectively bisecting the entire network.
Starting with single cells at 50% contraction, we present results with linear model λ−1 and
Family-2 model λ7 −λ5. Interestingly, simulations with Family-2 model (Fig. 5.3a-b) do not
resemble the irregular and extended hair-like densified bands we had in 2D (Fig. 4.1). However,
the distribution of fiber stretches (Fig. 5.3c-d) within the deformed network depicts an important
similarity. When subjected to tension (λ> 1), fibers tend to align approximately in the radial
direction, as illustrated in Fig. 5.3d. This results in the formation of continuous fiber paths
that extend several cell diameters into the surrounding matrix. However, it is important to
note that this alignment is notably heterogeneous around the contracting cell, leading to
varying path lengths in different directions. Conversely, fibers experiencing compression (λ< 1)

tend to orient themselves closer to the angular direction, giving rise to loops around the
cell-sphere, as depicted in Figure 5.3c. The distribution of compressive stretch around the cell
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exhibits significant heterogeneity, mirroring observations made in the two-dimensional networks
(Figure 4.1). Notably, the phenomenon of matrix densification also displays a similar level of
inhomogeneity. In the accompanying Fig. 5.4, we illustrate matrix densification by examining
four different planes of the sphere, as previously described. Two key observations emerge from
this analysis: (i) the densification ratio exhibits considerable heterogeneity and irregularity
around the contracting sphere at each plane, and (ii) the distribution of densification ratio at
each slice is distinct and varies across the different planes.

ba

c d

Figure 5.3. Matrix densification and fiber stretches in three dimensions - Part I.
Simulation with Family-2 model λ7−λ5 and a single cell contracting at 50% of its reference
volume. (a) Representation of the deformed 3D matrix. Colorbar: densification volume
ratio % of tetrahedral elements. (b) Close-up of the contracting cell. (c) Compressive
stretches in deformed fibers (λ< 1). (d) Tensile stretches in deformed fibers (λ> 1).
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b

a

Figure 5.4. Densification heterogeneity around contracting spheres. Complemen-
tary to Fig. 5.3. Simulation with Family-2 model λ7 −λ5 and a single cell contracting at
50% of its reference volume. We depict densification ratio % at four different planes of
the network. (a) Example of how a plane is chosen. The red rectangular defines where
the particular plane bisects the 3D network. (b) At each plane, the densification ratio
exhibits considerable heterogeneity and irregularity around the contracting sphere. In
addition, the distribution of densification ratio at each slice is distinct and varies across
the different planes.
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We replicate the analysis using simulations involving the linear Family-1 model, denoted
by λ−1. Similar to the predictions in the two-dimensional model, densification appears to
be concentrated in proximity to the cell boundary (Fig. 5.5, 4.1). Fibers under compression
(λ < 1) are oriented close to the angular direction, just like in the Family-2 case discussed
above, forming loops around the cell. However, within each of these loops, and close to the cell
boundary, the stretch is nearly uniform for the linear case in contrast to the Family-2 case (Fig.
5.3c, Fig. 5.5c). In addition, the maximum compression is up to twice as high as in Family-1
simulations, 60% compression (or stretch λ ≈ 0,4) compared to 30% (λ ≈ 0,7) for Family 1.
Once more, these discoveries align with the observations in the two-dimensional model, where
compressive stretches display a comparable uniform distribution around the contracting cell
and the difference in compressive magnitude is similarly noticeable. Fibers under tension (λ> 1)

align roughly with the radial direction, forming again continual paths that propagate a few cell
diameters into the matrix. One important difference with Family-2 prediction is that, fibers
overall reach higher levels of tension with the linear model compared to Family-2 (Fig. 5.3d,
Fig. 5.5d).

When it comes to matrix densification, distinctions arise between the two models. As
depicted in Figure 5.6, we analyze matrix densification using the same four planes of the sphere
that were employed for the Family-2 model. Two notable observations come to light from this
examination: (i) the densification ratio displays a more uniform and regular pattern around the
contracting sphere, and (ii) the distribution of densification ratio remains consistent across the
various planes, with pronounced densification observed only in very close proximity to the cell
boundary. Both of these observations stand in sharp contrast to the findings in the Family-2
model.
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ba

c d

Figure 5.5. Matrix densification and fiber stretches in three dimensions - Part II.
Simulation with Family-1 model λ−1 and a single cell contracting at 50% of its reference
volume. (a) Representation of the deformed 3D matrix. Colorbar: densification volume
ratio % of tetrahedral elements. (b) Close-up of the contracting cell. (c) Compressive
stretches in deformed fibers (λ< 1). (d) Tensile stretches in deformed fibers (λ> 1).
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b

a

Figure 5.6. Densification distributes uniformly around contracting spheres in
linear networks. Complementary to Fig. 5.5. Simulation with Family-1 model λ−1
and a single cell contracting at 50% of its reference volume. We depict densification
ratio % at four different planes of the network. (a) Example of how a plane is chosen.
The red rectangular defines where the particular plane bisects the 3D network. (b) The
densification ratio displays a more uniform and regular pattern around the contracting
sphere. Additionally, the distribution of densification ratio remains consistent across the
various planes, with pronounced densification observed only in very close proximity to
the cell boundary.
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Tethers in three dimensions

In Chapter 4 we reported on simulations featuring a pair of cells undergoing contraction, with
each cell reduced to 50% of its initial radius. These cells were positioned at separations of
either 6 times the cell radius (6rc) or 4 times the cell radius (4rc), where rc denotes the
cell radius (see Fig. 4.3, Fig. 4.4, Fig. 4.5). Notably, we observed the spontaneous emergence
of intercellular tethers. These tethers were characterized by slender, roughly parallel bands
exhibiting heightened densification and fiber alignment, effectively linking the two cells together.
When cells were separated by larger distances, tethers were generated only with Family-2
models. In contrast, for Family-1 models, cells necessitated a significantly higher degree of
contraction to initiate tether formation. Additional densified bands emanated radially from each
cell (Fig. 4.3c, Fig. 4.4c). In Family-1 simulations, matrix densification is limited close to the
cell boundary and cells remain isolated and disconnected (Fig. 4.3a,b, Fig. 4.4a,b). Repeating
simulations with pairs of cells with the 3D network, we observe the same behavior. We report
on simulations with cells separated by 5rc, involving the linear Family-1 model, denoted by
λ−1 and Family-2 model λ7 −λ5, Fig. 5.7. We observe a tether connecting the two cell-spheres
with Family-2 model, while in Family-1 case the cells appear to be isolated with densification
restricted only in the close proximity of the cells. Additionally, we report the intense densification
around each contracting cell in Family-2 case, which sharply contrasts with the more modest
densification levels observed in the Family-1 case. Focusing on the tether that formed (Fig.
5.7b), we depict its structure at the midpoint between the cells by examining two planes that
intersect through the center, Fig. 5.8. Remarkably, the tether exhibits a notably irregular and
disrupted structure, aligning with predictions from 2D networks. We see densification extending
towards various directions with no certain preference. Additionally, we note that its geometry
does not adhere to any specific pattern, such as a cylindrical shape, but rather, it appears
entirely irregular. When tether is formed (Family-2 model), we observe a fraction of fibers,
located almost entirely in the intercellular region, to be highly stretched (Fig. 5.9b). These
fibers are aligned with the horizontal direction passing through the cell centers, generating
straight paths of fibers connecting the two cells. These paths comprise the tether. At the same
time, fibers under extreme compression occupy the same region as the tensile ones, but their
orientation is nearly perpendicular to the paths of the tensed and aligned fibers (Fig. 5.9b).
Fiber compression magnitude is almost twice as large with Family 2, reaching approximately
70% compression. This indicates that in Family-2 tethers, compressed fibers are well within the
regime of the fiber collapse instability. In addition, we observe highly compressed fibers within
loops surrounding the cells. In these loops, the distribution of fiber stretch is inhomogeneous,
as we discussed in single-cell simulations. For Family-1 model λ−1, the are no fiber paths and
tensile stretches are distributed in a broader region between cells, without the strong alignment
we have with Family-2 model. In addition, compressive stretches in Family-1 prediction are
confined to concentric loops around each individual cell instead of the region between cells, and
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oriented in the circumferential direction.

b

a

Figure 5.7. Tethers in three dimensions. Simulations with two cells contracting at 50%.
Cell centers are separated by 5rc, where rc is the undeformed cell radius. Color plot of
densification ratio % of tetrahedral elements in deformed networks with (a) Family-1
model λ−1 and (b) Family-2 model λ7 −λ5.
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a

Figure 5.8. The geometry of a 3D tether. Complementary to Fig. 5.7. Tether structure
at the midpoint between the contracting cells at two highlighted planes that intersect
through network’s center. The tether exhibits a notably irregular and disrupted structure.
We see densification extending towards various directions with no certain preference.
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Figure 5.9. Fiber stretch distributions in 3D networks. Tensile and compressive
stretches of deformed fibers in (a) Family-1, λ−1 and (b) Family-2, λ7−λ5. In Family-2,
fibers under tension are aligned with the horizontal direction passing through the cell
centers, generating straight paths that connect the two cells. These paths comprise
the tether, Fig. 5.7. Notably, fibers experiencing extreme compression occupy the same
spatial domain as those undergoing tension. Furthermore, we observe highly compressed
fibers forming loops around the cells. Within these loops, the distribution of fiber stretch
displays significant heterogeneity. In the case of the Family-1 model with λ−1, there are no
discernible fiber paths, and tensile stretches are dispersed across a broader region between
cells without the pronounced alignment observed in the Family-2 model. Additionally,
compressive stretches in the Family-1 model are primarily confined to concentric loops
around each individual cell, as opposed to being distributed across the intercellular region.
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5.2 Brief discussion and challenges

Developing a three-dimensional fiber network to explore tether formation and fiber alignment
is a significant undertaking. Introducing the intricacies of various family models, along with
the associated geometric complexities and computational demands, further amplifies the level
of challenge. However, this study underscores the existence of material instabilities under
compression. The outcomes derived from the three-dimensional model, even preliminary, provide
additional support for our initial hypothesis. Simulations with either one or two cells, depict the
difference between the two family models and, in particular, the mechanism for fiber buckling
induced in Family 2. These preliminary results highlight the presence of severely compressed
fibers in the majority of tetrahedral elements within densified network regions. This compellingly
suggests that the mechanism responsible for densification in Family-2 networks is the instability
associated with fiber collapse, aligning with predictions from the 2D model. Notably, fiber
collapse is not encountered in the case of Family-1 simulations. Additionally, a significant
observation pertains to fiber alignment. Irrespective of the model employed, our simulations
reveal that excessive fiber alignment coincides with the same locations within the ECM where
densification takes place (Fig. 5.9). This phenomenon holds true for both single-cell and two-cell
scenarios. In Family 2, particularly within tethers and bands, we note a consistent alignment of
the stretched sides of densified elements with each other. Conversely, the highly compressed side
exhibits a rough perpendicular orientation to them. This observation provides further evidence
that the instability leading to fiber collapse is responsible for the alignment of stretched fibers
within densified regions.

The above overall add to our 2D analysis and the interconnection of fiber collapse instability
with matrix densification and fiber alignment. Complementary to these findings, the 3D

simulations shed light on a crucial aspect of natural ECM: anisotropy. Fibers within a network
often exhibit anisotropic properties, meaning their mechanical characteristics vary along different
directions. The outcomes of our 3D analysis unveil a notable heterogeneity in matrix densification
surrounding contracting cells. Particularly noteworthy is the significant heterogeneity observed
across the tether connecting two contracting cells (Fig. 5.8). This irregularity and the disrupted
structure of the densified tether are attributed to the pronounced anisotropic behavior of the
fibers.

When modelling the mechanical properties of a collagen network, transitioning from two
dimensions to three dimensions introduces several distinct challenges:

• Increased Computational Complexity: In three dimensions, the computational re-
quirements significantly increases. The number of elements, nodes, and computations
grows significantly, demanding more computational resources.

• Additional Degrees of Freedom: Three-dimensional models have additional degrees
of freedom, as they account for deformation in three spatial directions, requiring more
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comprehensive and sophisticated modelling techniques.

• Variability: Three-dimensional collagen networks tend to exhibit greater variability in
fiber density, orientation, and arrangement. Capturing this complexity in the model is
more challenging.

• Visualization and Interpretation: Visualizing and interpreting results from three-
dimensional models is more complex compared to two-dimensional models due to the
added spatial dimension.

While the results presented here are preliminary, they unmistakably showcase the potential and
significance of expanding the model into three dimensions. This expansion introduces added
complexity, but concurrently, it unveils a new avenue for comprehending material instabilities.
Moreover, it paves the way for the exploration of larger-scale instabilities.
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Discussion

Ἡ δ' αὐτάρκεια καὶ τέλος καὶ
βέλτιστον

Ἀριστοτέλης, Πολιτικά Ι

Through modelling and simulations, we demonstrate that material instabilities play
a central role in shaping the mechanical behavior of the fibrous collagen Extracel-
lular Matrix (ECM) when subjected to deformation by contractile biological cells.

We have compared two distinct families of fiber network models: Family 1, characterized by
stable force-stretch responses of individual fibers, and Family 2, exhibiting unstable responses
in compression, akin to the post-buckling behavior observed in hierarchical structures like beams.

Our simulations unveil distinct compression instabilities within each family. In Family 2, we
observe fiber collapse (buckling), while in Family 1, there is the collapse of fiber elements (snap-
through). These instabilities result in the formation of densely packed regions comprising highly
aligned fibers, emanating either from individual contractile cells or connecting neighboring cells,
mirroring observations in experimental settings.

Despite the significant differences in the behavior of the two families, our study underscores the
critical role of buckling and compression instabilities in shaping the characteristics of fibrous
biological tissues. These findings hold implications for our understanding of processes like cancer
invasion and metastasis.
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6.1 Material instabilities play a dominant role in ECM
deformations

Our simulation results have unveiled instability mechanisms that were not previously recognized
in prior research. Specifically, all nonlinear networks are susceptible to an instability termed
as element collapse (triangle buckling), as explained in Chapter 3. Notably, this susceptibility
extends to linear networks when significant rotations are considered. In the case of Family-2
networks, there is an additional instability termed as fiber collapse. This instability arises when
the fibers lose their strength due to buckling under compression, as detailed in Chapter 3.
Simple geometry reveals that fiber collapse implies element collapse (as depicted in Fig. 3.10e),
but not vice versa. Consequently, both instabilities can occur within Family-2 networks. In
contrast, Family-1 networks can experience element collapse, even though individual fibers
exhibit stable behavior. This distinction between these different instabilities is a consequence of
the discrete nature of our model and is not captured by continuum models, even those that
allow instability [26].

In the Family-2 models, we observe a sudden increase in densification occurring concurrently
with the abrupt collapse of fibers, evident in both single-cell and two-cell simulations (as shown in
Fig. 4.8f and Fig. 4.11b). The majority of elements within these densified regions contain severely
compressed fibers (indicated by the red fibers in Fig. 4.11d). This compellingly suggests that
the mechanism responsible for densification in Family-2 networks is the instability associated
with fiber collapse, as explained in Chapter 3 and depicted in Fig. 3.10e. Densification also
occurs in Family-1 networks but requires higher levels of cell contraction. Notably, fiber collapse
is not encountered in this case (as shown in Fig. 4.8g and Fig. 4.11a). Instead, the densification
observed in Family-1 networks is attributed to the collapse of triangular elements (as illustrated
in Fig. 4.11c). Element collapse instability, as detailed in Chapter 3 and depicted in Fig. 3.10f,
plays a central role in the emergence of densified regions within Family-1 networks. These
observations apply to both intercellular tethers and densified zones around single contracting
cells.

An important discovery pertains to the alignment of fibers. Regardless of the model used,
our simulations reveal that excessive fiber alignment occurs concomitantly with densification
and at the same locations within the ECM. This phenomenon is consistent in both single-cell
and two-cell cases (as depicted in Fig. 4.1-Fig. 4.5).

In particular, within Family 1, we observe that severe element compression leads to the alignment
of all sides of densified triangles with each other (as shown in Fig. 4.11c). This alignment is a
direct consequence of the element collapse instability, as illustrated in Fig. 3.10f. Especially
in two-cell simulations, we detect a moderate tendency for fibers to align before tethers form,
particularly evident in Fig. 4.6a and Fig. 4.6b. Once tethers are established, the fibers within
them align almost perfectly (as seen in Fig. 4.6d), and it is within these tethered elements that
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we observe extreme densification.

Within Family 2, in tethers and bands, we observe that the stretched sides of densified elements
align with each other, while the highly compressed side is roughly perpendicular to them (as
depicted in Fig. 4.1m and Fig. 4.11d), evidence that fiber collapse instability brings about the
alignment of stretched fibers within the densified regions.

These significant findings collectively indicate that ECM compression instabilities
are responsible for both matrix densification and fiber alignment.

In general, it is notably easier to establish a tether using Family-2 models compared to
Family-1 models. When considering the same distance between two cells, a tether formation
requires significantly less compression with Family-2 models than with Family-1 models. For
example, for a distance 6rc, where rc is cell radius, the linear model necessitates a substantial
80% compression to initiate tether formation, while a mere 25% compression suffices with the
λ7−λ5 model (Fig. 4.6e). To put it differently, given a fixed level of compression, let’s say 50%,
a Family-1 tether is established when cells are in very close proximity, less than 5rc. On the
contrary, a Family-2 tether can take shape when cells are separated by more than twice that
distance from each other (as demonstrated in Fig. 4.6e).

Our most noteworthy prediction centers around the creation of densified tethers connecting
two cells, accompanied by the emergence of densified radial bands emanating from each cell.
Experimental evidence has shown the existence of high-density zones (tethers) linking clusters
of contractile cells [5, 31, 71, 74]. Furthermore, thinner bands were observed extending from
each cluster [31, 74], and gradually diminishing within the matrix. In a related study [26],
densified tethers and radial bands were also observed, using contracting active particles instead
of living cells, thereby eliminating non-mechanical causes for densification. Fibers within these
tethers exhibit pronounced alignment along the tether axis. Notably, individual cells from each
explant [31, 74] or acinus [71] have been observed to initiate migration along these tethers in an
effort to reach neighboring clusters. Moreover, isolated fibroblasts extended protrusions towards
each other along the tethers formed following their contraction [52]. These studies underscore
the critical role of tethers and radial bands in processes such as cell migration, motility, and
intercellular communication.

Our simulations reveal that the formation of these densified zones is a direct
consequence of compression instabilities. Furthermore, these instabilities lead to
the close alignment of fibers within the densified regions. As a result, alignment
and densification are observed to be integral components of the same underlying
mechanism.

The most crucial application of this research pertains to cancer invasion and metastasis.
Studies involving tumor explants cultured within initially randomly organized matrices have
revealed a fascinating phenomenon. As these tumor explants contract, they induce the alignment
of collagen fibers in the surrounding matrix. This alignment provides individual cancer cells with
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”highway paths” composed of these aligned fibers, enabling them to invade the Extracellular
Matrix (ECM) [59, 61]. In fact, both densification [60] and fiber alignment [59] are considered
prognostic biomarkers for breast carcinoma [12], specifically referring to the presence of “bundles
of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary”
[12]. The development of these features relies on the contractility of cells [61]. It is important
to highlight that these observations apply to both tethers and radial densified bands. In the
case of expanding tumors, a different phenomenon is observed. The densified layer surrounding
them consists of fibers that are parallel (rather than perpendicular) to their boundary [12].
Remarkably, our simulations of expanding cells align with this observation (as depicted in
Appendix, Fig. A.4). Additionally, the alignment of collagen fibers facilitates the transportation
of biochemical molecules between cells [23].
By focusing on the elevated fiber alignment within the tethers, our predictions
underscore the contribution of compression instability in mechanisms related to
cancer related ECM mechanisms.

6.2 Contribution to literature

Family-2 models, characterized by unstable stretch responses, yield clearly defined tethers that
exhibit highly localized densification and fiber alignment in close proximity to the tether axis.
These outcomes align qualitatively with experimental findings [26, 71, 74]. Conversely, in models
featuring a stable stretch response (Family 1), tethers are diffused and lack localization, while
fibers under tension are dispersed throughout the broader intercellular region. Additionally,
tethers in Family 2 models form under physiological levels of cell contraction, approximately
around 50%, as observed experimentally [26, 52, 71]. In contrast, Family-1 models require
extreme levels of contraction for tether formation. Considering these observations, Family-2
models prove to be more suitable than Family-1 models as they better replicate experimental
observations. The instability in the response of Family-2 fibers finds justification in recent
research [76] on the post-buckling behavior of hierarchical structures like ECM fibers [57]
(detailed in Chapter 3).

Significant efforts have been dedicated to modeling the Extracellular Matrix (ECM) in
previous studies [2, 24, 27, 44, 48, 52, 65, 66, 73, 82]. In these investigations, ECM fibers are
typically represented as Timoshenko beams [2, 27], or they are modeled as elements exhibiting
asymmetric elastic responses to extension and compression. These responses are often described
using piecewise linear stress-strain curves or combinations of strain-stiffening and compression
softening intended to simulate fiber buckling [24, 44, 48, 52, 66, 73, 82]. While these approaches
have explored various nonlinear aspects of fiber behavior, they are constrained by stable
stretch responses, typically exhibiting monotonic behavior, and are sometimes limited to small
deformations. In terms of the stretch response, all of these models are conceptually similar
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to our Family-1 models. Notably, none of these previous works explicitly address the role of
instability. In our study, we recognize that instability plays a central role in the emergence of
ECM densification and fiber alignment. Importantly, we demonstrate that instability can occur
even in models with a stable stretch response, such as Family 1, but this instability necessitates
unreasonably high levels of cell contraction. Consequently, we introduce models within Family
2, characterized by stretch responses that become unstable under compression. This specific
instability enables the formation of tethers and fiber alignment under experimentally observed
levels of cell contraction.

Previous studies have indeed explored the concept of fiber alignment within the ECM, as
noted in references [73] and [24]. However, these studies typically considered fiber alignment as
a distinct ECM mechanism, often in relation to intercellular force transmission [73] or matrix
elastic anisotropy [24]. For instance, Sopher et al. [73] proposed that elevated tension within
the intercellular region compels fibers to stretch and align. In our simulations, we observe a
sudden and substantial increase in both densification and fiber alignment compared to the
aforementioned works. This transition occurs when a compression instability is triggered. In the
case of models with stable stretch responses (Family 1), this transition would require much higher
levels of cell contraction than those considered in previous studies [24, 44, 48, 52, 66, 73, 82].
In contrast, our Family-2 models not only require moderate cell contraction levels but also
exhibit much stronger densification. Additionally, the tethers formed are solid and significantly
wider, while the fibers align almost perfectly with the tether axis. These differences highlight
the distinctive characteristics of our proposed models.

The concept of deformation-induced anisotropy has been explored in previous studies [24]
as a potential mechanism for facilitating long-range cell communication. It’s important to
note that the compressive instabilities we investigate in this study lead to a robust form of
anisotropy within the densified state of the network. This anisotropy arises because these
instabilities generate a highly aligned and dense uniaxial distribution of fibers from an initially
roughly isotropic random fiber distribution. Our findings emphasize a significant point: there
exists a single underlying mechanism that unifies densification, fiber alignment, and matrix
anisotropy, and that mechanism is compression instability. These phenomena occur concurrently
within the same localized zones as soon as compression instability is triggered, whether due
to fiber buckling (collapse) or element collapse (snap-through buckling). This observation
underscores the interrelated nature of these ECM responses when subjected to compressive
forces. Compression instability stemming from the buckling of elastic fibers within networks was
initially identified in [43] as a mechanism responsible for localized densification. Similarly, the
continuum model presented in [25] and further developed in [26], also exhibits a compression
instability. This continuum model predicts the formation of highly localized densified tethers
and radial bands, sharing a qualitative similarity with the results presented in our study. The
advantage of our model lies in its ability to capture the discrete nature of actual fibrous networks.
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Consequently, it can distinguish between different types of compression instabilities, buckling
of fibers versus the collapse of fiber elements. Furthermore, our model elucidates the close
relationship between instability, fiber alignment, and densification, providing a comprehensive
understanding of these interconnected phenomena.

6.3 Limitations of the study

Our model has several noteworthy limitations that should be kept in mind when interpreting the
results. Firstly, like many previous models in the field [2, 24, 26, 27, 44, 48, 52, 65, 66, 73, 82],
we have adopted a specific network geometry to represent the fibrous Extracellular Matrix
(ECM). In our case, we have assumed the ECM to be a uniform, isotropic elastic material
represented by a uniformly distributed network of segments, akin to fibers, as shown in Figure
3.5. While these modelling approaches have enhanced our understanding of discrete fiber
networks, the choice of network geometry raises questions about the generalizability of our
results [33]. Another structural aspect of representing a fiber network refers to its connectivity,
meaning the mean number of fibers that meet at a node. For instance, collagen gels have
typically connectivity of 3.5 - 4 [6, 36, 52]. A fully connected two-dimensional network in our
model has a mean connectivity of 6. Therefore, it is important to explore different network
geometries and connectivities, in order to establish a more versatile methodology.

Moreover, the ECM is a highly intricate structure composed of various proteins, fibers, and
other components. Fibrous proteins often interact with one another and with other biomolecules.
Accurately modelling these interactions, including both attractive and repulsive forces, is a
complex task that demands specialized models and experimental observations. In this study, as
well as in most related studies in the literature, we have not accounted for this variability in
macromolecular composition. However, modelling this intricate architecture accurately can be
challenging, thus simplifications are often necessary, even though they may not capture the full
complexity.

Complementary to this, another limitation concerns fiber modelling at different scales, from
the nanoscale to the macroscale, which can be difficult. As a result, some models may not
capture the interactions and behaviors that occur at specific scales. For instance, many fibrous
proteins undergo post-translational modifications that can affect their structure and function
and their interaction with other proteins. Incorporating the effects of these modifications into
models can be extremely challenging. In addition, achieving molecular-level detail in models
of fibrous proteins can be computationally intensive and may not be feasible for large-scale
simulations. Thus, simplified models are often used to strike a balance between accuracy and
computational efficiency.

Finally, our methodology could benefit from enhancements in predictive capabilities, such as
incorporating strain-dependent degradation of collagen [16, 68] and accounting for viscoelastic
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effects in ECM deformations. Viscoelasticity arises from the ECM’s combination of viscous
(fluid-like) and elastic (solid-like) components [46], and addressing these effects could improve
the accuracy of our predictions or even challenge our hypothesis.

6.4 Research Outlook

The limitations highlighted above open up several promising avenues for future research. Among
the most significant opportunities are:

• Exploration of Diverse Network Geometries: Investigating a broader range of network
geometries to understand how different representations of the fibrous ECM impact
mechanical deformations. This can provide insights into the generality of results and help
develop a more versatile modeling framework.

• Incorporation of Macromolecular Variability: Developing models that consider the complex
macromolecular composition of the ECM, accounting for interactions between various
proteins, fibers, and biomolecules. This could involve capturing both attractive and
repulsive forces, reflecting the real-world diversity of ECM components.

• Viscoelasticity Consideration: Investigating the role of viscoelastic effects in ECM defor-
mations by developing models that account for the viscous and elastic components of the
ECM. This can provide a more realistic representation of ECM behavior under various
mechanical scenarios.

• More sophisticated modelling of joints and crosslinking between fibers: Modelling crosslink-
ing allows for a more accurate assessment of the material’s ability to withstand forces,
and can be essential for capturing the material’s viscoelastic properties.

Additionally, given that the current study primarily centers on unraveling the origins
of instabilities in fiber mechanical responses, a prospective expansion of our research could
encompass the exploration of larger-scale instabilities. These could either stand alone or integrate
with some of the strategies outlined above.

Exploring these avenues for further research has the potential to foster a more profound
and all-encompassing comprehension of the mechanical attributes inherent to the Extracellular
Matrix and its significance in diverse biological phenomena.
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Epilogue

ἐντελέχεια < ἐν + τέλος + ἔχω

Ἀριστοτέλης

Cell-generated forces within the Extracellular Matrix (ECM) result in distinctive defor-
mation patterns, characterized by pronounced densification of the matrix and alignment
of its fibers. These patterns are pivotal in intercellular communication, as well as cell

motility and invasion. In this thesis, the primary goal was to explore how the discrete nature of
the fiber network combined with the intricate intrinsic fiber mechanics manifest the emergence
of such patterns. To achieve this, we introduced two distinct families of fiber constitutive
relations, each characterized by unique nonlinearity and stability features. Family 1 exhibits
a positive but diminishing stiffness as compression increases, representing the conventional
perspective on post-buckling behavior. On the other hand, Family 2 introduces a more radical
model, as it incorporates a stretch instability phase which to stiffness becoming negative at
extreme levels of compression.

In conclusion, the significant points of this thesis are:

• Model Distinctions: The thesis highlights the differences between two model families,
Family 1 and Family 2, in the context of simulating ECM behavior and the emergence
of matrix densification and fiber alignment. Regardless of the model used, simulations
reveal that excessive fiber alignment occurs concomitantly with densification and at the
same locations within the ECM. These phenomena are direct consequences of element
collapse instability regarding Family 1 and fiber collapse instability regarding Family 2.

• Family-2 Model Features: Family-2 models, characterized by unstable stretch response
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under compression, result in well-defined tethers with highly localized densification and
fiber alignment near the tether axis.

• Comparison with Previous Models: Previous ECM modelling efforts primarily uti-
lized stable stretch responses (similar in spirit to Family 1) and did not explicitly address
the role of instability. The work presented herein emphasizes that the instability is crucial
in explaining ECM densification and fiber alignment.

• Dominant Role of Compression Instability: Compression instability due to fiber
buckling (Family 2) or element collapse (Family 1) plays a central role in the ECM
densification, fiber alignment, and matrix anisotropy. It unifies these phenomena and
allows them to occur simultaneously.

• Unique Contribution of the Model: The advantage of the presented model lies in
its ability to capture the discrete nature of fibrous networks, enabling the distinction
between different types of compression instabilities and clarifying their relationship with
fiber alignment and densification.

• Relevance to ECM Research: The study’s outcomes have implications for understand-
ing the behavior of the ECM in response to mechanical forces and offer insights into
phenomena like cell-cell communication, tumor invasion, and metastasis.

Gaining a more precise comprehension and modelling capability regarding the intricate mechanics
of ECMs holds the potential to advance our exploration of crucial biological processes like
fibrosis, morphogenesis, and cancer cell invasion. Theoretical modelling of disease states may
offer opportunities to investigate various treatment strategies, forecast disease progression,
and eventually tailor treatment approaches to individual patients. The outcomes of this
study shed light on the broader implications of these mechanical phenomena in intercellular
biomechanical interactions, cancer metastasis, and cell motility. The models implemented
here highlight the role of material instability, specifically the nonlinearity induced by fiber
buckling under compression. The evidence and analysis presented in this thesis emphasize
the significance of compression instability caused by buckling as a fundamental nonlinear
mechanism that governs the mechanical behavior of fibrous ECM. These findings offer new
perspectives on delving into the characteristics of cell-induced deformations responsible for
matrix densification and fiber alignment. Finally, the incorporation of different families of fiber
constitutive relations, ranging from traditional post-buckling behavior to more radical models,
has expanded our understanding of how the discrete nature of fiber networks influences ECM
mechanical responses. This multifaceted approach provides valuable insights into the mechanical
properties of fibrous materials and their significance in diverse biological contexts, offering a
comprehensive foundation for future investigations in the field.

Epilogue Chrysovalantou Kalaitzidou



95

... and as these fibers navigate the labyrinth of forces,
they teach us that strength is not just measured in resis-
tance, but in the ability to adapt, to transform, and to
weave tales of unyielding tenacity, proving that within the
embrace of innate structure lies the resilience to weather
life’s storms.

— Chrysovalantou Kalaitzidou
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A.1 Supplementary figures

a

b

Figure A.1. Interpenetration of matter. (a) Various representations of triangulated
rectangular elements. Each edge in the structures represents a linear spring. Boundary
conditions were applied on the upper boundary nodes by imposing a displacement u =
(h, 0.0), h being the scale to x direction. (b) Deformed structures contain triangles that
have changed orientation, resulting in interpenetration of matter. We see triangles folded
over and also snap-through one into the other.
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No penalty

J

Φ(J)a

b

Figure A.2. Penalizing the Jacobian in order to preserve orientation. (a) Penalty
term Φ(J)= exp(−Q(J−b)), where J is ratio of deformed to undeformed oriented triangle
area. Q > 0 is large and b > 0 is small constant. As a result, negative values of J have
high energy cost, whereas positive values have negligible contribution to the network’s
total energy. (b) Simulations of a cell contracting by 50%, either with or without the
penalty term for the area ratio J. Without penalizing J, the optimizer finds solutions
that are physically unacceptable, as J < 0 corresponds to elements (red) that changed
orientation. Colorbar: J values.
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Figure A.3. Nonconvex energy of a linear fiber. (a) Energy (3.3) of single linear fiber
with one end x j fixed at the origin, as a function of the position vector xi of the other
end (nonconvex surface of revolution of a convex parabola with minimum at 1).
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Figure A.4. Cell expansion. Simulation with S(λ) = λ5 −λ3 of a single cell radially
expanded by 50%.(a) Densification ratio of triangular elements in deformed networks
(b) compressive stretches and (c) tensile stretches of deformed fibers. Note that the
densified layer surrounding the expanding cell consists of tensed fibers, aligned in the
circumferential direction.
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Figure A.5. Boxplots of mean squared errors of the different fitting methods.
Each dot within the boxplots correspond to the mean squared error between the fitted
radial displacement values and the corresponding simulated radial displacements, for
a particular contraction level and domain size. The first three boxes (blue, red and
orange) correspond to fits in two regimes, where the near-field displacements were fitted
to A1r−n and the far-field displacements were fitted to A2r−1, A2r−1+Br or A2r−m +Br,
respectively. The green box includes fits of the whole domain with Ar−n. The difference
between any two-regime fit and the last case is statistically significant. The same applies
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two-regime cases (red and orange), yielding in the importance of exploring the decay
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