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Abstract

In modern applications, high-fidelity computational models are often impractical due to their
slow performance and also lack information about the certainty of their predictions. Deep
learning techniques have recently emerged as a powerful tool for accelerating such predictions.
However, these techniques can be inefficient when confronted with larger and more complex
problems. This thesis introduces innovative deep learning surrogate frameworks that are
scalable, robust, require minimum hyper-parameter tuning, are fast at the inference stage, and
are accurate in forecasting non-linear deformation responses of solid objects. These surrogate
frameworks are constructed using various deep learning techniques under deterministic as well
as Bayesian settings. Bayesian frameworks enable us to capture uncertainties and provide a
means to trust the predictions of the neural network approaches.

This thesis introduces a new geometric deep learning framework, called MAgNET (Multi-channel
Aggregation Network). MAgNET is designed to handle large-dimensional graph-structured data
using an encoder-decoder architecture. MAgNET is built upon the novel MAg (Multichannel
Aggregation) operation, which generalises the concept of multi-channel local operations found
in convolutional neural networks to arbitrary non-grid inputs. The MAg layers are combined
with the novel graph pooling/unpooling operations to form a powerful graph U-Net architecture
capable of efficiently performing supervised learning on large-dimensional graph-structured
data, like complex meshes. Additionally, the thesis demonstrates the use of state-of-the-art
attention-based networks, which have revolutionized various engineering fields but have remained
unexplored for their uses in the field of computational mechanics.

We demonstrate the efficiency and versatility of the proposed frameworks by applying them
to surrogate modeling for non-linear finite element simulations. Our suggested methods,
particularly the MAgNET architecture, possess broad applicability, enabling researchers and
practitioners to explore novel modeling scenarios and applications. Through the open sharing
of the source codes and datasets employed, this thesis not only makes a significant contribution
to the field of surrogate modeling in mechanics but also paves the way for numerous research
opportunities for their utilisation in various engineering and scientific applications.
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of test examples, and ē, σ(e), emax are error metrics defined in Section 5.3.3. . 91

6.1 Properties of deep neural network architectures studied in this work. . . . . . . 102

6.2 Desciption of FEM datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Error metrics over the test set using the proposed NN frameworks. M stands
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Chapter 1

Introduction

Scientific simulations play a significant role in advancing our understanding of complex systems.
They rely on mathematical models and computer-based techniques, that not only help us to gain
insights into real-world scenarios but also make predictions. Traditionally, these mathematical
models are built and tested for hypotheses, which are based on the existing knowledge of the
system being studied. These models are then used to simulate the behaviour of a system under
different conditions. On the other hand, the technological advances in the Industry 4.0 era
have given birth to an immense amount of data, and so the data-driven models. These models
rely on the analysis of data to identify the underlying relationships that can be used to make
predictions and optimize processes.

6

Hypothesis driven 
model

Data driven 
model

Small data Big data

Input Outputmodel

Fig. 1.1 A mathematical model is used to identify the relationships between different quantities of
interest in the system being studied. A model can fall somewhere in the paradigm of hypothesis
to a data-driven model. Hypothesis-driven models require less data to validate them, whereas
data-driven models rely on large amounts of data. A hybrid approach combines hypothesis-driven
modeling with data-driven modeling. This thesis majorly focuses on developing data-driven
approaches.



2 Introduction

Data-driven, hybrid, and pure hypothesis-driven approaches represent distinct methodologies
in scientific inquiry. In a data-driven approach, the emphasis is on extracting patterns and
insights directly from available data, often without a preconceived hypothesis [Kirchdoerfer
and Ortiz, 2016; Montáns et al., 2019; Stainier et al., 2019]. This method leverages the power
of computational techniques and statistical analysis to uncover hidden relationships and trends
within the data, allowing new hypotheses to emerge organically. On the other hand, hybrid
approaches combine elements of both data-driven and hypothesis-driven methods [Chatzi et al.,
2010; Law et al., 2015; Raissi et al., 2019]. These approaches start with initial hypotheses
but also incorporate data exploration to refine and validate these hypotheses. In contrast,
the pure hypothesis-driven approach begins with a well-defined hypothesis based on existing
theories or prior knowledge. Researchers conduct targeted experiments or observations to test
and validate these hypotheses rigorously. Each of these approaches offers unique advantages:
data-driven methods open the door to new discoveries, hybrid methods harness the strengths of
both approaches, and pure hypothesis-driven methods offer a structured and systematic means
of validating existing theories [Liu et al., 2019]. The choice of approach depends on the research
goals, available resources, and the nature of the scientific question at hand.

Data-driven, hybrid, and pure hypothesis-driven approaches represent distinct methodologies in
scientific inquiry. In a data-driven approach, the emphasis is on extracting patterns and insights
directly from available data, often without a preconceived hypothesis. Another advantage of
data-driven modeling is that it can be used to identify complex relationships and patterns that
may not have been apparent through the traditional hypothesis-driven modeling approach. It
can also be used to optimize processes in real time based on the data generated by sensors
and other sources. However, data-driven modeling also requires large volumes of high-quality
data and sophisticated algorithms to analyze the data. This thesis focuses on building such
sophisticated data-driven frameworks for performing simulations in mechanics.

Traditional methods are computationally expensive

Mathematical models are commonly expressed using partial differential equations (PDEs).
They can be solved analytically or numerically using a variety of techniques, depending on
the complexity of the problem and the desired level of accuracy and efficiency. Complex and
real-world problems are dealt with numerical methods. In the particular context of mechanics,
the finite element method (FEM)[Zienkiewicz and Taylor, 1991] is one of the most commonly
used numerical approaches. FEM simulations are accurate, but this accuracy comes at the
cost of significant computational efforts, especially for non-linear problems. While hardware
developments and software optimizations have facilitated faster FEM computations to some
extent, they still fall short of meeting real-time constraints, which are critical in certain
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application domains such as robotics [Choi et al., 2021; Rus and Tolley, 2015] and biomedical
simulations [Cotin et al., 1999; Courtecuisse et al., 2014a; Mazier and Bordas, 2023].

In short, the need for computationally efficient simulation tools in various fields, including
engineering, science, and medicine, has become increasingly crucial as the complexity and size
of problems continue to grow. It is essential to find computational inexpensive solutions that
can handle the scale and complexity of the problem within a reasonable amount of time. Thus
speeding up such computational models whilst maintaining the desired accuracy is an active
area of research and one of the main motivations of this thesis work.

Machine/deep learning techniques and their uses as surrogate models

With exponential growth in data generation and storage capabilities, data-driven approaches
have emerged as a powerful tool for analyzing and understanding complex systems. Machine
learning (ML) techniques are a key component of these data-driven approaches. ML algorithms
can be used to analyze and learn from large data sets, which can then be used to develop
predictive models.

Scientific simulations have already begun to undergo a revolution, thanks to recent developments
in machine learning. Without any mathematical explanation of the problem, machine learning
algorithms may transfer the input of a function to its output given enough ground truth
data. These approaches appear promising for learning behaviour of systems without relying on
empirical models because they are driven directly by data [Bomarito et al., 2021; Rudy et al.,
2017]. Many applications where prediction speed is very important can benefit from the high
inferring speed of these methods [Mendizabal et al., 2019b; Sánchez-Sánchez and Izzo, 2018].
Within the class of ML methods for data-driven modeling, deep learning (DL) approaches have
seen great success due to their ability to efficiently extract complex relationships present in the
underlying data. DL models have proven to be accurate and efficient in predicting non-trivial
nonlinear relationships in data, but they need it in sufficiently high amounts.

Lately, DL models have also been successfully utilised as surrogate models in mechanics
[Haghighat et al., 2021; Krokos et al., 2022a; Mianroodi et al., 2021]. In the ideal case scenario,
these models would be trained on real-world datasets, which is not always feasible. Obtaining the
necessary amount of training data is often difficult when it originates from physical experiments.
This can be due to multiple factors, such as high costs, risks & difficulties associated with the
experiments, or data privacy clauses. In such cases, data can be generated synthetically through
high-fidelity simulations done in silico [Kim et al., 2022; Le et al., 2017; Pfeiffer et al., 2019].
This thesis follows this approach and in particular focuses on deep learning surrogate models
trained on synthetic data generated from finite element simulations in non-linear elasticity.
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Scalability of DL techniques

One of the main objectives of this thesis is to investigate high-dimensional relationships
characterized by large input and/or output sizes. Such relationships can be observed in various
domains, including medical imaging, as in the case of full-field measurement data [Lavigne
et al., 2022], or in the generation of synthetic mesh data from finite element simulations, as
shown in studies by Lorente et al. [2017] and Pellicer-Valero et al. [2020].

Many of the existing DL-based surrogate frameworks are based on fully connected networks,
which process the entire input at once, which can be problematic when dealing with high-
dimensional data [Shrestha and Mahmood, 2019]. Fully connected layers treat the input as
a flat vector and do not take into account the spatial structure present in data, for example,
the quantity of interest of closely located nodes can be co-related, and this correlation is not
taken into account by FC networks. As a result, they may not efficiently capture spatial
patterns, leading to sub-optimal performance in building surrogate models for mechanics and
other applications. To address this challenge, modern solutions have emerged. Convolutional
neural networks have gained prominence [Obiols-Sales et al., 2020; Zhao et al., 2019], along with
the utilization of graph neural networks [Sanchez-Gonzalez et al., 2020; Vlassis et al., 2020],
and techniques based on transformer networks [Geneva and Zabaras, 2022; Hassanian et al.,
2023]. These methods are experiencing growing adoption due to their effectiveness in scientific
simulations. The upcoming chapters of this thesis provide an in-depth exploration of each of
these approaches and present novel deep-learning frameworks built upon these foundations.

Chapter 4 of the thesis introduces a Convolutional Neural Network (CNN) U-Net architecture
framework that is capable of efficiently predicting non-linear deformations of soft bodies in
real-time [Deshpande et al., 2022]. This framework scales remarkably well with input size,
making it suitable for grid-structured inputs. However, its limitation lies in the fact that it can
only be applied to structured meshes, whereas real-world applications are often represented
with unstructured meshes.

To address this limitation, Chapter 5 proposes a novel geometric deep learning framework called
MAgNET [Deshpande et al., 2023a,b]. MAgNET extends the concept of localized operations
in CNNs to arbitrary graph-structured data, efficiently leveraging mesh topology to construct
neural network architectures. MAgNET comprises of two novel deep-learning layers specifically
designed for graph-structured data applications. As a result, MAgNET can be utilised in a
wide range of engineering and scientific applications.

In recent times, attention-based deep neural networks have brought significant advancements
to various engineering disciplines. However, their potential applications in computational
mechanics remain relatively unexplored. This thesis takes a pivotal step in Chapter 6 by forging
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a connection between computational mechanics and cutting-edge transformer models. In this
context, we introduce a novel surrogate framework based on the Perceiver IO architecture,
designed to perform accurate non-linear finite element simulations [Deshpande et al., 2023c,d].

Uncertainty is inherent to real world systems

Real-world systems are intricate and exhibit nonlinear behavior, making it difficult to completely
analyze and predict their outcome. Uncertainty is an inherent part of such systems, which is
the absence of comprehensive knowledge or information about its constituent parts. It can
arise for several reasons, including changes in the environment, variability in the system’s
beginning circumstances or boundary conditions, or stochastic processes. Hence it is crucial to
produce reliable uncertainty estimates in addition to predictions since uncertainty can affect
the reliability and accuracy of the prediction. Particularly, it is very important to know the
impact of uncertainty in crucial applications such as surgical simulations [Bui et al., 2018;
Mazier et al., 2022] or autonomous driving [Feng et al., 2018; Shafaei et al., 2018]. Otherwise,
model predictions can lead to harmful consequences in these critical tasks. Thus, there is a
need to develop methods for quantifying and managing uncertainties in scientific simulations.

Uncertainties in engineering systems come from different sources. These can be split into two
main types: first, the random variations we see in the data (called aleatoric uncertainty or data
uncertainty); and second, uncertainties due to how well our model represents reality (known as
epistemic uncertainty or model uncertainty) [Kendall and Gal, 2017b; Kiureghian and Ditlevsen,
2009]. Data uncertainty is there because data naturally has some randomness, and we can’t
get rid of it. On the other hand, model uncertainty can be reduced by adding more training
data [Hüllermeier and Waegeman, 2021]. A significant aspect of model uncertainty lies in its
correlation with the volume of data available — as the dataset expands, our confidence in
predictions proportionally increases, i.e., model uncertainty decreases. It is important to develop
stochastic/Bayesian computational frameworks that can track both types of uncertainties.

Stochastic approaches have been already considered in the context of FEM models [Matthies,
2008; Stefanou, 2009]. In general, they are computationally costly, have convergence issues,
and scale badly with input dimensions. One key technique in stochastic modeling called the
Monte Carlo method, involves running numerous simulations for each parameter value [Hauseux
et al., 2018; Rappel et al., 2020]. Essentially, the Monte Carlo approach turns the integrals
needed for statistical expectations into discrete sums, usually large ones. Since material model
parameters can span significant ranges, proper sampling across their variations is crucial for
accurate outcomes. However, this need for extensive computation makes these simulations
much more computationally expensive compared to deterministic ones [Biehler et al., 2014;
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Hauseux et al., 2017b]. Hence these approaches are not suitable for applications requiring fast
solutions.

In order to effectively handle both types of uncertainties, this thesis introduces two Bayesian
approaches in the context of ML/DL techniques, for their applications to high dimensional
problems in mechanics:

1. Bayesian Deep Learning (BDL) framework: This approach is presented in Chapter 4 and is
based on the approximate Bayesian inference—Variational Inference (VI), used in the context
of deep neural networks [Deshpande et al., 2022; Graves, 2011]. VI enables straightforward use
of the framework for high-dimensional problems. By incorporating uncertainty estimates into
the model, it provides a more robust and reliable solution.

2. Using Gaussian processes regression (GPR) with autoencoder networks: Chapter 7 of the
thesis presents this novel approach based on the Gaussian processes (GP), a well-regarded
machine learning technique [Rasmussen et al., 2006]. GPs face challenges when dealing with a
large number of data points and high dimensions in a problem. To address this, we employ
GPs on data that has been dimensionally compressed using autoencoder neural networks
[Hinton and Salakhutdinov, 2006]. This integration of autoencoder networks significantly
lessens the computational load and enhances the capacity to efficiently apply GPs to complex,
high-dimensional problems.

By employing these two approaches, this thesis effectively addresses uncertainties, providing
more accurate and reliable results for high-dimensional problems. Both surrogate frameworks
are specifically developed for simulating mechanical deformation responses of soft bodies along
with their associated uncertainties.

Potential applications to biomedical simulations

This research work is a part of the European Innovative Training Network (ITN) named Rapid
Biomechanics Simulation for Personalized Clinical Design (RAINBOW). The program received
financial support from the European Union’s Horizon 2020 Research and Innovation initiative
through a Marie Skłodowska-Curie grant. As part of this program, 15 Ph.D. students worked
collaboratively to investigate and devise innovative techniques in biomedical simulations.

Ever since the inception of computer technology, experts have envisioned its potential appli-
cations in the field of medicine. While surgery is a life-saving procedure, complications or
unfamiliar techniques can lead to an increased risk of incidents [Sarker and Vincent, 2005].
As such, it is vital to train competent and skilled surgeons who can handle any pathology
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Interactive computer simulations to train 
medical practitioners. 

Fig. 1.2 Various scientific studies and surveys have shed light on the seriousness of medical
errors and anticipate a shortage of surgeons in the coming decade (cutouts of media coverage on
the left). Simulation-based medical training has been proven to have many advantages which
help improve medical practitioners’ competencies, and in return, improve patient safety and
reduce health care costs.

[Rosser Jr et al., 2000]. Over the years, computer simulations have emerged as a preeminent
tool to accomplish this task. Biomedical simulations are being widely used to assist in various
medical procedures [Adagolodjo et al., 2018; Plantefeve et al., 2016], for training purposes [Cotin
et al., 2000; Talbot et al., 2017], and for preoperative planning [Alcañiz et al., 2022; Mazier
et al., 2021]. It can be said that the future of surgical education lies in the development of
realistic bio-mechanical simulators. In such training systems, the surgical tools are deformable
objects and the vessels are generally considered to be rigid. Such models need to be interactive,
therefore the simulations must be computed in real-time. One of the aspects of this thesis is to
conduct real-time deformation simulations of soft bodies, like human organs. These simulations
are crucial because they serve as the foundational components for the development of advanced
surgical simulators.

Objective of the thesis

The primary objective of this thesis is to create advanced and original deterministic as well as
Bayesian deep learning frameworks that can model non-linear finite element solutions, to tackle
problems in solid mechanics. The frameworks emphasize scalability, robustness, require minimal
hyperparameter tuning, and can efficiently deal with high-dimensional problems. Moreover, a
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crucial aspect of proposed frameworks is their ability to track associated uncertainties, thereby
providing means to establish confidence in the neural network surrogate modeling.

Outline of the thesis

In this chapter, we provided a general introduction and the objective of the thesis, which is to
develop deterministic and Bayesian deep learning surrogate techniques to solve problems in
solid mechanics. In Chapter 2 we first introduce the fundamentals of mechanics and provide
an overview of finite element formulation. Then in Chapter 3, we introduce the basics of deep
learning techniques, which is a rapidly evolving field of artificial intelligence. The subsequent
chapters provide an in-depth study of DL surrogate methods, these chapters comprise novel
work developed in this thesis. Chapter 4 proposes a probabilistic deep learning framework to
solve real-time large deformation simulations along with their uncertainties. Chapter 5 presents
a novel geometric deep learning framework in which we introduce two deep learning layers for
efficiently learning on graph-structured data. Chapter 6 presents attention-based deep neural
networks for accelerating simulations in mechanics and also provides a comparative study of the
frameworks proposed in earlier chapters. In Chapter 7, we propose a probabilistic framework
that combines multi-output Gaussian processes with autoencoder networks and show its uses
for surrogate modeling in mechanics alongside uncertainty quantification. Finally, Chapter 8
provides a general conclusion of the thesis and motivates future research directions.



Chapter 2

Finite element formulation

Numerical methods are used in a wide range of fields, including a multitude of engineering and
natural science domains [Jansari et al., 2022; ki Choi et al., 2023; Papavasileiou et al., 2022;
Suchde and Kuhnert, 2019]. They are particularly useful when exact solutions to mathematical
problems are not possible due to the computational complexity of the problem.

The finite element method (FEM) is one of the most common numerical methods for solving
differential equations arising in engineering and mathematical modeling. It gives a numerical
approximation of a partial derivatives equation discretizing the object using nodes connected by
elements. It is extensively used in fields such as solid mechanics, structural analysis, and fluid
dynamics [Farina et al., 2021; Piranda et al., 2021; Urcun et al., 2021]. The main objective of
this thesis is to calculate the non-linear deformations of solid bodies when subjected to external
forces. Therefore, this chapter will begin by providing a concise overview of elasticity theory,
followed by the solution strategy using the finite element method.

2.1 Fundamentals of elasticity in solid mechanics

This thesis focuses on the mechanical modeling of solid, continuous materials, where the solid
material is viewed as a collection of countless infinitesimal pieces that can displace, deform,
and rotate in response to external stimuli. The assumption made here is that the connectivity
between these infinitesimal pieces remains constant, such that they cannot detach from each
other or penetrate one another. If one wants to include detachment, one needs to regard fracture
mechanics which is not in the scope of this thesis. The fact that the connectivity between all
infinitesimal pieces of material remains the same thus means that the solid body deforms in a
continuous manner.
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The material models described in this thesis only focus on the elastic constitutive description.
That is the models are characterised by the fact that no energy is lost during the deformation
process, these models are also known as hyperelastic models.

2.1.1 Kinematics

As depicted in Figure 2.1, we consider a deformable body with an initial configuration Ω0.
The position of a particle within Ω0 is represented by X, while the deformed configuration is
represented by Ω and the position of a particle within Ω is represented by x. A one-to-one
mapping, denoted by ϕ, is used to associate the position of a particle X in Ω0 with the position
of the same particle x in Ω, such that x = ϕ(X).

7

ϕ

ϕ−1

Ω0 Ω

Γ0
Γ

u

∂Ω0 ∂Ω

X

x

Fig. 2.1 A continuous solid body in the initial configuration on the left is mapped to the
deformed configuration through the mapping ϕ (ϕ−1 denotes the inverse mapping, which is not
in the scope of this thesis). Γ0 and Γ denote the boundary conditions denoted in Ω0 and Ω
respectively.

Now let us introduce the deformation gradient F that maps an infinitesimal small element dX

in Ω0 to dx in Ω as follows:

dx = F · dX, (2.1)

For each point we denote the displacement between the deformed and undeformed position as
u.

u = x−X = ϕ(X)−X, (2.2)

so the deformation gradient (F ) can be written as:

F = ∂x

∂X
= ∂ϕ(X)

∂X
= ∂u

∂X
+ I = ∇0u + I, (2.3)
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where ∇0(•) is the gradient operation with respect to the undeformed configuration Ω0. The
volume element in initial configuration dΩ0 is mapped to the dΩ in Ω using the Jacobian (J)
as:

dΩ = J · dΩ0,

J = det(F )
(2.4)

Using the deformation gradient F , we obtain the right Cauchy-Green strain tensor C, and the
left Cauchy-Green strain tensor B as follows:

C = F T F ,

B = F F T
(2.5)

Both Cauchy-Green strain tensors contain information about the strain, i.e. change of length
of a vector. They are both symmetric and positive definite. They do not contain information
about the rigid body rotation, i.e. rotation of a vector without change of length. Finally the
Green-Lagrange strain tensor E is defined as:

E = 1
2(C − I),

= 1
2(∇u +∇uT ) + 1

2(∇uT∇u)
(2.6)

The opening bracket of the equation indicates the linear component of the strain tensor, while
the subsequent bracket denotes the non-linear component. In cases where the displacement
is sufficiently small, the non-linear component can be disregarded, resulting in a simplified
equation.

ϵlinear ≈
1
2(∇u +∇uT ) (2.7)

2.1.2 Strong and weak form

In the context of elasticity, the strong form and the weak form are two different ways of
representing the governing equations of the problem. The strong form comprises differential
equations that relate stresses and strains in a solid, derived from the principles of mass,
momentum, and energy conservation. It must be satisfied at every point in the domain, along
with any boundary conditions.

The weak form, on the other hand, is obtained by multiplying the strong form by a suitable test
function and integrating over the domain of interest. It is well-suited for numerical methods,
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such as the finite element method, which requires the solution to be represented in a discretized
form. The weak form also provides greater flexibility in choosing the approximation space for
the solution, allowing for the use of piecewise polynomial functions of varying degrees.

Strong form

At the equilibrium in the deformed configuration the strong form for the governing equation of
elasticity can be written through the balance of the momentum as follows:

∇ · σ + ρfext = 0, (2.8)

where σ is the Cauchy stress tensor and ∇ · (•) is the divergence operation. ρ represents the
density of the body and fext are the external forces in the deformed configuration.

Different types of stress tensors:

In linear analysis, the distinction between the deformed and undeformed areas is not
necessary due to the infinitesimal deformation. However, in the case of large deformation,
it becomes crucial to specify the reference frame (deformed or undeformed) used to define
the stress tensor. And for this reason, we define two main stress tensors that are relevant
to this thesis, which can be intuitively understood as:

1. Cauchy stress tensor (σ) : forces and areas in the deformed configuration.

2. 1st Piola-Kirchhoff stress tensor (P ) : forces in the deformed configuration
and areas in the undeformed configuration.

It should be noted that Eq.(2.9) is written in the deformed configuration. Now the strong form
can be written in the undeformed configuration through the Piola-Kirchhoff stress tensor as

∇ · P + ρ0fext = 0, (2.9)

First and second Piola-Kirchhoff are expressed in terms of the Cauchy stress tensor as follows:

P = JσF−T (2.10)
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Weak form

Solving problems using the strong form as presented in Eq.(2.9) often involves solving partial
differential equations (PDEs) directly, which can be challenging for complex geometries or
material behaviors. Thus the main idea of converting the strong form into a weak form is to
turn the differential equation into an integral equation, to lessen the burden on the numerical
algorithm in evaluating derivatives.

The weak form is obtained by multiplying the strong form by appropriate test functions and
integrating over the whole domain Ω as follows:

∫

Ω
P (F (u)) · ∇δu dV −

∫

Ω
ρ b · δu dV −

∫

Γt

t · δu dS = 0 ∀δu, (2.11)

where b are prescribed body forces, t are prescribed tractions on the Neumann’s boundary ΓN ,
while the solution u and the variation δu belong to appropriate functional spaces, with u = ū

and δu = 0 on the Dirichlet boundary Γu.

2.1.3 Constitutive laws: stress-strain relationships

The relationship between the strain tensor ϵ, and the stress tensor σ, is governed by the
mechanical properties of the material and is described through a constitutive law. Constitutive
law helps us define how the applied forces on the body are linked to its deformation.

The simplest relation between stress-strain tensors is given by Hooke’s law, i.e., which describes
a linear relationship. i.e., body displacements are directly proportional to the forces. This
linear constitutive equation relates two symmetric tensors through the constitutive matrix C:

σ = Cϵ (2.12)

More generally, hyperelastic laws are used to model the mechanical behavior of materials that
exhibit nonlinear elasticity. Hyperelasticity deals with the behavior of materials that can
undergo significant deformations without undergoing plastic deformation or permanent changes
in shape.

The hyperelastic constitutive relationship is expressed through the strain-energy density poten-
tial W (F ) as

P (F ) = ∂W (F )
∂F

, (2.13)
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All the implementations presented in this thesis are performed using Neo-Hookean hyperelastic
law. A particular form of strain energy expression that is used in this work is as follows:

W (F ) = µ

2 (Ic − 3− 2 ln J) + λ

4 (J2 − 1− 2 ln J), (2.14)

where the invariants J and Ic are given in terms of deformation gradient, with Ic = tr(F T F ).
While µ and λ are Lame’s parameters, which can be expressed in terms of Young’s modulus, E,
and Poisson’s ratio, ν, as

λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (2.15)

The Neo-Hookean is one of the simple hyperelastic models. It should be noted that the surrogate
modeling strategies presented in this work are straightforwardly applicable to more demanding
hyperelastic models, such as Mooney-Rivlin and Ogden [Holzapfel, 2002].

2.1.4 Finite element method

The displacement solution (u) for a hyperelastic deformation is computed by solving Eq.(2.11).
In an ideal scenario, this equation needs to be integrated an infinite number of times which is
practically infeasible and hence it is solved by numerical approximation with a finite number of
equations. The FEM is a numerical technique that provides a numerical estimate of partial
derivative equations by dividing an object into small pieces called elements. These elements are
connected by nodes and solutions inside the elements are interpolated from the nodal solutions
[Lavigne et al., 2023].

A continuous domain can be discretisation into finite elements in different ways, with triangular
and tetrahedron being the most common choices. These elements are suitable to discretise
irregular domains and are easier to generate than quadrilateral or hexahedral elements. The
CNN-based framework proposed in Chapter 4 of the thesis is only compatible to be used with
structured meshes, such as quadrilateral and hexahedral. While Chapter 5 introduces a new
framework that can efficiently handle any type of finite element discretisation.

Let us denote the discretised representation for continuous solution u as uh. Then at any
location p in the local coordinate system

uh(p) =
N∑

i=1
Ni(p)uhi, (2.16)
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where uhi is the displacement of ith node (which can be multi-dimensional) and N is the
total number of nodes in the mesh (excluding those on the Dirichlet boundary). There is one
shape function Ni for each node in the mesh. Shape function must have local support and be
piece-wise continuous.

Similarly, discretised forms of body forces and tractions are expressed with shape functions as
follows:

bh(p) =
N∑

i=1
Ni(p)bhi,

th(p) =
N∑

i=1
Ni(p)thi,

(2.17)

After substituting these terms, the problem expressed by Eq. (2.11) will take the matrix form
representing a system of non-linear equations

KUh = Bh + Th, (2.18)

Where K is the global stiffness matrix and Uh, Bh, Th are global displacement, volume, and
surface force vectors given as follows:

Uh =




uh1
...

uhN


 , Bh =




bh1
...

bhN


 and Th =




th1
...

thN ,


 (2.19)

The above equations are in fact representing the balance of internal and external forces and
can be also seen as follows:

R(uh) = fint(uh)− fext = 0, (2.20)

It is important to note that the stiffness matrix in Eq.(2.18) is valid for small displacements.
However, in many cases, the stiffness matrix can’t be explicitly defined due to material
nonlinearity (the relationship between stress and strain) or geometrical nonlinearity (the
connection between strain and displacement). As a result, the weak formulation is addressed
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iteratively through the Newton-Raphson algorithm. In this process, K is substituted with the
corresponding tangent stiffness matrix.

2.1.5 Conclusion of the chapter

In this chapter, we introduced the fundamentals of solid mechanics and provided the formulation
for non-linear elasticity. We also introduced the finite element method, a well-regarded numerical
approach for solving partial differential equations. We generate several non-linear finite element
datasets to train the deep learning surrogate models proposed in this thesis. In the subsequent
chapter, we will shift our focus toward the understanding of deep learning techniques, thereby
forging a bridge between the realms of traditional numerical modeling and the cutting-edge
world of artificial intelligence.



Chapter 3

The Vast Field of Deep learning

Deep learning (DL) falls under the umbrella of machine learning methods, which have revolu-
tionised several fields including scientific computing, computer vision, robotics, and many more.
In particular, DL techniques have outperformed other machine learning methods when facing
large amounts of data. DL also makes problem-solving much easier by providing end-to-end
pipelines, because it completely automates feature engineering, which was previously a manual
and time-consuming process in other machine-learning approaches.

DL is based on the so-called neural networks (NNs), whose roots can be traced to the late 1950s
[Rosenblatt, 1958]. At that time, the available computational power was limited, which hindered
the development of NNs. Later, Rumelhart et al. [1986] proposed the backpropagation algorithm
to train multi-layer neural networks, which laid the foundation for the current state-of-the-art
deep learning methodologies. In the 21st century, the exponential growth of technological
advancements has led to an unprecedented increase in the amount of data. That, combined
with the rapid growth in computational resources has made DL an important technique to
tackle problems in a wide variety of domains.

3.1 Artificial Neural Networks

Artificial neural networks (ANNs) are at the heart of deep learning algorithms. Their name
and structure are inspired by the human brain, mimicking the way that biological neurons
signal to one another. In simple terms, ANNs are a sequence of transformations applied on
the inputs, that are capable of finding highly nonlinear underlying relationships in a given
data set. According to the universal approximation theorem [Hornik, 1991], a feed-forward
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neural network composed of artificial neurons has the capability to approximate any continuous
real-valued function on subsets of Rn.

ANNs consist of layers of nodes, which include an input layer, one or more hidden layers, and
an output layer, see Figure 3.1. Each node, which can also be referred to as an artificial neuron,
is linked to another and has an associated weight. When a node is activated, it undergoes an
activation function (A), and the resulting output data is transmitted to the next layer of the
network. In this way, ANNs are capable of learning and processing complex data sets.

1

(d̄′ i) = ( ∑
j∈𝒩i

wijdj)
∑

bias

∑

 

bias

Weights Weights

Fig. 3.1 A feed forward neural network with a single hidden layer. Weights and bias together
constitute the parameters of the network.

As depicted in the diagram presented in Figure 3.1, when a specific input is fed into the artificial
neural network, a weighted sum is calculated. This sum is then combined with bias values and
processed through an activation function (A), resulting in an output. The activation function,
(A), is responsible for incorporating non-linearity during the transformation of a layer to the
next layer. Table 3.1 summarises some important activation functions used for ANNs. We will
formally define the transformation expression in the following section.

Choosing activation function:
The choice of activation function in a neural network depends on the specific problem being
addressed and the architecture of the network. This thesis mainly focuses on regression problems
on the datasets relevant to the mechanics of materials, hence we will focus on activation functions
relevant to regression only. In the early days, the sigmoid function was a common choice for the
hidden layers in different types of NNs. However, it has a slower convergence rate thus making
it computationally expensive. Sigmoid also suffers from the vanishing gradient problem during
the backpropagation step. Similar issues occur for the hyperbolic tangent activation function.
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ReLU has emerged as a great alternative to both sigmoid and tanh activation functions. It is
computationally inexpensive because the ReLU function has a fixed derivative (slope) for one
linear component and a zero derivative for the other linear component (it is considered that
the ReLU converges 6 times faster than sigmoid and tanh functions). However, as the ReLU
function and its derivative are equal to 0 for negative values, it deactivates certain neurons,
causing them to output a 0 value always. This limitation is overcome by the Leaky ReLU
activation function, i.e., if the input is less than 0, the leaky ReLU function outputs a small
negative value defined by a constant negative slope ’a’. Both ReLU and LeakyReLU can have
exploding gradient issues because of large positive activation values. This issue is overcome by
the ReLU6 activation function, which restricts the activation value to 6 on the positive side.

Note: For the output layer, always the linear activation function is used, which allows to keep
the output values unbounded. Thus making it suitable to be used for regressions tasks.

Activation function Formula
Linear x

Rectified Linear Unit (ReLU) max(0, x)

Leaky ReLU
{

x x ≥ 0
ax x < 0 (default a = 0.01)

Sigmoid 1
1 + e−x

Hyperbolic tangent (tanh) ex − e−x

ex + e−x

Table 3.1 Neural network activation functions relevant for the scope of this thesis.

3.2 Types of neural networks

This section will introduce different types of neural networks relevant to this thesis.

3.2.1 Fully connected networks

A fully connected neural network is a type of artificial neural network (ANN) in which all
neurons in one layer are connected to the neurons in the next layer Rumelhart et al. [1986].
This architecture is illustrated in Figure 3.1. A fully connected network with one or more
hidden layers is commonly known as a multilayer perceptron (MLP). Formally, fully connected
layer can be seen as a parametric transformation between the input (dl) and output (dl+1)
layers as:
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dl+1 = A(bl+1 + kl+1dl) (3.1)

where kl+1 and bl+1 are trainable weights and biases and A is the activation function. For each
layer, kl+1 is the matrix of size (# of neurons in dl × # of neurons in dl+1). Where as bl+1 is
a one dimensional vector of size = no. of neurons in dl+1.

While fully connected networks are straightforward to implement, they come with following
limitations that make them less desirable in certain scenarios:

1. They have a large number of trainable parameters, which can lead to overfitting of
the network (in such cases regularisation techniques have to be used). Additionally,
they require high memory allocation, especially for large-scale networks, which can be a
computational bottleneck.

2. They scale very poorly with dimension of the input layer, hence they are not well suited
for processing high dimensional data. This limitation has been discussed in detail in
chapter 4.4.2.

3. They do not take into account the spatial co-relations between features in the input data,
which can be crucial for certain tasks in mechanics, computer vision, and other fields.
This is because they treat the input features as independent entities and do not consider
their position or context within the input space.

4. Fully connected networks with large number of hidden layers can suffer from vanishing
gradient problem. I.e., gradients propagated backward through the network can become
extremely small and fail to update the weights efficiently.

Above mentioned limitations are significantly overcome by the next type of ANNs, convolutional
neural networks.

Remark: Major part of this thesis focuses on developing DL frameworks that overcome
above listed limitations. We focus on the development of DL techniques to tackle high
dimensional problems in solid mechanics.
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3.2.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) are a class of ANNs, that is most commonly used for
image analysis applications. Convolutional layers overcome the limitations of fully connected
layers, especially when dealing with high-dimensional inputs. They require fewer parameters,
as the same set of filter weights is applied at every spatial location in the input. This shared
weight scheme results in weight sharing and translation invariance, which allows the network
to recognize patterns in different parts of the image regardless of their location. CNNs are
composed of two types of layers.

Convolution layer: The convolution layer operates by computing the convolution between a
kernel and a patch of the grid input, see Figure 3.2. The kernel then slides by a hop defined by
the stride ’s’, until it passes over the entire input. The identical size of output and input can
be achieved by adding zero-padding around the input grid (which creates a margin of zeros).
The padding ensures that the corner nodes are adequately processed by the convolution kernels,
thus improving the accuracy and robustness of feature detection.

The formal expression for the convolution layer is described in Eq.(4.4).
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input is a sequence of symbols, where at each time step a simple neural network (RNN
unit) is applied to a single symbol, as well as to the network’s output from the previous
time step. RNNs are powerful models, showing superb performance on many tasks.

We will concentrate on simple RNN models for brevity of notation. Given input
sequence x = [x1, ...,xT ] of length3 T , a simple RNN is formed by a repeated application
of a function fh. This generates a hidden state ht for time step t:

ht = fh(xt,ht−1) = σ(xtWh + ht−1Uh + bh).

for some non-linearity σ. The model output can be defined, for example, as

ŷ = fy(hT ) = hTWy + by.

The definition of LSTM and GRU—more complicated RNN models—is given later in
section §3.4.2.

3Note the overloading of notation used here: xi is a vector in RQ, and x is a sequence of vectors of
length T .

Input Layer Output LayerKernels (filters)

Fig. 3.2 CNN layer application on a 3-channel input, such as a RGB image. Convolution kernels
(filters) are applied locally to transform the input layer into the output layer. Source: Gal
[2016].

Pooling/unpooling layer: In CNNs, pooling layers are used to reduce the spatial dimensions
of the input. The pooling operation involves partitioning the input (feature map) into non-
overlapping regions. Pooling layers are used along with convolution layers, this is done to
decrease the computational cost of subsequent layers and to prevent overfitting by extracting
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the most important information from the input. The formal expression for the pooling layer is
described in Eq.(4.5).

Unpooling operation is the exact opposite of pooling. Unpooling layers are used to recover
the original spatial resolution after the pooling operation. The goal of the unpooling layer is
to increase the spatial resolution of the feature maps while preserving their learned features.
This is achieved by repeating the values of each element in the pooled feature map in a fixed
neighborhood, in order to generate a higher-resolution feature map. The formal expression for
the unpooling layer is described in Eq.(4.6). Both pooling and unpooling operations can be
visualised from Figure 3.3.
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(a single image patch is depicted under the left-most circle highlight). For example, kernel

2 preserves the blue channel only, resulting in a blue pixel in Layer output. Kernel 1, on

the other hand, ignores the blue channel resulting in a yellow pixel in the output layer.

This is a simplified view of convolutions: kernels are often not composed of the same

value in each spatial location, but rather act as edge detectors or feature detectors.

input is a sequence of symbols, where at each time step a simple neural network (RNN

unit) is applied to a single symbol, as well as to the network’s output from the previous

time step. RNNs are powerful models, showing superb performance on many tasks.

We will concentrate on simple RNN models for brevity of notation. Given input

sequence x = [x1 , ...,xT ] of length 3T , a simple RNN is formed by a repeated application

of a function fh . This generates a hidden state ht for time step t:ht = fh (xt ,ht−1 ) = σ(xt Wh + ht−1 Uh + bh ).

for some non-linearity σ. The model output can be defined, for example, as

ŷ = fy (hT ) = hT Wy + by .

The definition of LSTM and GRU—more complicated RNN models—is given later in

section §3.4.2.3Note the overloading of notation used here: xi is a vector in R Q, and x is a sequence of vectors of

length T .

Unpooling 

Unpooled Layer

Fig. 3.3 Pooling over a 3-channel input. The pooling operation is performed channel-wise, hence
the number of channels remains the same and only the width and height change for the pooled
layer. Unpooling operation retrieves the original width and height dimensions.

Remark: CNN architectures work only for image-like grid inputs as they are originally
developed to deal with image datasets. In recent years, they have been successfully used in
various domains by transforming non-image data to image-like data [Sharma et al., 2019].
In particular, in this thesis we use CNNs to compute mesh deformations, hence they
straightforwardly only work for structured meshes. To accommodate unstructured meshes
for CNN architectures, strategies have been developed, as discussed in the introduction
section of Chapter 5. However, these strategies have associated preprocessing costs and
fail to perform efficiently for complex meshes. Also, these strategies do not provide an
end-to-end deep learning framework. This motivates us to use graph neural networks
and graph convolution networks, which are discussed in detail in Chapter 5.
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3.3 Training of neural networks

Once the dataset is prepared and the type of neural network is chosen, the general training
process of a neural network involves the following steps:

1. Parameter initialisation: Initialise weights and biases of the network.

2. Forward propagation: Pass the input data through the neural network to obtain a
prediction.

3. Loss computation: Compute the difference between the predicted solution and expected
output using the chosen loss function.

4. Backward propagation: Calculate Gradients of loss with respect to parameters of every
layer.

5. Parameter update: Parameters are updated using gradient descent algorithms.

6. Repeat steps: Repeat 2-5 steps until desired convergence is achieved.

3.3.1 Initialisation of network parameters

Parameter initialization is an important step in training neural networks, as it can have a
significant impact on the performance and convergence of the model. In general, biases are
initialized with zero values, and weights are initialized with random numbers. Initializing all
weights to zero would result in a constant derivative of the loss function with respect to weights,
making the values of the weights unchanged in successive iterations and preventing the network
from learning. Assigning low or high values to weights can also cause the problem of vanishing
or exploding gradients. For preventing this issue, we usually stick to following the thumb of
rules.

1. Mean of the activations should be zero for the layer.

2. The variance of the activations should stay the same across the layer

These two conditions ensure that neither activations nor gradients vanish/explode, thus ensuring
efficient forward and backward propagation steps. All the implementations in this thesis are
performed with Glorot initializer [Glorot and Bengio, 2010], which ensures both of the above
conditions are met. The weights for each layer are randomly selected from a normal distribution
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with a mean of zero and a small variance (which is inversely proportional to the number of units
in the previous layer). This approach to weight initialization is widely used in deep learning
and has been shown to be effective in promoting efficient and stable training of neural networks.

3.3.2 Forward propagation

Forward propagation, also known as forward pass, is the process of computing the output of a
neural network for a given input. As the name suggests, the input data is fed in the forward
direction through the network, whose parameters are initialised as described in the earlier
section. Each hidden layer accepts the activations from the previous layer, processes it by
applying an activation function to that layer, and passes it to the next layer.

To decrease memory requirements, input data is fed in small batches. Other advantages of
feeding inputs in batches are discussed in detail in Section 3.3.5.

3.3.3 Loss computation

After the forward pass, the predicted output is compared with the expected output to compute
the prediction error using a loss function. Depending on the considered problem, there are
several options for the choice of the loss function to compute this prediction error. This thesis
mainly focuses on regression types of problems and solves them in deterministic as well as
probabilistic settings. All the deterministic networks implemented in this thesis are trained
with a mean square loss function. The loss function used for probabilistic neural networks is
described in Chapter 4.

For input dataset of feature-label pairs, D = (X, Y ), the prediction loss ‘Lsq’, of neural network
‘h’ with θ = {k, b} as its parameters, is computed as:

Lsq = E(X,Y )∼D(∥h(X, θ)− Y ∥22) (3.2)
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Note: Enhancing loss function with physics information:

Since this thesis focuses on DL techniques for scientific simulations, there is an opportunity
to improve the loss function using domain-specific knowledge. This approach is popularly
termed Physics Informed Neural Networks (PINNs) [Raissi et al., 2019]. PINNs make use
of differential equations in their loss function by taking higher-order derivatives of the
output with respect to the input. These derivatives can be computed using automatic
differentiation capabilities of popular DL frameworks such as TensorFlow, PyTorch
[Abadi et al., 2015][Paszke et al., 2017]. They are then used to construct the residual and
boundary conditions that should be approximated. Hence the loss function represented
by Eq. (3.2) can be enhanced by adding Lresidual and LBC, to get the loss function of
PINNs as follows:

LPINN = Lsq + Lresidual + LBC (3.3)

However, this thesis does not place a significant emphasis on PINNs, and therefore we
will not provide an in-depth description of them.

3.3.4 Backpropagation

Backpropagation, or backward propagation of errors, is an algorithm to effectively train a
neural network through a method of chain rule [Rumelhart et al., 1986]. This method is useful
for calculating the gradient of a loss function with respect to parameters of the neural network.

3
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Fig. 3.4 Schematic of the backprop algorithm for a single hidden layer neural network with one
neuron in each layer. The goal is to calculate gradients of loss with respect to the parameters
of the network.

As illustrated in Figure 3.4, during the forward pass, the input data is fed through the network,
and the output is computed. The loss function is then calculated based on the difference
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between the predicted output and the actual output. During backpropagation, the error is
propagated backward through the layers of the neural network, and the gradient of the loss
function with respect to the parameters is calculated using the chain rule of calculus.

For the single neural network shown in Figure 3.4, gradients of loss with respect to weights
(and similarly biases) of the layer can be computed as:

∂L
∂k2

= ∂L
∂A3

· ∂A3
∂Z3

· ∂Z3
∂k2

∂L
∂k1

= ∂L
∂A3

· ∂A3
∂Z2

· ∂Z3
∂A2

· ∂A2
∂Z2

· ∂Z2
∂k1

(3.4)

After computing the gradients, the network’s parameters are modified by utilizing variations of
gradient descent algorithms.

3.3.5 Parameter optimization

Utilizing gradient descent to update parameters is a widely employed optimization strategy in
the field of deep learning (Ruder, 2016).The loss function of the neural network is minimized
with respect to the parameters (weights and biases) of the network. As described in Section 3.3.3,
we represent parameters of the network as θ = {k, b}. The simplest form of gradient descent
update for the parameters reads as:

θ := θ − α · ∇L(θ) (3.5)

4

∇ℒ(θ )
Gradient
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Fig. 3.5 Gradient de-
scent update of a param-
eter.

where α is the learning rate and ∇L(θ) is the gradient of the loss
function with respect to parameters.

The learning rate, α, is a hyperparameter that plays a crucial role in
the minimization process. Its value determines the step size taken at
each iteration while approaching the minimum, thereby influencing
the speed of learning and convergence, refer Figure 3.5 . If the learning
rate is too large, the optimization may diverge due to oscillations
around the optimum. Conversely, if the learning rate is too small, the
convergence speed may slow down, and the model may converge to a
local minimum, resulting in overfitting to the training data. Typically,
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it is recommended to start with a relatively large value and gradually
decrease it during training iterations. However, there is no universal
rule for selecting the learning rate.

Mini-batch gradient descent

Computing gradient over the entire training set at once is often termed batch gradient descent.
This approach can be memory intensive, especially for large datasets. While batch gradient
descent is effective for convex optimization problems, it may not be suitable for neural network
training since the loss function often follows a non-convex pattern. Hence, parameters are
susceptible to getting stuck in local minima and saddle points. To avoid the above-mentioned
issues, the parameters of the network are updated using the gradient of the loss function
computed over a small subset (batch) of the training data. This strategy is called mini-batch
gradient descent. Mini-batch gradient descent can be parallelized across multiple processors or
GPUs, making it faster than batch gradient descent.

Stochastic gradient descent

A particular case of mini-batch gradient descent, where network parameters are updated after
each training example is called stochastic gradient descent (SGD). SGD is memory efficient
when compared to batch gradient descent and can converge faster for nonconvex loss functions.
SGD adds more fluctuations to the parameter update step, which reduces the chances of being
stuck in a non-optimal local minimum. But at the same time, these fluctuations can make the
optimization procedure unstable.

Overall, mini-batch gradient descent is a good choice for training deep learning models, especially
when dealing with large datasets. It strikes a balance between the memory efficiency of stochastic
gradient descent and the convergence guarantees of batch gradient descent.

Adam: Adaptive Moment Estimation

Adam [Kingma and Ba, 2014] combines two stochastic gradient descent approaches, Adaptive
Gradients (AdaGrad, [Duchi et al., 2011]), and Root Mean Square Propagation (RMSProp,
[Tieleman et al., 2012]). All the implementations presented in this thesis are carried out using
Adam optimizer.
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Adam facilitates the computation of learning rates for each parameter using the first and second
moments of the gradient. The key idea behind Adam is to adapt the learning rate for each
weight based on the history of gradients for that weight. This is done by maintaining an
exponentially decaying average of past gradients and past squared gradients and using these
averages to compute an adaptive learning rate for each weight. Additionally, Adam also includes
a bias correction term to account for the fact that the estimates of the mean and variance of
the gradients are biased towards zero at the beginning of training.

3.4 Conclusion

In this chapter, we introduced the basics of deep learning and various types of neural networks
that are utilized in this thesis. Hence this chapter will be useful in better understanding advanced
and novel deep learning frameworks presented in the upcoming chapters. The proposed deep
learning frameworks are trained on synthetic non-linear finite element datasets, as explained
in Chapter 2 and are implemented using Tensorflow [Abadi et al., 2015] and PyTorch [Paszke
et al., 2019] libraries.



Chapter 4

Probabilistic Deep Learning for
Real-Time Large Deformation
Simulations

Abstract

For many novel applications, such as patient-specific computer-aided surgery, conventional
solution techniques of the underlying nonlinear problems are usually computationally too
expensive and are lacking information about how certain can we be about their predictions.
In the present work, we propose a highly efficient deep-learning surrogate framework that is
able to accurately predict the response of bodies undergoing large deformations in real-time.
The surrogate model has a convolutional neural network architecture, called U-Net, which is
trained with force-displacement data obtained with the finite element method. We propose
deterministic and probabilistic versions of the framework. The probabilistic framework utilizes
the Variational Bayes Inference approach and is able to capture all the uncertainties present in
the data as well as in the deep-learning model. Based on several benchmark examples, we show
the predictive capabilities of the framework and discuss its possible limitations.

This chapter is reproduced from: S. Deshpande, J. Lengiewicz, S.P.A. Bordas, Probabilistic deep learning
for real-time large deformation simulations. Computer Methods in Applied Mechanics and Engineering, 2022,
Volume 398, 115307, ISSN 0045-7825, https://doi.org/10.1016/j.cma.2022.115307

https://doi.org/10.1016/j.cma.2022.115307
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4.1 Introduction

Reliable and computationally efficient models are crucial in the design, optimization, or control
for various application domains, including aerospace engineering, robotics, or bio-medicine.
For instance the increasing interest in biomedical simulations [Cotin et al., 1999], [Delingette
et al., 1999], [Courtecuisse et al., 2014a], [Wu et al., 2015], [Bui et al., 2018] may require having
real-time responses. Finding convenient trade-offs between the accuracy and response time
of such computational models is currently an active area of research in the context of digital
twins, and is also one of the motivations for the research presented in this work.

When accuracy is important, the most general and widely used methodology in engineering
for solving boundary value problems is the finite element method (FEM) [Zienkiewicz and
Taylor, 1991]. This accuracy, especially when it comes to highly non-linear or history-dependent
problems, may require a significant computational effort. The advancements in hardware
development and software optimization enabled to some extent speeding up FEM computations,
which involves specialized solution strategies to take advantage of high-performance computing
architectures. A notable example is the class of Finite Element Tearing and Interconnecting
(FETI) methods [Farhat and Roux, 1991]. In these methods, the global domain is partitioned into
a set of disconnected sub-domains, which are computed in parallel on different processors/nodes.
However, in many applications, it is not possible to meet real-time responses on the hardware
available for industrial consumers. This is due to a limited number of available cores and
a significant communication burden that deteriorates the overall time performance of such
solution strategies.

There are various specialized FEM-based approaches to cut down the solution time at the
cost of sacrificing the accuracy, see, e.g., [Marinkovic and Zehn, 2019]. An important class
of such approaches is the model order reduction (MOR) methods, with Proper Orthogonal
Decomposition (POD) being one of the notable examples. The general concept of POD, e.g.,
applied to a discretized FEM formulation, is to find a low dimension subspace in order to
approximate the full space at an acceptable loss of accuracy. This potentially enables controlling
the trade-off between accuracy and computation time. POD was adapted to work within the
large-deformation regime, see, e.g., [Kerfriden et al., 2011a], which was for instance applied to
simulate and control soft robotic arms [Goury and Duriez, 2018a] or to reduce computational
costs in nonlinear fracture mechanics problems [Kerfriden et al., 2012]. However, the efficiency
of POD deteriorates in high non-linear regimes since it relies on a linear combination of few basis
vectors and thus oversimplifies the model [Bhattacharjee and Matouš, 2016]. Proper Generalised
Decomposition (PGD) is another MOR technique, in which the solution of the complete problem
is computed as a finite sum of separable functions. The compact solution, though not optimal,
in general, provides a very light format to store the solution in the form of a meta-model,
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thereby speeding up the solution times. [Niroomandi et al., 2009] implemented PGD based
approach for computationally efficient simulations of hyper-elastic responses. However, the
accuracy of PGD methods decreases when the separation of variables assumption cannot respect
the problem to solve [Allier et al., 2015].

Importantly for the present work, we distinguish yet another family of FEM-based approaches,
in which the expected speedups and approximation capabilities originate from underlying
Deep Neural Networks (DNNs) with Deep Learning (DL) techniques used to train these
networks. Generally, DL approaches make an important part of machine learning techniques
and have allowed to solving highly complex problems that had eluded scientists for decades.
In particular, DL-based methods have also been developed to efficiently solve problems in
engineering [I. Goodfellow, 2016]. One of the popular approaches utilises the idea of the so-
called Physics Informed Neural Networks (PINNs), in which both the data (either synthetic or
experimental) and the assumed governing Partial Differential Equations (PDEs) are incorporated
in the training phase; for early traces of these see, e.g., [Lagaris et al., 1998], [Lagaris et al.,
2000], [McFall and Mahan, 2009], and for a recent study see, e.g., [Raissi et al., 2019],[Samaniego
et al., 2020]. One of the benefits of this approach is that possibly much less data is needed for
training, which can be an important factor for many data-driven applications. Note, however,
that even if the physics is not explicitly enforced in the training phase (non-PINN case), it
can still be recovered in the trained model by implicitly following a large amount of training
data (synthetic or experimental). In the case when all training data are synthetically provided
from FEM simulations, see, e.g., [Lorente et al., 2017], [Mendizabal et al., 2019b][Krokos et al.,
2022a], we will refer to it as the direct FEM-based approach.

In this work, we propose a framework that falls into the above-mentioned class of direct FEM-
based DNN approaches. The framework is based on a particular DNN architecture—the U-Net
architecture [Ronneberger et al., 2015]—which in turn can be viewed as a type of Convolutional
Neural Networks (CNNs); further explanations are provided later in this work. Originally,
the U-Net architecture has been developed for the purpose of biomedical image segmentation,
however, it turned out to be also suitable for other applications. In particular, the present work
is inspired by the recent results of [Mendizabal et al., 2019b], in which the authors demonstrate
quite accurate real-time non-linear force-displacement predictions done by U-Nets trained on
FEM-based data. It has been noticed, see [He and Xu, 2019], [Wang et al., 2020b], that this
good accuracy is not accidental but can be possibly linked to the strong resemblance of U-Net
architectures and multi grid solution schemes [Brenner and Scott, 2008]. Such a point of view
makes the U-Net approach less of a brute-force black-box approximation and more of a suited
solution scheme, which makes this line of research very promising.

An equally important aspect that is studied in the present work is the capabilities of DNNs to
quantify uncertainties. This is motivated by the fact that in many real-life applications, such
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as surgical simulations [Bui et al., 2018] or autonomous driving [McAllister et al., 2017], it
is crucial to produce reliable uncertainty estimates in addition to the predictions. Otherwise,
model predictions can lead to harmful consequences in these critical tasks. Deterministic neural
networks are usually certain about their predictions, and this overconfidence is especially evident
when facing data far from the training set. Generally, uncertainties can be categorised as those
associated with the misfit of neural network models (epistemic uncertainties) and those that
refer to the noise in training data (aleatoric uncertainties)[Gawlikowski et al., 2021][Kendall
and Gal, 2017b]. Uncertainties can either fall within or outside the training data region
(interpolated and extrapolated regions, respectively). Within the data region, the prediction
uncertainties are caused both by noisy data and by the model misfit, which can be captured
and quantified in many ways, the Maximum Likelihood Estimation (MLE) method is one of
the most straightforward [Kendall and Gal, 2017a] to do so. However, for the extrapolated
region we have no data support, therefore, no direct quantification can be done there. What
we can only reasonably assume is that the uncertainty should generally increase when moving
away from the data region. To achieve this, in this work, we will extend the idea proposed in
[Blundell et al., 2015][Gal, 2016][Duerr et al., 2020] which relies on converting a neural network
to its stochastic counterpart by replacing discrete parameters with probability distributions
and using a special training technique that is based on Bayesian Inference.

Bayesian approaches have been already considered in the context of FEM models; for instance in
[Hauseux et al., 2018] uncertainties are quantified for hyperelastic soft tissues by incorporating
stochastic parameters in the FEM model, while in [Rappel et al., 2020][Zeraatpisheh et al.,
2021] a thorough tutorial on using Bayesian Inference to solid mechanics problems is provided.
In the present work, however, we focus on Bayesian Inference and related Bayesian Neural
Networks (BNNs). Here, in the context of deep networks with millions of parameters, the
application of widely used Markov Chain Monte Carlo (MCMC) type of methods would be
computationally intractable. For that reason, in this work we use one of the well-known methods
for approximate Bayesian inference—Variational Inference (VI) [Graves, 2011]—in which an
approximate distribution is used instead of the true Bayesian posterior over model parameters.

To sum up, the scope of the present work is to study the applicability of U-Net deep learning
architectures to performing real-time predictions for large-deformation problems with uncer-
tainties, where synthetic training data is provided by FEM simulations. The organisation of
the paper is the following. In Section 5.2 we present the general methodology applied to a
deterministic version of U-Net. In Section 4.3 we introduce the extension of the framework
to the Variational Bayesian Inference case. Then, in Section 5.3, an extensive study of the
proposed framework is performed, which is based on several 2D and 3D benchmark examples.
The conclusions and future research directions are outlined in Section 4.5.
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4.2 General FEM-based U-Net Methodology

The proposed approach can be divided into two main phases. The first phase involves finite
element simulations to prepare necessary datasets. The second phase consists of building and
training deterministic/probabilistic U-Net deep neural networks, using the training datasets
generated in the first phase. The trained U-Nets are then used as surrogate models.

Γt

Γu
Ω Discretisation 

FEM  

U-Netū

t̄ f

f1

fN

FEM Data Generation : Input for training U-Net

ftest

Prediction 

Training 

f2

(a)

(b)
(c)

(d)

Fig. 4.1 Schematic of the framework (a) Continuum problem is discretized by FEM mesh
(b) Training/testing examples are generated by applying random point forces on Neumann
boundary. (c) The U-Net is trained on the generated dataset (d) Trained U-Net predicts the
deformation for a test force (blue mesh). FEM solution (red) is used for cross-validation. Gray
dashed meshes indicate undeformed configurations.

4.2.1 FEM-Based Deep Learning Approach

As a problem to be solved, we consider the boundary value problem of a hyperelastic solid, with
a constant prescribed Dirichlet BC. Large deformations exhibit non-linear stress-strain behavior
when applied with external forces, hence one needs to consider hyper-elastic constitutive laws
for simulating such systems.

Consider a boundary value problem in continuum mechanics in the domain Ω, Dirichlet and
Neumann boundary conditions are applied on ΓD, ΓN respectively. Neglecting the body forces,
the virtual work principle for nonlinear elastostatic equation reads

∫

Ω
P(u) · ∇δu dV −

∫

Γt

t̄ · δu dS = 0 ∀δu, (4.1)
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where u and δu belong to appropriate functional spaces, u = ū and δu = 0 on Γu, and P(u)
is the first Piola-Kirchhoff stress tensor. The required constitutive relationship will be defined
through the (hyper-)elastic strain energy potential W (F ) as

P(F ) = ∂W (F )
∂F

(4.2)

where F = I +∇u is the deformation gradient tensor. (The particular form of W , used in this
work, will be presented in Section 4.4.1.)

After standard FE discretization, the problem expressed by Eq. (7.14) will take the form of
system of non-linear equations

R(u) = fint(u)− fext = 0, (4.3)

which expresses the balance between external and internal nodal forces. By solving the system
of equations (5.16) (e.g., with the Newton-Raphson method) for a given external force vector
fext = f we obtain a solution in the form of nodal displacements u.

External forces can be applied to a selected region on the surface described by Γt. For the
current framework, we consider a single FE discretization of a given domain Ω. As described in
Figure 4.1, we apply a prescribed family of load distributions, given by vectors of force fi on the
nodes present in Γt to generate nodal displacements ui. This creates a dataset D = (fi, ui)N

i=1
of corresponding pairs of nodal force and displacement vectors, which is then used as input to
train DNNs. Thus the input of the neural network is a vector of nodal forces, and the predicted
output is a vector of nodal displacements.

4.2.2 U-Net deep neural network architecture

As motivated in the introduction, we use a specific family of CNN, U-Nets [Ronneberger
et al., 2015]. They owe their name to a specific U-shape of the architecture diagram, e.g.,
see Figure 4.2, which is an effect of applying cascades of max pooling operations, followed by
cascades of upsampling operations.

At its input, the layer d0, the U-Net network, U , accepts the vector of external forces, f , in the
original mesh format nx × ny × nz × 3, where nx, ny, nz are the dimensions of the structured
3D mesh (for 2D problems the format is nx × ny × 2). The output displacements, in the layer
dL, are in the analogous mesh format. The model parameters θdet are all weights (kernel k

and biases b) of the neural network (see below for details).
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For the sake of clarity, below we will introduce the idea for a 2D case only, which can be
straightforwardly transformed into a 3D case. For 2D problems, we use architecture as described
in Figure 4.2. To a given input mesh, we first add double zero padding in each spatial direction
(this is done to avoid the loss of information of corner nodes). There are two layers in each
encoding and decoding phase. To the padded input, we apply two convolutions with batch
normalisation followed by rectified linear unit activation (ReLU), see Eq. (4.4). In the encoding
phase, at each step, 2× 2 Max Pooling layers are applied which decrease spatial dimensions by
half, and we multiply the number of channels by 2 (c=128 for the first level). In decoding steps,
2 × 2 Up-sampling layers are applied which increases the spatial dimension by two and the
number of channels is halved. At each level, encoding and decoding outputs are concatenated
together. In the end, 1× 1 convolution is applied with linear activation to get the output.

3 × 3 Convolution 2 × 2 Max pool 1 × 1 Convolution2 × 2 UpsampleConcatenate
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Fig. 4.2 A schematic of exemplary U-Net architecture for 2D domains, (nx, ny) stand for number
of nodes in x, y direction of 2D domain. Boxes indicate U-Net layers (colors indicate different
types of layers), first step contains ’c’ channels.

In order to better understand the idea of convolution operator, the 3× 3× c operator in 2D
on the first U-Net level can be imagined as a filter window that is applied to a nx × ny × c

mesh. For a two-dimensional domain, the input tensor is of the dimension nx × ny × 2, which
is identical to the FEM mesh. Here 2 stands for the number of channels of input convolutions,
nx, ny stands for the number of nodes in the x, y direction, respectively. To best leverage the
CNNs, we keep x & y-dofs in separate channels. We operate a convolutional filter on a local
region and then is slid along spatial directions x, y with a stride of 1 as illustrated in Figure 4.3.

An example of a non-restrictive convolution operation (in 2D), between subsequent U-Net layers
l and l + 1, for the filter size 3× 3× cn reads
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 c

 nx

 ny

dp,r,α

Fig. 4.3 x and y dofs are stored in different channels, 3 × 3 convolutional filter (gray) acts
locally along the channel direction and it slides along with the step of 1 in both horizontal and
vertical directions (red).

dl+1
p,r,β = A


bl+1

β +
3∑

i=1,

3∑

j=1,

cl∑

α=1
dl

p+i−2,r+j−2,αkl+1
i,j,α,β


 , (4.4)

where dl+1
p,r,β are neural network nodes at layer l + 1, the weights kl+1

i,j,α,β are parameters of the
convolution operator, the weights bl+1

β are biases at a layer l + 1, and A(·) is an activation
function (ReLU). Indices i, j stand for the components of the covolutional filter (3× 3 in our
case) and the indices p, r are related to nodes in a 2D grid of the output layers. They directly
refer to the underlying structured FEM mesh. In our case, we add zero pad in each dimension
of input before applying the convolution, to ensure the same size of the input and output.
Indices 1 ≤ α ≤ cl and 1 ≤ β ≤ cl+1 represent the channel number. Note that the number of
channels in subsequent layers need not be equal, i.e., in general cl ̸= cl+1. Note also that in the
first and in the last layer, the number of channels correspond to the spatial dimension of the
problem (2D or 3D).

Max-pooling operation is responsible for reducing the spatial dimensions of its input, channel
dimensions are unaffected by it. It reads as follows

dl+1
p,r,α = max

2p−1⩽i⩽2p

2r−1⩽j⩽2r

dl
i,j,α (4.5)

Upsampling operator can be seen as the reverse of max pooling, it increases the spatial
dimensions of the input without affecting the channel dimension. As showed in Figure 4.2, in
the decoder phase, outputs of up-sampling are concatenated with respective layers from the
encoder phase of the U-Net (in case of symmetric U-Nets, the l-th layer is concatenated with
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the (L− l − 2)-th layer, where L is the index of output layer in a U-Net). The up-sampling
with concatenation read

dl+1
p,r,α =





dl
⌊p/2⌋+1,⌊p/2⌋+1,α , 1 ⩽ α ⩽ cl

dL−l−2
p,r,(α−cl) cl + 1 ⩽ α ⩽ cl + cL−l−2

(4.6)

The final 1× 1 convolution operation reads

dL
p,r,β = bL

β +
cL−1∑

α=1
dL−1

p,r,αkL
α,β, β = 1, 2. (4.7)

For the 3D version of U-Nets, the operations given by Equations (4.4)-(4.7) are straightforwardly
extended by one additional dimension. This results in adding one index to nodes’ and biases’
specifications, d and b, respectively, and two indexes to 3×3 convolution weights, k. For 2D/3D
cases, trainable parameters of the deterministic U-Net are

θdet =
L⋃

l=1
{kl, bl}. (4.8)

U(f , θdet) is defined recursively (the forward propagation), starting from the input layer d0 = f ,
then subsequently applying appropriate transformations given by one of Eqs. (4.4)-(4.6), and
finally applying the transformation given by Eq. (4.7), see also Figure 4.2. Finally the prediction
of the deterministic U-Net is

U(f , θdet) = dL (4.9)

For a given training dataset D = {(f1, u1), ..., (fN , uN )}, the deterministic U-Net is trained by
minimizing the following mean squared error loss function

Ldet(D, θdet) = 1
N

N∑

i=1
∥U(fi, θdet)− ui∥22 (4.10)

which gives the optimal parameters

θ∗det = arg min
θdet
Ldet(D, θdet). (4.11)

A particular training strategy, used in this work, is introduced in Section 4.4.1.
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Remark: The current framework (as well as all other neural-network based approaches mentioned
in the introduction) requires retraining a network when changing the FE discretization. Recently
proposed operator-based learning approaches, called neural operators [Lu et al., 2021][Li et al.,
2021][Wen et al., 2022], promise to overcome this disadvantage.

4.3 Probabilistic U-Net framework

There are various sources of uncertainties linked to engineering systems. These can be broadly
categorised as noises in the observation (aleatoric uncertainty or data uncertainty) and uncer-
tainty in the assumption of our model (epistemic uncertainty or model uncertainty) [Kendall
and Gal, 2017b]. Aleatoric uncertainty is inherent to the data and it can’t be reduced, whereas
epistemic uncertainty can be reduced by providing more training data. An important part of
epistemic uncertainty is being able to tell that the more data we have, the more certain we
are about the predictions. This uncertainty is expected to be high while doing predictions on
inputs away from the training region. Deterministic U-Nets explained in the Section 4.2.2 fail
to account for these uncertainties. In order to capture these effects, in this work, we propose
the Bayesian approach, which is introduced in this section.

4.3.1 Variational Bayesian Inference

Bayesian methods provide an approach to quantify the uncertainty of prediction in deep neural
networks. To do so, in this framework, we replace the deterministic parameters with probability
distributions [Blundell et al., 2015]. Originally this idea was only used to prevent overfitting, but
was observed to also increase the variability of outputs in the extrapolated region. In order to
suitably control the level of introduced perturbations to parameters, we use Bayesian Inference.
This gives us a formal theoretical framework, allowing us to apply suitable computational
techniques (VI) to efficiently train networks and predict results. The input of a network remains
the same, but some of the model parameters become probability distributions (stochastic), and
for that reason also the output of the network becomes a distribution over possible outputs. As
per the standard Bayesian approach, we specify a prior distribution P (w) over parameters, we
consider D = {(f1, u1), ..., (fN , uN )} as the given training dataset, then for a new vector f test,
prediction utest is given by

P (utest|f test,D) =
∫

P (utest|f test, w)P (w|D)dw (4.12)
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The Bayesian inference involves the calculation of true parameter posterior P (w|D) conditioned
over the training data. As mentioned in the introduction, variational inference (VI) is used
to approximate true posterior densities in bayesian neural networks [Graves, 2011], i.e. true
posterior is approximated by a variational posterior q(w|θ), parametrized by θ. Variational
learning finds optimal parameters θ∗ by minimizing the Kullback-Leibler divergence (KL-
divergence) between true and variational posteriors, as per the following equation:

θ∗ = arg min
θ

KL
[
q(w|θ)||P (w|D)

]

= arg min
θ

∫
q(w|θ) log q(w|θ)

P (w)P (D|w)dw

= arg min
θ

KL[q(w|θ)||P (w)]− Eq(w|θ)[log P (D|w)].

(4.13)

The resulting cost function is the loss function for training the neural network. It consists of
two parts, first is the prior dependent part represented by the KL-divergence term, it can be
referred to as model complexity cost; it tells how close approximate posteriors are to priors.
And later is the data-dependent part which can be referred to as likelihood cost, it tells how
well the network fits the data. Bayesian neural networks with prior distributions are well known
to induce regularisation effect [Neal, 1996]; in particular, using Gaussian priors is equivalent to
weight decay (L2 regularization) [Vladimirova et al., 2019].

During the forward pass, weights are sampled from the variational posterior q(w|θ).Now,
during the backpropagation, the issue is that one cannot get a gradient of the sampled points,
because the sampling operation cannot be differentiated. To avoid this issue, the following
reparameterization trick is used [Kingma et al., 2015]. A sampled weight, w, is obtained
by sampling a parameter-free distribution (the unit Gaussian), which is then scaled by a
standard deviation σ and shifted by a mean µ. We parameterise the standard deviation
point-wise as σ = log(1 + exp(ρ)) to have σ always non-negative. Thus the sample is
w = µ + log(1 + exp(ρ))⊙ ϵ, where ⊙ is point-wise multiplication, ϵ is drawn from N (0, I).
Hence the variational posterior parameters are θ = (µ, ρ) [Blundell et al., 2015]. In our
framework we use Gaussian priors with its parameters being (µp, σp). For the reasons mentioned
in Section 4.3.3, we include prior means (µp) in training procedure.

4.3.2 Maximum likelihood estimation

In addition to the Bayesian approach, we also introduce the Maximum Likelihood Estimation
(MLE) method—a popular frequentist approach. We do it to compare both methods in their
capabilities to quantify uncertainties. Parameters of the MLE model are deterministic, but we
take the double number of outputs compared to the deterministic counterpart. They stand
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for means and non-constant (heteroscedastic) standard deviations [Duerr et al., 2020], thus
yielding distributions as the outputs. These non-constant standard deviations can only capture
the noises in the data, MLE inherently fails to account for uncertainties in the extrapolated
region. The loss function for MLE can be recovered from Equation (4.13) by removing the KL
divergence part (since we don’t have distributions on parameters of the MLE model), and the
MLE model is trained on the Gaussian negative log-likelihood loss:

θ∗MLE = arg min
θMLE

− log P (D|θMLE). (4.14)

4.3.3 Trainable priors: Use of Empirical Bayes

Since NN parameters are latent variables of the model, it is very difficult to make a proper
choice of priors. If one sets the priors far from their true values, then the posterior may
be unduly affected by such choice. To overcome this, we incorporate Empirical Bayes (EB)
approach [Carlin and Louis, 1997], a method that uses the observed data to estimate the prior
hyperparameters. In our approach, in the training phase, we update the prior means, keeping
the prior standard deviation constant. Hence we minimize the loss function by also considering
gradients with respect to the prior means. This treatment enables us to obtain a good fit to
the data, while at the same time giving high prediction uncertainties in the region where little
or no data is available.

4.3.4 Loss functions for probabilistic U-Net

We modify the deterministic U-Net architectures by replacing their layers with probabilistic
layers, as a result, the output of the network is a probability distribution itself. We choose
Gaussian distributions to represent priors and approximate posteriors of probabilistic layers.
For the Bayesian U-Net, we use loss function as given in Eq. (4.13). Expectations of the
Eq. (4.13) are approximated byM Monte Carlo samples drawn from the approximate posterior
q(w|θ) as referred below

LVB = KL[q(w|θ)||P (w)]− Eq(w|θ)[log P (D|w)]

≈
M∑

i=1
log q(w(i)|θ)− log P (w(i))− log P (D|w(i))

(4.15)
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If we substitute Gaussian probability density functions, the expression in the RHS of Eq.(4.15)
turns out to be as given in Eq. (4.16). We consider ’G’ probabilistic parameters (Gaussian
distributions) for our Bayesian U-Net, where every distribution is parameterised by its mean
and standard deviation values. Since the standard deviations σ must be positive, we first train
the network on untransformed standard deviations ρ which are later transformed to σ through
soft-plus function. Also, for the reasons discussed in Section 4.3.3, we involve prior means, µp,
in the training procedure as well. Hence parameters to be learned in the training procedure are
θVB = (θ, µp). Finally, the loss function for the Variational Bayes is given as follows

LVB(D, θVB) ≈
M∑

i=1
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where

d(l)
σ (f (k), w(i)) = log(1 + exp(d(l)

ρ (f (k), w(i)))),

w
(i)
j = µ

(i)
j + σ

(i)
j ϵ

(i)
j , ϵ

(i)
j ∼ N (0, 1),

σ
(i)
j = log(1 + exp(ρ(i)

j )).

(4.17)

(dµ(f , w), dρ(f , w)) are the outputs at the penultimate layer of the Bayesian U-Net, which
stand for means and heteroscadetic (non-constant) standard deviations. And the last output
layer is a distribution layer with the same parameters. Since (dµ(f , w), dρ(f , w)) are variables
in themselves, in order to get the prediction one needs to sample over this output distribution.
N,F are total number of training examples and dof per problem respectively. σp stands for the
standard deviation of each the prior, which is kept constant in the training procedure. Optimized
parameters, θ∗VB = (θ∗, u∗p), for the Variational bayes case are obtained by minimising the
above loss function:

θ∗VB = arg min
θVB
LVB(D, θVB) (4.18)

Once the optimised parameters are computed, we replace the true posterior P (w|D) in Eq. (4.12)
with the variational posterior q(w|θ∗) to get the predictive distribution:
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P (u|f ,D) =
∫

P (u|f , w)P (w|D)dw ≈
∫

P (u|f , w)q(w|θ∗)dw (4.19)

The resultant predictive distribution can be approximated by Monte Carlo integration of
Eq. (4.19) by sampling weights over optimised distributions, w̃t ∼ q(w|θ∗). At last for a
given input force array, f , probabilistic displacement prediction is obtained as an output. We
represent this output distribution by the mean Uµ(f , w) and the standard deviation Uσ(f , w) of
the prediction, P (u|f ,D). This is done by taking mean and standard deviation of T stochastic
forwarded passes for the same input as follows:

Uµ(f , w) ≈ 1
T

T∑

t=1
P (u|f , w̃t)

U2
σ(f , w) ≈ 1

T

T∑

t=1
P (u|f , w̃t)T P (u|f , w̃t)− Uµ(f , w)TUµ(f , w)

(4.20)

In case of MLE, we do not place distributions over parameters, and they are discrete like in the
case of the deterministic network, as in Eq. (4.8). In the penultimate layer, we take (dµ(f , w),
dρ(f , w)) outputs standing for means and heteroscadetic standard deviations, which are then
used to form the final Gaussian distribution output layer. Optimal parameters of the network
are computed by minimising the following loss function

LMLE(D, θMLE) ≈ −
N∑

k=1

F∑
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− log
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(k)
l − d

(l)
µ (f (k), θMLE)

)2

2
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 , (4.21)

where
d(l)

σ (f (k), θMLE) = log(1 + exp(d(l)
ρ (f (k), θMLE)). (4.22)

At last, optimal parameters of MLE U-Net models are computed by minimising the loss
functions as

θ∗MLE = arg min
θMLE

LMLE(D, θMLE) (4.23)
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4.4 Results

4.4.1 The numerical experiment procedure

Generation of Training Data from Hyperelastic FEM Simulations
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Fig. 4.4 Schematics of three benchmark examples (a) 2D beam, (b) 2D L-shape and (c) 3D
beam. The parts of top surfaces marked in red color indicate the nodes at which random nodal
forces are applied to generate training datasets.

Two 2D and one 3D benchmark problems are considered in this work, as schematically shown
in Figure 4.4. The Neo-Hookean hyperelastic material model is used, with Young’s modulus
E = 0.5 kPa and the Poisson’s ratio ν = 0.4. We use the following version of Neo-Hookean
strain energy potential

W (F ) = µ

2 (Ic − 3− 2 ln J) + λ

4 (J2 − 1− 2 ln J), (4.24)

where the invariants J and Ic are given in terms of deformation gradient F as

J = det(F ), Ic = tr(F T F ), where F = I +∇u, (4.25)

while µ and λ are Lame’s parameters, which can be expressed in terms of the Young’s modulus,
E, and the Poisson’s ratio, ν, as

λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (4.26)

As introduced in Section 5.2.6, for a given discretized problem, the training/testing dataset is
constructed as follows. Within nodes occupying a prescribed region of the boundary (in red
color in Figure 4.4), a particular family of external force distribution is considered. Each loading
case consists of a single excited node, while for the remaining nodes the external forces are 0.
For a given training/testing example, a single node is chosen for which the external force vector
is generated randomly, component-wise, from a uniform distribution within a given range of
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magnitude. The example is then solved with FEM, and the entire vector f of prescribed nodal
external forces (including unloaded nodes) and the vector u of computed nodal displacements
are saved. The procedure is repeated for all N +M examples, which creates the training/testing
dataset D = {(f(1), u(1)), ..., (f(N+M), u(N+M))}.

The finite element simulations have been performed with the AceGen/AceFem framework [Korelc,
2002] (standard library displacement-based Neo-Hoohean finite elements are used). The non-
linear FE problems are solved with the Newton-Raphson method, and an adaptive load-stepping
scheme is used to avoid convergence issues for large load cases. A single quad/hexahedral FE
mesh per problem is only considered.

Remark: For 2D/3D beam examples the structured FE mesh is used, which is compatible with
the U-Net architecture introduced in Section 4.2.2. In the L-shaped example, the FE mesh
is not structured, which makes it impossible to directly transform it to a compatible node
numbering, with a possible consequence of accuracy drop, as explained in Section 4.4.2. To
correct this, a special zero-padding operation is applied to each f(i) and u(i) before using the
dataset for training/testing, see Figure 4.5. Note here that unstructured meshes can be handled
in several other ways. One way would be to embed a structured grid on the unstructured mesh
and map the unstructured nodal values to the structured nodes. Another promising approach
would be to use recently developed graph networks [Hanocka et al., 2019][Pfaff et al., 2021].
These more sophisticated approaches are, however, out of the scope of the present work.
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Fig. 4.5 Extra nodes with zero force/displacement are added to convert the data to a struc-
tured format. Node numbers are mapped accordingly to follow the assumed order of U-Net
architecture.

The datasets are randomly split into training sets, N (95%), and testing sets, M (5%). The
characteristics of FE meshes and datasets for all three problems are provided in Table 4.1.

Implementation and training of U-Nets

For the 2D cases, we use 3 level U-Net architectures as in Figure 4.2, at each level, we apply two
convolutional operators with 3× 3 filters with c=128 channels in the first level. For Bayesian
U-Nets, we replace half of the layers with probabilistic layers (one layer out of two at each level
is replaced with a probabilistic layer). For the 3D case, we use a 4 level U-Net architecture,
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Problem N.of FEM DOFs (F) Force component range [N] dataset size N+M
2D beam 128 -2.5 to 2.5 5700 + 300
2D beam# 128 -1 to 1 3800 + 200
2D L-shape 160 (256∗) -1 to 1 3800 + 200
3D beam 12096 -2 to 2 33688 + 1782

Table 4.1 FE datasets. The number of DOFs with the asterisk refers to the zero-padded 2D
L-Shaped mesh. 2D beam# is an additional dataset used for analysing probabilistic U-Nets in
Section 4.4.3

we apply two convolutional operators with 3 × 3 × 3 filters with c=128 channels in the first
level. Additionally, for both cases, we use batch-normalization on each layer. This technique
standardizes the inputs to a layer for each mini-batch [Ioffe and Szegedy, 2015]. This has the
effect of stabilizing the learning process and dramatically reducing the number of training
epochs required to train deep networks.

Training: Network is trained by minimising loss function for the given training dataset,
minimisation is performed using Adam optimizer, a well-known adaptive stochastic gradient-
descent algorithm. We set the learning rate to 1× 10−4 and set other optimizer parameters as
per recommendations [Kingma and Ba, 2017]. For the Monte Carlo sampling of loss function
(LVB) in Eq. (4.16), we use Flipout estimator [Wen et al., 2018] with its recommended parameter
values. Trainings of deterministic and probabilistic versions of U-Net are carried out using
Keras [Chollet et al., 2015] and Tensorflow-probability [Dillon et al., 2017] libraries respectively.
All the implementations are done on Tesla V100-SXM2 GPU, on HPC facilities of the University
of Luxembourg [Varrette et al., 2014] using a batch size of 4 and 600/75 epochs for 2D/3D cases.
All the experiments in this work are performed using a single-precision arithmetic (’float32’),
which is the usual default choice for all the deep learning libraries. The use of double-precision
increased the memory requirements and the training time, without any improvement in the
accuracy, and hence is unnecessary. (For the 2D beam example, double precision implementation
took 4 times the training time that of the single-precision implementation.)

Since the prediction of Bayesian U-Net is a distribution, we take 300 stochastic forward passes
for the same input to get the mean and uncertainty of the prediction (T=300 in Eq.(7.13)).

Validation Metrics for the testing phase

For the test set {(f1, u1), ..., (fM , uM )}, we use the following mean absolute error norm as the
validation metric:
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em = 1
F

F∑

i=1
|U(fm)i − ui

m|. (4.27)

F is the number of dofs of the mesh. For mth test example, U(fm) is the deterministic network
prediction and um is the finite element solution. To have a single validation metric over the
entire test set, we compute the average mean norm ē and the corrected sample standard
deviation σ(e) as follows:

ē = 1
M

M∑

m=1
em, σ(e) =

√√√√ 1
M − 1

M∑

m=1
(em − ē)2. (4.28)

(Note: It is the standard deviation of averaged errors across the test set, not the standard
deviation of all errors.)

In the case of Bayesian U-Nets, the output of the network is a probability distribution, for that
reason, we sample over the output distribution by taking multiple forward passes as described
in Eq. (7.13). Mean over these samples, Uµ(fm), is taken as the mean prediction of the Bayesian
U-Net, while the standard deviation of these samples, Uσ(fm), gives us the confidence intervals
of predictions. Now the error norm for mth test example is given as

e(Uµ(fm), um) = 1
F

F∑

i=1
|Uµ(fm)i − ui

m|. (4.29)

Again the average error norm and the corrected sample standard deviation for all test examples
is computed as

ē = 1
M

M∑

i=1
e(Uµ(fm), um), σ(e) =

√√√√ 1
M − 1

M∑

m=1
(e(Uµ(fm), um)− ē)2. (4.30)

4.4.2 Deterministic U-Nets

Advantages of the U-Net convolutional architecture

U-Nets vs. fully-connected NNs

U-Nets leverage the fact that nearby nodes of the FEM mesh show strong local correlation,
and provide computationally efficient topology that is able to capture non-linearities. However,
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if we had to use a fully connected neural network to capture these non-linearities, the number
of latent parameters of this network would be significantly larger as compared to that of the
U-Net.

To show this effect, we consider the simplest fully connected network, with only input and
output layers, without no hidden layers nor activation functions, as a surrogate model for the
3D beam example (as in Figure 4.4c). This example has 12096 dof, so the dimension of the input
and output layer is 12096 each. Because of the absence of hidden layer/activation functions,
this network is only able to capture a linear response of the force-displacement relationship.
In order to have the best-linearised approximation, we initialise trainable parameters of the
fully connected network with the inverse of the FEM stiffness matrix. Table 4.2 shows that the
fully connected network (which is an inaccurate assumption) has 1.5 more parameters than the
deterministic U-Net, while the accuracy is greatly reduced. In order to do a better (non-linear)
approximation, one would need to use a multi-layer fully connected network, which would
require even more parameters, and hence the training time would be significantly higher. Hence,
the choice of U-Nets makes complete sense, in particular for complex non-linear problems.

NN type N. of trainable parameters ē [m] σ(e) [m]
Deterministic U-Net 94.1 E+6 0.6 E-3 0.3 E-3

Fully-connected 146.3 E+6 7.0 E-3 8.0 E-3

Table 4.2 Comparison of U-Net vs feed forward network for 3D Beam example

Effect of DOF ordering

The topology of input FEM mesh plays a crucial role in the training of U-Nets, and it must be
compatible with that of the U-Net architecture topology. However, different FEM pre-processors
have different ways of numbering nodes. For instance, Gmsh [Geuzaine and Remacle, 2009], a
popular FE mesh generator, first numbers corner nodes, then edge nodes followed by internal
nodes, see Figure 4.6b. This is not compatible with the expected U-Net input, which effects
deteriorating the predictive capabilities of the U-Net. A completely random ordering, see
Figure 4.6c, performs even worse, see Table 4.3. To fully leverage the advantages of U-Nets,
care has to be taken to order nodes properly. This is the reason why the zero-padding has been
done to the L-shaped case, see the remark in Section 4.4.1, and Figure 4.5.

Ordering strategy ē [mm] σ(e) [mm]
Preferred ordering (as in Figure 4.6a) 0.6 0.3
Random ordering (as in Figure 4.6c) 5.4 2.8

Table 4.3 Error metrics for the preferred and randomly ordered case for the 3D beam problem.
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Fig. 4.6 Different node numbering strategies. (a) Numbering assumed by the TensorFlow
(the preferred one; used in this work), (b) Gmsh preprocessor numbering, and (c) random
numbering.

Prediction accuracy

Deterministic U-Nets are trained on FEM datasets generated as described in Section 4.4.1.
Below, we analyse in a more detail some selected test examples for each case, and compare
their FEM and U-Net solutions. For all the examples, we show the overlap of deformed meshes
obtained using FEM and U-Net models. In Figures 4.7-4.11 and Figure 4.13, gray, blue and
red meshes represent undeformed configuration, U-Net solution and FEM solution, respectively.
In addition to that, we also present the interpolated node-wise L2 norm of the prediction error
(the error of the nodal displacement between FEM and U-Net.

In Figure 4.7, we show a test example of the 2D-beam case. A point force is applied at the
corner node of the beam and the deformation of mesh is predicted using the deterministic U-Net.
As we can see, the deformed mesh predicted with U-Net is overlapping with the reference FEM
solution. As explained above, we also plot the nodal error field on the deformed mesh, one can
observe that the error is relatively higher in the high displacement region, i.e, near the free end.
The relative error for the tip with respect to its displacement magnitude is only 0.6%.

(a)

AceFEM
0.4271e-4
Min.
0.5986e-2
Max.

0.864e-3
0.154e-2
0.222e-2
0.290e-2
0.358e-2
0.426e-2
0.494e-2

(b)

Fig. 4.7 Deformation of 2D beam computed using the deterministic U-Net, for the point force
at the free end. (a) Comparison of deformed meshes, both blue mesh (U-Net solution) and red
mesh (reference FEM solution) are overlapping. The magnitude of the tip displacement is 0.95
m. (b) L2 error of nodal displacements between deterministic U-Net and FEM solutions.
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Figure 4.8 shows an example of the 2D L-shape case. Again the deterministic U-Net solution is
overlapping with the reference FEM solution. L2 error contour shows that a high error trend
is observed near the free end again, the relative error at the top corner node with respect to
displacement magnitude is 0.4% only.

(a)
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Max.
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(b)

Fig. 4.8 Deformation of 2D-L shape computed using deterministic U-Net. (a) Initial and
deformed meshes predicted using deterministic U-Net(blue) and FEM(red), the magnitude
of tip displacement is 2.39 m, and (b) L2 error of nodal displacements between deterministic
U-Net and FEM solutions.

We further take a look at two 3D-beam test examples, one with the force applied near the
free end and another with the force applied in the middle region of the 3D beam. For both
cases, the deterministic U-Net solutions are overlapping with the FEM solutions. Insets in
Figure 4.9 show that the U-Net is capable of predicting high local non-linear deformations. For
the first example in Figure 4.9a-4.9b, the error field shows high error region near the point
of application of the force. The relative error for the tip for this case is only 0.6%. Whereas,
Figure 4.9c-4.9d shows an example with the force applied relatively near to the fixed end. In
this case, a high error field is observed at the point of application of force as well as near the
free end. The relative L2 error of the tip for this example is 1.6%. From this, we can say that
errors are usually higher near the nodes with higher displacement magnitudes.

Till now we looked at the prediction accuracy for individual examples, now we would like to
judge the performance of deterministic U-Net over the entire test sets (5% of the generated data
is designated for testing purposes). Table 4.4 provides such comparison in a form of averaged
error over entire test sets. We can see that, on average, the error is at a reasonably low level.
To extend this analysis, in Figure 4.10 we plot the mean error (e) of each test example of the
three benchmark problems. We sort these errors as per the increasing displacement magnitude
at the point of application of force. To get a relation between displacement and mean error (e),
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(d)

Fig. 4.9 Deformation of 3D beam computed using deterministic U-Net (blue) for two force cases,
for comparison FEM solution (red) is presented. (a)&(c) deformed meshes for both examples.
The magnitude of tip displacement for the first case (force near the free end) is 1.1 m and for
the second case (force in the middle region) is 0.26 m. High localized deformations are shown
in the insets. (b)&(d) L2 error of nodal displacements between deterministic U-Net and FEM
solutions.

we do a least square linear fit for all three cases. From Figure 4.10, all the three examples show
generally low sensitivity to the increase of displacement magnitude.

Effect of changing the distribution of applied forces

Deterministic U-Net has been trained by using single point load examples only, but we would like
to check how it performs when multiple point load input is given for the prediction. Figure 4.11
shows one such example where random multiple forces are applied on the top edge, U-Net is
able to closely follow the reference FEM solution. Figure 5.16b shows the L2 norm of the error
across the beam, it shows a different trend for this example. Though the deformation is higher
in the free end region and at the point of application of forces, a higher error is observed at
a different location also. Solution accuracy of multiple point load cases can be improved by
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Example M ē [m] σ(e) [m]
2D Beam 300 0.3 E-3 0.2 E-3
2D L-Shaped 200 0.8 E-3 0.4 E-3
3D Beam 1782 0.6 E-3 0.3 E-3

Table 4.4 Error metrics for 2D and 3D test sets for predictions using deterministic U-Net. M
stands for the number of test examples, and ē and σ(e) are error metrics defined in Section 4.4.1.

Fig. 4.10 Mean errors (e) for all test examples of three benchmark cases. The regression lines
y ∝ 0.0008× x (2D-beam), y ∝ 0.0005× x (2D-L shape), y ∝ 0.001× x (3D beam) show low
sensitivity of the deterministic U-Nets to displacement magnitudes.

incorporating multiple point loads in the training phase. Also, the relative error for the tip
with respect to its displacement magnitude for this example is 0.6%.

In most engineering applications, we are interested in the cases where force is applied in a
given prescribed region of interest (e.g., the Neumann boundary). Here, we would like to check
how U-Net performs when this assumption is violated, i.e, we apply forces on the nodes which
were not involved in the training procedure. To do so, we use the same 2D beam case with the
training set generated by applying point forces on the top edge (indicated by the red line in
Figure 4.4 in Section 4.4.1). What we change is the prediction phase, during which we apply
forces on nodes located on the vertical free edge of the beam (see schematics in Figure 4.13).
In the example, we apply a vertical force of 1.5 N on each of the 4 nodes of the free edge of the
beam. Figure 4.13a shows that mesh (blue) predicted with U-Net deviates more and more from
the true FEM solution, as we move away from the training line. The U-Net solution is much
worse when the force is applied on the 4th node as compared to the 2nd, i.e. when the point
of force application is farthest from the training line. In Figure 4.13b, we plot the mean and
maximum errors of all 4 examples, and we can observe a significant accuracy drop reaching two
orders of magnitude when predicting outside the training region. Also, we can see that the
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Fig. 4.11 Deformation of the 2D beam subjected to multiple point loads. (a) Comparison
of deformed meshes predicted with deterministic U-Net and FEM, the magnitude of tip
displacement is 0.55 m. (b) L2 error of nodal displacements between deterministic U-Net and
FEM solution.

errors are increasing when moving away from the training dataset. This proves that the U-Nets
extrapolate predictions poorly when moving away from the training range in spatial directions.

Training convergence

The choice of the amount of training data and the appropriate neural network architecture
are two important criteria in the case of neural network surrogate modeling. This is crucial
to ensure that neither underfitting nor overfitting is observed. For all the cases in this work,
training convergence is ensured by observing loss plots of training and validation errors, i.e.,
the training error doesn’t decrease, and validation error doesn’t go higher with the number of
epochs. For the reference, the loss plots for 2D cases are shown in Figure 4.12.

(a) (b)

Fig. 4.12 Mean squared error log-loss plots for (a) 2D beam and (b) 2D L-shape case.
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Fig. 4.13 Application of point loads on the nodes away from the training region. (a) Deformed
meshes obtained by FEM (red) and with U-Net (blue) when point load is applied on 2nd or 4th

node. (b) Mean error (e) and maximum error for each of the 4 point loads cases. Green line
shows the uncertainty prediction of Bayesian U-Net, for the node on which the force is applied.

4.4.3 Probabilistic U-Nets

The goal of our probabilistic U-Net framework is to get reliable predictions and uncertainty
associated with those predictions. Further in this section, we will check this for the case of data
and model uncertainties for selected examples analogous to the deterministic case.

Prediction accuracy

We train the probabilistic U-Net framework on the same datasets as used in deterministic cases.
Because the output of the network is a distribution, we make 300 stochastic forward passes to
get the mean and uncertainty predictions for a given input. Mean prediction of Bayesian U-Net
is treated as the solution of the network, whereas uncertainty predictions give information
of credible intervals of predictions. Table 4.5 gives the error metrics for the Bayesian U-Net
predictions over the entire test sets, for comparison we have shown the errors of deterministic
counterparts as well.

Similar to the deterministic case, we do the analysis of the error metric (e) for all the test
examples predicted using Bayesian U-Net this time. Figure 4.14 shows errors sorted as per
the increasing displacement magnitudes of the point of application of forces. We perform a
least-squares line fit to the error data. Slopes for 2D-beam and 2D L-shape cases are small,
proving a little sensitivity of errors to the displacement magnitudes.
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Example M ē [m] σ(e) [m]
2D Beam (VB) 300 1.3 E-3 1.3 E-3
2D Beam (D) 300 0.3 E-3 0.2 E-3
2D L-Shaped (VB) 200 5.3 E-3 3.7 E-3
2D L-Shaped (D) 200 0.8 E-3 0.4 E-3

Table 4.5 Error metrics for 2D test sets using Bayesian U-Nets. D = Deterministic, VB =
Variational Bayes.

Fig. 4.14 Mean errors (e) for all test examples of 2D cases, for predictions using Bayesian U-Net.
The regression lines y ∝ 0.005× x (2D beam), y ∝ 0.006× x (2D-L shape) show low sensitivity
of Bayesian U-Net errors to displacement magnitudes.

Hereafter we focus on particular examples to get more insights on Bayesian U-Net predictions.
Similar to the deterministic cases, we take node-wise L2 norm of the error (Error of FEM and
mean prediction of Bayesian U-Net) and also that of the uncertainty prediction from Bayesian
U-Net. Both error and uncertainty values are interpolated within the element to get respective
fields, which are plotted on the deformed mesh obtained using Bayesian U-Net.

We consider the same 2D-beam test case as in Figure 4.7, (as in deterministic case). This time
we make the prediction using Bayesian U-Net. Figure 4.15 shows the comparison of error and
uncertainty associated with the prediction (we plot single standard deviation values associated
with the prediction of respective dof). One can see that both are strongly co-related spatially.

A similar kind of analysis is done for the multiple point load case Figure, see 4.11, in the
deterministic section. Figure 4.16 compares the error and uncertainty fields obtained using the
Bayesian U-Net, we can see that they are correlated and closely follow each other as well.
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Fig. 4.15 Deformation of 2D Beam predicted by the Bayesian U-Net, for the same example as in
Figure 4.7. (a) The error between Bayesian U-Net and FEM solution plotted on the deformed
mesh. (b) Uncertainty of prediction obtained using Bayesian U-Net plotted on the deformed
mesh.
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Fig. 4.16 Deformation of 2D Beam for multiple point forces using Bayesian U-Net, for the same
example as in Figure 4.11. (a) The error between Bayesian U-Net and FEM solution plotted
on the deformed mesh. (b) Uncertainty of prediction obtained using Bayesian U-Net plotted on
the deformed mesh.

Force outside training range: Let us consider a test example in which a force of 5 N is applied
on the corner node, which is far away from the training range (which is -2.5 to 2.5 N). Again we
compare error and uncertainty associated with the Bayesian U-Net prediction. For reference, the
FEM solution is presented (red mesh) with the error contour plot. Both error and uncertainty
are plotted on the deformed mesh predicted with the Bayesian U-Net. In Figure 4.17, one can
see that both are strongly correlated, rather both values are close to each other across the
spatial dimensions of the beam. Thus, the uncertainty predictions can give us an idea about
the error of U-Net predictions, irrespective of whether an input is within or outside the training
region.

For each of the above examples shown in Figure 14-16, we can see that the U-Net solution is
deviating from the true FEM solution, which is given by the error contour, i.e., the U-Net model
is not able to fit the data exactly. And uncertainty prediction obtained using the Bayesian
U-Net is able to capture this fitting error.
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Fig. 4.17 Deformation of 2D Beam using Bayesian U-Net for an input force outside the training
range. (a) Error between Bayesian U-Net and FEM solution plotted on the deformed mesh. (b)
Uncertainty of prediction obtained using Bayesian U-Net plotted on the deformed mesh.

The example in Figure 4.17 can be considered as a case of extrapolation in the sense of the
magnitude of force being outside the training range. One can also think of extrapolation in the
sense of applying force on the nodes which were not included in the training, i.e., extrapolation
in the spatial dimensions of the geometry. To analyse such cases we consider the same example
as shown in Figure 4.13 in the deterministic Section 4.4.2. In Figure 4.13b we have shown the
uncertainty of Bayesian U-Net prediction (one standard deviation), for the node on which point
load is applied. As one can infer, Bayesian U-Net is not giving reliable uncertainty estimates
when we move away from the training region in spatial directions. Intuitively the predicted
uncertainty should be more for the case when force is applied on the farthest node from the
training line, but on contrary, we observed a low prediction uncertainty for this point. One
possible explanation of this limitation is, gradients w.r.t the spatial dimensions are not available
neither in the data nor in the U-Net models. Hence there is no natural way of extrapolating
information of solutions or uncertainties.

Hereafter we focus on displacement prediction of a single dof with Bayesian U-Net. We do this
to see how the associated uncertainty varies with the value of input force, depending on whether
the input is within or outside the training range. In Figure 4.18-4.21, we keep a constant
direction of the input force, but gradually increase the magnitude and study the displacement
prediction using Bayesian U-Net. The output of the Bayesian U-net is the displacement solution
and the uncertainty associated with it, in Figure 4.18-4.20 we provide separate plots for both
of these outputs. Whereas in Figure 4.21 we only study the prediction uncertainties for noisy
data cases.

2D Beam: We apply multiple vertical forces varying from -8 N to 8 N on the corner node of the
beam and predict its displacements using the Bayesian U-Net. Figure 4.18a gives the prediction
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of displacement magnitude, as one can see prediction matches with test FEM solution within
the training region. Outside the training region, Bayesian U-Net prediction deviates from
the FEM solution. For reference, we provide deterministic U-Net solutions as well, even they
deviate from FEM solutions outside the training range. Whereas Figure 4.18b gives confidence
intervals associated with these predictions. One can see that network has very little uncertainty
i.e. it is confident in the region of training data (-2.5 to 2.5 N) but as one moves away, the
uncertainty of the prediction increases. We can also see that 95% confidence is able to capture
the error of Bayesian U-Net predictions outside the training region, for reference, errors of
deterministic U-Nets are presented as well.

(a) (b)

Fig. 4.18 Outputs of Bayesian U-Net when a range of forces is applied on the corner node of the
2D Beam (see inset). (a) The magnitude of Y-displacement of the corner node predicted with
Variational Bayesian U-Net. (b) The uncertainty associated with the predictions of displacement
solutions.

In this paragraph, we compare uncertainty intervals for Bayesian U-Nets trained on two different
datasets. In addition to the existing 2D beam dataset (force range: -2.5 to 2.5 N), we consider
another training dataset with a lower force range this time (force range: 1 to 1 N). Figure 4.19
shows the comparison of uncertainty intervals for these two cases, as the range of input force in
the training set is decreasing, Bayesian U-Net tends to get more uncertain about its predictions
in higher force ranges, which follows the common intuition.

2D L-shape: This training dataset was created by applying point forces in the range of -1 N to
1 N as shown in Table 4.1. In order to see how prediction uncertainty varies with the input
forces, we apply multiple forces in a horizontal direction varying from -6 N to 6 N on the inner
corner of the L-shape and predict its displacements using Bayesian U-Net. Figure ?? shows
how displacement magnitude changes with applied force values. As we start to move away from
the training region, the Bayesian U-Net solution deviates from the FEM solution. For reference,
we have plotted the deterministic U-Net solutions as well. Figure 4.20b gives the uncertainty
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Fig. 4.19 Uncertainty intervals for the Y-displacement of the corner node of the 2D beam (see
inset), predicted using the Bayesian U-Nets trained on different training sets. Uncertainty
reduces with the increase of force range in training data.

associated with the prediction. Again the network is very confident in the training data region.
But as the force value goes outside the training range, uncertainty tends to increase, for the
reference, errors of deterministic U-Nets are presented as well.

(a) (b)

Fig. 4.20 Outputs of Bayesian U-Net when a range of forces is applied on the inner corner node
of the 2D L-shape (see inset). (a) The magnitude of X-displacement of the inner corner node
predicted with Variational Bayesian U-Net. (b) The uncertainty associated with the predictions
of displacement solutions.

Noisy Data Case

In all the cases above, the U-Net models have been trained with numerical FEM datasets which
can be regarded as noiseless. However, in many practical applications, especially when working
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with experimental data, the data noises exist and can originate from various sources, such as
measurement errors, errors associated with tools, human errors, etc. In this section, we would
like to demonstrate that our framework is capable of capturing these data noises. To show that,
we add random noises to our existing FEM datasets, and check how MLE- and Variational
Bayes U-Nets perform in capturing these noises in terms of the predicted uncertainties.

For both 2D beam and 2D L-shape cases, we modify the existing datasets (of the input force
range -1 N to 1 N as shown Table 4.1) by incorporating random noises to displacement values.
When the magnitude of applied force is less than 0.7 N, we add a random noise (from a
continuous uniform distribution) within 20% of the real displacement solutions, i.e., when
∥f∥2 ⩽ 0.7 we set u → (1 + γ)u, where γ ∼ U(−0.2, 0.2). Now, the probabilistic networks
(MLE and Variational Bayes) are trained using these noisy datasets. In the prediction phase, we
apply forces to a single chosen corner node in a single direction, with magnitudes ranging from
-4 N to 4 N (see insets in Fig. 4.21). Then we analyse the predicted uncertainties associated
with displacements of respective nodes to which the force has been applied, and how they relate
to the level of input force noises.

Figures 4.21a and 4.21c show that the MLE approach is able to capture the noises in the
training data region, although it fails to produce reliable uncertainty estimates outside that
region (extrapolated region). The network is very confident in predictions even though we move
away from the training region, and the prediction errors there are clearly visible. Whereas from
Figure 4.21b-4.21d, we can see that the Variational Bayes approach is able to capture both
effects: the effect of noises in the data, as well as the desired effect of gradually increasing
uncertainty as we move away from the training region.

4.4.4 Prediction and training times

Prediction Times

Although networks are trained on Graphical Processing Units (GPU), predictions are com-
putationally inexpensive on user end Central Processing Units (CPU) as well. Also, since
recent years, GPU cloud computing is easily accessible, one can leverage GPU support over the
internet. All these factors make our framework easily deployable to the user end. Table 4.6
gives the comparison of prediction times for different examples on GPU as well on CPU.

For some of the force values in the testing set, the FEM solution took more than 3s. Hence
under identical computational resources, deterministic U-Net gave 31 times speedup. Another
important point to mention here is, both deterministic and Bayesian U-Net, individually take
the same time for prediction irrespective of the value of the input (applied force). In the case
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(a) (b)

(c) (d)

Fig. 4.21 Uncertainty predictions for noisy data cases using probabilistic U-Nets. For the 2D
beam case (upper row), prediction is done for the Y-displacement of the corner node. For
2D L-shape (lower row), prediction is done for the X-displacement of the inner corner node
(see insets). (a)&(c) Uncertainty predictions using MLE approach. MLE fails to capture the
uncertainty outside the training region. (b)&(d) Uncertainty predictions using Variational
Bayes approach. VB is capable to capture the uncertainty outside the training region.

of the FEM, solution time evolves with the value of applied force. This is because we use an
iterative solver and adaptive load-stepping scheme to avoid convergence issues for large load
cases. Hence on local, we can expect much more speedup than 31 times when we go towards
the higher input force values. Deterministic U-Nets gave nearly 350 times speed up when
predictions were done using GPU. Even with the high dimensional 3D examples, U-Net did not
take more than 10 ms, thus satisfying the real-time constraint.

The time of prediction of Bayesian U-Net is the time of sampling over output distribution,
which is as long as 300 stochastic forward passes in our case. For the above example (for
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Type dof t_femCPU [s] tCPU [s] tGPU [s] t_femCPU
tCPU

t_femCPU
tGPU

2D Beam 128 0.123 0.005 0.001 25 123
2D L-shape 256 0.120 0.007 0.001 17 120
3D Beam 12096 3.1 0.1 0.009 31 345

Table 4.6 Prediction times of deterministic U-Net on CPU, GPU. Under similar computational
resources on CPU, U-Net shows 31 times speedup, which can be even more depending on the
boundary conditions. Whereas GPU shows nearly 350 times speedup.

both 2D beam and 2D L-shape), 300 forward passes for a single test example took 0.1 secs.
Compared to the deterministic case, the average time for the prediction of single-pass is less
(0.3 ms) because of the efficient utilisation of batch prediction. Hence even Bayesian inference
takes very little time in the prediction phase.

Training Times

For any neural network, the training phase of the model is the most resource-intensive task.
Hence modern machine learning open source libraries such as Tensorflow, Keras, PyTorch are
optimized to work with GPUs. GPU has a parallel structure that offers faster computing and
increased efficiency compared to the user end computer with its CPU. Table 4.7 gives GPU
training times for different datasets for both deterministic and probabilistic U-Nets.

Example Dataset size, N ttrain [min] N. of trainable parameters
2D Beam (D) 5700 131 7.5 E+6
2D Beam (VB) 5700 226 15.1 E+6
2D L-Shaped (D) 3800 78 7.5 E+6
2D L-Shaped (VB) 3800 143 14.6 E+6
3D Beam (D) 33688 1060 94.1 E+6

Table 4.7 U-Net training times, ttrain. D = Deterministic, VB = Variational Bayes.

Bayesian U-Nets have more parameters to be trained, additionally, we need to sample over
the approximate posterior as described in Section 4.3.4. Hence training times for Bayesian
U-Nets are significantly higher than for the deterministic counterparts. As the size of the
problem grows, training time proportionally increases as well. Hence the training time for the
3D beam case is higher compared to 2D cases. Note however, that this time can be reduced by
opting alternate topologies of U-Nets, and one way of doing so is keeping a constant number of
channels in each U-Net level instead of increasing it (which will be analyzed below).

Effect of number of channels
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The training time of U-Net can be reduced by decreasing the number of trainable parameters
of the model, and one of the ways to achieve this is to decrease the number of channels at each
U-Net level. This can have, however, a side effect on prediction accuracy (intuitively, channels
are partially responsible for capturing nonlinearities). We analyze these competing effects by
performing a case study for the deterministic 3D-Beam case for architectures with different
constant (not variable) number of channels, c.

Table 4.8 shows a comparison of training times and prediction errors. As we can see, as
compared to the architecture used in Section 4.4.2, the use of 64 channels at each level gave
comparable error values, while the training time is about three times lower. We can also observe
that an excessive increase in the number of channels (c = 128) results in deterioration of not
only training time but also the prediction accuracy, which can be interpreted as a well-known
effect of overfitting. For reference, we have provided GPU prediction times for these networks
as well.

N. of channels, c ē [m] σ(e) [m] ttrain [min] tGPU [ms]
16 1.6 E-3 0.9 E-3 272 6
32 1.1 E-3 0.7 E-3 293 6.5
64 0.8 E-3 0.5 E-3 348 7.5
128 3.5 E-3 3.3 E-3 646 9

Table 4.8 Error metrics, and training and predicting times for different deterministic U-Net
architectures trained on the 3D dataset. A constant number of channels, c, is used in each level
of U-Net. The use of 64 channels is optimum to achieve error and computational time trade-off.
Standard 3D U-Net architecture took 1060 mins to train on the identical dataset.

4.5 Conclusions

In this work, we have proposed a deterministic/probabilistic neural network framework that is
capable of accurately predicting large deformations in real-time. Although in the present work
we only used artificially generated data for training, the framework can naturally assimilate
experimental data as well. Because of these factors, our framework has the potential for data-
driven applications requiring very fast response rates, such as patient-specific computer-aided
surgery of soft human tissues.

In addition to the predictions, the proposed probabilistic framework is also capable of giving
reliable uncertainty estimates. Indeed, we showed that the predicted uncertainties correlate with
the prediction errors (fitting errors to FEM solution). We also showed that the uncertainties
rapidly increase in the extrapolated region, which is the desired property that we expected
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to achieve. Additionally, we were able to capture the noises present in the data, which
has been validated with two probabilistic approaches (Maximum Likelihood Estimation and
Variational Bayes). As such, our framework can be seen as a step towards making real-time
large-deformation simulations more trustworthy.

To the best of our knowledge, this is the first time the state-of-the-art Bayesian Neural Networks
are used in the context of non-linear body deformations. We believe that this work can serve
as a reference for further developments in this emerging area of research. Due to its potentially
high efficiency and accuracy, as well as due to its unique probabilistic predictive capabilities,
we believe that the presented framework will turn out to be useful in a wide scope of novel
engineering applications.

Besides showing promising results, we also demonstrated several important limitations of
the current framework. Firstly, the convolution operations that are used in our U-Nets’
implementation require structured meshes. We showed in the paper possible methods to extend
our framework to unstructured meshes, which can be done with a moderate effort in the
future. Secondly, we observed that the proposed novel technique to quantify uncertainties
in extrapolated regions does not always give reliable predictions. Bayesian U-Nets failed to
give reliable credible intervals of predictions when we applied the force on the nodes which
were not part of the training procedure (i.e. extrapolated data in the spatial dimensions). As
discussed in the paper, it seems to be a more fundamental and challenging problem that needs
a dedicated approach, which is left for future research.





Chapter 5

MAgNET: A Graph U-Net
Architecture for Mesh-Based
Simulations

Abstract

In many cutting-edge applications, high-fidelity computational models prove too slow to be
practical and are thus replaced by much faster surrogate models. Recently, deep learning
techniques have become increasingly important in accelerating such predictions. However,
they tend to falter when faced with larger and more complex problems. Therefore, this work
introduces MAgNET: Multi-channel Aggregation Network, a novel geometric deep learning
framework designed to operate on large-dimensional data of arbitrary structure (graph data).
MAgNET is built upon the MAg (Multichannel Aggregation) operation, which generalizes the
concept of multi-channel local operations in convolutional neural networks to arbitrary non-grid
inputs. The MAg layers are interleaved with the proposed novel graph pooling/unpooling
operations to form a graph U-Net architecture that is robust and can handle arbitrary complex
meshes, efficiently performing supervised learning on large-dimensional graph-structured data.
We demonstrate the predictive capabilities of MAgNET for several non-linear finite element
simulations and provide open-source datasets and codes to facilitate future research.

This chapter is reproduced from: S. Deshpande, S.P.A. Bordas, J. Lengiewicz, MAgNET: A Graph U-Net
Architecture for Mesh-Based Simulations, arXiv, 2023, https://doi.org/10.48550/arXiv.2211.00713

https://doi.org/10.48550/arXiv.2211.00713
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5.1 Introduction

Computational models are essential tools for studying, designing, and controlling complex
systems in many fields, including engineering, physics, biology, economics, and social networks.
These models are often based on physical laws and mathematical equations, with partial
differential equations (PDEs) being a common tool for describing how quantities change over
space and time. In mechanics and physics, the PDEs are most commonly solved with numerical
methods upon earlier space- and time- discretization, and a large number of domain-specific
computational models have been developed so far, with the finite element method (FEM) and
the finite volume method (FVM) being the most commonly used approaches in solid- and fluid
mechanics, respectively. However, despite significant advances in computational performance
over the last decade, such high-fidelity numerical simulations remain prohibitively expensive for
many important applications, including emerging areas such as real-time feedback/control in
the computer-assisted surgery [Bui et al., 2018; Johnsen et al., 2015] or soft robotics [Goury and
Duriez, 2018b; Rus and Tolley, 2015]. Speeding up such models whilst maintaining the desired
accuracy is an active area of research, and one of the main motivations of the present work.

Recently, deep learning (DL) techniques have taken a center stage across many disciplines.
The DL models have proven to be accurate and efficient in predicting non-trivial nonlinear
relationships in data. For that reason, they have been tried for a variety of applications
also in mechanics, such as surrogate modelling [Deshpande et al., 2022; Krokos et al., 2022a;
Mendizabal et al., 2019a; Šarkić Glumac et al., 2023] or model discovery and calibration [Huang
et al., 2020; Thakolkaran et al., 2022]. The deep neural network approaches can be categorized
with respect to how they use the data and a priori knowledge about the modelled system. In
purely data-driven approaches, DL models rely on performing supervised learning on either
experimental or numerically generated data and are agnostic to the underlying physics or model.
As such, they are able to reproduce the physics-based relationship by implicitly learning on a
relatively large amount of data [Aydin et al., 2019; Daniel et al., 2020; Kochkov et al., 2021;
Runge et al., 2017]. If the a priori information about the modelled system is introduced, such
networks are termed as Physics Informed Neural Networks (PINNs) [Henkes et al., 2022; Klein
et al., 2022; Raissi et al., 2019; Samaniego et al., 2020; Zhang et al., 2022]. With respect to
the purely data-driven approaches, PINNs are generally more accurate, require less data for
training, and possess better generalization capabilities. The framework presented in the present
work is generally applicable to both cases, however, for the sake of clarity, we will later only
focus on purely data-driven types of networks. In any case, once trained, the DL models can
be used as fast surrogates for computationally expensive high-fidelity numerical methods.

The focus of the present work is on high-dimensional relationships in which the sizes of inputs
and/or outputs are large. Examples of such relationships can be found, for instance, in
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experimental full-field measurement data, such as our recent work on medical imaging [Lavigne
et al., 2022], or in synthetic mesh data generated from finite element simulations, [Lorente et al.,
2017; Pellicer-Valero et al., 2020]. Although DL techniques have generally shown great success
as efficient surrogates to computationally expensive numerical methods in scientific computing,
some of the popular existing machine learning approaches are still based on fully-connected
deep networks which are not suitable for high-dimensional inputs/outputs. As an alternative,
the application of Convolutional Neural Networks (CNNs) has proven a promising performance
in a wide variety of applications, also including accelerating non-linear finite element/volume
simulations [Deshpande et al., 2022; Krokos et al., 2022a; Obiols-Sales et al., 2020; Rao and Liu,
2020]. CNNs are designed to learn a set of fixed-size trainable local filters (convolutions), thus
reducing the parameter space while being capable to capture non-linearities. In the context of
computational mechanics, local convolutions leverage the natural local correlation of nearby
nodes, which leads to more efficient neural network architectures, both in terms of training-
and prediction times. Moreover, one can observe that the CNN architectures have a close
analogy to some iterative solution schemes known in scientific computing [Brenner and Scott,
2008; Wang et al., 2020a]. This provides them with an additional interpretation of being
trainable iterative computational schemes to solve sets of non-linear equations, rather than
general-purpose black-box approximators.

However, there is one important limitation that prevents CNNs from being of general purpose.
The problem is that they only work well with grid-like structure data, such as images or
structured meshes, which greatly hinders their use for many real-world applications where
data is structured differently. Although there are some attempts to alleviate that problem in
the context of FEM data, for instance, combining finite elements with an immersed-boundary
method [Brunet et al., 2019], or embedding a precomputed coordinate mapping into the classic
grid [Gao et al., 2021], the effectiveness of those methods is limited to simple irregular domains
and remains challenging for complex geometries in general. A definitive solution to that
problem has only been brought by Graph Neural Networks (GNNs)–architectures that directly
handle arbitrarily-structured inputs/outputs. They belong to the recently emerged family of
Geometric Deep Learning (GDL) methods which focus on neural networks that can learn from
non-Euclidean input such as graphs and, more generally, manifolds [Bronstein et al., 2017][Wu
et al., 2021]. Because of their ability to handle more general structured data, GNNs are gaining
increasing importance also in surrogate modelling in scientific computing [Sanchez-Gonzalez
et al., 2020][Vlassis et al., 2020][Pfaff et al., 2021][Krokos et al., 2022b][Gao et al., 2022].
However, these approaches are based on relatively simple message passing schemes, which are
sub-optimal for learning on high non-linear regression tasks. In this work, we propose a novel
local aggregation technique, which we denote as Multichannel Aggregation layer, MAg, which
performs multichannel localised weighted aggregations, that can be seen as a direct extension
of the traditional convolution layer in CNNs. Thanks to that, we are able to directly adapt
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some of the mechanisms/layers developed for CNNs to create efficient graph neural network
architectures.

One mechanism that can improve the efficiency and predictive capabilities of convolutional
and graph neural networks is the application of down-sampling (coarsening) and up-sampling
(refinement) layers. In the context of CNNs, the focus is on encoder-decoder architecture
frameworks, such as U-Net, which has been successfully implemented in various applications,
including computer vision [Çiçek et al., 2016; Ronneberger et al., 2015], signal processing
[Hennequin et al., 2020; Ren et al., 2021], and scientific machine learning [Le et al., 2022;
Mendizabal et al., 2019a; Pant et al., 2021; Wang et al., 2020b]. While the CNN-based U-
Net approaches are limited to grid data, their graph-based version, known as graph U-Net,
can provide the desired generality. Recently, various graph coarsening approaches have been
proposed [Bianchi et al., 2019; Cai et al., 2021; Gao and Ji, 2019; Lee et al., 2019], which
serve the same function as pooling layers in CNNs, helping to reduce the size of a graph
while maintaining essential properties of the processed data. In this work, we propose a novel
graph pooling/unpooling operation (coarsening/refinement), that enables us to create a graph
U-Net architecture, MAgNET, that can operate on arbitrary graphs. Our pooling layers are
directly inspired by CNNs, where we extend the concept of pooling over local patches in
regular grids to variable size non-overlapping cliques in graphs. This allows us to precompute
coarsened graphs that are only based on the input graph topology, which is independent of
data (i.e., node features). In the context of GNN-accelerated FEM simulations, a similar
concept has been proposed by [Black and Najafi, 2022], however, their implementation is
limited to regular meshes for simple two-dimensional geometries and linear elastic problems.
Our approach enables computationally efficient deep learning models for non-linear problems
involving arbitrary meshes, which is an important advancement for this field.

In summary, we introduce a novel graph U-Net framework comprising the proposed MAg
and graph pooling/unpooling layers. The MAg layer captures local regularities in the input
data, while the interleaved pooling layers reduce the graph representation to a smaller size
while preserving important structural information. This enables us to efficiently implement our
framework for large-scale problems. The proposed MAg and graph pooling layers are direct
analogues of respective CNN U-Net layers and are also compatible with many state-of-the-art
graph neural network layers. We elaborate on this point in the paper, providing a qualitative
comparison of the proposed MAg layer with several existing graph layers. To validate the
predictive capabilities of our framework, we apply it to several non-linear relationships obtained
through finite element analysis and cross-validate it with predictions given by our CNN U-Net
architecture [Deshpande et al., 2022]. To increase the impact of our work, we provide source
codes, datasets, and procedures to generate the datasets utilized in this work, which can be
found in the MAgNET repository: https://github.com/saurabhdeshpande93/MAgNET.

https://github.com/saurabhdeshpande93/MAgNET
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The chapter is organized as follows. In Section 5.2 we present the novel MAgNET framework, as
well as its particular application to the hyperelastic FEM-based datasets. Then, in Section 5.3,
we provide details of implementation and a thorough study of MAgNET for several 2D and
3D benchmark non-linear FEM examples. The conclusions and future research directions are
summarised in Section 5.4.

5.2 MAgNET Deep Learning Framework

In this section, we will propose a novel graph-based encoder-decoder (U-Net) deep-learning
framework. We will provide a general formulation, in which inputs and outputs follow a
certain graph topology (that is expressed by an adjacency matrix A). The graph expresses an
assumed structure of correlations within input/output data and allows us to devise a robust
DNN architecture defining a non-linear mapping between inputs and outputs. We will apply
this general framework to mesh-based graphs. Such mesh topology of data is characteristic to
spatially discretised numerical solution schemes for PDEs in scientific computing. In particular,
we will focus on hyperelastic problems in solid mechanics, for which the training/testing data is
obtained through the finite element method (see also the schematics in Figure 5.1).
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Fig. 5.1 A novel graph U-Net neural network surrogate model for mesh-based simulations.
MAgNET accurately captures non-linear FEM responses.

In Section 5.2.1 we will provide an overview of the proposed Graph U-Net framework MAgNET.
Next, in Sections 5.2.2-5.2.4 we will introduce the building blocks of MAgNET. In particular,
in Section 5.2.2, we will introduce the adjacency matrix representation of the mesh-based
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graph, which will be utilised later in this paper; and in Sections 5.2.3-5.2.4 we will specify a
new graph Multi-channel Aggregation (MAg) layer, as well as new graph pooling/unpooling
layers. Afterwards, in Section 5.2.5, we will provide an information-passing interpretation of
the proposed Graph U-Net architecture. Finally, in Section 5.2.6 we will introduce a particular
application of the framework to mesh-based datasets that are generated from FEM solutions of
problems in hyper-elasticity.

5.2.1 MAgNET architecture overview

The MAgNET graph neural network architecture can be classified as a graph U-Net network
and is an extension to the well-known class of convolution-based U-Net architectures (see [Ron-
neberger et al., 2015]). As such, the graph U-Net comprises of aggregation (’convolution’),
pooling, unpooling, and concatenation layers (see the schematics in Figure 5.2), which are here
suitably adjusted to work with general (non-grid) topologies of inputs/outputs.

The graph U-Net architecture has two stages: encoding and decoding. In the encoding stage,
first, we apply one or more aggregation (MAg) layers, which are analogues of convolution
layers in non-graph U-Net networks. Next, we apply a single graph pooling layer, which is
a particular contraction of the graph, and which downsamples (coarsens) the problem. This
aggregation-pooling sequence is repeated several times to achieve the desired level of contraction
(coarsening). At the coarsest level, the MAg aggregation is performed one or more times, after
which the decoding stage begins, which is the opposite to the encoding stage. At each level of
decoding, the graph unpooling layer is followed by one or more MAg layers. At the upmost
level, the last MAg layer is applied with linear activation to get the output.

More formally, the Graph U-Net network, G, is constructed as follows. First, we set the input
layer d0 as a vector of N nodes, each of which being a vector of input values (also known as
features or channels) of a constant length c0. (Further on, we will refer to the features as the
channels.) Next, we subsequently add layers, dl, to form a U-Net architecture. The subsequent
layers, dl−1 and dl, are linked by the following relationship

dl = Tl(dl−1; θl), (5.1)

where θl is a vector of trainable parameters (e.g., weights and biases, θl = kl ∪ bl), and Tl(·)
is one of three already introduced transformations: MAg(), gPool() or gUnpool(), which will
be more precisely defined in the following sections. Additionally, we also consider remote
concatenation links between respective layers from the encoding and decoding stages, see
Figure 5.2. The output layer, dL, is assumed to be of the same mesh format as the input layer
but can have a different number of channels (features), cL. Finally, we define the Graph U-Net
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Fig. 5.2 A schematic of Graph U-Net architecture for mesh based inputs. Colors indicate
different types of layers. c1, c2, . . . , c5 stand for channel dimensions. Different arrows indicate
different layers: the graph Multi-channel Aggregation (MAg) layer, the graph pooling/unpooling
layers, and the concatenation layer.

network as a parameterized transformation

G(d0, θ) = dL = TL(TL−1(TL−2(. . .); θL−1); θL), (5.2)

where θ = ⋃L
l=1{θl} is a concatenated vector of network parameters.

The calibration of the Graph U-Net parameters is done through a supervised learning, by fitting
a given known input-output training dataset. The training dataset,

Dtr = {(f1, u1), ..., (fMtr , uMtr), (5.3)

is in the mesh format, and the training is done by minimizing the following mean squared error
loss function

L(Dtr, θ) = 1
Mtr

Mtr∑

m=1
∥G(fm, θ)− um∥2 (5.4)

which gives the optimal parameters

θ∗ = arg min
θ
L(Dtr, θ). (5.5)
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Fig. 5.3 Adjacency matrices for the (a) square and (b) triangular meshes. The dashed lines in
(a) represent additional edges that are added to the original mesh.

5.2.2 Adjacency matrix of the mesh-based graph

For the purpose of this work, we will focus on sparse graphs that derive from data that is
spatially organised in the form of meshes. Those can be 1D, 2D, or higher-dimensional meshes,
of an arbitrary connection topology (see Figure 5.3 for examples of 2D meshes). The graph
can be conveniently represented by a symmetric, square, Boolean adjacency matrix, A, whose
order is equal to the number of nodes in the original mesh. To simplify the further notation, all
nodes (vertices) are self-connected (have loops), which results in having 1 on the diagonal of A.
This allows us to more easily express certain graph operations that are used in this work, for
instance, the k-th power of a graph A, and the selection of pooling sub-graphs that is presented
in Section 5.2.4.

It is fairly straightforward to generate an adjacency matrix from an element connectivity matrix
of the mesh. For that reason we will not discuss it in detail. The only point to be emphasized is
that we make all nodes belonging to a given element mutually inter-connected in the resulting
graph (as they can be assumed to be strongly inter-related). We can visually represent it by
adding more links as compared to a standard wire-frame visualization of finite-elements (see,
e.g., the dashed lines in Figure 5.3a).

Remark: In our work we do not consider any attributes for the edges of a graph. Therefore, the
data is only represented through nodal features and node-node connections which are defined
through the adjacency matrix A.

5.2.3 Multi-channel Aggregation (MAg) layer

The proposed novel neural network layer, MAg, is a multi-channel local aggregation layer that
can operate on graph-structured data. Its architecture is a direct extension to the standard
convolutional layer in CNNs, in which a shareable convolution window is used, making CNNs
restricted to grid-structured data. In the MAg layer, instead, we propose to use fully-trainable
local weighted aggregations (the so-called message passing scheme), where the aggregation
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neighborhood of a given node is prescribed through the graph connectivity (the adjacency
matrix). As such, the scheme is very well suited for sparse graphs and can be directly applied
to graphs that derive from arbitrary 2D or 3D meshes.

The use of multiple channels aims to improve the capabilities of the network to capture non-
linearities. In the multi-channel version, each node represents a vector of values (features),
which can be visualised as multiple layers (channels) of the same graph structure (see the
schematics in Figure 5.4a). The transformation between the input- and output multi-channel
graphs is realised by applying multiple MAg aggregations on vector data to produce respective
multiple components of output vectors. Note that the input/output channels of the whole
network have usually a certain meaning, and their sizes are fixed (e.g., three RGB channels
of a color image at the input and a single channel of a segmented image at the output). The
number of channels in the latent layers can be chosen arbitrarily, which is up to the choice of a
designer of a particular graph U-Net architecture.
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Fig. 5.4 Local aggregation in MAg (a) works very similar to the filter application in CNN (b).
However as opposed to CNN, MAg uses different set of weights at different spatial locations
with heterogeneous window size. In CNN, a constant filter slides across the channel.

More formally, we will consider the MAg layer as a parameterized transformation between the
input and output nodes, defined as

dl+1
i,α = σ(bl+1

i,α +
cl∑

β=1

∑

j∈Ni

kl+1
i,j,α,βdl

j,β), (5.6)

where Ni = {j | Aij = 1} is a set of neighbours of a node i to be aggregated, α and β represent
the output and input channels, respectively, while kl+1 and bl+1 are trainable weights and
biases, respectively. In this multi-channel definition, for a given component, dl+1

i,α , of an output,
a single aggregation is performed throughout the neighborhood, Ni, and all the input channels,
β ∈ {1, . . . , cl}. The kernel parameters of MAg transformation, kl+1

i,j,α,β , are not shared, i.e, they
can be independently trained for each aggregation window (note the free indexes i and α).
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Comparison to existing graph aggregation/convolution layers

As already mentioned in the introduction, the very idea of generalisation of convolution layers to
arbitrary graph structure is not new. In fact, various concepts have emerged so far, [Zhou et al.,
2020][Chen et al., 2020b], most of which are compatible with the U-Net framework proposed in
the present work. Below, we will discuss several of them, introducing a unified notation that
will facilitate a qualitative comparison with respect to the proposed MAg layer, see Table 5.1.

Layer Transformation

GCN [Kipf and Welling, 2016] dl+1
i,α = σ(

cl∑
β=1

wl+1
α,β

∑
j∈Ni

Ai,j∑
k∈Ni

Ai,k
dl

j,β)

GAT [Veličković et al., 2017] dl+1
i,α = σ(

cl∑
β=1

wl+1
t,γ,β

∑
j∈Ni

softmaxj(attn(wl+1
t dl

i, wl+1
t dl

j , θt))dl
j,β)

SemGCN [Zhao et al., 2019] dl+1
i,α = σ(

cl∑
β=1

wl+1
α,β

∑
j∈Ni

softmaxj(kl+1
i,j,α,β)dl

j,β)

MAg [present work] dl+1
i,α = σ(

cl∑
β=1

∑
j∈Ni

kl+1
i,j,α,βdl

j,β)

Table 5.1 Comparison of the MAg layer with selected state of the art graph convolution
layers (biases are omitted for the sake of brevity). In GAT formulation, α = (t − 1)Ng + γ,
which represents the stacking operation for the multi-head attention mechanism, where t ∈
(1, . . . , N l+1

h ) is the attention head index, and γ ∈ (1, . . . , Ng) is the internal channel index
(cardinality of each node in the layer l + 1).

Graph neural network layers aim to utilize the information about assumed correlations in data,
with the graph structure expressing those correlations. The general approach is to specify a
suitable (possibly nonlinear) trainable local transformation that can aggregate the information
from a node in consideration and its neighbours. (This aggregation is followed by a chosen
activation function before being propagated to the next layer.) Such transformations form a
wide class of, so-called, message passing schemes, and can combine shareable (independent of a
node) and non-shareable (dependent on a node, i.e., independently-trainable) sets of parameters.

The simplest and most lightweight realisations of the graph aggregation/convolution layer
concept only utilise shareable weights, see, e.g., the Graph Convolutional Network (GCN),
[Kipf and Welling, 2016]. In those approaches, a non-trainable (arbitrary) weighted aggregation
is performed prior to application of a shareable trainable operator – something completely
opposite to our MAg layer, which is fully trainable. This enables to keep the number of trainable
parameters low, which is achieved at the cost of relatively low capacity of such networks. This
low capacity can not be straightforwardly increased by simply deepening the network because
of the well-known over-smoothing phenomenon.
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We will discuss two out of many available approaches to increase the capacity of graph neural
networks. The first approach relies on the multi-head attention mechanism which allows to
assign different importance to nodes in the neighbourhood, see, e.g, the Graph Attention
Network (GAT), [Veličković et al., 2017]. In the attention mechanism, the weights used in local
aggregation depend on input nodal features, which makes the concept qualitatively different
from all approaches (including the MAg layer) that use input-independent aggregation weights.
The second class of approaches resemble the MAg layer more closely. Particular notable
examples of that approach are the Spatial-Temporal Graph Convolution Network (ST-GCN),
[Yan et al., 2018], and the Semantic Graph Convolution Network (SemGCN), [Zhao et al.,
2019], which have been introduced in the particular context of human pose recognition problem
(the computer vision domain). The common features of MAg and SemGCN layers are the
input-independent learnable weighted aggregation and the use of channels to increase the model
capacity. The difference is that the MAg doesn’t use a shared transformation matrix (w) nor
the softmax normalisation – both used in the case of SemGCN.

To summarize, the proposed MAg layer relies on one of the most flexible message-passing
schemes, with no shareable parameters. This promises a very high capacity of the MAg
network. Also, as shown above, the proposed MAg layer is compatible with other graph
convolution/aggregation layer concepts, and thus can be straightforwardly exchanged, if needed.

5.2.4 Graph pooling- and unpooling layers

Pooling and unpooling are two fundamental operations allowing U-Nets to encode (compress)
and decode (decompress) information, respectively, see Figure 5.2. The pooling layers are
composed of local contracting operations over the mesh-structured data, and are used to coarsen
the data at the encoding part of the network. At the decoding part, the original refined mesh
structure is restored by the unpooling layers (upsampling operations). In U-Nets, the unpooling
layer is usually combined with the concatenation operation, which creates a direct link between
the encoding and decoding part of the network (this will be explained later).

Graph pooling
In this work, we propose a novel clustering-based graph pooling layer that can be applied to
arbitrary graph-structured data. It can be seen as an extension to the pooling layers known
from CNN U-Nets that are limited to grid-structured data. In our graph pooling approach, we
split the graph into disjoint cliques (fully-connected subgraphs), and perform the contraction
of all the identified cliques (i.e., every clique is replaced by a vertex, and new edges represent
formerly connected cliques), see Figure 5.5. The split into cliques is done statically, i.e., at the
graph U-Net construction phase. In particular, the split does not depend on the input data.
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Fig. 5.5 One arbitrary choice of non-overlapping subgraphs to create a pooled graph. Subgraphs
G1, . . . , G5 are represented with different colors and are generated by the Algorithm 1.

Below, we will provide a more formal construction of the pooling layer. For a given input graph
G that is represented by the vertices S and the connectivity matrix A, we first generate an
arbitrary set of Ñ non-overlapping fully-connected subgraphs (cliques) G1, G2..., GÑ , i.e.,

S =
Ñ⋃

i=1
Si, ∀Si∀j,k∈Si

Ajk = 1 and ∀i ̸=jSi ∩ Sj = ∅, (5.7)

where the sets Si represent nodes of the respective subgraphs Gi. The procedure to generate
these subgraphs and the respective pooled adjacency matrix Ã is described in Algorithm 1. The
pooled graph G̃ is composed of vertexes S̃ = {1, . . . , Ñ} with edges defined by the adjacency
matrix Ã. The pooling layer is described as:

dl+1
i,β = aggr

j∈Si

dl
j,β, (5.8)

where the ’aggr’ operation can be a max/min/avg, etc. Note that graph pooling layers do not
modify the number of channels, i.e., the pooling is performed individually per each channel of
the input.

Graph pooling can be applied several times at the encoding part of the U-Net, e.g., see Figure 5.2.
For the purpose of future unpooling operations, after each pooling operation, we save the
original graph, G, the adjacency matrix, A, and the pooling subgraphs, Gi. After doing so, we
substitute G← G̃, and A← Ã.

Graph unpooling
Structure-wise, the graph unpooling is a reverse operation to pooling. More precisely, the
output graph of an unpooling layer will have the same topology as the input graph of the related
pooling layer, see Figure 5.5. The operation is defined via the previously saved subgraphs Gj

(with nodes Sj) as
dl+1

i,β = dl
j,β for i ∈ Sj , (5.9)
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Algorithm 1: Generate a pooled graph from an arbitrary parent graph
Input: N ×N adjacency matrix, A
Result: list of subgraphs, S; Ñ × Ñ pooled adjacency matrix, Ã

S ←{} /* initialisation of the subgraph list */
P ← {1, 2, ..., N} /* node indices of the parent graph */
A′ ← A /* temporary copy of matrix A */

/* Loop for generating non-overlapping subgraphs, S, see Figure 5.5 */
while P ̸= null do

p ∈ P /* randomly select a single node */
Si ← {p} /* initialise subgraph */
Np ← {m ̸= p | A′[m, p] = 1} /* nodes connected to selected node */
for n in Np do

if ∀ m ∈ Si A′[m, n] = 1 then
Si ← Si ∪ n /* append node to the subgraph */

end
end
P ← P \ Si /* remove subgraph from parent graph */
∀ m ∈ Si A′[m, :]← 0; A′[:, m]← 0 /* remove subgraph from parent graph */
S ← S ∪ Si /* add subgraph to subgraphs list */

end
Ñ = sizeof(S) /* number of pooled nodes = number of pooling subgraphs */
Ã← zeros(Ñ , Ñ) /* zero initialisation of pooled matrix */
/* Loop for constructing pooled adjacency matrix Ã from subgraphs S */
for r in {1, 2, .., Ñ} do

for c in {1, 2, .., Ñ} do
if ∃ n ∈ S[r], m ∈ S[c] | A[n, m] = 1 then

Ã[r, c]← 1 /* if S[r] and S[c] are connected by an edge */
end

end
end

and it simply replicates the features of a node j to the nodes specified by Sj . As such, this
operation is analogous to the related upsampling operation used in CNNs.

Graph unpooling + concatenation
Concatenations, also known as skipped connections, are characteristic to U-Net architectures.
Thanks to them, the layers from the decoder part gain a direct access to features from the
encoder part. Concatenations help to mitigate the issue of vanishing gradients, and add extra
information that could have been lost due to the earlier downsampling (pooling).

In our case, the concatenations are always related to the respective pooling/unpooling operation
pairs, see Figure 5.2. It is done by stacking the output of an unpooling layer l, given by
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Equation (5.9), with the input of a respective pooling layer l′:

dl+1
i,cl+α

= dl′
i,α. (5.10)

In the formula above, cl is the number of channels in unpooling inputs. As the result, the total
number of output channels of unpooling+concatenation is cl + cl′ .

5.2.5 Information-passing interpretation of MAg and pooling layers

During a single forward pass of the MAg layer, the aggregation is performed locally for
each individual node, i.e., each node of the graph will have an access to the aggregated
feature information from its adjacent nodes only, specified by the adjacency matrix, A, see
Equation (5.6). Therefore, the nodes that are not directly connected through A do not exchange
information at a single MAg operation (see Figure 5.6). Such long-distance exchange across
the network is fundamental to allow the neural network model to express correlations between
topologically distant input- and output nodes (e.g., how the output displacements at node C
depend on the input loads at the node B, in Figure 5.6).

One way to handle this issue would be to apply the MAg layer several times as shown in
Figure 5.6. However, in that case, the number of subsequent layers would be proportional to
the diameter of the underlying graph, which could increase the number of training variables and
the depth of the network, deteriorating its performance. A natural simple improvement, also
utilised in the present paper, is to increase the support (neighbourhood) of the MAg operations.
In the proposed framework, this can be straightforwardly done by using higher powers of the
adjacency matrix, e.g., A2 or A3, instead of A. This improvement alone, however, would still
require the number of MAg layers to be proportional to the graph diameter.
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Fig. 5.6 This 2D mesh requires at least 4 subsequent local aggregation operations (orange areas
with center nodes marked by dots) to propagate the feature information from node B to the
distant node C.

The above observations explain a natural motivation behind using the pooling/unpooling layers,
and hence creating the U-Net architecture. The pooled graph can be seen as a reduced space
representation of the parent graph, and each pooled node aggregates the feature information
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corresponding to multiple nodes of the parent graph, see Figure 5.7. The pooled graph is
of a coarsened topology when compared to the parent graph, and this allows for the feature
information exchange with a lower number of MAg layers. The pooling/unpooling layers can
be nested, which provides an exponential reduction rate of the graphs’ diameters.

17

Information passing in lower spaces

MAg application 
in the pooled graph

Visualisations in the  
original graph 

MAg1 MAg2

B
C

Fig. 5.7 Visualisation of feature information exchange between nodes in the pooled graph. In
the pooled space, only 2 MAg operations are sufficient to exchange feature information between
spatially further located nodes in the original graph. The orange region shows the window of
MAg operation.

Remark: Note that the pooling layer proposed in this work represents a clique-pooling approach
in which the cliques are non-overlapping. This allows us to achieve a very good level of graph
coarsening (contraction). It is unlike a similar clique-based strategy that has been recently
proposed, [Luzhnica et al., 2019], in which the pooling cliques overlap, providing a much lower
level of coarsening.

5.2.6 Application to FEM-based datasets

We will now focus on a particular graph structure of inputs/outputs that will be in a form
of finite element mesh. Specifically, the MAgNET framework will be applied as a surrogate
model to a finite element model in large-deformation elasticity. The finite element model will
be shortly introduced below.

We consider a boundary value problem expressed in the weak form over the domain Ω:

∫

Ω
P (F (u)) · ∇δu dV −

∫

Ω
ρ b̄ · δu dV −

∫

Γt

t̄ · δu dS = 0 ∀δu, (5.11)

where P (•) is the first Piola-Kirchhoff stress tensor, b̄ are prescribed body forces, t̄ are prescribed
tractions on the Neumann’s boundary ΓN , while the solution u and the variation δu belong
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to appropriate functional spaces, with u = ū and δu = 0 on the Dirichlet boundary Γu. The
hyperelastic constitutive relationship is expressed through the strain-energy density potential
W (F ) as

P (F ) = ∂W (F )
∂F

, (5.12)

where the deformation gradient tensor F = I +∇u.

For all the cases considered in the present work, the Neo-Hookean hyperelastic law with the
following strain energy potential is used, see Simo and Taylor [1982],

W (F ) = µ

2 (Ic − 3− 2 ln J) + λ

4 (J2 − 1− 2 ln J), (5.13)

where the invariants J and Ic are given in terms of deformation gradient F as

J = det(F ), Ic = tr(F T F ), , (5.14)

with µ and λ being Lame’s parameters, which can be expressed in terms of Young’s modulus,
E, and Poisson’s ratio, ν, as

λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (5.15)

Note that one can use other forms of the volumetric part of the above potential, see Doll
and Schweizerhof [2000], or other hyperelastic models, such as the Mooney-Rivlin and a more
general class of Ogden models, see Ogden [2005].

Finite element discretisation transforms the weak form expressed by Eq.(7.14) into the system
of non-linear equations

R(u; fext) = fint(u)− fext = 0, (5.16)

that expresses the balance between external and internal nodal forces. In this work, the vector
of external forces, fext, represents boundary conditions, which can be surface tractions or body
forces. Given fext = fm, the system is solved for an unknown vector u with the Newton-Raphson
scheme, giving as a result the solution um. A pair (fm, um) makes an element of the dataset D
introduced in Eq. (5.3), and the FE mesh that results from the FE discretization produces the
adjacency matrix A introduced in Section 5.2.2.

5.3 Results

In this section, we will study the performance of the proposed framework, and for that purpose,
we use four benchmark problems. In Section 5.3.1, we give a detailed specification of the
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benchmark problems and the procedure for obtaining FEM-based datasets. In Section 5.3.2, we
provide details of neural network architectures for each of the studied cases and will describe
the training procedure. In Section 5.3.3, we study the predictions of neural network models
by cross-validating results from MAgNET and CNN models, and by comparing them with
the FEM results. Finally, in Section 5.3.4 we demonstrate the capabilities of the MAgNET
framework to provide a surrogate model for the unstructured mesh cases.

5.3.1 Generation of FEM based datasets

We consider four benchmark problems, see Figure 5.8. Two of them, Figure 5.8(a-b), utilise
simple meshes, which makes it possible to assure structured (grid) inputs. They will be used to
cross-validate between our MAgNET architecture and the standard CNN U-Net architecture.
The other two examples, Figure 5.8(c-d), are more complex and will serve us to demonstrate
the applicability of MAgNET for general (unstructured) meshes. Each of those two groups
consists of a 2D and a 3D problem, thanks to which the framework can be tested for four
different finite element topologies: triangular, quadrilateral, tetrahedral, and hexahedral.

For all considered cases, we use the neo-Hookean material model, see Section 5.2.6, with material
parameters provided in the Table 5.2. In order to generate training/testing datasets, for each
discretized problem we individually specify a family of boundary conditions, as described below,
see also schematics in Figure 5.8. For the cases shown in Figures 5.8(a-c), nodes on one side
are fixed (Dirichlet boundary conditions), and only a single random nodal force is applied at a
selected node in a prescribed region of interest (denoted by red line/surface in Figure 5.8(a-c)).
For the remaining nodes, the external forces are set to 0. For the case shown in Figure 5.8(d),
the uniform body force density is prescribed (force per unit mass, with density ρ = 1000 kg/m3).
The body force field is integrated through element shape functions to obtain respective nodal
forces that are used in datasets.

Problem (element topology) Is structured? Young’s
modulus, E [Pa]

Poisson’s
ratio, ν

Density, ρ
[kg/m3]

a) 2D L-shape (quad) No (Yes) 500 0.4 -
b) 3D beam (hexahedron) Yes 500 0.4 -
c) 2D beam with hole (triangular) No 500 0.3 -
d) 3D breast (tetrahedron) No 800 0.4 1000

Table 5.2 Material properties used for the benchmark cases.

All the finite element computations were implemented and performed within the AceGen/AceFem
framework [Korelc, 2002]. For a given problem, for each loading case, i, the entire vector f(i) of
external nodal forces and the vector u(i) of computed nodal displacements were saved, which al-
lowed to generate the final training/testing dataset D = {(f(1), u(1)), ..., (f(Mtr+Mte), u(Mtr+Mte))}.
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(c) 2D beam with hole
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Fig. 5.8 Schematics of four benchmark problems. (a) 2D L-shape geometry (quad mesh), (b)
3D beam geometry (hexahedron mesh), (c) 2D beam with hole geometry (triangular mesh),
and (d) 3D breast geometry (tetrahedron mesh). In examples (a)-(c), single nodal loads are
applied on the region of boundary indicated with red color. In example (d), only body forces
are considered.

The datasets were randomly split into training sets, Mtr (95%), and testing sets, Mte (5%).
The sizes of datasets and the distribution of force magnitudes are provided in Table 5.3.

Problem N.of FEM
DOFs (F)

Range (External forces/ body
force density)

Dataset size
Mtr + Mte

samples
per node

a) 2D L-shape 160 fx, fy = -1 to 1 N 3800 + 200 1000
b) 3D beam 12096 fx, fy, fz= -2 to 2 N 33858 + 1782 110
c) 2D beam (hole) 198 fx, fy = -5 to 5 N 4560 + 240 400

d) 3D breast 3105 bx, by = -6 to 6 N/kg ,
bz = -3 to 3 N/kg 7600 + 400 -

Table 5.3 Specification of FE-based datasets. For cases (a-c), the external force is applied at
a selected node, and for case (d), external body forces are applied. The magnitudes of forces
are randomly sampled from the multivariate uniform distribution, with ranges specified in the
table. For cases (a-c), multiple samples per node are generated, for all nodes in the prescribed
area of interest.
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5.3.2 Design, implementation and training of neural network models

The implementation of the layers and mechanisms of the MAgNET framework described in
Section 5.2 and of CNN U-Net framework introduced in [Deshpande et al., 2022] has been
performed within the TensorFlow libraries. We use them to build and train deep neural network
models for the cases described in Section 5.3.1. Table 5.4 outlines individual properties of the
network architectures implemented in this work. The codes and datasets are publicly available
open source [Deshpande et al., 2023a], which makes it possible for other researchers to reproduce
the present results and also to extend our frameworks to new cases/problems.

Example Network type
(N. of poolings, N. of

MAg/conv. layers
per level, window size)

N. of channels per level N. of pa-
rameters

2D L-shape MAgNET (3, 2, A2) 16, 32, 64, 128 ∼ 4 E+6CNN U-Net (2, 2, 3×3) 64, 128, 512

3D beam MAgNET (5, 1, A2) 3, 3, 3, 12, 24, 48 ∼ 75 E+6CNN U-Net (4, 2, 3×3×3) 256, 256, 256, 512, 512
2D beam (hole) MAgNET (3, 2, A2) 8, 16, 32, 64 ∼ 2 E+6
3D breast MAgNET (4, 1, A2) 6, 12, 12, 24, 48 ∼ 19 E+6

Table 5.4 Neural network architectures implemented in this work. The leaky ReLU activation
function is used in all MAgNET cases, while ReLU activation is used for CNN cases. For the
last layers, the linear activation function is always applied.

To provide a complete understanding of the neural network architectures listed in Table 5.4, we
will now delve into the details of the MAgNET architecture used for the 2D L-shape example.
Its schematics is shown in Figure 5.9. As indicated in the third column in Table 5.4, it is a
three-level graph U-Net architecture with two MAg operations at each level. The fourth column
specifies the number of channels utilized for the MAg operations at each level of the graph
U-Net. The forward pass starts with the input mesh (2D), to which the MAg layer is applied
twice (with 16 output channels). This is followed by the graph pooling layer, which coarsens
the mesh and transitions to the next level of the U-Net (from zeroth to the first level). This
process repeats twice, with the first and second levels of the graph U-Net having MAg layers
with 32 and 64 output channels, respectively, leading to the coarsest third level of the U-Net. At
this level, two MAg layers (with 128 output channels) are applied. In the subsequent decoding
phase, the graph unpooling layer is employed with the concurrent concatenation operation,
and followed by two MAg operations (with 64 output channels). This upsampling sequence
repeats twice with the use of 32- and 16-channel MAg layers. Finally, a single MAg layer
(with 2 output channels) is applied, using a linear activation to produce the desired output
mesh (the displacement mesh must have the same structure as the input mesh of forces). It is
worth noting that analogous architectures of CNN U-Net networks are similar, with the only
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Fig. 5.9 MAgNET architecture used for the 2D L-shape example.

distinction being the use of convolution layers in place of MAg layers and CNN U-Net max
poolings instead of graph poolings.

As demonstrated in Table 5.4, both 2D L-shape and 3D beam examples have been modeled
utilizing both MAgNET and CNN U-Net architectures. These networks were designed to have
a similar number of trainable parameters, thus facilitating a fair comparison of their fitting
capabilities. The number of parameters in both types of networks is controlled by having
a higher number of channels in the CNN U-Net architecture compared to its corresponding
MAgNET architecture. This difference in the number of channels is attributed to the convolution
operators in the CNN architecture sharing parameters across a layer, which may necessitate
a larger number of channels to ensure an optimal fit, while the aggregation operators in the
MAg layer use individual weights per aggregation window, allowing for more flexible fitting
across the mesh with a smaller number of channels. However, caution must be exercised when
selecting the number of channels, as setting it too low can result in increased prediction errors
(as seen in Figure 5.15).

The number of neural network levels (pooling operations) and the size of convolution/aggrega-
tion windows have been adjusted on a case-by-case basis to obtain the desired fitting capabilities
while keeping the number of trainable parameters low and comparable between the respective
CNN U-Net and MAgNET models. The fitting capabilities heavily depend on the successful
propagation of information from the input throughout the network. This can be compromised
when the number of poolings or the window size is too small, as explained in Section 5.2.5.
For this reason, a larger number of pooling operations is used for mesh graphs with larger
diameters (e.g., the 3D cases in Table 5.4). Additionally, in the case of MAgNET models, a
global optimization of graph pooling operations is performed to reduce the number of nodes at
the coarsest level. In this optimization, Algorithm 1 is run 1000 times with different random
seeds, and the case with the least number of nodes at the lowest level is selected.
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Remark: Note that the example presented in Figure 5.8(a) utilizes a non-structured mesh. As
such, it can not be directly used by the CNN U-Net model, and an additional preprocessing
step needs to be done to make the input and output meshes structured. In this case, we apply
zero padding to convert the L-shape mesh into a structured mesh, see Figure 5.10, which is then
used for training with the CNN U-Net architecture. We do not need to do this preprocessing
step for the MAgNET architecture.

 24

Graph U-Net input CNN U-Net input
zero padding

Fig. 5.10 Zero-padding is applied to make the L-shape topology compatible with the CNN
framework. The additional nodal values for inputs (forces) and outputs (displacements) are set
as zero vectors.

The models presented in Table 5.4 were trained by minimizing the loss function, as described in
Equation 7.2, using the datasets introduced in Section 5.3.1. The Adam optimizer, an extension
of the stochastic gradient descent algorithm, was used for this purpose. A mini-batch size of 4
and an initial learning rate of 1× 10−4, with a linear decay to 1× 10−6 during training, were
employed. The number of epochs (i.e., iterations of the Adam optimizer) was manually tailored
on a case-by-case basis to achieve low values of the loss function. An example of the training
loss is provided in Figure 5.11. The network trainings were conducted using TensorFlow on a
Tesla V100-SXM2 GPU at the HPC facilities of the University of Luxembourg, see [Varrette
et al., 2014].
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Fig. 5.11 Training loss curve for the 3D breast MAgNET model.
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5.3.3 Cross validation of CNN U-Net and MAgNET predictions

We are going to compare the predictions of MAgNET and CNN U-Net models for two problems
with structured inputs/outputs that were introduced in Figure 5.8(a,b). Let us look at the
individual examples with the highest nodal displacement magnitudes. In the 2D L-shape
example, shown in Figure 5.12a, MAgNET predictions visually coincide with the reference
FEM solution very well. This is quantitatively shown in Figures 5.12b and 5.12c, where the the
L2 error field

err(X) = ||uFEM(X)− upred(X)||2 (5.17)

is presented for MAgNET and CNN U-Net, respectively, demonstrating low level of errors for
both models. A similar tendency can be observed in the 3D beam case shown in Figure 5.13.
Here, although the level of errors is relatively a bit higher than in the 2D example, the MAgNET
and CNN U-Net perform similarly, which proves good capabilities of the proposed MAgNET
model as compared to the CNN U-Net model.
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Fig. 5.12 Deformation of 2D L-shape under point load (-0.93, 0.91)N on the corner node (a)
Deformed mesh predicted using MAgNET (blue), for comparison FEM solution is presented (red)
(b) L2 error of nodal displacements between MAgNET and FEM solution. The relative error
for the corner node displacement using MAgNET is 0.5% (c) L2 error of nodal displacements
between CNN U-Net and FEM solution. The relative error for the corner node displacement
using CNN is 0.3%.

In the following, we will analyze and compare the performance of both models for all cases in
the text datasets. For that purpose, we need aggregated error metrics. As an error metric for a
single test example, we use the mean absolute error,

em = e(fm, um) = 1
F

F∑

i=1
|G(fm)i − ui

m|, (5.18)

where the force-displacement pair (fm, um) is an element of the test dataset

Dte = {(fMtr+1, uMtr+1), ..., (fMtr+Mte , uMtr+Mte)}, (5.19)
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Fig. 5.13 Deformation of the 3D beam under point load (-1.75,1.31,-1.7)N on the second last
node (a) Deformed mesh predicted using MAgNET (blue), for comparison FEM solution is
presented (red) and undeformed mesh is represented by gray (b) L2 error of nodal displacements
between MAgNET and FEM solution. The relative error in predicting displacement of the
node of application of load using MAgNET is 4.4% (c) L2 error of nodal displacements between
CNN U-Net and FEM solution. The relative error in predicting displacement of the node of
application of load using CNN is 3.0%.

and F is the number of dofs of the mesh. The metric em gives us the notion of error between
an expected finite element solution, um, and the prediction of the neural network, G(fm). To
analyze the overall quality of fitting, we define a single error metric over the entire test set as
the average mean absolute error

ē = 1
Mte

Mtr+Mte∑

m=Mtr+1
em, (5.20)

with the corrected sample standard deviation (standard deviation of averaged errors) defined as

σ(e) =

√√√√ 1
Mte − 1

Mtr+Mte∑

m=Mtr+1
(em − ē)2. (5.21)

Finally, in addition to that, we also use the maximum error per degree of freedom over the
entire test set

emax = max
m,i
|G(fm)i − ui

m|. (5.22)

The aggregated error metrics for the entire test sets of structured mesh examples obtained
using MAgNET and CNN approaches are summarised in Table 5.5. The first observation
is that both MAgNET and CNN models exhibit similar prediction accuracy, demonstrating
that the MAgNET architecture can achieve a comparable predictive capacity to the CNN
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Example Mte ē [m] σ(e) [m] emax [m]
2D L-shape (MAgNET) 200 0.5 E-3 0.2 E-3 1.1 E-2
2D L-shape (CNN U-Net) 0.7 E-3 0.6 E-3 1.8 E-2
3D beam (MAgNET) 1782 0.8 E-3 0.7 E-3 7.7 E-2
3D beam (CNN U-Net) 0.7 E-3 0.5 E-3 5.4 E-2

Table 5.5 Error metrics for the structured mesh examples. Mte stands for the number of test
examples, and ē, σ(e), emax are error metrics defined by Equations (7.19)-(7.20).
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Fig. 5.14 Mean absolute errors (see Equation (5.18)) as a function of maximum nodal displace-
ments for all test examples for 2D L-shape and 3D beam cases for CNN U-NET and MAgNET
nerworks.

U-Net architecture for a similar number of trainable parameters. The prediction errors, with
respect to a characteristic length of 1m, fall below 0.1% for the average mean absolute error
(Equation (7.19)), which is a promising result given the presence of geometric and constitutive
nonlinearities. Additionally, we analyze the performance of the MAgNET model as a function of
the maximum nodal displacement per test example. This dependency is visualized in Figure 5.14
for both benchmark examples. Although there is a general trend of increased errors for larger
maximum displacement magnitudes, the sensitivity is low, and the errors remain small (the
regression lines are e(d) ∝ 1.0 · d · 10−4 (2D L-shape) and e(d) ∝ 1.6 · d · 10−3 (3D beam) for
MAgNET and e(d) ∝ 7.0 · d · 10−4 (2D L-shape) and e(d) ∝ 1.6 · d · 10−3 (3D beam)) for the
CNN U-NET case.

As explained in Section 5.2.3, one can modulate the model capacity to capture non-linearities in
the underlying data by modulating the number of channels in MAg and CNN layers. Importantly,
the convolution windows are shareable in CNN architectures, whereas the aggregation windows
in MAg architectures are independent. To this end, we expect CNN networks to require more
channels than their respective MAgNET networks to achieve the same level of accuracy. We
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Fig. 5.15 Average mean error over the test set for the L-shape case as the number of network
parameters is changed by altering the number of channels used for MAgNET and CNN U-Net
architectures. The numbers in the plot represent the number of channels used at each level in
the MAgNET and CNN U-Net networks.

used this fact when designing CNN and MAgNET architectures in Section 5.3.2. To verify
this hypothesis and demonstrate this effect, we trained five MAgNET and five CNN U-Net
networks on the L-shape dataset with different numbers of channels. In all analyzed cases, we
used 4-level MAgNET and 3-level CNN U-Net architectures, with two MAg/Conv layers per
level, and with a constant number of channels at all levels. Figure 5.15 shows that there is
indeed a strong dependency of accuracy on the number of channels for both analyzed network
architectures. For a comparable number of trainable parameters, CNN U-Nets can use more
channels than their respective MAgNETs, providing them with comparable predictive accuracy.
We can also observe that too few channels significantly reduce the fitting capabilities of both
networks, with a step jump between the 8- and 16-channel case for MAgNET. For the two
largest cases (16 and 32 channels for MAgNET and 128 and 256 channels for CNN U-Net), the
accuracy of both architectures is comparable.

5.3.4 Predictions of MAgNET for general (unstructured) meshes

In Section 5.3.3, we demonstrated that the MAgNET architectures can achieve very good
predictive capabilities for structured mesh cases, which was also cross-validated against respective
CNN U-Net architectures. In this section, we aim to show that the high prediction accuracy of
MAgNET can also be expected for unstructured mesh cases, which is the central point of the
results section. We consider two cases: the first one is deformation under the application of
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point loads (the 2D beam with hole case), similar to the case of structured examples, and the
second is deformation under body forces (the 3D breast case).

Let us first analyze individual examples. In Figure 5.16 we present two particular loading
cases of the 2D beam with hole. One of them is loaded at the tip, featuring the highest
nodal displacement magnitude of all test cases, and the other one is loaded close to the hole,
representing high local distortions. Similarly, for the three-dimensional problem, in Figure 5.17
we show the case featuring the highest nodal displacement magnitude of all test cases. In all
mentioned examples we can observe overall good accuracy when visually comparing MAgNET
predictions with the respective FEM solutions. This can also be checked quantitatively by
analyzing maximum displacement errors. In the cases of the 2D beam with hole, those errors
are 1.4% and below when related to the characteristic length of 1m. In the case of 3D breast
geometry, such relative maximum error is higher, reaching almost 3.1% (related to the breast
diameter of 0.16m). Despite this fact, we can observe that high local shape distortions are very
well recovered. This property is more emphasized in Figure 5.17c where one can additionally
observe that also the Dirichlet boundary conditions are very well predicted, even though they
were only introduced implicitly by training data.
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Fig. 5.16 Deformation of the 2D beam under two different point loads (upper case: (1.28,−4.43)N,
lower case: (−3.38, 4.04)N). (a)&(c) Deformed meshes computed using MAgNET (blue) and
FEM (red), with the undeformed configuration (gray). (b)&(d) L2 error of nodal displacements
between MAgNET and FEM solutions.

The aggregated error metrics for the entire test sets are provided in Table 5.6. The maximum
displacement errors over all test cases, emax, are at the levels observed for particular cases in
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Fig. 5.17 Deformation of the 3D breast geometry with force density of
(−5.94,−5.23,−2.56) N/kg. (a) Deformed meshes computed using MAgNET (blue)
and FEM (red), with the undeformed configuration (gray). (b) L2 error of nodal displacements
between MAgNET and FEM solutions. (c) Titled view of the figure(b), MAgNET efficiently
captures fixed boundary and nearby high non-linear deformations by learning implicitly from
the data.

Figures 5.16 and 5.17. At the same time, the average mean errors, ē, are at least an order of
magnitude lower, which suggests that the errors close to maximum levels are not that often.
The average mean errors are further analyzed in a case-by-case manner in Figure 5.18, which is
analogous to the analysis done for the structured cases in Figure 5.14. Again, we plot the mean
error e, of each test example as a function of the maximum nodal displacement. The regression
lines e(d) ∝ 5.0 · d · 10−4 (2D-beam) and e(d) ∝ 8.0 · d · 10−4 (3D Breast) show low sensitivity
of the MAgNET predictions to displacement magnitudes.

Example Mte ē [m] σ(e) [m] emax [m]
2D beam (hole) 240 0.7 E-3 0.4 E-3 1.4 E-2
3D breast 400 8.9 E-5 3.1 E-5 5.1 E-3

Table 5.6 Error metrics for the unstructured mesh examples. Mte stands for the number of test
examples, and ē, σ(e), emax are error metrics defined in Section 5.3.3.

Above, we have demonstrated a good prediction accuracy of MAgNET within the test dataset
(which is located in the interpolated domain). However, it is well known that this accuracy
can gradually deteriorate when moving to the extrapolated region, see, e.g., Deshpande et al.
[2022]. We are going to study this effect for MAgNET for a particular case that is based on
the 3D breast geometry. As described in the Table 5.3, during the training, the bz component
of body force density is varied from -3 to 3 N/kg only. At the inference time, we applied bz
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Fig. 5.18 Mean absolute errors (see Equation (5.18)) as a function of maximum nodal displace-
ments for all test examples (with unstructured meshes) predicted using MAgNET for (a) 2D
beam with hole (b) 3D breast case.

from -7 to 7 N/kg (keeping other components 0) to see how the predictions perform within
and outside the training magnitudes. Figure 5.19 shows that the error is fairly low and is
not increasing within the training region and it increases rapidly outside, which confirms this
well-known effect. Figures 5.19b and 5.19c show deformed meshes predicted for bz= 5 and bz

= 9 N/kg, respectively, both outside the training data region. MAgNET is observed to give
visually acceptable results although the accuracy of the framework decreases as we move away
from the training data.

A note on physics-informed errors

The proposed MAgNET framework has only been trained by minimizing the loss func-
tion for displacement errors, with no additional explicit information about the underlying
physics/mechanics. As demonstrated earlier in this work, such training can provide very good
accuracy in terms of predicted displacements. However, this accuracy is not of machine precision.
To this end, a natural question arises: how far the displacement errors can violate physics? To
answer that question, we are going to analyse some problem-based quantities of interest, such
as residuals (balance of forces) or stresses, in comparison to the expected ground-truth results.

In Figure 5.20 we show nodal internal residual forces for the 2D beam with hole cases that we
introduced earlier (compare Figure 5.16 for respective displacement errors). Ideally, the residual
forces should be zero (the balance of forces), except for the boundary condition areas in which
they should be exactly opposite to the reaction at the support and the applied external force.
However, due to inaccuracies in displacements obtained from the MAgNET model, differences
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Fig. 5.19 3D Breast deformation under horizontal body force densities, (0, 0, bz) N/kg. (a)
Mean absolute error for testing cases in interpolated and extrapolated regions. The error
increases rapidly in the extrapolated region while it remains low in the training (interpolated)
region. (b)&(c) Visualisation of deformed meshes for force densities outside the training region
computed using MAgNET (blue) and FEM solution (red).

with respect to the ground true residuals can be noted. In Figure 5.20, we can observe the
expected high residual forces in the areas where Dirichlet and Neumann boundary conditions
are applied, however, also localised residual force spots are present in the fine mesh region
around the hole. The magnitude of those errors in the localised spots can go up to 20% of
the maximal magnitude of applied forces. Also, when more closely analysing the residuals
at boundary condition areas, it turns out that they do not fully match the respective FEM
residuals. For instance, the relative error in residuals at the support in Figure 5.20a is almost
5%. When analysing the entire test set, we observed that the mean error in retrieving residuals
at the Dirchilet boundary related to the maximum external force is 2.4%. A similar relative
mean error value for retrieving the Neumann boundary residual is 14.6%. The higher error
for Neumann boundary residual is attributed to high local non-linear deformations at the
vicinity of the point of application of force. Though the displacement errors provoked by these
non-linearities are not so high, they can result in high residual errors through the relatively
high magnitude of element stiffness.

The errors observed in Figures 5.16 and 5.20 can have a direct impact on some application-
dependent quantities of interest. As an example, in Figure 5.21, we present the field of von Mises
stresses, which is a commonly used measure of shear stresses. We can observe that the MAgNET
solution provides similar profiles of stresses as compared to respective FEM solutions, however,
high localised errors are present at the fine mesh region (up to 30% of the reference FEM
maximal von Mises stresses).
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Fig. 5.20 Nodal residual forces obtained using MAgNET solutions for the examples in Figure 5.16
(plotted on deformed meshes). The relative error for retrieving the total reaction force at the
fixed interface is (a) 4.7% for the first example (b) 0.1% for the second example.
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Fig. 5.21 Von Mises stresses obtained for the two examples as in Figure 5.16 using (a)&(b)
MAgNET solution (c)&(d) FEM solution. In (e)&(f) the absolute error between the MAgNET
and FEM von Mises stresses is shown.
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The above mentioned localised errors in residual forces, von Mises stresses and other relevant
quantities of interest can be reduced by enriching the loss function with physics-informed terms.
For instance, in the context of mesh-based force-displacement data, in [Odot et al., 2021] such
enrichment has been introduced by scaling individual components of the loss function with
the respective computed residual values, which proved to reduce residual errors. In [As’ad
et al., 2022], the authors introduced an energy-based approach that provided purely physics-
informed training for the Gauss-point stress-strain relationship, which allowed them to satisfy
the expected frame indifference. Similar concepts of physics-informed loss functions can be
seamlessly integrated into the MAgNET framework, which would convert it into a Physics
Informed MAgNET.

5.4 Conclusion

In this work we proposed MAgNET, a novel framework for efficient supervised learning on
graph-structured data using geometric deep learning. The framework comprises two neural
network operations: MAg and graph pooling/unpooling layers, which together form a graph U-
Net architecture capable of learning on large-dimension inputs/outputs. Notably, the MAgNET
framework is not restricted to any particular input→output relationship or any specific mesh- or
discretization scheme, making it superior to existing convolutional neural network architectures.
MAgNET allows for arbitrary non-grid inputs/outputs, meaning it can handle arbitrary meshes
and support complex geometries and local mesh refinements, making it suitable for a wide
range of engineering applications.

We demonstrated and studied the capabilities of MAgNET in capturing nonlinear relationships
in data. For this purpose, we conducted quantitative cross-validation of predictions made
by MAgNET and the well-known convolutional U-Net architecture, both of which have been
verified against the ground-truth results obtained with FEM. The benchmarks have proved
that MAgNET has similar predictive capabilities as CNN U-Net for structured meshes, and it
can also be extended to arbitrary meshes while preserving similar accuracy of predictions.

There are several natural directions for extending the capabilities of MAgNET. Firstly, the
inclusion of underlying physics into the training process would enhance the overall performance
of the framework. Although we have numerically demonstrated that the current data-based
MAgNET framework can capture the underlying physics of the problem, we have also identified
areas of increased errors, especially near regions of refined mesh. Integrating quantities of interest
with the learning objective function would improve performance, and the implementation of
a Physics Informed MAgNET is a very natural extension of the framework in the immediate
future. Secondly, extending MAgNET to path-dependent processes, such as elasto-plasticity, is
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a promising direction, which would require keeping track of the evolution of state variables in a
time-stepping manner. Recurrent neural network architecture, as described in [Mozaffar et al.,
2019] or recent developments from our group [Vijayaraghavan et al., 2021b], may be utilized
for this purpose. Finally, there is a direct possibility to extend the proposed MAg layer to a
Bayesian version, which would convert MAgNET into a probabilistic version. This could be
achieved by performing local aggregations with probability distributions instead of discrete
weights, similar to what we did in the case of CNNs in our previous work [Deshpande et al.,
2022]. A Bayesian MAgNET would be capable of tracking uncertainties that are inherent to
the choice of network architecture, as well as those inherent to real-world data.

We have made all the codes, datasets, and examples presented in this paper available open-
access in the MAgNET repository at https://github.com/saurabhdeshpande93/MAgNET.
Given the generality of MAgNET in supporting arbitrary non-linear relationships and arbitrary
discretizations, we believe that the repository will provide a useful surrogate modeling framework
for researchers and practitioners in various application areas across disciplines. We see it not
only as a ready-to-use machine-learning library but also as a reference point and foundation
for future developments and extensions in this emerging direction of research. The generality
of MAgNET will enable the community to explore a range of new applications and modeling
scenarios. By sharing our work, we hope to foster collaboration and advance the state-of-the-art
in deep-learning surrogate modeling.

https://github.com/saurabhdeshpande93/MAgNET


Chapter 6

Convolution, aggregation and
attention based deep neural
networks for accelerating simulations
in mechanics

Abstract

Deep learning surrogate models are being increasingly used in accelerating scientific simulations
as a replacement for costly conventional numerical techniques. However, their use remains
a significant challenge when dealing with real-world complex examples. In this work, we
demonstrate three types of neural network architectures for efficient learning of highly non-
linear deformations of solid bodies. The first two architectures are based on the recently
proposed CNN U-NET and MAgNET (graph U-NET) frameworks which have shown promising
performance for learning on mesh-based data. The third architecture is Perceiver IO, a very
recent architecture that belongs to the family of attention-based neural networks–a class that
has revolutionised diverse engineering fields and is still unexplored in computational mechanics.
We study and compare the performance of all three networks on two benchmark examples, and
show their capabilities to accurately predict the non-linear mechanical responses of soft bodies.

This chapter is reproduced from: S. Deshpande, R.I. Sosa, S.P.A. Bordas, J. Lengiewicz, Convolution,
aggregation and attention based deep neural networks for accelerating simulations in mechanics, Frontiers in
Materials, 2023, Volume 10, 1128954, https://doi.org/10.3389/fmats.2023.1128954

https://doi.org/10.3389/fmats.2023.1128954
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6.1 Introduction

The ability to make fast or real-time predictions of the response of physical systems is essential
for a variety of engineering applications. Notable examples of this can be found in the field
of robotics [Choi et al., 2021; Rus and Tolley, 2015] and medical simulations [Bui et al.,
2018; Courtecuisse et al., 2014b; Mazier et al., 2021; Mendizabal et al., 2019b], which have
the potential to advance personalized medicine and improve computer-assisted and robotic
surgery [Chen et al., 2020a; Dennler et al., 2021]. In computational physics and chemistry, fast
and accurate predictions are fundamental for studying complex systems, such as those arising
in biology and materials science [Friesner, 2005], or in drug discovery [De Vivo et al., 2016]. In
many cases, the necessary accuracy of these predictions requires complex models that can be
expressed through partial differential equations and solved numerically using methods such as
the finite element method (FEM) at continuum scales or specialized ab initio approaches at the
atomic or quantum scales. However, these high-fidelity computational models are often too
slow for real-time or practical purposes, and therefore approximate or surrogate models must
be developed to achieve the necessary speed-ups.

At the same time, the 21st century has seen an explosion of measurement data, much of which
is available as public datasets in various scientific domains, including structural mechanics,
material science, and meteorology [Elouneg et al., 2022; Gholamalizadeh et al., 2022; Zakutayev
et al., 2018]. The availability of this data, combined with the rapid growth in computational
resources, has led to the increasing importance of machine learning (ML) techniques [Bock
et al., 2019; Butler et al., 2018; Schleder et al., 2019] for solving forward and inverse engineering
problems. This includes surrogate and data-driven approaches that aim to enable modeling
[Barrios and Romero, 2019], accelerate computationally costly direct numerical simulations
[Capuano and Rimoli, 2019; Rupp et al., 2012; Weerasuriya et al., 2021; Wirtz et al., 2015],
and even discover new material laws [Flaschel et al., 2021; Liu et al., 2017]. The increasing use
of ML in engineering and other fields has also spurred the development of various methods and
algorithms for improving the accuracy and efficiency of these techniques.

Within the class of machine learning methods for surrogate and data-driven modeling, deep
learning (DL) approaches have seen great success due to their ability to efficiently extract
complex relationships present in the underlying data. DL models have been successfully
employed for a range of tasks in diverse fields such as computational physics&chemistry,
material science, computational mechanics, computer vision, natural language processing, and
many others [Brown et al., 2020; Choudhary et al., 2022; Jha et al., 2018; Oishi and Yagawa,
2017; Schmidt et al., 2019; Schütt et al., 2017; Voulodimos et al., 2018]. In computational
chemistry, machine learning force fields (MLFFs), see [Unke et al., 2021], have seen great success
in recent years for accelerating costly ab initio simulations. For instance, Deep Tensor Neural



6.1 Introduction 99

Network (DTNN) [Schütt et al., 2017] and SchNet [Schütt et al., 2017] models have been shown
to accurately predict forces in a variety of molecules and could be used in applications such
as protein folding and material design. Similarly, computational mechanics has witnessed an
increasing use of DL surrogate models as a replacement for costly direct numerical simulations
[Abueidda et al., 2021; Mianroodi et al., 2021]. What is common to all the above-mentioned
cases is that deep learning techniques rely on deep artificial neural networks (deep ANNs, or
DNNs), which must be trained on a sufficiently large amount of data. While this training
process is computationally costly, once trained, the predictions of DL models are extremely
efficient.

Obtaining necessary amount of training data is often difficult when it originates from physical
experiments. This can be due to multiple factors, such as high costs, risks & difficulties
associated with the experiments, or data privacy clauses. There are two possible approaches
to deal with the scarcity of experimental data. The first approach relies on enhancing the DL
model with the information on underlying physics – an approach popularly termed as Physics
Informed Neural Networks (PINN) [Mao et al., 2020; McFall and Mahan, 2009; Odot et al.,
2021; Samaniego et al., 2020]. The second approach includes the underlying physics implicitly,
through high-fidelity simulations done in silico to provide the necessary amount of synthetically
generated data, which has shown to be useful in various applications [Aydin et al., 2019; Kim
et al., 2022; Le et al., 2017; Pfeiffer et al., 2019; Vijayaraghavan et al., 2021a]. In this work,
we will follow the latter approach and will focus on DL surrogate models that are trained on
synthetically generated data from finite element simulations in non-linear elasticity.

One of the most important aspects that will be studied in this work is the architecture of
deep neural networks. The majority of DL approaches that are present in the literature are
based on fully connected networks, which can be inefficient and prone to overfitting when
applied to high-dimensional inputs. If such large inputs are structured, they fall under the
umbrella of geometric deep learning (GDL) [Bronstein et al., 2021], a concept that has gained
increasing interest in recent years. In this work, we will compare three architectures that can
efficiently handle high-dimensional structured inputs: convolutional neural networks (CNNs),
graph neural networks (GNNs), and attention-based networks.

Convolutional neural networks (CNNs) are known to outperform traditional fully-connected
ANNs, and this has been demonstrated in various domains, including physics-based simulations
[Deshpande et al., 2022; El Haber et al., 2022; Guo et al., 2016; Krokos et al., 2022a]. CNNs
work on the principle of parameter sharing and local convolution operations, which enables
efficient training on large inputs. Their disadvantage is that the inputs/outputs of CNNs are
restricted to grid inputs, such as images, videos, or structured FE meshes. However, CNNs have
found their successors, the graph neural networks (GNNs), that can work with any structure of
inputs/outputs.
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Graph-based approaches leverage the topological information of the input to perform local
operations in the respective neighborhood only, and can learn efficiently on generally structured
data. Recently, GDL methods have shown promising performance for their applications as
well in the field of mechanics, [Battaglia et al., 2018; Krokos et al., 2022b; Pfaff et al., 2021;
Strönisch et al., 2022; Vlassis et al., 2020]. More recently, [Deshpande et al., 2023b] proposed
MAgNET, a novel graph U-Net framework for efficiently learning on mesh-based data. In this
work we utilise it to accurately predict non-linear deformations of solids.

Attention-based approaches, similar to human cognitive attention, work by allowing the DL
model to focus on certain parts of the input data that are relevant to the task at hand. This
is done through a fully trainable process that, without the need to introduce topological
information or enforce structural restrictions, allows the neural network to extract dependencies
from throughout the whole input domain. This type of approach has led to significant strides
in a wide range of areas, starting from computer vision [Xu et al., 2015] to natural language
processing [Baevski et al., 2020; Devlin et al., 2018], as well as becoming the basic building
block of the Transformer architecture [Vaswani et al., 2017]. Recently the Perceiver IO [Jaegle
et al., 2022], a new type of architecture that builds upon Transformers, has been proposed as a
general-purpose model that can handle data from arbitrary settings. Since Perceiver IO has
been shown to achieve several state-of-the-art results without the need for problem-specific
architecture engineering, we will compare its performance on non-linear deformation prediction
of solids based on mesh data against the previously discussed models.

To summarise, in this work we will compare three DNN architectures: two architectures
presented in our earlier works, i.e., CNN U-Net framework [Deshpande et al., 2022], and
MAgNET framework [Deshpande et al., 2023b], as well as the attention-based architecture,
Perceiver IO [Jaegle et al., 2022], which has not been explored for its applications in mechanics
yet. We show the capabilities of three frameworks by learning on non-linear FEM datasets
and by cross-comparing their performance. In Section 6.2, we will introduce the three DNN
architectures, in Section 6.3, we will study their performance, and in Section 6.4 we will
summarize the results and discuss future directions.

6.2 Method

As previously mentioned in the introduction, in this paper we propose three types of deep neural
network (DNN) frameworks that can be used as surrogate models to replace computationally
expensive non-linear FEM solvers. The proposed DNN frameworks are trained on force-
displacement FEM datasets that are given in the mesh format. Once trained, these surrogate
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Fig. 6.1 Outline of the neural network surrogate frameworks for predicting body deformations.
(Left) Training datasets for structured and arbitrary mesh cases are generated by using a
non-linear FEM solver. (Middle) Proposed neural network frameworks are trained on these
datasets. For structured mesh case, all NN frameworks are used while for arbitrary unstructured
meshes only MAgNET and Perceiver IO networks are used. (Right) Trained networks are then
used as surrogate models to predict the deformation of bodies under unseen forces.

DNN models are able to quickly and accurately simulate the mechanical responses of bodies
subjected to external forces. The outline of study pursued in this paper is shown in Figure 6.1.

Any input mesh can be categorised into either a structured mesh or an arbitrary unstructured
mesh. In this work we introduce three types of DNN network architectures. The CNN U-Net
network can only be (straightforwardly) used for structured meshes, while the MAgNET and
Perceiver IO networks are more general and are capable of handling arbitrary mesh inputs. All
these frameworks are discussed in detail in the following subsections.

6.2.1 DNN frameworks for predicting mechanical deformations

Below we introduce three different types of neural network architectures which can efficiently
predict non-linear deformations of bodies subjected to external traction and body forces. All
the proposed DNN frameworks directly operate on the finite element mesh data thereby making
it very convenient to be used as surrogate models in place of conventional FEM solver. The first
two i.e. CNN U-Net and MAgNET belong to the family of U-Net architecture while Perceiver
IO is based on Transformer-type attention, see Table 6.1.
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Framework Type Supported mesh

CNN U-Net (convolution operation) structured
MAgNET Graph U-NET (MAg operation) arbitrary

Perceiver IO Transformer (attention mechanism) arbitrary
Table 6.1 Properties of deep neural network architectures studied in this work.

CNN U-Net

CNNs were originally proposed for performing classification and regression tasks on image, video
like data but lately are even being used for generic inputs such as mesh data which is crucial to
many scientific applications. In particular, U-Net like architectures have shown great potential
in learning on large-scale inputs and lately have been successfully used for simulating mechanical
responses of materials as well [Deshpande et al., 2022; Mianroodi et al., 2021]. The name U-Net
comes from the particular U-shaped architecture which involves a series of convolutional and
pooling operations. Convolutional layers are responsible for non-linear transformations whereas
pooling enables learning through low-fidelity representation thus making the network capable
of learning on high-dimensional inputs. Experiments presented in this work are carried out by
using the CNN U-Net framework proposed by [Deshpande et al., 2022], see Figure 6.2.

Fig. 6.2 Schematic of CNN architecture used for generic structured 2D mesh inputs.

One major limitation of the CNN is that it cannot straightforwardly accommodate unstructured
mesh inputs. To overcome this issue, the simplest approach embeds a structured grid on unstruc-
tured meshes with a naive mapping between unstructured and grid node values [Mendizabal
et al., 2019a]. While more sophisticated approaches are proposed to make unstructured meshes
compatible to be used with CNN framework [Brunet et al., 2019]. However, they perform
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poorly on complicated geometries and come with an associated preprocessing cost; they are not
considered in the scope of this work.

MAgNET

In an attempt to generalise CNN to arbitrary unstructured meshes, very recently [Deshpande
et al., 2023b] proposed the MAgNET framework, see Figure 6.3. MAgNET architecture
belongs to the family of graph U-Net architectures and it is proposed for efficient learn-
ing on mesh structured data. MAgNET directly accepts arbitrary mesh inputs (such as
forces/stresses/displacements of nodes in the mesh) values thus making it very convenient to
be used with existing numerical solvers.

Fig. 6.3 Schematic of the MAgNET architecture used in this work. It takes external forces on
arbitrary mesh as an input to gives mesh displacements as output.

MAgNET relies on the so-called MAg layer (Multichannel Aggregation layer) which is capable
of learning nonlinear transformations between input and output data existing in the mesh
format. MAg extends the concept of local operations in convolution layers to arbitrary mesh
inputs by performing aggregation of nodal feature values in the respective neighborhood nodes
only. It leverages the topology of inputs and performs learnable local aggregations with
heterogeneous window sizes as opposed to the fixed-size window in the case of CNN. While
its graph pooling/unpooling layers enable efficient learning on large-dimension inputs through
reduced graph representation.
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Perceiver IO

The Perceiver IO architecture, [Jaegle et al., 2022], was developed with the goal of achieving a
DL scheme that can easily integrate and transform arbitrary information for arbitrary tasks.
This architecture employs an attention encoder that maps inputs from a wide range of modalities
to a fixed-size latent space using cross-attention, this latent space is then further processed using
self-attention as an usual Transformer and decoded into the output domain via cross-attention,
see Figure 6.4. This process allows the network to scale to large and multi-modal data since it
decouples the bulk of the network’s processing from the size and modality-specific details of the
input. In this work, we will leverage this property and use Perceiver IO to learn non-linear
deformations on unstructured meshes without adding any information or restrictions about how
to treat the underlying data structure. During training, Perceiver IO automatically learns the
important dependencies that exist in the input domain, composed of arbitrarily unstructured
mesh data, and transforms them into the corresponding output which consists of displacement
data.

Fig. 6.4 Schematic of the Perceiver IO architecture, [Jaegle et al., 2022], used for external forces
on arbitrary mesh as inputs and mesh displacement as outputs.

6.2.2 Input/output & training of DNN surrogate models

As motivated in Section 6.2, the proposed DNN frameworks are trained on the force-displacement
datasets. Let us denote the neural network in consideration as h, it is parameterised by trainable
parameters, θ. In all the cases, h accepts external forces, f, on all degrees of freedom (dofs) of
mesh as the input. And as an output it predicts displacement vector, u, of all dofs (same size
as the input), i.e., h : f → u.

In the case of CNN and MagNET, forces associated with X, Y, Z degrees of freedom are kept in
different channels. For instance, in the case of CNN U-Net, X, Y directional forces on a 2D quad
mesh with nx × ny nodes are fed to the network as a 2× nx × ny tensor. For MAgNET, they
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are provided as a single dimensional tensor of shape 2 · nx · ny, with X and Y directional forces
concatenated together (each representing a different channel). On the other hand, Perceiver IO
inputs are first kept as a single array of size 2 · nx · ny to which we apply 1 × 1 convolution
kernels to project it to a tensor of shape 2 · nx · ny × 256, adding 256 channels. Finally, to this
channel dimension we concatenate trainable 1D positional embeddings, thus leaving us with a
tensor of shape 2 · nx · ny × 512 that we will use as an input for the network.

Now, for a given training dataset {(f1, u1), ..., (fN , uN )}, h is trained by minimizing mean
squared error between true and predicted values as to get optimised parameters θ∗ as:

θ∗ = argmin
θ

1
N

N∑

i=1
∥h(fi, θ)− ui∥22 (6.1)

Performance of h (i.e. the neural network in consideration) over respective test dataset
{(f1, u1), ..., (fM , uM )} is measured in terms of mean absolute error which is computed for each
example (em) and for the entire test set (ē) as follows:

em = 1
F

F∑

i=1
|h(fm)i − ui

m|, ē = 1
M

M∑

m=1
em, σ(e) =

√√√√ 1
M − 1

M∑

m=1
(em − ē)2, (6.2)

where F stands for the number of dofs of the mesh. The maximum error over the entire test
dataset is defined as

emax = max
m,i
|h(fm)i − ui

m|. (6.3)

6.3 Results

We validate proposed neural network frameworks on two examples, representing a 2D and
a 3D problem respectively. For the 2D example, a structured mesh is considered so that all
frameworks including CNN can be applied to it. Whereas for the 3D example an arbitrary
unstructured mesh is considered.

6.3.1 Generation of hyperelastic FEM training data

As motivated in the methodology section, training datasets of non-linear displacement solutions
are generated by applying random traction and body forces on the given discretisation. The
number of cases generated randomly (dataset size) has been chosen large enough to generalise
well to unseen arbitrary forces. The dataset is split into the training (95%) and testing
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(5%) part, and the pairs of input force and output displacement solutions from the training
dataset are then fed to train different types of neural networks. The proposed neural network
frameworks are validated on two examples, both following Neo-Hookean hyperelastic law. To
avoid the divergence of the non-linear FEM solver, both traction and body forces are applied in
incremental load steps. All the computations are performed using AceFEM framework [Korelc,
2002].

For the 2D case, a rectangular domain made of soft material and discretized by 8×32 mesh with
217 quad elements is considered. It is constrained at 4 corner nodes as shown in Figure 6.5a.
It is subjected to traction forces of random magnitude, location, and direction in the region
prescribed by the pink line. Body forces are ignored in this case. Table 7.1 provides detailed
information about datasets including the material properties and external force ranges used
for the generation of 2D and 3D datasets. For the 2D case, a lower range of Y-direction force
density is chosen since it doesn’t contribute much to generating large deformation solutions.

In the 3D case, a continuum toy elephant model is discretised with 6627 tetrahedron elements.
It is subjected to fixed boundary conditions by constraining nodes on the bottom region of the
legs. Body forces in random magnitude and direction are applied in the transverse directions
(see Figure 6.5b) to generate datasets of force-displacement pairs. External tractions are ignored
in this case.

Case
Material

properties
(E [Pa], ν)

N.of FEM
DOFs (F)

External traction/body
force density range

Dataset size
(train + test)

2D domain 100, 0.3 512 fx = -24 to 24 N/m,
fy = -8 to 8 N/m 7124 + 372

3D elephant 3×106, 0.4 5835 bx, bz = -0.35 to 0.35 N/kg,
by=0 N/kg 7600 + 400

Table 6.2 Desciption of FEM datasets

6.3.2 Implementation details

As introduced in the methodology section, CNN and MAgNET frameworks belong to the family
of U-Net architectures, while Perceiver IO leverages Transformer-style attention. It has to be
noted that all the frameworks are robust, and do not need fine hyperparameter tuning.

2D case: For the CNN U-Net, a 4-level architecture with 3 max-pooling/upsampling operations
is used. At each level, two convolution layers with 3×3 filters are applied with 64, 128, 256, and
256 channels at respective levels. In the case of MAgNET, a 5-level graph U-Net architecture
with 4 graph pooling/unpooling operations is used. At each level 2 MAg layers (with A2
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Fig. 6.5 Schematics of dataset generation for (a) 2D example subjected to external traction
forces. (b) 3D example subjected to external body forces. External tractions and body forces
are indicated with pink arrows.

adjacency, refer [Deshpande et al., 2023b]) are applied with 8, 16, 16, 32, and 32 channels at
respective levels. For both 2D and 3D case MAgNET architectures, the seed of the first graph
pooling operation is chosen by grid search, while seeds for other pooling layers are kept constant.
This is done to have the maximum possible coarsened representation of the lowest-level graph.
This ensures propagating boundary condition information with a minimum number of MAg
operations at the lowest level. CNN U-Net is trained with a batch size of 16 for 32,000 epochs
and MAgNET is trained with a batch size of 4 for 10,000 epochs.

In the case of Perceiver IO we defined 512 inputs (standing for dofs of the example) with a
total embedding size of 512 following the procedure detailed in Section 6.2.2. We also selected
a total of 128 latent arrays of dimension 210 for performing cross-attention in the encoder, self
attention in latent space and inputs for the decoder. For the decoder’s output query array we
used an index dimension of 512, which defines the size of the outputs, and a channel dimension
of 210 equal to the dimension size of the latents. We used a total of 3 blocks for the latent
array processing, with 2 self-attention layers per block and 2 self-attention heads per layer.
Both the encoder and decoder worked with 2 cross-attention heads each. The selection of these
hyper-parameters was determined in a coarse exploratory fashion, with the goal of reducing the
number of network parameters while maintaining its performance. Perceiver IO is trained with
a batch size of 16 for 2,64,140 epochs.

3D case: For the MAgNET, 7-level graph U-Net architecture is used with 6 graph pool-
ing/unpooling operations. Again at each level, 2 MAg layers (with A2 adjacency) are applied
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with 6, 6, 6, 12, 12, 24, 24 channels at respective levels. The complex topology of this particular
mesh demands more number graph pooling layers, this ensures propagating boundary condition
information with a minimum number of MAg operations at the lowest level. On the other hand,
the only change with respect to the 2D case for Perceiver IO is an increase of the input and
output dimension from 512 to 5835 in both the encoder and decoder. MAgNET architecture
for this case is trained for 1200 epochs with a batch size of 4, whereas Perceiver IO is trained
for 32,580 epochs with a batch size of 16.

CNN U-Net and MAgNET networks are trained using the Adam optimizer [Kingma and Ba,
2014], whereas Perceiver IO is trained using AdamW optimizer [Loshchilov and Hutter, 2017]
as implemented in the original paper. CNN and MAgNET are implemented using TensorFlow
[Abadi et al., 2015], while Perceiver IO is implemented using PyTorch [Paszke et al., 2019].
All the implementations in this work are performed using HPC facilities of the University of
Luxembourg [Varrette et al., 2014].

6.3.3 Performance on unseen examples

Proposed DNN frameworks are trained and tested on the datasets generated as illustrated in
Section 6.3.1. The maximum nodal displacement for the 2D case is 0.35 m and for the 3D
case it is 140.04 m, i.e. we compute displacements of all the nodes for every single example,
and then choose particular examples for which the maximum nodal displacement is observed.
Table 6.3 summarises the performance of neural networks on the two test datasets. It shows
that all three networks are capable of predicting mechanical deformation responses with a very
low error.

To compare, we observed that CNN U-NET and Perceiver IO gave lower error metrics than
MAgNET for the 2D case, which has relatively low dimensional input. As the size and
complexity of the mesh increased in the 3D case, both MAgNET and Perceiver IO performed
well, with Perceiver IO giving slightly better error metrics.

6.3.4 Training and inference of DNN frameworks

First, we compare the training convergence of proposed DNN frameworks by comparing the
mean square loss plots for both 2D and 3D cases. Figure 6.6a shows that for the relatively
smaller dimension inputs as in the 2D case, both CNN and Perceiver IO observed to learn more
efficiently when compared to MAgNET. Figure 6.6b shows that both MAgNET and perceiver
are able to learn efficiently on the complex mesh data as observed in the 3D case. However,
MAgNET could learn more quickly than Perceiver IO, also MAgNET can learn efficiently even
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Example Framework M ē [m] σ(e) [m] emax [m]

2D
CNN

372
0.06 E-3 0.2 E-4 0.001

MAgNET 0.17 E-3 0.7 E-4 0.021

Perceiver IO 0.02 E-3 0.1 E-4 0.001

3D
MAgNET

400
8.92 E-3 1.9 E-3 0.307

Perceiver IO 2.60 E-3 1.1 E-3 0.098

Table 6.3 Error metrics over the test set using the proposed NN frameworks. M stands for the
number of test examples, and ē, σ(e), emax are error metrics defined in Section 6.2.2.

with the increased mesh complexity and input size. In case of Perceiver IO, as the size and
complexity of mesh further increases, it becomes less and less robust and fails to learn efficiently.
We observed that Perceiver IO failed to learn on the data with input dimension higher than
104.

A possible interpretation of this behavior is that in the case of MAgNET topological information
is externally provided through the adjacency matrix. Hence MAgNET can efficiently learn by
leveraging inter-dependencies between different nodal feature values in the data. On the other
hand Perceiver IO implicitly learns the nodal data dependencies and as the size of the input
data increases, the task to find these inter-dependencies gets more difficult. Evidence of this
behavior can be seen in Figure 6.6, where it is clear that Perceiver IO is optimizing through a
much more complex objective function with a higher density of local minimas.

Once trained, proposed DNN frameworks are fast at the inference stage while predicting unseen
examples. Table 6.4 provides training and inference time (for a single test example) for all
three frameworks, for comparison FEM solution time is also provided. In particular, Perceiver
IO takes a much longer time during the training phase but is extremely fast at the inference
stage. It could make predictions on both small scale (2D) and large scale (3D) inputs in almost
similar time. It has to be noted that to ensure the convergence of the iterative solver, the
non-linear FEM problem is solved with incremental load steps. Hence the solution time for
FEM increases with the magnitude of external force. Whereas trained DNN frameworks take
almost similar time at the inference stage irrespective of external force magnitudes.
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Fig. 6.6 Training convergence for the proposed neural network frameworks for the (a) 2D case
(b) 3D case.

6.3.5 Qualitative analysis of individual examples

In this section, we analyze deformations of individual examples by giving a qualitative comparison
of predictions obtained using different networks. In particular, we analyze test examples with
the maximum nodal displacement for 2D as well as the 3D case. In both cases, we plot nodal
error contours standing for the absolute difference between the DNN prediction and the true
FEM solution.

2D case

The analyzed example in the Figure 6.7 stands for the maximum nodal displacement example in
the 2D test dataset. The node indicated by the green dot has the maximum nodal displacement
of 0.35 m. While the pink arrows represent corresponding nodal forces for the line density force
applied on those four nodes.

Figure 6.7 shows absolute error counters of nodal displacements predicted using proposed DNN
frameworks when compared with the FEM solution. All the proposed neural network frameworks
can accurately predict the deformed mesh. Percentage prediction error (when compared to
the true FEM solution) for the green node is 0.03%, 0.42%, 0.06% using CNN, MAgNET, and
Perceiver IO network respectively. We observed that for the small-scale structured inputs, both
Perceiver IO and CNN U-Net could make better predictions when compared to MAgNET.
In case of Perceiver IO, advantage likely comes from the network leveraging its capability of
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Example Framework N. parameters
(× E6)

Training time
(hrs)

Inference time
(s)

FEM solver
time (s)

2D
CNN U-Net 4.8 18 0.021

0.6MAgNET 4.5 132 0.040

Perceiver IO 1.9 521 0.006

3D
MAgNET 33.9 161 0.217

2.5
Perceiver IO 4.4 312 0.006

Table 6.4 Comparison of training and inference times for all the three networks implemented in
this work.

learning long-range correlations more accurately. This stems from the fact that Perceiver’s
inputs are not constrained by any topological assumption.

Fig. 6.7 Prediction error for different neural network frameworks when compared to true FEM
solution, plotted on the deformed mesh (obtained using the same framework). Force with line
density of (-21.6645,-2.99384) N is applied as shown with pink arrows. True displacement of the
green node is 0.35m. Nodal error contours obtained (a) using CNN U-Net (b) using MAgNET
(c) using Perceiver IO.
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3D case

The 3D case is aiming to demonstrate the performance for unstructured meshes, that are
commonly used when dealing with real world geometries. Tetrahedron discretisation of the
continuous 3D domain is irregular and the mesh topology is complex. The fixed nodes are
topologically far from the tip of the elephant trunk, thus making it challenging to communicate
the boundary condition information. We show that both MAgNET and Perceiver IO can learn
on such complex real-world examples efficiently.

Again we consider the test example with maximum nodal displacement. Figure 6.8 shows that
both MAgNET (Figure 6.8a,6.8c,6.8e) and Perceiver IO (Figure 6.8b,6.8d,6.8f) solutions are
able to predict non-linear mesh deformations accurately. We further analyse the absolute nodal
error counters for both predictions by plotting them on the deformed meshes predicted using
respective DNN frameworks. Both front (Figure 6.8e-6.8f) and side views (Figure 6.8c-6.8d)
obtained using MAgNET and Perceiver IO solutions respectively indicate low prediction errors
for both frameworks. The green node (at the tip of the ear) shown in (Figure 6.8e-6.8f) has
a maximum nodal displacement of 140.04 m for this example. The percentage prediction
error when compared to the true FEM solution for this green node is 0.03%, and 0.02%
using MAgNET and Perceiver IO networks respectively. Both MAgNET and Perceiver IO are
observed to make efficient predictions, with Perceiver IO giving relatively low nodal errors for
this demanding case. Also, owing to the lesser number of trainable parameters, Perceiver IO is
much faster at the inference stage.

6.4 Conclusion

In this work, we demonstrated the capabilities of three promising deep neural network (DNN)
frameworks for accurate and fast predictions of non-linear deformations of solid bodies. We
compared their performance on two benchmark examples, in which data was generated by the
finite element method. Although we only tested the frameworks for the Noe-Hoohean material
model, they are compatible with more general hyperelastic models, such as Mooney–Rivlin
or Ogden models. As such, they promise to be used as surrogate models for non-linear
computational models in mechanics.

The comparison included two very recent DNN frameworks, MAgNET and Perceiver IO,
that are naturally able to work with arbitrarily structured data at inputs/outputs, including
complex finite element meshes that originate from real-world applications. The third compared
framework, CNN U-Net, could only operate on grid inputs/outputs, and we suggested possible
remedies to extend it to work with arbitrary unstructured meshes. When looking at prediction
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capabilities, especially interesting are the capabilities of the Perceiver IO network, which
demonstrated to give better predictions with a lesser number of parameters, as compared to
MAgNET and CNN U-Net. Additionally, the use of Perceiver IO creates a direct link to rapidly
advancing research in ML and AI communities, which promises further advancements.

MAgNET and Perceiver IO are designed to be flexible in terms of the input and output
structures, allowing them to potentially be applied to a wide range of problems. One possible
application for these types of neural networks is in ab initio multi-scale modeling, which is also
pursued in our team, see Hauseux et al. [2020]. These methods could be used to accelerate
computationally expensive accurate simulations of large atomic systems by helping to connect
atomic-level simulations with the macroscopic continuum description of materials. As such,
these neural networks could lead to significant strides in the field of materials science.

One of the first possible future extensions of the presented frameworks would be to incorporate
the physics-informed neural network paradigm. This can be easily achieved by incorporating
relevant physical laws in the optimization objective of the training procedure. Such extension
can further increase the accuracy of predictions and accelerate the training procedure. Another
possible extension is to consider a much wider class of phenomena and models, including
buckling instabilities and more general history/time-dependent phenomena (visco-elasticity,
dynamics, plasticity, etc.), which would allow tackling more challenging problems in solid
mechanics, see e.g., [Vijayaraghavan et al., 2021a]. Going beyond mechanics, these approaches
can be also adopted for a much wider range of engineering and scientific applications.

Data Availability Statement

The datasets generated for this study can be found at https://doi.org/10.5281/zenodo.7585319
zenodo repository, and source codes are made available in the convolution-aggregation-attention
GitHub repository.

https://doi.org/10.5281/zenodo.7585319
https://github.com/saurabhdeshpande93/convolution-aggregation-attention.git
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Fig. 6.8 Deformation of elephant mesh subjected to external body force density (0.34, 0.0, 0.35)
N/kg. First column represents MAgNET solutions while the second column represents Perceiver
IO solutions. (a)&(b) Deformed meshes using MAgNET (dark blue) and Perceiver IO (sky
blue) respectively, for comparison FEM mesh is presented in red. The rest position is indicated
with gray mesh. (c)&(d) Side view of nodal error contours when compared to the FEM
solution, plotted on the deformed meshes for MAgNET and Perceiver IO solution respectively.
(e)&(f) Front view of nodal error contours for MAgNET and Perceiver IO respectively. The
true displacement of the green node is 140.04 m.



Chapter 7

A probabilistic reduced-order
emulation framework for nonlinear
solid mechanics

Abstract

In many real-life applications, it is crucial to produce reliable uncertainty estimates in addition
to the predictions. But quantifying uncertainty on high-dimensional solutions is still a severely
under-invested problem, especially for non-linear simulations. This work introduces an innovative
approach that combines autoencoder neural networks with Gaussian processes—a Bayesian
machine learning method—to address the challenge of finding probabilistic mappings between
high-dimensional inputs and outputs. We validate the proposed framework for its application
to surrogate modeling of non-linear finite element simulations. Our early findings highlight that
the proposed framework is computationally efficient as well as accurate in predicting non-linear
deformations of solid bodies subjected to external forces, all the while providing insightful
uncertainty assessments.

This chapter is to be improved and submitted as: S. Deshpande, H. Rappel, S.P.A. Bordas, J. Lengiewicz,
A probabilistic reduced-order emulation framework for nonlinear solid mechanics
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7.1 Introduction

Real-world systems often exhibit complicated and nonlinear mechanical behavior. The most
common approach to model the response of these systems is the finite element method. However,
for systems with a large number of degrees of freedom, executing standard numerical methods
such as FEM can become prohibitively expensive. Furthermore, regardless of the mathematical
complexity, every numerical model inherently simplifies reality. Consequently, quantifying
uncertainty becomes indispensable in any numerical framework aimed at real-world problems.
However, the computational cost of the standard methodologies makes uncertainty quantification
for such high dimensional problems impossible. Therefore, in this contribution, we aim at
addressing these challenges with a novel framework that combines probabilistic surrogate models
(Gaussian process emulators) and autoencoder neural networks. In simple words, our framework
predicts non-linear deformations of high dimensional meshes (corresponding to solid bodies)
subjected to external forces, along with their uncertainties.

As the number of degrees of freedom in a problem increases, numerical challenges arises
when using conventional methods such as FEM. In these scenarios, reduced ordered methods
(ROMs) offer a means to reduce the dimensionality of the problem, enabling more efficient
and manageable simulations. Conventional ROMs accomplish this by linearly projecting
higher-order information to lower-dimensional space using dimensionality reduction techniques
such as Principal Component Analysis (PCA) [Aversano et al., 2019; Grassi et al., 2014],
and Proper Orthogonal Decomposition (POD) [Goury and Duriez, 2018a; Niroomandi et al.,
2009]. However, these approaches yield undesirable results when simulating highly nonlinear
phenomena [Kerfriden et al., 2011b; Kerschen et al., 2005; Schölkopf et al., 1998].

More recently, there’s been a widespread adoption of machine learning techniques to accelerate
computationally intensive numerical methods [Papavasileiou et al., 2023; Šarkić Glumac et al.,
2023]. In particular, deep learning (DL) models have been successfully used as accurate and
computationally inexpensive surrogates to solve non-linear problems in mechanics [Deshpande
et al., 2023b,c; Krokos et al., 2022a,b]. In context of ROMs, DL methods are being extensively
used to find reduced order representations of the high dimensional data [Wang et al., 2016].
DL based approaches are not only capable of efficient non-linear compressions but are also
computationally inexpensive at the inference stage, and hence are highly suitable of applications
requiring real time simulations [Fresca et al., 2021; Reddy et al., 2020].

The type of deep neural networks used to compress and reconstruct data to and from reduced
states are also termed as autoendcoder networks. Autoencoder neural networks, as an unsuper-
vised learning technique, has been commonly adopted to learn efficient codings across various
domains [Liou et al., 2014; Masci et al., 2011; Wang and Cha, 2021]. The primary focus of
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an autoencoder is to reduce the dimensionality of the input data in a non-linear way, while
preserving its essential features [Hinton and Salakhutdinov, 2006]. Autoencoder networks work
much better than POD or PCA, as a tool to reduce the dimensionality of the data [Almotiri
et al., 2017]. They have also been implemented in the context of computational fluid dynamics
[Murata et al., 2020; Pant et al., 2021] as well as computational solid mechanics [Fresca et al.,
2022; Shinde et al., 2023]. In this work we use fully connected and convolutional neural network
based autoencoder networks to find reduced representations of full field displacement solutions.
In the context of proposed framework, creating latent representations of the data reduces
complexity and computational burden of the probabilistic mapping task.

As mentioned earlier, it is essential in this framework to find a probabilistic mapping between
reduced inputs and outputs obtained by the autoencoder framework. To this end, we employ a
probabilistic regression model based on the Gaussian process regression (GPR). A regression
model maps the input data to the output data (corresponding to the latent state) with a low
computational cost, therefore once the related parameters are identified, the computational
overhead of the regression model in our framework will be negligible. As a result, the process
of estimating uncertainty—something that involves many simulations for various parameters,
as shown in [Hauseux et al., 2017a]—becomes manageable and practical.

GPs are well-established, and the related theories are extensively discussed in standard textbooks
[Rasmussen and Williams, 2006; Rogers and Girolami, 2016]. The flexibility (i.e., they can
mimic different functions with a few parameters) and intrinsic capability of GPs to quantify
uncertainties make them a perfect candidate for the application of this contribution. In
mechanics also, GPs have been employed in a wide range of studies both as surrogate models
Arendt et al. [2012]; Bayarri et al. [2007]; Kennedy and O’Hagan [2001]; Rappel et al. [2018]
and an approach to model spatially varying parameter fields Koutsourelakis [2009]; Rappel
et al. [2019, 2022]. Ding et al. [Ding et al., 2023] employed a combination of GPR and PCA to
model displacement fields in problems with nonlinear materials (i.e., elastoplastic material),
[Jidling, 2017] and [Poloni et al., 2023] used GPR to model a full-field of strain from sensor
observations.

While GPR is a strong regression technique, multi-dimensional output GPs have a drawback in
terms of computational efficiency. They exhibit cubic scaling in relation to both the number of
data points and the dimensionality of each output [Bruinsma et al., 2020]. This work focuses
on alleviating this issue, by significantly reducing the output dimension, while keeping same
number of data points. In simple words, we initially reduce the 2D/3D-FE problem into a
reduced problem and then use GPR to map inputs to reduced outputs. During the prediction
phase, for a given force in its sparse representation, GPs predict the latent space displacement
solutions which are eventually projected to the full field solutions using the autoencoder network.
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We demonstrate the robustness and versatility of our framework by applying it to synthetic
datasets generated from the non-linear finite element simulations.

The remainder of this paper is organized as follows. In Section 2 we present overview of the
framework. In Section 3 we describe general methodology of the framework. Then, in Section 4,
an extensive study of the proposed framework is performed, which is based on the 2D and 3D
benchmark examples. The conclusions and future research directions are outlined in Section 5.

7.2 Methodology

As motivated in the introduction, the framework aims to compute full field displacements of
solids subjected to external forces, along with the associated uncertainties. In this section, we
begin by providing an overview of the framework, followed by an in-depth discussion of its
individual components.

7.2.1 Overview of the framework

The framework is categorized into following two phases.

Offline phase: Training of GP+autoencoder framework

In the offline phase, an autoencoder network is trained only on full-field displacement data to get
the corresponding compressed representations. Following that, the GP is trained on the force
inputs (provided in their sparse representation) and compressed displacements obtained using
the autoencoder network as described in Figure 7.1. Autoencoder and GP training procedures
are performed independently.

Online phase: Prediction for unseen force

In the online phase, for a given unseen input force, GP predicts the latent displacement
distribution. These latent displacements are then reconstructed to the full space using decoder
part of the autoencoder network as illustrated in the Figure 7.2.

7.2.2 Obtaining latent representations with autoencoder neural networks

Autoencoders are neural networks that are primarily used for unsupervised learning and
dimensionality reduction tasks. They are designed to encode high-dimensional input data into
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Fig. 7.1 First, the autoencoder neural network is used to compress full field displacement data
to its latent space representation. Next, GP training is performed to find force-displacement
probabilistic mapping in the latent space.
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Fig. 7.2 For an unseen input force f∗, the GP is used to predict the probability distribution
of latent displacements. Subsequently, these latent displacements are mapped to the full field
state by using the decoder component of the autoencoder network.

a lower-dimensional latent space representation, and then decode it to the original input space,
aiming to reconstruct the input data as accurately as possible.

The architecture of an autoencoder network typically consists of two main components: an
encoder and a decoder. The encoder takes the input data and maps it to a compressed
representation in the latent space, while the decoder takes this compressed representation and
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reconstructs the original input data. The encoder and decoder are usually symmetrical, meaning
that they have the same number of layers and the layer sizes are mirrored. One of the key
aspects of autoencoders is that the latent space, also referred to as the bottleneck layer, has a
lower dimensionality than the input space. This forces the network to learn a more efficient and
meaningful representation of the data. By compressing the data into a lower-dimensional space
and then reconstructing it, autoencoders can capture the most salient features by discarding
less relevant information.

In our study, we employ two distinct autoencoder architectures. The first type utilizes fully
connected networks, suitable for handling arbitrary unstructured meshes. Meanwhile, the second
type utilizes convolutional neural networks (CNNs) specifically designed for structured mesh
scenarios [Deshpande et al., 2022; Mendizabal et al., 2019b]. The CNN autoencoder networks
integrate fully connected layers with convolution and maxpooling layers, see Figure 7.3.

Input Output

Latent/compressed 
layer

(a)

14

Input
Latent 
layer Output

(b)

Fig. 7.3 By introducing a bottleneck within the network, we create a compressed representation
of the original input, allowing for efficient knowledge encoding. Note that inputs and outputs
of the network are identical, which are full field displacements in our case. (a) Schematic of a
fully connected autoencoder neural network. (b) Schematic of a convolution neural network
autoencoder network.

This work utilizes numerically generated force-displacement datasets, denoted as Df =
{(fi, ui)}i=1,..,N . This datasets denotes non-linear displacements, u, of solid bodies when
subjected to external forces, f . The solid body can be subjected to either loads applied to
a single or selective set of nodes or body forces acting throughout the entire region. When
dealing with point loads, we describe the force using its magnitude in the (x, y) direction and
the position where the force is applied relative to the fixed boundary. This approach allows us
to represent force inputs efficiently, resulting in a sparse representation. In scenarios involving
body forces, we provide the force density components in either the (x, y) directions or the (x, y,
z) directions, depending on the dimensionality of the specific problem.

For the displacement outputs, arrays match the size of the problem’s degrees of freedom (DOFs),
representing full field displacements. Conversely, force arrays are considerably smaller than
displacement arrays. This eliminates the need for their separate compression into a latent
state. Hence, autoencoder networks are used to compress only displacement fields. However, if
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necessary, latent forces can also be computed by compressing their full field representation with
autoencoder networks.

The autoencoder network, U , is constructed by subsequently applying the encoder and decoder
networks

U(u, θauto) = Udecoder(Uencoder(u, θauto), θauto), (7.1)

where u stands for the full field displacements and ul = Uencoder(u, θauto) is their corresponding
latent/compressed representation. For a given full field displacement dataset, {ui}i=1,..,N , the
autoencoder network is trained by minimizing the following mean squared error loss

L(Df , θauto) = 1
N

N∑

i=1
∥U(ui, θauto)− ui∥22, (7.2)

where θauto are trainable parameters of the autoencoder network. The optimal parameters,
θ∗auto, are retrieved by minimizing the loss function:

θ∗auto = arg min
θauto

L(Df , θauto). (7.3)

So once the autoencoder network is trained, for a given full field displacement field u, latent
representation ul is computed using the encoder part of the autoencoder network as follows:

ul = Uencoder(u, θ∗auto) (7.4)

Hence, we obtain latent state dataset Dl = {(fi, ul
i)}i=1,..,N , from the full field dataset Df =

{(fi, ui)}i=1,..,N . Note that forces are identical for both datasets and they are always provided
as smaller dimensional arrays, which is discussed in detail in Section 7.3.1.

In the next section, we will use the latent dataset, Dl, to elaborate Gaussian process model,
which will provide the transformation between the input forces, f , and the latent solutions, ul.

7.2.3 Gaussian Process Regression in the latent space

GPR is a key component of our framework. This subsection provides a brief and practical
introduction to GPs. Interested readers are referred to [Rasmussen and Williams, 2006] for
more detail. One may consider GPs as an extension of multivariate normal distributions into
an infinite-dimensional Gaussian distribution [Gelman et al., 2003]. Consider inputs for two
data points (f , f ′), a GP is completely specified by its mean function and covariance function.
We define mean function m(f) and the covariance function k(f , f ′) of a real process w(f) as:
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m(f) = E(w(f))
k(f , f ′) = E[(w(f)−m(f))(w(f ′)−m(f ′))]

(7.5)

We use a GP to describe a distribution over functions, a realization of GP reads as:

w(f) ∼ (m(f), k(f , f ′)), (7.6)

where f , f ′ are two GP’s input vectors of dimension D, which are force vectors in the scope of
present framework. Hence, in general, for a finite collection of inputs [f1 · · · fN ]:

w ∼ (m, K), (7.7)

where w =
[
w1 · · · wN

]T

, m =
[
m(f1) · · · m(fN )

]T

and K denotes the covariance matrix
between two inputs, i.e., (K)ij = k(fi, fj). Frequent choices for the covariance function are
given in [Rasmussen and Williams, 2006].

In simple words, in GPR, we set a GP (Eq. (7.6)) as a prior for the function that is mapping
inputs to outputs and then update the prior GP with available observations using Bayes’
rule. In our framework, GP predicts the displacements which correspond to the latent space
representations as shown in the Figure 7.1& 7.2, hence we will use superscript-l notation, ()l,
for all the GP outputs.

Let ul be a set of Gaussian distributed observations, i.e., ul
i = (w(fi), σ2), with i = 1, · · · , N ,

without loss of generality we assume that function that maps inputs to outputs is a realization
of a GP with a zero mean and a covariance function k(f , f ′) which is defined by its parameter
set θGP, i.e., ul

i = w(fi) + ω and ω ∼ (0, σ2). Let y = [ul
i, · · · , ul

N ], then the predictions of a
GPR for a new data point (f∗, w∗) will be as follows:

w∗|θGP, ul, f , σ2 ∼ (E(w∗),V(w∗)), (7.8)

E(w∗) = kT
∗ (K + σ2In)−1y, (7.9)

and
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V(w∗) = k(f∗, f∗)− kT
∗ (K + σ2In)−1k∗, (7.10)

where E denotes mean or expected value, V denotes the variance, IN is an N × N identity
matrix, K denotes the N ×N covariance function given in Eq. (7.7), k∗ = K(f∗, F) is an N × 1
row vector, and F is a D ×N matrix storing the input column vectors for all N observations
(f1, f2, .., fN ).

Furthermore, the optimal parameters of the covariance function (hyperparameters), can be
identified by maximizing the following equation.

log p(y|F, θGP, σ2) = −1
2yT (K + σ2In)−1y − 1

2 log[det(K + σ2In)]− n

2 log(2π) (7.11)

Note that, p(y|F, θ, σ2) in Eq. (7.11), is the conditional likelihood of observations given the
parameters set θGP, the input matrix F, σ2, hence one also can use Bayesian inference for
identification of parameters by setting priors on unknowns (i.e., θGP, and σ).

Moreover, GP and autoencoder network are trained independently. Autoencoder network needs
to be trained first in order to generate the latent state dataset, which is then used to train the
GP.

7.2.4 Projecting latent GP predictions to the full field space using decoder

As illustrated in Figure 7.2, the latent space predictions obtained using the GP are transformed
into the full space through the decoder component of the autoencoder network. During
the inference stage, when presented with a new input force f∗, the GP initially generates a
distribution of latent displacements denoted as p(u∗l|f∗), which takes the form of a Gaussian
distribution. For simplicity, we refer to this distribution as N (Egp,Vgp), where, Egp,Vgp are
obtained from Eq 7.9 and Eq 7.10.

p(u∗l|f∗) = N (Egp,Vgp), (7.12)

Subsequently, the distribution of full field displacements p(u∗|f∗) is obtained by translating
samples from the latent predictive distribution through the decoder component. Without loss of
generality, let’s assume that the distribution of full field displacements also follows a Gaussian
distribution. The mean and standard deviation of this distribution are computed as follows:
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u∗µ ≈
1
S

S∑

s=1
Udecoder(ul

s), where ul
s ∼ p(u∗l|f∗),

u∗σ2 ≈ 1
S

S∑

s=1
Udecoder(ul

s)TUdecoder(ul
s)− u∗µT u∗µ

(7.13)

where ul
s is a sample from the latent displacement distribution obtained using GP prediction,

for an input f∗. In order to get the full field displacement distributions, we generate ’S’ samples
in the latent space, and these samples are then projected to the original space using the decoder.
Now the final Gaussian distribution of displacement of the full field solution is represented
through the mean (u∗µ) and standard devidation (u∗σ) of these ’S’ samples. We set S = 300 for
all the implementations presented in this work.

7.2.5 Finite element formulation for non-linear deformations of solid bodies

We consider a boundary value problem in the domain Ω, Dirichlet and Neumann boundary
conditions are applied on ΓD, ΓN respectively. The virtual work principle for nonlinear
elastostatic equation reads

∫

Ω
P (F (u)) · ∇δu dV −

∫

Ω
ρ b̄ · δu dV −

∫

Γt

t̄ · δu dS = 0 ∀δu, (7.14)

where u and δu belong to appropriate functional spaces, u = ū and δu = 0 on Γu, and P (F )
is the first Piola-Kirchhoff stress tensor. The essential constitutive correlation is established
using the hyperelastic strain energy potential denoted as W (F ), defined as follows:

P (F ) = ∂W (F )
∂F

(7.15)

where F = I+∇u is the deformation gradient tensor. In this work we use following Neo-hookean
energy density expression:

W (F ) = µ

2 (Ic − 3− 2 ln J) + λ

4 (J2 − 1− 2 ln J), (7.16)

where J = det(F ) and Ic = tr(F T F ). Following conventional finite element discretization, the
challenge represented by Eq. (7.14) will be reformulated into a system of nonlinear equations
which are solved iteratively using Newton-Raphson method.
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7.3 Results

7.3.1 Dataset generation information

In this research, we examine two distinct scenarios, as illustrated in Figure 7.4: a 2D beam and
a 3D liver. These scenarios are subjected to varied loading conditions and are simulated using
a non-linear finite element method during the data generation phase.

2D beam case: In this scenario, the 2D beam is applied with point forces with random
direction and magnitude. These forces are applied to the nodes located along the top line, which
is visually represented by red line in the Figure 7.4a. For the 2D beam case, displacement data
is provided for all degrees of freedom (DOFs) of the mesh, capturing the full-field displacements
of the beam. However, the forces used as inputs to the surrogate framework are represented as
3-dimensional arrays. Specifically, the applied point load is characterized by two components,
namely fx and fy, representing the force magnitudes in the x and y directions, respectively.
Additionally, the distance (d) from the fixed boundary to the point of application is considered.
This information is visually depicted in Figure 7.4a.

3D liver case: In this case, the 3D liver model is subjected to body forces with random
directions and magnitudes distributed throughout its volume. The liver is also constrained
at specific nodes located at the right end. This simulation is aimed at understanding the
deformations of the liver under the influence of these distributed body forces and boundary
constraints. Similar to the beam case, displacement data is provided for all DOFs of the
liver mesh, representing the full-field displacements of the organ. However, in contrast to the
beam case, the forces used as inputs to the surrogate framework are the body force density
components in the x, y, and z directions, respectively (bx, by, bz).

Further details, such as the range of external forces applied, as well as other information used
to generate the datasets are given in the Table 7.1.

Problem N.of DOFs (F)
Range (External

forces/ body
force density)

Young’s modulus E [Pa],
Poisson’s ratio ν, density ρ

[kg/m3]

Dataset size
(train+test)

2D beam 128 fx, fy = -2.5 to
2.5 N 500, 0.4, - 5700 + 300

3D liver 9171 bx, by, bz= -0.02
to 0.02 N/kg 5000, 0.45, 1000 7600 + 400

Table 7.1 Details of FE datasets.
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Fig. 7.4 Schematics of examples considered in this work (a) 2D beam discretised with quad
elements is applied with point loads on the nodes lying on red line, this example has been
taken from [Deshpande et al., 2022]. (b) 3D liver is applied with random body forces within a
prescribed region.

7.3.2 Implementation details

Autoencoder networks: Architectures & training details

In this study we demonstrate two autoencoder networks, one based on CNN architecture as
shown in the Figure 7.5, which is used for the 2D beam case. And the fully connected autoencoder
network as depicted in Figure 7.6, which is used for the liver case. Both networks are composed
of an encoder and a decoder part as illustrated in respective figures. Auoencoder networks are
used only to compress the displacement solutions of full field space to the corresponding latent
states, whereas the forces are originally provided in the sparse format.

Architecture for the 2D beam case
Encoder: The input to the CNN autoencoder is a mesh displacement tensor, which is represented
with 2 channels. These channels correspond to the displacements along the x and y DOFs
of the mesh. The input tensor undergoes application of two convolutional layers, each with
256 channels and 3× 3 filters as shown in Figure 7.5. Convolutional operations enable feature
extraction and dimensionality reduction. Subsequently, a max-pooling operation is applied,
which reduces spatial dimensions of the tensors while preserving the number of channels. This
process is repeated again with 128 channels, further capturing important patterns in the data.
At the latent level of the network, two convolution layers with 64 channels are applied, which
is followed by flattening of the tensor. Now the flattened tensor is applied with a dense layer
with ’l’ units, which stands for the dimension of the compressed/latent state. This compressed
representation contains crucial information about the input mesh, capturing the most relevant
features.

Decoder: The Decoder takes a flattened tensor of dimension ’l’ as its input. Initially, this
input tensor undergoes processing via a dense layer. This strategic utilization of the dense
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layer facilitates a transformation of the arbitrary latent dimensions into a new size that can be
conveniently reshaped into a grid structure, a format that seamlessly aligns with the subsequent
convolutional layer operations. For example with using a dense layer with 640 units as shown
in the Figure 7.5 allows us to reshape the flat tensor to a 64× 5× 2 tensor, on which series of
upsampling and convolution operations are performed until the original spatial dimensions is
achieved. In the end, a 2 channel convolution with 1× 1 filter is applied to get back the original
mesh shape.

18

3 × 3 Convolution 2 × 2 Max pool 2 × 2 Upsample Reshape 1 × 1 ConvolutionDense

Encoder Decoder

Latent  
representation 

256 256

128 128

64 64  l

2

128 128

256 256 2

640 640
64

Fig. 7.5 CNN autoencoder architecture for used for the 2D beam case.

Convolutional neural networks are inherently designed to work with grid-like inputs, such as
structured meshes. As a result, this methodology isn’t immediately adaptable to inputs that
lack this grid-based nature. To address this limitation, we introduce an alternative solution in
the form of a fully connected autoencoder network as illustrated in Figure 7.6. This network
can handle diverse and unstructured meshes.

Architecture for the 3D liver case
Encoder: This component receives input in the form of displacements linked to all degrees of
freedom (DOFs) of the mesh. This information is encoded within a flattened tensor, which
serves as the input layer. It is further applied with two dense layers with 4096 units each. We
also introduce skip connections as illustrated in the Figure 7.6, which avoid vanishing gradient
issues and stabalise the training procedure. This procedure applying blocks of dense layers
and skip connections is repeated three more times with 2048, 1024, 512 units for dense layers
respectively.

Decoder: Decoder takes the ’l = 16’ dimensional 1D tensor as the input (compressed/latent
tensor), a similar procedure of applying two dense layers and skip connections is followed until
the original size tensor is obtained. The number of units used in each dense layer is detailed in
the Figure 7.6.



128 A probabilistic reduced-order emulation framework for nonlinear solid mechanics

17

+
+ +

+ +
+ +

+Latent  
representation 

Encoder Decoder

 l

 512 512
 1024 1024

 2048 2048
 4096 4096

 Dofs  Dofs

 512 512
 1024 1024

 2048 2048
 4096 4096

Dense

Fig. 7.6 Fully connected autoencoder architecture used for the liver case. The numbers denote
respective number of units present in dense layers. We use latent dimension, l = 16 for the 3D
liver case.

Training of autoencoder networks
Autoencoder network is trained on the full field displacement dataset, using the loss function as
described by Eq.(7.2). Minimization is carried out using the Adam optimizer with recommended
parameter configurations as presented by Kingma Kingma and Ba [2017]. In both instances, a
batch size of 16 is employed, with the 2D beam case trained across 32000 epochs and the 3D
liver case for 4000 epochs. The initial learning rate is set at 1e-4 and linearly decays to 1e-6
during the training process. Autoencoder networks are trained using Tensorflow [Dillon et al.,
2017] library on a Tesla V100-SXM2 GPU, utilizing the high-performance computing facilities
at the University of Luxembourg [Varrette et al., 2014].

Gaussian process details

All the GP implementations presented in the work are performed using radial basis kernel
(RBF) and Matern kernel as described below:

kRBF(fi, fj) = exp(−∥fi − fj∥2

2l2
)

kMatern(fi, fj) = 1
Γ(ν)2ν−1 (

√
2ν

l
∥fi − fj∥2)νKν(

√
2ν

l
∥fi − fj∥2)

(7.17)

where fi, fj are ith, jth input vectors, Γ(ν) is the gamma function, Kν is a modified Bessel
function, and l is the length scale. The RBF kernel is one of the mostly commonly used
kernels, and it assumes that the function values at nearby inputs are strongly correlated, and
the correlation decreases as inputs move farther apart. Whereas the the Matern kernel is a
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generalization of the RBF. It has an additional parameter (ν) which controls the smoothness of
the resulting function.

The kernel hyperparameters are obtained by training GPs using scikit-learn library [Pedregosa
et al., 2011], on the latent datasets as described in Section 7.2.3. Optimisation is performed
using the L-BFGS-B optimizer [Fletcher, 2000], while the number of restarts of the optimizer is
chosen as 9 for both the cases.

Validation metric

The performance of the framework over the entire test is computed using the mean absolute
error metric. For the mth test example, them mean error is given as follows:

em = 1
F

F∑

i=1
|u∗µ(fm)i − ui

m|. (7.18)

F is the number of DOFs of the mesh representing the full field space, u∗µ(fm) is the mean
prediction of the GP+Decoder framework (full field prediction) as described through the
Eq.(7.13) and um is the finite element solution for the full field space. To have a single
validation metric over the entire test set, we compute the average mean norm ē and the
corrected sample standard deviation σ(e) as follows:

ē = 1
M

M∑

m=1
em, σ(e) =

√√√√ 1
M − 1

M∑

m=1
(em − ē)2. (7.19)

Finally, in addition to that, we also use the maximum error per degree of freedom over the
entire test set

emax = max
m,i
|u∗µ(fm)i − ui

m|. (7.20)

7.3.3 Performance over the test sets

The proposed framework predicts probabilistic displacement fields corresponding to the full
field mesh. First, we analyse the prediction performance by comparing mean predictions of
the framework to the true FEM solutions. Table 7.2 presents error metric for both benchmark
cases. Additionally, the maximum nodal displacements for both cases are also provided, i.e., we
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compute displacements of all the nodes for every single example, and provide the maximum
nodal displacement in the table. Table 7.2 shows that both mean and maximum errors are
fairly low when compared to the displacement magnitudes. The proposed framework is capable
of predicting mechanical deformation responses with very low errors.

Example M ē [m] σ(e) [m] emax [m] Max nodal disp. [m]

2D Beam 300 0.1 E-3 0.7 E-4 4.3 E-3 1.16

3D liver 400 0.9 E-3 0.9 E-3 0.077 5.74

Table 7.2 Error metrics for 2D and 3D test sets for predictions using the proposed
GP+autoencoder framework. M stands for the number of test examples, and ē, σ(e) and emax
are error metrics defined in Section 7.3.2.

Further, we analyze test examples with the maximum nodal displacement for both benchmark
cases. In both cases, we plot nodal error contours representing the absolute difference between
the framework prediction and the true FEM solution. We also plot uncertainty estimates
obtained using the proposed framework.

Visualisations

We analyse the test example of 2D beam case, with the maximum nodal displacement of 1.16
m. GP is implemented with the RBF kernel for this case. Figure 7.7 shows the displacement
field prediction obtained using the proposed framework. Figure 7.7b and Figure 7.7c show that
the mean predictions are in extremely well agreement with the true FEM solution. Figure 7.7d
indicates low prediction errors while the Figure 7.7e provides nodal uncertainty estimates
predicted by the framework (2 standard deviations), as obtained from the Eq.(7.13). It is
evident from the figures that the observed errors are within the uncertainty bounds for respective
nodal predictions.

Similarly, we analyse the test example of 3D liver case with the maximum nodal displacement
of 5.74 m. GP is implemented with a Matern kernel for this case. Figure 7.8 shows that the
framework is able to accurately predict the deformation responses of the 3D liver geometry
subjected to external body forces. See Figure 7.8b, 7.8c for the mean prediction of the framework
and FEM solution respectively. Figure 7.8d, 7.8e show the error and uncertainty predictions
respectively. Prediction errors are extremely low, with the maximum nodal is about 0.2% of
the maximum nodal deformation for this example. Figure 7.8e shows that most of the observed
errors are within the uncertainty bounds bounds for respective nodal predictions.
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Fig. 7.7 Deformation of the 2D beam when applied with the point load on the top right corner
node (a) Deformed mesh predicted using the framework is represented with the blue mesh, which
is coinciding with the red mesh which represents the FEM prediction. Gray mesh represents the
undeformed mesh. (b) & (c) Nodal displacements obtained using the proposed framework and
FEM respectively. (d) Absolute nodal errors between the mean predictions and FEM solutions
(e) Uncertainty predictions obtained using the framework.

GP model checking

To ensure the efficiency and accuracy of GP’s predictions within the latent space, we plot
probability distributions for a randomly chosen test example and compare them to corresponding
true latent values. These true latent values are derived from the compression of full field Finite
Element Method (FEM) solutions. As described in the Figure 7.6, we chose a latent dimension
of 16 to compress 9171 dimensional displacement solution of the 3D liver case. Figure 7.9 shows
probability distributions predicted for these 16 latent displacements. Figure shows that all the
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Fig. 7.8 Deformation of the 3D liver subjected to external body force. (a) Deformed mesh
predicted using the framework is represented with the blue mesh, FEM solution is presented
with the red mesh. Gray mesh represents the undeformed configuration. (b) & (c) Nodal
displacements obtained using the proposed framework and FEM respectively. (d) Absolute
nodal errors between the mean predictions and FEM solutions (e) Uncertainty predictions (two
stds) obtained using the framework.

true latent solutions (represented by vertical red lines) are captured by distributions predicted
by the GP.
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Fig. 7.9 Latent space GP predictions for a randomly chosen test example (test number 385)
for the liver case. Latent space has a dimension of 16 for this case. GP is able to accurately
capture true latent solutions that are indicated by vertical red lines.

7.4 Conclusion

This work presented a novel approach for probabilistic surrogate modeling of fidelity simulations.
It combined Gaussian processes with reduced ordered modeling for efficiently simulating
mechanics of solids. The reduced states are computed using two types of auto encoder neural
networks. The autoencoder networks enabled to achieve an efficient non-linear compression of
high dimensional displacement data, such as reducing ∼ 9100 DOFs to less than 20 dimensions
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(as showcased through the liver example). This strategy greatly reduced the computational
complexity and burden of probabilistic regression task of GP, which otherwise scales cubically
with the output dimension size. In particular, we demonstrated that the proposed framework
could accurately predict non-linear hyper-elastic deformations of solid bodies, along with the
associated model uncertainties.

This study opens up new opportunities for future research. One exciting direction is applying
this approach to probabilistic simulations of time and path dependent problems. One could use
latent state to track how solutions evolve in such cases, which would make the whole process
much faster and more efficient [Nikolopoulos et al., 2022]. Another direction would be to exploit
state of the art graph autoencoder networks graph autoencoder networks to find compressed
representations for arbitrary high-dimensional meshes [Barwey et al., 2023]. This advancement
would overcome the limitations of fully connected networks, which are recognized for their
challenges in handling problems with a high number of dimensions. Moving beyond mechanics,
the proposed approach can also find its use across a broader spectrum of engineering and
scientific domains.



Chapter 8

Concluding remarks

8.1 Summary and conclusions

This thesis presented novel deep-learning surrogate frameworks that address the challenges of
accurate and fast simulations in solid mechanics. The proposed neural network frameworks are
robust and scale efficiently with the dimensionality of the inputs. The proposed deterministic and
Bayesian approaches have been trained using synthetic datasets, but they can straightforwardly
assimilate experimental data. This capability makes our frameworks suitable for data-driven
applications requiring fast response rates, for example, such as in patient-specific computer-aided
surgery of soft human tissues.

In addition to utilising the existing neural network architectures, this thesis presented a novel
geometric deep learning architecture called MAgNET. MAgNET enables efficient supervised
learning on graph-structured data. MAgNET comprises two neural network operations: Mul-
tichannel Aggregation layer (MAg) and graph pooling/unpooling layers, which form a graph
U-Net architecture capable of learning on large-dimension inputs/outputs. These newly pro-
posed layers are compatible with state-of-the-art neural network layers and are useful in a
wide range of scientific/engineering applications. Within the context of surrogate modeling for
computational mechanics, MAgNET can handle arbitrary meshes, and it can capture nonlinear
relationships in data, as demonstrated by quantitative cross-validation against ground-truth
results obtained with FEM.

The thesis also utilised state-of-the-art attention-based architectures, such as transformers,
for their uses in surrogate modeling of the mechanics of solids. We have presented a detailed
performance analysis of Perceiver IO, an attention-based deep neural network, by comparing it
with convolution and aggregation-based deep neural networks. Our comparison demonstrated
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that the Perceiver IO network gave better predictions with fewer parameters when compared
to MAgNET and CNN approaches. These results create a direct link to rapidly advancing
research in ML and AI communities, which promises further advancements. The proposed
frameworks can be used as surrogate models for non-linear computational models in mechanics
and have the potential to accelerate computationally expensive accurate simulations of different
engineering applications.

Apart from its predictive capabilities, the proposed frameworks focus on an important aspect,
i.e. to provide reliable estimates of uncertainty. Mainly, this thesis presented two novel ideas
based on Variational Bayes and Gaussian process formulations. Proposed approaches tackle
the challenging problem of quantifying high-dimensional uncertainty on full-field solutions.
Our analysis demonstrated a positive correlation between the predicted uncertainties and the
prediction errors, which were computed as fitting errors to the FEM solution. Furthermore,
we observed that the uncertainties quickly escalate in the extrapolated region, a property that
we aimed to achieve, providing a means to trust the solution or not. Moreover, alongside
accounting for model uncertainty, the proposed frameworks demonstrate an ability to effectively
capture inherent data noises. Consequently, this thesis allows a significant advancement in
establishing trustworthy and fast simulations in mechanics.

Overall, the contributions of this thesis provide important advancements in the fields of deep
learning as well mechanics. The developed approaches have significant potential to be applied
in a wide range of engineering applications. We believe that this work will serve as a reference
for further developments in many emerging areas of research.

8.2 Future directions

There are numerous avenues for further research and expansion of the work presented in this
thesis. One potential area for improvement is the integration of underlying physics into the
learning process. While the current data-based frameworks can capture some of the underlying
physics, we have observed localised errors while predicting physical quantities of interest.
Incorporating these physical quantities of interest into the learning objective function could
help to address this issue. The proposed frameworks can be straightforwardly extended to
scalable Physics Informed Neural Network variants (such as physics-informed MAgNET).

Another promising direction for the extension of current work is to include path-dependent
processes, such as elastoplasticity. This would require tracking the evolution of state variables
in a time-stepping manner, which could be achieved using MAgNET as well attention-based
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architectures like Perceiver IO. Attention-based approaches are capable of capturing long-range
dependencies in sequential data, such as in the case of path and time-dependent problems.

Additionally, the Bayesian deep learning approach presented in Chapter 4 is only applicable
to grid inputs, such as structured meshes. This concept can be directly incorporated into
the MAgNET framework proposed in Chapter 5. This can be accomplished by performing
local aggregations with probability distributions rather than discrete weights. A Bayesian
MAgNET would be capable of tracking uncertainties inherent to neural network models as
well as real-world data, for problems involving large-scale arbitrary meshes. However, we have
already addressed this limitation through an another approach based on the proposed GP +
autoencoder framework.

We believe that the generality of our neural network frameworks would support problems from
different fields. They can handle problems with non-linear connections between variables and
arbitrary divisions, especially in cases involving PDEs. The codes, datasets, and examples
presented in this thesis are available open-access in respective GitHub and Zenodo repositories.
We envision that the provided repositories will serve as a foundation for future developments
and extensions in various emerging areas of research.
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