
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Vulnerabilities in Edge Frameworks
to Support Security Testing Improvement

Jahanzaib Malik · Fabrizio Pastore

Received: date / Accepted: date

Abstract Edge computing is a distributed computing paradigm aiming at ensuring
low latency in modern data intensive applications (e.g., video streaming and IoT). It
consists of deploying computation and storage nodes close to the end-users. Unfor-
tunately, being distributed and close to end-users, Edge systems have a wider attack
surface (e.g., they may be physically reachable) and are more complex to update than
other types of systems (e.g., Cloud systems) thus requiring thorough security testing
activities, possibly tailored to be cost-effective.

To support the development of effective and automated Edge security testing solu-
tions, we conducted an empirical study of vulnerabilities affecting Edge frameworks.
The study is driven by eight research questions that aim to determine what test trig-
gers, test harnesses, test oracles, and input types should be considered when defining
new security testing approaches dedicated to Edge systems.

We have inspected 147 vulnerabilities of four popular Edge frameworks. Our
findings indicate that vulnerabilities slip through the testing process because of the
complexity of the Edge features. Indeed, they can’t be exhaustively tested in-house
because of the large number of combinations of inputs, outputs, and interfaces to be
tested. Since we observed that most of the vulnerabilities do not affect the system
integrity and, further, only one action (e.g., requesting a URL) is sufficient to exploit
a vulnerability we propose in-the-field testing as a possible solution to address the
problem. Because of their prevalence, authentication and authorization issues are the
ones requiring to be addressed with more urgency.

Keywords Security Testing · Edge Computing · Empirical Study

J. Malik, F. Pastore
SnT Centre, University of Luxembourg, Luxembourg
E-mail: jahanzaib.malik@uni.lu, fabrizio.pastore@uni.lu

1 Introduction

Business and private individuals are increasingly relying on data-intensive services
provided by remote systems; examples include music streaming, video conferencing,
E-gaming, cloud storage, and remote surveillance. Because of the real-time transmis-
sion of large amounts of data, latency is one of the main issues affecting the above-
mentioned services. To minimize latency, the Edge Computing paradigm has been
introduced [130]. It consists of distributed storage and computing resources close to
the end-users with the objective of minimizing latency and ensuring real-time ser-
vices.

When data is the main asset of a service, security is a major concern. Unfor-
tunately, by moving data and computation closer to the end-user (e.g., TV boxes),
service providers have less control on the infrastructure, which is often physically ac-
cessible, might be difficult to update (e.g., because updates take place overnight when
the system is turned off), and might be installed on a large number of diverse hardware
and OS layers whose configurations might be difficult to be tested extensively. Con-
sequently, compared to services executed on traditional infrastructures (e.g., Cloud),
services executed on Edge computing infrastructures may expose a wider set of attack
surfaces (e.g., because physically accessible) and be more likely affected by vulner-
abilities (e.g., because it is not possible to test all the configurations of the software,
or because it is not possible to ensure that the underlying environment is up to date).

Because of the reasons above, infrastructure providers are looking for solutions to
assess that Edge frameworks and applications are free from vulnerabilities. In this pa-
per, we focus on software security testing, which, differently from other approaches
(e.g., security analysis), provides evidence of the presence of vulnerabilities; for ex-
ample, test failures show how an attacker can exploit a vulnerability.

As a starting point towards the definition of Edge security testing solutions we
conduct an empirical study of the vulnerabilities affecting Edge frameworks. Our
study partially relies on a recent study by Gazzola et al. [41]. The work of Gazzola
et al., although focused on functional failures and not security aspects, has guided
us towards the characterization of the vulnerable components (e.g., plugins), the type
of failures being observed (e.g., signalled or silent), the complexity of the required
testing procedures (i.e., how many actions should be performed to detect a vulnerabil-
ity), and the reasons why vulnerabilities slip through the development process (e.g.,
because of the combinatorial explosion of the inputs to be tested). In addition, differ-
ent from Gazzola et al., we characterized the preconditions (e.g., sub-nets should be
set-up) and the inputs (e.g., sending crafted messages) required to exploit Edge vul-
nerabilities. Finally, similar to other vulnerability studies [82], we analyzed the dis-
tribution of CWE [88] identifiers (i.e., types of weaknesses leading to Edge vulnera-
bilities) reported in the Common Vulnerabilities and Exposures (CVE) database [87].
Also, we studied their severity, based on the CVSS entries of the National Vulnera-
bility Database (NVD) [120].

In total, we defined eight research questions. We surveyed 263 bug reports con-
cerning four Edge frameworks (Mainflux [79], K3OS [52], KubeEdge [59], and Zetta [142]).
Among them, we identified 147 vulnerability reports. Our results show that the large
number of combinations of configurations and inputs (i.e., combinatorial explosion)

2

is the main reasons for security vulnerabilities not being detected at testing time
(RQ1). Vulnerabilities mostly affect the main Edge framework components (i.e.,
controllers), a minor presence is observed in network components and plugins, while
other components (i.e., APIs, drivers, services, and resources) are less affected (RQ2).
Generally, vulnerabilities can be observed when the software under test (SUT) is in a
specific state or configuration (RQ2, RQ4), which clarifies why vulnerabilities are not
detected at testing time because of combinatorial explosion. Security failures (RQ3)
are silent (i.e., not detected by the SUT) and concern value failures (e.g., illegal data
being returned), network (e.g., data erroneously routed), or actions (e.g., the software
performs illegal operations on the environment). Once the SUT is in the vulnera-
ble state, vulnerabilities can be exploited with a single action (RQ5A) that usually
consists of providing specific data (RQ5B) to the SUT. The security property that
is likely violated by Edge vulnerabilities is confidentiality (RQ6). Confidentiality is-
sues are mainly due to developer mistakes concerning authentication mechanisms
or information management errors (RQ7). Further, failures are observed because the
SUT performs improper access control or improper control of resources over lifetime
(RQ7). NVD data indicates that more than 50% of Edge vulnerabilities have a high
severity and are easy to exploit, thus highlighting their criticality and the need for
improved testing solutions (RQ8).

Based on the characteristics summarized above, to ensure timely discovery of
vulnerabilities (e.g., before attackers), we suggest to automatically execute test cases
directly in the field (e.g., on the deployed Edge system); such practice is known as
field-based testing [15]. Indeed, automated testing might be executed, in the field,
when configurations not tested in-house are observed; also, the detection of vulnera-
bilities might be simplified by the fact that only a single action is sufficient to exploit
them. Further, testing might focus on confidentiality thus not requiring the identi-
fication of mechanisms to compensate for integrity problems caused by the testing
process itself. All the data collected to perform our study are available online [80].

This manuscript proceeds as follows. Section 2 presents background information
including a glossary. Section 3 describes the study design. Section 4 presents our
results. Section 5 presents a discussion of threats to validity. Section 6 provides re-
flections on the research directions for Edge security testing, based on our results.
Section 7 discusses related work. Section 8 concludes the manuscript.

2 Background

In this section we provide a brief overview of Edge technology, related studies, and a
glossary.

2.1 Edge Computing

The Edge computing paradigm has been introduced to enable data transfer with ex-
tremely low latency for real-time services. Well known services relying on Edge
computing include, for example, E-sports [1], live streams broadcasts [123, 134],

3

Edge Server

External Server

Desktop
«Node»

VM
«Node»Pod

«Node»

EdgeClient

«SUT»

Pod
«Node»

Sensor
«Node»

IoT Thermostat
«Node»

MessagingClient
«SUT»

EdgeServerController
«SUT»

Cloud Server

Cloud Server Controller
«SUT»

Cloud Server API
<<API>>

IP Camera
«Node»

EdgeClient
«SUT»

Plugins

Databse
<<Resource>>

Network File System
<<Service>>

Configurations
<<Resource>>

MQTT Broker
<<SUT>>

Edge Server API
<<API>>

Network Firewall
<<Service>>

ContainerManager

«SUT»

Drivers

Fig. 1: UML deployment diagram capturing the architecture of Edge systems. Ball
and socket notation is used to distinguish between the component providing a service
(ball) and the component relying on the service (socket).

package tracking [40], and internet connectivity services for cruise lines [125] and
aviation [124].

The development of services leveraging the Edge paradigm is supported by Edge
frameworks; well known examples are KubeEdge [57], Yomo [137], K3os [52], and
Mainflux [79]. In this paper, we rely on the term Edge framework to indicate a set
of software components, including Web services and APIs, that are extended to pro-
vide a service relying on the Edge paradigm. Our definition is consistent with the
definition of framework provided by IEEE: partially completed software subsystem
that can be extended by appropriately instantiating some specific plug-ins [49]. Fur-
ther, our definition of Edge framework recalls the definition provided by Fayad and
Schmidt for middleware integration frameworks, which are used to integrate dis-
tributed applications and components; middleware integration frameworks are de-
signed to enhance the ability of software developers to modularize, reuse, and extend
their software infrastructure to work seamlessly in a distributed environment [36]. An

4

Edge framework integrates a broad range of technologies including Cloud services
and virtualization environments; therefore, an Edge framework is often implemented
as an integration of multiple frameworks developed by third parties. In this paper, we
treat all the technologies cooperating with an Edge framework as one single frame-
work. We call Edge application the software that implements the logic to provide a
service to the end-user. We call Edge system what results from the integration of an
Edge framework, one or more Edge applications, and external services that the Edge
framework and applications may be configured to interact with.

Figure 1 provides a generic architecture of an Edge system. In Figure 1, the soft-
ware components that constitute the Edge framework are annotated with the UML
stereotype SUT (i.e., software under test). We use the term SUT to identify Edge
frameworks’ components because they are the target of our investigation.

The main architectural components in an Edge system are Cloud servers, Edge
servers, and Nodes. Cloud servers provide centralized services (e.g., end-user au-
thentication for a video streaming). Edge servers are deployed close to the end-user
to minimize latency [11]; for example, they include caching mechanisms for the data
provided by the Cloud server thus reducing latency. Nodes, instead, are deployed
at the end-user’s side; depending on the service provided through the Edge system,
Nodes might be desktop computers, sensors, or IP camera. In Figure 1, Nodes are an-
notated with the stereotype Node. The Edge system may interact with external com-
ponents providing specific services, for example a network file system. In Figure 1,
we annotated external services with the stereotype Service.

The Cloud server executes a Cloud server controller component that interacts
with the Edge server controller through the Edge server API. The Cloud server con-
troller manages the Edge server instances (e.g., to provide monitoring and policy en-
forcement). Also, it provides and collect service data. Examples of provided data are
on-demand video streaming and file streaming. Examples of collected data include
information about devices (e.g., offline status of a surveillance camera) or end-user
data (e.g., movies’ rating or list of videos watched in a video streaming service).

The Edge server executes the Edge server controller, which has the responsibil-
ity of controlling access to resources, instantiate drivers, access plugins, manage re-
sources, and control nodes. We use the term resource to indicate any medium used to
store data, for example, configuration files or databases (see the Resource stereotype
in Figure 1).

The Edge server controller includes a container manager, which is responsible
for managing containers and Nodes. The Edge server controller usually integrates an
MQTT broker [118] to communicate with devices.

Nodes execute the Edge client, which integrates the client of the MQTT compo-
nent. The Edge client sends the data gathered from the physical environment (e.g.,
temperature) to the Edge server. Desktop Nodes usually execute Virtual Machine
(VM) Nodes, which may execute multiple Pods. Pods are the smallest deployable
units of computing that can be managed by Container Managers [66].

In the rest of the paper, we use the term software environment to refer to the
operating system or any software component not belonging to the categories SUT
and (SUT’s) API.

5

2.2 Testing of Edge Systems

Edge frameworks are tested according to standard software engineering practices [44].
Information about the development process in place for proprietary frameworks is
limited; however, we note that large companies embrace a testing culture and provide
test automation support for the developers of Edge applications (e.g., for Azure [84]).
The open-source frameworks considered in our study (i.e., KubeEdge, MainFlux [79],
K3OS [52], and Zetta) are supported by private companies. KubeEdge is supported
by the Cloud Native Computing Fundation and 27 additional private companies (e.g.,
ARM [7], Huawei [46], ci4rail [23]); Mainflux is developed and maintained by Main-
flux Labs, which is a for-profit technology company; K3OS is part of Rancher, a
framework developed by the open source software development company Suse [131].
However, since industry participation in open source projects does not provide any
guarantee about software security [43], we investigated the testing procedures in
place for the subjects of our study and describe them in the following paragraphs.

All the open-source frameworks considered in our study include automated test
suites. KubeEdge includes automated unit [56], integration [60] and system test cases [58].
Also, KubeEdge’s development process includes on code review activities (e.g., con-
tributions are revised by senior members1) and two security teams [63, 64] that au-
dit the system and respond to reports of security issues. Finally, KubeEdge is based
on Kubernetes, whose development team includes a group of security experts [67].
Mainflux includes automated test cases and a dedicated benchmark [78]; further,
MainFlux Labs perform security audits [76]. Finally, both K3OS [51] and Zetta [141]
include automated test suites. To conclude, automated test execution is a state-of-the-
practice approach for Edge frameworks; however, security seems to be better targeted
by KubeEdge and, partly, by Mainflux.

The literature on Edge security highlights that security assurance of Edge systems
should account for multiple attack surfaces (from physical layer to data security) and
holistic, dedicated analyses are missing [50]. A recent survey of attack strategies and
defense mechanisms for Edge systems points out that one of the causes of security
vulnerabilities in Edge systems is the non-migratability of most security frameworks
to the Edge context [136]; further, the provided attack descriptions show that, in gen-
eral, the identification of security vulnerabilities is often delegated to manual activ-
ities (e.g., side-channel attacks or specification-based testing [21]) and automated
tools concern vulnerabilities that might affect related systems (e.g., code injection or
dictionary attacks for authentication). The lack of automated security testing solu-
tions for Edge can be noticed from other surveys on the topic [2, 115], that suggest
manual testing as a key solution to determine if the system appropriately respond to
attack scenarios, thus further motivating our work. Finally, these surveys on attack
methods do not provide details about the underlying vulnerabilities, thus, contrary
to our work, not supporting the development of automated vulnerability testing solu-
tions dedicated to the Edge.

1 see https://kubeedge.io/en/docs/community/membership/

6

2.3 Field failures

Field failures are caused by faults that escape from the in-house testing process. For
their characterization we refer to the work of Gazzola et al. [41], who performed a
comprehensive study about causes and nature of field failures (i.e., failures affecting
software deployed in the production environment or at end-user premises).

The study of Gazzola et al. is based on bug reports of open-source software (i.e.,
OpenOffice, Eclipse, and Nuxeo). The analysis in the study is based on four research
questions:

– Why are faults not detected at testing time?
Authors classified faults that are not detected at testing time into five categories
(i.e., Irreproducible execution condition, Unknown application condition, Un-
known environment condition, Combinatorial explosion, and Bad testing).

– Which elements of the field are involved in field failures?
Authors identified five possible elements (i.e., Resources, Plugins, OS, Driver,
Network) to be involved in field failures; sometimes none of them is involved.

– What kinds of field failures can be observed?
Following the literature on the topic [9, 10, 18, 22, 24], authors classified failures
according to failure types and detectability. They report three failure types: value,
timing and system failures. As for detectability, they focus on three categories,
which are signaled, unhandled, and silent.

– How many steps are needed to reproduce a field failure?
Authors report on the number of user actions (called steps) required to reproduce
a failure.

Different from Gazzola et al., we do not target faults affecting the functional
properties of the software but faults affecting its security properties. Also, we have
extended and refined the set of research questions considered in our study. Precisely,
our refined research questions aim to facilitate the identification of security testing
solutions to address the limitations of current security testing tools and practices. In
our study, we address eight research questions instead of four.

2.4 Security Testing Glossary

Below, we provide definitions for security terminology appearing in the paper; we do
not sort terms in alphabetical order but provide term definitions before their use in
following descriptions.

Security failure. A security failure is a violation of the security requirements of the
system.

Vulnerability. A vulnerability is a “weakness in an information system, system se-
curity procedures, internal controls, or implementation that could be exploited or
triggered by a threat source” [33]. In our work we focus on vulnerabilities affecting

7

Edge frameworks, in other words, mistakes in the implementation, design, or con-
figuration of the Edge framework that prevent either the framework or the software
running on it from fulfilling its security requirements.

A vulnerability is said to be exploited by a malicious user U through an input se-
quence I , when (a) the malicious user provides the input sequence I to the software
under test, (b) the input sequence exercises the vulnerability (i.e., the software exe-
cutes the functionality affected by the weakness), and (c) a security failure is observed
(i.e., there is a violation of security requirements). In a software testing context, it is
the software tester who aims to identify input sequences that may reveal the presence
of vulnerabilities.

Test oracle. A test oracle (or, simply, an oracle) is a procedure to determine if the
software behaves according to its specifications [12], otherwise a test failure should
be reported. In the context of security testing, test oracles should report security fail-
ures. Test oracles may either be automated or manual; in this paper, we focus on au-
tomated test oracles because we look for testing solutions that can be automatically
executed.

CVE. Common Vulnerability Enumeration (CVE) [87] is a database managed by the
Mitre corporation [89]. It lists publicly disclosed vulnerabilities. The CVE list is enu-
merated and managed by the CVE Numbering Authorities (CNA) [29]. All the regis-
tered vulnerabilities are characterized with a univocal identifier, a textual description,
and additional details including severity, registration date, vulnerable product.

CWE. Common Weaknesses Enumeration (CWE) is a public database managed by
the Mitre corporation [89]. It lists the weaknesses that may lead to a vulnerability;
a weakness can be an invalid action taken by the software or a developer mistake
performed when implementing or designing the software. For each weakness, the
CWE database reports the CWE ID, its description, the creation date, a link to the
NVD database, and references to external links (e.g., GitHub) to further explain the
details about the vulnerability.

The CWE weaknesses constitute a catalog of vulnerability types organized ac-
cording to different views (i.e, taxonomies) that group them in a hierarchical struc-
ture. The top level entries of such structures are called pillars. The views considered
in our study are research concepts and software development. We excluded views
that concern hardware design, are mappings to other taxonomies, or concern prob-
lems related to specific systems. The research concepts view focuses on the software
behaviour and includes the following categories: Improper Access Control, Improper
Interaction Between Multiple Entities, Improper Control of a Resource Through its
Lifetime, Incorrect Calculation, Insufficient Control Flow Management, Protection
Mechanism Failure, Incorrect Comparison, Improper Handling of Exceptional Con-
ditions, Improper Neutralization, Improper Adherence to Coding Standards. The soft-
ware development concepts view focuses on the development (e.g., design and pro-
gramming) mistakes that lead to the vulnerability; it consists of 40 pillars including,
among the others, API / Function Errors, File Handling Issues, Data Validation Is-
sues, and Memory Errors.

8

Security properties. In our work we consider three security properties of software
(i.e., Confidentiality, Integrity, Availability — CIA) that we define according to the
NIST Information Security report NIST-800-137 [33]:

– Confidentiality concerns “preserving authorized restrictions on information ac-
cess and disclosure, including means for protecting personal privacy and propri-
etary information” [33].

– Integrity concerns “guarding against improper information modification or de-
struction, and includes ensuring information non-repudiation and authenticity” [33].

– Availability concerns “ensuring timely and reliable access to and use of informa-
tion” [33].

NVD. The National Vulnerability Database (NVD) is the U.S. government repository
of vulnerability data [120]. Vulnerabilities are reported using the Security Content
Automation Protocol (SCAP), which consists of information including, among oth-
ers, the CVE data and the Common Vulnerability Scoring System (CVSS). All the
CVE vulnerabilities appears also on the NVD repository.

CVSS. The Common Vulnerability Scoring System (CVSS) is a framework for com-
municating the characteristics and severity of software vulnerabilities [27]. Accord-
ing to CVSS, each vulnerability is associated to a set of attributes: Attack Vector,
which captures the context of the attack (Network, Adjacent, Local, Physical), Attack
Complexity (Low, High), Privileges Required (None, Low, High), User Interaction,
which indicates if the attacker needs to interact with another user (None, Required),
Scope, which indicates whether a vulnerability in one vulnerable component impacts
resources in components beyond its security scope (Unchanged, Changed), and Im-
pact Metrics. Impact Metrics report how much the software security properties (i.e.,
Confidentiality, Integrity, and Availability) might be impacted (High, Low, None) by
an exploit for the vulnerability. The CVSS attributes are represented through a string
that reports the initials of each attribute along with its value. For example, for CVSS
version 3.1, the string

AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

indicates a Local (L) Attack Vector (AV), Low (L) Attack Complexity (AC), Low
(L) Privileges Required (PR) to exploit the vulnerability, No interaction with an ad-
ditional user being required (User Interaction, UI), Unchanged (U) Scope (S), and
High impact (H) on Confidentiality (C), Integrity (I), and Availability (A).

The CVSS attribute values are used to derive a score between 0 and 10 that cap-
tures the severity of a vulnerability; score ranges are interpreted as follows: None
(0.0), Low (0.1-3.9), Medium (4.0-6.9), High (7.0-8.9), Critical (9.0-10.0).

3 Study Design

The goal of our study is to investigate security vulnerabilities affecting Edge comput-
ing frameworks. The purpose is to identify the characteristics of Edge vulnerabilities

9

with the aim of driving improvements in the security testing process and support-
ing the identification of appropriate solutions for the development of security testing
tools. The context consists of 147 vulnerabilities reported between January 2019 and
December 2021. They concern four Edge frameworks, which are KubeEdge, Main-
flux, K3os and Zetta. All the data used in our study are available online [80].

This study addresses eleven research questions, which we defined by focusing on
those aspects that may drive the definition of an automated security testing technique.
We focus on aspects that help identifying the testing opportunity (i.e, determine in
which scenarios existing methods are insufficient), evaluating the feasibility of se-
curity testing automation (e.g., to avoid severe consequences on the integrity of the
system), and defining the technical solution (i.e., design an input selection strategy,
an automated test oracle, test harnesses and, in general, supporting procedures).

Figure 2 provides an overview of the relations between our research questions
(RQs) and the final objective of this work (i.e., support the development of effective
testing approaches for Edge systems); precisely, in Figure 2, we organize our RQs
according to their objectives (i.e., identifying the testing opportunity, evaluating the
feasibility of security testing automation, and defining the technical solution) and
indicate which information is acquired by addressing each RQ. In this manuscript,
our RQs are sorted according to the data used to address them: first we present the
RQs addressed through the manual inspection of vulnerability reports (RQ1 to RQ6,
with the four RQs inspired by Gazzola et al.’s work first), then we present research
questions addressed using data available on the CVE and NVD databases (RQ7A to
RQ8). A detailed description of our research questions follows:

RQ1: Why are Edge vulnerabilities not detected during testing?
Like any other software system, an Edge system shall undergo a security testing phase
in which engineers verify that it meets its security requirements [37,74]. The presence
of vulnerabilities not being detected during testing but discovered later (e.g., once the
system has been already released and deployed in the field), indicates pitfalls in the
testing process. This research question aims to determine the reasons that prevented
the detection of vulnerabilities during testing and whether further research is needed
to prevent security failures in the field or, alternatively, if field failures can be avoided
simply through the improvement of the testing process in place (i.e., testing was in-
sufficiently conducted).

RQ2: What are the types of components involved in a security failure?
Similarly to the study of Gazzola et al., we aim to determine which components are
involved in a security failure. However, to better support the definition of automated
security testing techniques, we aim to distinguish between (A) the failing compo-
nents, which indicate what should be the targets of test oracles, (B) the components
that should be in a specific state to exploit the vulnerability, which may indicate the
conditions under which the software should be tested (e.g., with an overloaded net-
work), (C) the components receiving the input, which influence the type of input
interfaces that should be managed by the testing technique (e.g., a Web interface or
an input file), and (D) the vulnerable components, which indicate what to test. The
analysis of the types of components involved in a security failure should support
the identification of appropriate testing strategies. Therefore, we refine our research
question into four:

10

Identifyng the
testing opportunity

Evaluating the feasibility
of security testing automation

Defining the
technical solution

RQ2D What are the faulty (i.e., vulnerable) Edge components?

RQ2A What are the components showing an Edge security failure?

RQ2B What are the components that are in the state required to
exploit an Edge vulnerability?

RQ2C What are the components that receive the inputs that
trigger an Edge vulnerability?

Targets of test oracles

Test trigger

Test input generation strategy (input interface requirements)

Test target (affect inputs generation strategy)

RQ3: What kind of failures are observed when an Edge
vulnerability is exploited?

Test oracle definition

RQ5A: How many steps are
required to exploit an Edge
vulnerability?

RQ4: What is the nature of
the precondition enabling
the attacker to exploit Edge
vulnerabilities?

Feasibility of generating
the required number of inputs

in a sequence

Feasibility of bringing the
system into the required

vulnerable state

RQ5B: What is the nature of
the input enabling the
attacker to exploit a
vulnerability?

Feasibility of generating
the structure of the required

input data

RQ6: What security properties are violated by Edge
vulnerabilities?

Test harness definition

RQ7A: What is the CWE vulnerability type?

RQ7B: What are the invalid software behaviours leading to Edge
security failures?

Test input generation strategy (type of vulnerabilities targeted)

Test input generation strategy (what invalid behaviour to trigger)

Test input generation strategy (what mistakes to exercise)

RQ7C: What are the developer mistakes leading to Edge
vulnerabilities?

RQ11: How severe are
Edge vulnerabilities?

RQ1: Why are Edge
vulnerabilities not
detected during testing?

Bad testing
VS need for handling

complexity,
lack of documentation
or unexpected events

Urgency of
security testing

automation

M
an

ua
l i

nv
es

tig
at

io
n

of
 v

ul
ne

ra
bi

ity
 re

po
rt

s
ba

se
d

on
 G

az
zo

la
 e

t a
l.

M
an

ua
l i

nv
es

tig
at

io
n

of
 v

ul
ne

ra
bi

ity
 re

po
rt

s
no

t b
as

ed
 o

n
Ga

zz
ol

a
et

 a
l.

An
al

ys
is

of
 d

at
a

on

CV
E

an
d

NV
D

da
ta

ba
se

s

Legend for information derived
by addressing each RQs:

state requirements input requirements oracles other

Objectives

D
at

a
an

al
yz

ed

Fig. 2: Research Questions: Objectives, Data analyzed, and Information derived.

– RQ2A What are the components manifesting an Edge security failure?
– RQ2B What are the components that are in the state required to exploit an Edge

vulnerability?
– RQ2C What are the components that receive the inputs that trigger an Edge vul-

nerability?
– RQ2D What are the faulty (i.e., vulnerable) Edge components?

RQ3: What kind of failures are observed when an Edge vulnerability is exploited?
To automatically test a software system, it is necessary to specify test oracles (see
Section 2.4). The implementation of an automated test oracle depends on the nature
of the failures to be detected; for instance, the program logic required to automatically
detect a crash might be based on response timeout, which is likely different than the

11

logic required to detect unauthorized access to a resource, which might consist of
verifying the data returned to the caller.

RQ4: What is the nature of the precondition enabling the attacker to exploit Edge
vulnerabilities?
A vulnerability may be exploited only if a certain precondition holds (e.g., a sub-
net has been set-up). Since it might be difficult for an automated approach to meet
certain preconditions (e.g., automatically set-up a network), to evaluate the potential
benefits of test automation (e.g., the proportion of vulnerabilities it might detect), we
investigate the nature of such preconditions for different vulnerabilities.

RQ5: What inputs enable exploiting Edge vulnerabilities?
The effectiveness of a test automation approach depends on the degree of complexity
of the input to be generated, which we may characterize in terms of the number of
required interactions with the SUT and the structure and type of input actions to per-
form (e.g., providing data, changing software configurations, or simulating network
disruptions). For instance, a vulnerability that requires a long input sequence to be
exploited may be more difficult to detect than one can be detected with single input.
We therefore refine RQ5 into two separate questions:

– RQ5A: How many steps are required to exploit an Edge vulnerability?

– RQ5B: What is the nature of the input action enabling the attacker to exploit a
vulnerability?

RQ6: What security properties are violated by Edge vulnerabilities?
The type of security properties being violated by Edge security failures impact on the
definition of automated oracles. Also, they may affect the test harness solutions2 to
put in place. For example, vulnerabilities that affect availability can be detected by
oracles that look for the lack of responses from the system; instead, to detect autho-
rization vulnerabilities it is necessary an oracle that is aware of the system’s access
policies. Concerning test harness, after discovering availability issues, it may be nec-
essary to restart the system (e.g., to prevent blocking other testing processes), which
is not required after discovering confidentiality problems (confidentiality issues do
not alter the state of the system). Instead, the discovery of an integrity issue may
imply restoring the configuration of the system after discovery.

RQ7: What faults cause Edge vulnerabilities?
The input selection strategy implemented by a test automation approach depends on
the types of faults being targeted. In the case of security testing, for example, the
inputs to be selected to identify an SQL injection attack are different than the ones
used to detect a path traversal vulnerability (e.g., they rely on different grammars).
To categorize faults, we can rely on the CWE vulnerability types, which is well-
known and largely adopted taxonomy. Additional aspects to take into account are
the erroneous software behaviors caused by the vulnerability (e.g., improper access
control) and by the developer mistakes leading to the vulnerability (e.g., memory
buffer errors). Erroneous software behaviors are captured by the CWE pillars for the
CWE view Research concepts; developer mistakes are captured by the CWE pillars

2 We use test harness to indicate the technical solutions supporting test automation.

12

for the CWE view Developer concepts. We therefore refine RQ7 into three RQs that
reflect the information collected in our process:

– RQ7A: What is the CWE vulnerability type?
– RQ7B:What are the erronous software behaviours leading to Edge security fail-

ures?
– RQ7C: What are the developer mistakes leading to Edge vulnerabilities?

RQ8: How severe are Edge vulnerabilities?
To evaluate the importance of improving Edge security testing approaches, RQ8 dis-
cusses severity based on NVD CVSS scores (see Section 2.4); severity analysis pro-
vides an indication about the urgency for automated security testing approaches.

RQ1, RQ2, RQ3, and RQ5A are inspired by the work of Gazzola et al.; however,
we have extended the analysis method to better fit the context of this study. Precisely,
the taxonomies used to address RQ1 and RQ5A match the one used by Gazzola et
al.; the taxonomies used for RQ2 and RQ3 are an extension of the one proposed
by Gazzola et al. Further, we address RQ4 and RQ5B using a taxonomy that we
introduce in this article. For RQ6 we rely on the CIA security properties (but we
distinguish between data and system integrity). For RQ7A, RQ7B , RQ7C we rely on
CWE categories. Finally, for RQ8, we rely on NVD CVSS attributes.

3.1 Data collection

Figure 3 provides an overview of the process adopted to collect data and answer our
research questions.

For our study, we selected Edge frameworks that fulfill the following criteria: (C1)
being open-source and publicly available, which enables the investigation of software
patches for a better understanding of the vulnerability, (C2) having active user base
(i.e., users reporting bugs and vulnerabilities online) and support (i.e., responses are
provided to 90% of the end-user issues), which ensures that the software provides
features that are helpful for the development of Edge systems, (C3) having at least
five vulnerabilities reported by end-users either on the CVE databases or GitHub (not
all the vulnerabilities are necessarily reported on the CVE database).

We focus on Edge frameworks rather than services or applications developed to
run on Edge frameworks since the latter delegate security management to the under-
lying frameworks [55].

First, we have identified 15 open-source Edge frameworks by executing a Web
search with the Google search engine; we searched for the keywords ‘edge frame-
work’ and ‘IoT framework’. The identified frameworks are shown in Table 1,
whereas columns C1, C2, and C3 indicate which of the above-mentioned criteria had
been satisfied.

Based on our criteria, we selected as subjects of our study KubeEdge, Main-
flux, Zetta, and K3os. KubeEdge [57] is the framework with the largest number of
users providing comments in the issue tracker, probably because it is the most widely
adopted one. It is developed as an open-source project by Cloud Native Computing

13

Search for Open-source Edge Computing Frameworks

Select Edge frameworks with active user-base and support

Shortlist Open-source Edge Frameworks

For every framework search for vulnerabilities being reported on CVE using the
Edge framework name

Identify the components of each shortlisted framework from their documentation

Search for vulnerability reports for the identified components on the CVE database

Discard vulnerability reports that do not concern security of Edge frameworks or are
not directly related with edge components

Inspect all the vulnerability reports to address the research questions

Fig. 3: Activity diagram for our approach in the manuscript

Foundation (CNCF) [26]. It is an open-source product built upon Kubernetes [69],
which is a system for automating deployment, scaling, and management of container-
ized applications. KubeEdge extends containerization capabilities to Edge devices.
KubeEdge’s bug reports and vulnerabilities are available on its GitHub page [59] and
CVE database [87], respectively.

Mainflux [79] is an open-source framework designed by Mainflux Labs to support
smart devices in the Internet of Things (IoT) ecosystem. It has a simpler architecture
than KubeEdge (i.e., less components) and serves as a middleware between Edge
devices and cloud-based orchestration platforms; it targets systems that largely rely
on the Edge paradigm (i.e., IoT). Its bug reports can be accessed on GitHub [77].

Zetta [142] is an open-source, Web-based Edge framework which provides con-
nectivity to different types of smart devices. The Zetta’s centralized device controller
(Zetta hub) is designed to work on low-powered devices capable of running an OS
such as BeagleBone Black, Intel Edison, or Raspberry Pi. Zetta’s bug reports and
vulnerabilities are available on the GitHub and CWE database [143].

K3os [52] is an open-source Edge framework designed to work in low resource
environments with the capability of being managed through a light-weight Kuber-

14

Table 1: List of all the opensource Edge frameworks identified in our search (selected
ones in bold). Labels C1, C2, and C3 refer to our selection criteria (see Section 3.1).

Framework Selected Organization License C1 C2 C3
KubeEdge X Kubernetes apache-2.0 X X X
Wasm3 x Volunteers MIT X X x
Baetyl x Linux Foundation Edge apache-2.0 X x x
Mainflux X MAINFLUX LABS apache-2.0 X X X
Superedge x Volunteers other X x x
Yomo x Volunteers apache-2.0 X X x
Fog-flow x FIWARE bsd-3-clause X X x
Cloudsimsdn x Volunteers gpl-2.0 X x x
Deviceplane x Volunteers apache-2.0 X x x
Distributed Storm x Volunteers apache-2.0 x X x
ENORM x Volunteers apache-2.0 X x x
K3os X Volunteers apache-2.0 X X X
Oci x Volunteers BSD-2 x X x
Zetta X Volunteers MIT X X X

netes dashboard called k3s. For example, it is used by Rancher, a multi-Cloud con-
tainer management platform [122].

For each Edge framework, we analyzed the vulnerabilities reported in its bug
repository (GitHub) and the ones appearing in the CVE database. To identify vul-
nerabilities in the GitHub repository, we used the GitHub built-in search functions
to search for bug reports containing security-related keywords (i.e., security, vulner-
ability, crash, and privacy) either in their title or in the description of the vulner-
ability. To select vulnerabilities in the CVE database, we used the built-in search
function to identify CVE records including the name of the framework. Also, we
searched for vulnerabilities referring to components implementing the containeriza-
tion and communication features used by our frameworks, which are MQTT brokers
(e.g., Mosqitto [116] and VerneMQ [135]), Raspberry pi (configured as end-device
or client manager for pods), and container managers (i.e., Kubernetes, Docker, and
Cri-o). Precisely, KubeEdge components include Kubernetes, Cri-o, Raspberry Pi,
Mosquitto or verneMQ, whereas Mainflux components include only Docker. K3os
components include Kubernetes; Zetta’s components include Raspberry Pi. However,
to avoid duplicates in our study, the Edge vulnerabilities concerning Kubernetes (61,
in total) and Raspberry Pi (two, in total) had been counted as part of KubeEdge only.
Since we do not aim to compare frameworks but study the nature of Edge vulnerabil-
ities, our choice should not bias our results.

In our study, we considered all the GitHub bug reports submitted till 31 November
2021, and all the CVE vulnerabilities dated between 1 January 2019 and 31 Novem-
ber 2021.

Table 2 provides the number of reports collected from GitHub and CVE, for
each selected framework. The total number of reports ranges from 5 (Zetta) to 125
(KubeEdge); unsurprisingly, such number is related to the complexity of the frame-
work (i.e., the largest frameworks, including their dependencies, are the ones with the
largest number of vulnerabilities).

15

Table 2: Vulnerabilities selected for each case study subject

Framework Reports
GitHub CVE Total Vulnerabilities Edge vulnerabilities

KubeEdge1 39 76 115 80 71
Mainflux2 7 118 125 119 74

K3os 18 - 18 1 13

Zetta 5 - 5 1 14

Total 69 194 263 201 147

Notes: 1 KubeEdge vulnerability count includes also vulnerabilities affecting Kubernetes, Cri-o,
Raspberry-Pi, and MQTT brokers (Mosquitto or verneMQ). 2 Mainflux vulnerability count includes the

vulnerabilities affecting Docker components used within Mainflux. 3 For K3OS, if we count also the
vulnerabilities affecting Kubernetes and Raspbery Pi we end up with 64 Edge vulnerabilities. 4 For Zetta,

if we count also the vulnerabilities affecting Raspbery Pi we end up with 3 Edge vulnerabilities.

Column Vulnerabilities in Table 2 provides the number of vulnerabilities reported
in the collected reports, which are 201, in total. Vulnerability reports were identi-
fied by the first author of the paper who read all the report descriptions. Among all
the vulnerability reports, we excluded the ones that concern Edge components (e.g.,
Docker) but affect features not used by Edge frameworks. An example is vulnerabil-
ity CVE-2021-31938 [109] in Kubernetes [69], which concerns the Microsoft Visual
Studio Code Kubernetes tool [85]. Such tool is not executed at runtime within the
Edge system but is used at configuration time to implement scripts for the Kuber-
netes framework; therefore, the vulnerability is out of scope. After filtering, we count
147 vulnerabilities affecting the Edge frameworks considered in our study (see col-
umn Edge vulnerabilities in Table 2). Please note that the requirement of minimum
five vulnerabilities to select an Edge framework for our study concern the total num-
ber of vulnerability-related reports in GitHub or CVE (i.e., column Total in Table 2),
not the number of Edge vulnerabilities selected at the end of the process.

3.2 Analysis Method

This section explains the metrics and the procedures put in place to answer our re-
search questions based on the collected vulnerability reports.

For our study, we proceeded as follows. The first author of the paper has care-
fully read the 147 vulnerability reports indicated above along with links to related
electronic documents (e.g., detailed vulnerability descriptions provided on the frame-
works’ Web sites) and code commits registered on their versioning systems (e.g., git
code commits selected by relying on either the vulnerability ID or a bug fix ID re-
ported in related electronic documents). We resorted to the inspection of code com-
mits when the description of the vulnerability was not clear (i.e., it did not enable us
to answer some of our RQs). By reading the vulnerability descriptions and the related
electronic resources, to address each RQ, the first author (1) classified each vulnera-
bility according to the categories specified to address RQ1 to RQ6 and (2) collected
the data required to address RQ7A to RQ8. To minimize subjectivity in the manual
classification, the authors of the paper have defined together the answers for each RQ

16

Table 3: Data collected for the vulnerabilities described in Section 3.2

Vulnerability
ID

RQ1 RQ2A RQ2B RQ2C RQ2D RQ3-
F

RQ3-
D

RQ4 RQ5ARQ5BRQ6 RQ7ARQ7BRQ7C RQ8-
A

RQ8-
P

2021-3499 IE Nd Se Ne Se Ne Sl Co 1 D SI 863 284 - H Non
2020-8565 UA Su Su Non Su Ac SL Non 0 Non C 532 664 - Lo Lo
2020-8559 UE Su Su Ne Su V SL Non No D SI 601 664 - Lo Lo
2021-25737 CE Ne Ne Su Su Ne SL Co No Co DI 601,

184
664 - Lo H

2020-28914 UA R Su Su Su Ac SL Non 1 Co DI 732 284 - Lo Lo
2021-39159 UA Nd Su AP P U SL Non 1 D SI 94 664 - Lo Lo
2021-34431 CE Nd Ne Ne Ne Ne S Non 1 D A 401 664 - Lo Lo
2019-11252 CE Su Non Non Su Ac SL Non 0 Non C 209 664,

703
IME,
EC-
RC-
SC

Lo Lo

2020-15127 CE Nd Ne Ne Su Sy SL Non 1 D SI 306 284 AE Lo Non
2021-32783 UA Su Ap Ap Ap Sy Un Non 1 D SI 610,

441
664 - Lo Lo

2021-38545 CE Non HW HW HW Ac SL Non 1 D C - - - H Non
KubeEdge#1736 UA Nd Nd R Su T S Co 1 De A - - - - -

2021-28166 CE Ne Ne Ne Ne V S Non 1 D A 476 703 PI Lo Lo
2020-35514 CE Su P Su P Ac SL Non 1 D SI 266 284 Pi H Lo
2020-8558 UA Su Se Ne Se Ne SL Non 1 D C 287,

420
284 CCE Lo Non

KubeEdge#2362 UA Nd Nd Su Su Sy S L 1 D A - - - - -
Zetta#335 CE Su Su Su Se Ne Sy Co 1 ReU A - -
2020-8563 CE Su Su Non Su V SL Co 0 Non C 532 664 A/L-

E,
IME

Lo Lo

2021-20218 CE Nd P Su P Ac SL Non No D SI 22 664 H No
2014-5278 CE Su Su Su Ne Ne SL Co 1 D SI - - - Lo Non
2020-8557 UA Nd Non Non Su Sy Un ReU 0 Non A 400 664 - Lo Lo
2020-13597 CE Ne Ne Ne Ne Sy SL Co 1 Co C 200,

201
664 IME H Lo

2021-21334 CE Nd Su Su Su Ac SL Co 1 D C 668 664 - H Lo
2021-21251 UA Su P P P V SL Co No D DI 22 664 - Lo Lo
2020-2211 CE Su P P P V SL Co 1 D SI 502 664 RME Lo Lo
2020-8566 UA Su P Non P Ac SL No 0 Non C 532 664 ALE,

IME
Lo Lo

Abbreviation Terms:
IE: Irreproducible execution condition, UA: Unknown application condition, UE: Unknown environment condition, B: Bad
Testing, CE: Combinatorial Explosion, R: Resource, AP: API, Su: SUT, D: Driver, Se: Service, Ne: Network, Nd:
Node, HW: Hardware, Non: None, Ac: Action, V: Value, T: Timing, Sy: System, I: Integrity, S: Signalled, Un:
Unhandled, SL: Silent, A: Availability, no: No Information, Co: Configuration, De: Delay causing missing resource,
L: Lack of Data, ReB: Resource Busy, C: Confidentiality, ReU: Resource Unavailable, SI: System Integrity, DI: Data
Integrity, Lo: Low, H: High, IME: Information Management Errors, RME: Resource Management Errors, ALE: Au-
dit/Logging Error, PI: Pointer Issues, Pi: Privilege Issues, A/L-E: Audit/Logging Errors, RQ8-A: RQ8- Attack Complex-
ity, RQ3-F: RQ3- Failure Type, RQ3-D: RQ3- Detectability, RQ8-P: RQ8- Attack Privileges, CCE: Communication
Channel Errors, EC-RC-SC: Error Conditions, Return Values, Status Codes.

17

and discussed at least one concrete case for each class. In practice, the first 30 vulner-
abilities inspected at the beginning of the project had been reviewed by both the two
authors to ensure common understanding. Further, randomly selected cases and un-
clear cases had been discussed. In total, about 50 vulnerabilities had been inspected
by both authors. For a subset of the first 30 vulnerabilities there had been disagree-
ment due to definition of common terminology and criteria, which lead the first author
to re-classify, from scratch, all the 30 vulnerabilities till agreement was reached. For
the remaining 20 randomly selected cases, the two authors were in agreement. Ad-
dressing RQ7 and RQ8 did not require any specific agreement between the authors
because it relies on information available with the vulnerability report.

Table 3 provides the data collected for the vulnerabilities mentioned as examples
in the following paragraphs.

3.2.1 RQ1: Why are Edge vulnerabilities not detected during testing?

To address this research question, we classify each vulnerability report according to
the same five categories reported in Gazzola’s work:

– Irreproducible Execution Condition (IEC). It indicates that the vulnerability can-
not be identified at testing time because it is not feasible to reproduce the con-
ditions under which it can be exploited. An example is Kubernetes vulnerability
CVE-2021-3499 [112], which reports that Kubernetes is unable to apply multiple
DNS firewall rules during egress communication (i.e., communication leaving
the local network). Without knowing the specific firewall rules to apply during
testing, it is unlikely to discover this vulnerability.

– Unknown Application Condition (UAC). It indicates that the security failure de-
pends on an input that was not identified by the testing engineer because not spec-
ified in the documentation. An example is vulnerability CVE-2020-8565 [101],
which reports that, with logging level 9, the system exposes administrator details
by writing them in logs as plain text, including authorization and bearer token
(i.e., an hexadecimal string used for requesting access to a resource). Since the
availability of logging level 9 is not well documented [68], testing engineers may
have overlooked it.

– Unknown Environment Condition (UEC). It indicates that the precondition or the
type of input required for triggering the vulnerability depends on a characteristic
of the environment (software environment or physical environment) that was not
known to security engineers (e.g., because not well documented). An example
is Kubernetes vulnerability report CVE-2020-8559 [99], which indicates that a
malicious user can redirect update requests. This vulnerability has been likely not
discovered at development time because of the limited documentation on redirect
responses, which concerns the communication protocol.

– Combinatorial Explosion (CE). Sometimes, to detect a vulnerability at testing
time, it is necessary to exercise the system with inputs derived by combining
values belonging to different input partitions3, for different input parameters or
configurations. When the system is large, the combination of values belonging to

3 An input partition is a input region with equivalent values, from a testing perspective [3].

18

different input partitions for different parameters and functions lead to a number
of test cases that is very large and thus infeasible to be defined, executed, or veri-
fied (i.e., the number of test cases explode). Also, when inputs can have a complex
structure adhering to a specific grammar (e.g., xpaths), testing different combina-
tions of valid and invalid grammar tokens becomes challenging. Unfortunately,
without details about the development budget for our case study subjects, it is
not possible to determine a threshold above which it is impractical for software
engineers to test different input (or grammar token) combinations. Therefore, we
conservatively assume that combinatorial explosion is the cause of any vulnera-
bility that can be triggered only with specific combinations of input parameters,
independently from the number of parameters, input partitions, or grammar to-
kens, for the vulnerable function. Indeed, in large systems, it is common practice
for engineers to limit testing cost by exercising only few combinations of inputs
(e.g., by relying on the weak equivalence class testing strategy [3]). Please note
that although functional testing approaches such as N-wise coverage [3] may have
enabled engineers to address combinatorial explosion and discover vulnerabili-
ties, the available information does not enable us to determine if such strategies
had been applied in our case study subjects. Therefore, we simply report all the
combinatorial cases together, independently of the strategy followed to test them.
An example CE is provided by the Kubernetes vulnerability report CVE-2021-
25737 [106]; it indicates that the user can redirect network traffic into a subnet,
which is typically not allowed by the administrator. The vulnerable version of
Kubernetes can prevent traffic redirection for Nodes and Pods but not for subnets
created by a Node or Pod. Security engineers may have tested this features with
Nodes and Pods but not with subnets.

– Bad Testing (BT). We consider a vulnerability to slip through the testing process
because of bad testing when it is not possible to find a justification for the lack of
testing effectiveness in terms of lack of feasibility (i.e., IEC), lack of documenta-
tion (i.e., UEC and UAC), or lack of test budget (i.e., CE). In practice, following
the guidelines of Gazzola et al., anything not categorized in the above-mentioned
scenarios is considered due to bad testing [41]. In practice, as for the study of
Gazzola et al., we conservatively consider caused by bad testing only those cases
where a basic security feature of the SUT is always not functioning as specified
(e.g., when access to a feature is always granted, even if the username/password
combination is wrong).

Our classification has been performed by reading each vulnerability report to de-
termine the features that should be exercised to detect the vulnerability. Further, we
inspected the available documentation to (1) determine UAC and UEC cases (they
concern the lack of detailed documentation) and (2) to determine what are the pos-
sible input partitions. When available, we also inspected bug-fix commits to have a
better understanding of the vulnerability. Although it is not possible to know the exact
cause of each field failure without involving the actual developers of the frameworks,
our investigation helps determining reasonable ones (i.e., causes that may not be true
for the considered case study but might have been true for a system with the same
characteristics).

19

3.2.2 RQ2: What are the types of components involved in a security failure?

This research question aims to characterize the components exercised when a security
failure is observed. As mentioned in Section 3, this research question is divided into
four:

– RQ2A: What are the components manifesting an Edge security failure?
– RQ2B : What are the components that are in the state required to exploit an Edge

vulnerability?
– RQ2C : What are the components that receive the inputs that trigger an Edge

vulnerability?
– RQ2D: What are the faulty (i.e., vulnerable) Edge components?

The above-mentioned RQs are addressed by tracing, for each vulnerability report,
the types of components involved in the activities captured by RQ2A- RQ2D. We
have refined the list of components introduced by Gazzola et al., which included
resources, plugins, OS, drivers, and network. Our refined list of components includes
additional elements that characterize Edge systems (see Section 2.1), which are API,
Nodes, and hardware (i.e., the machine on which the software is running). Also, we
explicitly indicate if the failure concerns the SUT (i.e., the Edge framework under
test). We exclude the OS category from our analysis because the activity of the OS is
generally invisible to the Edge frameworks and we did not identify any vulnerability
related to it; further, OS-support tools are often part of Edge frameworks themselves.

All our components are described in the following:

– Resources. Resource refers to any software medium used to store data, for ex-
ample files or databases. An example is given by Kubernetes vulnerability report
CVE-2020-28914 [95], which indicates that a malicious user can access restricted
folders (i.e., resources) with both read and write permissions using a guest ac-
count.

– Drivers. Driver indicate devices drivers for the operating system controlled by the
Edge server controller (see Section 2.1).

– Plugins. A plugin is an add-on component or module that enhances the system’s
capabilities. An example is provided by Kubernetes vulnerability CVE-2021-
31938 [109], which concerns the Kubernetes plugin Helm. Helm exchanges user-
name and password without encryption, therefore, a malicious user may introduce
a custom URI in the system configuration to steal the username and passwords of
its users. In the case of RQ2A, it is Helm (i.e., the plugin) what experiences the
effect of the vulnerability (i.e., receives username and password). For RQ2B , the
component in the required state is a resource; precisely, a configuration file that
contains the custom URI to exploit the vulnerability. For RQ2C , the component
receiving the input that triggers the vulnerability is the Helm plugin. For RQ2D,
the faulty component is the SUT, since it should not allow end-users to change
the configuration files in which the Helm URI is located.
Another case is provided by the docker vulnerability CVE-2021-39159 [114],
where the faulty component is the plugin matrix-media-repo. The plugin matrix-
media-repo minimizes the size of the images saved on the server side. However,
accessing stored images from the database requires a decompression process; a

20

malicious user may upload special crafted images that exhaust the decompression
process and cause a security failure (i.e., a denial-of-service) on the SUT (i.e.,
KubeEdge).

– Software Under Test (SUT). We introduced this term to indicate cases in which
issues concern the Edge framework under test. An example is provided by vulner-
ability CVE-2021-34431 [111] in Docker, in which the faulty component is the
Mosquitto [116] MQTT Broker (SUT, according to Figure 1). During the hand-
shake process between the client and the server, a CONNECT packet should be
sent from the client to the server only once. The server is responsible for pro-
cessing the CONNECT request and reply; the presence of multiple CONNECT
requests being sent to the server by a same client is considered a protocol vio-
lation which results in the client being disconnected. The vulnerability concerns
Mosquitto, in which the disconnection of a client leads to a memory leak that
may end-up into a denial-of-service. In the example, the node is the component
affected by the effects of the vulnerability (RQ2A), the network protocol should
be in a specific state (i.e., the CONNECT state) (RQ2B), the network receives the
input which triggers the vulnerability (RQ2C), and the SUT (i.e., Mosquitto) is
the faulty component (RQ2D).

– Services. Services are executable programs that provide the data required by the
SUT. An example is provided by Kubernetes vulnerability report CVE-2019-
11252 [91], which indicates that the services bound to loopback address (127.0.0.1)
are accessible by other hosts on the network. Those services should only be acces-
sible to local processes. In this case, these loopback services are the components
experiencing the effects of the vulnerability (RQ2A).

– Network. Components implementing network-related functionalities (i.e., com-
munication protocols, firewalls, and ports) belong to this category. An example is
provided by the Kubernetes vulnerability report CVE-2021-28448 [108], which
describes the incapability to enforce multiple firewall rules for DNS traffic during
egress communication. In CVE-2021-28448, for RQ2A, the SUT is what expe-
riences the effects of the security failure since its data could be shared with oth-
erwise restricted URLs over the Internet (DNS filters are not working properly).
For RQ2B , the network (specifically the network firewall) is the component in
the state required to exploit a vulnerability. For RQ2C , it is the network what re-
ceives the input traffic exploiting the vulnerability. For RQ2D, it is the network
the vulnerable component.

– Node. A Node is an execution environment; it includes a file system and all the
programs and services running on it. In this category, we include also virtual ma-
chines and Pods. An example is provided by vulnerability CVE-2020-15127 [93]
in Kubernetes; it concerns Pods leaking passwords to a phishing URI. In kuber-
netes, a container can be exported using two formats (i.e., .OCI and .v2). Import-
ing a container from these images initiates dependency resolution through the
Web. A malicious user can inject a phishing URL as a dependency to be resolved
during the import of container; it will enable the malicious user to steal creden-
tials. Importing an infected container image will thus result in credentials theft
during dependency resolution. In the example, the newly deployed node is what
it is compromised (RQ2A), the node is also what needs to be in the state that

21

requires resolving dependencies (RQ2B), the SUT (i.e., Kubernetes) is what re-
ceives the input to import the container from an image (RQ2C), Kubernetes (i.e.,
our SUT) is the faulty component (RQ2D).

– API. API indicates the components implementing the APIs used for control-
ling the Edge system (see Section 2.1). An example vulnerability is CVE-2021-
32783 [110], which concerns the Contour controller API in Kubernetes. Typi-
cally, an access request from outside of the network is prohibited, therefore, the
access is denied. However, the Contour controller is not capable of correctly han-
dling multiple access requests thus resulting in a denial of service (DoS). In CVE-
2021-32783, it is the SUT what is compromised after exploiting the vulnerability
(RQ2A). Instead, it is the Contour API that is faulty (RQ2D), needs to be in the
necessary state to exploit the vulnerability (RQ2B), and receives the input that
triggers the vulnerability (RQ2C).

– Hardware. Hardware refers to the hardware components of the system, which
include physical devices running the SUT (e.g., IoT devices, servers, or desk-
tops) and network assets (e.g., routers and switches). An example is provided by
vulnerability CVE-2021-38545 [113] in Raspberry Pi, which results in a Glow-
worm attack [119]. When speakers are connected to Raspberry Pi, voltage fluctu-
ations caused by the use of speakers impact on the power supplied to the led of
the Raspberry Pi module. If the led light is monitored, voltage fluctuations can
be reconstructed and it is possible to reproduce the sound being played on the
speakers [13]. In the example, the failure affects a hardware component (RQ2A);
indeed, the led violates the implicit security requirement “it should not be pos-
sible to determine the sounds being played from light fluctuations”. Further, the
hardware should be in the necessary state (i.e., speakers being connected, RQ2B),
the hardware is the component that receives the input (sound data) to trigger the
vulnerability (RQ2C), and the hardware is the faulty component (i.e., it does not
include a mechanism to avoid such light fluctuations, RQ2D).

Please note that not all the components mentioned above may be part of Edge
framework distributions; indeed, only SUT, API, and Resources (e.g., configura-
tion files) are released with Edge framework distributions. The other components
(i.e., Drivers, Plugins, Services, Network, Node, Hardware) are usually developed
by third-parties but are strongly coupled with an Edge framework and their CVEs
provide references to such Edge framework. Examples of the second category of
components follow. One example is CVE-2021-26928, which concerns the service
BIRD daemon (it can be exploited to disrupt the integrity of Kubernetes). Another
case is CVE-2020-13597, which concerns the Network layer of Calico and leads to
information disclosure if IPv6 is enabled but unused. Last CVE-2021-38545, which
concerns the hardware of Raspberry Pi.

3.2.3 RQ3: What kind of failures are observed when an Edge vulnerability is
exploited?

Like Gazzola et al., for each vulnerability we determine failure type and detectability
based on the description in the vulnerability report and bug fix commit, when avail-
able. Gazzola et al. determined category entries based on the taxonomies of Bondavali

22

and Simoncini [18], Aysan et al. [10], Avizienis et al. [9], Chillarege et al. [22], and
Cinque et al. [24]. We extended their set with entries specific for our security context.

The failure type concerns how a failure appears to an observer external to the
system [41]. We extended the set of failure types provided by Gazzola et al. (i.e.,
value, timing, or system) with two additional entries (i.e., action, and network). They
are all described below.

– Value. Value failures occur when the system provides an output that does not
match its specifications. In our context, they range from returning an illegal value
(e.g, after exploiting an integrity vulnerability), to providing sensitive information
(e.g., for a vulnerability concerning confidentiality).

– Timing. Timing failures include two cases: (1) the system takes longer than ex-
pected (according to specifications) to generate an output, (2) the system takes
shorter than expected to generate output. An example is KubeEdge GitHub issue
#1736 [62], which indicates that, during initialization, a Pod may try to allocate
a storage volume according to configuration files that shall be provided by the
Edge-core (i.e., the Edge server controller). Since the Pod is unable to find the
configuration files in the directory, it hangs and results in a denial-of-service (i.e.,
a timing failure).

– System. System failures occur when the system crashes. An example is provided
by the vulnerability report CVE-2021-28166 [107], which concerns Mosquitto
communicating with an MQTT broker. CVE-2021-28166 indicates that an au-
thenticated MQTT client can send a crafted packet CONNACK (connection Ac-
knowledgment) to the broker thus causing a null pointer dereference that crashes
the system (system failure).

– Action. Action failures consist of the system performing an illegal interaction
with the environment. We introduced this category to compensate for the origi-
nal categorization by Avizienis et al. [9] used by Gazzola et al., which considers
the SUT as a black-box and excludes the possibility to observe other output in-
terfaces rather than the ones with the end-user. To further clarify the difference
between action failures and value failures, we report that a value failure occurs
when a system output is expected (e.g., after an input or periodically) but the out-
put data does not match specifications, an action failure occurs when the output is
not expected at all. An example is the vulnerability report CVE-2020-35514 [96]
of Kubernetes, which indicates that OpenShift, a containerization platform, fails
to enforce restrictive write access policy for the Kubernetes kubeconfig file thus
allowing an illegal modification (i.e., the action). Another case is Docker vulner-
ability CVE-2020-8564, which indicates that registry credentials are written into
log files (i.e., the action) when Docker is configured with logging level 4.

– Network. Network failures concern any aspect of the network. Since networking
components follow dedicated protocols, network failures (i.e., failing to comply
with the protocol) are unlikely to belong to any category described above; for this
reason, we introduced a specific category. An example is provided by the Ku-
bernetes vulnerability report CVE-2020-8558 [98]; it describes a case in which
services bound to the loopback address are accessible by other pods and contain-

23

ers on the local LAN network. Any other category different than network failure
would not clearly capture the characteristics of such a failure.

The detectability attribute characterizes the difficulty of detecting the failure. Fol-
lowing Gazzola et al., we consider the categories signaled, unhandled, and silent.
From the work of Gazzola et al., we exclude self-healed since Edge systems do not
include any self-healing feature for security issues.

– Signalled. It concerns cases in which the system prompts an error message. This
could primarily happen when an application encounters memory errors, prompt-
ing the user with an error message and asking for further actions. An example
case is the KubeEdge GitHub report #2362, which indicates that the Edge device
prompts an error because it is unable to connect with the Cloud through its API.

– Unhandled. A failure that the Edge system does not handle and that leads to a
crash. The system does not detect the failure, while the user detects the uncon-
trolled crash of the application. An example is the GitHub issue #335 [144] of
Zetta, which is about a memory overflow leading to a crash. It occurs when a de-
pendency request is installed before the handler process starts, it leads to a slow
but continuous memory consumption resulting in a crash.

– Silent A security failure that is not detected; consequently, the system operates
with wrong parameters and values thus producing undesirable behaviors and out-
put. This is the case of failures that are observable (e.g., the person who reported
the bug was capable of observing them) but not automatically reported by the
system as such (e.g., because implementing the logic to automatically determine
if the system fails is not feasible since it relates to the oracle problem in software
testing [12, 75]). An example is provided by the Kubernetes vulnerability report
CVE-2020-8563 [100], which indicates that with logging level set to 4, the cre-
dentials of the vsphere controller are written into the controller log file as plain
text. Only an end-user inspecting the log may notice such a security failure.

3.2.4 RQ4: What is the nature of the precondition enabling the attacker to exploit
Edge vulnerabilities?

To address this research question, for each vulnerability, we keep track of the type of
precondition that shall hold to enable exploiting the vulnerability, based on the de-
scription appearing in the vulnerability report. We identified the following categories:

– Data. What brings the system into a vulnerable state is a specific sequence of in-
put data. A example is the vulnerability CVE-2020-15127 [93] presented earlier;
it affects a Kubernetes Pod, which may leak passwords to a phishing URI while
resolving malicious dependencies during the import of a container. In this case,
the data consists of the phishing dependencies inserted by a malicious user.

– Lack of Data. What brings the system into the vulnerable state is the lack of
an expected input (e.g., a missing initialization of a resource). It differs from
Data since, in this case, the required data is not provided; in the case of Data,
instead, the data is provided but with crafted values or in an unexpected order.
An example is KubeEdge bug report #2362 [86], which indicates that the end-
user cannot connect to the Kubernetes server (availability problem) because no

24

credentials are shared between the Cloud server and the Edge server. In this case
the problem depends on a specific connection command not being automatically
executed on the Cloud server.

– Resource Busy. It indicates that a required resource cannot be accessed because
it is already busy. An example is provided by Kubernetes bug report #1017 [61],
which indicates that two different go-routine requests for a resource already in
use make the system unavailable.

– Resource Unavailable. It indicates that a required resource does not exist in the
system. An example is Kubernetes vulnerability CVE-2020-8557 [97], which in-
dicates that the Kubelet Edge device agent fails to manage the storage in a Pod;
indeed, increasing the storage consumption may lead to writing data to the con-
figuration files of a Kubelet agent resulting in compromising the Node. In this
case, the unavailable resource is the file system storage.

– System Configuration. It indicates a misconfiguration of the system. An example
is vulnerability CVE-2020-13597 [92] in Calico (a network security solution for
containers); if a Pod is configured to work on IPv4 and meanwhile IPv6 is enabled
and not being used, a specifically crafted request may cause the Pod to disclose
information or cause a DoS.

– Delay Causing Missing Resource. It indicates the case in which a delay (e.g.,
in input, output, or module initialization) causes any resource to be missing (it
differs from Resource Unavailable since in this case the missing resource is an
output of the SUT). An example for such case was presented earlier, it concerns
KubeEdge report #1736 [62], which indicates that, during the initialization of the
SUT, a Pod tries to allocate storage volume using configuration files that should
be created by the Edge-core. If the initialization of the Edge-core is delayed, then
the pod is unable to find the configuration files in the directory and ends up with
a denial of service.

– None. This case indicates that there is no precondition to be satisfied in order to
exploit the vulnerability.

3.2.5 RQ5A: How many steps are required to exploit an Edge vulnerability?

To answer this research question we determine, by reading the vulnerability report,
the number of steps required to exploit the vulnerability, once the system is in the state
required to exploit the vulnerability. However, the type of action to be performed de-
pends on the case study subject. Generally, a step is an action that can be described
with a simple sentence using terminology that is well-understood in the domain. For
example, the sentence delete the content of the configuration file settings.xml is a sin-
gle step even if, in practice, implies opening a file first. For example, the Kubernetes
vulnerability CVE-2021-20218 [103] reports a single step, consisting of executing
the copy command on the Fabric8 plugin [35]. This step enables a malicious user
to share restricted files and folders in the system. The docker vulnerability report
CVE-2014-5278 [90], instead, describes a single step which consists of creating a
new container with a name already assigned on the host. The vulnerability enables an
attacker to intercept commands and control other containers with the same name.

25

3.2.6 RQ5B: What is the nature of the input action enabling the attacker to exploit a
vulnerability?

This research question aims to characterize the types of inputs that enable a malicious
user to exploit a vulnerability. We rely on the same categories reported for RQ4. An
example concerning the Data category is that of Kubernetes vulnerability CVE-2021-
21334 [105], which reports that an input request for cloning a container image (the
name of the image is the required data) will result into the disclosure of information
associated with the container image.

The category None should be used when no input is needed to exploit the vulner-
ability. This may be the case for vulnerabilities leading to the printout of credentials
in log files without the need for further inputs from a malicious user.

3.2.7 RQ6: What security properties are violated by Edge vulnerabilities?

We address this research question by determining the security property that is violated
when the vulnerability is successfully exploited. We consider availability, confiden-
tiality, and integrity, which are the security properties described in most security stan-
dards (see Section 2.4). Concerning integrity, we distinguish between data integrity
and system integrity. They are all described in the following:

– Availability. An example availability issue appears in KubeEdge bug report #1017
[61], which has been introduced previously. It concerns two go-routines trying to
access, concurrently, a same web-socket. As a result, only one of the two rou-
tines succeeds; consequently, the availability of the function implemented by the
failing routine is compromised.

– Data Integrity. Data-integrity restricts our focus on the integrity of the data stored
by either the SUT or the environment in which the SUT is working. An exam-
ple is provided by the Kubernetes vulnerability report CVE-2021-21251 [104]. It
concerns the tarutils tool, which is used to extract compressed files. This vulner-
ability is a zip slip vulnerability, i.e., a vulnerability that enables an attacker to
overwrite arbitrary files when the compressed file is packed in a specific manner.

– System Integrity. It concerns cases in which exploiting the vulnerability leads to
a modification of the configuration of the system. An example is the CVE vul-
nerability CVE-2020-2211 [94], which concerns the Jenkins Kubernetes CI/CD
plugin. The YAML parser in the plugin is not configured properly; consequently,
it allows the upload of arbitrary file types, which leads to remote code execution
therefore compromising the system integrity.

– Confidentiality. This category concern vulnerabilities affecting confidentiality. An
example is the CVE vulnerability report CVE-2020-8566 [102], which concerns
the Ceph RADOS Block Device (RBD). RBD is the Kubernetes component for
storage provisioning. When logging level is set to 4, RBD writes sensitive infor-
mation (i.e., passwords) to the log file in plain text.

Violated security properties are reported also in NVD CVSS attributes (see Sec-
tion 2); precisely, CVSS attributes capture the impact that a vulnerability has on each
security property (i.e., None, Low, High). However, we do not have CVSS IDs for all

26

the vulnerabilities considered in our study but only for the ones collected from the
CVE database. Further, CVSS attributes capture all the security properties that might
be affected, which results in multiple security properties being likely violated by each
vulnerability; in our analysis, instead, we report only one security property for each
vulnerability, which we identify as either the security property that is easier to vio-
late through an exploit (e.g., less steps to perform) or, if multiple properties can be
violated with a same simple input, the security property that can be identified as be-
ing violated first. For example, the malicious modification of the configuration of the
system (system integrity) may result in a Node not responding to requests (availabil-
ity); in this case, although both system integrity and availability are violated, system
integrity is the first property being violated. The reason for our choice is that, with
our study, we aim to drive the implementation of software testing tools, which will
likely discover scenarios that are short and easy to process; in other words, they will
detect violations of security properties that are easier to trigger and report the first
security being violated (without waiting for other effects).

3.2.8 RQ7: What faults cause Edge vulnerabilities?

In the following, we present the three different kinds of data collected to address
RQ7:

– RQ7A: What is the CWE vulnerability type? We keep track of the CWE IDs asso-
ciated to each vulnerability report. Although there is no guarantee that every CVE
vulnerability report presents a set of CWE IDs capturing the vulnerability type,
they are usually reported (for our case study subjects, 89.8% of the vulnerabilities
present a CWE ID, see Section 4.7). The vulnerabilities without a CWE ID are
not considered to address RQ7A.

– RQ7B : What are the erronous software behaviours leading to Edge security fail-
ures? For each CWE ID associated to a vulnerability, we inspect the Research
Concept taxonomy and identify the corresponding pillars.

– RQ7C : What are the developer mistakes leading to Edge vulnerabilities? For
each CWE ID associated to a vulnerability, we inspect the Developer Concept
taxonomy and identify the corresponding pillars.

3.2.9 RQ8: How severe are Edge vulnerabilities?

For each CVE vulnerability, we inspect the corresponding entry in the NVD database
and keep track of both the NVD severity score and the CVSS entry.

To discuss severity, we comment on the distribution of CVSS scores; for example,
a high median for the CVSS score is a strong motivation for improvement in Edge
security testing practices. Also, we report the percentage of vulnerabilities with a
high impact on security properties.

To discuss the easiness of attacks, which should lead to easy test automation,
we discuss the distribution of CVSS attributes Attack Complexity (Low/High) and
Privileges Required (None/Low/High).

27

1 (0.680%)

17 (11.6%)

3 (2.04%)

126 (85.7%)

0 (0.00%)

IEC UAC UEC CE BT

5

10

15

20

115

120

125

130
N

um
be

r o
f V

ul
ne

ra
bi

lit
ie

s

Fig. 4: RQ1: Why are Edge vulnerabilities not detected during testing?

4 Results

This section presents our findings; each research question (RQ) is discussed individ-
ually. In this section we do not provide example cases for the vulnerabilities investi-
gated in our study because they are already described in Section 3.2; the reader can
also refer to Table 3 to search for example cases through the manuscript.

For RQ1 to RQ5A, we also compare our results with those of Gazzola et al. [41];
RQ4 to RQ8, instead, were not studied by Gazzola et al.

4.1 RQ1: Why are Edge vulnerabilities not detected during testing?

Figure 4 presents our findings4; Combinatorial Explosion (CE) represents 85.7% of
the vulnerabilities in our analysis, whereas Unknown Application Condition (UAC),
Unknown Environment Condition (UEC), Irreproducible Execution Condition (IEC)
and Bad Testing (BT) cover the 11.6%, 2.04%, 0.68%, and 0% of the cases, respec-
tively. CE is the main reason for vulnerabilities not being detected at testing time (126
vulnerabilities), which is unsurprising given the complexity of Edge systems. Indeed,
Edge systems are large and process inputs of different natures (e.g., Web forms, con-
figuration files, network data). The second category is UAC, which indicates lack of
appropriate documentation and might be due to the open source nature of our case
study subjects. However, note that the development of most of our case study subjects
is supported by professional software development companies and are used by many
businesses (see Section 5.4), which minimizes this threat. Indeed, vulnerabilities due
to bad documentation are low (i.e., only 11.6%). Similarly, UEC may be low because

4 Please note that, to save space, in the barcharts appearing in Figure 4, we hid part of the Y-axis scale;
the hidden part is highlighted with the symbol //.

28

all the environment components (e.g., the OS) are widely used and well documented.
Finally, in our analysis we encountered only one occurrence of IEC and no BT cases.

The trend for RQ1 is similar to the one observed for functional failures by Gaz-
zola et al., except that UEC was ranked second in their study and we do not observe
any bad testing case. In the study of Gazzola et al. the proportions observed for IEC,
UAC, UEC, CE, and BT are 1.68%, 5.04%, 12.60%, 50.42%, and 30.25%, respec-
tively. The larger proportion of UAC in our context is likely due to the complexity
of Edge frameworks; indeed, the desktop applications considered by Gazzola et al.
present a lower number of inputs, features, and configuration options that the Edge
frameworks considered in our study. We believe that the likelihood of finding badly
documented features is larger when the number of components and configuration op-
tions is large. Instead the lack of BT cases might be due to the fact that our case study
subjects are software components with several years of development (e.g., KubeEdge
is based on Kubernetes) during which trivial security issues slipping through the test
process had been already detected. IEC cases, by definition, are expected to be lim-
ited in number; indeed, software inputs and environment conditions tend to be repro-
ducible in the development environment.

4.2 RQ2: What are the types of components involved in a security failure?

Figure 5 provides the distribution of each Edge component for the different sub-
questions of RQ2. For all the sub-questions, SUT is the element with the highest
number of entries, which is expected since we collected vulnerability reports concern-
ing the SUT. However, the distribution of Edge components vary based on the sub-
question considered, which indicate that Edge components are interlaced in cause-
effect chains.

The vulnerable component (RQ2D) is generally the SUT (93 cases); however,
(misconfigured) Network and Plugins are the second and third cause of security fail-
ures. We did not observe any vulnerability in Drivers and Nodes.

The consequences of vulnerabilities (RQ2A) mainly affect the SUT (108 cases)
but also Nodes, Network, Plugins, Resources, and Services. The distribution for
RQ2A is different than the distribution observed for RQ2D; indeed, for RQ2A, we
observe a larger number of SUT and Node cases along with a lower number for Plu-
gins and Network. Such difference mainly depends on (i) Plugin faults impacting on
the SUT and (ii) Network faults impacting on both Nodes and SUT.

Concerning RQ2B , most of the vulnerabilities can be exploited (and, consequently,
detected at testing time) only if some precondition holds, which is likely the reason
why they are not detected at testing time (i.e., it is more difficult to spot a vulnerabil-
ity if the system needs to be in a specific state). In 69 out of 147 cases, it is the SUT
what needs to be in a specific state, which is often a specific configuration (e.g., vul-
nerability CVE-2020-8563, which requires the logging level to be set to 4). However,
preconditions for exploitability may depend also on all the other components, except
Drivers. The second and third components presenting preconditions for exploiting a
vulnerability are Network and Resources, which are the primary means to provide
inputs to Edge systems.

29

5
(3

.4
0%

)

0
(0

.0
0%

)

5
(3

.4
0%

)

10
8

(7
3.

5%
)

0
(0

.0
0%

)

1
(0

.6
80

%
) 9

(6
.1

2%
)

18
 (1

2.
2%

)

1
(0

.6
80

%
)

0
(0

.0
0%

)
Reso

urce
s

API

Plugin
s

SUT
Driv

er

Serv
ice

s

Netw
ork Nod

e
HW

Non
e

5

10

15

20

25

105

110

115

120

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

(a) RQ2A: What are the components manifesting an Edge se-
curity failure?

14
 (9

.5
2%

)

8
(5

.4
4%

)

12
 (8

.1
6%

)

69
 (4

6.
9%

)

0
(0

.0
0%

)

8
(5

.4
4%

)

20
 (1

3.
6%

)

3
(2

.0
4%

)

1
(0

.6
80

%
)

12
 (8

.1
6%

)

Reso
urce

s
API

Plugin
s

SUT
Driv

er

Serv
ice

s

Netw
ork Nod

e
HW

Non
e

0

5

10

15

20

25
65

70

75

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

(b) RQ2B : What are the components that are in the state re-
quired to exploit an Edge vulnerability?

12
 (8

.1
6%

)

10
 (6

.8
0%

)

11
 (7

.4
8%

)

63
 (4

2.
9%

)

0
(0

.0
0%

) 6
(4

.0
8%

)

36
 (2

4.
5%

)

0
(0

.0
0%

)

1
(0

.6
80

%
) 8
(5

.4
4%

)

Reso
urce

s
API

Plugin
s

SUT
Driv

er

Serv
ice

s

Netw
ork Nod

e
HW

Non
e

0

5

10

15

20
35

40

60

65

70

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

(c) RQ2C : What are the components that receive the inputs that
trigger an Edge vulnerability?

2
(1

.3
6%

) 9
(6

.1
2%

) 15
 (1

0.
2%

)

93
 (6

3.
3%

)

0
(0

.0
0%

)

5
(3

.4
0%

)

22
 (1

5.
0%

)

0
(0

.0
0%

)

1
(0

.6
80

%
)

0
(0

.0
0%

)

Reso
urce

s
API

Plugin
s

SUT
Driv

er

Serv
ice

s

Netw
ork Nod

e
HW

Non
e

0

5

10

15

20

90

95

100

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

(d) RQ2D : What are the faulty (i.e., vulnerable) Edge compo-
nents?

Fig. 5: RQ2: What are the types of components involved in a security failure?

30

As for RQ2C , the component that receives the largest number of inputs triggering
a vulnerability is the SUT (63 cases), followed by Network (36), Resources (12), Plu-
gins (11), APIs (10), Services (6), and Hardware (1). Unsurprisingly the SUT inter-
face (e.g., Web page, Service, or API), which is the usual entry point for managing an
Edge system, is the component with the largest number of entries. The other compo-
nents, instead, follow the relevance of each input interface for the services provided
by the SUT (i.e., Network is clearly more relevant than all the other components,
which have the same importance). In eight cases, no input needs to be received by
the software (see None); these are vulnerabilities related to logging, where the SUT
periodically writes sensible information in log files.

A precise comparison with the results obtained by Gazzola et al. is complicated
by the fact that their study does not separate RQ2 into four subquestions and con-
siders a smaller set of component types. The main difference is that Resource was
the component type mostly involved in failures (50%), while Plugins (3%), Services
(6%), and Network (1%) had a more limited involvement. OS concerned 20% of the
cases; OS cases had never been observd in our study (see Section 3.2.2). In our work,
instead, we explicitly model the case of the SUT, which was ignored in the work of
Gazzola et al.; concerning the other elements, the ones mostly involved in security
failures, if we compute the average of the four RQs, are Network (14.8%), Plugins
(7.31%), and Resources (5.61%). The difference in their distribution with respect to
the work of Gazzola et al. is mostly due to the different nature of our context (i.e.,
networked Edge components instead of desktop applications).

4.3 RQ3: What kind of failures are observed when an Edge vulnerability is
exploited?

Figure 6-A and -B present the distribution of the different types of security failures
(left) and their detectability (right).

Concerning failure type, most of the vulnerabilities lead to Value failures (57
cases, 38.8%), which is expected since they include the effect of both authoriza-
tion and integrity issues (see Section 3.2.7). The second frequent type of failures
are Network failures (39 cases, 26.5%), which is expected since Edge frameworks
mainly control devices over the network. Action failures are high (33 cases, 22.4%)
because several vulnerabilities make the software perform illegal actions. System
failures (usually crashes) are low (17 cases, 11.6%), likely because of the availability
of static code analysis tools aiming at detecting such problems [54]. Timing failures
(early or delayed response) are the lowest (one case, 0.68%).

Concerning detectability, the largest proportion of vulnerabilities (i.e., 127, 86.4%)
leads to Silent failures, which is expected since this is the effect of a wide range of
vulnerabilities, from authorization problems (e.g, letting malicious users to access
private resources) to integrity ones (e.g., altering the content of a database). With
much less entries, the second category is Unhandled failures (i.e., 11, 7.48%). Sig-
nalled failures have the least occurrences (i.e., 9, 6.12%), which is expected since
it is difficult for an engineer to implement features capable of detecting the effect
of vulnerabilities (e.g., functions that trigger an alarm in the presence of anomalous

31

33 (22.4%)

39 (26.5%)

57 (38.8%)

1 (0.680%)

17 (11.6%)

9 (6.12%) 11 (7.48%)

127 (86.4%)

Acti
on

 Fail
ure

Netw
ork

 Fail
ure

Valu
e F

ail
ure

Tim
ing F

ail
ure

Syst
em

 Fail
ure

0

10

20

30

40

50

60

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Sign
all

ed

Unhan
dled

Silen
t

0

10

20

120

130

140

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Fig. 6: RQ3: What kind of failures are observed when an Edge vulnerability is ex-
ploited?

data); only security failures leading to the lack of communication or causing memory
allocation errors can be easily detected (see Section 3.2.3).

For both failure type and detectability, excluding cases introduced in our study
(i.e., action failures and network failures), we observe the same rankings reported by
Gazzola et al. In both the two studies, the ranking for failure type is (1st) Value fail-
ures, (2nd) System failures, and (3rd) Timing failures. For detectability, the ranking
is (1st) Silent, (2nd) Unhandled, and (3rd) Signalled. However the distribution of the
vulnerabilities for each ranked category differs across the two studies. Indeed, sys-
tem failures are more frequent in desktop applications (33.7%, based on Gazzola et
al. [41]) than in Edge systems (11.6%), possibly because Edge frameworks are more
robust. Also, Value failures are more frequent in the study of Gazzola et al. (i.e.,
61.5% VS 38.8%), possibly because in our study we observe also Action failures and
Network failures (i.e., the total number of vulnerabilities is distributed across a larger
number of categories). Silent failures, instead, are more frequent in Edge frameworks
(our study, 86.4%) than in Gazzola et al. (i.e., 53%), likely because they reflect the ef-
fect of failure types not observed with desktop applications (i.e., Action and Network
failures).

4.4 RQ4: What is the nature of the precondition enabling the attacker to exploit
Edge vulnerabilities?

Figure 7 shows our results. In most of the cases (i.e., 92, 62.6%), the vulnerability can
be exploited only if the system is in a specific configuration, which is expected since

32

92 (62.6%)

4 (2.72%)

0 (0.00%)
1 (0.680%)

47 (32.0%)

1 (0.680%)
2 (1.36%)

Con
fig

urat
ion Data

Dela
y c

au
sin

g m
iss

ing r
eso

urce

Lack
 of

 data Non
e

Reso
urce

 Busy

Reso
urce

 Unav
ail

ab
le

5

45

50

85

90

95
N

um
be

r o
f V

ul
ne

ra
bi

lit
ie

s

Fig. 7: RQ4: What is the nature of the precondition enabling the attacker to exploit
Edge vulnerabilities?

Edge systems consist of many components that can be installed on different devices
and require to be tuned according to the device characteristics and the service needs5.

The second most frequent case, with 47 cases (32%), is the absence of any pre-
condition to be fulfilled in order to exploit the vulnerability, which indicates that any
configuration of the system exposes the vulnerability; this is not surprising since it is
a sort of base case. Only few other vulnerabilities (eight in total) concern the other
four cases (i.e., Data, Lack of data, Resource busy, Resource unavailable).

4.5 RQ5: What inputs enable exploiting Edge vulnerabilities?

Figure 8 presents the distribution of the number of steps required to exploit a vul-
nerability (RQ5A). We were unable to determine the number of steps required to
exploit 20 vulnerabilities out of 147 because of the lack of detailed descriptions in
the vulnerability reports and attached documents. For 119 vulnerabilities (81%), one
step is sufficient to exploit the system (see Section 3.2.5 for examples), whereas two
steps are required only in the case of three vulnerabilities. In eight cases (5.44%),
no step is required to observe the effect of the vulnerability, they match the eight

5 Please note that dedicated static analysis tools had been developed to simplify the configuration
of Kubernetes [133]; therefore, we may expect that testing its security properties for all the available
configurations is particularly challenging and error prone.

33

8 (5.44%)

119 (81.0%)

3 (2.04%)

17 (11.6%)

0 step 1 step 2 steps no info
0

10

20

30

110

120

130

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Fig. 8: RQ5A: How many steps are required to exploit an Edge vulnerability?

logging vulnerabilities reported in RQ2C (i.e., the system periodically logs sensitive
information).

The study of Gazzola et al., instead, reported a larger number of steps required to
trigger a failure (median is two and 35% of the failures require at least three steps).
We believe that this is mainly due to the nature of the software under analysis (e.g.,
desktop applications are more interactive than Edge frameworks).

Figure 9 provides the distribution of the input action types for the vulnerabilities
considered in our study (RQ5B). The category with the largest number of entries is
Data, which concerns any input provided to the software under test or its compo-
nents. This is expected because Edge systems, like most software systems, generate
outputs based on the data received as input; therefore, vulnerabilities are exploited
by providing specific or crafted inputs to the system. Instead, only a few vulnerabil-
ities (i.e., nine, 6.12%) can be exploited by changing a configuration file, which is
expected since configuration files are generally not the main mean for end-users to
interact with the system.

The other cases (i.e., Lack of data, Resource busy, Resource unavailable) are less
frequent, possibly because they concern corner cases which may be difficult to spot
(e.g., our case study subjects might be vulnerable but the vulnerabilities have not been
discovered yet).

Unsurprinsingly, the eight cases not requiring any input (i.e., None) match the
eight zero-step cases reported for RQ5A. These are the cases in which the SUT pro-
vides sensible information (e.g., login credentials) in log files, periodically.

In general, we can conclude that the inputs required to exploit an Edge vulner-
ability are simple. Indeed, most of the times one step is sufficient and the action to
perform is about providing specific data values to the system.

34

9 (6.12%)

127 (86.4%)

1 (0.680%) 1 (0.680%)

8 (5.44%)

0 (0.00%)
1 (0.680%)

Con
fig

urat
ion Data

Dela
y c

au
sin

g m
iss

ing r
eso

urce

Lack
 of

 data Non
e

Reso
urce

 Busy

Reso
urce

 Unav
ail

ab
le

0

2

4

6

8

10

12

14

126

128

130

132

134

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Fig. 9: RQ5B : What is the nature of the input action enabling the attacker to exploit
a vulnerability?

4.6 RQ6: What security properties are violated by Edge vulnerabilities?

Figure 10 provides the distribution of security properties being violated by Edge vul-
nerabilities. Confidentiality has the highest number of occurrences in our study (81,
55.1%), whereas system integrity is the second most violated security property with
42 occurrences (28.6%). Data integrity and availability are observed with 7 (4.8%)
and 17 (11.6%) occurrences, respectively.

Figure 11 provides the number of vulnerabilities affecting each security prop-
erty, according to the NVD CVSS entries. For each security property, we report the
number of vulnerabilities with High or Low impact on it. Also, we report the Total
number of vulnerabilities concerning each security property. If we focus on the total
number of vulnerabilities, we can notice that the ranking does not differ from the
ones in Figure 10 (i.e., confidentiality is followed by integrity, while availability has
the lowest number of cases) but the magnitude of the differences varies a lot. Indeed,
based on CVSS data it is difficult to draw any conclusion (i.e., their difference is not
significant, as reported in Section 5). Instead, by focusing on the vulnerability that is
easier to exploit or that is violated first (i.e., our criteria, see Section 3.2.7), we can
observe that Confidentiality is the security property that is more likely affected by
vulnerabilities (Figure 10), which provides a clear direction for the development of
test automation tools.

35

42 (28.6%)

7 (4.8%)

81 (55.1%)

17 (11.6%)

System Integrity Data Integrity Confidentiality Availability
0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Fig. 10: RQ6: What security properties are violated by Edge vulnerabilities?

We verified that, for all the vulnerabilities, the security property that we selected
matches one of the security properties reported by CVSS with the highest score
(lower scores indicate that a security property violation is less noticeable). Such con-
dition is particularly important in our context because testing tools should target the
vulnerability with the highest impact, otherwise results might be perceived as irrele-
vant by end-users.

4.7 RQ7: What faults cause Edge vulnerabilities?

Figure 12, Figure 13, and Table 4, provide the distribution of CWE developer con-
cepts (i.e., developer mistakes, collected to address RQ7C), CWE Research Concepts
pillars (i.e., erroneous software behaviors due to the vulnerability, collected to ad-
dress RQ7B), and CWE IDs (i.e., fault types, collected to address RQ7A), respec-
tively. The CWE IDs for the CWE Research Concepts pillars are reported in Table 5.
In the following, we first discuss the distribution of the most frequent developer mis-
takes and erroneous software behaviours, which helps prioritizing the target (input
generation strategy) of security testing; we then discuss the distribution of CWE IDs,
which helps understanding why testing practices in place aren’t sufficient.

Our plots do not cover all the vulnerabilities in our study because of the limited
information that can be retrieved from bug reports and CWE views. Precisely, among
the 147 vulnerabilities in our study, 60 (40.8%) do not have an associated CWE de-
veloper concept. However, although the proportion of vulnerabilities with a CWE
developer concept is contained, the proportion of vulnerabilities with CWE IDs and
CWE research concepts is high; indeed, 132 out of 147 vulnerabilities (89.8%) have
a CWE-ID assigned to them and 130 out of 147 vulnerabilities (88.4%) can be as-

36

Table 4: RQ7A: What is the CWE vulnerability type?We report the number of vul-
nerabilities belonging to each vulnerability type discovered in our investigation.

Occurrencies CWE Number Description
34 CWE-306 Missing Authentication for Critical Function
8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)
7 CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
6 CWE-532 Insertion of Sensitive Information into Log File
5 CWE-20 Improper Input Validation
4 CWE-400 Uncontrolled Resource Consumption
4 CWE-269 Improper Privilege Management
4 CWE-668 Exposure of Resource to Wrong Sphere
3 CWE-502 Deserialization of Untrusted Data
3 CWE-284 Improper Access Control
3 CWE-209 Generation of Error Message Containing Sensitive Information
3 CWE-94 Improper Control of Generation of Code (Code Injection)
3 CWE-918 Server-Side Request Forgery (SSRF)
3 CWE-770 Allocation of Resources Without Limits or Throttling
3 CWE-522 Insufficiently Protected Credentials
3 CWE-863 Incorrect Authorization
3 CWE-266 Incorrect Privilege Assignment
3 CWE-862 Missing Authorization
3 CWE-601 URL Redirection to Untrusted Site (’Open Redirect’)
3 CWE-250 Execution with Unnecessary Privileges
2 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
2 CWE-295 Improper Certificate Validation
2 CWE-610 Externally Controlled Reference to a Resource in Another Sphere
2 CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
2 CWE-59 Improper Link Resolution Before File Access (’Link Following’)
2 CWE-476 NULL Pointer Dereference
2 CWE-789 Memory Allocation with Excessive Size Value
2 CWE-74 Improper Neutralization of Special Elements in Output Used by a Downstream Component (’Injection’)
1 CWE-669 Incorrect Resource Transfer Between Spheres
1 CWE-732 Incorrect Permission Assignment for Critical Resource
1 CWE-283 Unverified Ownership
1 CWE-23 Relative Path Traversal
1 CWE-287 Improper Authentication
1 CWE-420 Unprotected Alternate Channel
1 CWE-184 Incomplete List of Disallowed Inputs
1 CWE-798 Use of Hard-coded Credentials
1 CWE-312 Cleartext Storage of Sensitive Information
1 CWE-327 Use of a Broken or Risky Cryptographic Algorithm
1 CWE-335 Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)
1 CWE-201 Insertion of Sensitive Information Into Sent Data
1 CWE-300 Channel Accessible by Non-Endpoint
1 CWE-434 Unrestricted Upload of File with Dangerous Type
1 CWE-1050 Excessive Platform Resource Consumption within a Loop
1 CWE-552 Files or Directories Accessible to External Parties
1 CWE-73 External Control of File Name or Path
1 CWE-372 Incomplete Internal State Distinction
1 CWE-61 UNIX Symbolic Link (Symlink) Following
1 CWE-215 Insertion of Sensitive Information Into Debugging Code
1 CWE-416 Use After Free
1 CWE-270 Privilege Context Switching Error
1 CWE-24 Path Traversal
1 CWE-401 Missing Release of Memory after Effective Lifetime
1 CWE-441 Unintended Proxy or Intermediary (’Confused Deputy’)
1 CWE-755 Improper Handling of Exceptional Conditions

37

117(71.8%)

92(56.4%) 90(55.2%)89(54.6%)

77(47.2%)
80(49.1%)

28(17.2%)

15(9.20%)
10(6.13%)

Confidentiality Integrity Avalability
0

20

40

60

80

100

120 Total High Low
N

um
be

r o
f V

ul
ne

ra
bi

lit
ie

s

Fig. 11: RQ6: Number of vulnerabilities affecting each security property based on
NVD’s CVSS entries; in total (Total) and grouped by impact (High/Low)

sociated to a CWE research concept. Further, the results for RQ7C are in line with
those for RQ7B and RQ7A (see following paragraphs); therefore, our observations
should hold for almost the whole set of vulnerabilities considered.

Although we analyzed 147 vulnerabilities in our study, the total number of re-
search concepts appearing in Figure 13 is 160. Such difference depends on some
vulnerabilities having more than one research concept associated to them (i.e., the
software may behave in different invalid ways because of the vulnerability).

RQ7C . By looking at the distribution of developer mistakes (Figure 12), we can ob-
serve that most of the vulnerabilities in the study are associated with the authenti-
cation mechanism (37 observations, 33.94%). Such result is in line with what ob-
servable from Table 4. Indeed, CWE-306 (Missing Authentication for Critical Func-
tion) has the largest number of occurrences; since CWE-306 concerns authorization
to perform an action or access data, our finding is also line with RQ6 results (i.e.,
vulnerabilities concern Confidentiality, that is, users accessing data they are not au-
thorized to access). More in general, still in line with the prevalence of confidentiality
issues and authentication mechanism mistakes, we can observe that 42.6% of all the
vulnerabilities with a CWE ID are related to Access Control6

The second place in the ranking provided by Figure 12 is taken by Information
management errors, which have been observed 15 times (13.76%). Such observation
is reflected in Table 4; indeed, Information management errors relate to the control

6 CWE IDs related to Access Control are CWE-306, CWE-863, CWE-552, CWE-798, CWE-372,
CWE-862, CWE- 269, CWE-266, CWE-283, CWE-250, CWE-532, CWE-732, CWE-522, CWE-287,
CWE-420, CWE-284, CWE-300, CWE-295, CWE-270.

38

37
15

9
7
7

6
4

3
3
3

2
2
2

1
1
1
1
1
1
1
1
1

 Authentication Errors
 Information Management Errors

 Audit / Logging Errors
 Data Neutralization Issues

 Resource Management Errors
 Privilege Issues

 Business Logic Errors
 File Handling Issues

 Data Processing Errors
 Error Conditions, Return Values, Status Codes

 Pointer Issues
Credentials Management Errors

Permission Issues
 Data Validation Issues

 Random Number Issues
 Cryptographic Issues

 Bad Coding Practices
 Behavioral Problems

 Memory Buffer Errors
 State Issues

 Communication Channel Errors
Handler Errors

0 5 10 15 35 40
Number of Vulnerabilities

Fig. 12: RQ7C : What are the developer mistakes leading to Edge vulnerabilities?

of resources, which concerns 52% of all the vulnerabilities with a CWE ID7. Among
such CWE IDs, CWE-22 (Improper Limitation of a path name to a Restricted Di-
rectory) is ranked second in Table 4 with eight occurrences. The prevalence of vul-
nerabilities concerning the control of resources likely depends on the fact that Edge
systems, especially the Edge controller, often manage files. Although some vulner-
abilities about control of resources (i.e., path traversal vulnerabilities CWE-22 and
CWE-24) can be detected by Web testing tools such as BurpSuite or OWASP Zap,
the vulnerabilities considered in our analysis concern complex features, which are
not fully supported by these tools. For example, path traversal is often the result of
the extraction of a compressed file.

Logging errors, data neutralization, resource management errors, and privileges
issues have been observed nine, seven, seven, and six times respectively.

RQ7B . Figure 13 shows that the research concepts with the highest number of vul-
nerabilities are CWE-664 (Improper Control of a Resource Through its Lifetime) and
CWE-284 (Improper Access Control) with 64 and 62 vulnerabilities, respectively,
which is in line with our discussion above.

7 CWE IDs related to the control of resources are CWE-22, CWE-863, CWE-552, CWE-312, CWE-
434, CWE-372, CWE-601, CWE-184, CWE-94, CWE-610, CWE-441, CWE-200, CWE-22, CWE-668,
CWE-74, CWE-23, CWE-20, CWE-24, CWE-250, CWE-502, CWE-532, CWE-669, CWE-732, CWE-
522, CWE-73, CWE-400, CWE-209, CWE-918, CWE-201, CWE-1050, CWE-770, CWE-789, CWE-59,
CWE-61, CWE-215, CWE-416, CWE-401.

39

CWE-707 (Improper Neutralization) is the third most frequent case (15 vulnera-
bilities), in line with the number of data-integrity issues (RQ6) and data neutralization
mistakes (ranked fourth in the discussion for RQ7C , above), which are often caused
by code injection or path traversal vulnerabilities. For example, the path traversal vul-
nerabilities reported in Section 3.2.7 can be exploited because the content of zip files
is not verified.

CWE-703 (Improper Check or Handling of Exceptional Conditions) and CWE-
693 (Protection Mechanism Failure) often lead to system crashes; indeed, they are
often causing availability issues. CWE-710 (Improper Adherence to Coding Stan-
dards), CWE-691 (Insufficient Control Flow Management), and CWE-697 (Incorrect
Comparison) are related to the quality of the software development procedures in
place.

RQ7A. Table 4 provides the detailed distribution of CWE IDs for our case study.
Except for CWE-306, all the CWE IDs are assigned to less than ten vulnerabilities
(median is two vulnerabilities for each CWE ID), which indicates that vulnerabilities
are spread across vulnerability types and this may be a consequence of the large
number of features implemented by Edge systems.

In addition to CWE-306 and CWE-22, already discussed above (see Paragraph
RQ7C), other frequent CWE IDs are CWE-200, CWE-532, and CWE-20, which have
been reported with 7, 6, and 5 occurrences in our results. CWE-532 and CWE-20
concern input neutralization issues (CWE-94, CWE-22, CWE-74, CWE-20, CWE-
24, CWE-250, CWE-918, CWE-770, CWE-789, CWE-215, CWE-78, CWE-79, 14%
of all the vulnerabilities with a CWE ID) and leakage of sensitive data (CWE-532,
CWE-201, CWE-215, CWE-312, and CWE-209, 14%). Input neutralization issues
can be detected using a wide range of tools (e.g., Metasploit [83] or Acunetix [48]);
however, for the Edge systems under study, these vulnerabilities were not detected
because they require the system to be in a specific state, which complicates testing.
Some solutions for detecting data leakage exist [127]; however, they are mainly re-
search prototypes, which is the reason why such vulnerabilities are not detected at
development time. Leakage of sensitive data relates to the logging errors reported for
RQ7C .

Memory issues are limited in number (i.e., nine, considering CWE-476, CWE-
789, CWE-416, CWE-401, CWE-770); although some of these memory issues might
be detected by means of static code analysis tools such as SonarQube [128] (it cov-
ers CWE-476, CWE-401, and CWE-416), we believe that they are not detected be-
cause they concern components implemented with the go-lang programming lan-
guage [42], for which a limited set of static analysis tools are available [4, 45, 129].
Some cases concern bad coding practices (i.e., CWE-335, CWE-327, CWE-798,
CWE-755). Tools like SonarQube may still help in identifying some of them (i.e.,
CWE-798, CWE-327, CWE-755); however, rules for the Go programming language
are limited.

40

Table 5: Description of CWE Research Concepts (i.e., the erroneous software be-
haviours leading to security failures)

CWE: Research Concept CWE

CWE-664: Improper Control of a
Resource Through its Lifetime

CWE-283: Unverified Ownership
CWE-863: Incorrect Authorization
CWE-552: Files or Directories Accessible to External Parties
CWE-798: Use of Hard-coded Credentials
CWE-372: Incomplete Internal State Distinction
CWE-862: Missing Authorization
CWE-269: Improper Privilege Management
CWE-266: Incorrect Privilege Assignment
CWE-306: Missing Authentication for Critical Function
CWE-295: Improper Certificate Validation
CWE-250: Execution with Unnecessary Privileges
CWE-532: Insertion of Sensitive Information into Log File
CWE-732: Incorrect Permission Assignment for Critical Resource
CWE-522: Insufficiently Protected Credentials
CWE-287: Improper Authentication
CWE-420: Unprotected Alternate Channel
CWE-284: Improper Access Control
CWE-300: Channel Accessible by Non-Endpoint
CWE-270: Privilege Context Switching Error

CWE-284: Improper Access Control

CWE-863: Incorrect Authorization
CWE-552: Files or Directories Accessible to External Parties
CWE-798: Use of Hard-coded Credentials
CWE-372: Incomplete Internal State Distinction
CWE-862: Missing Authorization
CWE-269: Improper Privilege Management
CWE-266: Incorrect Privilege Assignment
CWE-306: Missing Authentication for Critical Function
CWE-283: Unverified Ownership
CWE-532: Insertion of Sensitive Information into Log File
CWE-732: Incorrect Permission Assignment for Critical Resource
CWE-522: Insufficiently Protected Credentials
CWE-287: Improper Authentication
CWE-420: Unprotected Alternate Channel
CWE-284: Improper Access Control
CWE-300: Channel Accessible by Non-Endpoint
CWE-270: Privilege Context Switching Error
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference

CWE-707: Improper Neutralization

CWE-94: Improper Control of Generation of Code (’Code Injection’)
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component (’Injection’)
CWE-20: Improper Input Validation
CWE-24: Path Traversal: ’../filedir’
CWE-250: Execution with Unnecessary Privileges
CWE-918: Server-Side Request Forgery (SSRF)
CWE-770: Allocation of Resources Without Limits or Throttling
CWE-789: Memory Allocation with Excessive Size Value
CWE-215: Insertion of Sensitive Information Into Debugging Code
CWE-78: Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)

CWE-703: Improper Check or
Handling of Exceptional Conditions

CWE-476: NULL Pointer Dereference
CWE-209: Generation of Error Message Containing Sensitive Information
CWE-755: Improper Handling of Exceptional Conditions

CWE-693: Protection Mechanism
Failure

CWE-327: Use of a Broken or Risky Cryptographic Algorithm
CWE-312: Cleartext Storage of Sensitive Information
CWE-798: Use of Hard-coded Credentials
CWE-601: URL Redirection to Untrusted Site (’Open Redirect’)
CWE-184: Incomplete List of Disallowed Inputs
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)

CWE-710: Improper Adherence to
Coding Standards

CWE-798: Use of Hard-coded Credentials
CWE-476: NULL Pointer Dereference
CWE-250: Execution with Unnecessary Privileges

CWE-691: Insufficient Control Flow
Management

CWE-94: Improper Control of Generation of Code (’Code Injection’)
CWE-918: Server-Side Request Forgery (SSRF)

CWE-697: Incorrect Comparison CWE-601: URL Redirection to Untrusted Site (’Open Redirect’)
CWE-184: Incomplete List of Disallowed Inputs

41

64(39.3%)

62(38.0%)

15(9.20%)

6(3.68%)
5(3.07%)

4(2.45%)
3(1.84%)

1(0.613%)

C
W

E-664

C
W

E-284

C
W

E-707

C
W

E-703

C
W

E-693

C
W

E-710

C
W

E-691

C
W

E-697

0

10

60

70
N

um
be

r o
f V

ul
ne

ra
bi

lit
ie

s

Fig. 13: RQ7B : What are the erronous software behaviours leading to Edge security
failures? See Table 5 for detailed descriptions.

4.8 RQ8: How severe are Edge vulnerabilities?

Figure 14 shows the distribution of NVD severity score for the CVE vulnerabilities
considered in our study; the median severity is 7.5, which indicates that more than
half of the vulnerabilities have a high severity score (severity is considered high when
the severity score is between 7.0 and 9.0, see Section 2.4).

Figure 15 provides the distribution of Attack Complexity values; the attack com-
plexity is low for 85.7% of the cases, which indicates that it is relatively easy for a
malicious user to exploit a vulnerability.

Figure 16 provides the distribution of the Privileges Required to exploit a vulnera-
bility; high privileges are required for only 15 (10.2%) of the vulnerabilities, whereas
59 (40.1%) and 66 (44.9%) of the vulnerabilities can be exploited with low or no
privileges at all. These numbers confirm the easiness for malicious actors to exploit
Edge vulnerabilities, which increase the associated risks.

Further, Table 6 provides the percentage of vulnerabilities presenting a high, low,
or no impact on Confidentiality, Availability, and Integrity, according to the NVD
CVSS results. We can observe that more than half of the vulnerabilities present a
high impact on at least one of the three security properties thus highlighting the need
for improved security testing practices.

Based on the results above, we conclude that an improvement of Edge systems’
testing practices is necessary.

42

1(0.680%)

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Vulnerability Score

Fig. 14: RQ8: Distribution of NVD CVSS vulnerability scores

120 (85.7%)

20 (14.3%)

L H
0

20

40

60

80

100

120

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Attack Complexity

Fig. 15: Attack complexity (High - H, Low - L) for vulnerabilities in Edge frame-
works, based on NVD CVSS entries

Table 6: Vulnerabilities’ impact based on CVSS NVD scores.

Confidentiality Integrity Availability
High 63.57% 55.00% 57.14%
Low 20.00% 10.71% 7.14%
None 16.43% 34.29% 35.71%

43

15 (10.2%)

N L H
0

10

20

30

40

50

60

70

N
um

be
r o

f V
ul

ne
ra

bi
lit

ie
s

Privileges Required

Fig. 16: Privileges required to exploit vulnerabilities in Edge frameworks, based on
NVD CVSS entries (High - H, Low - L, None - N). Please note that None is the most
critical situation since an attacker can exploit a vulnerability without any specific
privilege on the system.

5 Threats to validity

5.1 Construct validity.

RQ1 to RQ6 might be affected by subjectivity in the manual classification. Indeed,
the first author performed the manual classification after reading all the documenta-
tion available for each vulnerability. To minimize this risk, the first 30 vulnerabilities
inspected at the beginning of the project had been reviewed with the second author to
ensure common understanding. Further, randomly selected cases and unclear cases
had been discussed. In total, about 50 vulnerabilities had been inspected by both au-
thors. We also provide the classification results obtained for each vulnerability for
further usage or independent analysis. RQ7A to RQ8 are based on metrics (i.e., num-
ber of vulnerabilities for each CWE ID and CVSS score) that are commonly used in
empirical studies [82].

5.2 Internal validity.

RQ1 to RQ6 results are derived from the inspection of vulnerability reports and doc-
uments linked in the vulnerability reports (e.g., documentation, patches). Incomplete
or imprecise vulnerability descriptions may have affected our interpretation of re-
sults. We believe that the inspection of all the resources related to the vulnerabilities
have mitigated this threat. RQ7A to RQ8 are based on data provided by the CVE and

44

NVD repositories, which might be affected by mistakes (e.g., erroneous CWE iden-
tifier associated to a vulnerability). To mitigate this threat, the first author has read
each CWE ID associated to the vulnerabilities investigated in our study, to ensure
they were consistent with the vulnerability descriptions. Finally, the set of vulnera-
bilities reported for the frameworks selected for our study might be incomplete (e.g.,
the selected frameworks may not have been sufficiently used in the field to trigger
all the vulnerabilities affecting them); this might be likely the case for K3OS and
Zetta, which present only one vulnerability each. However, such threat should have
a limited impact on our results because we do not aim to identify the less vulnerable
framework but the characteristics of the vulnerabilities discovered in the field; vul-
nerabilities not discovered yet are out of the scope of our study. Please note that the
low number of vulnerabilities reported for K3OS and Zetta unlikely reflects a higher
degree of security for these two frameworks but it is likely the consequence of (1)
a reduced code base with respect to KubeEdge and Mainflux (i.e., less code imple-
mented, less vulnerabilities), (2) a limited user base (i.e., with less users, the number
of vulnerabilities detected in the field is much more limited), and (3) a less rigorous
security testing process than KubeEdge and Mainflux (see Section 2.2). Further, the
low number of vulnerabilities reported for K3OS depends on our choice of not includ-
ing Kubernetes vulnerabilities among K3OS total count (see Section 3.1). The code
base that we considered for KubeEdge and Mainflux is larger than the one considered
for K3OS and Zetta; indeed, when collecting KubeEdge vulnerabilities, we included
vulnerabilities in dependencies (i.e., KubeEdge, Cri-o, Raspberry Pi, Mosquitto, and
verneMQ, see Section 3.1), which leads to more than 1900k lines of code (LOC). For
Mainflux, we collected also vulnerabilities concerning Docker components such as
Containerd [25], which leads to more than 500k LOC. K3OS code, instead, includes
293k LOC, while Zetta 14K LOC. About the user base, if we rely on the number
of forks on GitHub as a proxy to compare diffusion of frameworks, we observe that
KubeEdge and Mainflux are the most widespread projects with 1500 and 587 forks,
respectively, while K3OS and Zetta have less forks, 392 and 120, respectively. Based
on the above, future work may concern assessing the relation between framework
adoption and vulnerabilities being reported; for example, based on a security testing
campaign for all the frameworks in our study aimed at determining how vulnerability
distribution changes when extensive security testing is in place.

5.3 Conclusion validity.

Our study is purely observational; precisely, we compare the distribution of cate-
gorical variables not the effectiveness of different treatments. Therefore, we should
ensure that the differences in the number of occurrences for each category are signif-
icant. For each RQ, to reject the null hypothesis each category is equally likely we
performed a Pearson’s Chi-squared goodness-of-fit test. Table 7 provides the results;
for all our RQs, we reject the null hypothesis with p-value < 0.01. Please note that
for RQ6 our manual analysis (i.e., what we plot in Figure 10), which identifies, for
each vulnerability, only one violated security property (either the one that is easier
to violate or the one that is violated first), leads to significant conclusions (see row

45

Table 7: Statistical significance of the differences across RQ categories (Chi-squared
goodness-of-fit test)

RQ p-value
RQ1 5.75e−86
RQ2A 4.61e−140
RQ2B 5.7e−48
RQ2C 3.19e−47
RQ2D 2.34e−101
RQ3 (Failure type) 1.02e−12
RQ3 (Detectability) 3.53e−41
RQ4 3.55e−75
RQ5A 7.99e−53
RQ5B 2.02e−19
RQ6 4.10e−19
RQ6 (NVD-Total) 0.1e−0
RQ6 (NVD-High) 0.6e−0
RQ6 (NVD-Low) 0.7e−2
RQ7A 7.44e−56
RQ7B 7.74e−51
RQ7C 6.0e−45
RQ8 (Attack Complexity) 2.87e−17
RQ8 (Priviliges Required) 7.70e−08

RQ6 in Table 7). Instead, the data derived from NVD’s CVSS (i.e., what we plot in
Figure 11) does not enable us to reject the null hypothesis neither by looking at the
total counts (see row named RQ6 NVD-Total in Table 7) nor by looking at the vul-
nerabilities with the highest impact (see row RQ6 NVD-High). Indeed, as anticipated
in Section 4.6, NVD’s CVSS records usually report multiple security properties as
being violated by each vulnerability. In practice, our choice makes the results more
actionable in our context since it enables prioritizing the security feature to target.
However, it might lead to oversimplification (a vulnerability may affect multiple se-
curity properties) and therefore should not be considered to draw general conclusions
about the impact of vulnerabilities.

Another factor that may affect our conclusions is the distribution of faults per
project. Indeed, two of our case study subjects include 98% of the vulnerabilities
in our study: Kubedge (48.3%) and Mainflux (50.3%). If these two projects present
different distributions for our RQ answers (e.g., the most frequent vulnerability type
differ between them), our conclusions may not generalize. In practice, we need to
determine if the answers provided to each RQ are equally likely to belong to both
Kubedge and Mainflux. To this end, for each research question, we performed a
Fisher’s exact test [39]. The Fisher’s exact test computes the probability (p-value)
of observing the distribution of vulnerability results across our RQ choices8, under
the null hypothesis that each category is equally likely to appear in either Kubedge or
Mainflux. We consider the null hypothesis to be rejected (i.e., Kubedge and Mainflux

8 We use the term choice to indicate one of the possible answers that can be selected to address one RQ,
for each vulnerability.

46

Table 8: Distribution of RQs answers for Mainflux (M) and KubeEdge (K).

RQ1 RQ2-A RQ2-B RQ2-C RQ2-D RQ3-A
K M K M K M K M K M K M

IEC 1 0 Resources 1 4 Resources 5 9 Resources 4 8 Resources 1 1 Policy Failure 21 12
UAC 17 0 API 0 0 API 6 2 API 8 2 API 7 2 Network Failure 22 17
UEC 3 0 Plugins 5 0 Plugins 11 1 Plugins 9 2 Plugins 12 3 Value Failure 15 42
CE 50 74 SUT 40 67 SUT 18 50 SUT 16 45 SUT 37 55 Timing Failure 1 0
BT 0 0 Driver 0 0 Driver 0 0 Driver 0 0 Driver 0 0 System Failure 12 3

Service 1 1 Services 6 1 Services 6 0 Services 4 0
Network 6 3 Network 9 11 Network 19 17 Network 9 13

Node 18 0 Node 3 0 Node 0 0 Node 0 0
HW 0 0 HW 1 0 HW 1 0 HW 1 0
None 0 0 None 12 0 None 7 1 None 0 0

RQ3-B RQ5-A RQ4 RQ5-B RQ6
K M K M K M K M K M

Signalled 6 3 Zero Step 7 1 Data(previous Input) 4 0 Data(previous Input) 54 72 System Integrity 24 18
Unhandlled 6 4 1 Step 44 73 Lack of Data 1 0 Lack of Data 1 0 Data 6 1

Silent 59 67 2 Step 3 0 Missing Node 0 0 Missing Node 0 0 Confidentiality 28 52
3 Step 0 0 Resource Busy 1 0 Resource Busy 0 0 Availability 13 3

4+ Step 0 0 Resource navailable 2 0 Resource navailable 0 0
No Info 17 0 Configuraiton 28 62 Configuraiton 8 1

None 35 12 None 7 1
Delay Causing Missing 1 0

RQ7-B RQ8 (Distribution) RQ8 (Attack Complexity) RQ8 (Priviliges Required)
K M K M K M K M

CWE-284: Improper Access Control 19 43 0 - 1 0 0 Low 50 70 High 43 16
CWE-664: Improper Control of a Resource Through its Lifetime 40 24 1.1 - 2 0 0 High 17 3 Low 5 10
CWE-697: Incorrect Comparison 1 0 2.1 - 3 0 2 None 19 47
CWE-693: Protection Mechanism Failure 2 3 3.1 - 4 1 2
CWE-691: Insufficient Control Flow Management 1 2 4.1 - 5 8 5
CWE-707: Improper Neutralization 8 7 5.1 - 6 16 20
CWE-703: Improper Check or Handling of Exceptional Conditions 4 2 6.1 - 7 17 21
CWE-435: Improper Interaction Between Multiple Correctly-Behaving Entities 0 0 7.1 - 8 14 23
CWE-710: Improper Adherence to Coding Standards 2 2 8.1 - 9 9 45

9.1 - 10 2 1

RQ7-A RQ7-A RQ7-A RQ7-C
K M K M K M K M

CWE-863 2 1 CWE-444 0 0 CWE-918 1 2 State Issues 1 0
CWE-552 0 1 CWE-416 1 0 CWE-335 1 0 Data Processing Errors 2 1
CWE-327 0 1 CWE-270 1 0 CWE-20 2 3 Data Validation Issues 1 0
CWE-312 0 1 CWE-78 1 1 CWE-24 1 0 Data Neutralization Issues 3 4
CWE-798 0 1 CWE-787 0 0 CWE-283 1 0 Privilege Issues 5 1
CWE-434 0 1 CWE-401 1 0 CWE-250 2 1 Authentication Errors 3 34
CWE-372 1 0 CWE-79 1 1 CWE-502 3 0 File Handling Issues 2 1
CWE-601 2 1 CWE-290: 0 0 CWE-532 5 1 Pointer Issues 2 0
CWE-184 1 0 CWE-281 0 0 CWE-669 1 0 Business Logic Errors 4 0
CWE-94 1 2 CWE-256 0 0 CWE-732 1 0 Resource Management Errors 7 0
CWE-610 2 0 CWE-755 1 0 CWE-522 2 1 Audit / Logging Errors 7 1
CWE-441 1 0 CWE-201 1 0 CWE-306 0 0 Information Management Errors 10 4
CWE-200 5 2 CWE-300 1 0 CWE-73 1 0 Communication Channel Errors 1 0
CWE-862 3 0 CWE-295 1 1 CWE-287 1 0 Error Conditions, Return Values, Status Codes 1 2
CWE-269 2 2 CWE-1050 1 0 CWE-420 1 0 Random Number Issues 1 0
CWE-266 3 0 CWE-770 3 0 CWE-400 2 2 Cryptographic Issues 1 0
CWE-306 2 32 CWE-789 2 0 Bad Coding Practices 1 0
CWE-22 4 4 CWE-59 1 1 Behavioral Problems 0 0
CWE-668 2 2 CWE-61 1 0 Memory Buffer Errors 0 0
CWE-74 2 0 CWE-215 1 0 Credentials Management Errors 0 2
CWE-23 1 0 CWE-209 1 2 Permission Issues 0 2
CWE-476 2 0 CWE-284 2 1 Handler Errors 0 1

have significantly different distributions for the different categories) if the p-value is
below 0.05.

Table 8 reports the distribution of vulnerabilities for each RQ answer, for both
Kubedge and Mainflux; Table 9 reports the p-values computed with the Fisher’s ex-
act test. We can observe that, for most of our RQs, it is not possible to reject the null
hypothesis that each category is equally likely to appear in either Kubedge or Main-
flux (p-value > 0.05), which indicates that the distribution of answers, for most of

47

Table 9: Statistical significance of the differences in RQ answers between Mainflux
and KubeEdge, based on Table 8 (Fisher test)

RQ p-value
RQ1 1
RQ2A 0.071
RQ2B 0.999
RQ2C 0.999
RQ2D 1
RQ3 (Failure type) 1
RQ3 (Detectability) 1
RQ5A 1
RQ4 0.476
RQ5B 0.035
RQ6 1
RQ7A 0.005
RQ7B 0.999
RQ7C 0.046
RQ8 (Distribution) 0.133
RQ8 (Attack Complexity) 1
RQ8 (Priviliges Required) 1

our RQs, do not present any pattern specific to any of the two frameworks. Therefore,
we can conclude that most of our results are likely to generalize. In the following, we
discuss the three RQs having a p-value below 0.05 (i.e., RQ5B , RQ7A, RQ7C). In
the case of RQ5B , we observe that, for Mainflux, what enables the attacker to exploit
a vulnerability is mainly input data (97.4% of the cases); instead, for KubeEdge,
although input data remains the prevalent mean to exploit vulnerabilities (76.1%),
vulnerabilities may be exploited also with no inputs (9.9%) or configuration options
(11.3%). Although the difference in distribution is significant, it does not affect our
conclusion, which is about focusing on input data generation to support testing; in-
deed, input data is the most frequent answer for both KubeEdge and Mainflux. In the
case of RQ7A, we observe that, for Mainflux, 47.1% of the vulnerabilities concern
Missing Authentication for Critical Function (CWE-306), instead, for KubeEdge, the
vulnerabilities are more uniformly spread across a larger set of vulnerability types.
Still, although the difference in distribution is significant, it does not affect our con-
clusion for RQ7A, which is that the most frequent vulnerability types are the ones
concerning access control9 and path traversal or control of resources10. The per-
centage of access control vulnerabilities amounts to 37.8% for KubeEdge (31 out of
82) and 62.7% for Mainflux (42 out of 68). The percentage of vulnerabilities con-
cerning path traversal or control of resources is 68.3% for KubeEdge and 39.7%

9 Access control vulnerabilities are CWE-306, CWE-863, CWE-552, CWE-798, CWE-372, CWE-862,
CWE- 269, CWE-266, CWE-283, CWE-250, CWE-532, CWE-732, CWE-522, CWE-287, CWE-420,
CWE-284, CWE-300, CWE-295, and CWE-270.

10 Vulnerabilities concerning path traversal or control of resources are CWE-863, CWE-552, CWE-
312, CWE-434, CWE- 372, CWE-601, CWE-184, CWE-94, CWE-610, CWE-441, CWE-200, CWE-22,
CWE-668, CWE-74, CWE-23, CWE-20, CWE-24, CWE-250, CWE-502, CWE-532, CWE-669, CWE-
732, CWE-522, CWE-73, CWE-400, CWE-209, CWE-918, CWE- 201, CWE-1050, CWE-770, CWE-
789, CWE-59, CWE-61, CWE-215, CWE-416, and CWE-401.

48

for Mainflux. Although their ranking is swapped (i.e., access control vulnerabilities
are the most frequent for Mainflux but the second frequent for KubeEdge), they re-
main the two the most frequent vulnerability types for both the projects; therefore
our observations may generalize to other projects. Finally, in RQ7C the distribution
of vulnerabilities is more spread out for KubeEdge while it concentrates manly on
a single cause of errors for Mainflux. Indeed, 64.15% of the developer mistakes are
authentication errors for Mainflux and only 5.6% for KubeEdge. In KubeEdge, the
other frequent sources of problems are Data Neutralizaton Issues, Privilege Issues,
Resource Management Errors, Logging Errors, and Information Management Errors,
which cause 5.8%, 9.6%, 13.5%, 13.5%, and 19.2% of the vulnerabilities, respec-
tively. In Mainflux, they cause 7.5%, 1.9%, 0%, 1.9%, and 7.6% of the vulnerabil-
ities. In Mainflux, Credentials Management Errors, Permission Issues, and errors
in the management of Error Conditions, Return Values, Status Codes have slightly
higher frequencies (3.8%) than some of the four cases above. In the case of RQ7C ,
we believe that the difference in distribution between KubeEdge and Mainflux is in
part related to the difference observed for RQ7A. Indeed, it is reasonable that the
larger proportion of access control vulnerabilities observed in RQ7A for Mainflux is
related to the larger proportion of authentication errors observed for Mainflux. The
mistakes leading to path traversal or control of resources, which are more frequent
in KubeEdge, are likely more diverse. Also, the difference in distribution between
KubeEdge and Mainflux might be due to a non-negligible proportion of vulnerabil-
ities for which RQ7C data is not available (60 vulnerabilities in total, 40.8%); for
RQ7A, the proportion of missing vulnerabilities is lower, 10.20%, in total. To con-
clude, only the results of RQ7C may not generalize. However, RQ7C results are the
least actionable; indeed, they do not enable us to derive any suggestion for the devel-
opment of automated testing tools (see Section 6).

Finally, the results for KubeEdge and Mainflux may also generalize to K3OS
and Zetta. In the case of K3OS, results should generalize because K3OS inherits all
the Kubernetes vulnerabilities affecting KubeEdge. For Zetta, assuming that the low
number of vulnerabilities found is due to a limited user base, we may observe, in case
of a broader use of Zetta, a distribution of vulnerabilities similar to the one discussed
above because Zetta includes components (e.g., the event broker, the pub-sub service,
and the http-server) that, in a simplified manner, replicate the functionalities available
in KubeEdge.

5.4 External validity.

We selected Edge frameworks that, based on our selection criteria, have an active
user base, which indicates that they provide features that are necessary for the devel-
opment of Edge systems For example, KubeEdge is used to manage nearly 100,000
edge nodes in unmanned toll stations across China [70]. Further, the selected frame-
works include a range of features broad enough to support several contexts of use
for Edge systems, including smart light, speed sensors’ monitoring (e.g., vehicles’),
smart home security, temperature sensing, and video streaming systems [65, 145].
Consequently, the vulnerabilities encountered in our investigation are likely repre-

49

sentative of the different types of vulnerabilities that might be encountered in Edge
frameworks; indeed, every software feature may be vulnerable.

The type of security failures observed in the field depend not only on the features
implemented by the software but also on the quality of the software security testing
process in place. In our study, we considered only open source software; open source
software is often developed by volunteers who may not be enforced to follow a qual-
ity assurance process. However, this is not the case for KubeEdge, Mainflux, and
K3OS because their development is supervisioned by private companies that have
invested effort towards test automation for these frameworks (see Section 2.2). The
development process of KubeEdge, the largest system considered in our study, re-
lies on code review activities (e.g., contributions are revised by senior members11)
and two security teams [63, 64] that audit the system and respond to reports of se-
curity issues. Further, KubeEdge is based on Kubernetes, whose development team
includes a group of security experts [67]. Mainflux is developed and maintained by
Mainflux Labs, which is a for-profit technology company; considering that Mainflux
Labs developed a test suite and a benchmark for Mainflux, and that Mainflux Labs
provides auditing services, we assume the development process behind Mainflux to
be no different than the one adopted for other commercial Edge software. Similar
to Mainflux is the case of K3OS, which is part of Rancher, a framework developed
by the open source software development company Suse [131]. Among the frame-
works selected for our study, only Zetta is not supported by a for-profit organization
but only volunteers; therefore, the conclusions drawn for Zetta may not generalize to
commercial software solutions. However the impact of this threat is limited because
Zetta provides only 1 of the 147 vulnerabilities investigated in our study (see Table 2,
Page 16).

Given the growing popularity of Edge systems, the number of Edge vulnerabili-
ties to be studied might increase and vary; therefore, larger replications of our study
will be possible in the future.

6 Discussion and lessons learned

Our study aims to support the development of testing automation techniques that
discover vulnerabilities in Edge systems.

RQ1 indicates that security vulnerabilities slip through the testing process not be-
cause of bad testing but because of other reasons, which are Combinatorial explosion,
Unknown environment conditions, Unknown application conditions, Irreproducible
execution conditions. Software faults (and therefore vulnerabilities, which are a spe-
cific type of fault) that slip through the testing process because of the reasons above
are defined as field intrinsic by to Gazzola et al. [41]. To identify such faults, Gazzola
et al. propose to rely on field-based testing, which concerns performing testing activi-
ties directly in the production environment. Field-based testing might be adopted also
to discover field-intrinsic vulnerabilities. A recent survey [15] identifies three field-
based testing approaches: online testing, where test cases are executed directly on the

11 see https://kubeedge.io/en/docs/community/membership/

50

software instance used in production, offline testing, where test cases are executed
on a separated software instance running in the production environment, and ex-vivo
testing, where test cases are executed in-house (i.e., in the development environment)
but using data collected from the field.

Field-based testing solutions differ for the approach adopted, the software prop-
erties under test (i.e., functional, robustness, security), the test generation strategy
(specification-based, structure-based, fault-based, and reusing pre-existing test cases),
the environment in which test cases are generated (i.e., in-house, in-house with field
data, or in-the-field), the criterion adopted to trigger test cases (i.e., periodically, after
a specific event, after a request, based on a policy, when a function is used, after sys-
tem reconfiguration, after environment change, after module change/insertion/removal),
the resources required (e.g., user inputs, memory, logs, test data), and the types of or-
acles (i.e., domain-dependent or domain-independent).

The number of available field-based testing techniques targeting software security
is limited, seven out of 80 papers appearing in the above-mentioned survey [15]. Two
papers propose a technique that works offline [30,31], five papers concern online test-
ing [14,16,32,47,146]. Six techniques are specification-based [14,16,30,31,32,47],
one is fault-based [146]. They are activated by three different types of triggers: a pol-
icy [16, 32], the execution of a certain functionality defined either at run-time [30] or
before [31, 47], and the deployment of a new module [14, 146]. Unfortunately, these
seven field-based security testing approaches cannot be applied to test Edge frame-
works; indeed, four of them address problems in online service compositions [14,16,
32, 146], one approach targets only integer overflows [47], which were not observed
in our analysis, two approaches [30, 31] concern offline testing (i.e., they test sibling
processes with modified configurations), which is infeasible with large service (e.g.,
Edge controller) or with embedded devices running Edge nodes. New field-based
testing solutions for Edge security testing thus need to be developed.

Since RQ1 indicates that most of the vulnerabilities are not discovered at testing
time because of combinatorial explosion (i.e., the infeasibility to exercise the Edge
framework under all the possible execution conditions), we believe that field-based
testing might be an ideal solution since it might be implemented by developing tech-
niques that identify the conditions in which testing automation should be triggered
(e.g., when observing combination of inputs not tested in-house). To further support
our suggestion, we joined the results obtained for RQ1 and RQ4, which enables us
to report that 84 out of 126 (67%) CE vulnerabilities present a specific combination
of configuration parameters as precondition (i.e., they can be exploited only if a spe-
cific configuration is in place). Such number indicates that, by activating field-based
testing whenever the system is executed with a configuration not tested in-house, we
may discover up to 57% (i.e., 84 out of 147) Edge vulnerabilities.

Based on RQ2 results, we conclude that the SUT is the component that (a) is
usually faulty, (b) receives the inputs that trigger the vulnerability, (c) presents the
preconditions required for the vulnerability to be exploitable, and (d) shows failures.
Therefore, testing techniques should focus on the SUT interfaces, typically command
line utilities, API, or Web interfaces.

RQ3 results indicate that most of the security failures are silent; also, the majority
includes Value (38.8%) and Action failures (22.4%). Therefore, approaches looking

51

for crashes are not sufficient to support the identification of Edge vulnerabilities,
which prevents the adoption of most fuzz testing approaches [81]. Fuzz testing tools
(e.g., AFL [139]) usually rely on evolutionary search algorithms to generate test in-
puts by modifying previously generated inputs that demonstrated to be effective in
improving a target metric (e.g., code coverage). Fuzz testing is normally used to ei-
ther identify inputs leading to crashes or memory errors (e.g., use after free, out of
bounds accesses, memory leaks); although memory errors might be indicators of vul-
nerabilities leading to value or timing failures (e.g., accessing private data or causing
denial of service), without manual inspection it is not possible to determine if a mem-
ory error is exploitable as a vulnerability (i.e., if it breaks security properties) [53].
Therefore, fuzz testing can’t be used to automatically detect Edge vulnerabilities re-
sulting in value errors. It is therefore necessary to identify solutions addressing the
oracle problem (i.e., the problem of automatically determining if a test output is cor-
rect [12]); in this regard, metamorphic testing might be an option since it has shown
successful results when applied to test the security of Web systems [75]. Metamor-
phic security testing concerns specifying properties (called metamorphic relations)
that relate the outputs generated by a set of source inputs and a set of follow-up in-
puts derived from them. Source inputs are sequences of legal Web interactions (e.g.,
HTTP requests) collected using a Web crawler. Follow-up inputs are generated by al-
tering source inputs as an attacker would do. Metamorphic relations enable engineers
to avoid implementing test assertions to verify that test inputs lead to specific test
outputs [75]; indeed, metamorphic relations enable testing a software with any test
input and automatically verifying the correctness of the software outputs. One alter-
native solution that enables engineers to automatically verify software outputs con-
sists of relying on executable formal specifications (e.g., assertions verifying method
post-conditions and used in property-based testing [38]); however, such solution is
generally infeasible for Edge systems because software projects usually lack exe-
cutable formal specifications because they are expensive to produce and maintain.
For such reason, engineers manually implement test assertions that are specific for
the inputs exercised by a test case. Instead, recent work has shown that it is possi-
ble to define generic metamorphic relations that can discover a broad range of vul-
nerabilities and can be reused across software systems because they process system
inputs [20]; assertions, instead, are typically implemented within low-level software
functions and, therefore, can’t be reused across systems. Like assertions, metamor-
phic relations enable detecting silent failures (i.e., failures that can be detected only
by verifying the correctness of the output data generated by the system). An exam-
ple of how metamorphic security testing enables engineers to test a software system
without implementing test assertions for every test inputs follows. With metamorphic
relations, bypass authorization vulnerabilities can be detected by verifying if a URL
provided by the Web interface of a user leads to a different response page when re-
quested by a user whose Web interface does not provide the same URL. If the two
users receive the same response page then the second user had been able to bypass
the authorization schema [75]. Thanks to the use of Web crawlers, such metamorphic
relation can be tested with any URL provided by a Web system thus enabling the
exhaustive testing of all the available URLs. Since manually deriving test assertions

52

should be based on user-specific access policies, such exhaustive testing is infeasible
without metamorphic relations.

The results of RQ5A indicate that, once the system reaches the state required to
trigger the vulnerability, one input action (one step) is generally sufficient to exploit
a vulnerability. In addition, RQ4 indicates that, usually, it is a specific system config-
uration what enables exploiting the vulnerability. Therefore, it should be feasible to
automate security testing for Edge systems. Indeed, once a configuration to be tested
is identified, it might be sufficient to exercise the system with all the possible single
(one step) actions not with long action sequences, which should result in a quicker
testing process. Further, it should be feasible to thoroughly test the system.

The results of RQ5B indicate that most of the inputs triggering vulnerabilities are
data, which means that even brute force approaches like fuzzing might be sufficient
to exploit vulnerabilities; however, the oracle problem needs to be addressed (e.g.,
through metamorphic relations, as suggested above).

The results of RQ6 show that 55% of the vulnerabilities concern confidentiality.
Since confidentiality failures are about accessing sensible resources and do not affect
the state of the system, we believe that isolation techniques, which are difficult to
implement, are not needed when testing for confidentiality problems. Consequently,
field-based testing solutions focusing on confidentiality will not need to integrate
solutions that ensure isolation. Further, based on RQ1 results, we suggested to au-
tomatically trigger field-based testing when observing new configurations not tested
in-house. After joining RQ6 and RQ4 data, we determined that 72 out of 81 confiden-
tiality vulnerabilities depend on a specific configuration of the system (i.e., they were
likely not detected because the specific configuration they depend on was not con-
sidered). Therefore, we can speculate that a field-based testing approach that focuses
on confidentiality issues and is triggered by untested configurations might feasibly
detect a large proportion of Edge vulnerabilities (i.e., 72 out of 147, 49%).

The results for RQ7A to RQ7C provide further directions for the implementation
of testing automation techniques. The results of RQ7A indicate that most of the vul-
nerabilities concern CWE-306 (Missing Authentication for Critical Function), which
indicates that it is necessary to develop methods to automatically determine what are
the functions that should require authentication. Authorization problems (i.e., CWE-
284 in RQ7B) are frequent and, unfortunately, covered by existing field testing ap-
proaches only in the case of Web services [14, 16, 32, 146]. However, related work
has shown that it is feasible to detect authentication and authorization problems with
metamorphic security testing [75].

Input neutralization issues are often due to improper exception handling, which
may indicate the need for better robustness testing.

Finally, leakage of sensitive data, memory issues, and bad coding practices might
be detected through improved static code analysis tools; however, the evaluation of
the effectiveness and extensibility of existing tools go beyond the scope of this pa-
per. For that, we refer the reader to a recent empirical evaluation of Web-based sys-
tems [34], which has shown that exploratory manual penetration testing is more ef-
fective than automated static analysis tools in detecting severe vulnerabilities (e.g.,
the ones in the OWASP Top Ten list [121] related to Security Logging and Monitoring
Failures, like CWE 532 - Insertion of Sensitive Information into Log File, which is

53

a form of information leakage). Automated static analysis tools, instead, detect the
largest number of vulnerabilities, overall.

To summarize, since we observed that vulnerabilities are likely not discovered at
testing time because of combinatorial explosion, we suggest researchers to introduce
new security testing techniques for Edge systems that aim to address such problem
(RQ1). The need for improved testing is motivated by the fact that the Edge vulner-
abilities detected in-the-field are severe and easy to exploit (see RQ8). To minimize
the number of vulnerabilities discovered by the end-users (or by malicious users), we
suggest the development of field-based testing techniques that are triggered when the
system is executed with a configuration not tested in-house (RQ4). The feasibility of
such techniques should be facilitated by most vulnerabilities requiring only one input
step to be exploited (i.e., testing techniques don’t have to derive long input sequences,
RQ5A); further, plain input data is sufficient to exploit most of them (RQ5B). Such
techniques should target the interfaces of Edge frameworks not the components they
rely upon (e.g., network or drivers, RQ2). Further, field-based security testing tech-
niques shall focus on confidentiality, which concerns a large portion of the cases
(RQ6); based on our results, field-based security testing techniques targeting con-
fidentiality and triggered in the presence of untested configurations should be able
to address 49% of the vulnerabilities. Since most vulnerabilities lead to silent, value
failures (RQ3), researchers need to address the oracle problem (i.e., vulnerabilities
are unlikely detected by looking for crashes); however, metamorphic testing might
be a feasible solution since it has been successfully applied to detect authentication
and authorization problems, which are among the most frequent types of vulnerabil-
ities and developer mistakes (RQ7). Finally, till new approaches are not developed,
we suggest developers of Edge frameworks to increase the effort put into testing of
configurations; especially their effect on confidentiality.

7 Related work

To the best of our knowledge, our work is the first to report on vulnerabilities affecting
Edge frameworks. Related work concerns empirical studies of software vulnerabili-
ties, which we summarize below.

A recent survey of empirical studies on software failures indicates that their typ-
ical workflow includes six steps, which match our workflow: Define problem scope
(see Section 3), Collect defect reports and supplementary data (see Sections 3.1
and 3.2), Analyze bug characteristics (see RQ1 to RQ6 and RQ8), Perform root cause
analysis (see RQ7A to RQ7C), Report results (see Section 4), Discuss impact and rec-
ommendations for industry (see Section 6). The survey is based on 52 papers; how-
ever, only five of them focus on software vulnerabilities [17,28,71,82,140]. Further,
none of the selected papers aim to discuss the feasibility of performing field-based
testing, which was instead the aim of Gazzola et al. [41].

Bavota et al. analyzed the vulnerabilities affecting the Android OS [71,82]. Their
study investigates type and evolution of vulnerabilities, the most common CVSS vec-
tors, the Android subsystems mostly affected by vulnerabilities, and the time required
to fix them. Similar to our results, Bavota’s study show that vulnerabilities affecting

54

access control and privileges (i.e., CWE pillars CWE-664 and CWE-284 in our case,
see RQ7B) are the most frequent ones. However, in their analysis, memory errors
take the second place, which is not the case for us, likely because of the different na-
ture of these two types of software. Indeed, Android includes an OS layer that takes
care of handling also the memory at kernel level, which is not the case for Edge sys-
tems where a third party OS layer (excluded from vulnerability reports) takes care of
handling the memory. The layers mainly affected by Android vulnerabilities are the
kernel, the native libraries, and the application layer, which is in line with our find-
ings where the SUT, Plugins, and APIs are among the mostly affected components
in Edge systems. Somehow, these results show that the core components (i.e., SUT
for our analysis and kernel for Bavota’s) are the ones affected by most of the vulner-
abilities, possibly because they implement most of the core software features. Their
take-out lessons mostly concern the improvement of coding practices while we focus
on a complementary aspect, i.e., the development of testing automation tools.

Blessing et al. [17] analyzed the vulnerabilities affecting eight cryptographic
libraries (i.e., OpenSSL, GnuTLS, Mozilla NSS, WolfSSL, Botan, Libgcrypt, Li-
breSSL, and BoringSSL). They collected data from multiple sources (i.e., NVD, CVE
and OpenCVE). Their findings suggest that vulnerabilities in cryptographic libraries
are mainly due to the following CWE weaknesses: exposure of sensitive information,
improper input validation, numeric errors, memory buffer issues, resource manage-
ment errors, and cryptographic issues. Expectedly, the distribution of these weak-
nesses differ from the ones reported in our paper (e.g., memory buffer issues count
for 20% of the cryptographic cases while in our paper they are less than 1%); indeed,
Edge frameworks and cryptographic libraries present a very different nature.

Zaman et al., compared faults affecting two types of non-functional properties for
the Firefox Web-browser, which are security and performance [140]. Different from
our work, they do not aim to study the reasons why faults are not detected at testing
time but they focus on the fault-fixing process and report about the time required to fix
these faults, the number of developers involved in the fix, and the complexity of the fix
(number of lines and files modified). Similarly, Catolino et al. discuss the distribution
of different types of faults, the time before assignment/response/change, the duration
of the bug fixing process, and the topics related to different fault types [19]; such
information does not help designing automated testing tools, which is our purpose.
Tan et al. report on the faults affecting three popular open-source systems in 2014: the
Mozilla Web-browser [117], the Apache HTTP Server [5], and the Linux operating
system’s kernel [72]. Their discussion of security vulnerabilities is limited; indeed,
they report that semantic bugs are the main cause of security vulnerabilities but they
do not report any finer grained characterization. Further, they report that availability
is violated slightly more than confidentiality and integrity; however, the data set is
older than ours and their systems are different in nature.

Cottrell et al. report on the frequency, type, and severity of vulnerabilities af-
fecting hardware and software robotic components [28]. They report that vulnera-
bilities are more frequent in software (92.6%) than in hardware (7.4%) components,
which is in line with our findings. They do not explicitly rely on CWE vulnerabil-
ity types; however, they report that software vulnerabilities mainly concern Mem-
ory management (32.4%), Input sanitization (24.1%), Authorization/Authentication

55

(22.5%), Denial of Service (19.6%), Cryptography (7.3%), Insecure default settings
(7.3%), Dependency management (6%), Directory traversal (2.5%), Hard-coded se-
crets (2.4%). Such distribution of vulnerability types different from ours; we believe
that the difference is mainly due to the nature and maturity of the software considered.
For example, memory management issues have a limited impact in in Edge frame-
works (see CWE-789, CWE-1050, CWE-416, CWE-401 in Table 4, which count for
3.4% of the total), likely because Edge frameworks delegate memory management
to widely adopted open-source OSs. Input sanitization issues affect both robotics and
Edge systems; however, they are less frequent in Edge systems (see CWE-707, 9.20%
in Figure 13, Page 42). Authorization and authentication issues are more frequent in
Edge frameworks because it is a key feature of Web-based distributed systems (see
38% for CWE-284 in Figure 13). The frequency of denial of service (i.e., availability)
issues is in line with our findings (see Figure 10). Finally, in robotics systems, severity
is considered either high or critical for more than 50% of the software vulnerabili-
ties, a result that is similar to ours (see Section 4.8), which indicates that improved
security testing solutions are necessary across fields, not only Edge systems.

Austin et al. empirically evaluated the effectiveness of different security testing
approaches in detecting vulnerabilities of Web-based content management systems
(CMS) [8]. They compared four approaches: exploratory manual penetration test-
ing, systematic manual penetration testing, static analysis, and automated penetration
testing (i.e., dynamic program analysis). Their results show that different approaches
detect different vulnerabilities; precisely, static analysis detects mainly code injection
vulnerabilities, systematic manual penetration testing detects audit and input valida-
tion vulnerabilities, automated penetration testing detects information leaks but leads
to a high false positive rate for other types of vulnerabilities. Finally, static analysis
accurately detects unsafe code and lack of null checks but leads to a high false posi-
tive rate for other types of vulnerabilities. CMS share a subset of the features of Edge
systems (e.g., Web interfaces, interaction with databases); therefore, the results of
Austin et al. confirm that testing these systems is complex (i.e., different approaches
are required). Also, it shows that existing test automation tools are affected by a high
false positive rate which may limit their adoption.

Zahid et al. recently conducted a survey on risk management approaches for
cyber-physical systems (CPS), including IoT systems [138]. Their findings show that
availability and integrity are of major concern for CPS, in contrast to Cloud sys-
tems where access control, integrity, and auditability are the most-studied quality
attributes. Unsurprisingly, since Edge frameworks inherit several characteristics of
Cloud computing frameworks, we observe a higher impact of access control and in-
tegrity issues rather than availability ones.

Tabrizchi et al., in a recent survey on security challenges in Cloud computing [132],
list the architectural solutions that might be adopted to ensure security properties;
further, they list the security threats affecting Cloud systems, according to literature.
The provided list of threats includes path traversal attacks, code injections, authenti-
cation issues, abuse of functionalities, resource manipulation, denial of service, and
data breaches. All the threats identified by Tabrizchi et al. match the vulnerabilities
reported in our study; such result is not surprising since Cloud systems share many
commonalities with Edge systems. However, Tabrizchi et al. do not provide any so-

56

lution for software testing automation neither provide suggestions for prioritizing the
testing of vulnerabilities based on their frequency or criticality, which we do, instead.
Similar to the work of Tabrizchi et al., the work of Ardagna et al. [6] provides another
taxonomy of Cloud security solutions but is more dated. Their work shows that the
number of automated testing solutions was limited; however, they do not provide any
direction for future work.

8 Conclusion

We presented an empirical study of the security vulnerabilities affecting Edge frame-
works. Our objective is to support the development of automated software testing
techniques targeting software security in Edge frameworks. Our work is motivated by
the increasing relevance of the Edge paradigm, which ensures low latency for several
data-intensive applications (e.g., video streaming, video conferencing, video surveil-
lance, naval services). This is the case for our industry partner, SES, a world-leading
satellite operator.

We selected Edge frameworks with reported vulnerabilities and an active user
base. We have manually read all the vulnerability reports and processed CWE and
CVSS data reported in the CVE and NVD databases. We investigated eleven research
questions that concern aspects influencing the development of automated testing tools
(i.e, weaknesses in the testing process, types of components involved in a security
failure, type of failures observed, steps required to exploit a vulnerability, nature of
preconditions and inputs leading to a successful exploit, security properties being
violated, frequent vulnerability types, software behaviours and developer mistakes
associated to these vulnerabilities, severity).

Our results show that the large number of features implemented by Edge frame-
works result in a combination of configuration options that often prevent the detection
of vulnerabilities. Vulnerabilities are often due to implementation errors in the Edge
software but their consequences affect both the software itself, the network configura-
tion, and the controlled nodes. Confidentiality is the security property mostly affected
by these security vulnerabilities, which can be easily exploited (in one step). Half of
these vulnerabilities have a high NVD severity score, which highlights the need for
their timely detection. We identify field-based testing (i.e., performing testing activ-
ities directly in the production environment) as a possible solution to address these
vulnerabilities, which is facilitated by the prevalence of confidentiality problems (i.e.,
testing in the field is unlikely to affect the functioning of the system). Our future work
will concern the definition of such solutions based on our findings.

Acknowledgments

This work has been supported by SES [126] and the Luxembourg National Research
Fund (FNR) under the project INSTRUCT (IPBG19/14016225/INSTRUCT [73]).

57

Declarations

Data Availability
The authors declare that the data supporting the findings of this study are available

at the following URL https://zenodo.org/record/7826981.

Funding and/or Conflicts of interests/Competing interests
The authors declare that they have no conflict of interest.

References

1. Alvin Jude: How will 5G and edge computing transform the future of mobile gaming? https:
//www.ericsson.com/en/blog/2021/3/5g-edge-computing-gaming. Last Ac-
cessed: 2023

2. Alwarafy, A., Al-Thelaya, K.A., Abdallah, M., Schneider, J., Hamdi, M.: A survey on security and
privacy issues in edge-computing-assisted internet of things. IEEE Internet of Things Journal 8(6),
4004–4022 (2021). DOI 10.1109/JIOT.2020.3015432

3. Ammann, P., Offutt, J.: Introduction to software testing - 2nd Edition. Cambridge University Press
(2016)

4. Analysis Tools team: Static analysis tools for GO. https://analysis-tools.dev/tag/
go. Last Accessed: 2022

5. Apache foundation: https://www.apache.org/. Last Accessed: 2022
6. Ardagna, C.A., Asal, R., Damiani, E., Vu, Q.H.: From security to assurance in the cloud: A survey.

ACM Computing Surveys (CSUR) 48(1), 1–50 (2015)
7. ARM: Microcontrollers and infrastructure manufacturer. https://www.arm.com/. Last Ac-

cessed: 2022
8. Austin, A., Holmgreen, C., Williams, L.: A comparison of the efficiency and effectiveness of vulner-

ability discovery techniques. Information and Software Technology 55(7), 1279–1288 (2013). DOI
https://doi.org/10.1016/j.infsof.2012.11.007. URL https://www.sciencedirect.com/
science/article/pii/S0950584912002339

9. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable
and secure computing. IEEE transactions on dependable and secure computing 1(1), 11–33 (2004)

10. Aysan, H., Punnekkat, S., Dobrin, R.: Error modeling in dependable component-based systems. In:
2008 32nd Annual IEEE International Computer Software and Applications Conference, pp. 1309–
1314. IEEE (2008)

11. Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., Hanzo, L.: Latency minimization for
intelligent reflecting surface aided mobile edge computing. IEEE Journal on Selected Areas in
Communications 38(11), 2666–2682 (2020)

12. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software testing:
A survey. IEEE Transactions on Software Engineering 41(5), 507–525 (2015)

13. Ben Nassi, Yaron Pirutin, Tomer Cohen Galor, Yuval Elovici, and Boris Zadov: https://www.
nassiben.com/glowworm-attack. Last Accessed: 2022

14. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: The plastic framework and tools for testing
service-oriented applications. In: Software Engineering, pp. 106–139. Springer (2007)

15. Bertolino, A., Braione, P., De Angelis, G., Gazzola, L., Kifetew, F., Mariani, L., Orrù, M., Pezzè,
M., Pietrantuono, R., Russo, S., Tonella, P.: A Survey of Field-based Testing Techniques. ACM
Computing Surveys 54(5) (2021). DOI 10.1145/3447240

16. Bertolino, A., De Angelis, G., Kellomaki, S., Polini, A.: Enhancing service federation trustworthi-
ness through online testing. Computer 45(1), 66–72 (2011)

17. Blessing, J., Specter, M.A., Weitzner, D.J.: You really shouldn’t roll your own crypto: An empirical
study of vulnerabilities in cryptographic libraries. arXiv preprint arXiv:2107.04940 (2021)

18. Bondavalli, A., Simoncini, L.: Failure classification with respect to detection. In: [1990] Proceed-
ings. Second IEEE Workshop on Future Trends of Distributed Computing Systems, pp. 47–53. IEEE
(1990)

58

https://zenodo.org/record/7826981
https://www.ericsson.com/en/blog/2021/3/5g-edge-computing-gaming
https://www.ericsson.com/en/blog/2021/3/5g-edge-computing-gaming
https://analysis-tools.dev/tag/go
https://analysis-tools.dev/tag/go
https://www.apache.org/
https://www.arm.com/
https://www.sciencedirect.com/science/article/pii/S0950584912002339
https://www.sciencedirect.com/science/article/pii/S0950584912002339
https://www.nassiben.com/glowworm-attack
https://www.nassiben.com/glowworm-attack

19. Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: Not all bugs are the same: Understanding,
characterizing, and classifying bug types. Journal of Systems and Software 152, 165–181 (2019).
DOI https://doi.org/10.1016/j.jss.2019.03.002. URL https://www.sciencedirect.com/
science/article/pii/S0164121219300536

20. Chaleshtari, N.B., Pastore, F., Goknil, A., Briand, L.C.: Metamorphic testing for web system security.
IEEE Transactions on Software Engineering (2023). Accepted, available at https://arxiv.
org/abs/2208.09505

21. Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: Oauth demystified for mobile applica-
tion developers. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, p. 892–903. Association for Computing Machinery, New York, NY, USA
(2014). DOI 10.1145/2660267.2660323. URL https://doi.org/10.1145/2660267.
2660323

22. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong, M.Y.:
Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on soft-
ware Engineering 18(11), 943–956 (1992)

23. ci4rail: Computing Intelligence for Rail and Public Transport. http://www.ci4rail.com.
Last Accessed: 2022

24. Cinque, M., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: How do mobile phones fail? a failure data
analysis of symbian os smart phones. In: 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’07), pp. 585–594. IEEE (2007)

25. Cloud Native Computing Foundation: https://github.com/containerd/containerd.
Last Accessed: 2023

26. Clound Native Computing Foundation: https://www.cncf.io/. Last Accessed: 2022
27. Common Vulnerability Scoring System: https://www.first.org/cvss/. Last Accessed:

2022
28. Cottrell, K., Bose, D.B., Shahriar, H., Rahman, A.: An empirical study of vulnerabilities in robotics.

In: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), pp.
735–744 (2021). DOI 10.1109/COMPSAC51774.2021.00105

29. CVE Numbering Authorities (CNA): https://www.cve.org/ProgramOrganization/
CNAs. Last Accessed: 2022

30. Dai, H., Murphy, C., Kaiser, G.: Configuration fuzzing for software vulnerability detection. In: 2010
International Conference on Availability, Reliability and Security, pp. 525–530. IEEE (2010)

31. Dai, H., Murphy, C., Kaiser, G.E.: Confu: Configuration fuzzing testing framework for software vul-
nerability detection. In: Security-Aware Systems Applications and Software Development Methods,
pp. 152–167. IGI Global (2012)

32. De Angelis, G., Bertolino, A., Polini, A.: (role) cast: A framework for on-line service testing.
In: International Conference on Web Information Systems and Technologies, vol. 2, pp. 13–18.
SCITEPRESS (2011)

33. Dempsey, K., Shah, N., Arnold, C., Johnston, J.R., Jones, A.C., Orebaugh, A., Scholl, M.,
Stine, K.: NIST Special Publication 800-137 Information Security. https://nvlpubs.
nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf. Last
Accessed: 2022

34. Elder, S., Zahan, N., Shu, R., Metro, M., Kozarev, V., Menzies, T., Williams, L.: Do I really need all
this work to find vulnerabilities? Empirical Software Engineering 27(6), 154 (2022). DOI 10.1007/
s10664-022-10179-6. URL https://doi.org/10.1007/s10664-022-10179-6

35. Fabric8 Maven Plugin: https://maven.fabric8.io. Last Accessed: 2022
36. Fayad, M., Schmidt, D.C.: Object-oriented application frameworks. Commun. ACM 40(10), 32–38

(1997). DOI 10.1145/262793.262798. URL https://doi.org/10.1145/262793.262798
37. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.: Security testing: A

survey. In: Advances in Computers, vol. 101, pp. 1–51. Elsevier (2016)
38. Fink, G., Bishop, M.: Property-based testing: A new approach to testing for assurance. SIGSOFT

Softw. Eng. Notes 22(4), 74–80 (1997). DOI 10.1145/263244.263267. URL https://doi.org/
10.1145/263244.263267

39. Fisher, R.A.: On the interpretation of x2 from contingency tables, and the calculation of p. Journal of
the Royal Statistical Society 85(1), 87–94 (1922). URL http://www.jstor.org/stable/
2340521

40. Gavan Murphy: Asset Tracking – Living on the Edge. https://www.iottechnews.com/
news/2022/nov/09/asset-tracking-living-on-the-edge/. Last Accessed: 2023

59

https://www.sciencedirect.com/science/article/pii/S0164121219300536
https://www.sciencedirect.com/science/article/pii/S0164121219300536
https://arxiv.org/abs/2208.09505
https://arxiv.org/abs/2208.09505
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1145/2660267.2660323
http://www.ci4rail.com
https://github.com/containerd/containerd
https://www.cncf.io/
https://www.first.org/cvss/
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/ProgramOrganization/CNAs
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-137.pdf
https://doi.org/10.1007/s10664-022-10179-6
https://maven.fabric8.io
https://doi.org/10.1145/262793.262798
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
http://www.jstor.org/stable/2340521
http://www.jstor.org/stable/2340521
https://www.iottechnews.com/news/2022/nov/09/asset-tracking-living-on-the-edge/
https://www.iottechnews.com/news/2022/nov/09/asset-tracking-living-on-the-edge/

41. Gazzola, L., Mariani, L., Pastore, F., Pezze, M.: An exploratory study of field failures. In: 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), pp. 67–77. IEEE
(2017)

42. Google: Go lang. https://go.dev. Last Accessed: 2022
43. Gopalakrishna, N., Anandayuvaraj, D., Detti, A., Bland, F., Rahaman, S., Davis, J.C.: “if secu-

rity is required”: Engineering and security practices for machine learning-based iot devices. In:
2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for
the IoT (SERP4IoT), pp. 1–8. IEEE Computer Society, Los Alamitos, CA, USA (2022). DOI
10.1145/3528227.3528565. URL https://doi.ieeecomputersociety.org/10.1145/
3528227.3528565

44. Hagar, J.D.: IoT System Testing: An IoT Journey from Devices to Analytics and the Edge. Apress
(2002)

45. Honnef, D.: Staticcheck: static analysis tool for the go programming language. "https://
staticcheck.io/". Last Accessed: 2022

46. Huawei: http://www.huawei.com. Last Accessed: 2022
47. Hui, Z.W., Huang, S., Ji, M.Y.: A runtime-testing method for integer overflow detection based on

metamorphic relations. Journal of Intelligent & Fuzzy Systems 31(4), 2349–2361 (2016)
48. Invicti: Acunetix. https://www.acunetix.com/plp/

web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=
1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=
cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE.
Last Accessed: 2022

49. ISO: ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary.
ISO/IEC/IEEE 24765:2017(E) pp. 1–541 (2017). DOI 10.1109/IEEESTD.2017.8016712

50. Jin, X., Katsis, C., Sang, F., Sun, J., Kundu, A., Kompella, R.: Edge security: Challenges and issues
(2022). DOI 10.48550/ARXIV.2206.07164. URL https://arxiv.org/abs/2206.07164

51. K3OS: K3OS Automated Test Suite. https://github.com/rancher/k3os/blob/
master/scripts/test. Last Accessed: 2022

52. K3OS: K3OS Edge Computing Framework. https://k3os.io/. Last Accessed: 2022
53. Koziol, J.: Charlie Miller Reveals His Process for Security Research

(2010). URL https://resources.infosecinstitute.com/topic/
how-charlie-miller-does-research/

54. Kube-score: Static code analysis for kubernetes object definitions. https://kube-score.
com/. Last Accessed: 2022

55. KubeEdge: KubeEdge Deployment using Keadm. https://kubeedge.io/en/docs/
setup/keadm/. Last Accessed: 2022

56. KubeEdge: KubeEdge Development Process. https://kubeedge-docs.readthedocs.
io/en/latest/getting-started/contribute.html. Last Accessed: 2022

57. KubeEdge: KubeEdge Edge Computing Framework. https://kubeedge.io/en/. Last Ac-
cessed: 2022

58. KubeEdge: KubeEdge End-To-End Test Suite. https://github.com/kubeedge/
kubeedge/tree/master/tests/e2e. Last Accessed: 2022

59. KubeEdge: KubeEdge GitHub issue tracker. https://github.com/kubeedge/
kubeedge/issues. Last Accessed: 2022

60. KubeEdge: KubeEdge Integration Test Suite. https://github.com/kubeedge/
kubeedge/tree/master/tests/integration. Last Accessed: 2022

61. KubeEdge: KubeEdge Issue 1017. https://github.com/kubeedge/kubeedge/
issues/1017. Last Accessed: 2022

62. KubeEdge: KubeEdge Issue 1736. https://github.com/kubeedge/kubeedge/
issues/1736. Last Accessed: 2022

63. KubeEdge: KubeEdge Security Team. https://github.com/kubeedge/community/
tree/master/security-team. Last Accessed: 2022

64. KubeEdge: KubeEdge Sig-Security Team. https://github.com/kubeedge/community/
tree/master/sig-security. Last Accessed: 2022

65. KubeEdge Edge framework examples: KubeEdge. https://kubeedge.io/en/docs/
developer/device_crd/. Last Accessed: 2022

66. Kubernetes: Kubernetes pods. https://kubernetes.io/docs/concepts/workloads/
pods/. Last Accessed: 2022

60

https://go.dev
https://doi.ieeecomputersociety.org/10.1145/3528227.3528565
https://doi.ieeecomputersociety.org/10.1145/3528227.3528565
 "https://staticcheck.io/"
 "https://staticcheck.io/"
http://www.huawei.com
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://www.acunetix.com/plp/web-vulnerability-scanner/?utm_term=acunetix&utm_campaign=1077471751&utm_content=55423374169&utm_source=Adwords&utm_medium=cpc&gclid=EAIaIQobChMIjbm99ZTI9gIVgxoGAB1IsAK3EAAYASAAEgJo0PD_BwE
https://arxiv.org/abs/2206.07164
https://github.com/rancher/k3os/blob/master/scripts/test
https://github.com/rancher/k3os/blob/master/scripts/test
https://k3os.io/
https://resources.infosecinstitute.com/topic/how-charlie-miller-does-research/
https://resources.infosecinstitute.com/topic/how-charlie-miller-does-research/
https://kube-score.com/
https://kube-score.com/
https://kubeedge.io/en/docs/setup/keadm/
https://kubeedge.io/en/docs/setup/keadm/
https://kubeedge-docs.readthedocs.io/en/latest/getting-started/contribute.html
https://kubeedge-docs.readthedocs.io/en/latest/getting-started/contribute.html
https://kubeedge.io/en/
https://github.com/kubeedge/kubeedge/tree/master/tests/e2e
https://github.com/kubeedge/kubeedge/tree/master/tests/e2e
https://github.com/kubeedge/kubeedge/issues
https://github.com/kubeedge/kubeedge/issues
https://github.com/kubeedge/kubeedge/tree/master/tests/integration
https://github.com/kubeedge/kubeedge/tree/master/tests/integration
https://github.com/kubeedge/kubeedge/issues/1017
https://github.com/kubeedge/kubeedge/issues/1017
https://github.com/kubeedge/kubeedge/issues/1736
https://github.com/kubeedge/kubeedge/issues/1736
https://github.com/kubeedge/community/tree/master/security-team
https://github.com/kubeedge/community/tree/master/security-team
https://github.com/kubeedge/community/tree/master/sig-security
https://github.com/kubeedge/community/tree/master/sig-security
https://kubeedge.io/en/docs/developer/device_crd/
https://kubeedge.io/en/docs/developer/device_crd/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/

67. Kubernetes: Kubernetes Security Special Interest Group. https://github.com/
kubernetes/community/tree/master/sig-security. Last Accessed: 2022

68. Kubernetes: Logging in Kubernetes. https://github.com/kubernetes/community/
blob/master/contributors/devel/sig-instrumentation/logging.md. Last
Accessed: 2022

69. Kubernetes: Open-source system for automating deployment, scaling, and management of container-
ized applications. https://kubernetes.io. Last Accessed: 2022

70. Kubernetes: Test Report on KubeEdge’s Support for 100,000 Edge Nodes. https://kubeedge.
io/en/blog/scalability-test-report/. Last Accessed: 2022

71. Linares-Vásquez, M., Bavota, G., Escobar-Velásquez, C.: An empirical study on android-related
vulnerabilities. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pp. 2–13 (2017). DOI 10.1109/MSR.2017.60

72. Linux foundation: https://www.kernel.org/. Last Accessed: 2022
73. Luxembourg National Research Fund: INSTRUCT - INtegrated Satellite – TeRrestrial Systems for

Ubiquitous Beyond 5G CommunicaTions. https://instruct-ipbg.uni.lu/. Last Ac-
cessed: 2022

74. Mai, P.X., Goknil, A., Shar, L.K., Pastore, F., Briand, L.C., Shaame, S.: Modeling security and
privacy requirements: a use case-driven approach. Information and Software Technology 100, 165–
182 (2018). Available at https://orbilu.uni.lu/handle/10993/35498

75. Mai, P.X., Pastore, F., Goknil, A., Briand, L.C.: MCP: A security testing tool driven by requirements.
In: ICSE’19, pp. 55–58 (2019). DOI 10.1109/ICSE-Companion.2019.00037

76. MainFlux: Consulting and Security Audits. https://mainflux.com/consulting.html.
Last Accessed: 2022

77. Mainflux: Mainflux. https://github.com/mainflux/mainflux/issues. Last Ac-
cessed: 2022

78. MainFlux: Mainflux Benchmark. https://github.com/mainflux/benchmark. Last Ac-
cessed: 2022

79. Mainflux Framework: Mainflux. https://mainflux.com/. Last Accessed: 2022
80. Malik, J., Pastore, F.: Replicability package. https://zenodo.org/record/7826981. DOI

10.5281/zenodo.7826981. Last Accessed: 2023
81. Manes, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M.: The Art, Science, and

Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47(11), 2312–2331
(2021). DOI 10.1109/TSE.2019.2946563

82. Mazuera-Rozo, A., Bautista-Mora, J., Linares-Vásquez, M., Rueda, S., Bavota, G.: The android os
stack and its vulnerabilities: an empirical study. Empirical Software Engineering 24(4), 2056–2101
(2019)

83. Metasploit: Metasploit edge computing framework. https://www.metasploit.com". Last
Accessed: 2022

84. Microsoft: Accelerating IoT solution development and testing with Azure IoT
Device Simulation. https://azure.microsoft.com/pl-pl/blog/
accelerating-iot-solution-development-and-testing-with-azure-iot-device-simulation/.
Last Accessed: 2022

85. Microsoft: Visual Studio Code Kubernetes Tools. https://marketplace.visualstudio.
com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools. Last
Accessed: 2022

86. MITRE: https://github.com/kubeedge/kubeedge/issues/2362. Last Accessed:
2022

87. MITRE: Common Vulnerabilities and Exposures project. https://cve.mitre.org/cve/.
Last Accessed: 2022

88. MITRE: Common Weaknesses Enumeration project. https://cwe.mitre.org. Last Ac-
cessed: 2022

89. MITRE Corporation: https://www.mitre.org. Last Accessed: 2022
90. MITRE: CVE-2014-5278: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2014-5278. Last Accessed: 2022
91. MITRE: CVE-2019-11252: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2019-11252. Last Accessed: 2022
92. MITRE: CVE-2020-13597: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-13597. Last Accessed: 2022

61

https://github.com/kubernetes/community/tree/master/sig-security
https://github.com/kubernetes/community/tree/master/sig-security
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-instrumentation/logging.md
https://kubernetes.io
https://kubeedge.io/en/blog/scalability-test-report/
https://kubeedge.io/en/blog/scalability-test-report/
https://www.kernel.org/
https://instruct-ipbg.uni.lu/
https://orbilu.uni.lu/handle/10993/35498
https://mainflux.com/consulting.html
https://github.com/mainflux/mainflux/issues
https://github.com/mainflux/benchmark
https://mainflux.com/
https://zenodo.org/record/7826981
https://www.metasploit.com"
https://azure.microsoft.com/pl-pl/blog/accelerating-iot-solution-development-and-testing-with-azure-iot-device-simulation/
https://azure.microsoft.com/pl-pl/blog/accelerating-iot-solution-development-and-testing-with-azure-iot-device-simulation/
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-kubernetes-tools
https://github.com/kubeedge/kubeedge/issues/2362
https://cve.mitre.org/cve/
https://cwe.mitre.org
https://www.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5278
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5278
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11252
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11252
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13597
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13597

93. MITRE: CVE-2020-15157: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-15157. Last Accessed: 2022

94. MITRE: CVE-2020-2211: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-2211. Last Accessed: 2022

95. MITRE: CVE-2020-28914: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-28914. Last Accessed: 2022

96. MITRE: CVE-2020-35514: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-35514. Last Accessed: 2022

97. MITRE: CVE-2020-8557: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8557. Last Accessed: 2022

98. MITRE: CVE-2020-8558: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8558. Last Accessed: 2022

99. MITRE: CVE-2020-8559: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8559. Last Accessed: 2022

100. MITRE: CVE-2020-8563: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8563. Last Accessed: 2022

101. MITRE: CVE-2020-8565: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8565. Last Accessed: 2022

102. MITRE: CVE-2020-8566: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-8566. Last Accessed: 2022

103. MITRE: CVE-2021-20218: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-20218. Last Accessed: 2022

104. MITRE: CVE-2021-21251: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-21251. Last Accessed: 2022

105. MITRE: CVE-2021-21334: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-21334. Last Accessed: 2022

106. MITRE: CVE-2021-25737: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-25737. Last Accessed: 2022

107. MITRE: CVE-2021-28166: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-28166. Last Accessed: 2022

108. MITRE: CVE-2021-28448: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-28448. Last Accessed: 2022

109. MITRE: CVE-2021-31938: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-31938. Last Accessed: 2022

110. MITRE: CVE-2021-32783: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-32783. Last Accessed: 2022

111. MITRE: CVE-2021-34431: CVE-2021-34431. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2021-34431. Last Accessed: 2022

112. MITRE: CVE-2021-3499: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-3499. Last Accessed: 2022

113. MITRE: CVE-2021-38545: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-38545. Last Accessed: 2022

114. MITRE: VE-2021-39159: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-39159. Last Accessed: 2022

115. Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things. IEEE Transactions
on Emerging Topics in Computing 5(4), 586–602 (2017). DOI 10.1109/TETC.2016.2606384

116. Mosquitto: https://mosquitto.org. Last Accessed: 2022
117. Mozilla foundation: https://www.mozilla.org. Last Accessed: 2022
118. MQTT: https://mqtt.org/. Last Accessed: 2022
119. Nassi, B., Pirutin, Y., Galor, T., Elovici, Y., Zadov, B.: Glowworm attack: Optical tempest sound

recovery via a device’s power indicator led. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’21, p. 1900–1914. Association for Computing
Machinery, New York, NY, USA (2021). DOI 10.1145/3460120.3484775. URL https://doi.
org/10.1145/3460120.3484775

120. National Vulnerability Database: https://nvd.nist.gov. Last Accessed: 2022
121. OWASP: OWASp Top Ten. https://owasp.org/www-project-top-ten/. Last Ac-

cessed: 2022
122. Rancher: Rancher container management. https://rancher.com/. Last Accessed: 2022

62

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15157
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15157
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-2211
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28914
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28914
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8558
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8558
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8563
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8565
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8565
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20218
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20218
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21251
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-25737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28166
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28448
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28448
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31938
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31938
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32783
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3499
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3499
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38545
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39159
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39159
https://mosquitto.org
https://www.mozilla.org
https://mqtt.org/
https://doi.org/10.1145/3460120.3484775
https://doi.org/10.1145/3460120.3484775
https://nvd.nist.gov
https://owasp.org/www-project-top-ten/
https://rancher.com/

123. SES Luxembourg: SES broadcasting services. https://www.ses.com/find-service/
broadcasters. Last Accessed: 2022

124. SES Luxembourg: SES connectivity for commercial aviation. https://www.ses.com/
find-service/commercial-aviation. Last Accessed: 2022

125. SES Luxembourg: SES connectivity for commercial maritime. https://www.ses.com/
find-service/commercial-maritime. Last Accessed: 2022

126. SES Luxembourg: SES, leading satellite operator. https://ses.com/. Last Accessed: 2022
127. Shabtai, A., Elovici, Y., Rokach, L.: A Survey of Data Leakage Detection and Prevention Solutions.

Springer Publishing Company, Incorporated (2012)
128. SonarQube: https://www.sonarqube.org/. Last Accessed: 2022
129. Sonarsource: Sonarsource tools for GO. "https://rules.sonarsource.com/go". Last

Accessed: 2022
130. Stankovic, J.A.: Research directions for the internet of things. IEEE internet of things journal 1(1),

3–9 (2014)
131. Suse: Suse software. https://www.suse.com. Last Accessed: 2022
132. Tabrizchi, H., Kuchaki Rafsanjani, M.: A survey on security challenges in cloud computing: issues,

threats, and solutions. The journal of supercomputing 76(12), 9493–9532 (2020)
133. The Chief I/O: 7 Static Analysis Tools to Secure and Build Sta-

ble Kubernetes Clusters . https://thechief.io/c/editorial/
7-static-analysis-tools-to-secure-and-build-stable-kubernetes-clusters/.
Last Accessed: 2022

134. Todd Erdley: How Edge Computing Unleashes Innovation in Live
Streaming? https://www.tvtechnology.com/opinion/
how-edge-computing-unleashes-innovation-in-live-streaming. Last
Accessed: 2023

135. VerneMQ Broker: Vernemq. https://vernemq.com/. Last Accessed: 2022
136. Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., Lv, W.: Edge computing security: State of the art and chal-

lenges. Proceedings of the IEEE 107(8), 1608–1631 (2019). DOI 10.1109/JPROC.2019.2918437
137. Yomo Framework: Yomo. https://yomo.run/. Last Accessed: 2022
138. Zahid, M., Inayat, I., Daneva, M., Mehmood, Z.: Security risks in cyber physical systems—a sys-

tematic mapping study. Journal of Software: Evolution and Process 33(9), e2346 (2021). DOI
https://doi.org/10.1002/smr.2346. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.2346

139. Zalewski, M.: American Fuzzy Lop: a security- oriented fuzzer (2020). URL http://lcamtuf.
coredump.cx/afl/

140. Zaman, S., Adams, B., Hassan, A.E.: Security versus performance bugs: A case study on fire-
fox. In: Proceedings of the 8th Working Conference on Mining Software Repositories, MSR
’11, p. 93–102. Association for Computing Machinery, New York, NY, USA (2011). DOI
10.1145/1985441.1985457. URL https://doi.org/10.1145/1985441.1985457

141. Zetta: Zetta Automated Test Suite. https://github.com/zettajs/zetta/tree/
master/test. Last Accessed: 2022

142. Zetta.: Zetta Edge Computing Framework. https://github.com/zettajs/zetta/wiki/
Overview. Last Accessed: 2022

143. Zetta: Zetta GitHub bug reports. https://github.com/zettajs/zetta/issues. Last
Accessed: 2022

144. Zetta: Zetta Issue 335. https://github.com/zettajs/zetta/issues/335. Last Ac-
cessed: 2022

145. Zetta Edge framework examples: https://www.zettajs.org/projects/. Last Accessed:
2022

146. Zhang, J.: An approach to facilitate reliability testing of web services components. In: 15th Interna-
tional Symposium on Software Reliability Engineering, pp. 210–218. IEEE (2004)

63

https://www.ses.com/find-service/broadcasters
https://www.ses.com/find-service/broadcasters
https://www.ses.com/find-service/commercial-aviation
https://www.ses.com/find-service/commercial-aviation
https://www.ses.com/find-service/commercial-maritime
https://www.ses.com/find-service/commercial-maritime
https://ses.com/
https://www.sonarqube.org/
"https://rules.sonarsource.com/go"
https://www.suse.com
https://thechief.io/c/editorial/7-static-analysis-tools-to-secure-and-build-stable-kubernetes-clusters/
https://thechief.io/c/editorial/7-static-analysis-tools-to-secure-and-build-stable-kubernetes-clusters/
https://www.tvtechnology.com/opinion/how-edge-computing-unleashes-innovation-in-live-streaming
https://www.tvtechnology.com/opinion/how-edge-computing-unleashes-innovation-in-live-streaming
https://vernemq.com/
https://yomo.run/
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2346
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2346
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/1985441.1985457
https://github.com/zettajs/zetta/tree/master/test
https://github.com/zettajs/zetta/tree/master/test
https://github.com/zettajs/zetta/wiki/Overview
https://github.com/zettajs/zetta/wiki/Overview
https://github.com/zettajs/zetta/issues
https://github.com/zettajs/zetta/issues/335
https://www.zettajs.org/projects/

	Introduction
	Background
	Study Design
	Results
	Threats to validity
	Discussion and lessons learned
	Related work
	Conclusion

