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1 Introduction

The issue of predicting equity returns is one of the most widely discussed topics in fi-

nancial economics (see Campbell, 2008, for a recent survey article). In-sample, numer-

ous studies find evidence of predictability (see, for example, Stambaugh, 1999; Ang and

Bekaert, 2007; Lettau and Van Nieuwerburgh, 2008; Pastor and Stambaugh, 2009). Out-

of-sample, however, little consensus exists on the fundamental questions of whether pre-

dictability exists and which variables have the best predictive performance (see, for exam-

ple, Goyal and Welch, 2008; Campbell and Thompson, 2008; Cooper and Gulen, 2006;

Rapach, Strauss, and Zhou, 2010). Given the conflicting points of view in the literature,

Spiegel (2008) asks whether academics can “produce an empirical model that allows

for economic changes over time that is also capable of determining the ‘right’parameter

values in time to help investors?” This is precisely the question that we address in this

paper.

The literature agrees that parameter instability (i.e., time-variation in coefficients) rep-

resents a major challenge and that it might influence many of the results in the literature.

There are several reasons coefficients might vary over time, e.g., due to changes in regula-

tory conditions, in market sentiments, in monetary policies, in the institutional framework

or in macroeconomic interrelations. For example, Barsky (1989) documents time-varying

stock-bond correlations, Dimson et al. (2002) present empirical evidence on time-varying

correlations between various economic variables, McQueen and Roley (1993) and Boyd

et al. (2005) find that the incorporation of news into stock prices varies with the business
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cycle, and Veldkamp (2005) and Van Nieuwerburgh and Veldkamp (2006), among others,

relate learning asymmetries and the flow of information to the business cycle. Bossaerts

and Hillion (1999) state that “The poor external validity of the prediction models that

formal model selection criteria chose indicates model nonstationarity: the parameters of

the best prediction model change over time.” Similarly, Cremers (2002) claims in his

conclusion that his model is limited by the assumption of parameter stability. Ang and

Bekaert (2007) test for time variation in coefficients by splitting their entire sample into

different sub-periods. They clearly show the time-varying pattern of coefficients and find,

for example, that the coefficient for the dividend yield is twice as large if estimated from

a sample that excludes the 1990s as it is if estimated from the entire sample.

The literature, however, is inconclusive about the true degree of time-variation in co-

efficients, and, despite the agreement on the issue, there is lack of systematic evidence.

We identify the following important questions that have not been addressed in the liter-

ature and that we address in this paper: What degree of time-variation is supported by

the data? How important is the issue of parameter instability (e.g., relative to the issue of

choosing the right predictive variables)? By how much do current results (e.g., on out-of-

sample predictability and the importance of individual predictive variables) change once

parameter instability is taken into account?

We analyze these questions by estimating predictive regressions for S&P 500 returns

that explicitly allow for time-variation of regression coefficients. For this purpose we ap-

ply a Bayesian econometric method (see, for example, Avramov, 2002; Cremers, 2002;

Pastor, 2000; Wachter and Warusawitharana, 2011; and Johannes, Korteweg, and Polson,
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2011) that enables us to model time-varying coefficients that follow a random walk. The

random walk assumption is, obviously, unattractive from a theoretical point of view. Em-

pirically, however, it is common and frequently outperforms more general models with

autocorrelated coefficient dynamics (see, for example, Meese and Rogoff, 1983a,b).1 The

two dimensions of model uncertainty— the choice of predictors and the degree of coef-

ficients’ time-variation— are addressed in a consistent manner within a Bayesian model

averaging approach (see Raftery, Madigan, and Hoeting, 1997, for technical details and

Avramov, 2002; Cremers, 2002 for applications to return prediction).

There is a stream of literature that addresses the issue of parameter instability by esti-

mating regime-switching models and by searching for structural breaks in the predictive

relation between equity returns and explanatory variables. Pastor and Stambaugh (2001)

and Kim et al. (2005) use Bayesian econometrics to identify structural breaks in equity

premia. Both papers report that they identify empirical evidence of the existence of struc-

tural breaks. They differ quite considerably, however, in the timing of the breaks. Viceira

(1997) is to our knowledge the first to search for structural changes in predictive relations,

but does not find evidence of structural breaks in the relation between the dividend yield

and equity returns. Paye and Timmermann (2006), in contrast, identify several structural

breaks in the coefficients of state variables such as the lagged dividend yield or the term

spread. All of these studies focus on in-sample predictability and ignore the question of

whether an investor would have been able to detect these regime shifts in real-time (i.e.,

out-of-sample). Lettau and Van Nieuwerburgh (2008) represent a notable exception as

1In Appendix A.3 we verify for our specific application that models with random walk coefficients
perform significantly better than models with autocorrelated coefficients.
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they also perform out-of-sample tests. They conclude that regime-shifting models per-

form very poorly out-of-sample because of unreliable estimates of the timing of breaks

and of the size of the shift.

We differ from these papers because we do not assume, ex ante, that the time variation

in coefficients follows a step function. In contrast, the methodology proposed in this paper

allows for gradual changes of coefficients. The methodology is also simple and parsimo-

nious enough to enable us to evaluate out-of-sample predictability for a comprehensive set

of predictive variables. We define out-of-sample in a strict sense; i.e., all results reported

and discussed in this paper are based on predictions that an investor could calculate and

use in real-time (without knowing the full sample). As shown in our empirical analysis,

models with gradually varying coefficients are strongly supported by the data.2

Methodologically, the paper closest to our study is Johannes et al. (2011) who in some

specifications allow for drifting regression coefficients. There are, however, important

conceptual differences. For example, our focus is on evaluating whether time-varying

coefficients improve the predictive power of a standard set of 13 predictive variables;

i.e., in a multivariate setup. Johannes et al. (2011), in contrast, focus on the issue of

stochastic volatility and only consider models with a single predictive variable (i.e., pay-

2Note that there is an extensive literature (see Jostova and Philipov, 2005, for a recent paper) that focuses
on models with dynamic (i.e., time-varying) beta, which is to some extent related to our work. However,
these papers condition stock market betas on observables, while we allow for time-varying coefficients when
regressing an equity market index on a set of predictive variables. Another stream of literature that is to a
lesser extent related to our paper is the one focussing on portfolio selection under uncertainty. Kandel and
Stambaugh (1996), Barberis (2000), and Xia (2001) explicitly take into account parameter uncertainty and
evaluate the influence of return predictability on portfolio selection using Bayesian methods. MacKinlay
and Pastor (2000), Pastor (2000), and Pastor and Stambaugh (2000) model the impact of prior mispricing
uncertainty in asset pricing models on portfolio choice. Pettenuzzo and Timmermann (2011) address the
issue of model instability (i.e., structural breaks in predictive relations) and show that it can have a larger
impact on optimal asset allocation than other sources of risk such as uncertainty in parameter estimation.
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out measures). Despite these methodological differences, we arrive at the same main

result, namely that out-of-sample predictability exists.

Using monthly returns of the S&P 500 from May 1937 to December 2002, we com-

pare the predictive out-of-sample performance (using statistical and economic measures)

of models with time-varying coefficients to two benchmark models: (i) regressions with

constant coefficients, and (ii) the unconditional mean of past returns that constitutes the

no-predictability benchmark.3 Our most important result is that we find strong and con-

sistent empirical support for models with time-varying coefficients. These models sig-

nificantly outperform the two benchmark models across different time periods as far as

prediction accuracy is concerned. This gain in prediction accuracy is also important in

economic terms resulting in consistent utility gains between 1.8 and 5.8% p.a. for differ-

ent time periods, relative to an investor using the historic mean. In comparison, investors

using the predictions of models with constant coefficients realize a utility gain of .2% only

in one sub-period (i.e., 1965 to 2002) and utility losses between -1.9% and -5.8% in all

other periods. The findings of other researchers put these results in further perspective:

following the same approach to calculating utility gains and comparable data sets, Rapach

et al. (2010) find utility gains in the order of 0.5% to 1.5%, and Campbell and Thompson

(2008) report maximum utility gains of 0.3%.

Most interestingly, we find a strong relation between out-of-sample predictability and

3The benchmark models with constant coefficients used in the paper are equal to OLS regressions with
an extending window. We are aware that, in the literature, regressions with constant coefficients use rolling
windows and thus mimic time-varying coefficients in an ad-hoc way. The methodology proposed in this
paper, in contrast, accounts for time-varying coefficients in a systematic and statistically consistent way.
In Appendix A.3 we report results from rolling window regressions. These results show that our proposed
methodology also clearly dominates rolling window OLS regressions.
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the business cycle. Although we find evidence of predictability during recessions as well

as during expansions (in contrast to Henkel, Martin, and Nardari, 2011, who do not

find any evidence of in-sample predictability during expansions), the evidence is much

stronger during recessions. In general, models with time-varying coefficients generate

return predictions that are consistent with business cycle related patterns implied by asset

pricing theory (e.g., Campbell and Cochrane, 1999; Menzly, Santos, and Veronesi, 2004).

On average, predicted equity risk premia increase during a recession (and peak around the

trough). During expansions, predicted risk premia decrease and reach their lowest levels

around the peak of the business cycle. Finally, an investor who relies on these predictions

times the market very well, reducing her exposure around the peak of the business cycle

and moving back into the market before the trough.

In the next step we analyze the models with time-varying coefficients in more detail

to get a better understanding of the sources of their outperformance. Specifically, we

decompose prediction uncertainty into four components, (i) the observational variance

(i.e., the variance assigned to the random disturbance term in the predictive relation), (ii)

the estimation uncertainty in coefficients, (iii) the model uncertainty with respect to the

choice of predictive variables (see Avramov, 2002; Cremers, 2002), and (iv) the model

uncertainty with respect to the time-variation in coefficients. Empirically, we find that

the first two sources are most important, as expected. The two dimensions of model

uncertainty are, however, non-negligible, especially when the stock market is under stress

(e.g., during the oil price shock in the 70s).

Finally, we investigate the importance of individual predictive variables within the
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models with time-varying coefficients. We find that the relative valuation of high- and

low-beta stocks (i.e., the cross-sectional premium) plays a dominant role among our set of

predictive variables. We also find that the dividend yield receives considerable empirical

support. Even more importantly, we show that, in the case of the dividend yield, our model

with time-varying coefficients is able to learn the structural break due to the initiation of

SEC rule 10b-18 in November 1982 (this rule enabled firms to legally buy back shares

under certain circumstances, see Grullon and Michaely, 2002, for details) — in contrast

to constant coefficients or even regime-switching models (see Goyal and Welch, 2008;

Lettau and Van Nieuwerburgh, 2008). Thus, while previous studies report a steady decline

of the importance of the dividend yield as a predictive variable during the 80s and 90s, we

show an increase.

The paper is structured as follows. Section 2 presents the empirical methodology.

Section 3 describes the variables used in the empirical study. Section 4 reports empirical

results and discusses their implications. Section 5 concludes.

2 Prediction Models with Time-Varying Coefficients

Like the vast majority of papers on return prediction (see, for example, Pesaran and Tim-

mermann, 1995; Bossaerts and Hillion, 1999; Avramov, 2002; Cremers, 2002; Goyal and

Welch, 2008; and Ang and Bekaert, 2007), we assume a linear relation between predic-

tive variables (chosen from a set of k candidate variables, including a constant) and the

dependent variable, i.e., the excess return r of some asset. However, while these papers
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assume that the unobservable regression coefficients θ are constant over time, we model

the coefficients in our dynamic linear models to be time-varying (see Section 2.1). An

important contribution of our paper is to evaluate whether the data support time-varying

coefficients or whether it confirms the constant coefficient paradigm. For each degree of

time-variation of coefficients, we estimate the 2k− 1 dynamic linear models that result

from all possible combinations of predictive variables. Then, we use a Bayesian model

selection criterion to assign posterior probability weights across individual models that

differ in the selected variables and degree of time-variation (similar to Avramov, 2002;

Cremers, 2002). Finally, we use these posterior probabilities to determine an average

prediction model (see Section 2.2).

The goal of this econometric approach is to provide a flexible prediction framework

that explicitly accounts for the different sources of uncertainty: uncertainty in the choice

of predictive variables, uncertainty in the estimation of coefficients, uncertainty in the

degree of time-variation of the regression coefficients, and the general disturbance term.

In Section 2.1 we focus on outlining the characteristics of an individual dynamic linear

prediction model (i.e., for a given choice of predictive variables), and in Section 2.2 we

discuss the Bayesian model selection approach.

2.1 Dynamic Linear Models

In this section we introduce dynamic linear models (according to West and Harrison,

1997) that explicitly allow for a time-varying nature of the linear relation between the

asset return rt+1 over the interval (t, t +1] and the vector Xt of realizations of the explana-
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tory variables observed at time t. We are performing an out-of-sample analysis, in which

out-of-sample is to be interpreted in a strict sense; i.e., for predicting the return at time

t +1, we use only information that is available at or before time t.

Observable variables have a subscript that indicates the time at which they are known.

When speaking about beliefs regarding parameters, like the regression coefficients and

the variance V , we state the information set on which these beliefs are conditioned.

More specifically, we estimate models of the form

rt+1 = X ′t θt + vt+1, v∼ N(0,V ) (observation equation), (1)

θt = θt−1 +ωt ω∼ N(0,Wt) (system equation). (2)

The vector θt consists of unobservable, time-varying regression coefficients, and the ob-

servational disturbance v is assumed to be normally distributed with mean 0 and constant

but unknown variance V .4 In what follows we call V the observational variance. The

concept of the predictive regression expressed in Equation (1), i.e., that time t observable

variables predict time t +1 returns is not necessarily in contradiction to the efficient mar-

kets hypothesis. Time variation of expected returns can arise in efficient markets, e.g.,

as a consequence of time variation in risk aversion, see Campbell and Cochrane (1999),

or of the presence of long-run consumption risk as in Bansal and Yaron (2004). While

Equation (2) states that these coefficients are exposed to random shocks ω that are jointly

normal (with mean 0 and variance matrix Wt), we do not assume systematic movements

4See Johannes et al. (2011) for a Bayesian framework with stochastic volatility.
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in θ, i.e., we consider changes in θ as unpredictable.5

We are aware that Equation (2) implies that coefficients follow a random walk and

that theoretically they might drift to arbitrarily high or low values, hence causing returns –

without regularly updating the system equation to new observations – to be non-stationary.

To avoid this undesirable property one must impose some structure on the system equa-

tion. Our investigations, however, show that any deviation from the assumption of no

predictability in the shocks on coefficients reduces the predictive power of our regression

system. In Appendix A.3, we extend Equation (2) to allow for autocorrelation in the co-

efficients and then perform a horse race within our predictability framework that shows

that random walk coefficients significantly outperform autocorrelated coefficients with

respect to all analyzed statistics. We argue that the superior predictive performance of the

parsimonious model stems from avoiding estimation errors while allowing to calibrate

coefficients to observed data.

We share this finding with a series of empirical studies on predictability. For exam-

ple, the literature on exchange rate prediction relies extensively on random walk mod-

els although the assumption of non-stationary exchange rates is theoretically unfounded.

Meese and Rogoff (1983a) and Meese and Rogoff (1983b) find that random walk models

outperform more sophisticated models such as structural models in predicting exchange

rates. They started a large literature that, until today, has unsuccessfully tried to find pre-

dictive models that outperform random walk models (see, for example, Kilian and Taylor,

2003, for a more recent paper). In the literature on equity return predictability, random

5See Primiceri (2005) and Cogley and Sargent (2003) for a similar model specification with an applica-
tion to monetary policy and Brown et al. (1997) for an application to house prices.
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walk assumptions are also common. When modeling predictors, Ferreira and Santa-Clara

(2011), for example, assume that the dividend-price ratio follows a random walk in their

predictive setup (see also Campbell, 2008). Similar to our argument above, they find that

the main advantage of this assumption is a substantial reduction in estimation error as

fewer parameters have to be estimated.

Given that we perform the estimation on a monthly basis, this high frequency of ob-

servations drives the dynamics of the estimated coefficients and, thus, mitigates any con-

cerns about the random walk assumption. Such concerns, in contrast, might become more

important when updating at a lower frequency. But as the variance in coefficients gradu-

ally increases over time the estimation procedure becomes more responsive to incoming

observations (see Equations 18 and 19 in Appendix A.1), avoiding unbounded drifts of

estimated coefficients even in this case.

If the system variance matrix Wt equals 0, the regression coefficients θt are constant

over time. Thus, our model nests the specification of constant regression coefficients. If

Wt increases, the intrinsic variability of the regression coefficients θt increases the flexi-

bility of the model. At the same time, however, the out-of-sample prediction variance in-

creases and, consequently, reduces the precision of the prediction. The specific structure

we impose on Wt and how we estimate the magnitude of time variation of the underlying

coefficients will be explained below.

Let Dt = [rt ,rt−1, ...,Xt ,Xt−1, ...,Priorst=0] denote the information set available at time

t. This information set contains all returns, all corresponding realizations of the predic-

tive variables up to time t and our initial time zero choice of priors regarding θ and V . In
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Appendix A.1 we will describe in detail how, at some arbitrary time t+1, the observation

of a new return realization leads to an update of the estimated system coefficients and the

estimated observational variance. The essential result is that using a normally distributed

prior for the system coefficients θ0 and an inverse-gamma distributed prior for the obser-

vational variance V leads to a fully conjugate Bayesian analysis, which ensures that prior

and posterior distributions come from the same family of distributions. For the time t = 0

specification of the prior information we use a natural conjugate g-prior specification (see,

e.g., Zellner, 1986; this type of prior was, for example, also used in the study by Cremers,

2002):

V |D0 ∼ IG
[

1
2
,
1
2

S0

]
, (3)

θ0|D0,V ∼ N
[
0,gS0(X ′X)−1] , (4)

where

S0 =
1

N−1
r′(I−X(X ′X)−1X ′)r. (5)

This is a diffuse prior centered around the null-hypothesis of no-predictability and where g

serves as the scaling factor that determines the confidence assigned to the null-hypothesis

of no-predictability. Thus, the prior for the coefficient vector θ0|D0 is centered around

zero, and the covariances among coefficients are multiples of the OLS estimate of the

variance in coefficients.6

6For the paper’s main results the g-prior is derived from the entire sample. As is shown in Equation
(4) the g-prior multiplies the variance/covariance structure of θ by a large scalar. This makes the prior
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The forecast of the time t +1 return rt+1 (i.e., the predictive density) can be found by

integrating the conditional density of rt+1 over the range of θ and V . It is a Student-t-

distribution, as illustrated by Equation (11) in Appendix A.1.

To keep the model tractable, we need to give some structure to the system variance

matrix Wt . Equations (1) and (2) show that an increase in the system variance negatively

affects the precision of the coefficients’ estimates θt |Dt (see Appendix A.1 for the anal-

ysis, especially Equation (10)). In periods of low system variance, the estimation error

of the coefficient vector θ tends toward zero as the sample size increases. In times of

high system variance, the estimate of θ loses precision. Hence, the estimation error in

determining θ is positively related to the underlying system variance. A simple way to

capture this relation is to assume that Wt is proportional to the variance/covariance matrix

of θ|Dt . More precisely, the scaling factor is assumed to be 1−δ

δ
with 0 < δi ≤ 1. West and

Harrison (1997) call δ a discount factor and, consequently, this model setup a discount

factor approach.

A choice of δ equal to 1 corresponds to Wt = 0, i.e., to the assumption that the re-

gression coefficients are constant over time, similar to the models evaluated in the vast

majority of studies on equity return prediction. Choosing a discount factor δ < 1 ex-

plicitly assumes variability of the underlying regression parameters. As a consequence,

the prediction of one particular dynamic linear model depends not only on the choice of

essentially uninformative which means that initially the estimation procedure is highly responsive to the
observations and adapts quickly to the empirical patterns. This is a very common procedure in Bayesian
econometrics (see, for example, Zellner, 1986; Koop, Poirier, and Tobias, 2007) and does not invalidate our
claim that results are out-of-sample. In Appendix A.3 we show results in which we derive the OLS estimate
from a specific burn-in period of 60 months in the beginning of our sample period. The results are basically
unaffected by this choice of prior.
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the predictive variables but also on the choice of δ. Both these choices represent model

uncertainty, which we address in a Bayesian model averaging framework.

2.2 Bayesian Model Selection

The empirical literature on asset price dynamics shows that there is considerable uncer-

tainty about which factors contain significant information for predicting asset returns.

This means that even if we restrict our attention to simple linear models as specified in

(1) and (2), there is a high degree of model uncertainty due to the ex ante choice of the set

of predictive variables Xt used as regressors. Agreeing on k candidate regressors (includ-

ing the constant) alone implies 2k− 1 different possible linear regression models. The

presumed variability in the regression coefficients θt (characterized by the choice of the

discount factor δ) represents another a priori specification choice. We consider values on

a grid δ ∈ {δ1,δ2, . . . ,δd} where 0 < δi ≤ 1 and d captures the number of discrete values

of δ considered. Since the Bayesian updating approach integrates (sums) over the range

of the discount factor δ, the specific choice of the set of δs is not critically influencing the

result as long as the relevant range of time variability is adequately covered. Considering

a number of d different discrete values of δ leads to a total of d ·(2k−1) possible dynamic

linear models.7

The arbitrary choice of one particular model from this substantial pool of possible

models is always debatable. Bayesian model selection (see Avramov, 2002; Cremers,

7We assume the same degree of time-variation for all coefficients included in a specific model. The pro-
posed framework would be flexible enough to allow for variable-specific degrees of time-variation. Given
the lack of theoretical predictions for the level of time-variation of individual variables and the enormous
number of degrees of freedom, we have to make this simplifying assumption.
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2002) offers a systematic approach to this problem that tests the reliability of all d ·(2k−1)

models against the observed data (see Appendix A.2 for details). Starting from an unin-

formed prior that gives equal weight to each individual model, it assigns posterior prob-

abilities to each model. However, the determination of the universe of possible models

together with the assumption of the prior probability leaves some room for discretion. We

take a large number of candidate predictive variables and different values of δ into ac-

count. Further, we perform robustness checks with respect to different assumptions about

the prior.

The posterior probability of each of the d ·(2k−1) models is updated month by month

according to Bayes rule; i.e., based on the realized likelihood of the model’s return pre-

diction. Appendix A.2 provides more details on the Bayesian model averaging approach.

The overall average model’s predictive density is then the posterior-probability weighted

average predictive density of all d ·(2k−1) models in our universe. The beauty of this ap-

proach is its flexibility. If we want to analyze, for example, the empirical support for mod-

els including a specific predictive variable or having a certain degree of time-variation, we

simply average across all models with this specific characteristic.
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3 Empirical Study Design

3.1 Data Description

We calibrate and test the proposed methodology using monthly total excess returns of the

S&P 500 Index from May 1937 to December 2002.8 The choice of equity returns and

explanatory variables is guided by previous academic studies and by the goal of ensuring

the comparability of our results with these studies. In particular, we want to relate our

results to those reported in Goyal and Welch (2008) and, thus, reuse their data set in

our study.9 For the sake of brevity, we include only a short description of the predictive

variables here (see Goyal and Welch, 2008, for a more extensive discussion of the data set

and the data sources):

• Dividends: Dividend Yield (dy) is the difference between the log of dividends on

the S&P 500 Index and the log of one-month-lagged prices.

• Earnings: Earnings to Price Ratio (ep) is the difference between the log of earnings

and the log of prices. Dividend Payout Ratio (dpayr) is the difference between the

log of dividends and the log of earnings.

• Variance: As a measure of Stock Variance (svar) the sum of squared daily returns

on the S&P 500 is used.
8The sample period is driven by concerns of data availability; specifically, the cross-sectional beta pre-

mium variable is only available for this specific time period. In Appendix A.3 we extend our predictive
framework such that variables can enter or drop from the data set at any time and reevaluate the predictive
performance of our models for the longer time period of January 1927 to December 2008 (see the Appendix
for some empirical results). None of our main results is affected by this extension of the sample period.

9We particularly thank Amit Goyal for providing their data set.

17



• Cross-sectional premium: Cross-Sectional Beta Premium (csp) quantifies the rela-

tive valuation of high- and low-beta stocks according to Polk et al. (2006).

• Book value: Book to Market Ratio (bmr) is the ratio of book value at the end of the

previous year (for the months January and February, the book value is additionally

lagged by one year) divided by the end-of-month market value, both taken from the

Dow Jones Industrial Average.

• Net issuing activity: Net Equity Expansion (ntis) is the ratio of twelve-month mov-

ing sums of net issues by NYSE listed stocks to the total market capitalization of

NYSE stocks.

• T-bills: T-bill Rate (tbl) is the secondary market rate of 3-month US treasury bills.

• Long-Term Yield: Long-term Government Bond Yields (lty) and Long-term Gov-

ernment Bond Returns (ltr) are the yields and returns of long-term US treasury

bonds, respectively.

• Corporate Credit: Default Return Spread (dfr) is the difference between returns on

long-term corporate bonds and returns on long-term government bonds. Default

Yield Spread (dfy) is the difference between BAA-rated and AAA-rated corporate

bond yields.

• Inflation (inf) is the Consumer Price Index (all urban consumers) from the Bureau

of Labor Statistics, lagged by one additional month.
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Table 1: Summary Statistics (788 Observations).

Mean Standard Minimum Maximum Median
deviation

dy -3.295 0.422 -4.525 -2.406 -3.291
ep -2.650 0.402 -3.839 -1.775 -2.674

dpayr -0.650 0.197 -1.183 0.063 -0.624
svar 0.002 0.004 0.000 0.071 0.001
csp 0.000 0.002 -0.004 0.008 -0.000
bmr 0.614 0.237 0.121 1.207 0.617
ntis 0.018 0.015 -0.031 0.054 0.020
tbl 0.042 0.032 0.000 0.163 0.039
lty 0.057 0.030 0.018 0.148 0.056
ltr 0.005 0.024 -0.084 0.152 0.003
dfy 0.010 0.005 0.003 0.032 0.008
dfr 0.000 0.011 -0.051 0.070 0.000
inf 0.003 0.005 -0.014 0.057 0.003

From the data set of Goyal and Welch (2008) we exclude the predictive variables “In-

vestment to Capital Ratio”, “Percent Equity Issuing”, and “Consumption, Wealth, Income

Ratio”, since they are not available at a monthly frequency. “Dividend to Price Ratio”is

excluded from our multivariate study since it is almost perfectly correlated to dy. The

“Term Spread”is also excluded for collinearity reasons since it is the difference between

the variables lty and tbl. Furthermore, we consider a constant term in our predictive

models. Table 1 provides summary statistics of the used data.

3.2 Parameter and Prior Choices

The approach outlined in Section 2 requires the choice of appropriate priors and the se-

lection of adequate values of δ. For the actual implementation, we perform the estimation
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procedure for a g-prior with g = 50.10 The second choice is the range of δ to be covered

in the BMA when integrating over the degree of variability in θ, thereby determining an

empirical estimate of δ. We choose δ ∈ [0.96,1.00] and evaluate different levels of gran-

ularity.11 The lower boundary of the relevant range for δ is derived from the following

considerations. As described in Section 2.1, the effect of δ strictly lower than 1.00 cor-

responds to an increase in the variance of the coefficient vector by a factor of 1/δ per

month. If we ignore other determinants of this variance, the total effect of δ equal to .98

will be a 50 percent increase within 20 months. For δ equal to .96, a 50 percent increase

in variance will be reached twice as fast, in approximately ten months. The latter case

describes a world, in which coefficients are extremely unstable and, thus, we select it as

the lower boundary.

As far as prior probabilities of individual models and model families are concerned,

we start out with an uninformed prior giving equal weight to each individual model (i.e.,

1/(d · (2k− 1)) with d as the number of supporting points in the range of δ) and each

individual δ-value (i.e., 1/d) at the beginning of the estimation horizon. Therefore, every

model and every model family has the same chance to turn out to be important.12

10We repeat the analysis using a g-prior of ten. Finding our conclusions unchanged after this robustness
check, we omit the results for the sake of brevity.

11Specifically, we conduct our estimation with two choices of granularity in δ, δ ∈ {.96, .98,1.00} and
δ ∈ {.96, .97, .98, .99,1.00}. The increase in supporting points for the BMA integration over δ does not
change our results notably.

12To perform a robustness check, we take an even more conservative and skeptical point of view with
respect to the existence of predictability. For this reason we attribute a larger prior probability amounting
to 50% to the no-predictability benchmark; i.e., the model consisting only of a non-time-varying constant.
The remaining models receive equal prior probability amounting to .5 ·1/(d · (2k−1)−1). Our results are
robust to this change of prior information. The authors will provide detailed results for this specific case
upon request.
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4 Results

In the result section, we first concentrate on determining whether there is evidence of out-

of-sample predictability and whether including models with time-varying coefficients im-

proves predictability. In addition to statistical tests, we investigate if simple trading strate-

gies would have been able to exploit the observed degree of out-of-sample predictability.

Further, we evaluate the relation between predictability and the business cycle to get a

better understanding of the sources of predictability. After documenting that time-varying

coefficients significantly improve prediction quality, we investigate the characteristics of

these models in more detail. Finally, we illustrate how our models with time-varying coef-

ficients adjust using a case study that examines the dividend yield as a predictive variable

before and after release of Rule 10b-18 in November 1982.

4.1 Out-of-Sample Predictability

To test for out-of-sample predictability, we analyze the differences in mean squared pre-

diction errors (MSPE) between the no-predictability benchmark and a predictive model.

The no-predictability benchmark is the unconditional model that neglects the predictive

power of any of the 13 predictive variables and takes the historical long-term average

equity premium as the best prediction for the following month’s premium. This no-

predictability benchmark model is thus nested in our universe of predictive regressions

and corresponds to the model that includes only the constant as a predictor and assumes

that the coefficient of the constant does not vary over time. We find broad support — over
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different subsamples, using statistical and economic measures — for the conclusions that

predictive regressions with time-varying coefficients predict market returns significantly

better than the unconditional mean and that they perform significantly better than regres-

sions with constant coefficients. More specifically, we consider the following different

predictive models in this analysis:

• BMA-Model incl. (excl.) TVar-Coeff.: this model represents the Bayesian model av-

erage across all individual models including (excluding) models with time-varying

coefficients.

• Univariate Models incl. (excl.) TVar-Coeff.: These models consider only one pre-

dictive variable at a time. In the cases, in which we include time-varying coeffi-

cients, we still use Bayesian model averaging to average across models with differ-

ent assumptions of the degree of time-variation of the coefficient.

• MOST-Model incl. (excl.) TVar-Coeff.: The MOST-Models represent the individ-

ual models that receive most posterior probability — among all individual models

including (excluding) models with time-varying coefficients — at the end of the

month before the evaluation period starts. Then we keep this model specification

(the variable selection and degree of time-variation of the coefficients) constant dur-

ing the evaluation period, but we update the coefficient estimates.

• MEDIAN-Model incl. (excl.) TVar-Coeff.: The MEDIAN model is determined in

the following way. At the end of the month before the evaluation period starts we

identify all predictive variables that receive more than 50% posterior probability in
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the BMA-Model incl. TVar-Coeff. (the 50%-threshold is basically an ad-hoc way

to determine variables that show decent predictive performance). Then we focus

on the model that includes these predictive variables. The MEDIAN-Model incl.

(excl.) TVar-Coeff. is the model that includes these predictive variables and has

time-varying (constant) coefficients.

The motivation to look at univariate models, the MOST-Model, and the MEDIAN-Model

is to differentiate the effect of repeated updating of dynamic coefficients within a model

from the effect of the BMA that shifts weights between models depending on historical

performance. In contrast to the BMA-Models, MOST and MEDIAN models fix a certain

selection of variables. Any performance differences we find for these models between the

versions including and excluding time-varying coefficients can, thus, be unambiguously

related to the influence of time-varying coefficients.

In this section we distinguish four different sample periods: 1947+, 1965+, 1976+,

and 1988+. These sample periods only affect the selection of predictions that are analyzed

in a specific statistical test or economic evaluation. They do not affect the estimation of the

models; i.e., predictive models are still updated monthly. This choice of sample periods

is mainly driven by issues of comparability to other studies (especially, Goyal and Welch,

2008; Rapach, Strauss, and Zhou, 2010). Furthermore, a common result of recent studies

is that the evidence of out-of-sample predictability is largely driven by a few exceptional

return observations. For this reason two of the sub-periods start immediately after periods

of distress, the oil price shock of 1975 and the stock market crash in 1987.
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4.1.1 Statistical Evaluation

For each predictive model, Table 2 reports differences in mean squared prediction errors

relative to the no-predictability benchmark. Furthermore, we report p-values of tests that

the reported differences in MSPEs are significantly larger than zero (i.e., implying that

the predictive model predicts more accurately than the benchmark) and that unreported

differences in MSPEs between models including and excluding time-varying coefficients

are significantly larger than zero (last column). We properly account for the fact that these

tests compare models that are nested and, therefore, correct the statistics (the differences

in MSPEs) according to Clark and West (2006).

We start with the analysis of the BMA-Model (BMA-Model incl. (excl.) TVar-Coeff.).

Only if time-varying coefficients are considered, the resulting BMA-Model outperforms

the no-predictability benchmark significantly in all sub-samples (the BMA-Model with

constant coefficients succeeds only in the ”1947+” period).13 Furthermore, the BMA-

Model including time-varying coefficients consistently and significantly improves the per-

formance relative to the BMA-Model excluding time-varying coefficients (with p-values

of 1% or lower across all sample periods).

Next, we focus on the 13 univariate models nested in the universe of models we con-

sider. We find a significant improvement in prediction accuracy after including time-

varying coefficients in many cases. Univariate models with time-varying coefficients sig-

13The results we find for differences in MSPEs are confirmed when we look at the Bayes Factors,
which represent alternative Bayesian statistics. For the entire data sample from 1937 to 2003, for example,
the weight of the no-predictability benchmark within the BMA-Model including time-varying coefficients
drops from its naive prior by a factor of 10−6. This result compares well to Cremers (2002). Appendix A.3
presents and discusses the time-series dynamics of the Bayes Factor over our sample period. Even more
detailed results are available from the authors upon request.
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nificantly (at a 10% significance level) outperform the ones with only constant coefficients

in 28 out of 52 (i.e., 13 univariate models times four time periods) cases across all sub-

periods. Furthermore, in only 2 out of 52 cases the model with constant coefficients tends

to predict more accurately (indicated by a p-value that exceeds 50% in the last column of

each table). Relative to the no-predictability benchmark, however, few univariate mod-

els perform consistently well. In the case of models excluding time-varying coefficients,

not a single univariate model outperforms the no-predictability benchmark significantly

across all sample periods (hence, our results perfectly support the findings of Goyal and

Welch, 2008). If coefficients are also modeled dynamically, we find one variable that

consistently beats the historic average in a univariate framework, namely csp.

Finally, we further confirm the evidence that time-varying coefficients improve pre-

diction accuracy for individual models by looking at the MOST and MEDIAN-Model.

In both cases, the consideration of time-varying coefficients results in a significant per-

formance enhancement across all sample periods.14 In the case of these two models, the

performance relative to the no-predictability benchmark also increases significantly once

time-varying coefficients are considered. Except for the MEDIAN-Model in the 1988+

sub-sample (p-value of .16), they beat the historic mean consistently. Therefore, these

models seem to represent quite reasonable alternatives to the BMA-Model. Note, how-

ever, that this is not at all the case if coefficients are restricted to be constant.

From these results we conclude that the inclusion of time-varying coefficients dra-

matically improves the out-of-sample predictability — across all model specifications

14In the case of the MOST-Model, the model with highest posterior probability in December 1946 is a
model with constant coefficients; thus, there is no p-value for the comparison.
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Table 2: Statistical Evaluation: This table summarizes the differences in MSPEs (mul-
tiplied by 100) between the no-predictability benchmark and a predictive model. It also
provides the p-values of one-sided tests that the difference is larger than zero. The last
column reports the p-values of one-sided tests that use the corresponding model with con-
stant coefficients as benchmark. Given that we compare prediction quality with respect to
a nested model, we apply the definitions of Clark and West (2006) for the statistics of the
differences of MSPEs. We distinguish four different evaluation periods: 1947+, 1965+,
1976+, and 1988+.

Sample Period: 1947+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model 0.0192 0.00 0.0046 0.08 0.00
ep 0.0055 0.02 0.0026 0.04 0.12
svar 0.0004 0.41 -0.0005 0.95 0.30
bmr 0.0031 0.21 0.0031 0.14 0.05
tbl 0.0055 0.02 0.0033 0.08 0.01
ltr 0.0050 0.01 0.0018 0.14 0.01
dfy 0.0035 0.02 -0.0001 0.64 0.02
inf 0.0027 0.09 0.0009 0.16 0.18
dy 0.0044 0.01 0.0036 0.02 0.08
dpayr 0.0027 0.17 -0.0001 0.54 0.12
csp 0.0094 0.01 0.0052 0.02 0.01
ntis 0.0043 0.01 0.0020 0.10 0.04
lty 0.0035 0.08 0.0025 0.13 0.06
dfr 0.0008 0.16 -0.0005 0.81 0.02
MOST-Model 0.0054 0.10 0.0054 0.10 .
MEDIAN-Model 0.0220 0.00 0.0028 0.22 0.00

and across all sub-periods. If time-varying coefficients are considered, the overall best

performing model is the BMA-Model, as it shows the clearest performance advantage

relative to the no-predictability mean. It is followed by the MOST-Model and the uni-

variate model based on csp, which also show consistent, strong, out-of-sample predictive

performance.
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Sample Period: 1965+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model 0.0261 0.00 0.0039 0.11 0.00
ep 0.0067 0.04 0.0023 0.11 0.07
svar 0.0007 0.39 -0.0007 0.94 0.29
bmr 0.0018 0.37 0.0013 0.35 0.09
tbl 0.0063 0.05 0.0047 0.08 0.11
ltr 0.0056 0.02 0.0036 0.06 0.14
dfy 0.0048 0.02 -0.0003 0.79 0.02
inf 0.0029 0.15 0.0008 0.24 0.19
dy 0.0046 0.03 0.0038 0.05 0.18
dpayr 0.0041 0.16 0.0004 0.38 0.17
csp 0.0106 0.03 0.0048 0.03 0.08
ntis 0.0049 0.03 0.0031 0.07 0.18
lty 0.0044 0.12 0.0035 0.15 0.13
dfr 0.0008 0.23 -0.0003 0.65 0.08
MOST-Model 0.0141 0.06 0.0015 0.35 0.00
MEDIAN-Model 0.0018 0.02 0.0003 0.47 0.00

Sample Period: 1976+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model 0.0304 0.00 0.0038 0.18 0.00
ep 0.0018 0.21 0.0017 0.22 0.08
svar -0.0007 0.87 -0.0008 0.91 0.28
bmr -0.0006 0.61 -0.0005 0.56 0.02
tbl 0.0015 0.31 0.0013 0.35 0.04
ltr 0.0030 0.16 0.0030 0.16 0.49
dfy 0.0027 0.10 -0.0000 0.54 0.10
inf -0.0003 0.61 -0.0002 0.57 0.66
dy 0.0018 0.26 0.0016 0.30 0.02
dpayr -0.0001 0.52 -0.0002 0.58 0.31
csp 0.0097 0.04 0.0031 0.16 0.05
ntis 0.0039 0.07 0.0037 0.08 0.22
lty 0.0005 0.43 0.0005 0.43 0.11
dfr 0.0002 0.41 -0.0003 0.71 0.08
MOST-Model 0.0252 0.00 -0.0012 0.60 0.00
MEDIAN-Model 0.0307 0.00 -0.0004 0.54 0.00
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Sample Period: 1988+

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Comp
Diff. in MSPE p-value Diff. in MSPE p-value p-value

BMA-Model 0.0210 0.08 -0.0012 0.60 0.01
ep 0.0036 0.12 0.0036 0.13 0.05
svar -0.0006 0.76 -0.0007 0.76 0.30
bmr 0.0009 0.39 -0.0006 0.57 0.06
tbl -0.0012 0.85 -0.0016 0.89 0.09
ltr 0.0008 0.37 0.0008 0.37 0.34
dfy 0.0006 0.27 -0.0003 0.80 0.19
inf -0.0005 0.70 -0.0006 0.71 0.42
dy 0.0013 0.38 0.0007 0.44 0.01
dpayr -0.0018 0.92 -0.0019 0.92 0.06
csp 0.0148 0.05 0.0029 0.18 0.05
ntis 0.0003 0.46 0.0002 0.47 0.21
lty -0.0007 0.81 -0.0008 0.82 0.08
dfr -0.0014 0.94 -0.0010 0.91 0.97
MOST-Model 0.0280 0.06 0.0004 0.48 0.00
MEDIAN-Model 0.0134 0.16 0.0062 0.18 0.01

4.1.2 Economic Evaluation

So far, we have documented that, statistically speaking, models with time-varying coeffi-

cients represent a significant improvement. In a further step, we test whether the identified

levels of out-of-sample predictability of monthly S&P 500 returns are sufficient such that

an investor might rationally use the predicted return (and its estimated variance) for port-

folio optimization (see Kandel and Stambaugh, 1996; Campbell and Thompson, 2008).

To test for economic evidence that a trading strategy could have exploited this degree

of out-of-sample predictability in a profitable way, we follow Campbell and Thompson

(2008) and Rapach et al. (2010) and consider an investor with a single-period horizon and

mean-variance preferences.

We analyze the gain in realized utility of an investor who uses any of the predictive
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models in comparison to the no-predictability benchmark. We determine monthly realized

mean-variance utility where we use daily S&P 500 returns within a month to estimate the

monthly variance. The utility function is E(Rp)− (γ/2)Var(Rp), where Rp is the port-

folio return and γ = 3. Average realized utility gains and significance levels are inferred

from these time series.

Table 3 summarizes these results for the same set of predictive models and sample

periods. These utility gains very convincingly confirm and even strengthen our previ-

ous results. Overall, the BMA-Model and the MEDIAN-Model show best performance,

i.e., consistently positive and large utility gains, if time-varying coefficients are included.

These utility gains are statistically significant during all evaluation periods except the

1988+ period. The differences, however, between the models including time-varying

coefficients and the ones excluding time-varying coefficients are statistically significant

during all periods (also for the MOST-Model).

Regarding univariate models, the inclusion of time-varying coefficients improves the

performance of each individual model across all sub-periods although not all of these

improvements are statistically significant. The only exceptions are the univariate model

based on dfr in sub-period 1988+ and the one based on inf in sub-period 1976+. However,

only csp generates positive utility gains consistently across all sub-periods (only the one

during the 1965+ period is significant).
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Table 3: Economic Evaluation: We assume an investor with a single-period horizon,
mean-variance preferences, and a relative risk aversion equal to 3. Further we limit the
share invested into the S&P 500 to be between 0% and 150%. The table shows util-
ity gains p.a. (monthly utility changes are annualized) of an investor using any of the
predictive models relative to an investor following the no-predictability benchmark. Sig-
nificance tests are based on the monthly time series of realized utility gains where daily
index returns within a month are used to estimate the monthly return variance. We distin-
guish four different evaluation periods: 1947+, 1965+, 1976+, and 1988+. ***, **, and
* indicate standard significance levels of the utility gain relative to the no-predictability
benchmark. Bold utility gains in columns 3 to 5 indicate that the models including time-
varying coefficients perform significantly better than the models excluding time-varying
coefficients at least at the 10% level.

Models incl. TVar-Coeff. Models excl. TVar-Coeff.
1947+ 1965+ 1976+ 1988+ 1947+ 1965+ 1976+ 1988+

BMA-Model 2.57* 5.75*** 4.82*** 1.76 -1.97 0.16 -1.87 -5.79
ep -0.61 1.07 -1.36 -1.77 -1.60 -0.22 -1.40 -1.79
svar -0.77 0.35 -1.67 -2.95 -1.69 -0.46 -1.80 -2.97
bmr -1.74 -0.71 -3.67 -3.27 -3.13 -2.07 -3.83 -6.41
tbl -0.55 0.63 -2.72 -4.04 -1.47 0.14 -3.30 -4.66
ltr 0.38 1.60 -0.73 -2.80 -0.96 1.14 -0.82 -2.89
dfy 0.01 1.36 -1.01 -2.27 -1.46 -0.46 -1.67 -3.12
inf -0.23 0.74 -2.05 -3.13 -0.75 0.51 -1.98 -3.14
dy -0.77 0.74 -2.27 -4.84 -1.47 0.38 -2.43 -5.08
dpayr -0.82 0.36 -2.47 -4.56 -1.81 -0.26 -2.58 -4.72
csp 0.88 2.90* 1.22 2.94 -1.11 1.20 -1.71 -1.98
ntis -0.13 1.16 -1.13 -3.15 -1.66 -0.05 -1.34 -3.22
lty -1.03 0.37 -2.79 -3.82 -1.33 0.31 -2.84 -3.88
dfr -0.82 0.51 -1.38 -3.69 -1.87 -0.46 -1.69 -3.41
MOST-Model -2.30 3.55* 4.24** 2.93 -2.30 -2.44 -4.06 -4.36
MEDIAN-Model 2.68* 4.04** 4.92** 2.26 -2.87 -3.06 -3.97 -3.31
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4.2 Return Predictability and the Business Cycle

In the previous section we have documented statistically significant and economically

important levels of predictability for models with time-varying coefficients. In this section

we aim to analyze the sources of predictability in more detail. In particular, we relate

predictability to the business cycle.

4.2.1 Financial Returns and the Real Economy

From a theoretical point of view, Campbell and Cochrane (1999) provide a foundation for

the link between time-varying expected rates of returns and the business cycle. Simply

speaking, the argument is as follows (see also Cochrane, 2007): investors have a slow-

moving external habit; if the economy slides into a recession, the risk of falling short

of the minimum level of consumption increases and investors become more risk averse;

thus, the risk premium of equity has to go up during a recession. The time-variation in

risk premium is, therefore, linked to the time-variation in investors’ risk aversion.

In this section, we are going to link these theoretical predictions to the empirical re-

sults of our models. Specifically, we expect the estimated risk premium to behave ac-

cording to the dynamics implied by the Campbell and Cochrane (1999) model: it should

increase during the recession and be larger at the end of the recession than at the end of

the expansion. In such a framework, predictability would arise if our predictive models

are able to anticipate the business cycle (see Henkel, Martin, and Nardari, 2011; Rapach,

Strauss, and Zhou, 2010, for initial empirical support).

Models with dynamic coefficients should outperform models with constant coeffi-
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cients (as we documented for the entire sample in the previous section) if the relations be-

tween individual predictive variables and the risk premium depend on the business cycle,

as well. This link between the business cycle and the time-variation in coefficients can be

motivated by different economic theories. Veldkamp (2005) and Van Nieuwerburgh and

Veldkamp (2006), among others, relate learning asymmetries caused by a varying rate of

information flow to the business cycle. In these models, the information content of eco-

nomic signals varies across the business cycle. Chakley and Lee (1998) offer a different

mechanism to cause the asymmetries in learning by claiming that during recessions the

fraction of noise traders increases. McQueen and Roley (1993) and Boyd et al. (2005) find

empirical evidence for these asymmetric learning patterns, as the incorporation of news

into stock prices varies with the business cycle. It is exactly this variation in learning and

in the information flow that we try to capture with our time-varying coefficients.

4.2.2 Predictive Performance Across Business Cycles

We use the NBER dates of peaks and troughs to identify recessions and expansions ex-

post; i.e., this information is not used at any time during the estimation of the predictive

models. It is currently not our goal to predict business cycles. The idea of this analysis

is to see how closely the level of predictability and the dominance of models with time-

varying coefficients are related to the business cycle.

Table 4 summarizes our main two statistics — differences in mean squared predic-

tion errors (Diff. MSPE) and utility gains — across models for different periods related

to the business cycle. Consistent with other recent papers (Henkel, Martin, and Nar-
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dari, 2011; Rapach, Strauss, and Zhou, 2010), we find significantly stronger evidence

for predictability during recessions than during expansions (third row of Table 4) using

both measures. The only exception, as it is not significantly different from zero, is the

difference in MSPEs for models excluding time-varying coefficients. It is interesting to

highlight that utility gains relative to the no-predictability benchmark are huge during re-

cessions. This is primarily because the no-predictability benchmark is overly optimistic

about the monthly equity premium and thus suffers from severe losses during recessions.

Another important result is that the dominance of models with time-varying coefficients

prevails during both recessions and expansions (see last two columns of Table 4). Finally,

we also find statistically significant levels of out-of-sample predictability during expan-

sions, but only for models including time-varying coefficients, albeit at a much smaller

scale. This result is in contrast to the findings of Henkel et al. (2011), who conclude that

there is even no in-sample predictability during expansions using their predictive variables

and econometric technique.

In the next step we look more closely at economic turning points; i.e., peaks and

troughs of the business cycle. For this purpose, we split the business cycle into 4 pe-

riods of 3 months each: (i) Late Expansion: 3 months before a peak, (ii) Early Reces-

sion: 3 months after a peak, (iii) Late Recession: 3 months before a trough and (iv)

Early Expansion: 3 months after a trough. The last four rows of Table 4 report the

results for these sub-periods. The BMA-Model incl. TVar-Coeff. outperforms the no-

predictability benchmark significantly for all stages except early Expansion; i.e., shortly

after the trough. Even the BMA-Model excl. TVar-Coeff. shows predictability around the
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Table 4: Business Cycle Analysis: This table summarizes our main statistics across
recessions (123 monthly observations) and expansions (665 monthly observations) and
across 4 business cycle (BC) periods (33 monthly observations per period): Late Expan-
sion: 3 months prior to peak, Early Recession: 3 months after peak, Late Recession: 3
months before trough, Early Expansion: 3 months after trough. The statistics include
differences in mean squared prediction errors relative to the no-predictability benchmark
(Diff. MSPE) and utility gains relative to an investor using the unconditional mean return
(Util. Gain). Significance tests are relative to the no-predictability benchmark except for
the columns labeled “Model Comparison”(in this case, the significance tests are across
Models incl. TVar-Coeff. and Models excl. TVar-Coeff.) and the row labeled “Diff.”(in
this case, the test is between recessions and expansions). Significance tests for differ-
ences between values of specific statistics across individual stages of the business cycle
are discussed and reported in the text.

Models incl. TVar-Coeff. Models excl. TVar-Coeff. Model Comparison
Diff. MSPE Util. Gain Diff. MSPE Util. Gain Diff. MSPE Util. Gain

Rec. 0.0600*** 24.967*** 0.0168** 9.378* 0.0478*** 15.589***
Exp. 0.0121** 1.622 0.0052 -1.990 0.0152*** 3.613**
Diff. -0.0479*** -23.345*** -.0116 -11.369**
Late Exp. 0.0327*** 16.597* 0.0148 3.841 0.0184* 12.756
Early Rec. 0.1156*** 47.849*** 0.0707*** 30.543** 0.0401** 17.306**
Late Rec. 0.0490** 6.421 -0.0092 -6.810 0.0752*** 13.230
Early Exp. 0.0075 -2.273 -0.0039 -8.321* 0.0266*** 6.048

peak of the business cycle. A closer look at the utility gains relative to an investor using

the no-predictability benchmark reveals that the naive investor performs relatively well

towards the end of a recession and early in an expansion, because of the nearly constant

and high weight in the risky asset. These utility gains, however, do not offset the huge

losses such an investor suffers from during the beginning of a recession.

Figure 1 shows the predicted equity premium (first row) and the equity market weight

of a mean-variance optimizing investor (second row) across peaks and troughs. It shows

that the predictions from the BMA-Model incl. TVar-Coeff. fit the theoretical pattern im-

plied by Campbell and Cochrane (1999): towards the end of the recession the predicted
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risk premium increases and peaks in Late Recession, potentially reflecting the fact that

investors become more risk-averse during a recession. During expansion, predicted risk

premia decrease again; hence, the difference between the expected risk premia in Late

Expansion and in Late Recession is statistically significant. In contrast, the predictions

from BMA-Model excl. TVar-Coeff. do not match this pattern at all. In this case, the ex-

pected risk premium stays at a relatively constant, positive but low level during the entire

recession. We conclude that these predictions are, thus, less economically meaningful.

As far as portfolio weights (see equation (10) in Campbell and Thompson, 2008)

are concerned (second row of illustrations in Figure 1), we find that the asset allocation

strategy of an investor relying on the BMA-Model incl. TVar-Coeff. seems to time the

market very well. On average, the investor withdraws from the market quickly at the

beginning of a recession (the drop in portfolio weight is statistically significant), and then

moves back in (even more than before) towards the end of it. In contrast, an investor using

predictions from the BMA-Model excl. TVar-Coeff. pulls out of the market after a peak

but completely fails to move into the market again towards the end of the recession.

Our model is consistent with the implications of asset pricing models that use time-

varying risk aversion to generate time-varying risk premia (e.g., see Campbell and Cochrane,

1999). This agreement between our empirical predictions and asset pricing theory sug-

gests the notion that time-varying risk aversion along the business cycle is related to the

existence of out-of-sample predictability. Thus, we conclude that predictability reflects

business cycle risk rather than market inefficiency. Therefore, it is also not surprising

that predictability is not driven away over time. This view is somewhat supported by the
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literature on fund manager skills that finds that fund managers perform statistically and

economically better during recessions than during expansions (see, for example, Kacper-

czyk, Van Nieuwerburgh, and Veldkamp, 2011). Thus, we conjecture that fund managers

actively exploit the higher levels of market return predictability during recessions, but

they are not able to eliminate it because of the risks involved.

4.2.3 Return Predictions and Macrovariables

To shed more light on this relation between return predictability and the business cycle,

we compare the time-series of our predictions to three macrovariables: the consumption-

wealth ratio (cay) of Lettau and Ludvigson (2001), the wealth-consumption ratio of Lustig

et al. (2010), and quarterly GDP growth rates.15

We observe interesting time-series patterns in Figure 2. In the case of cay and predic-

tions from the BMA-Model incl. TVar-Coefficients, there are periods, in which the two

series move in the same direction (e.g., in the late 1960s, early 1970s, and late 1980s),

and periods, in which they move in opposite directions (e.g., in the late 1950s and early

1990s). In the case of predictions from the BMA-Model excl. TVar-Coefficients, the

graph reveals several periods with pronounced inverse dynamics (especially during the

1970s and in the early 1990s).

If we calculate time-series correlations between these data series, we find a slightly

negative but insignificant correlation between predictions from the BMA-Model incl.

15All data are quarterly. Data of cay are from Martin Lettau’s webpage. Data of the wealth-consumption
ratio of Lustig et al. (2010) are from Stijn van Nieuwerburgh’s webpage. We use the quarterly log wealth-
consumption ratio, wc, in our analysis. GDP growth rates are obtained from Datastream.
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Figure 1: Equity Premium Predictions and Portfolio Weights Around Peaks and
Troughs: The two graphs in the first row show the predicted monthly equity premium
using BMA-Model incl. TVar-Coeff. (solid line) and BMA-Model excl. TVar-Coeff.
(long dashed line). The two graphs in the second row show the portfolio weights of
a mean-variance optimizing investor who uses forecasts from BMA-Model incl. TVar-
Coeff. (solid line), uses forecasts from BMA-Model excl. TVar-Coeff. (long dashed
line), or does not believe in predictability and uses the historic mean and standard de-
viation (short dashed line). Each graph shows averages across the 11 recessions of our
sample period.
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Figure 2: Predictions vs. Macrovariables: the graph consists of three pictures that show
time-series graphs of predictions from the BMA-Model incl. TVar-Coeff., the BMA-
Model excl. TVar-Coeff., and a selected macrovariable. The macrovariable in the first
graph is cay, in the second graph is wc, and in the third graph it’s GDP-growth. Vertical
dashed (solid) lines indicate peaks (troughs). All data are quarterly and normalized to
standard deviation of unity. Quarterly return predictions are calculated as compounded
monthly predictions.
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TVar-Coefficients and cay. In contrast, we find a significantly negative correlation of -

0.42 between predictions from the BMA-Model excl. TVar-Coefficients and cay. Given

that Lettau and Ludvigson (2001) argue that cay is positively related to expected future

returns this substantial, negative correlation is surprising but consistent with the poor pre-

dictive performance of models with constant coefficients.

The time-series of wc shows quite different dynamics than cay, which is not sur-

prising given the low correlation of 0.16 between these time-series as reported in Lustig

et al. (2010). The wealth-consumption ratio wc slowly decreases over time, reaches its

minimum in the early 1980s, and then steadily increases during the remainder of the sam-

ple period. Predictions from the BMA-Model incl. TVar-Coefficients show a somewhat

related general pattern albeit much noisier; predictions from the BMA-Model excl. TVar-

Coefficients, however, tend to follow the opposite pattern with high predicted returns
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during the late 1970s and early 1980s.

These observations are also confirmed if we look at the time-series correlations: we

find a significantly positive correlation in the case of predictions from the BMA-Model

incl. TVar-Coefficients (0.22) and a significantly negative correlation in the case of pre-

dictions from the BMA-Model excl. TVar-Coefficients (-0.19). Similar to the case of cay,

this negative correlation of predictions of models with constant coefficients is counter-

intuitive (Lustig, Van Nieuwerburgh, and Verdelhan, 2010, find a positive correlation of

12% between total wealth returns and the value-weighted CRSP stock return).

Finally, in the case of GDP-growth the visual inspection of the graph does not yield

any obvious insights. Correlations are positive but insignificant for predictions from the

BMA-Model incl. TVar-Coefficients (0.07) and significantly negative for predictions

from the BMA-Model excl. TVar-Coefficients (-0.13). If we zoom into business cy-

cle recessions, we find that correlations between GDP-growth and predictions from the

BMA-Model incl. TVar-Coefficients increase substantially to 0.18. This is consistent with

our previous result that, on average, predicted expected returns increase during recessions

as does GDP-growth.

To conclude, the time-series comparison of return predictions to a selection of macrovari-

ables shows reasonable patterns for predictions from the BMA-Model incl. TVar-Coefficients.

Predictions from the BMA-Model excl. TVar-Coefficients, in contrast, show correlations

with macrovariables that are at odds with existing results regarding the link between these

macrovariables and future expected returns.
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4.3 Characterization of the BMA-Model

The previous section described empirical results that confirm that the BMA-Model in-

cluding time-varying coefficients performs consistently well at predicting market returns.

Given that this model is a fairly sophisticated combination of many individual models, we

want to shed some more light on it and evaluate its characteristics in more detail.

4.3.1 Variance Decomposition and the Degree of Time-Variation

As a first step, we perform a variance decomposition. Since the Bayesian model averaging

approach keeps track of all possible sources of uncertainty regarding the prediction, we

can decompose the prediction variance of the return into four parts:

Var(rt+1) = ∑
j

[
∑

i
(St |Mi,δ j|Dt)P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j

[
∑

i
(X ′t RtXt |Mi,δ j,Dt)P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j

[
∑

i
(r̂ j

t+1,i− r̂ j
t+1)

2P(Mi|δ j,Dt)

]
P(δ j|Dt)+

∑
j
(r̂ j

t+1− r̂t+1)
2P(δ j|Dt). (6)

Equation (6) can be deduced by decomposing the variance of the random variable r step

by step into expected in-sample variances and inter-sample variances.16

16Starting with the decomposition with respect to different values of δ, we can write Var(r) =
Eδ(Var(r|δ))+Varδ(E(r|δ)), where Eδ and Varδ denote the expected value and the variance with respect
to δ. The term Eδ(Var(r|δ)) represents the first three terms in Equation (6). The term Varδ(E(r|δ)) is
the last term in (6). In a second step, the term Eδ(Var(r|δ)) can be further decomposed into Var(r|δ) =
EM(Var(r|M,δ))+VarM(E(r|M,δ)), which splits term three of Equation (6) from the remainder. The final
variance decomposition as shown in (6) follows from simple rearrangements.
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The individual terms of (6) can be interpreted in a very intuitive way. The first term is

the expected observational variance (St |M j,δi is the time-t estimate of the observational

variance V in (1) conditional on model M j and time variation coefficient δi). The second

term states the expected variance from errors in the estimation of the coefficient vector.

We will refer to it as estimation uncertainty. Both the third and the fourth term char-

acterize model uncertainty. The third term measures model uncertainty with respect to

variable selection, and the fourth term measures model uncertainty with respect to the

time variability of the regression coefficients.

In Figure 3, we plot the relative weights of these components of prediction variance

over time. Panel A shows these components as a fraction of total variance. The dominant

source of uncertainty is observational variance. This is not surprising, since over short

prediction horizons, random fluctuations are expected to dominate the uncertainty in the

predicted trend component.

Therefore, Panel B masks out observational variance and focuses only on the other

three components. In most periods, the estimation uncertainty in coefficients captures

more than half of the remaining variance. This fits well with findings documented in Pas-

tor and Stambaugh (1999). Interestingly, they find the same relation for cost of capital

estimations on the firm level, while the results presented here are for cost of capital on the

market level. In periods of stress, model uncertainty peaks (e.g., in a couple of periods in

the 1970s due to oil price shocks, and around 1990 due to the Iraq-Kuwait war). Uncer-

tainty about the correct degree of time-variation (δ) is, in general, relatively low except

for individual periods (e.g., in the mid-50s, in the end of the 80s, and in the beginning of
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Figure 3: Sources of Prediction Variance.

Panel A: Including the observational variance.

Panel B: Excluding the observational variance.
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the 90s).

Figure 3 shows that there is little uncertainty about the degree of time-variation, but

it does not reveal the empirically estimated degree of time-variation. Given the results

discussed before, we expect to find that models with time-varying coefficients play an im-

portant role within the BMA-Model. To address this question, we plot the total posterior

probability of all models for each value of δ considered (see Figure 4).

Figure 4 draws an unambiguous picture. Models with moderately time-varying co-

efficients (i.e., δ = .98) consistently accumulate more than 80% of posterior probability.

Constant coefficient models (i.e., δ = 1.0) perform well over the first 15 years but lose

support from the data in and after 1955. Note that the cumulative posterior probability

of constant coefficient models basically drops to 0 and stays there from 1974 onwards.

In contrast, very dynamic models with δ = .96 play no role during the 50s and 60s but

receive considerable support over some later time periods: especially notable is the short

blip following the stock market crash in October 1987. Given the dominance of the mod-

els with δ = .98 in Figure 4, it is not surprising that we find little uncertainty about the

degree of time-variation in Figure 3.

Similarly, Figure 5 shows the posterior probability weighted average value of δ; i.e.

the estimated degree of time-variation in coefficients across time. We see that the degree

of time-variation itself changes over time: periods with relatively stable estimates of δ

(e.g., from the mid-50s to the mid-70s) alternate with periods showing sharp changes,

mostly steep drops. These sharp drops in average δ (i.e., increases in the estimated vari-

ability of the regression coefficients) can in many cases be associated with crises like
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Figure 4: Sum of Posterior Probabilities of Models with a Given δ. For the BMA-
Model including time-varying coefficients (BMA-Model incl. TVar-Coeff.), this figure re-
ports cumulative posterior probabilities of models with a specific degree of time-variation
of coefficients.
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Figure 5: Posterior Probability Weighted Average δ (i.e., degree of time-variation).
For the BMA-Model including time-varying coefficients, this figure reports the posterior
probability weighted average degree of time-variation. To get a more precise estimate
of this average δ we consider five specific delta values in the estimation, namely δ ∈
{.96, .97, .98, .99,1.00}.

the oil price shock of the mid-70s or the stock market crash of 1987. A potential fu-

ture research question is to more precisely relate the dynamics of the estimated degree

of time-variation to the economic cycle or other economic events (see Henkel, Martin,

and Nardari, 2011, for evidence that parameter instability is related to cyclical economic

conditions).

4.3.2 Analysis of Individual Coefficients and Models

Another interesting analysis is to characterize the top performing models. Pesaran and

Timmermann (1995) and Bossaerts and Hillion (1999), for example, select top performing
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models according to various statistical measures for their prediction analysis and report

a large amount of variability among these top models. For this purpose, we focus on

the Top 10 individual models within the BMA-Model excluding time-varying coefficients

as well as within the BMA-Model including time-varying coefficients. Figure 6 shows

how much posterior probability the Top 10 models receive over time. In the case of the

BMA-Model excluding time-varying coefficients, the posterior probability assigned to

the Top 10 models does not account for more than 7 percent at the end of the sample

period and never exceeds 16 percent. In contrast, the posterior probability assigned to the

Top 10 models of the BMA-Model including time-varying coefficients increases to more

than 80 percent over the sample period. Consequently, in the case of the BMA-Model

excluding time-varying coefficients, the Top 10 individual models are less distinct from

other individual models.

This is a potentially important insight, as it provides an explanation for the erratic

behavior of the best models reported in the literature to date. Pesaran and Timmermann

(1995) and Bossaerts and Hillion (1999), among others, report that their individual top

models changed considerably over time. They admit that their analysis suffers from vari-

ability in the top models’ specifications. Our analysis documents precisely this behavior—

many different model specifications with similar posterior probabilities—for models as-

suming constant coefficients. However, we show that this “stationarity issue” can be

largely resolved by allowing coefficients to vary over time.

In the next step, we evaluate the importance of individual predictive variables in the

BMA-Models. For each variable, we use the sum of posterior probabilities of all models
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Figure 6: Sum of Posterior Probabilities of Top 10 Models. This figure reports the sum
of the posterior probabilities of the Top 10 Models (i.e., the 10 models whose posterior
probabilities are largest at a given point in time) within two groups of models: (1) the
BMA-Model including time-varying coefficients and (2) the BMA-Model excluding time-
varying coefficients.
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that include this variable as our measure of importance. This measure is the natural choice

in a Bayesian framework and allows us to evaluate ex-post how much support individual

variables receive from the data. The limitation of this measure is, however, that it does

not directly analyze the predictive power of individual variables.

Table 5 evaluates this measure of importance at four points in time (Dec. 1964, Dec.

1975, Dec. 1987, Jan. 2003) and shows a few interesting results. First, the dividend yield,

the cross-sectional premium, and the book to market ratio consistently receive the highest

posterior probabilities. These variables receive weights that are larger than 50% (i.e., the

unconditional prior value) across all four points in time (in most cases, their posterior

probability exceeds 90%). Second, in contrast to the previous result, we find that no

single variable consistently exceeds the prior of 50% if we limit our analysis to the BMA-

Model excluding time-varying coefficients. The cross-sectional premium performs best

and falls short only of the unconditional prior in December 1975 with a value of 49%.

Together, these results further emphasize the previous observation that the assumption of

constant coefficients results in instability of models, i.e., in instability of the assessment

of importance of predictive variables.

Putting this section’s results together, we conclude that the BMA-Model including

time-varying coefficients is more successful in identifying important variables and mod-

els (i.e., combinations of variables) than the BMA-Model excluding time-varying coef-

ficients. We think that a possible explanation for this observation is that models with

constant coefficients flip between individual variables or models to compensate for the

lack of variation in the coefficients.
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Table 5: Importance of Individual Variables: This table measures the sum of posterior
probabilities across all models that include a specific explanatory variable at 4 points in
time. Columns 2 to 5 cover all models, and columns 6 to 9 focus on models with constant
coefficients. See section 3.1 for the definition of the variables and their abbreviations.

Models incl. TVar-Coeff. Models excl. TVar-Coeff.
1964.12 1975.12 1987.12 2003.1 1964.12 1975.12 1987.12 2003.1

dy 0.94 0.80 0.93 0.91 0.72 0.40 0.31 0.25
ep 0.25 0.16 0.46 0.77 0.29 0.30 0.27 0.25
dpayr 0.38 0.21 0.58 0.78 0.32 0.45 0.46 0.22
svar 0.17 0.07 0.01 0.01 0.22 0.22 0.44 0.25
csp 0.99 1.00 1.00 1.00 0.71 0.49 0.55 0.89
bmr 1.00 1.00 1.00 1.00 0.98 0.96 0.96 0.39
ntis 0.25 0.08 0.13 0.40 0.35 0.31 0.83 0.69
tbl 0.37 0.26 0.95 0.71 0.38 0.34 0.44 0.37
lty 0.41 0.70 0.08 0.37 0.39 0.39 0.27 0.41
ltr 0.27 0.21 0.19 0.12 0.30 0.50 0.59 0.63
dfy 0.12 0.06 0.01 0.18 0.39 0.50 0.32 0.21
dfr 0.06 0.02 0.13 0.03 0.21 0.16 0.43 0.28
inf 0.31 0.19 0.07 0.03 0.49 0.71 0.47 0.33

4.4 Case Study: The Dividend Yield as a Predictive Variable

In this section, we perform a case study. We focus on the dividend yield as a predictive

variable and analyze how its predictive performance changed due to release of Rule 10b-

18 by the SEC in November 1982. We do this case study for two important reasons: (i) to

discuss the adaptation of dynamic linear models to changes in the economic relations (in

this case to changes in the regulatory framework), and (ii) to compare the performance of

dynamic linear models to regime-switching models. Rule 10b-18 facilitated share repur-

chases under certain circumstances (see Grullon and Michaely, 2002, for details on Rule

10b-18). As a consequence of this change in regulation, individual firms’ dividend and

payout policies adjusted, resulting in a significant reduction in aggregate dividend yield
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combined with an apparent change in the information content of dividend payments (see

Boudoukh, Michaely, Richardson, and Roberts, 2007, for empirical evidence).

Lettau and Van Nieuwerburgh (2008) provide strong in-sample evidence for regime

shifts in the long-term mean of the dividend-price ratio. Allowing for one regime shift

in the mean dividend yield, their in-sample analysis dates the shift to the year 1991. If

two shifts are allowed, these shifts are dated to the years 1954 and 1994. The authors

fail, however, to link these dates to specific economic events causing these regime shifts.

While most regime-shifting models concentrate only on ex-post predictability and in-

sample detection of shifts, Lettau and Van Nieuwerburgh (2008) also explicitly analyze

the out-of sample properties of their regime-shifting model. They find poor predictive

quality that is dominated by their no-predictability benchmark. This is so because of non-

reliable real-time results in (i) dating regime shifts and more severely (ii) the estimation of

the size of the shift in the steady state. That is, they find that regime-shifting models have

considerable difficulty in learning out-of-sample whether a shift has occurred recently.

How, in contrast, does our methodology perform in detecting and learning this regula-

tory change in real-time? The BMA-Model including time-varying coefficients does very

well in handling the regime shift. Figure 7 shows the dividend yield’s importance over

time, measured as the sum of the posterior probabilities assigned to individual predictive

models including the dividend yield. Two different models are compared: the BMA-

Model including time-varying coefficients and the BMA-Model excluding time-varying

coefficients. The vertical line in the graph indicates the date of the release of rule 10b-18.

The BMA-Model including time-varying coefficients views the dividend yield as a
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consistently important variable. In a reaction to the structural change caused by the re-

lease of rule 10b-18, the BMA-Model including time-varying coefficients increases the

overall weight of the dividend yield. This reaction is immediate and suggests that the

information content of dividend payments increased, although overall dividend payments

declined. This is so because (i) the dynamic linear models adapt their coefficients to the

new situation and (ii) due to Bayesian learning, models with good out-of-sample perfor-

mance receive (step by step) higher weights.

In contrast, models with constant coefficients (BMA-Model excluding time-varying

coefficients) cannot properly handle the update in the regulatory framework that obviously

changed the predictive impact of the dividend yield on equity returns. Since constant-

coefficients models are, by definition, only slowly adapting estimated sensitivities, the

only possible reaction to bad calibration is that the BMA procedure weights down models

that include the dividend yield as a predictor (the importance of the dividend yield as

a predictor drops by 19.9% in March 1983). This pattern can also explain the results

reported in Goyal and Welch (2008) and Ang and Bekaert (2007), who detect instability

of prediction models using the dividend yield.

To conclude, this small case study shows that our framework with time-varying co-

efficients can quickly learn — in real-time — changes in economic relations, even if

these changes are discrete jumps such as the release of Rule 10b-18. In contrast, regime-

switching models that focus exclusively on the dividend yield as a predictor seem to per-

form much worse out-of-sample (see, for example, Lettau and Van Nieuwerburgh, 2008).

We interpret this case-study evidence as supportive of our choice of econometric tech-
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Figure 7: The Dividend Yield as a Predictive Variable: This figure reports the sum of
posterior probabilities of all models including the dividend yield as a predictive variable
for two groups of models: (1) the BMA-Model incl. TVar-Coefficients and (2) the BMA-
Model excl. TVar-Coefficients.

nique, especially considering that the goal of our study is to evaluate out-of-sample pre-

dictability of a comprehensive set of 13 predictive variables rather than only the dividend

yield.

5 Conclusion

Although the literature on equity return prediction is growing quickly, it is still quite

inconclusive about two fundamental questions: Does out-of-sample predictability exist,

and what are the important predictive variables? The literature agrees, however, that

53



parameter instability represents a major challenge in this area. Most papers address it by

using rolling window regressions and/or by performing sub-period investigations. Both

approaches are ad-hoc, non systematic and unhelpful in understanding the true degree of

parameter instability. In contrast, we propose a systematic way to take time-variation of

coefficients into account.

Coming back to the fundamental questions in return prediction, we find large, signifi-

cant and consistent improvements in the accuracy of out-of-sample predictions if models

with time-varying coefficients are considered. These gains in prediction accuracy also

result in considerable economic profits for an investor who uses the predictions of our

framework with time-varying coefficients. Such an investor outperforms both an investor

who uses constant coefficient models and an investor who uses the unconditional mean

and variance.

Furthermore, we find that predictability is closely related to the business cycle. Our

empirical methodology predicts on average a decreasing (increasing) equity risk pre-

mium during expansions (recessions) — broadly consistent with asset pricing theory

(e.g., Campbell and Cochrane, 1999). In this theory, the driving force behind this pat-

tern is time-varying risk aversion. Thus, we view our study’s results as consistent with a

story, in which time-varying risk aversion is responsible (at least partly) for out-of-sample

predictability of equity returns.

In contrast to the existing literature, we do not find that predictability exists exclu-

sively during recessions. We also show evidence for out-of-sample predictability during

expansions — on a smaller scale and only if time-varying coefficients are taken into con-
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sideration. We also analyze the potential sources of this outperformance and find that

it is directly related to the inclusion of time-varying coefficients: models with constant

coefficients receive basically no support from the data. Further, even if we abstract from

the issue of variable selection, we find significant gains in prediction performance for

individual models (e.g., univariate models) including time-varying coefficients.

Finally, we show that our simple way of modeling time-variation in coefficients —

namely, as a random walk — can quickly learn changes in the underlying relations, such

as changes in the regulatory environment in the case of the dividend yield. While the sim-

plifying assumption of random walk coefficients is theoretically unappealing, it seems to

be empirically important, as we find that models with autocorrelated coefficients are out-

performed by models using random walk coefficients. One possible explanation of this

result is that the random walk assumption reduces estimation errors by not imposing a

special autocorrelation structure on the coefficients’ dynamics. Another possible expla-

nation is that we implicitly favor the random walk assumption in our setup by forcing the

same autocorrelation structure on all coefficients within a model.

While we are confident that our paper provides several contributions to the literature

on equity return prediction, it also raises new questions. Most importantly, it raises a

question about the economic forces that cause time-varying predictive relations. In this

respect, we would need both more theoretical and more empirical research. In a broader

context, our results have important implications for the portfolio optimization and asset

allocation literature. Our findings imply that predictive relations vary considerably over

time. Thus, predictions of the equity premium beyond a monthly horizon become more
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uncertain relative to monthly predictions (see Pastor and Stambaugh, 2011). How in-

vestors should optimally account for this information in their long-term asset allocation

decisions is an interesting question for future research.

A Appendix

A.1 The Mathematics of Dynamic Linear Models

From the specification of the dynamic linear model in Equations (1) and (2) in Section

2.1, we develop the recurrence for updating the belief about the system coefficients and

the observational variance in response to observing a new return realization (see West and

Harrison, 1997). Given a normally distributed prior for the system coefficients θ0 and

an inverse-gamma distributed prior for the observational variance V , this can be done in

a fully conjugate Bayesian analysis ensuring that prior and posterior distributions come

from the same family of distributions. As a time t = 0-prior we use the natural conjugate

g-prior specification stated in Equations (3) to (5).

Suppose at some arbitrary time t we have already observed the current return rt .

Hence, we are able to form a posterior belief about the values of the unobservable coeffi-

cients θt−1|Dt and of the observational variance V |Dt . These posteriors are again jointly

normally/inverse-gamma distributed of the form

V |Dt ∼ IG
[

nt

2
,
ntSt

2

]
, (7)

θt−1|Dt ,V ∼ N [mt ,VC∗t ] , (8)

56



where St is the mean of the time t estimate of the observational variance V , and nt is the

associated number of degrees-of-freedom. The vector mt denotes the point estimate of

the vector of coefficients θt−1 conditional on Dt and V . C∗t is the estimated, conditional

covariance matrix of θt−1 normalized by the observational variance. This assumption

implies that after integrating out V the posteriors of the coefficients are multivariate t-

distributed given by

θt−1|Dt ∼ Tnt [mt ,StC∗t ] . (9)

When iteratively updating the estimates, we must remember that due to varying re-

gression coefficients the posterior distribution of θt−1|Dt does not automatically become

the prior distribution of θt |Dt . According to Equation (2), the underlying regression co-

efficients are exposed to Gaussian shocks, which increase the variance but preserve the

mean of the estimate,

θt |Dt ∼ Tnt [mt ,StC∗t +Wt ] . (10)

As mentioned in Section 2.1, we can find the predictive density of the time t + 1

return rt+1 by integrating the conditional density of rt+1 over the range of θ and V . Let

ϕ(x;µ,σ2) denote the density of a (possibly multivariate) normal distribution evaluated at

x and ig(V ;a,b) the density of a IG[a,b] distributed variable evaluated at V . The predictive
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density is then

f (rt+1|Dt) =
∫

∞

0

[∫
θ

ϕ
(
rt ;X ′t θ,V

)
ϕ(θ;mt ,VC∗t +Wt)dθ

]
×ig

(
nt

2
,
ntSt

2

)
dV

=
∫

∞

0
ϕ
(
rt ;X ′t mt ,X ′t (VC∗t +Wt)Xt +V

)
(11)

×ig
(

nt

2
,
ntSt

2

)
dV

= tnt (rt+1; r̂t+1,Qt+1),

where t(rt+1; r̂t+1,Qt+1) is the density of a t-distribution with nt degrees of freedom, mean

r̂t+1, variance Qt+1, evaluated at rt+1. The mean of the predictive distribution of rt+1 is

given by

r̂t+1 = X ′t mt (12)

since the prior of the regression coefficients is centered at mt . The total unconditional

variance of the predictive distribution is given by

Qt+1 = X ′t RtXt +St , (13)

Rt = StC∗t +Wt , (14)

where Rt denotes the unconditional variance of the time t-prior of the coefficient vector θt .

The first term in (13) characterizes the variance coming from uncertainty in the estimation

of θt ; the second term St is the estimate of the variance of the error term in the observation
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equation.

After the time t+1 return rt+1 is observed, the priors about θt and V are updated using

equations (15) to (20).

et+1 = rt+1− r̂t+1 (error in prediction). (15)

The prediction error is the essential signal conditioning learning. Whenever et+1 equals

zero, the observed return equals the forecast, and thus there is no updating in the coeffi-

cients.

nt+1 = nt +1 (degrees of freedom). (16)

St+1 = St +
St

nt

(
e2

t+1

Qt+1
−1

)
(estimator of observational variance). (17)

Since the total variance of the forecast is given by Qt+1, we have E(e2
t+1) = Qt+1. If

the error in prediction coincides with its expectation (i.e., e2
t+1 = Qt+1), the estimate of

the observational variance is unchanged (i.e., St+1 = St). A prediction error below the

expected error leads to a reduction in the estimated observational variance, and vice versa.

The adaptive vector

At+1 =
RtXt

Qt+1
(adaptive vector) (18)

measures the information content of the current observation in relation to the precision

of the estimated regression coefficient and therefore characterizes the extent to which the
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posterior of θt reacts to the new observation. The point estimate m and the covariance

matrix C∗ are updated as follows:

mt+1 = mt +At+1et+1 (estimator for expected coefficient vector), (19)

C∗t+1 =
1
St
(Rt−At+1A′t+1Qt+1) (estimator for variance of coeff. vector). (20)

The discount factor approach that we use to give structure to Wt assumes that the

variance matrix Wt of the error term ωt is proportional to the estimation variance StC∗t of

the coefficient vector θt |Dt . More precisely, it is assumed that

Wt =
1−δ

δ
StC∗t , δ ∈ {δ1,δ2, . . . ,δd}, 0 < δi ≤ 1, (21)

and thus the expression for the variance of the forecasted coefficient vector simplifies to

Rt = StC∗t +
1−δ

δ
StC∗t =

1
δ

StC∗t , (22)

which ensures analytical tractability of the model. This assumption implies that periods

of high estimation error in the coefficients coincide with periods of high variability in co-

efficients. The nested family of models with constant regression coefficients corresponds

to a specification of δ = 1. Reducing δ below the value of 1 introduces time variation to

the set of regression coefficients. The choice of δ is, in addition to the selection of the

set of predictive variables, a further dimension of model uncertainty that is treated in the

Bayesian model averaging framework presented in Section 2.2.
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A.2 Bayesian Model Selection

Let Mi denote a certain choice of predictive variables from the k candidates, and δ j a

certain selection from the set {δ1,δ2, . . . ,δd}. Certainly, these choices crucially influence

the predictive density of the forecasts of the individual models; thus we rewrite the point

estimate of rt+1 as

r̂ j
t+1,i = E(rt+1|Mi,δ j,Dt) = X ′t mt |Mi,δ j,Dt . (23)

When giving prior weights to the individual models, we start out with the diffuse

conditional prior P(Mi|δ j,D0) = 1/(2k−1) ∀i. We use Bayes’ rule to obtain the posterior

probabilities

P(Mi|δ j,Dt) =
f (rt |Mi,δ j,Dt−1)P(Mi|δ j,Dt−1)

f (rt |δ j,Dt−1)
, (24)

where

f (rt |δ j,Dt−1) = ∑
M

f (rt |Mi,δ j,Dt−1)P(Mi,δ j,Dt−1). (25)

The crucial part is the conditional density

f (rt |Mi,δ j,Dt−1)∼
1√
Q j

t,i

tnt−1

rt− r̂ j
t,i√

Q j
t,i

 , (26)

where tnt−1 is the density of a Student-t-distribution and r̂ j
t,i and Q j

t,i are the respective
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point estimates and variance of the predictive distribution of model Mi and given δ = δ j;

see Equation (11). The time t+1 return prediction of the average model for a given δ= δ j

then equals

r̂ j
t+1 =

2k−1

∑
i=1

P(Mi|δ j,Dt)r̂
j
t+1,i. (27)

Since a particular choice of δ cannot be done on an ad-hoc basis, we also perform

Bayesian model averaging over different values of δ. If we consider d candidates for δ,

we assign a prior probability of 1/d to each δ value. The time t posterior probability of a

certain δ is then

P(δ j|Dt ,) =
f (rt |δ j,Dt−1)P(δ j|Dt−1)

∑δ f (rt |δ,Dt−1)P(δ|Dt−1)
. (28)

Note that this posterior probability is going to be of key importance in our empirical

analysis, as it indicates which assumptions on time-variation are supported by the data.

The total posterior of a certain model configuration (i.e., variable choice and choice

of δ) is then given by

P(Mi,δ j|Dt) = P(Mi|δ j,Dt)P(δ j|Dt) (29)

and the unconditional average prediction of the average model is

r̂t+1 =
d

∑
j=1

P(δ j|Dt)r̂
j
t+1. (30)
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A.3 Empirical Robustness Tests

In this subsection of the Appendix we evaluate the robustness of our main results on pre-

dictability along several dimensions. First, we change the way in which we determine

the uninformative prior for the coefficient vector θ0|D0. While our main results are based

on full-sample OLS estimates of the variance in coefficients, the results discussed in this

section use an explicit burn-in period of 60 months. Second, we want to exploit the avail-

able time-series dimension to a larger extent. The sample period used to derive our main

results is based on the period of time, for which we observe all explanatory variables,

namely May 1937 to December 2002. But except for one variable, csp (i.e., the cross-

sectional premium), all data are available for a much longer time period, namely January

1927 to December 2008. To extend our sample period, we change the predictive technol-

ogy such that it allows variables to enter and exit the sample at arbitrary points in time.

Third, we also provide information about the Bayes Factor (i.e., the performance measure

underlying our BMA approach) of the average model with constant coefficients relative

to the full BMA model. Fourth, we report results from rolling-window OLS regressions,

in which we consider a kitchen-sink specification that includes all predictive variables

(following Goyal and Welch, 2008 we use a rolling window size of 60 months).

Fifth, the last and potentially the most important robustness test is to relax the random

walk assumption for time-varying coefficients (see Equation 2, i.e., the system equation of

our model, that specifies that coefficients follow a random walk, i.e., θt = θt−1+ωt). This

assumption is not completely consistent with asset pricing theory, since without regularly
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linking the model to empirical data, expected asset returns are not stationary. One way

to adapt the model to address the stationarity issue is to formulate the system equation as

an autoregressive process. To keep the model tractable we introduce autoregression to the

system equation in the following simple form

θt = G I θt−1 +ωt , (31)

where I is the identity matrix and 0 < G ≤ 1 is a scalar.17 If G equals 1, Equation (31)

equals Equation (2), hence, our main model is a boundary case of the more general ver-

sion presented here. To get an assessment of the importance of the stationarity issue we

measure the predictive performance of models with autoregressive dynamics in θrelative

to the random walk specification (G = 1.0) according to their MSPE-statistics (we use

G = 0.99, 0.98, 0.97, and 0.96). The goal is to check if any individual parameter choice

of G performs better than our current choice of random walk coefficients.

Table 6 (similar to Table 2) reports the prediction accuracy of BMA-Models incorpo-

rating these extensions/robustness checks. For simplicity, we ignore univariate models,

as we did not find any evidence of predictability in our main results. The most important

implication of these results is that in the horse race between random walk coefficients and

mean-reverting coefficients the random walk hypothesis works by far best from an em-

17Given the restricted number of observations we have available, the full estimation of a general au-
toregressive model for θ in our Bayesian framework is empirically not feasible. This problem of limited
empirical data availability is also discussed in Kilian and Taylor (2003) for the case of exchange rate pre-
dictions. They conclude that “Our analysis suggests that this difficulty of beating the random walk model in
real time need not reflect an inherent shortcoming of forecasting models based on economic fundamentals.
Instead, we showed that this stylized empirical fact appears to be a natural consequence of the small time
span of data available for empirical work.”
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pirical point of view. P-values of out-of-sample predictability tests are always lowest for

the BMA-Model with random walk coefficients; any evidence of predictability actually

disappears across nearly all sub-samples if coefficients are modeled to be mean-reverting.

Further, comparing the results of Table 2 and 6 shows that the extensions to model an

explicit burn-in phase in the beginning and to increase our sample period do not alter any

of our main results: we still find that models with time-varying coefficients work well and

that there is evidence of out-of-sample predictability. As far as simple rolling-window

OLS predictions are concerned, we confirm the existing evidence of no-predictability.

Table 7 (similar to Table 3) reports utility gains of investors using any of these predic-

tion technologies. Again, we find that only dynamic linear models with random walk co-

efficients generate significantly positive utility gains among the models with time-varying

coefficients. Interestingly, the rolling-window regressions work well in terms of utility

gains18 — though, not as well as our suggested predictive model with time-varying, ran-

dom walk coefficients. Further more, our results are basically unaffected by the burn-in

phase and the extended sample period.

Another important result of this study is that equity premia predicted via models with

time-varying coefficients seem to be economically reasonable. Figure 8 (similar to Figure

1) shows the dynamics of the prediction over the business cycle. In the case of G = 1, i.e.,

random walk coefficients (the two graphs in the top row), we find a similar pattern to Fig-

ure 1 (around the peak of the business cycle predicted returns decrease and increase again

18This tension between statistical evidence of predictability and economic gains in the case of rolling-
window regressions is consistent with Goyal and Welch (2008). Goyal and Welch (2008) attribute it to
characteristics of the evaluated sample period:“Put differently, some strategy CEV gains are due to the fact
that the risky equity investment was a better choice than the risk-free rate in our data.”
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Table 7: Economic Evaluation: We assume an investor with a single-period horizon,
mean-variance preferences, and a relative risk aversion equal to 3. Further we limit the
share invested into the S&P 500 to be between 0% and 150%. The table shows utility
gains p.a. of an investor using any of the predictive models relative to an investor fol-
lowing the no-predictability benchmark. Significance tests are based on the monthly time
series of realized utility gains where daily index returns within a month are used to esti-
mate the monthly return variance. ***, **, and * indicate standard significance levels of
the utility gain relative to the no-predictability benchmark.

1947+ 1965+ 1976+ 1988+ Expansions Recessions
G = 1.0 4.57*** 7.31*** 8.23*** 6.99** 1.87 17.11***
G = 0.99 -0.84 1.50 0.15 0.94 -3.13 14.12***
G = 0.98 -1.53 1.15 -0.29 0.84 -3.99 14.18***
G = 0.97 -1.85 1.18 -0.22 1.02 -3.62 13.75**
G = 0.96 -2.01 1.25 -0.11 1.20 -3.78 13.74**
Rolling OLS 4.25*** 6.89*** 5.87*** 3.97* -2.44 22.18***

around the trough of the business cycle.); i.e., these dynamics are robust to the extensions

implemented in this section. Comparing these figures to the two figures in the bottom

row clearly shows that the dynamics of G = 0.99 (i.e., a small degree of autoregression

in the coefficients) are quite different and do not show the same, economically intuitive,

pattern. In the latter case predictive returns become very smooth and hardly show any re-

action to the business cycle. Overall, this comparison illustrates nicely that random walk

coefficients are required to match the patterns of realized returns over the business cycle.

Finally, while we concentrate on evaluation criteria that are standard in the equity

premium literature in the main text of the paper, we also look at the Bayesian performance

statistic, on which our model selection approach is built, namely the Bayes Factor, in this

section. The idea is to illustrate that our previous conclusions still hold and are not driven

by our choice of evaluation criteria.

Figure 9 shows the appropriate Bayes Factor of the BMA-Model excl. TVar-Coeff.
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Figure 8: Equity Premium Predictions Around Peaks and Troughs: The two graphs
in the first row show the predicted monthly equity premium using the BMA-Model incl.
TVar-Coeff. with G = 1 (solid line), the realized returns (long dashed line), and the no
predictability benchmark (short dashed line). The two graphs in the second row show
the predicted monthly equity premium using the BMA-Model incl. TVar-Coeff. with
G = 0.99 (solid line), the realized returns (long dashed line), and the no predictability
benchmark (short dashed line). Each graph shows averages across the 11 recessions of
our sample period.
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relative to the BMA-Model incl. TVar-Coeff. on a log scale. The Bayes Factor at a certain

point in time is the ratio of the relative posterior weights to the relative prior weights of

the compared models. Thus, on the log scale, a value of 0 corresponds to equal marginal

support of both types of models during the current time interval; positive values are in

support of models with constant coefficients and negative values are in support of models

with time-varying coefficients. The picture confirms our overall conclusion: models with

time-varying coefficients receive much more support from the data. Models with constant

coefficients only receive somewhat more support for a small time period around 1970.

The dominance of models with time-varying coefficients grows especially towards the

end of our sample. Also, note the sudden jump back up to 0 in 2004. This jump occurs

because Variable csp drops from the sample. Obviously, this variable is a key predictive

variable and also a variable that drives the outperformance of models with time-varying

coefficients. We leave it for further research to understand this regularity in more detail.
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Figure 9: Bayes Factor: The graph shows the log Bayes Factor of the BMA-Model excl.
TVar-Coeff. relative to the BMA-Model incl. TVar-Coeff. over time. On the log scale,
a value of 0 corresponds to equal marginal support of both types of models during the
current time interval; positive values are in support of models with constant coefficients
and negative values are in support of models with time-varying coefficients.
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