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Abstract. Verifiable voting systems allow voters to check whether their
ballot is correctly recorded (individual verifiability) and allow anyone to
check whether votes expressed in recorded ballots are correctly counted
(universal verifiability). This suffices to ensure that honest voters’ votes
are correctly counted, assuming ballots are properly generated.
Achieving ballot assurance, i.e., assuring each voter that their vote is
correctly encoded inside their ballot, whilst ensuring privacy, is a chal-
lenging aspect of voting system design. This assurance property is known
as cast-as-intended. Unlike many properties of voting systems, it has yet
to be formalised. We provide the first formal definition and apply our
definition to MarkPledge, Prêt à Voter, Selene, ThreeBallot, and schemes
based upon Benaloh challenges.

1 Introduction

End-to-end Verifiable (E2E V) voting systems produce evidence of correct op-
eration: Cast ballots (which contain the vote in encrypted or encoded form)
are published on a public bulletin board (ledger), so voters can check whether
their ballot is collected (individual verifiability), and tallies are coupled with
proofs, so anyone can check whether votes expressed in collected ballots are cor-
rectly counted (universal verifiability). By additionally providing means to check
whether votes are correctly encoded in ballots, we achieve end-to-end verifiabil-
ity. This is not yet enough to guarantee that the outcome is correct, for this we
need extra measures such as eligibility verifiablity to prevent ballot stuffing and
clash attacks 1 etc., but this is beyond the scope of this paper.

For many end-to-end verifiability systems (but not all, e.g., [29, 30]), ballots
are constructed using cryptographic operations, which are typically beyond the
mathematical capabilities of even the most studious scholar. Moreover, assurance
of correct encoding has to be provided without undermining privacy. Arguably,
providing ballot assurance, in the face of coercion threats, is is the most challeng-
ing aspect of End-to-end verifiability. Nonetheless, various ingenious methods
have been devised to provide voters with suitable, non-transferable assurance.

One notion of checking whether ballots correctly encode votes is known as
cast-as-intended (aka ballot assurance).

1 where more than one voter gets assigned the same ballot



– Cast-as-intended. A voter can check whether their ballot correctly expresses
their vote.

Discussion of cast-as-intended originates from Chaum [7,8] and was taken further
by Neff [27], Adida & Neff [1], and Benaloh [3, 4]. Yet, formal study of cast-
as-intended is limited: Unlike other properties of voting systems, a definition
of cast-as-intended has yet to be formalised. (Cf. the rich literature on formal
definitions of verifiability [10,18,20–22,24,36,38,39] and privacy [5,6, 11,13,15,
16,20,21,25,26,34,37,40].) Here, we formalise cast-as-intended as a game in the
computational model of cryptography, thus filling a gap in the literature.

In this paper we consider two categories of End-to-End Verifiable voting
system: conventional, wherein each voter checks that a protected ballot 2 that
represents their vote, typically an encryption of their vote, appears on the bul-
letin board, and tracker-based, where each voter checks their (plaintext) vote
appears in the election outcome, using a private tracker. Examples of the former
include Prêt à Voter, Helios, and Belenios. Examples of the latter, Selene [32] and
sElect [23]. Cast-as-intended is achieved very differently across these categories,
so we apply our definition to examples in each. In the first category, voters cast
ballots that are encryptions of their votes and tallies should correspond votes
embedded in those ballots. Since voters cannot compute ciphertexts, they rely
on a device or process to encrypt. Assuring the voter that the resulting ballot
correctly encodes their vote without undermining privacy, and in a manner that
is usable and understandable, is highly non-trivial, and various techniques have
been presented in the literature.

The second category provides verifiability in a more direct and transparent
fashion: the voter is able to identify their (plaintext) vote in the tally. In fact,
such systems provide tallied as intended verification and, in contrast to the
conventional schemes, cast as intended is not strictly necessary. Some subtleties
nonetheless remain. For example, each voter should be assured that their tracker
is unique. We discuss the details later.

For conventional voting systems, in contrast to tracker-based schemes, it is
essential that the voter be able to verify that their vote is correctly embedded in
the ballot. This is typically achieved via some form of cut-and-choose mechanism:
the device is required to commit to one or more encryptions of the voter’s vote
and all but one of these are randomly selected then audited to confirm that the
correct vote was encoded. The remaining, non-audited ballot can then be cast.

Benaloh proposed a mechanism, in effect a sequential cut-and-choose, to pro-
vide such assurance [3, §4.2]: A voter inputs a vote into a device, the device
computes an encryption of the vote, and commits to the resulting ciphertext,
by printing the ciphertext or digitally signing it, for instance. Next, the voter
chooses to audit or cast the ciphertext. For the former, if auditing fails, the voter
should raise an alarm, otherwise (auditing succeeds), the audit or cast process
repeats, until the voter chooses to cast.

Auditing typically reveals coins used to construct ciphertexts, enabling ci-
phertext reconstruction, which suffices to convince a voter that their ballot ex-

2 to use Rivest’s terminology



presses their vote, assuming they can reconstruct the ciphertext themselves (us-
ing a system they trust) or a trusted third party can. Thus, cast-as-intended
can be unconditionally achieved, assuming perfect correctness of the underlying
encryption scheme.

Reliance on a trusted system or trusted third party to perform ballot audits
may seem disingenuous; after all, trust is contrary to the goal of verifiability.
However, ciphertexts can be reconstructed by multiple systems, third parties, or
both, thereby removing the need to trust any individual device or service.

Most schemes that reveal coins do not allow audited ballots to be cast,
to avoid compromising receipt-freeness. (A notable exception is Neff’s Mark-
Pledge [28].) A consequence of this observation is that ballot assurance is prob-
abilistic rather than deterministic.

Sidebar 1 Preliminaries: Games and notation
Games are probabilistic algorithms that output booleans. An adversary wins a game
by causing it to output true (>) and the adversary’s success in a game Exp(·), denoted
Succ(Exp(·)), is the probability that the adversary wins, i.e., Succ(Exp(·)) = Pr[Exp(·) =
>]. Adversaries are stateful, i.e., information persists across invocations of an adversary
in a game.
We let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and coins r, and we let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where coins
r are chosen uniformly at random from the coin space of algorithm A. Moreover, we
let x ← T denote assignment of T to x, and we write (x1, . . . , x|T |) ← T for x ← T ;
x1 ← x[1]; . . . ;x|T | ← x[|T |], when T is a vector.

2 Security definition

For schemes in the conventional category, cast-as-intended requires ballots be
correctly constructed. For many schemes, correct ballot construction simply re-
quires computing a valid encryption of the vote, with respect to the public key of
the tabulation process. For universally-verifiable voting systems, it follows that
if a voter’s ballot correctly encodes the voter’s vote, and that ballot is correctly
tallied, then the voter’s vote will be correctly included in the tally.

We formalise cast-as-intended in the syntax proposed by Smyth, Frink &
Clarkson [38]: Construction is defined by a probabilistic polynomial-time algo-
rithm Vote, wherein

Vote takes as input a public key pk , a voter’s vote v, some number of candidates
nc, and a security parameter κ, and outputs a ballot b or error symbol ⊥,
where vote v should be selected from a sequence 1, . . . ,nc of candidates.

Universal verifiability assures us that votes expressed in ballots constructed using
algorithm Vote will be correctly counted, and cast-as-intended enables voters to
check that their vote is expressed in a ballot constructed using algorithm Vote.



Ballot construction differs between systems. In some cases, the ballot may be
generated by software on the voter’s computer. Other cases may be more elab-
orate, e.g., Prêt à Voter involves authorities generating and distributing blank
two-column paper ballots, and voters physically marking their selections before
discarding the left column. Yet further systems (e.g., code-voting, PunchScan,
Scantegrity, and PGD) encode votes by means other than encryption, using ma-
terial from an initialisation phase. For example, in code voting, a correspondence
between vote options and codes is committed in print on the code sheets, and
this should be consistent with the mapping of codes to votes that is committed
to the bulletin board. Some verifiable schemes even avoid cryptography, e.g.,
Randell/Ryan [29] and ThreeBallot [30].

Formalising cast-as-intended involves defining what it means for a ballot to
be correctly constructed and the means to verify this, which can be captured
as a game that challenges an adversary to achieve the opposite: To dupe a
voter into believing their ballot encodes their vote, when it does not. We model
ballot construction as an algorithm A parametrised by a public key pk , some
number of candidates nc, and a security parameter κ, and we model the voter
as an algorithm V that takes a vote v and a distinct security parameter κ̂ as
input. The latter security parameter determines the probability of breaking cast-
as-intended, whereas the former determines the probability of breaking other
security properties, such as individual and universal verifiability. We use distinct
security parameters, because the complexity of algorithm V should be upper-
bounded by the capability of a voter’s mind, whereas algorithm A should be
computable by machine.

The system is assumed to be adversarial and, to achieve cast-as-intended,
some trustworthy device is also required. (Alternatively, a multitude of devices
may be used, only one of which need be trustworthy.) We model such a device
as an algorithm T that takes the same parameters as algorithm A. Hence, ballot
construction is modelled by the computation b ← VT ,A(v, κ̂), where algorithm
T is parameterised by pk , nc, and κ. If cast-as-intended is achieved, then such
computations should result in a ballot b = Vote(pk , v,nc, κ; r) for some coins r
or the error symbol ⊥ (representing a voter detecting malice), which leads to
to our security definition (Definition 1). In that definition, we extend algorithm
A with the capabilities of a malicious administrator that defines the public key,
the voter’s vote, and the number of candidates, when parametrised by security
parameters κ and κ̂.

Definition 1 (Cast-as-intended). Let V, T , Vote, and A be proba-
bilistic polynomial-time algorithms, κ and κ̂ be security parameters, and
Cast-As-Intended be the following game.

Cast-As-Intended(V, T ,Vote,A, κ, κ̂) =

(pk , v,nc)← A(κ, κ̂);

b← VT (pk ,nc,κ),A(v, κ̂);
return ∀r . b 6= Vote(pk , v,nc, κ; r) ∧ b 6= ⊥ ∧ 1 ≤ v ≤ nc;



We say V, T ,Vote satisfies δ(κ̂)-cast-as-intended, if for all probabilistic
polynomial-time adversaries A, there exists a function δ and for all secu-
rity parameters κ and κ̂, we have Succ(Cast-As-Intended(V, T ,Vote,A, κ, κ̂)) ≤
δ(κ̂) + negl(κ).

An adversary A that wins Cast-As-Intended is able to identify a strategy, includ-
ing choosing a public key pk , a vote v, and a number of candidates nc, such that
a voter V will be deceived into casting a ballot b that does not express their vote
v. That is, winning signifies an attack against cast-as-intended.

An election scheme satisfying cast-as-intended guarantees that a voter can
check whether their ballot is an output of algorithm Vote, parametrised with
their vote v along with public key pk , number of candidates nc, and security
parameter κ, for some coins r. Supposing universal verifiability, a voter can
check whether the election outcome corresponds to votes expressed in tallied
ballots.

Our definition assumes that each voter performs verification steps correctly.
Beyond the definition’s scope, we must consider the practicality of voters cor-
rectly performing verification. Thus, even when a voting system satisfies cast-as-
intended, that system may still be vulnerable to attacks arising from voter error
or negligence (possibly attacker induced).

Let us finally remark on an important point, namely, that the definition
depends crucially on the protocol description for the honest voter V. If we have
a protocol that always aborts the casting, then this would reduce the adversary’s
advantage to zero and we would claim it satisfies cast-as-intended. Hence, we also
require a soundness condition asserting that V should only abort if the ballot is
ill-formed, or more exactly, that this should only occur with bounded probability:
We assume that V only aborts when indeed she has detected the b is ill-formed.
In practice, whether we can check if a voter is maliciously aborting enters into
the territory of dispute resolution.

3 Examples

3.1 Prêt à Voter

Fig. 1 Prêt à Voter ballot (a) and receipt (b) for vote “Idefix”

(a)

Obelix

Idefix

Asterix

Panoramix

7304944

(b)

X

7304944

In Prêt à Voter [9] the voter gets a ballot with a left and right hand side. The
candidates are listed in plaintext in a random order on the left hand side (LHS)



and this order is embedded cryptographically in a value on the right hand side
(RHS). In the privacy of the booth, the voter marks their selection on the right
hand side against the candidate(s) as indicated on the LHS. Once they have
made their mark(s) they detach and destroy the LHS, i.e. removes the plaintext
list of candidates, thus concealing the selection and creating the receipt.

The universal verifiability of the scheme will afterwards guarantee that the
vote is processed according to the encrypted order. The ballot is thus correctly
constructed, if the encrypted candidate order on the RHS matches the one dis-
played in plaintext on the LHS. To check this the voter can perform ballot audits
to verify this, but cannot verify the actual cast ballot. Additionally, ballots can
be randomly audited by observers. Note that for Prêt à Voter ballot auditing
can be delegated and is entirely privacy preserving and indeed dispute resolving.

Let us first consider the case where voters are instructed to choose κ̂ ballots
and audit all of these but one. In a worst case scenario, the adversary is able to
inject a chosen number of maliciously created ballots into this selection κ̂ ballots.
The adversary obtains the best advantage by injecting precisely one ballot and
wins if this is used for vote-casting, i.e. PAdv succ = 1/κ̂, i.e. δ ≥ 1/κ̂.

We can also consider the case, where a voter audits a ballot with a probability
p. We further assume that the probability that a ballot is audited by observers
is q. We then find

PAdv succ = (1− q) · (1− p).

Using the arguments for Benaloh challenges below, this also holds if the voter
audits multiple times with the same probability.

Here we are assuming that the random audits are unpredictable and that
chain-of-custody of the set of ballot forms is guaranteed, i.e. fake ballot forms
cannot be injected after the observer audits are performed. In fact, observer
audits can be performed before, during and after voting, so this assumption is
quite mild.

3.2 Benaloh

Let us now make a simplified analysis of Benaloh challenges. We ignore all infor-
mation that could be leaked by the vote choice used by the voter. Let us assume
that the voter has fixed probability in each round to audit. We can argue that
this makes sense since the voter obtains no other knowledge during the Benaloh
challenge process to influence the probability, and we ignore vote choices. For
the adversary, we will also assume he has a fixed probability in each round.
Let pi denote the probability of the voter doing an audit in round i and qi the
probability that the adversary changes a vote in this round.

The probability that the adversary is successful is obtained by sum of the
probabilities that he is successful in round i which is the probability that the
voter challenges all earlier rounds, that the adversary was honest in all of these,



and then he cheated in round i. That is

PAdv succ =

∞∑
i=1

p1 · · · pi−1(1− q1) · · · (1− qi−1)(1− pi)qi

.
We only aim to make a simplified analysis and we do this by assuming that

the probabilities will not depend on the rounds. For the voter this could happen
if we specify to the voter to make an audit with a certain probability. Then we
get

PAdv succ =

∞∑
i=1

pi−1(1− q)i−1(1− p)q =
(1− p)q

1− p(1− q)
.

This function is increasing in cheat probability q. Thus if the adversary wants
to maximise this, he chooses q = 1 i.e. to always cheat. The winning probability
is then

PAdv succ = 1− p,

corresponding to the probability that the voter casts in the first round. That is
we have δ ≥ 1−p. Note that the average number of challenge rounds in the vote
casting is 1/(1 − p) (without an adversary present). Abusing notation, we thus
have that δ ≥ 1/κ̂ where κ̂ is the number of challenge rounds.

Note however, that if the voter is not prescribed a certain audit probability
p and doesn’t care about the effort of doing the audits, then PAdv succ is a
decreasing function in p i.e. the voter would choose p ≈ 1, i.e. to almost always
audit. A full analysis should be done via game theory, see also [12].

3.3 MarkPledge

MarkPledge, [27], is of particular interest in the context of cast-as-intended as
it provides assurance of correctness of the ballot that is actually cast. This is in
contrast to cut-and-choose style ballot assurance, e.g. Benaloh challenges, where
an audited ballot cannot be cast.

At a very high level, MarkPlegde involves the voter interacting with a device
in the booth to perform an interactive zero-knowledge proof of correctness of
the ballot. In essence, this proof serves to convince the voter that a 1 is en-
crypted against the candidate of choice and a transcript of this proof is printed
on the receipt. As part of this interactive ZK proof, the voter provides a random
challenge, e.g. a string of k digits.

This alone would not of course be receipt-free, so the chosen vote is masked by
the device constructing fake ZK proof transcripts that an encryption of 1 against
the other candidates. The device also provides a ZK proof that there is exactly
one encryption of 1 and the other encryptions are of 0. Anyone later seeing the
receipt cannot distinguish the real and fake proofs and hence cannot identify
which candidate was selected. Only the voter will know for which candidate
they executed the real, interactive proof.



During tabulation, the candidates with an encryption of zero are weeded out,
exploiting the homomorphic properties of the encryption, leaving just those with
the encryption of 1.

The ballot assurance provided by MarkPledge is therefore dependent on the
size of the challenge space. So if the challenges are strings of k∗ digits, we get a
bound on the chance of the device being about to cheat the voter of p = 1/10k

∗
.

3.4 ThreeBallot

In the ThreeBallot scheme by Rivest [30] a voter distributes their vote intent
over three ballots. The scheme is interesting in this context as it does not employ
cryptography, and voter can tell directly whether the (three)ballot is correctly
constructed. We will also assume here that mechanisms are in place to ensure
that the (three)ballot is well formed, i.e. obeys the rules (two votes for the chosen
candidate and one for the others).

The ballots contain unique serial numbers. These are sent to a Bulletin Board,
but the voter chooses one of the single ballots and gets a copy of it. The voter’s
choice of which of the three ballots should be concealed from the system. At
home, the voter checks that the single ballot with the corresponding serial num-
ber appears online and that the partial vote choice in that ballot is correctly
stored.

Note that this example is special since this verification step is also a stored-
as-cast verification. With a malicous authority involved the serial numbers might
not be unique, and could give rise to clash attacks. In this case it is not really
meaningful to say that the displayed ballot is the voters ballot, since it will be
assigned to one or more voters. However, in the scope of cast-as-intended, we
we will focus on a single voter setting, and leave such problems to other parts
of verifiability.

If we assume that the voter chooses the receipt slip uniformly at random and
the adversary is unaware of this choice, then the adversary can try to change one
single ballot of three, and will succeed with an undetected change of the ballot
with probability 2/3. Thus δ ≥ 2/3

Scheme Prêt à Voter Benaloh MarkPledge ThreeBallot Selene

δ 1/κ̂1 1/κ̂2 1/10κ̂ 2/3 0

Delegable 3 3 7 3 7

Table 1. The different cast-as-intended protocols and their respective cast-as-intended
δ-value. κ̂1 = (1− p) · (1− q), κ̂2 = (1− p). We also note if the verification checks, or
parts thereof, are delegable.



4 Tracker-based schemes

Ryan, Rønne, & Iovino recently [32] introduced an orthogonal approach in which
the cast-as-intended is first established after tallying. For traditional voting sys-
tems, voters perform a cast-as-intended check to ensure their ballot correctly
expresses their vote, an individual-verifiability check to ensure their ballot is
collected, and a universal-verifiability check to ensure their vote is counted. By
comparison, Ryan, Rønne, & Iovino propose that voters simply check whether
their plaintext vote is present in the tally, using a private tracker—the stan-
dard early cast-as-intended and individual-verifiability checks are not necessary;
a more direct, more transparent form of verification is achieved. Voting systems
Selene [32] and sElect [23] achieve this new form of tracker-based verifiabil-
ity, with the main difference being that Selene first releases the tracker to the
voter after tallying to provide coercion-mitigation - the voter can equivocate the
tracker to a tracker for another vote.

4.1 Example: Selene

Selene, [32] is an example of a tracker-based verifiable scheme in which the voter
can confirm directly that their vote is included in the tally. The mechanism can
be applied to various forms of e-voting schemes [2, 17, 31, 33], has been studied
formally [19, 42], and has been studied from a usability viewpoint [14, 41]. In
Selene the voters hold secret trapdoor keys. After the end of election and after
the tally has been made public, the voters will receive an cryptographic term,
called the alpha term. This is combined with a public beta term which is available
on the bulletin board to form an ElGamal encryption of the tracker under the
voter’s trapdoor key. The voter can now decrypt this to retrieve their tracker.
The tracker is then used to check the plaintext vote on the final tally board.

The authorities could send a fake alpha term to the voter, however, as is
proven in [32] the chance of such an alpha term opening to an existing tracker
is negligible assuming that the authorities do not know the voter’s trapdoor
key and under a computational assumption (hardness of computing gx

2

given
gx without knowing x). Thus if the voter’s trapdoor key is not leaked and the
computational assumption holds, then δ is negligible. This presupposes that the
proofs and verifiable computations on the bulletin board are verified, which can
be done by the voter herself, or any third party.

In a tracker based scheme, traditional cast-as-intended and individual- and
universal-verifiable checks are all bundled into a single tallied-as-cast check.

5 Outlook

Verifiability has emerged as a means to ensure integrity of elections. Several
aspects of verifiability have been identified: well studied notions of individual-
and universal-verifiability, and the seemingly less well understood notion of cast-
as-intended. We propose the first formal definition of cast-as-intended, closing



a gap in the literature and enabling analysis of systems purporting to achieve
cast-as-intended.

Future work could flesh out and make more rigorous the arguments we sketch
for MarkPledge, Prêt à Voter, Selene, ThreeBallot, and schemes based upon
Benaloh challenges. Other voting systems could also be analysed, e.g., Pretty
Good Democracy and Bingo Voting. It would also be interesting to analyse any
relation between cast-as-intended and dispute resolution, privacy during ballot
construction, or both. Perhaps most importantly: A suitable security notion to
bridge the gap between individual verifiability and cast-as-intended should be
sought, see also [35] which points out that individual- and universal-verifiability
plus cast-as-intended does not yield end-to-end verifiable voting systems, e.g.
clash attacks are not captured. It would also be interesting to see to which
extent trust can be removed from the cast-as-intended verification [18].

Another interesting future path is to relate the parameter κ̂ more tightly to
usability in order to compare the achieved level of security to the amount and
complexity of user-interaction required. We already did a preliminary attempt
of this with the values shown in Table 1 where κ̂ represents the number of
interactions or the number of digits a voter needs to handle, but comparing and
understanding the usability, especially across systems, will require actual user
studies.
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