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We explore the feasibility of onboard anomaly detection using artificial neural networks for CubeSat systems and

related spacecraft where computing resources are limited. We gather data for training and evaluation using a

CubeSat in a laboratory for a scenariowhere amalfunctioning component affects temperature fluctuations across the

control system. This data, published in an open repository, guides the selection of suitable features, neural network

architecture, and metrics comprising our anomaly detection algorithm. The precision and recall of the algorithm

demonstrate improvements as compared to out-of-limit methods, whereas our open-source implementation for a

typical microcontroller exhibits small memory overhead, and hence may coexist with existing control software

without introducing newhardware. These featuresmake our solution feasible to deploy on board aCubeSat, and thus

on other, more advanced types of satellites.

I. Introduction

S PACECRAFT have resource constraints and are subject to com-

ponent failures bestmonitored on board due to datalink constraints.

ForCubeSats [1,2] that support a “low-cost and fast-delivery” paradigm

[3], computational resources are particularly limited. CubeSats are

accountable for the high percentage of failed missions in low Earth

orbit (LEO), partly due to both the use of cheap components and to

the low-cost processes of production and verification. The focus of

this work is to evaluate the feasibility of improving fault detection

on board CubeSats, and related spacecraft, using artificial neural

networks (ANNs) by respecting onboard computational limitations.

The aforementioned focus is motivated by the following regula-

tory reasons. First, due to launch trends, there is increasing concern

from launching states about liability issues stemming from con-

junctions in LEO. Because, under current international treaties,

the launching state itself is liable if a satellite originating from its

territory is deemed to be at fault in a conjunction, there is a tendency

toward states limiting their liability by requiring that operators are

covered by insurance [4]. Second, although the presented develop-

ments are relevant to spacecraft in general, we prioritize CubeSats

because there is an explicit International Organization for Stand-

ardization standard for CubeSats [5], imposing fewer reliability

requirements than normal for spacecraft. This leaves a gap between
the deregulation advocated by the engineering standard, which is
intended to stimulate innovation, and the demands of an insurer.
Insurers will increasingly audit steps taken to reduce the possibility
of CubeSat failure resulting in creating a dangerous object in
LEO, hence auditable verification and system health monitoring
of CubeSats may well become essential requirements. In this work,
we introduce onboard ANNs to improve anomaly detection and
reliability without imposing additional hardware constraints. In this
way, we aim to stimulate innovation improving regulatory compli-
ance of CubeSat missions.
There is also a practical reason for considering CubeSats: specifi-

cally, that the project team has direct physical access to a CubeSat; i.e.,
the EduSat of the CubeSat Lab at the University of Luxembourg. The
insight gleaned may be translated to other space missions with simi-
lar resources and regulatory requirements.To ensure that suchmissions
are targeted, a requirement of this study is that solutions are imple-
mentable on a typical CubeSat microcontroller, respecting its limited
memory and computational power while leaving space for control
software. More specifically, within the aforementioned broader objec-
tive, we have focused on a case study that involves anomalies in tem-
perature readings that fall out of the scope of simple static threshold
triggers, and we instead demand multivariate analysis of multiple
components. Such a multivariate analysis is suited to ANNs.
For this investigation, we have selected a narrow case study in

order to obtain datasets for training, testing, and evaluating possible
onboard ANN solutions. In nominal conditions, a CubeSat per-
forms a repeated set of health and safety, communications, and data
collection tasks. We can assume that these tasks are performed
either constantly or periodically due to the periodic orbital motion
of the CubeSat around the Earth. Moreover, due to natural orbital
motion, the spacecraft is periodically illuminated by the sunlight,
which introduces cyclic changes to the temperature values recorded
by numerous temperature sensors used to monitor various CubeSat
components. Put together, possibly with the exception of some
specific dawn/dusk orbits that are minimally affected, there exists
a periodic complex thermal pattern manifested in the relative tim-
ing of temperature value changes measured by individual sensors.
The scenario we investigate aims to capture potential malfunction-

ing of CubeSat board component(s) manifested in subtle perturbations
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to the norm of the complex temperature pattern inherent to the
operation of the satellite in LEO. We consider abnormal situations
where the malfunctioning of any element on board results in an
increase of its temperature. Although the malfunctioning element
itself may not be equipped with a temperature sensor, its abnormal
state generates additional heat that is transferred via the mecha-
nisms of thermal conduction (mainly) and thermal radiation (to
some limited extent) across the board. Under abnormal conditions,
the additional heat introduces disruptions to the characteristic ther-
mal pattern. The proposed solution is to identify subtle changes in
the thermal pattern and report them as possible indicators of the
malfunctioning of elements on the CubeSat board.
On the CubeSat that we used for the experiments, various board

components are equipped with temperature sensors, i.e., four maxi-
mumpower point trackers (MPPTs), four voltage converters, and one
battery monitor, which provide real-time measurements across the
board. The placement of the nine sensors is schematically shown in
Fig. 1, where the color gradient illustrates simulated temperature
distribution during heating by an external source placed in the plane
of the board (not shown).
Because our solution is centered on analyzing the complex thermal

pattern, it constitutes a step toward the development of a compre-
hensive health monitoring capability in the sense that it is not limited
to a particular CubeSat board component but aimed at detecting
anomalies in the operation of any of them. Yet, by focusing on such
a specific scenario, we aim to be able to explain the occurrence of
anomalies as the appearance of additional heat sources on the Cube-
Sat board.
In Sec. II, we explain our data collection methodology required

for training and evaluation. Section III describes the ingredients
comprising our anomaly detection algorithm: notably, the features
selected, the choice of neural network architecture, and the metric
used for anomaly detection. Section IV evaluates the choices of
parameters in our architecture to find those that are effective for
detecting anomalies in our dataset. Section Vevaluates the overhead
of our implementation of the algorithm on an STM32H743 32 bit
ARM Cortex-M7 microcontroller, which is typically deployed on
board a CubeSat.

II. Data Collection Methodology

We make explicit here the engineering model and experimental
setup used to generate telemetry from a CubeSat for the purpose of

evaluating our neural network solutions. The CubeSat used is a

NanoAvionics flightlike engineering model containing an ultra high

frequency communications system, an electrical power system

(EPS), an attitude control sensor and actuators, and an onboard flight

computer with an attitude control algorithm. The model is referred to

as the EduSat, and it is depicted in Fig. 2. The EduSat uses the

CubeSat protocol [6], which supports a distributed architecturewhere

subsystems are addressable nodes. It is a flightlike unit featuring a

high number of typical CubeSat sensors and actuators, albeit reduced

in number for cost-efficient education and research.

To simulate the in-orbit conditions of a CubeSat in LEO, the

following experimental setup was devised. The EduSat was placed

on a rotation table configured with a rotation period of 90 min.,

representing a typical time for a satellite in LEO to complete a full

orbit around the Earth. Dedicated software controlled the rotation

table engine while logging the time and actual angular position of

the EduSat. The EduSat buffer capacity was 1340 telemetry entries,

and so partial data was systematically downloaded and stored on a

computer, and then later merged into a single telemetry data time

series.

The laboratory environment differs from the orbit environment by

the presence of ambient air, which provides convective cooling. This

heat transport mechanism results in overall lower and less extreme

temperatures in the EduSat. The magnitude of the temperatures is not

important for our algorithm because we detect patterns and not the

exceeding of a limit. The less pronounced features as compared to

those expected in orbit are more challenging to a detection algorithm,

giving confidence in its functionality.

To mimic the periodical illumination of a CubeSat by sunlight,

EduSat was illuminated by two continuous light sources, which were

Godox SL100Bi and Neewer SL-60W, that were set to 80% brightness

with 6500K, and 100% brightness with 5600K, respectively. The light

sources were focused at the height of the EduSat’s board. This setup

provides a representative heating, enabling the development of our

algorithm. A full duplication of the thermal in-orbit situation was not

attempted because it was not necessary for the temperature pattern

anomaly detection. To keep the room temperature stable, the experi-

ments were conducted in a basement roomwith highly limited sunlight

access and no other light sources. The experimental setup is shown in

Fig. 3. Room temperature variations could not be fully eliminated, and

so the room temperature was constantly monitored and logged during

experiments. The experiments mimicking in-orbit conditions consisted

of three phases, which are explained as follows:
1) The first phase is Phase I. During this initial phase, the light

sourceswere heating up the EduSatwhile the rotationwas off in order
for the EduSat to reach a stable experiment base temperature.

Fig. 1 Schematic illustration of the nine temperature sensors’ place-
ments on the CubeSat board indicated with red crosses framed with
yellow squares.

Fig. 2 The EduSat (NanoAvionics Engineering Model, EM) of the
CubeSat Lab at the University of Luxembourg. The photograph on the
right presents the interior of the EduSat.
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2) During Phase II, the EduSat was rotating while being illumi-
nated by the light sources, and the normal conditions’ data was
collected for a few rotations.
3) The third phase is Phase III. During this final phase, the

anomalies were being introduced by turning on battery heating of
specified power and duration, which was generating abnormal-
conditions data.
During Phase II, the CubeSat was rotating with a constant angular

velocity while being illuminated by the light sources. In this sense,
Phase II represents oscillatory stable state modulo noise generated by
external factors, which could not be fully eliminated due to our limited
resources and imperfect laboratory conditions. Tomake sure thatPhase
II represented an oscillatory stable state, Phase II was preceded by
Phase I. During Phase I, the temperature pattern was monitored
although the data was discarded; i.e., the data from Phase I was never
used in the training/validation/testing of our approach.
To simulate anomalies in Phase III, battery heating was used to

imitate additional heating sources on board that could appear due to
malfunctioning of some board component. The power and duration
of the battery heating were chosen in such a way that only subtle

distortions to the thermal patternwere introduced,which could not be

identified by a simple temperature threshold per component. If the
heating was too strong in terms of duration and/or power, it would

produce visible peaks in the plots. It would then be easy to firmly
determine the occurrence of thermal anomalies by choosing a proper
threshold value and checking whether the temperature values for a

given component were above the threshold.
However, if the temperatures periodically cover thewhole nominal

range and the anomalies are weak enough to not increase the temper-

atures to exceed this range, then the thresholding approach is not of
use any more. In such circumstances the anomalies can only be
detected by the identification of some disturbances to the complex

nominal thermal pattern emerging from the variations in the states of
the components during the nominal functioning of a satellite as

captured by the different sensors.
In our study, theproper settings of batteryheatingpower andduration

were obtained by the empirical trial-and-error approach. Sufficient time
was assured after each introduced anomaly for the EduSat to revert to a

normal condition before subsequent anomalies were introduced.
For each experiment, data corresponding to Phase I was excluded;

and the remaining time series was split into two datasets: one con-

taining the normal condition (nominal) data of phase II, and the other
containing the abnormal (also referred to as anomalous) data of Phase

III. One exception is the experiment of 2022/07/20, in which Phase II
was not present. This was dictated by the aim to generate abnormal
data with longer recovery periods after anomalies; hence, we decided

to skip phase II in this case. Examples of normal and abnormal
datasets from an experiment are presented in Fig. 4, where each plot

shows the readings of the nine EduSat board temperature sensors in
time. The resolution of the temperature sensors was 1°C.
Table 1 summarizes the information on the individual experiments,

during which datasets were generated for the training and testing of

the models. For each anomaly, the battery heating power and heating
duration time are provided in the order of appearance and separated

Fig. 3 The experimental setup for data acquisition. Two light sources
illuminate the EduSat, which is placed on the rotation table.

a) Full dataset containing nine temperature sensor values; blue line in the bottom presents the logged room
temperature

b) Normal dataset of the experiment c) Abnormal dataset of the experiment; starts of anomalies 
are indicated with dashed dark blue vertical lines

Fig. 4 Exemplary datasets generated in a single experiment. The respective colors for the temperature sensors are the same in all plots.
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by the “|” delimiter. The frequency column presents the data acquis-
ition frequency used in each experiment. The nominal data column
indicates whether phase II was considered in the respective experi-
ment, and hence whether nominal data was generated during the
experiment: a checkmark (✓) denotes yes, and a cross (✗) denotes
no. An additional experiment, not shown in Table 1, was conducted
in order to collect a normal dataset for model validation purposes.
We refer to this dataset as the validation dataset.
All data generated within this study is made publicly available in

the AtMonSat project GitHub repository [7]. In particular, the indi-
vidual datasets can be accessed using the dataset class of the data-
set.ipynb Jupyter notebook; see Supplemental Appendix S.B.A.1 for
further details.

III. Design of Algorithm Based on Deep Learning

In this section, we elaborate on why we target deep learning rather
than traditional out-of-limit (OOL) techniques, and we highlight
associated challenges and solutions. Key challenges associated with
deep learning in this setting are that the depth and input space of the
networks are limited by resource constraints, and that the quantity of
data for training is limited. Therefore, to classify normal behaviors,
we found it was necessary to select features in order to guide the
training rather than relying entirely on deep learning to automatically
extract features. We subsequently show our algorithm is capable of
extracting selected features from telemetry in real time on board
a microcontroller.

A. Background on OOL and Artificial Intelligence Methods

Health monitoring and real-time detection of any symptoms of
anomalous behavior in the multivariate telemetry data are important
tasks in the operation of satellites [8]. The traditional and commonly
used method for this purpose is the OOL technique, in which sensor
measurements are checked individually to determine whether they
are within predefined ranges [9–11]. However, even the most sophis-
ticated OOL methods fail to detect complex patterns in spacecraft
flight data generated by variations in the state of components during
the nominal functioning of a satellite, and they are therefore bound
to miss many anomalies [11]. Moreover, OOL approaches are not
capable of detecting novel behaviors, i.e., events that are novel with
respect to a set of behaviors known to be nominal, for which onboard
data measurements (or their differences) are within the defined OOL
thresholds [12,13]. However, novel behaviors are often early indi-
cators of upcoming anomalies and failures. In this sense, OOL
techniques do not allow forthcoming problems to be anticipated
[13]. Furthermore, it is very costly to develop and maintain the sets
of rules of OOL anomaly detection systems because it requires the
use of expert knowledge [8].
In recent years, data-driven or learning-based methods that mine

relevant information from large datasets have provided breakthroughs
in numerous fields. In the context of spacecraft operation, methods
based on machine learning or artificial intelligence (AI) techniques
offer some effective approaches in the way telemetry data is exploited
in the context of anomaly root cause analysis and novelty detection
[13]. In particular, AI-based approaches are effective in extracting
patterns and correlations in intertwined streams of telemetry data

[14]; this data includes many aspects, such as high-dimensionality,
multimodality, and heterogeneity [8]. In fact, some experts anticipate
that spacecraft operations are an area where AI-based methods can
provide the highest benefits in the space engineering domain [13].
Our problem scenario, described in Sec. I (where a component

failure propagates as a pattern of temperature changes across the
board), has been selected because it is a concrete instance of a novel
behavior suited to the AI-based solution we devise in this section.
Several resource constraints have been imposed on the proposed
anomaly detection algorithm because deployment to amicrocontroller
is targeted. In particular, it was necessary for the algorithm to fit into
limited memory available on the microcontroller, to be capable of
performing real-time inferencewith the restricted target computational
resources, and to operate in the allowed energy consumption range.
Memory is particularly pertinent when deep ANNs are deployed, due
to the large number of parameters for each layer. Details on the
available microcontroller’s resources are provided in Supplemental
AppendixS.B.E, and the results of themeasurements of actual usageof
the resources by the microcontroller implementation of our anomaly
detection solution are presented in Sec. V.

B. Feature Selection and Engineering

Feature selection is a crucial step in the development of AI-based
frameworks. We explain here what raw sensor data we select and
how we engineer features from that raw data to indicate the rate of
change of sensors in such a way that changes relative to other sensors
are also accounted for. The intention is that we obtain a compact
feature from which differences in the propagation of temperature
changes across the board can be detected by a suitable ANN.
For our problem scenario, nine of the 500 general telemetry attrib-

utes of the EduSat are selected, from which we engineer features.
Those attributes are theEPSgeneral telemetry attributes corresponding
to temperature sensors of the battery monitor, four MPPTs, and four
voltage converters on the EduSat board. These telemetry attributes
form the first set of features, i.e., the raw temperature sensors’ features,
denoted Tj for j ∈ �1; : : : ; 9�.
The raw readings from the nine temperature sensors are used to

engineer a second set of nine features (one for each sensor), which is
intended to indicate to the ANN the rate of change of each sensor.
The engineered features are nine counters for each data point (i.e.,
readouts from the nine sensors) that each record the number of data
points since the last temperature change for the respective sensor.
Due to the fact that the arrival of each data point initiates the next
iteration of the anomaly detection algorithm in the target imple-
mentation on the microcontroller, data points are also referred to as
iterations, and the set of engineered features is named as the
iterations since the last change (ISLC) features. The features are
denoted by islcTj

for j ∈ �1; : : : ; 9�. Formally, we define islcTj
�0� �

0 and, for i ≥ 1, we have

islcTj
�i� �

islcTj
�i − 1� � 1; if Tj�i� � Tj�i − 1�

0; otherwise
(1)

For example, in Table 2, the raw temperature values recorded by
four imaginary sensors T1–4 are presented, where the events of

Table 1 Information on individual data acquisition experiments

Experiment date No. of anomalies Battery heating power and time Frequency, Hz Nominal data

2022/04/06 3 100%, 60 s | 25% 60 s | 100%, 10 s 0.1 ✓

2022/05/18 3 100%, 15 s | 100%, 15 s | 100%, 15 s 0.1 ✓

2022/05/20 1 100%, 15 s 0.2 ✓

2022/05/30 1 100%, 20 s 0.2 ✓

2022/06/01 4 100%, 20 s | 100%, 20 s | 100%, 20 s | 100%, 20 s 0.2 ✓

2022/06/03 1 100%, 30 s 0.2 ✓

2022/06/08 2 100%, 30 s | 100%, 30 s 0.2 ✓

2022/06/15 2 100%, 60 s | 100%, 60 s 0.2 ✓

2022/06/22 2 100%, 60 s | 100%, 60 s 0.2 ✓

2022/07/20 4 100%, 60 s | 100%, 60 s | 100%, 60 s | 100%, 60 s 0.2 ✗
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temperature change are indicated. The respective ISLC features are

presented in columns islcT1−4
, where a zero value entry indicates the

event of temperature change in comparison to the previous temper-

ature value for the corresponding temperature sensor.
To strongly connect local changes to changes across the board,

certain ISLC subsequences are replaced with linearly interpolated

values, as we explain here. Let us consider the situation where

islcTj
�i� � 0 for some j ∈ �1; : : : ; 9� and i > 0. Let k be the number

of iterations to the previous temperature change event among all the

sensors, i.e.,

k � min�fislcTj
�i − 1� � 1g ∪ fislcTl

�i�jl ∈ �1; : : : ; 9� ∧ l ≠ jg�
(2)

Then, values islcTj
�i − k� l� for 1 ≤ l < k are replaced with linearly

interpolated values between islcTj
�i − k� and zero, i.e.,

islcintTj
�i − k� l� � islcTj

�i − k� − l � �islcTj
�i − k�∕k� (3)

for 1 ≤ l < k. For an example, see columns islcintT1−4
in Table 2, where

interpolated values are highlighted. The interpolation gives rise to

interpolated ISLC features denoted islcintTj
for j ∈ �1; : : : ; 9�. We

observed in our experiments that the interpolation is crucial for the

considered ANNs to properly train and perform on the anomaly

detection task.
The use of interpolation introduces an inherent delay to real-

time anomaly detection. The classification of whether the next data

point is anomalous or not cannot be provided immediately upon

arrival of the data point. Therefore, in order to compute the

corresponding interpolated ISLC values, the new data point needs

to be stored together with subsequent data points in a dedicated

queue until the moment when a data point with a temperature

change on one of the sensors is received. At that point, the interpo-

lated ISLC values can be computed, the anomaly detection algo-

rithm can be run for all the data points in the buffer, and finally the

buffer can be freed.
For example, let us consider the entries in columns T1–4 in Table 2

with index 5 as the next data point that is available to the anomaly

detection algorithm. No temperature change takes place with respect

to the data point indexed as four. Therefore, the execution of the

anomaly detection algorithm for this data point is postponed. Upon

arrival of the data point with index 8, the values in columns islcintT1−4

can be computed and the anomaly detection algorithm run for points

with indices 5–8. Nevertheless, our experiments show that the num-

bers of subsequent data points buffered are usually not large.

A histogram showing the distribution of these numbers obtained

when computing the interpolated ISLC features for all normal data-

sets of the experiments in Table 1 is shown in Fig. 5. In our case, the

maximum value is 133. Notice that this number may be different for

another set of experimental data.

At first sight, one could argue that the delay in anomaly detec-

tion caused by the need to buffer 100 data points is too long: with

a data acquisition frequency of 0.2 Hz, this would result in a delay

of 500 s, i.e., 8 min. and 20 s. However, for our particular scenario,

the anomalies are assumed to manifest themselves via temperature

changes. Therefore, if an anomaly fitting the scenario occurs, it

will cause a temperature change, which in turn will cause the inter-

polated ISLC values to be computed and the anomaly detection

algorithm to be triggered to detect the abnormal behavior of the

system. Therefore, we consider this inherent delay to be only

a minor disadvantage of the proposed solution because the delay

will only be high if the satellite is in a stable state rather than an

anomalous state.

To summarize, both the nine raw temperature sensors features and

the nine interpolated ISLC features were used simultaneously for

model training and inference. We discuss further the implementation

of the algorithm, including how the ISLC interpolation is implemented

on the microcontroller for real-time analysis, in Sec. V.

C. Deep-Learning Model Architectures

We considered different deep-learning model architectures: convo-

lution neural network-based (CNN-based), long short term memory-

based (LSTM-based), and an autoencoder with different configura-

tions of activation functions and individual layers. Aswe explain next,

only two of the considered architectures provided relevant results, i.e.,

a CNN-based architecture and an LSTM-based architecture presented

in Fig. 6. The remaining two architectures, which demonstrated unsat-

isfactory anomaly detection results, are shown for the sake of the com-

pleteness of presentation in Supplemental Figure S1 in Supplemental

Appendix S.A.

Table 2 Example of ISLC feature engineering

T1 T2 T3 T4 islcT1
islcT2

islcT3
islcT4

islcintT1
islcintT2

islcintT3
islcintT4

0 37 38 38 39 0 0 0 0 0.00 0 0 0
1 37 38 38 39 1 1 1 1 0.00 1 1 1
2 38 38 38 39 0 2 2 2 0.00 2 2 2
3 38 38 38 39 1 3 3 3 1.00 1 1 3
4 38 39 39 39 2 0 0 4 2.00 0 0 4
5 38 39 39 39 3 1 1 5 1.50 1 1 5
6 38 39 39 39 4 2 2 6 1.00 2 2 6
7 38 39 39 39 5 3 3 7 0.50 3 3 7
8 39 39 39 39 0 4 4 8 0.00 4 4 8
9 39 39 39 39 1 5 5 9 1.00 5 5 4
10 39 39 39 38 2 6 6 0 2.00 6 6 0
11 39 39 39 38 3 7 7 1 1.33 7 7 1
12 39 39 39 38 4 8 8 2 0.67 8 8 2
13 40 39 39 38 0 9 9 3 0.00 9 9 3
14 40 39 39 38 1 10 10 4 1.00 10 10 4

Fig. 5 Histogram of the numbers of data points buffered before inter-

polated ISLC values could be computed for the normal datasets.
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We selected the approach of training deep-learning models exclu-
sively with the normal datasets (i.e., regression training) as an alter-
nativeversion of training themodels using both normal and abnormal
datasets (i.e., classification type of training). All models were trained
with the “mean squared error” (MSE) loss function and the Adam
optimizer with TensorFlow default settings. Early stopping callback
was used with the following configuration: monitor=“loss,” min_

delta=1e−2, patience=10, and mode=“auto.” The number of epochs
was set to 500. The input to the models consisted of batches of input
tensors of shape (window_length,number_of_features), where win-
dow_length defines the size of the number of consecutive (historical)
data points used to make the inference. For the target model, which
is presented in the following, we set number_of_features=18. The
particular choice of the window_size hyperparameter value in the
target model used in our anomaly detection algorithm is presented in
Sec. IV.A. The output of the models are tensors of shape (1,number_
of_ features); i.e., the models infer a single next data point in terms of
interpolated ISLC values and raw temperature values. During train-
ing, the inferred outputs were compared to the actual data points
using the MSE loss function, which was optimized with the back-
propagation algorithm.

D. Anomaly Detection Algorithm

We now explain the anomaly detection algorithm we developed
based on an ANN trained on normal data. The algorithmmakes use
of a metric for calculating errors, which turns out to be an impor-
tant design decision. The two metrics we considered were 1) the
Euclidean distance and 2) the Mahalanobis distance between the
two vectors of length number_of_features, which is defined with
respect to the estimated mean and inverse of a covariance matrix.
The anomaly detection algorithm is devised as follows:
1) In step 1, a deep-learning model is trained on data from all the

normal datasets generated with the experiments presented in Table 1
with the settings presented in Sec. III.C. If the Mahalanobis distance
is employed, its mean vector and covariance matrix are estimated at
this point from the normal condition error vectors obtained by run-
ning the trainedmodel on the normal training data and subtracting the
prediction from the reference at each data point.
2) In step 2, the trained model is then run on an anomalous dataset.

For each inferred point, an error with respect to the actual data point is
computed using the chosen metric (the Euclidean or Mahalanobis
distance). The errors, which are computed based on the model out-
puts and the ground-truth feature vectors, are referred to as the raw
anomaly detection signal.
3) In step 3, the raw anomaly detection signal is postprocessed

by considering a threshold value and a so-called holdoff window.

The threshold value is determined with a separate procedure des-
cribed in Sec. III.E, whereas the holdoff window is given by a duration
specifying the number of time points. The raw anomaly detection
signal is scanned in the chronological order of the corresponding data
points, onepoint after the other. If an error value greater thanor equal to
the threshold value is observed, the corresponding data point is clas-
sified as anomalous and all consecutive data points within the holdoff
window starting at the anomalous data point are classified as normal.
Scanning then continues from the first subsequent error outside the
holdoff window.
The postprocessing in step 3 is introduced due to the fact that the

information on abnormal behavior is carried in the change of the
temperature pattern. However, temperature changes are inherently
slow and continuous. Furthermore, there is a delay between the
occurrence of a board element malfunction and the time the dis-
turbance in the temperature pattern is registered by the sensors
scattered across the board. The delay is determined by the thermal
conduction characteristics of the board. Given this, the rationale
behind introducing the holdoffwindow for the postprocessing of the
raw anomaly signal is twofold. First, due to continuity of thermal
changes, an anomaly is usually indicated by consecutive raw signal
values exceeding the threshold. Second, an anomaly can be dem-
onstrated by the occurrence of multiple anomaly signal peaks, one
shortly after the other, as observed in some of the generated datasets.
The introduction of the holdoff window postprocessing allows all
data points exceeding the threshold in a window to be considered as
a single anomaly. This cleans the raw anomaly signal for subsequent
quantitative evaluation of the performance of the models with res-
pect to appropriate metrics described in Sec. IV. In our case, we set
the holdoff window to 60 time points.

E. Determination of the Anomaly Detection Threshold

Both the Euclidean and the Mahalanobis error thresholds are deter-
minedwith the same approach thatmimics the statistical leave-one-out
cross-validation (also known as out-of-sample testing) procedure.
The experiments presented in Table 1 are used to train a model with
the settings provided in Sec. III.C. Then, the fitted model is run on the
separate validation dataset, and the errors are computed and stored.
For the Mahalanobis distance, the mean and the inverse covariance
matrix are estimated from the errors obtained by running inference on
all the normal datasets except the validation dataset. The procedure is
repeated for all normal datasets kept aside. Finally, all the errors are
used to generate a histogram (i.e., an empirical distribution), and the
significance threshold value corresponding to a chosen statistical
significance level (e.g., 0.05 or 0.01) is usedas the respectiveEuclidean
or Mahalanobis error threshold; see Fig. 7.

InputLayer

oat32

Input:

Output:

[(None, 150, 18)]

[(None, 150, 18)]

Conv1D relu

oat32

Input:

Output:

(None, 150, 18)

(None, 146, 5)

Flatten

oat32

Input:

Output:

(None, 146, 5)

(None, 730)

Dense Linear

oat32

Input:

Output:

(None, 730)

(None, 18)

a) CNN-based model (13,613 parameters)

InputLayer

oat32

Input:

Output:

[(None, 150, 18)]

[(None, 150, 18)]

LSTM tanh

oat32

Input:

Output:

(None, 150, 18)

(None, 100)

Dense Linear

oat32

Input:

Output:

(None, 100)

(None, 18)

b) LSTM-based version 1 model (49,418
parameters)

Fig. 6 Deep-learning model architectures with configurations that demonstrated relevant anomaly detection results. Graphs were produced with
tf.keras.utils.plot_model function of TensorFlow, which uses “None” to represent unknown batch size, which is determined first when the model is

executed. (Conv1D, 1-dimensional convolution layer; relu, rectified linear unit activation function).
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IV. Evaluation of the Effectiveness of the Algorithm

This section details the results obtained concerning the effective-

ness of the algorithm devised with respect to key parameters. We

explain why experiments lead us to clearly prefer the Mahalanobis

metric rather than the Euclidean metric. More surprisingly, the CNN

architecture significantly outperforms other considered architectures,
which we justify via a statistical analysis of data points classified as

anomalous. Statistical analysis also justifies that our optimal archi-

tecture significantly outperforms an OOL method on most datasets.

A. Evaluation of Hyperparameters Impacting Anomaly Detection

The model described in Sec. III can be configured using several
parameters, including the choice of metric and ANN, which we

evaluate here to determine which are most effective. To evaluate the

choice of metric with respect to a given ANN, the resulting anomaly

detection algorithm employing trained models was applied to the

anomalous datasets of the experiments presented in Table 1.
The quantitative evaluation of the algorithm performance is con-

ducted using a confusionmatrix consisting of the true positives (TPs),
false positives (FPs), and false negatives (FNs), as determined by the

output of our anomaly detection algorithm. From this, we calculate

the values of three standard metrics for classification evaluation, i.e.,

precision, recall, and the F1score, where

precision � TP

TP� FP
; recall � TP

TP� FN
; and

F1 score � 2 ⋅ precision ⋅ recall
precision� recall

(4)

To count the TPs, we introduce the notion of a TP interval. Let ai be
the index of the first data point recorded by the temperature sensors
after (or at) the anomaly start time, i.e., the moment of battery heating

being turned on. Because the heating anomaly requires time for the

temperature change to reach the sensors, there is an inherent delay,

or inertia, before the anomaly is detectable. We therefore allow the

anomaly to be identified within a window of data points, which is

referred to as the anomaly inertia window. In our experiments, we set

the length of this window, denoted laiw, to 60 data points based on our
observations made during experimentations. If an anomaly signal is

output by the anomaly detection algorithm for any of the data points

with indices in the range �ai; ai � laiw�, the anomaly signal is con-

sidered as a TP. However, due to the interpolation of the ISLCs, there

is a possibility for an anomaly to be detected and identified before the

data point with indexai because the information about the near future

is conveyed in the interpolated subsequence of ISLC(s). For example,

the subsequence islcintT1
�4 − 6� in Table 2 contains interpolated values.

By observing it, one can deduce that a temperature change will be

captured by the temperature sensorT1 in the eighth data point. To take

this possibility into account, the TP interval is expanded to the left as

follows.We checkwhether any of the nine interpolated ISLC features

corresponding to the aith data point contain an interpolated value.

If this is the case, let intstart and intend be the start and the end indices
of the interpolated subsequence, respectively. In our example,

intstart � 5 and intend � 7. Then, the TP interval is given by

�intstart; ai � laiw�. All anomaly detection signals within this interval

are considered as TPs. In Supplemental Fig. S8, each anomaly is

plotted with its TP interval visualized with light-violet rectangles in

the plots with the final output of the anomaly detection algorithm.
Once the TPs are calculated, all the remaining anomaly signal

peaks are counted as FPs.Anomalies that are not identified contribute

to the number of FNs. Finally, the number of true negatives (TNs) is

obtained with the following expression:

TN � total number of data points − �TP� FPs� FN�

Next, the precision, recall, and F1 score are calculated in accor-

dance with Eq. (4). The precision and the recall make it possible to

assess the performance of a classifier on the minority class of an

imbalanced dataset [15] because both metrics are unconcerned with

the majority class and only focus on the minority class. In our case,

the minority class is “abnormal” (i.e., TPs), whereas the majority

class is “normal” (i.e., TNs).
Our experiments revealed that only the use of the Mahalanobis

distance metric generated meaningful results. Furthermore, only the

CNN-based model outlined in Fig. 6a was capable of providing

meaningful results for the noisy real-life data. Surprisingly, the two

larger model architectures presented in Supplemental Fig. S1 in

SupplementalAppendix S.Awere not capable of properly identifying

anomalies in our anomalous datasets despite numerous trials with

different settings of hyperparameters (data not shown). However, the

case of the LSTM-based version 1 model in Fig. 6b was special. The

raw anomaly detection signal output by the anomaly detection algo-

rithm using this model for the 2022/03/06 abnormal dataset is shown

in Fig. 8. The LSTM-based model failed to identify the anomaly due

to theMahalanobis error threshold being too high, which is indicated

by the dashed green line. The high value of the threshold originated

from poor performance of the model on the out-of-sample test with

the 2022/05/30 normal dataset kept aside. Given this threshold, the

Fig. 7 Empirical distribution of Euclidean errors inferred by the CNN-
based model. Significance threshold corresponds to the 0.05 statistical
significance level.

Fig. 8 Raw anomaly detection signal (red) of the LSTM-based version 1model for the 2022/06/03 abnormal dataset withMahalanobis threshold (green).
(Start of anomaly is indicated with vertical blue line.)
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anomaly detection algorithm with the LSTM-based model also per-

formed poorly on other abnormal datasets.
Nevertheless, when the out-of-sample test with the 2022/05/30

normal dataset kept aside was excluded from theMahalanobis error

threshold determination procedure of Sec. III.E (i.e., when only the

out-of-sample test with the 2022/05/30 dataset was not considered

but the dataset itself was used for training in all other out-

of-sample tests), the performance significantly improved and was

comparable with the results of the CNN-basedmodel. Yet, although

the LSTM-based version 1 model has a larger number of trainable

parameters, the results were not as good as in the case of the CNN-

based model. We present the quantitative evaluation of the anomaly

detection algorithm employing the LSTM-based version 1 model

with the Mahalanobis error threshold value determined without

considering the out-of-sample test with the 2022/05/30 normal

dataset in Supplemental Table S1 in Supplemental Appendix S.A.
Given the preceding observations,wehenceforth focus on theCNN-

based model architecture. Our experiments with different sizes of the

window with past data points for inference (i.e., 100, 150, and 200)

reveal that the best performance is achieved with the window size of

150. We present the results obtained for the different window sizes in

Supplemental Table S2 in Supplemental Appendix S.A. From this

point onward, we set the window size to 150 in all experiments. The

CNN-based model is trained as described in Sec. III. Additionally, the

trainedmodel is validatedwith thevalidation dataset,which is a normal

condition dataset (see Sec. II). The results of the anomaly detection

algorithm run on the validation dataset are presented in Fig. 9.
The quantitative evaluation of the anomaly detection algo-

rithm employing the CNN-based model and the Mahalanobis

error threshold value determined with the approach of Sec. III.E

is provided in Table 3, covering the anomalous experiments from

Table 1. In Supplemental Appendix S.C, we provide the plots for

the individual abnormal datasets of the raw anomaly detection

signal and the postprocessed anomaly detection signal, which is

the final output of the proposed anomaly detection algorithm, in

Supplemental Fig. S8.
Next, the precision–recall curves (PRCs)were generatedwith TPs,

FPs, and FNs determined as described earlier in this paper for differ-

ent values of theMahalanobis error threshold, and the areas under the

PRCswere computed. The curveswith the areas and the no-skill lines

indicating the proportion of the number of anomalies to the total

number of data points for individual abnormal datasets are presented

in Fig. 10. Because the anomaly detection domain is highly skewed,

precision–recall curves are more informative than receiver operating

characteristic (ROC) curves because the latter may provide an exces-

sively optimistic evaluation of the performance [16]. Indeed, due

to the highly dominating numbers of TNs, the areas under the ROC

curves are very close to one for all abnormal datasets (data not

shown). Therefore, ROC curves in this case do not reveal the actual

performance of our anomaly detection algorithm.
We once again return to the problem of selecting the target deep-

learningmodel for our anomaly detection algorithm.Despite the poor

performance of the LSTM-based version 1 model in Fig. 6b, one

could argue that lowering the threshold in Fig. 8 could lead

to good performance. To verify this, we computed the areas under

the precision–recall curves for the anomaly detection algorithm with

the LSTM-based model for individual abnormal datasets. The areas

obtained with the LSTM-based version 1 model and the CNN-based

model are shown in Table 4. For completeness, we also include the

results for the LSTM-based version 2 model and the autoencoder

model presented in Supplemental Figs. S1a and S1b of Supplemental

Appendix S.A, respectively. These results provide further justifica-

tion for selecting the CNN-based model as the target model for our

anomaly detection algorithm. Additional experiments in which other

variants of the LSTM-based models and the autoencoder with differ-

ent numbers, shapes, and activation functions of LSTM layers were

considered confirmed our choice (data not shown).
There is a significant variance in the values of the precision, recall,

and F1-score metrics for different datasets. This is mainly due to the

a) The Mahalanobis error (i.e.”, change “distance,” to “distance) the inference error measured
with the Mahalanobis distance, on the validation dataset

b) The output of the anomaly detection algorithm on the validation dataset. False Positives: 7,
False Negatives: 0, True Positives: 0, and True Negatives: 1925

Abnormal

Fig. 9 Validation results of the anomaly detection algorithm employing the CNN-based model in Fig. 6a with window size set to 150.

Table 3 Quantitative evaluation results of CNN-based model with
window size of 150 data points for the individual abnormal datasetsa

Experiment
date TP FP FN Precision Recall

F1
score

2022/04/06 2(+1) 0 (0) 1 (−1) 1.00 0.67 0.80
2022/05/18 1 (−1) 2 (+2) 2 (+1) 0.33 0.33 0.33
2022/05/20 1 (+1) 0 (0) 0 (−1) 1.00 1.00 1.00
2022/05/30 1 (+1) 0 (0) 0 (−1) 1.00 1.00 1.00
2022/06/01 3 (+3) 9 (+8) 1 (−3) 0.25 0.75 0.38
2022/06/03 1 (+1) 2 (+2) 0 (−1) 0.33 1.00 0.50
2022/06/08 2 (+2) 2 (+2) 0 (−2) 0.50 1.00 0.67
2022/06/15 2 (0) 1 (+1) 0 (0) 0.67 1.00 0.80
2022/06/22 1 (0) 0 (0) 0 (0) 1.00 1.00 1.00
2022/07/20 4 (+2) 1 2 (+1 2) 0 (−2) 0.25 1.00 0.40

aThe numbers in the parentheses indicate the increase/decrease in the number of TPs,

FPs, and FNs with respect to the benchmark rule-based solution results shown in

Table 5.
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a) Abnormal dataset of 2022/04/06 b) Abnormal dataset of 2022/05/18 c) Abnormal dataset of 2022/05/20

d) Abnormal dataset of 2022/05/30 e) Abnormal dataset of 2022/06/01 f) Abnormal dataset of 2022/06/03

g) Abnormal dataset of 2022/06/08 h) Abnormal dataset of 2022/06/15 i) Abnormal dataset of 2022/06/22

j) Abnormal dataset of 2022/07/20

Fig. 10 Precision–recall curves obtained with the CNN-based model (Fig. 6a) for individual abnormal datasets.

Table 4 Areas under the precision-recall curves (PRCs) of the anomaly detection algorithm run on individual abnormal datasets with
different models considered in this study

Experiment datea

04/06 05/18 05/20 05/30 06/01 06/03 06/08 06/15 06/22 07/20

CNN PRC area 0.99 0.69 1.00 1.00 0.18 0.17 0.21 1.00 1.00 0.32
LSTM version 1 PRC area 0.90 0.57 1.00 1.00 0.04 0.25 0.16 1.00 1.00 0.30
LSTM version 2 PRC area 0.99 0.42 1.00 1.00 0.08 0.00 0.12 1.00 0.01 0.07
Autoencoder PRC area 0.11 0.80 1.00 0.00 0.03 0.00 0.02 0.99 0.06 0.15

aA shorter notation is used to denote the datasets, e.g., 04/06 stands for 2022/04/06.
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high level of noise and the fact that the individual experiments were
conducted on different days in the laboratory. Although we made all
effort to eliminate any external factors that could distort the generated
data, given our highly limited experimental laboratory resources and
conditions, the external factors still impacted the data. For example, as
can be observed by comparing the room temperature logs from differ-
ent experiments, the base room temperature was changing from one
day to another. Because of our efforts, the differences were not very
large. Still, they were inevitably impacting the temperature patterns
recorded by the EduSat board temperature sensors. Given the 1°C
resolution of the sensors, a change in the base room tempera-
ture generated differences in the temperature ranges of the profiles
recorded by the individual sensors and, even more importantly in the
context of our solution, in the timings between temperature changes
registered by the individual sensors. Specifically, the latter had a direct
and significant impact on the values of the interpolated ISLC features.
The presented results can be reproduced by running the training/

run_saved_models.ipynb Jupyter notebook in the AtMonSat project
GitHub repository [7]. The notebook loads a selected trained model
and runs it on the validation and anomalous datasets. The saved and
trained deep-learning models considered in this study are made
available in the training/saved_models folder in the repository.

B. Comparison to a Rule-Based Benchmark Approach

We compared the performance of our proposed AI-based solution
with a classical approach to health monitoring in the space industry,
i.e., a rule-based approach. For this purpose, we developed the
following benchmark procedure. As argued in the previous subsec-
tion, there is an inherent inertia before the excessive heat due to
malfunctioning of a component reaches the sensors. Furthermore, the
delay may vary for individual sensors on the board, which is caused
by the differences in their distances to the malfunctioning compo-
nent. With this in mind, as in the case of TP intervals, we considered
the same anomaly inertiawindowof length laiw. For a given data point
at index i, if all nine sensors recorded a change in temperature within
data points of indices in �i; i� laiw�, then this data point was consid-
ered positive; otherwise, it was considered negative. This classifica-
tion was performed for all data points in the abnormal datasets. The
benchmark approach raw classification of data points of the 2022/05/
18 abnormal dataset is shown in Fig. 11.
Next, contiguous subsequences of positive data points were con-

sidered, which are referred to as positive intervals. If a subsequence
was longer than 2laiw, then it was split into consecutive positive
intervals of length 2laiw, with the last one possibly being shorter. In
the benchmark approach, we defined an anomaly to be contained
within a positive interval if, and only if, the start time of the anomaly
was within the time range of the positive interval given by the time
stamps of its data points. An anomaly was considered to be correctly
detected, and increased the counter of TPs, if it was contained within
some positive interval. If the anomaly was not contained in any of
the positive intervals, the anomaly increased the counter of FNs.
Finally, all positive intervals within which no anomaly was contained
increased the counter of FPs. The results of applying the benchmark
approach to the abnormal datasets of the experiments in Table 1 are
shown in Table 5. By comparing the results to the ones in Table 3, one
can see that our algorithm outperforms the benchmark solution on
seven out of 10 datasets in terms of the number of TPs and FNs. On
another two datasets, the results are the same; in one case of the 2022/
05/18 dataset, the results are worse. We just mention here that the
2022/05/18 dataset seems to bemuchmore noisy in comparison to all
the other datasets because the performance of all other models
considered in our experiments was consistently significantly worse

on the 2022/05/18 dataset (data not shown). However, our approach
generates higher numbers of FPs on six out of 10 datasets. Never-
theless, the numbers are small in most of the cases, and only the
2022/06/01 and 2022/07/20 datasets are relatively high, namely,
9 and 12, respectively. All in all, we can conclude that our anomaly
detection algorithm outperforms the benchmark solution in almost all
cases. These results make a case for constructing more complex AI-
based frameworks for health monitoring of CubeSats.

V. Performance Evaluation of the Microcontroller
Implementation

In this section, the anomaly detection algorithm employing a
pretrained CNN-based model in Fig. 6a is evaluated in terms of the
following three criteria: execution time, memory usage, and energy
consumption. We also draw attention in the following to key aspects
of our implementation: notably, how interpolation was realized using
buffered features.

A. Implementation for a Microcontroller

The anomaly detection algorithm implemented in C++ is
embedded in a testbed, as depicted in the block diagram shown in
Fig. 12, to allow the evaluation of the algorithm’s performance. The
algorithm is evaluated on the arrival of each new data point. For the
computation of the interpolated ISLC features, data points are entered
into the interpolating iterations since last change counter (IISLCC)
module, which implements the computation of the interpolated ISLC
features. The interpolated ISLC features are forwarded into two
serial-in/parallel-out (SIPO) blocks, for which the outputs are two
windows of raw temperature sensors and interpolated ISLC features,
respectively. The two windows are given as input to the pretrained
deep-learning model.
The microcontroller implementation of the deep-learningmodel is

not quantized. Attempts to perform post-training quantization or to
run quantization-aware training resulted in poor performance of the
models. Therefore, all the results presented here are obtainedwith the
deep-learning model implemented with float32 (single-precision
floating-point number representation occupying 32 bits in computer
memory). Further technical details on the testbed and the algorithm
implementations are provided in Supplemental Appendix S.B.

B. Anomaly Detection Algorithm Execution Time Measurements

Weperformed detailedmeasurements of the execution times of the
anomaly detection algorithm run on the microcontroller with differ-
ent settings of the clock frequency. We indicate the exact part of the
anomaly detection algorithm for which execution was considered in
the measurements with the measured time frame in Fig. 12.

Fig. 11 Benchmark approach raw classification of the 2022/05/18 abnormal dataset data points (cyan) with indicated anomaly start times (dark blue).

Table 5 Quantitative evaluation results of the rule-based
benchmark solution for the individual abnormal datasets

Experiment date TP FP FN Precision Recall F1 score

2022/04/06 1 0 2 1.00 0.33 0.50
2022/05/18 2 0 1 1.00 0.67 0.80
2022/05/20 0 0 1 0.00 0.00 0.00
2022/05/30 0 0 1 0.00 0.00 0.00
2022/06/01 0 1 4 0.00 0.00 0.00
2022/06/03 0 0 1 0.00 0.00 0.00
2022/06/08 0 0 2 0.00 0.00 0.00
2022/06/15 2 0 0 1.00 1.00 1.00
2022/06/22 1 0 0 1.00 1.00 1.00
2022/07/20 2 0 2 1.00 0.50 0.67
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To collect larger samples of measurements, we run the anomaly
detection algorithm on the microcontroller on data generated both in
Phase II and Phase III of the individual experiments, i.e., on merged
both normal and abnormal datasets of the individual experiments.We
refer to the merged datasets as the experimental dataset of the given

experiment. The execution times were determined for the processing
of each data point of the individual experimental datasets. For exam-
ple, the execution times for each data point of the 2022/04/06
experimental dataset processed on the microcontroller with the clock
frequency set to 298 MHz are shown in Supplemental Fig. S7 in
Supplemental Appendix S.C.
Notice that for some data points, the execution times are close to

zero. These times are just needed for queuing the data points without
computation of the interpolated ISLC features and without the
execution of the core part of the anomaly detection algorithm,
i.e., the parts shown inside the repeat for 0, : : : ,N vectors in IISLCC

queue and repeat for 0, : : : ,N in queue frames in Fig. 12. The
processing of these points is postponed until the moment when
interpolated ISLC feature values can be computed, i.e., when a
temperature change by any of the temperature sensors is detected
at the arrival of some future data point. Once the temperature change
is observed, the interpolated ISLC features are computed and the
anomaly detection algorithm is run for all the queued data points;
see Supplemental Appendix S.B.C.1 for details. Therefore, the

subsequences of near-zero execution times are followed by execu-
tion time peaks associated with data points that resulted in change

detection and dequeuing. The peaks reflect the processing of all the

queued data points.

The mean execution times are shown in Figs. 13 and 14. Notice

that the cache optimization was enabled both for the data and

Fig. 12 Flowdiagramof theSTM32H743microcontroller implementation. (lite: is the secondtermof theproduct name“Tensorflow lite”, amobile library for
deployingmodels onmobile,microcontrollers andother edge devices; int: abbreviation for integer; uint: abbreviation for unsigned integer; float: abbreviation
of floating point number; float32: abbreviation of floating point number stored in with a 32 bit (bit is an abbreviation for binary digit); cnt: abbreviation for
count; dp: abbreviation for data point; rply: abbreviation for reply; erp: abbreviation for end-of-reply; uart: abbreviation for Universal Asynchronous
Receiver/Transmitter; ack: abbreviation for acknowledge; TF: abbreviation for Tensorflow; concat: abbreviation for the english word concatenate.)
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Fig. 13 Mean execution times (in seconds) of the anomaly detection
algorithm run with four different settings of the microcontroller’s clock
frequency.
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instructions. Observe that there is little variation in performance
between datasets, indicating that the algorithm is robust. Detailed
histograms with anomaly detection algorithm execution times for
individual experiments for four different settings of the microcon-
troller’s clock frequency (i.e., 39, 78, 146, and 298 MHz) are

provided in Supplemental Table S3 in Supplemental Appendix S.C.

C. Power Consumption Measurements

The algorithm is embedded in a testbed that allows the verifica-
tion of the results and performance, as detailed in Supplemental
Appendix S.B. We measured the power consumed by the micro-
controller while running the testbed with the anomaly detection

algorithm on individual experimental datasets under different set-
tings of clock frequency. Each measurement consisted of three
phases: 1) the microcontroller running in idle state, 2) the micro-
controller running the testbed with the anomaly detection algo-
rithm on an experimental dataset, and 3) the microcontroller again
in idle state. The average of the instantaneous power over the
processing of one full experimental dataset (i.e., over the second

phase) is referred to as the experiment mean power. The numerical
values of the experiment mean powers in watts for individual
experimental datasets under different settings of clock frequency
are provided in Fig. 15. The detailed plots presenting the instanta-
neous power consumptions are provided in Supplemental Table S4
of Supplemental Appendix S.C. Notice that a smaller frequency
results in less power consumption. Nevertheless, there is a tradeoff

between power consumption and the execution time; see Figs. 13
and 14. Therefore, the clock frequency should be set in a way that
simultaneously assures an acceptable power consumption level

and getting calculations done before the next data point sample
arrives.
Measurements of background power (i.e., the idle state instanta-

neous power consumption) are included for reference and for the
calculation of the net experiment mean power consumed by the
testbed with the anomaly detection algorithm. The net experiment
mean power is calculated as the experiment mean power minus the
background mean power, i.e., the average of background power
measurements. The net experiment mean power consumptions with
the standard deviations calculated in accordance with the expres-
sion for the standard deviation of a sum/difference of two uncorre-
lated random variables (i.e., σX−Y � σ2X � σ2Y) are shown in
Fig. 16.

D. Memory Footprint

The implementation of the anomaly detection algorithm used both
static memory and stack. To prevent fragmentation, no dynamic
memory (heap) was used.
To measure the stack and static memory used by the anomaly

detection algorithm, a placebo version of the firmware was imple-
mented. This version contained the complete testbed without the
algorithm itself.
The net stack and static memory usage were obtained by sub-

tracting the stack and staticmemory used by the placebo version from
the stack and static memory used by the complete version (i.e., the
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Fig. 14 Anomaly detection algorithmmean execution times with standard deviations (vertical black lines) for four settings of themicrocontroller’s clock
frequency.
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Fig. 15 Experiment mean power consumed by the microcontroller
while running the test bed.
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Fig. 16 Net experimentmeanpower (blue bars)with standarddeviation
(gray bars) consumed by the microcontroller while running the test bed.
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testbed with the algorithm), respectively. The results are provided in
Table 6.
The data, bss (block starting symbol – a portion of memory that

contains statically allocated variables that have no predefined value),
and stackwere stored in thememoryAXI-SRAM(static random-access
memory connected to the core using an AXI interface (Advanced
eXtensible Interface, anon-chip communicationbusprotocol developed
by ARM (Advanced RISC Machine))) for domain D1 (512 kB). The
code and constants were stored in the microcontroller’s flash memory
(2MB).More details on themicrocontroller’smemory organization can
be found in Ref. [17].

VI. Future Work

Regarding future work, a key limitation of the current method was
the quantity of data generated and environmental factors that differed
between the laboratory and space. This was partly due to what could
be achieved with the resources available using EduSat. Nevertheless,
the current solution provided effective datasets for model training,
evaluation, and testing, even with the noisy data. Rather than
obtaining more of the same data, the current promising results make
a case for future work acquiring higher-quality laboratory data, or
even real in-orbit data (transmitted during payload downtime per-
haps), and the fine-tuning of the current solution based on them. For
the current datasets, quantization introduced a significant drop in
performance. Tantalizingly, quantization was effective on simulated
datawith no noise, and conditions in spacemay be between these two
extremes. Therefore, the problem of model quantization is another
issue that could be further investigated with the aim of producing a
solution requiring even lessmemory and computational power. Other
lines of futurework include testing the robustness of the solutionwith
respect to different novel anomalies and determining whether addi-
tional telemetry could contribute to the detection of certain anoma-
lies. Finally, the observed performance variations of the current
approach could be reduced by acquiring real in-orbit data. In-orbit
data would eliminate noise introduced by factors that could not be
eliminated in the current laboratory experiments, which did not occur
in space.

VII. Conclusions

The problem addressed in this work, of onboard fault detection
using artificial neural networks that respect the limited resources of
a CubeSat system, is reflected on here. The fact that this work shows
that computational resources can indeed be respected by the algo-
rithm is a key novelty of the approach proposed, since memory
usage of the algorithm was kept within 10% of the memory avail-
able, as summarized in Table 6. This supports the argument that
additional hardware, such as a powerful dedicated processor, is not
required to deploy the solution proposed. Figure 13 suggests that
even if clock cycles are limited (e.g., due to scheduling between our
algorithm and existing control software deployed on a microcon-
troller), the performance of the algorithm is well within the bounds
of real-time execution because the execution time is far less than the
rate at which data arrives, with negligible variation. The power
measurements provided in Fig. 16 can be used to estimate the power
overhead, depending on the requirements of a particular mission.

To both respect resources and reliably detect anomalies, certain
aspects of the current algorithm were designed and evaluated care-
fully: notably, the deep-learning architecture. Of the deep-learning
architectures in Fig. 6 and Supplemental Fig. S1 in Supplemental
Appendix S.A., only the CNN showed promising results. The
results in Table 4, comparing the area under precision–recall
curves, provided a clear indicator that the CNN outperformed the
other models. For four datasets where anomaly detection was near
perfect both the CNN and the LSTM version 1 models performed
well, whereas in the other experiments where noise reduced the
effectiveness of anomaly detection, the CNN consistently outper-
formed the LSTM version 1 model. Additional experiments on
simulated data reinforced this observation that LSTMs perform
well without noise. Hence, the role of normal background noise in
data collected in space as compared to the laboratory data in Table 1
could be evaluated further. A threshold was calculated according to
a statistical significance level of 0.05 in Fig. 7, whichmay of course
be varied, depending on the desired anomaly reporting rate of a
mission. The precision and recall for CNNs at the statistical sig-
nificance level of 0.05 are presented in Table 3, which can be
compared to Table 5 to see that the current architecture outperforms
a benchmark OOL method. It was found that precision–recall
curves provided a better evaluation than ROC curves because the
precision–recall curves excluded the true negatives dominating the
dataset.
We were able to keep the number of parameters comprising our

CNNs small, largely due to carefully selecting features. The algorithm
for selecting features, described in Sec. III.B, accounts for values of the
nine temperature sensors (shown in Fig. 1) as well as the interpolated
number of data points since the last discrete change in value for each
sensor, as illustrated in Table 2. In the implementation in Fig. 12, a
dedicated delay buffers data points until one sensor among all sensors
changes to realize interpolation in real time on a microcontroller. We
consider the role of these features for reducing the size of a neural
network,while retaining anomalydetection effectiveness in real time, to
be a significant contribution of this paper. Simpler choices of features
(e.g., without interpolation) simply did not yield results, except on
synthetic data without noise.
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