

PhD-FSTM-2023-097

The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 19/09/2023 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Hao CHENG
Born on 17 June 1993 in Shandong (China)

EFFICIENT AND SIDE-CHANNEL RESISTANT

IMPLEMENTATIONS OF

NEXT-GENERATION CRYPTOGRAPHY

Dissertation defence committee

Dr. Jean-Sébastien Coron, vice chairman
Professor, Université du Luxembourg

Dr. Robert Granger
Reader, University of Surrey

Dr. Volker Müller, chairman
Associate Professor, Université du Luxembourg

Dr. Daniel Page
Senior Lecturer, University of Bristol

Dr. Peter Y. A. Ryan, dissertation supervisor
Professor, Université du Luxembourg

ii

ABSTRACT

The rapid development of emerging information technologies, such as quantum computing and the
Internet of Things (IoT), will have or have already had a huge impact on the world. These technologies
can not only improve industrial productivity but they could also bring more convenience to people’s
daily lives. However, these techniques have “side eects” in the world of cryptography – they pose
new diculties and challenges from theory to practice. Specically, when quantum computing ca-
pability (i.e., logical qubits) reaches a certain level, Shor’s algorithm will be able to break almost all
public-key cryptosystems currently in use. On the other hand, a great number of devices deployed in
IoT environments have very constrained computing and storage resources, so the current widely-used
cryptographic algorithms may not run eciently on those devices. A new generation of cryptography
has thus emerged, including Post-Quantum Cryptography (PQC), which remains secure under both
classical and quantum attacks, and LightWeight Cryptography (LWC), which is tailored for resource-
constrained devices. Research on next-generation cryptography is of importance and utmost urgency,
and the US National Institute of Standards and Technology in particular has initiated the standardiza-
tion process for PQC and LWC in 2016 and in 2018 respectively.

Since next-generation cryptography is in a premature state and has developed rapidly in recent
years, its theoretical security and practical deployment are not very well explored and are in signif-
icant need of evaluation. This thesis aims to look into the engineering aspects of next-generation
cryptography, i.e., the problems concerning implementation eciency (e.g., execution time and mem-
ory consumption) and security (e.g., countermeasures against timing attacks and power side-channel
attacks). In more detail, we rst explore ecient software implementation approaches for lattice-based
PQC on constrained devices. Then, we study how to speed up isogeny-based PQC on modern high-
performance processors especially by using their powerful vector units. Moreover, we research how to
design sophisticated yet low-area instruction set extensions to further accelerate software implemen-
tations of LWC and long-integer-arithmetic-based PQC. Finally, to address the threats from potential
power side-channel attacks, we present a concept of using special leakage-aware instructions to elimi-
nate overwriting leakage for masked software implementations (of next-generation cryptography).

iii

iv

ACKNOWLEDGEMENTS

It has been a long journey to get from the start of my PhD studies to its completion, but this journey
has always been pleasant. I have thoroughly enjoyed my PhD studies over the past four years, and it
would never have been as wonderful as it has been without the help of many people around me.

First and foremost, I want to thank my supervisors Peter Y. A. Ryan and Johann Großschädl. I am
very grateful to Peter for oering me the opportunity to be his PhD student and to work in the APSIA
group, and for giving me freedom of choice when it came to research directions. He allowed me to
attend any conference and school I wanted, and always did his best to provide assistance so that I could
focus on my research better, which I appreciate deeply. Great thanks go to Johann, with whom I have
worked most closely since I was just a master student. He helped me to develop my research skills
and abilities from the ground up: from “how to write code neatly and use tools eciently” to “how to
explore research ideas and write papers”, for which I am sincerely thankful. He always thought for me
and always oered me any help he could, from work to daily life.

I want to thank Daniel Page, who was the host for my six months research visit at the University
of Bristol and also my close collaborator, but more of a mentor, over the past two years. Many thanks
to Dan for making my six months in Bristol so happy and memorable: his guidance on side-channel
analysis, our daily discussions, our weekly group lunches, and the best farewell gift.

I want to thank my thesis supervision committee (CET: comité d’encadrement de thèse) members
Jean-Sébastien Coron and Robert Granger, for continually giving me constructive suggestions from the
very beginning of my PhD studies, and for encouraging me to broaden my horizons and to attempt
high-risk high-gain research problems.

I want to thank Volker Müller, for serving onmy thesis defense committee and chairing the defense,
and for taking the time to read my thesis and giving me helpful feedback.

My thanks go to all my co-authors: Malik Alsahli, Alex Borgognoni, Luan Cardoso dos Santos,
Daniel Dinu, Georgios Fotiadis, Christian Franck, JohannGroßschädl, BenMarshall, Daniel Page, Thinh
Pham, Peter B. Rønne, Peter Y. A. Ryan, Jiaqi Tian. Special thanks go to Daniel Dinu and Thinh Pham;
thanks to Daniel for helping me a lot with my rst paper, and thanks also to Thinh for continuing to
take care of our work even after starting a new job.

My thanks go to my colleagues. I want to thank Georgios Fotiadis, who is my close collaborator,
my ocemate, and my friend, for his theoretical support in our collaboration, and for enjoyable chats
we had every day. I want to thank Aditya Damodaran, my ocemate and my friend, for his enthusi-
astic help with the problems I encountered in my university life, and for the endless jokes he came up

v

with and shared. I want to thank Qingju Wang for the countless chats we had, and for the invaluable
experience and advice she shared with me. I want to thank Peter B. Rønne, for providing me a lot of
help when I was new in the APSIA group, and for giving me benecial comments on my research work.

My thanks go to my friends. I want to thank Jiasheng Liang, Peng Jin, Jiaqi Tian, Yancong Yu, Qian
Chen, and Daojiong Wang, for their constant support, and for the wonderful times we spent together.

Finally, my deepest appreciation goes to my parents. Words cannot even describe the love, under-
standing, encouragement, and support they have given me.

vi

CONTENTS

I Introductory remarks 1

1 Introduction 3

1.1 Next-generation cryptography . 3
1.2 Cryptographic engineering . 8
1.3 Contributions and organization . 9
1.4 Publications . 10

2 Background 13

2.1 Platform . 13
2.2 Trade-o . 14
2.3 Eciency . 15
2.4 Security . 16

II Lightweight implementation of lattice-based cryptography 19

3 Lightweight NTRU Prime 21

3.1 Introduction . 21
3.2 Background . 22
3.3 Implementation . 24
3.4 Evaluation . 28
3.5 Conclusion . 29

4 Lightweight ThreeBears 31

4.1 Introduction . 31
4.2 Background . 33
4.3 Implementation . 35
4.4 Evaluation . 40
4.5 Conclusion . 42

vii

III Vectorized implementation of isogeny-based cryptography 43

5 Vectorized CSIDH 45

5.1 Introduction . 45
5.2 Background . 47
5.3 Implementation: high-throughput batched software . 51
5.4 Implementation: low-latency unbatched software . 62
5.5 Evaluation . 68
5.6 Conclusion . 70

6 Vectorized SIKE 73

6.1 Introduction . 73
6.2 Background . 75
6.3 Implementation: prime-eld arithmetic . 79
6.4 Implementation: quadratic extension-eld arithmetic 82
6.5 Implementation: Montgomery elliptic curve arithmetic 85
6.6 Implementation: higher-layer arithmetic . 89
6.7 Evaluation . 93
6.8 Conclusion . 94

IV Ecient cryptographic instruction set extension design 97

7 RISC-V ISEs for lightweight symmetric cryptography 99

7.1 Introduction . 99
7.2 Background . 100
7.3 Design . 101
7.4 Implementation . 127
7.5 Evaluation . 129
7.6 Conclusion . 136

8 RISC-V ISEs for multi-precision integer arithmetic 139

8.1 Introduction . 139
8.2 Background . 141
8.3 Implementation: ISA-only . 142
8.4 Implementation: ISE-supported . 144
8.5 Evaluation . 151
8.6 Conclusion . 152

V Side-channel leakage analysis and elimination 155

9 A leakage-focused RISC-V ISE for masked implementation 157

9.1 Introduction . 157
9.2 Background . 160
9.3 Analysis . 161
9.4 Design . 163
9.5 Implementation . 168
9.6 Evaluation . 171
9.7 Conclusion . 175

viii

VI Concluding remarks 177

10 Conclusion 179

10.1 Summary . 179
10.2 Impact . 179
10.3 Future work . 181

Acronyms 183

Bibliography 185

ix

x

LIST OF ALGORITHMS

3.1 Table-based constant-time coecient-reduction modular 𝑞. 26

4.1 Memory-optimized MAC operation. 37
4.2 Speed-optimized MAC operation. 39

5.1 Original-style CSIDH class group action computation. 48
5.2 OAYT-style CSIDH class group action computation. 52
5.3 The batched component of our extra-dummy method. 55
5.4 (8 × 1)-way Montgomery multiplication using IFMA. 60
5.5 (8 × 1)-way Montgomery squaring using IFMA. 61
5.6 (2 × 4)-way Montgomery multiplication using IFMA. 63
5.7 (2 × 4)-way integer squaring using IFMA. 64
5.8 2-way implementation of Elligator 2 map. 65
5.9 2-way implementation for 𝑌𝑇 -coordinate point doubling. 66
5.10 2-way implementation for 𝑌𝑇 -coordinate (dierential) addition. 66
5.11 2-way ℓ-isogeny computation, with ℓ = 2𝑘 + 1. 67
5.12 2-way ℓ-isogeny evaluation, with ℓ = 2𝑘 + 1. 68

6.1 Public key encryption: SIPKE = (Gen, Enc, Dec) . 77
6.2 Key encapsulation: SIKE = (KeyGen, Encaps, Decaps) . 77
6.3 F𝑝2-multiplication with 1-way parallelization at F𝑝-level. 82
6.4 F𝑝2-multiplication with 2-way parallelization at F𝑝-level. 83
6.5 F𝑝2-multiplication with 4-way parallelization at F𝑝-level. 83
6.6 F𝑝2-squaring with 1-way parallelization at F𝑝-level. 84
6.7 F𝑝2-squaring with 2-way parallelization at F𝑝-level. 84
6.8 𝑋𝑍 -coordinate point doubling with 2-way parallelization at F𝑝2-level. 87
6.9 𝑋𝑍 -coordinate point tripling with 2-way parallelization at F𝑝2-level. 87
6.10 4-isogeny computation with 2-way parallelization at F𝑝2-level. 87
6.11 3-isogeny computation with 2-way parallelization at F𝑝2-level. 88
6.12 4-isogeny evaluation with 2-way parallelization at F𝑝2-level. 88
6.13 3-isogeny evaluation with 2-way parallelization at F𝑝2-level. 88
6.14 Vectorized isogeny2 in SIKEp503 using the optimal strategies. 91

xi

6.15 Optimized SIPKE encryption operation. 92

8.1 ISA-only full-radix MAC operation. 143
8.2 ISA-only reduced-radix MAC operation. 143
8.3 Addition-based fast modulo-𝑝 reduction. 144
8.4 Swap-based fast modulo-𝑝 reduction. 144
8.5 ISE-supported full-radix MAC operation. 149
8.6 ISE-supported reduced-radix MAC operation. 149

xii

LIST OF TABLES

1.1 NIST standardized PQC algorithms and fourth round candidates. 5
1.2 NIST security categories for evaluating security of PQC candidate schemes. 6
1.3 IoT connections. 7

2.1 Classes of constrained devices from RFC 7228. 16

3.1 Execution time of the __udivmodhi4 function for 16-bit unsigned integers. 27
3.2 Execution time and code size of our NTRU Prime implementation on 8-bit AVR. 28
3.3 Comparison with AVR implementations of other key-establishment schemes. 28

4.1 Execution time of our AVR implementations of BabyBear. 40
4.2 RAM usage and code size of our AVR implementations. 41
4.3 Comparison with AVR implementations of other key-establishment schemes. 41
4.4 Comparison of RAM consumption of NIST PQC implementations on MCUs. 42

5.1 The latency and throughput of AVX-512 instructions on Intel Ice Lake Core CPU. . . . 50
5.2 Information of (8 × 1)-way eld multiplication and squaring. 60
5.3 Benchmark of OAYT-style CSIDH-512 on Ice Lake Core CPU. 69
5.4 Benchmark of dummy-free-style CSIDH-512 on Ice Lake Core CPU. 69

6.1 Experimental results of F𝑝-arithmetic operations for SIKEp503. 81
6.2 Experimental results of F𝑝2-arithmetic implementations for SIKEp503. 85
6.3 Experimental results of point-operation implementations for SIKEp503. 90
6.4 Experimental results of isogeny-operation implementations for SIKEp503. 90
6.5 Experimental results of SIKEp503 on Intel Ice Lake Core CPU. 93
6.6 Experimental results of SIKEp434/610/751 on Intel Ice Lake Core CPU. 94

7.1 A per-algorithm summary of the base and kernel implementations. 129
7.2 Hardware-oriented evaluation of each ISE design. 131
7.3 Software-oriented evaluation regarding the kernel. 131
7.4 Software-oriented evaluation regarding the AEAD API (16 B). 132
7.5 Software-oriented evaluation regarding the AEAD API (128 B). 132

xiii

7.6 Software-oriented evaluation regarding the AEAD API (1024 B). 133

8.1 Information about our F𝑝 multiplication implementations. 143
8.2 The overview of our custom instructions. 145
8.3 Examples of existing integer fused multiply-add instructions. 146
8.4 Results of hardware-oriented evaluation. 151
8.5 Results of software-oriented evaluation: X25519. 151
8.6 Results of software-oriented evaluation: CSIDH-512. 152

9.1 A summary of additional instructions that constitute the ISE. 164
9.2 Additional mask seed CSRs which support class-2 instructions. 167
9.3 Area evaluation of the ISEs. 171
9.4 Latency evaluation of the ISEs. 172
9.5 Comparison versus Rosita and FENL. 175

xiv

LIST OF FIGURES

2.1 Trade-o of cryptographic implementations. 15

3.1 Frequency of the occurrence of cycles of __udivmodhi4 for 16-bit unsigned integers. . 27

4.1 Standard and aligned form of a eld element. 36
4.2 Three accumulators for coecients of _0 = 1, _, and _2 of a product 𝑅. 38

7.1 PermBits of GIFT-COFB using instructions from Zbkb. 107
7.2 Our hardware implementation based on Rocket host core. 128
7.3 Software-oriented evaluation regarding AEAD APIs. 133

8.1 Our integer multiply-add instructions for full-radix implementation. 147
8.2 Our integer multiply-add instructions for reduced-radix implementation. 148
8.3 Our custom carry-propagation instructions. 149
8.4 A block diagram highlighting features in our hardware implementation. 150

9.1 A selective overview of the design space for masked software implementation. 158
9.2 A block diagram describing the Ibex micro-architecture. 168
9.3 A diagrammatic description of how PR, GPR, 𝜏 , and 𝜐 are managed. 169

xv

xvi

Part I

Introductory Remarks

1

CHAPTER

1

INTRODUCTION

1.1 Next-generation cryptography

In this thesis, the term “next-generation cryptography” refers to Post-Quantum Cryptography (PQC)
and LightWeight Cryptography (LWC).

1.1.1 Post-quantum cryptography

Quantum computing. The advent of quantum computing is a technological revolution that will
soon have a massive impact on our daily lives and may even disrupt whole industries [KLM07]. In
short, a quantum computer operates on so-called qubits (the “quantum analog” of bits), which can not
only take the two states 0 and 1, but also be in a superposition of both states. A quantum computer with
𝑛 qubits can be in an arbitrary superposition of up to 2𝑛 states simultaneously, enabling it to process
2𝑛 values in parallel or to store 2𝑛 values in one step. For example, a quantum computer with about 50
logical qubits could solve certain complex optimization problems a lot faster than the most advanced
classical supercomputer today. In the not-so-distant future, our daily life will start to get aected by
large-scale quantum computers that are powerful enough to aid the discovery of new drugs or materi-
als, organize the routes of millions of self-driving cars in metropolitan areas without introducing trac
jams, and improve the eciency of national power grids [KLM07]. Unfortunately, quantum computing
has also a destructive side because a large-scale quantum computer with a few thousand logical qubits
would be able to break essentially every public-key cryptosystem in use today. This was discovered
in the mid-90s by Peter Shor [Sho94], who developed a polynomial-time quantum algorithm to factor
large integers, which could break the widely-used RSA cryptosystem [RSA78]. In addition, Shor’s algo-
rithm would also enable one to compute discrete logarithms in any group, hence, also in large elliptic
curve groups, thereby breaking Elliptic Curve Cryptography (ECC). It is widely believed that the se-
curity of symmetric cryptography is by far less aected by the existence of adversaries equipped with
quantum computing capabilities. When instantiated correctly, current symmetric cryptographic algo-
rithms can oer resistance against large-scale quantum computers. Fortunately, there exists a diverse
range of symmetric algorithms that have already received approval from internationally recognized
standardization bodies, e.g, the block ciphers for symmetric encryption purposes and message authen-
tication codes, for authentication and integrity verication. However, symmetric cryptography alone

3

CHAPTER 1. INTRODUCTION

cannot mitigate the threat posed by quantum computers, as it is usually combined with public-key
cryptographic algorithms, such as key-exchange schemes or key encapsulation mechanisms (KEM),
public-key encryption (PKE), and digital signature algorithms, all being vulnerable to large-scale quan-
tum computers.

Put simply, a malicious actor with a large-scale quantum computer would have the ability to de-
crypt all trac over communication channels secured using state-of-the-art cryptographic techniques.
Even more troubling is that an adversary with sucient storage capacity can already eavesdrop on and
store encrypted data shared over the network and decrypt it after possessing a large-scale quantum
computer, an attack known as “store now and decrypt later”. Consequently, the threats posed by quan-
tum computers are not just future concerns, but, on the contrary, solutions and countermeasures need
to be developed, evaluated, standardized, and deployed as soon as possible.

There are two main solutions for developing quantum-resistant cryptographic systems. The rst is
to use the laws of quantum physics and quantum phenomena to derive secure cryptographic protocols,
a research area known as quantum cryptography. The second approach is to develop cryptographic
algorithms using current technologies, which are based on new mathematical problems that are com-
putationally hard to solve for both the adversaries with existing technologies and also the quantum-
enabled adversaries. The latter approach is known as post-quantum cryptography, which is the focus
in this thesis.

Quantum cryptography. Quantum cryptography is at present limited to Quantum Key Establish-
ment (QKE), also known as Quantum Key Distribution (QKD). Notable QKE protocols, such as the
Bennett and Brassard BB84 protocol [BB14], have been studied for decades. It is shown that, in the-
ory, such protocols provide information theoretic security, also known as unconditional security, i.e.,
the security of the scheme does not depend on the computational power of the adversary. QKE is not
a stand-alone solution for the development of quantum-resistant communication systems, as it needs
to be combined with other cryptographic algorithms, stemming from symmetric and public-key cryp-
tography, in order to achieve the desired security properties, such as condentiality, integrity, and
authentication. Furthermore, QKE protocols do not appear to be a functional solution. Because, rst,
deployment of cryptographic systems based on QKE would require the procurement and installation of
additional hardware components implementing QKE. Second, in order to exchange quantum informa-
tion, it would also require the major intervention in infrastructures to install the appropriate bres for
establishing a quantum communication channel between two or more sides. Although QKE protocols
have been extensively studied in the literature, the technological limitations of QKE (e.g., low key rates
in large distances) raise doubts on whether QKE can be a realistic solution in practical applications. In
particular, the US National Security Agency (NSA) in a Q&A report issued in August 2021 states “NSA
does not consider QKD a practical security solution for protecting national security information”1.

Post-quantum cryptography. PQC is a new branch of cryptography, which aims at building new
cryptosystems based on mathematical problems that are believed to be hard (not only for classical com-
puters but) even for large-scale quantum computers, while these cryptosystems are to be implemented
using classical computers. PQC is therefore a crucial direction in cryptography and of great importance
for the future of cybersecurity. The vision of PQC is to replace public-key cryptographic algorithms
that are vulnerable to quantum computers with the new algorithms that do not require the integration
of additional hardware components. From this point of view, it seems that PQC is a more realistic solu-
tion compared to QKE systems. However, when considering to use in practice the new cryptosystems
and new hard mathematical problems, on which the security of various applications will rely, there are
some challenges that need to be taken into consideration:

1https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.PDF.

4

https://media.defense.gov/2021/Aug/04/2002821837/-1/-1/1/Quantum_FAQs_20210804.PDF

1.1. NEXT-GENERATION CRYPTOGRAPHY

Table 1.1: NIST standardized PQC algorithms and fourth round candidates. SIKE is considered broken
due to the attacks in [CD23, MMP+23, Rob23].

Type Status Algorithm

PKE/KEM Winner CRYSTALS-Kyber
4th round candidates Classic McEliece, BIKE, HQC, SIKE

Digital signature Winner CRYSTALS-DILITHIUM, Falcon, SPHINCS+

• The rst challenge relates to the actions that need to be taken before large-scale adoption of
cryptographic schemes in the application domains. History shows that this process takes a great
deal of time, sometimes even decades. New cryptographic schemes need to undergo a long period
of time or even years of cryptanalytic scrutiny before they can be trusted, rst and foremost by
the academic community. Standards then need to be issued for the schemes, and these standards
need to be trusted by the industrial sector. Once the necessary trust has been established, the new
schemes need to be deployed in nal products. Note, for example, that ECC has been around since
the 1980s, but it took more than two decades for elliptic curve cryptosystems to be deployed in
practice.

• It is often the case that many quantum-resistant cryptosystems improve their security at the cost
of reduced performance and/or increased storage requirements (e.g., large keys, large signatures).
This is an important issue as it aects applications in resource/memory-constrained devices.

• Ensuring the correctness of the security properties, the modelling of the threat scenarios and
trust assumptions need to be done carefully.

The above challenges suggest that the transition from classical cryptography to PQC should be
accelerated, and the sooner we can get to the PQC era, the better. This is also enforced by a recent
report from the US National Academies of Sciences, Engineering, andMedicine in 2019 [Nat19], stating:

“Key nding 10: Even if a quantum computer that can decrypt current cryptographic ci-
phers is more than a decade o, the hazard of such a machine is high enough-and the time
frame for transitioning to a new security protocol is suciently long and uncertain-that
prioritization of the development, standardization, and deployment of post-quantum cryp-
tography is critical for minimizing the chance of a potential security and privacy disaster.”

NIST PQC standardization. Given the real-world threat posed by quantum computing, it is not
surprising that research in the domain of post-quantum cryptography has gained momentum over the
past years. In 2016, the US National Institute of Standards and Technology (NIST) announced a process
to “solicit, evaluate, and standardize quantum-resistant public-key cryptographic algorithms” and pub-
lished a call to submit proposals2. This call, whose submission deadline passed at the end of November
2017, covered the complete spectrum of public-key functionalities considered by the NIST, i.e., public-
key encryption, key agreement, and digital signatures. A total of 72 candidates were submitted, of
which 69 satised the minimum requirements for acceptability and entered the rst round of a multi-
year evaluation process, and candidates are from ve dierent categories, i.e., code-based, hash-based,
isogeny-based, lattice-based, multivariate. In early 2019, the NIST selected 26 of the submissions as
candidates for the second round. About 18 months later, in July 2020, the number of candidates was
further reduced to only 7, which entered the third round of NIST’s evaluation process. In addition,
the NIST also announced 8 so-called “alternate candidates”, which could still become part of the stan-
dard after the third round (i.e., some of the alternate candidates may be considered in a fourth round

2https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf.

5

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

CHAPTER 1. INTRODUCTION

Table 1.2: NIST security categories for evaluating security of PQC candidate schemes.

NIST security level Description

1 Security equivalent to the complexity of best-known attack for
breaking AES-128.

2 Security equivalent to the complexity of best-known attack for
nding collision for SHA-256/SHA3-256.

3 Security equivalent to the complexity of best-known attack for
breaking AES-192.

4 Security equivalent to the complexity of best-known attack for
nding collision for SHA-384/SHA3-384.

5 Security equivalent to the complexity of best-known attack for
breaking AES-256.

[AAC+22]). In July 2022, NIST announced3 that CRYSTALS-Kyber [SAB+21] was selected for stan-
dardization for public-key encryption and key-establishment algorithms, and CRYSTALS-DILITHIUM
[LDK+21], Falcon [PFH+20], and SPHINCS+ [HBD+22] were selected for standardization for digital
signature algorithms. In addition, BIKE [ABB+22], Classic McEliece [BCC+22], HQC [MAB+23], and
SIKE4 [JAC+22] were selected to advance to the fourth round, which is currently still ongoing. Ta-
ble 1.1 summarizes the PQC algorithms that are selected as the rst candidates to be standardized, as
well as three additional KEM algorithms that are further evaluated by NIST in the fourth round of the
competition. In the meantime, NIST released a call for additional digital signature schemes for the post-
quantum cryptography standardization process5, where the deadline for submissions was June 2023. 50
“onramp” submissions were received, where 40 of them met NIST submission requirements and were
released6.

Furthermore, NIST has published its own methodology for evaluating the security of candidate
algorithms. The detailed security levels are shown in Table 1.2. Submitters are requested to provide a
detailed security assessment of their candidate schemes, based on the security levels provided by NIST.
The security of all NIST submissions is based on mathematical problems that are believed to be hard
to solve even using quantum computers. These hard mathematical problems are classied into ve
dierent families of computational hardness assumptions. In this thesis, we focus on lattice-based and
isogeny-based cryptographic primitives.

Lattice-based schemes. The security of most of the lattice-based schemes that are currently pro-
posed in the literature is based on closely related problems, such as the Shortest Integer Solution (SIS)
problem [Ajt96] (usually used for digital signature schemes) and the LearningWith Errors (LWE) prob-
lem [Reg05] (usually used for PKE/KEM). Variants of these hard lattice problems exist, such as the Ring
and Module versions of SIS and LWE, namely Ring-LWE, Ring-SIS and Module-LWE and Module-SIS.
In general, when designing protocols, the Ring and Module versions are more commonly used, as they
result in more practical schemes in terms of storage requirements. Lattice-based schemes have been ex-
tensively studied throughout the years, and one of their main advantages is their eciency. Specically,
public key encryption schemes are as ecient, if not more so, than currently-used schemes such as RSA.
On the downside, lattice-based schemes suer from large keys and signature sizes. In the NIST compe-

3https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
4Due to the recent attacks [CD23, MMP+23, Rob23], the SIKE team acknowledges that SIKE and SIDH are insecure

and should not be used; see details at https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/
documents/round-4/submissions/sike-team-note-insecure.pdf.

5https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-
2022.pdf.

6https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

6

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

1.1. NEXT-GENERATION CRYPTOGRAPHY

Table 1.3: IoT connections (billions). Cellular IoT is also included in wide-area IoT. Source: Ericsson
mobility report (June 2023) [Eri23, Figure 7].

IoT 2022 2028 CAGR
Wide-area IoT 2.9 6.0 13%
Cellular IoT 2.7 5.4 12%

Short-range IoT 10.2 28.7 19%
Total 13.2 34.7 18%

tition, lattice-based schemes are currently represented by CRYSTALS-Kyber, CRYSTALS-DILITHIUM,
and Falcon, all of them being selected as the rst PQC standards by NIST.

Isogeny-based schemes. The security of isogeny-based cryptosystems is based on the hardness
of nding an isogeny between two isogenous (supersingular) elliptic curves and related problems.
Isogeny-based cryptography is one of the newest additions in the PQC landscape, and as such it has been
less studied than other classes of hardness assumptions. On the positive side, isogeny-based systems
have very short keys compared to other post-quantum schemes in the literature. Their main disad-
vantage, when compared with other schemes, especially with lattice-based schemes, is their speed. In
the NIST PQC competition, there was only one isogeny-based candidate, namely Supersingular Isogeny
Key Encapsulation (SIKE), which is derived from the Supersingular Isogeny Die-Hellman (SIDH) key-
exchange protocol [JD11, DJP14]. SIKE made it all the way to the fourth round of the NIST competition,
before it was eventually broken in July 2022 [CD23]. Isogenies can be used for developing secure pub-
lic key encryption schemes, as well as signature schemes, although the latter suer from the heavy
computational cost. A new digital signature scheme was recently submitted in the NIST standardiza-
tion of additional PQC signature schemes, namely SQISign [DKL+20, DLLW23], which oers both very
compact public keys and signatures.

1.1.2 Lightweight cryptography

Internet of Things. The Internet of Things, abbreviated as IoT, refers to the network that connects
various kinds of physical objects (or “things”) and enables them to communicate and transmit data with
each other or central servers. The development of IoT started in early 2000s, and since then, an increas-
ing number of “everyday objects” (e.g., household appliances, vehicles, wearable devices, and industri-
al/business machines) are integrating the advanced communication capabilities (e.g., Bluetooth, Wi-Fi,
and Cellular). Today, Internet-enabled smart devices are present in almost every area of people’s lives,
for instances, healthcare, home automation, industrial production (“Industry 4.0”), transportation, and
logistics. Dierent IoT devices exhibit big variations in computing power, data transmission speed and
memory capacity. A typical example of the high-end IoT device is “intelligent vehicles”, which possess
the powerful processors to enhance safety and driving experience as well as the ultra-high data trans-
mission rates to ensure real-time communication. At the opposite are the low-end battery-supplied
sensors, which are equipped with small 8-bit, 16-bit, or 32-bit microcontrollers (MCU) of limited com-
puting power. IoT can be viewed as a vast ecosystem teeming with devices of high diversity, and thus
many dierent MCU platforms, wireless communication standards, and operating systems currently
exist (to meet the requirements of dierent application domains or scenarios).

The overall IoT market is enormous and growing steadily. The latest Ericsson mobile report (June
2023) [Eri23], in particular Table 1.3, expects the number of IoT connections around the world will
increase in the next years with a Compound Annual Growth Rate (CAGR) of about 18%. The total
number of IoT connections is 13.2 billion in 2022 and is predicted to reach even 34.7 billion in 2028. In
addition, [Pre23] shows that the globalmicrocontrollermarket (including 8-bit, 16-bit, and 32-bitMCUs)

7

CHAPTER 1. INTRODUCTION

was valued at USD 28.2 billion in 2022, and is expected to reach USD 58.2 billion by 2030, growing at
a CAGR of 9.5%. Also, according to the statistics in [Pre23], in the MCU product market in 2021, 8-bit,
16-bit, and 32-bit microcontrollers account for 24%, 35%, and 41% of the market share, respectively.
Two most related MCU platforms in this thesis are 8-bit and 32-bit. 8-bit microcontrollers (e.g., AVR,
PIC) are one of the most popular electronic components, and they are broadly used in automotive and
industrial applications as well as digital signal processing. Besides, due to the increasing demands for
more powerful computing capabilities (in IoT environment) and the decreasing unit prices, the product
market size of 32-bit microcontrollers grew greatly in the past years, and is poised to expand at a CAGR
of 11.7% from 2022 to 2030 [Pre23]. At present, the ARM architecture is the undisputed leader in the
32-bit platforms, despite intense competition from ESP32 and RISC-V.

Based on the above, it is not surprising that the security of IoT raises lots of concerns, especially,
given that 1) computing capabilities of many IoT devices such as miniature sensors and actuators are
very limited and 2) the physical access to many IoT devices cannot be restricted (i.e., they are more
vulnerable to some implementation attacks compared to classical computers like PCs and laptops).

Lightweight cryptography and NIST LWC standardization. Due to the fact that current NIST
cryptographic standards were designed to perform well on general-purpose computers, their perfor-
mance might be unsatisfactory when implemented on such small computing devices. As a result, there
is a need of lightweight cryptography, which can be very generally dened as “cryptographic primitives,
schemes, and protocols tailored to (extremely) constrained environments”. After a series of exploratory
workshops in 2015 and 2016 and a report [MBTM17] summarizing the context and goals, NIST initi-
ated a selection process for lightweight cryptography via an associated call [NIS18] released in 2018.
The process scope involves two specic forms of cryptographic functionalities, with each submission
specifying a suite of algorithms with required support for an Authenticated Encryption with Associated
Data (AEAD)API [NIS18, Section 3.1], plus optional support for a hash functionAPI [NIS18, Section 3.2].
The submitters are allowed to submit a family of AEAD algorithms, and the primary AEAD member
is required to have a at least 128-bit key length, a at least 96-bit nonce length, and a at least 64-bit tag
length. Besides, the AEAD algorithms shall have a minimum strength of 112 bits of security. Although
the term is open to a more general interpretation, the call denes lightweight as “tailored for resource-
constrained devices” [NIS18, Section 1]. This implies that the said algorithms should, e.g., be 1) ecient
on constrained hardware and software platforms (versus existing standards), 2) ecient for short mes-
sages, and 3) amenable to countermeasures against implementation attacks. A total of 57 candidates
were submitted by the (extended) deadline of March 2019, of which 56 satised the acceptance criteria
and were considered as “proper and complete”. These 56 proposals entered a multi-round evaluation
process that took (almost) four years altogether. By the end of the rst round the number of candi-
dates was reduced to 32 and then, in the second round, a further 22 algorithms were eliminated from
NIST’s evaluation process. The remaining 10 candidates made it to the third and nal round, in which
they were extensively scrutinized for security and eciency over a period of more than 1.5 years. Fi-
nally in February 2023, NIST announced that it decided to standardize the Ascon family [DEMS21] for
lightweight cryptography applications7, and [TMC+23] explains this selection.

1.2 Cryptographic engineering

According to [Koç09], cryptographic engineering refers to the theory and practice of engineering of
cryptographic systems, and a cryptographic engineer designs, implements, tests, validates, and some-
times reverse-engineers or attempts to break cryptographic systems. In other words, cryptographic
engineering studies the deployment of various cryptographic algorithms in dierent environments,

7https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon.

8

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon

1.3. CONTRIBUTIONS AND ORGANIZATION

and it is usually concerned with issues such as the eciency and security arising from the implemen-
tation of cryptographic algorithms. Cryptographic engineering is a fast-moving and multidisciplinary
eld, e.g., see a most recent call for papers8 of Conference on Cryptographic Hardware and Embedded
Systems (CHES), a prestigious conference in the area of cryptographic engineering.

1.3 Contributions and organization

Broadly speaking, this thesis aims at providing a feasible solution to well connect the two objects above,
i.e., next-generation cryptography and cryptographic engineering (with more background information
presented in Chapter 2 of Part I). Concretely speaking, wemake contributions to addressing engineering
diculties of deploying next-generation cryptography in the real world, covering four specically-
dierent topics:

1. Lattice-based cryptosystems are considered the most promising PQC candidates for use in con-
strained devices due to both their low computational cost and reasonably small lengths of key, ci-
phertext, and signature. We evaluate the performance of constant-time implementations of three
NIST PQC candidates9 on 8-bit AVR microcontrollers, namely NTRU [CDH+19], NTRU Prime
[BBC+20c], and ThreeBears [Ham19], through implementing the hand-optimized assemblers
for their performance-critical components. We describe these works in Part II.

• Most of the work related to AvrNtru [CGRR21], a lightweight implementation of NTRU
(more accurately the NTRUEncrypt) on AVR, was done during the master thesis. Though
the associated paper was improved, polished, and nally published during the author’s PhD
studies, it is reasonable to not include it in this thesis.

• In Chapter 3, we describe a lightweight implementation of NTRU Prime, more concretely,
the streamlined NTRU Prime using the parameter set sntrup653 which meets the NIST
PQC security level 1. The associated paper is [CDG+19].

• In Chapter 4, we describe the speed-optimized and the memory-optimized implementations
of BabyBear, i.e., an instantiation of ThreeBears using a parameter set fullling the NIST
PQC security level 1. The associated paper is [CGRR20].

2. The eld of isogeny-based cryptography has grown very rapidly in the past decade. Various
isogeny-based cryptosystems have appeared in the literature, among which the most popular
two key-establishment algorithms are SIKE [JAC+22] and CSIDH [CLM+18]. They are also the
two target algorithms10 in Part III. Compared to the PQC algorithms of other categories (e.g.,
lattice-based, code-based), their secret and public keys are much shorter, but the computational
cost, namely the execution time, is usually one or several orders of magnitude higher. In Part III,
we study how to utilize the large computing power from modern vector instruction sets to make
the implementation of isogeny-based cryptography more ecient.

• Rather than directly researching the complex eld of isogeny-based cryptography, we rst
develop a vectorized implementation of the relatively-simpler classic ECDH scheme X25519
[Ber06]. It is based on the consideration that X25519 and isogeny-based cryptography such
as SIKE and CSIDH work on some common underlying arithmetic (e.g., Montgomery curve
arithmetic); X25519 therefore is more suitable for the rst step in the sense of easier math-
ematical understanding and lighter engineering eorts. In [CGT+20], we describe an AVX2

8https://ches.iacr.org/2024/callforpapers.php.
9While we were conducting this series of research work, the NIST PQC standardization was in its second round.
10While we were conducting this series of research work, the NIST PQC standardization was in its third round.

9

https://ches.iacr.org/2024/callforpapers.php

CHAPTER 1. INTRODUCTION

batch implementation of X25519, but we do not include this work in this thesis since X25519
does not belong to the domain of next-generation cryptography.

• In Chapter 5, we present the throughput-optimized and latency-optimized constant-time
vectorized implementations of CSIDH with AVX-512. The associated paper is [CFG+21].

• In Chapter 6, we show the throughput-optimized and latency-optimized AVX-512 vector-
ized implementations of SIKE, which have xed instruction sequences. The associated paper
is [CFGR22].

3. RISC-V is an open ISA specication, and a central tenet of the ISA is modularity: a general-
purpose ISA can be augmented with a set of special-purpose, standard or non-standard (i.e., cus-
tom) extensions. There already exists a standard crypto (K) extension [RVK22, RVK23], and it
currently targets speeding up major symmetric cryptosystems, particularly, AES and SHA-2. In
Part IV, we study the Instruction Set Extension (ISE) design for accelerating respectively LWC
and multi-precision integer arithmetic, whose dedicated instructions are not oered in the cur-
rent RISC-V K extension.

• In Chapter 7, we present the RISC-V ISE design for all the ten nalists of NIST LWC stan-
dardization11. We evaluate the nalists from an ISE design and ISE-assisted implementation
perspective. The associated paper is [CGM+23].

• In Chapter 8, we come up with the RISC-V ISE design for multi-precision integer arithmetic
(which is the underlying arithmetic for many public key cryptosystems, e.g., RSA, ECC, and
isogeny-based cryptography), and take two dierent data representations into account. The
associated paper is [CFG+23].

4. In Part V, we study the security aspect of the cryptographic implementation, more specically
the power side-channel analysis and the related leakage elimination.

• In Chapter 9, we design a RISC-V ISE that can prevent architectural and micro-architectural
overwriting leakage, and we show two dierent realizations taking into account the opti-
mization respectively for latency and for area. The associated paper is [CP23].

Finally, in Chapter 10 of Part VI, we provide a summary, discuss the (potential) impact of this thesis,
and present some ideas for future work.

1.4 Publications

The research papers produced during the research of this thesis are listed below.

Lightweight implementaton of lattice-based cryptography. The research focus during the PhD
studies months 1 to 6 was: lightweight and constant-time software implementation of lattice-based
cryptographic schemes on low-end microcontrollers. Three papers were produced on this topic.

11While we were conducting this research wrok, the NIST LWC standardization was in its nal round.

10

1.4. PUBLICATIONS

[CDG+19] A lightweight implementation of NTRU Prime for the post-quantum

internet of things.

Hao Cheng, Daniel Dinu, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan.
WISTP 2019

[CGRR20] Lightweight post-quantum key encapsulation for 8-bit AVR

microcontrollers.

Hao Cheng, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan.
CARDIS 2020

[CGRR21] AVRNTRU: lightweight NTRU-based post-quantum cryptography for 8-bit

AVR microcontrollers.

Hao Cheng, Johann Großschädl, Peter B. Rønne, Peter Y. A. Ryan.
DATE 2021

Vectorized implementation of isogeny-based cryptography. The research focus during the PhD
studies months 7 to 24 was: vectorized and constant-time software implementation of isogeny-based
(and classic ECC) cryptographic schemes on high-end processors. Three papers were produced on this
topic.

[CGT+20] High-throughput elliptic curve cryptography using AVX2 vector

instructions.

Hao Cheng, Johann Großschädl, Jiaqi Tian, Peter B. Rønne, Peter Y. A. Ryan.
SAC 2020

[CFG+21] Batching CSIDH group actions using AVX-512.

Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan, Peter B. Rønne.
IACR TCHES 2021

[CFGR22] Highly vectorized SIKE for AVX-512.

Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan.
IACR TCHES 2022

Ecient cryptographic instruction set extension design. The research focus during the PhD
studies months 25 to 36 was: ecient RISC-V cryptographic instruction set extension design, speci-
cally, for lightweight symmetric cryptography and for multi-precision integer arithmetic. Two papers
were produced on this topic.

[CGM+23] RISC-V instruction set extensions for lightweight symmetric cryptography.

Hao Cheng, Johann Großschädl, Ben Marshall, Daniel Page, Thinh Pham.
IACR TCHES 2023

[CFG+23] RISC-V instruction set extensions for multi-precision integer arithmetic.

Hao Cheng, Georgios Fotiadis, Johann Großschädl, Daniel Page, Thinh Pham,
Peter Y. A. Ryan.
to be submitted

Side-channel leakage analysis and elimination. The research focus during the PhD studiesmonths
37 to 42 (involving a 6-month research visit at the University of Bristol) was: side-channel leakage analy-
sis and elimination; specically, the design of leakage-focused instructions for masked implementation,
which prevents architectural and micro-architectural overwriting leakage. One paper was produced on
this topic.

11

CHAPTER 1. INTRODUCTION

[CP23] eLIMInate: a Leakage-focused ISE for Masked Implementation.

Hao Cheng, Daniel Page.
under review

Other work. During the PhD studies, we also provided assistance to our collaborators on other top-
ics: for example, software implementation of lightweight symmetric cryptography. One paper was
produced.

[ABC+22] Lightweight permutation-based cryptography for the ultra-low-power

internet of things.

Malik Alsahli, Alex Borgognoni, Luan Cardoso dos Santos, Hao Cheng,
Christian Franck, Johann Großschädl.
SECITC 2022

12

CHAPTER

2

BACKGROUND

The two essential properties of a cryptographic implementation are eciency and security. The eval-
uation of cryptographic implementations diers on various platforms, e.g., low-end microcontrollers
vs. high-end processors. In this Chapter, Section 2.1 describes the dierent platforms on which we
experimented next-generation cryptography, after which Section 2.2 explains the trade-o about cryp-
tographic implementations. Then, Section 2.3 providesmore information about the eciency of crypto-
graphic implementations and Section 2.4 discusses security aspects (i.e., resistance to physical attacks).

2.1 Platform

2.1.1 AVR

8-bit AVR microcontrollers is currently widely used in the embedded realm (e.g., smart cards, wireless
sensor nodes). The AVR architecture is based on the modied Harvard memory model, it follows the
RISC philosophy, and was originally developed by Atmel Corporation (now part of Microchip Tech-
nology, Inc.). It features 32 general-purpose working registers (i.e., R0 to R31) of 8-bit width, which are
directly connected to the Arithmetic Logic Unit (ALU). Standard arithmetic/logical instructions have a
two-address format, which means they can read two independent 8-bit operands from two of the work-
ing registers and write the result back to one of them. Since AVR is a “Harvard-based” architecture,
it uses separate memories, buses, and address spaces for program and data to maximize performance
and parallelism. Three pairs of working registers can operate as 16-bit pointers (X, Y, and Z) to access
data memory, whereby ve addressing modes are supported. Furthermore, the pointer Z can be used
to read from (and write to) program memory. The current revision of the AVR instruction set supports
129 instructions in total, and each of them has xed latency [AVR21]. Examples of instructions that are
frequently used in our software in this thesis are addition (ADD/ADC) and subtraction (SUB/SBC); they
take a single cycle. On the other hand, the multiplication (MUL) and also the load (LD) and store (ST)
instructions are more expensive since they have a latency of two clock cycles.

2.1.2 AVX-512

AVX-512 is the latest generation of the Intel Advanced Vector eXtensions (AVX) and enriches the x64
execution environment by 32 512-bit registers (zmm0–zmm31) and various 512-bit instructions. AVX-512

13

CHAPTER 2. BACKGROUND

consists of multiple extensions, whereby AVX-512 Foundation (AVX-512F) is the core extension with a
32-bit vector multiplier. Starting with Cannon Lake (Palm Cove microarchitecture), Intel integrated the
so-called Integer FusedMultiply-Add extension (AVX-512IFMA, or simply IFMA) intoAVX-512 [Int18b],
which was specically designed to speed up public-key cryptographic software relying on large integer
arithmetic. Intel described IFMA in [Int18b] as “two new instructions for big number multiplication
for acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance”. Con-
cretely, the two new IFMA instructions vpmadd52luq and vpmadd52huqmultiply a pair of eight packed
unsigned 52-bit integers (one located in each 64-bit element of two 512-bit vectors) to obtain eight
intermediate products, each being 104 bits long. Then, either the lower 52 bits (vpmadd52luq) or the
upper 52 bits (vpmadd52huq) of these products are added to the eight packed unsigned 64-bit integers
of a 512-bit destination register, which holds the nal result. Compared to the vpmuludq and vpmuldq

multiply instruction of AVX-512F, the IFMA extension does not only oer a wider multiplier of 52 bits,
but also combines vector multiplication and vector addition into a single instruction.

2.1.3 RISC-V

RISC-V (see, e.g., [Wat16]) is an Instruction Set Architecture (ISA) specication which emerged from
academic roots; it now enjoys a signicant role in educational and research activities, and industrial
deployment across a range of use-cases and sectors. At least two features make RISC-V an attractive
option. First, the design is open in the sense it can be implemented or modied by anyone, with neither
license nor royalty requirements. This fact has contributed to 1) a rich community organized around
the RISC-V International non-prot, 2) availability of supporting infrastructure such as compilation
tool-chains, and 3) a range of (typically open source) compliant implementations. Second, it adopts
strongly RISC-oriented design principles but is highly modular: a sparse, general-purpose base ISA,
e.g., RV32I [RV19, Chapter 2], RV64I [RV19, Chapter 5], can be augmented with special-purpose (or
even domain-specic), standard and non-standard extensions. In RV32I and RV64I base ISAs, there are
32 integer general-purpose registers (x0 – x31) in total1, some of which serve a special purpose, e.g.,
as stack pointer (register sp, namely x2) or to hold the return address of a function call (registers a0
– a7, namely x10 – x17), and x0 is hard-wired to 0. These general-purpose registers, together with
the program counter (pc), constitute the architectural (i.e., user-visible) state. There is no further state
besides these 33 registers; in particular, there are no ALU status bits or “ags” that get set or cleared
when an instruction produces a carry/borrow, overow/underow, negative, or zero result. Hence,
there are no add-with-carry, subtract-with-borrow, or branch-on-bit-set/clear instructions in RISC-V.
Furthermore, RISC-V (unlike ARM) does not support conditional (or predicated) instruction-execution,
which simplies both the micro-architecture and the code-generation back-end of compilers.

2.2 Trade-o

Due to the requirements of dierent applications, characteristics of dierent algorithms, and dierent
target platforms, it is very dicult to design and develop a one-size-ts-all implementation. Instead,
implementers usually try to nd and reach the optimal trade-o for a specic scenario or use case.
Figure 2.1 shows some metrics about the trade-o of crypto implementation that implementer could or
should consider.

1There is a reduced version of RV32I designed for embedded systems, namely RV32E, which reduces the integer register
count to 16 general-purpose registers (x0 – x15) [RV19, Chapter 3].

14

2.3. EFFICIENCY

Space Time

Security

Area
RAM

Code size

Latency
Throughput

Energy

Security strength
Attack protection

Application
Algorithm
Platform

Figure 2.1: Trade-o of cryptographic implementations.

2.3 Eciency

Roughly classied, there are three categories in cryptographic implementations, namely HardWare
(HW) implementation, SoftWare (SW) implementation, and a hybrid of HW and SW, e.g., co-processor,
Application Specic Instruction Processor (ASIP), and ISE. In line with the scope and the contributions
of this thesis, we focus only on software implementation and on the ISE-based hybrid approach.

2.3.1 Software

The eciency of a software cryptographic implementation may be evaluated from two classic dimen-
sions, namely time (e.g., execution latency/throughput) and space (e.g., data/instruction footprint). In
addition, some other metrics derived from timings are also popularly used, in particular, energy con-
sumption.

On low-end constrained microcontrollers. With some unique advantages such as low unit costs
and small volume, low-end MCUs are in large-scale use in the constrained IoT environment. Many
dierent popular ISAs exist, e.g., 8-bit AVR, 16-bitMSP430, 32-bit ARM, 32-bit RISC-V, and so on. Energy
consumption is a very important metric for low-end constrained MCUs, due to the fact that a great
number of devices, such as many (industrial, agricultural, and medical) sensors, are supplied just by
batteries. In some scenarios, with a small (non-rechargeable) battery, a sensor is expected to work
for years or even decades. In general, the energy 𝐸 can be computed from power 𝑃 and time 𝑡 , i.e.,
𝐸 = 𝑃 ·𝑡 , and power is usually determined by the device itself (e.g., dierent operating modes, which are
not crypto-related). Therefore, for a cryptographic implementer, the execution time of cryptographic
implementations, specically the cycle count2, should be of great concern. However, the acceleration
of cryptographic software on low-end MCUs is usually not an easy task due to limited computing
capabilities of the hardware. Some manufactured devices are also extremely memory-constrained, e.g.,
C0 and C1 devices dened in RFC 7228 (see Table 2.1), which makes things even more tricky. As
a result, the cryptographic applications to be deployed on such low-end microcontrollers should be
considered/developed to possess reasonable running times, and at the same time, to work within the
memory capacity, in order to preserve RAM/ROM space for other applications.

2The software wall time is computed with both the software cycles and the processor frequency, where the processor
frequency is usually not crypto-related.

15

CHAPTER 2. BACKGROUND

Table 2.1: Classes of constrained devices from RFC 7228 [BEK14, Table 1].

Device Data size (e.g., RAM) Code size (e.g., Flash)
Class 0, C0 � 10 kB � 100 kB
Class 1, C1 ∼ 10 kB ∼ 100 kB
Class 2, C2 50 kB 250 kB

On high-end processors. The computing and storage resources of high-end processors are usually
sucient enough for a cryptographic primitive. On such platforms, from an eciency perspective,
the priority metric of cryptographic software is its execution time/throughput. But we note that even
though RAM and disk space for program code are abundant, the size of caches should be considered.
Memory accesses are only fast if the code and data ts into the rst-level cache, which is often relatively
small compared to, e.g., RAM.

2.3.2 Instruction set extension

An ISE is usually designed to enhance the ISA to improve the software performance for single or multi-
ple specic functions/applications. It allows developers to combine the exibility of software with the
dedicated computing power of hardware and produce a more attractive overall trade-o. As opposed
to co-processors and ASIPs, ISEs usually have a lower overhead in hardware but a smaller speed-up in
software.

Instruction level. Again, the ISE can also be evaluated from two classic dimensions, namely latency
(i.e., the dimension of time) and area (i.e., the dimension of space). Instruction latency is important
for the software side in the sense that it directly aects the execution time of software using the ISE.
The area overhead reects the extra cost needed on the hardware side to support the implemented
instructions.

Software level. It is also important to evaluate an ISE by checking the speed-up of software before
and after using this ISE, i.e., how much performance improvement the ISE actually provides.

2.4 Security

Aside from discovering and utilizing the potential aws of cryptographic algorithms themselves, there
exist Side-Channel Attacks (SCA) based on the information collected from some side-channels of cryp-
tographic implementations, e.g., timing, power, and ElectroMagnetic (EM) emanations. According to
[Por18], SCA can be explained as “A computer system runs operations in a conceptual abstract machine,
that takes some inputs and provides some outputs; side-channel attacks are all about exploiting the dif-
ference between that abstract model and the real thing”. In line with the scope and the contributions
of this thesis, we focus only on timing-based side-channel attacks and power side-channel attacks.

2.4.1 Timing attack

Broadly, a timing attack is an attack where the attacker attempts to get information on the private key
and/or other secrets by measuring and analyzing the running time of related operations. The rst ex-
ample of a timing attack can be traced back to 1996 by Kocher, who in [Koc96] showed an attack on RSA
implementations. A unique feature of timing attacks that dierentiates them from other side-channel
attacks is they can be applied remotely [BB03, BT11], therefore for cryptographic implementations it
is in some sense a basic requirement to be resistant against timing attacks.

16

2.4. SECURITY

Constant-time implementation. Although alternatives exist (e.g., masking), we focus on the most
popular and widely-used approach, i.e., constant-time implementations. In a cryptographic software
implementation, there are some operations deserving special attention: memory accesses, conditional
jumps, integer divisions and modulo computations, shifts and rotations, and multiplications [Por18].
Making a cryptographic software implementation constant-time requires not only implementation
tricks (e.g., rewriting ordinary conditional statements such as “if-then-else”, using constant-time ver-
sions for certain operations such as modular reduction) but also optimizations on cryptographic al-
gorithms themselves (e.g., using Montgomery ladder for computing scalar multiplications on Mont-
gomery elliptic curves [Mon87], using dummy isogenies in CSIDH class group action [MCR19]). We
classify constant-time implementations in to two categories. One has a weak constant-time property
that given dierent inputs, the cryptographic implementation might possess dierent operation/instruc-
tion sequences, but they do not leak any secrets and/or any sensitive information. In contrast, the other
with a strong constant-time property is that given dierent inputs, the cryptographic implementation
always possesses the same operation/instruction sequences.

2.4.2 Power side-channel attack

A power side-channel attack is performed by measuring and analyzing the power consumption of re-
lated operations on hardware. It is based on the fact that cryptosystems operate on binary data, i.e., 0s
and 1s, and CMOS (Complementary Metal-Oxide Semiconductor) hardware transitions between these
two states by switching transistors, which causes dynamic power consumption. Unlike timing attacks
which may be applied remotely, power side-channel attacks require the attacker to be physically close
to the target device. Given that 1) the physical access to many embedded devices cannot be eec-
tively restricted, 2) embedded devices are usually equipped with limited resources (e.g., power budget,
computing capability), and 3) embedded devices are simpler in architecture and composition than clas-
sical computers, power side-channel attacks are more of a concern for embedded devices. Power side-
channel attacks are one of the most studied attacks amongst dierent side-channel attacks on crypto
implementations, and various analysis approaches exist: Simple Power Analysis (SPA), Dierential
Power Analysis (DPA), Correlation Power Analysis (CPA), Template Attacks (TA), Test Vector Leakage
Assessment (TVLA), and so on.

Masking. In this thesis, we focus on DPA [KJJ99] and variants thereof. Two categories of classic
countermeasures are hiding [MOP07, Chapter 7] and masking [MOP07, Chapter 10]. The latter, i.e.,
masking, is more popular, and there are various masking schemes as well as numerous associated
research papers in the literature. For instance, for AES there are dierent masking schemes such as
[RP10, Cor14, BFG+17, CGZ20, CGGS22]. Taking 𝑑-th order Boolean masking as a concrete example, a
variable 𝑥 is represented by 𝑑 + 1 statistically independent shares 𝑥𝑖 , i.e., 𝑥 = 〈𝑥0, 𝑥1, . . . , 𝑥𝑑〉. The value
of 𝑥 equals to the xor of all shares. In such a way, the variable 𝑥 is concealed by masks, and the attacker
can now only observe the power information of shares and masked implementations. For more details,
we refer to [MOP07, Chapter 10].

17

CHAPTER 2. BACKGROUND

18

Part II

Lightweight Implementation of
Lattice-Based Cryptography

19

CHAPTER

3

LIGHTWEIGHT NTRU PRIME

This Chapter is based on our paper [CDG+19]. While we were conducting the research work described
in this Chapter, the NIST PQC standardization process was in its second round.

3.1 Introduction

NTRU Prime. NTRU Prime is a family of lattice-based crypto schemes developed by Bernstein,
Chuengsatiansup, Lange, and van Vredendaal [BCLV17], who drew inspiration from the 20-year old
classical NTRU cryptosystem [HPS98]. There are two variants of NTRU Prime; one is Streamlined
NTRU Prime, which uses the quotient ℎ = 𝑔/(3𝑓) of two secret polynomials 𝑔, 𝑓 as public key (sim-
ilar to the classical NTRU), while the other, NTRU LPRime, has public keys of the form ℎ = 𝑒 + 𝐴𝑓 ,
where 𝑒, 𝑓 are secret and 𝐴 is public (like in cryptosystems based on the Ring Learning With Errors
(RLWE) problem [LPR10], e.g., NewHope [ADPS16]). In essence, NTRU Prime can be seen as an at-
tempt to improve the security of the classical NTRU encryption algorithm (and other lattice-based
cryptosystems) by avoiding rings with “worrisome” structure and using extension elds of the form
R/𝑞 = (Z/𝑞) [𝑥]/(𝑥𝑝 − 𝑥 − 1) instead, where 𝑝 is prime. Multiplication in such elds can be eciently
implemented through several layers of Karatsuba’s technique [KO63], which makes NTRU Prime rel-
atively fast on 64-bit processors with vector instructions. Concretely, the designers of NTRU Prime
describe in [BCLV17] a highly-optimized implementation of the eld multiplication using Intel’s AVX2
vector instructions that executes 16 separate multiplications of integers modulo 216 in a SIMD-parallel
way. NTRU Prime is among the 26 candidates in the second round of NIST’s evaluation process. This
second round will focus on evaluating the candidates’ performance across a wide variety of systems
and platforms, which includes “not only big computers and smart phones, but also devices that have
limited processor power” [AAA+20].

Research on software optimization techniques that enable fast implementations of (Streamlined)
NTRU Prime has, until now, been limited to 64-bit Intel processors with AVX2 vector engine. When
using a parameter set for 128 bits of post-quantum security, the AVX2 implementation introduced in
[BCLV17] requires 59,600 clock cycles for encryption (i.e., “encapsulation” of a 256-bit key) on an Intel
Haswell processor, while the decryption (“decapsulation”) is 63.5%more costly and takes 97,452 cycles.
The only performance gures for NTRU Prime on small platforms (e.g., 8, 16, or 32-bit microcontrollers)
we are aware of were reported in a recent paper on pqm4 [PQM4], a testing and benchmarking toolsuite

21

CHAPTER 3. LIGHTWEIGHT NTRU PRIME

for NIST PQC candidates on ARM Cortex-M4 devices. Due to the lack of an optimized ARM implemen-
tation, the authors of [PQM4] resorted to the reference C code provided by the designers of NTRU
Prime, which requires 54.9million clock cycles for encapsulation and 166.5million cycles for decapsu-
lation (these cycle counts were determined with Streamlined NTRU Prime and parameters for 128-bit
post-quantum security). However, both results do not allow one to reason about the actual performance
of NTRU Prime on microcontrollers since the aim of a reference C implementation is to promote the
understanding of an algorithm rather than achieving high speed. Therefore, not much is known on
how to optimize NTRU Prime for a small microcontroller and what execution time a carefully-tuned
assembler implementation could achieve.

Contributions. In this work we present a highly-optimized implementation of Streamlined NTRU
Prime for 8-bit AVRmicrocontrollers that we developed from scratch to reach high speed and resistance
against timing attacks. We chose 8-bit AVR as evaluation platform for two reasons. First, the 8-bit AVR
architecture remains very popular in devices with increased security requirements, e.g., smart cards and
(wireless) sensor nodes. Second, 8-bit AVR microcontrollers are among the most resource-limited of all
currently used computing platforms, which implies that if NTRU Prime can be implemented to runwith
acceptable speed on an AVR device, it can also be implemented to run satisfactorily on more powerful
16 and 32-bit microcontrollers (e.g., an ARM Cortex-M), whereas the opposite is not necessarily true.
The implementation we describe in the next sections is not purely optimized for speed, but strives for
a balance between performance and other metrics of interest for low-end devices used in the Internet
of Things (IoT), in particular binary code size. Therefore, we decided to refrain from full loop unrolling
and other optimization techniques that are likely to increase the code size signicantly (especially on an
8-bit device) for marginal performance benets. We also restrict our arsenal of polynomial multiplica-
tion algorithms to the basic (i.e., recursive) Karatsuba variant and the schoolbook method for the same
reason. Recent results by Kannwischer et al. [KRS19] show that a combination of Karatsuba’s technique
with the asymptotically faster Toom-Cook algorithm [Too63, Coo66] can slightly reduce the multipli-
cation time, e.g., by 17.4% for polynomials of degree 701 (excluding the reduction of coecients), but
only at the expense of almost doubled stack usage and signicantly increased implementation com-
plexity. On the other hand, our Karatsuba/schoolbook multiplication is simple to implement and has
the further advantage of enabling compact code size (see Section 3.4) while remaining competitive in
terms of performance.

3.2 Background

NTRUPrime is introduced in [BCLV17] as a high-security prime-degree large-Galois-group inert-modulus
ideal-lattice-based cryptosystem. A distinguishing feature of NTRU Prime is the use of an irreducible
non-cyclotomic polynomial 𝑃 ; the designers recommend to choose a polynomial 𝑃 of prime degree 𝑝
with a large Galois group. More specically, they suggest 𝑃 = 𝑥𝑝 − 𝑥 − 1 and recommend to take a
prime modulus 𝑞 such that 𝑃 is irreducible modulo 𝑞, which means 𝑞 is inert in the ring R = Z[𝑥]/𝑃 and
R/𝑞 = (Z/𝑞) [𝑥]/𝑃 is actually a eld. Due to the prime degree of 𝑃 , the only subelds of (Z/𝑞) [𝑥]/𝑃
are Z/𝑞 and the entire eld (Z/𝑞) [𝑥]/𝑃 . Furthermore, the requirement of a large Galois group implies
that 𝑃 has, at most, a few roots in any eld of reasonable degree, which makes automorphism compu-
tations hard. Finally, since 𝑞 is an inert prime, there are no ring homomorphisms from (Z/𝑞) [𝑥]/𝑃 to
any smaller non-0 ring.

The NTRU Prime family of Key Encapsulation Mechanisms (KEMs) specied in [BCLV17, BCLV19]
consists of Streamlined NTRU Prime and NTRU LPrime, but we only consider the former since it is
more implementation-friendly. Streamlined NTRU Prime is similar to classical NTRU, but adopts a
rounding technique in the encapsulation and, as explained above, uses a eld instead of a ring.

22

3.2. BACKGROUND

Notation and parameters. A parameter set for Streamlined NTRU Prime consists of the triple
(𝑝, 𝑞,𝑤), which denes the main algebraic structures. The parameter 𝑝 is the degree of the irreducible
polynomial 𝑃 = 𝑥𝑝 − 𝑥 − 1 and is prime; the parameter sets given in [BCLV19] use 653, 761, and 857.
Also the modulus 𝑞, which represents the characteristic of the eld R/𝑞 = (Z/𝑞) [𝑥]/𝑃 , is a prime
with typical values of 4621, 4591, and 5167, respectively, for the three degrees considered in [BCLV19].
The weight parameter 𝑤 is a positive integer that denes the number of non-0 coecients of certain
polynomials, which is respectively 288, 286, 322 in three parameter sets. A valid parameter set has to
satisfy 2𝑝 ≥ 3𝑤 and 𝑞 ≥ 16𝑤 + 1. Reusing the notation of [BCLV19], we abbreviate the ring Z[𝑥]/𝑃 ,
the ring (Z/3) [𝑥]/𝑃 , and the eld (Z/𝑞) [𝑥]/𝑃 as R, R/3, and R/𝑞, respectively. An element of the ring
R is small if all its coecients are in {−1, 0, 1}. Short is dened as the set of small weight-𝑤 elements
of R, while Rounded is the set of polynomials 𝑟 (𝑥) ∈ R where each coecient 𝑟𝑖 lies is the range
[−(𝑞 − 1)/2, (𝑞 − 1)/2] and is rounded to the nearest multiple of 3.

Key generation. To generate a key pair for Streamlined NTRU Prime, the following operations have
to be performed (note that, for brevity, we skip some operations such as the encoding of polynomials
to strings).

1. Generate a uniform random small polynomial 𝑔(𝑥) ∈ R. Repeat this step until 𝑔(𝑥) is invertible
in R/3.

2. Compute 𝑣 (𝑥) = 1/𝑔(𝑥) in R/3.

3. Generate a uniform random polynomial 𝑓 (𝑥) ∈ Short.

4. Compute ℎ(𝑥) = 𝑔(𝑥)/(3𝑓 (𝑥)) in R/𝑞.

5. Generate a uniform random polynomial 𝜌 (𝑥) ∈ Short.

6. Output ℎ(𝑥) as public key and (𝑓 (𝑥), 𝑣 (𝑥), ℎ(𝑥), 𝜌 (𝑥)) as private key.

Encapsulation. The encapsulation operation gets a public key as input and produces a ciphertext
and session key as output (again, for brevity, we skip all encoding and decoding operations).

1. Generate a uniform random polynomial 𝑟 (𝑥) ∈ Short.

2. Compute 𝑐 (𝑥) = ℎ(𝑥)𝑟 (𝑥) ∈ Rounded.

3. Compute 𝐶 = (𝑐 (𝑥),Hash(𝑟 (𝑥), ℎ(𝑥))).

4. Output 𝐶 as ciphertext and Hash(1, 𝑟 (𝑥),𝐶) as session key.

Decapsulation. The decapsulation gets a key pair and a ciphertext as input and produces a session
key as output (encodings and decodings are skipped).

1. Compute 𝑒 (𝑥) = 3𝑓 (𝑥)𝑐 (𝑥) ∈ R/𝑞 and represent each coecient 𝑒𝑖 of 𝑒 (𝑥) as an integer between
−(𝑞 − 1)/2 and (𝑞 − 1)/2.

2. Compute 𝑒 (𝑥) = 𝑒 (𝑥) mod 3 ∈ R/3 (i.e., reduce each 𝑒𝑖 modulo 3).

3. Compute 𝑟 ′(𝑥) = 𝑒 (𝑥)𝑣 (𝑥) ∈ R/3.

4. Lift 𝑟 ′(𝑥) ∈ R/3 to a small polynomial 𝑟 ′(𝑥) ∈ R.

5. If the weight of 𝑟 ′(𝑥) is not𝑤 then set 𝑟 ′(𝑥) = (1, 1, . . . , 1, 0, 0, . . . , 0).

23

CHAPTER 3. LIGHTWEIGHT NTRU PRIME

6. Compute 𝑐 ′(𝑥) = ℎ(𝑥)𝑟 ′(𝑥) ∈ Rounded.
7. Compute 𝐶 ′ = (𝑐 ′(𝑥),Hash(𝑟 ′(𝑥), ℎ(𝑥))).
8. If 𝐶 ′ equals 𝐶 then output Hash(1, 𝑟 ′(𝑥),𝐶) else output Hash(0, 𝜌 (𝑥),𝐶) as session key.

3.3 Implementation

Polynomial multiplications in streamlined NTRU Prime. Since Streamlined NTRU Prime is
closely related to the classical NTRU scheme (i.e., NTRUEncrypt), it is not surprising that they share
many implementation aspects; in particular, they have in common that their performance depends to a
large extent on the polynomial arithmetic. However, the underlying algebraic structures are (slightly)
dierent: NTRUEncrypt is based on the residue class ring R = (Z/𝑞) [𝑥]/(𝑥𝑁 − 1) where 𝑞 is a power
of two, while NTRU Prime uses the extension eld (Z/𝑞) [𝑥]/(𝑥𝑝 − 𝑥 − 1) where 𝑞 is a prime, e.g.,
𝑞 = 4621. The reduction modulo𝑞 is basically free in the former case, but relatively expensive for NTRU
Prime, especially when constant execution time is required so as to foil timing attacks. Furthermore,
the irreducible polynomial 𝑃 of NTRU Prime contains an additional non-0 coecient, which makes
the reduction operation more costly. Finally, most performance-optimized implementations of classical
NTRU for constrained IoT devices use a parameter set with so-called product-form polynomials [HS03]
to minimize the execution time of the ring multiplication (see, e.g., [BCE+01, CGRR21]). However,
product-form parameter sets were not included in the NTRU Prime specication. For all these reasons,
one can expect the arithmetic part of NTRU Prime, when implemented for an 8-bit AVRmicrocontroller,
to be signicantly slower than that of the classical NTRU cryptosystem.

The encapsulation operation of NTRU Prime includes a single polynomial multiplication where one
operand is an element ofR/𝑞 (i.e., its coecients are bounded by 𝑞) and the other operand is an element
of Short, which means it is a ternary polynomial with exactly𝑤 non-0 coecients. Hence, the polyno-
mial multiplication carried out in NTRU Prime encapsulation is very similar to the ring multiplication
in the encryption operation of classical NTRU [HPS98]. On the other hand, the decapsulation of NTRU
Prime involves three polynomial multiplications, which is one more than the number of multiplications
that have to be executed in classical NTRU decryption. The rst polynomial multiplication in the de-
capsulation gets an element of Rounded (i.e., an element of R/𝑞) and an element of Short as input. In
contrast, the second polynomial multiplication (Step 3 of the decapsulation as presented in the previous
section) is performed on two elements of R/3, i.e., two ternary polynomials. The third multiplication
of the decapsulation is exactly the same as the polynomial multiplication in the encapsulation, which
means the operands are elements of R/𝑞 and Short.

Karatsuba-based polynomial multiplication. Most algorithms for high-speed polynomial multi-
plication have their origins in well-known algorithms for multiple-precision multiplication of integers,
such as needed for common public-key cryptosystems like RSA and ECC [DHH+15, HMV04]. From
a high-level perspective, polynomial multiplication algorithms can be split into two main categories,
namely basic techniques that require 𝑛2 coecient multiplications to obtain the product of two poly-
nomials consisting of 𝑛 coecients each, and advanced techniques with sub-quadratic complexity, e.g.,
Karatsuba’s algorithm [KO63]. Examples of the former category are the operand-scanning and product-
scanning method, which produce the coecient-products in a row-wise or column-wise fashion and
dier with respect of the number of load and store instructions they need to execute [HMV04]. The so-
called hybrid technique proposed in [GPW+04] is benecial on microcontrollers with a large number of
general-purpose registers (e.g., AVR ATmega) and combines the individual strengths of operand scan-
ning and product scanning. It has a “nested loop” structure and computes 𝑑 ≥ 2 coecient-products
in each iteration of the inner loop, which reduces the number of load instructions by a factor of 𝑑
compared to product scanning.

24

3.3. IMPLEMENTATION

Multiplication algorithms with sub-quadratic complexity have been known since the 1960s when
Karatsuba published his seminal paper [KO63]. Karatsuba’s method reduces a multiplication of two
operands consisting of 𝑛 coecients to three multiplications of (𝑛/2)-coecient polynomials and a
few additions. The half-size multiplications, in turn, can be implemented using any multiplication
technique, including conventional operand and product scanning, as well as the hybrid method. Alter-
natively, it is possible to apply the Karatsuba algorithm recursively until the operands consist of just a
single coecient, in which case the asymptotic complexity becomesΘ(𝑛log23). Yet another option is the
so-called Arbitrary Degree Karatsuba (ADK) variant described and analyzed in detail in [Sco18]. Also a
fewmultiplication algorithms with even better asymptotic complexity have been studied; an example is
the Toom-Cook multiplication we mentioned in Section 3.1 in the context of Kannwischer et al.’s work
on polynomial multiplication for ARM Cortex-M4 processors [KRS19]. An ecient implementation of
a 4-way Toom-Cook algorithm for multiplication of degree-256 polynomials on a Cortex-M4 device is
described in [KBSV18].

Multiplication strategy. Finding the optimal multiplication strategy for the two forms of polyno-
mial multiplication mentioned at the beginning of this section (i.e., R/𝑞 × Short and R/3 × R/3) is a
dicult task. Intuitively, one may assume that a combination of multiplication techniques with sub-
quadratic and quadratic complexity will yield peak performance. Yet, the concrete implementation
of such a combined strategy raises a few non-trivial questions. Asymptotic complexity bounds are
not always meaningful in the real world, especially when the involved operands are relatively short.
Therefore, it is necessary to nd out which sub-quadratic algorithms are most ecient ones for the
multiplications in NTRU Prime (this depends besides the lengths of the polynomials also on certain
characteristics of the target architecture). For constrained platforms like 8-bit AVR, it makes sense to
base this decision not solely on speed but also on RAM requirements and code size. A second important
question is how many recursions of Karatsuba’s and/or Toom-Cook’s algorithm should be performed
before switching to a multiplication method with quadratic complexity, i.e., what operand length is the
“crossover” point? Finally, a third question is which of the basic algorithms should be used: operand
scanning, product scanning, or the hybrid method? In order to answer all these questions, we con-
ducted a multitude of experiments with dierent sub-quadratic algorithms1 (e.g., Karatsuba algorithm
and ADK), dierent numbers of recursions of the sub-quadratic algorithms (i.e., dierent “crossover”
points), and dierent basic multiplication techniques with quadratic complexity (e.g., operand-scanning
and product-scanning).

The results of these experiments show that for a polynomial multiplication of the form R/𝑞×Short
(carried out in Step 2 of encapsulation as well as Step 1 and 6 of decapsulation), ve recursions of Karat-
suba’s algorithm provide the best performance across all parameter sets specied in [BCLV19]. Below
the ve levels of Karatsuba, the normal product-scanning technique is used since, due to the bitlength
of the coecient-products and the limited register space, the hybrid multiplication is not ecient. Also
alternative Karatsuba variants, such as the ADK algorithm from [Sco18], did not yield superior perfor-
mance. The situation is dierent for the polynomial multiplication of the form R/3 × R/3, which has
to be carried out in Step 3 of the decapsulation. For this multiplication, a combination of the (recur-
sive) Karatsuba algorithm and hybrid method achieves the best results. To be precise, we reached peak
performance with four recursions of Karatsuba and using the hybrid method with 𝑑 = 4 at the “lower
level” (this is possible because the coecient-products are relatively small and, thus, more free regis-
ters are available). We implemented Karatsuba’s algorithm in C and the hybrid multiplication method
in both C and AVR assembler, whereby the latter is very similar to the implementations described in
[GPW+04, DHH+15].

1As stated in Section 3.1, we do not consider the Toom-Cook multiplication algorithm due to its high RAM consumption.
The AVR device we use for benchmarking, an ATmega1284 microcontroller, has only 16 kB SRAM, which makes a strong case
to take memory requirements into account in the algorithm exploration.

25

CHAPTER 3. LIGHTWEIGHT NTRU PRIME

Algorithm 3.1: Table-based constant-time coecient-reduction modular 𝑞.
Input: Integer 𝑠 of a length of (up to) 29 bits, modulus 𝑞 of a xed length of 13 bits.
Output: 𝑟 = 𝑠 mod 𝑞.

1 𝑏 ← (𝑠28, . . . , 𝑠24) /* extract the ve bits 𝑏 = (𝑠28, . . . , 𝑠24) from 𝑠 */
2 𝑟 ← RT1[𝑏] /* reduce 𝑏224 modulo 𝑞 via look-up table RT1 */
3 𝑏 ← (𝑠23, . . . , 𝑠16) /* extract the eight bits 𝑏 = (𝑠23, . . . , 𝑠16) from 𝑠 */
4 𝑟 ← 𝑟 + RT2[𝑏] /* reduce 𝑏216 modulo 𝑞 via look-up table RT2 */
5 𝑟 ← 𝑟 + 𝑠 & 0xffff /* add 16 least-signicant bits of 𝑠 to 𝑟 */
6 𝑏 ← (𝑟16, . . . , 𝑟12) /* extract the ve bits 𝑏 = (𝑟16, . . . , 𝑟12) from 𝑟 */
7 𝑟 ← (𝑟 & 0xfff) + RT3[𝑏] /* reduce 𝑏212 modulo 𝑞 via look-up table RT3 */
8 𝑟 ← 𝑟 − 𝑞 · (𝑟 > 𝑞) /* conditionally subtract 𝑞 from 𝑟 */
9 return 𝑟

Amultiplication of two polynomials of degree 𝑝−1 through a combination of Karatsuba’s algorithm
and the hybrid method (or any other multiplication technique) yields a product-polynomial 𝑟 (𝑥) of
degree 2𝑝 − 2, which has to be reduced modulo the irreducible polynomial 𝑃 = 𝑥𝑝 − 𝑥 − 1 to get a
polynomial of degree 𝑝 − 1. Thanks to the relation 𝑥𝑝 ≡ 𝑥 + 1 mod 𝑃 , this reduction can be performed
by simply substituting each term 𝑟𝑖𝑥

𝑖 with 𝑖 ≥ 𝑝 in 𝑟 (𝑥) by the sum 𝑟𝑖𝑥
𝑖−𝑝+1 + 𝑟𝑖𝑥𝑖−𝑝 [BCLV19]. These

substitutions are nothing else than additions of the 𝑝 − 1 higher coecients 𝑟𝑖 to 𝑟𝑖−𝑝+1 and 𝑟𝑖−𝑝 , which
reduces the degree of 𝑟 (𝑥) to (at most) 𝑝 so that two further coecient additions suce to obtain a
result of degree 𝑝 − 1. Thus, the cost of the reduction modulo 𝑃 amounts to 2𝑝 additions of (unreduced)
coecients. The nal step of the multiplication is the reduction of the 𝑝 − 1 remaining coecients
modulo 𝑞 or modulo 3.

Coecient-reduction modulo 𝑞. As explained above, we implemented the multiplication of the
form R/𝑞 × Short using ve recursions of Karatsuba as “higher level” algorithm and product scanning
at the “lower level.” Taking the parameter set sntrup653 as example, we have 𝑝 = 653, which means
the hybrid method is executed with operands of degree d653/25e = 21. Furthermore, since 𝑞 = 4621
and we represent the −1 coecients of a ternary polynomial (i.e., an element of Short) as 𝑞 − 1 = 4620,
a single coecient-product has a maximum length of 24 bits. The column sum to which the 24-bit
coecient-products are accumulated can become up to 29 bits long, i.e., we need an ecient algorithm
for reducing a 29-bit integer modulo a 13-bit integer.

Algorithm 3.1 shows a generic technique for reducing a 29-bit integer modulo an arbitrary 13-bit
integer 𝑞 using three look-up tables, which we call reduction tables. It is assumed that the input 𝑠
(representing a column sum of the hybrid method described above) is held in four 8-bit registers, i.e.,
the individual bytes of 𝑠 can be conveniently accessed. At rst, the ve most-signicant bits of 𝑠 are
assigned to 𝑏 and then 𝑏224 mod 𝑞 is computed with the help of reduction table RT1, which contains
32 entries. Next, the second-most signicant byte of 𝑠 is processed in a similar way, whereby the 256-
entry table RT2 is used to obtain its residue modulo 𝑞. The two residues are added up and form the
intermediate result 𝑟 . Then, we extract the 16 least-signicant bits from 𝑠 and add them to 𝑟 , which
has now a length of at most 17 bits. Similar as before, we assign the ve most-signicant bits of 𝑟
to 𝑏, reduce it using RT3, and add the residue to the 12 least-signicant bits of 𝑟 . Because 𝑟 is now
always less than 2𝑞, a single subtraction of 𝑞 is sucient to have a fully reduced result. However, to
ensure constant execution time, we rst compare 𝑟 with the modulus 𝑞, which returns 1 if 𝑟 ≥ 𝑞 and 0
otherwise. This comparison-result is multiplied by 𝑞 and the product (either 𝑞 or 0) is then subtracted
from 𝑟 . Note that Algorithm 3.1 works for any 13-bit modulus 𝑞, though each 𝑞 requires its own set of
tables.

26

3.3. IMPLEMENTATION

Table 3.1: Execution time (in cycles) of the __udivmodhi4 function for all 216 possible 16-bit unsigned
integers. Columns labeled with “Frequency” and “%” give the frequency (in absolute numbers) and
probability (in percentage) of the occurrence of the cycle count.

Cycles Frequency % Cycles Frequency % Cycles Frequency %
193 3 0.005 198 7956 12.140 203 3825 5.836
194 45 0.069 199 12243 18.681 204 1323 2.019
195 312 0.476 200 14121 21.547 205 312 0.476
196 1323 2.019 201 12244 18.683 206 45 0.069
197 3825 5.836 202 7956 12.140 207 3 0.005

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
Execution time

0

1

2

3

4

Fr
eq

ue
nc

y
(lo

g
sc
al
e)

Figure 3.1: Frequency of the occurrence (in absolute numbers) of a certain execution time (in cycles) of
the __udivmodhi4 function for all 216 possible 16-bit unsigned integers.

Coecient-reduction modulo 3. The reduction modulo 3 can exploit the fact that some multiples
of 3 (e.g., 15, 255) have the form 2𝑘 ± 1, which allows for a particularly ecient implementation. Thus,
the reduction modulo 3 is less costly (in terms of look-up tables) than the modulo-𝑞 case, but requires
special attention regarding timing attacks. Namely, as described in Section 3.2, one of the operands of
the R/3×R/3multiplication in the decapsulation is 𝑣 (𝑥), which is a part of the private key. Therefore,
an implementer has to take care that this multiplication, including the reduction of all coecient-
products modulo 3, has constant execution time. When using C or C++, a modulo-3 reduction can
be implemented by an operation of the form y = x % 3, whereby in our case x is a 16-bit integer.
However, in the course of our work we found out that one can not take it for granted that a C compiler
generates constant-time code for this operation. Concretely, we discovered that certain versions of
avr-gcc generate code with operand-dependent execution time for some AVR models, which can leak
information about the secret polynomial 𝑣 (𝑥).

For example, we determined the execution time of the modulo-3 reduction compiled with avr-gcc

4.8.2 for an ATtiny45microcontroller with help of the cycle-accurate simulator Avrora [TLP05]. For tar-
get devices that have no hardware multiplier, e.g., ATtinyMCUs, avr-gcc uses the __udivmodhi4 func-
tion from the runtime library libgcc to perform the reduction modulo 3. The same function was also
used for devices with hardware multiplier, including the ATmega1284 (our benchmarking device, see
Section 3.4), until version 4.7.0 of the avr-gcc compiler; thereafter it was replaced with __umulhisi3

[GCC17]. While the latter function has a constant execution time (i.e., 54 cycles) for all 216 possible
inputs, the time required by the former depends on the value of the operand to be reduced. Concretely,
the execution time of __udivmodhi4 varies between 193 clock cycles (for input values 0, 1, and 2) and
207 cycles (for 49149, 49150, and 49151). Thus, the time dierence between the longest and shortest
execution is 14 cycles. Further details are provided in Table 3.1 and Figure 3.1. In order to ensure that
the resistance against timing attacks does not depend on the compiler, we implemented the modulo-3
reduction in assembly language following the approach described in [CGRR21].

27

CHAPTER 3. LIGHTWEIGHT NTRU PRIME

Table 3.2: Execution time (in clock cycles) and code size (in bytes) of the main arithmetic operations
and full encapsulation and decapsulation of NTRU Prime using the parameter set sntrup653 on an
ATmega1284 microcontroller.

Operation Time Size
R/𝑞 × Short multiplication 5,604,929 2,230
R/3 × R/3 multiplication 1,277,675 1,510
Full encapsulation 8,160,665 8,694
Full decapsulation 15,602,748 11,478

Table 3.3: Comparison of our NTRU Prime implementation with AVR implementations of other algo-
rithms (all of which target 128 bits of security).

Implementation Algorithm Platform Encaps Decaps
This work NTRU Prime ATmega1284 8,160,665 15,602,748

Cheng et al. [CGRR21] NTRU (PF) ATmega1281 847,973 1,051,871
Düll et al. [DHH+15] X25519 ATmega2560 13,900,397 13,900,397

3.4 Evaluation

The 8-bit AVR device we used to test and benchmark our NTRU Prime implementation is an AT-
mega1284 microcontroller, which features 16 kB SRAM and 128 kB ash memory for storing program
code. Our software consists of a mix of C and assembly language; we implement the main arithmetic
operations in assembly to achieve fast and operand-independent execution time, whereas all functions
that are neither performance-critical nor security-critical are written in C to maximize portability. We
use the optimized Assembler implementation of the SHA-512 hash function introduced in [CDG18] to
minimize the execution time of certain auxiliary functions that are performance-critical. When exe-
cuted on our target device, the compression function of SHA-512 takes slightly less than 60 k clock
cycles, which corresponds to a compression rate of about 467 cycles per byte. Our implementation of
(Streamlined) NTRU Prime can be compiled with Atmel Studio v7.0 under the -O2 optimization option,
which produces an executable that, according to our experiments, does not leak secret information
through execution time and can, therefore, withstand timing attacks.

NTRU Prime. Table 3.2 summarizes the execution time and code size of the core arithmetic opera-
tions (i.e., polynomial multiplications) as well as a full encapsulation and decapsulation of our NTRU
Prime software. The table shows the results of implementation of the polynomial multiplication of the
form R/𝑞×Short and the form R/3×R/3. The latter is much faster (compared to the former) due to the
smaller coecients (enabling faster coecient multiplication), smaller intermediate results (requiring
fewer registers) and faster reduction (modulo 3 vs. modulo 𝑞). Also given in Table 3.2 are the execution
times of encapsulation and decapsulation, which are primarily dominated by the polynomial arithmetic.
The encapsulation includes just a single multiplication, namely a multiplication of an element of R/𝑞
by an element of Short (i.e., R/𝑞 × Short) that accounts for roughly two thirds of the overall execution
time. On the other hand, the decapsulation operation has to perform three polynomial multiplications
(two of the form R/𝑞 × Short and one of the form R/3 × R/3); together they contribute 80% to the
overall execution time.

Comparison with AVR implementations of other key-establishment. Our software is, to the
best of our knowledge, the rst optimized implementation of Streamlined NTRU Prime for AVR devices.
The AVR assembler implementation of classical NTRU (i.e., NTRUEncrypt with ees443ep1 parame-

28

3.5. CONCLUSION

ters) introduced in [CGRR21] uses a highly ecient product-form (PF) convolution and outperforms
our NTRU Prime software by roughly an order of magnitude. On the other hand, our NTRU Prime
encapsulation is much faster than a variable-base scalar multiplication on Curve25519, while the de-
capsulation is a bit slower.

3.5 Conclusion

We presented the rst highly-optimized implementation of NTRU Prime for an 8-bit microcontroller
that is capable to resist timing attacks. When executed on an ATmega1284 device, the encapsulation
takes about 8.2 million cycles, while the decapsulation has an execution time of 15.6 million cycles
(both results are based on the parameter set sntrup653). To achieve these results, we implemented all
expensive operations in AVR assembly language, most notably the polynomial arithmetic, whereby we
strived for a balance between execution time and code size. Furthermore, we showed that one cannot
count on a C compiler to generate constant-time code for the modulo-3 reduction, which generally
raises concerns about the security (i.e., resistance against timing attacks) of C implementations of NTRU
Prime. In summary, our results show that NTRU Prime can be well optimized to run eciently on small
microcontrollers, which makes it an interesting candidate for securing the post-quantum IoT. Finally,
although not discussed and veried in this Chapter, using signed integer arithmetic (instead of the
unsigned version) might have the potential to further improve the performance.

29

CHAPTER 3. LIGHTWEIGHT NTRU PRIME

30

CHAPTER

4

LIGHTWEIGHT THREEBEARS

This Chapter is based on our paper [CGRR20]. While we were conducting the research work described
in this Chapter, the NIST PQC standardization process was in its second round.

4.1 Introduction

Lattice-based candidates. Lattice-based cryptosystems are considered the most promising candi-
dates for deployment in constrained devices due to their relatively low computational cost and reason-
ably small keys and ciphertexts (resp. signatures). Indeed, the benchmarking results collected in the
course of the pqm4 project [PQM4], which uses a 32-bit ARM Cortex-M4 as target device, show that
most of the lattice-based Key-Encapsulation Mechanisms (KEMs) in the second round of the evalua-
tion process are faster than ECDH key exchange based on Curve25519 [Ber06], i.e. X25519, and some
candidates are even notably faster than X25519 [PQM4]. However, the results of pqm4 also indicate
that lattice-based cryptosystems generally require a large amount of run-time memory since most of
the benchmarked lattice KEMs have a RAM footprint of between 5 kB and 30 kB. For comparison, a
variable-base scalar multiplication on Curve25519 can have a RAM footprint of less than 500 bytes
[DHH+15]. One could argue that the pqm4 implementations have been optimized to reach high speed
rather than low memory consumption, but this argument is not convincing since even a conventional
implementation of X25519 (i.e., an implementation without any specic measures for RAM reduction)
still needs only little more than 500 bytes RAM. Therefore, the existing implementation results in the
literature lead to the conclusion that lattice-based KEMs require an order of magnitude more RAM than
ECDH key exchange.

ThreeBears. The high RAM requirements of lattice-based cryptosystems (in relation to X25519) pose
a serious problem for the emerging Internet of Things (IoT) since many IoT devices feature only a few
kB of RAM. For example, a typical wireless sensor node like the MICAz mote [Cro06] is equipped
with an 8-bit micro- controller (e.g., ATmega128L) and comes with only 4 kB internal SRAM. These
4 kB are easily sucient for X25519 (since there would still be 7/8 of the RAM available for system
and application software), but not for lattice-based KEMs. Thus, there is a clear need to research how
lattice-based cryptosystems can be optimized to reduce their memory consumption and what perfor-
mance such low-memory implementations can reach. The present paper addresses this research need

31

CHAPTER 4. LIGHTWEIGHT THREEBEARS

and introduces various software optimization techniques for the ThreeBears KEM [Ham19], a lattice-
based cryptosystem that was selected for the second round of NIST’s standardization project. The
security of ThreeBears is based on a special version of the Learning With Errors (LWE) problem,
the so-called Integer Module Learning with Errors (I-MLWE) problem [Gu17]. ThreeBears is unique
among the lattice-based second-round candidates since it uses an integer ring instead of a polynomial
ring as algebraic structure. Hence, the major operation of ThreeBears is integer arithmetic (namely
multiplication modulo a 3120-bit prime) and not polynomial arithmetic.

Optimization techniques for polynomial multiplication. The conventional way to speed up the
polynomial multiplication that forms part of lattice-based cryptosystems is to use a multiplication tech-
nique with sub-quadratic complexity, e.g., Karatsuba’s method [KO63] or the so-called Toom-Cook al-
gorithm [Too63, Coo66] or the Number Theoretic Transform (NTT). However, the performance gain
due to these techniques comes at the expense of a massive increase of the RAM requirements. For
integer multiplication, on the other hand, there exists a highly eective approach for performance op-
timization that does not increase the memory footprint, namely the so-called hybrid multiplication
method from CHES 2004 [GPW+04] or one of its variants like the Reverse Product Scanning (RPS)
method [LSGK14]. In essence, the hybrid technique can be viewed as a combination of classical operand
scanning and product scanning with the goal to reduce the number of load instructions by processing
several bytes of the two operands in each iteration of the inner loop. Even though the hybrid technique
can also be applied to polynomial multiplication, it is, in general, less eective because the bit-length
of the polynomial coecients of most lattice-based cryptosystems is not a multiple of eight.

Contributions. This work analyzes the performance of ThreeBears on an 8-bit AVR microcon-
troller and studies its exibility to achieve dierent trade-os between execution time and RAM foot-
print. Furthermore, we describe (to the best of our knowledge) the rst highly-optimized software
implementations of BabyBear (an instance of ThreeBears with parameters to reach NIST’s security
category 2) for the AVR platform. We developed four implementations of BabyBear, two of which are
optimized for low RAM consumption, and the other two for fast execution times. Our two low-RAM
BabyBear versions are the most memory-ecient software implementations of a NIST second-round
candidate ever reported in the literature.

Our work is based on the optimized C code contained in the ThreeBears submission package
[Ham19], which adopts a “reduced-radix” representation for the ring elements, i.e., the number of bits
per limb is less than the word-size of the target architecture. On a 32-bit platform, a 3120-bit integer
can be stored in an array of 120 limbs, each consisting of 26 bits. However, our AVR software uses
a radix of 232 (i.e., 32 bits of the operands are processed at a time) since this representation enables
the RPS method to reach peak performance and it also reduces the RAM footprint. We present two
optimizations for the performance-critical Multiply-ACcumulate (MAC) operation of ThreeBears; one
aims to minimize the RAM requirements, while the goal of the second is to maximize performance.
Our low-memory implementation of the MAC combines one level of Karatsuba with the RPS method
[LSGK14] to accelerate the so-called tripleMAC operation of the optimized C source code from [Ham19],
which is (relatively) light in terms of stack memory. On the other hand, the speed-optimized MAC
consists of three recursive levels of Karatsuba multiplication and uses the RPS method underneath. We
implemented both MAC variants in AVR Assembly language to ensure they have constant execution
time and can resist timing attacks.

As already mentioned, our software contains four dierent implementations of the ThreeBears
family: two versions of CCA-secure BabyBear, and two versions of CPA-secure BabyBearEphem. For
both BabyBear and BabyBearEphem, we developed both a Memory-Ecient (ME) and a High-Speed
(HS) implementation, which internally use the corresponding MAC variant. We abbreviate these four
versions as ME-BBear, ME-BBear-Eph, HS-BBear, and HS-BBear-Eph. Our results show that Three-

32

4.2. BACKGROUND

Bears provides the exibility to optimize for low memory footprint and still achieves very good exe-
cution times compared to the other second-round candidates. In particular, the CCA-secure BabyBear
can be optimized to run with only 2.4 kB RAM on AVR, and the CPA-secure version requires even less
memory, namely just 1.7 kB.

4.2 Background

ThreeBears has three parameter sets called BabyBear, MamaBear, and PapaBear, matching NIST
security categories 2, 4, and 5, respectively. Each parameter set comes with two instances, one provid-
ing CPA security and the other CCA security. Taking BabyBear as example, the CPA-secure instance
is named BabyBearEphem (with the meaning of ephemeral BabyBear), while the CCA-secure one is
simply called BabyBear. In the following, we only give a short summary of the CCA-secure instance of
ThreeBears. In contrast to encryption schemes with CCA-security, CPA-secure ones, roughly speak-
ing, do not repeat and verify the key generation and encryption (i.e., encapsulation) as part of the
decryption (i.e., decapsulation) procedure, see [Ham19] for details.

Notation and parameters. ThreeBears operates in the eld Z/𝑁 , where the prime modulus 𝑁 =

23120 − 21560 − 1 is a so-called “golden-ratio” Solinas trinomial prime [Ham15]. 𝑁 is commonly written
as 𝑁 = 𝜙 (𝑥) = 𝑥𝐷 − 𝑥𝐷/2 − 1. The addition and multiplication (+, ∗) in Z/𝑁 will be explained in
Section 4.3.1. An additional parameter 𝑑 determines the the module dimension; this dimension is 2 for
BabyBear, 3 forMamaBear, and 4 for PapaBear, respectively.

Key generation. To generate a key pair for ThreeBears, the following operations have to be per-
formed:

1. Generate a uniform and random string 𝑠𝑘 with a xed length.

2. Generate two noise vectors (𝑎0, . . . , 𝑎𝑑−1) and (𝑏0, . . . , 𝑏𝑑−1), where 𝑎𝑖 , 𝑏𝑖 ∈ Z/𝑁 is sampled from
a noise sampler using 𝑠𝑘 .

3. Compute 𝑟 = Hash(𝑠𝑘).

4. Generate a 𝑑 × 𝑑 matrix 𝑴 , where each element 𝑀𝑖, 𝑗 ∈ Z/𝑁 is sampled from a uniform sampler
using 𝑟 .

5. Obtain vector 𝒛 = (𝑧0, . . . , 𝑧𝑑−1) by computing each 𝑧𝑖 = 𝑏𝑖 + Σ𝑑−1𝑗=0𝑀𝑖, 𝑗 ∗ 𝑎 𝑗 mod 𝑁

6. Output 𝑠𝑘 as private key and (𝑟, 𝒛) as public key.

Encapsulation. The encapsulation operation gets a public key (𝑟, 𝒛) as input and produces a cipher-
text and shared secret as output:

1. Generate a uniform and random string 𝑠𝑒𝑒𝑑 with a xed-length.

2. Generate two noise vectors (𝑎0, . . . , 𝑎𝑑−1), (𝑏0, . . . , 𝑏𝑑−1) and a noise 𝑐 , where 𝑎𝑖 , 𝑏𝑖 , 𝑐 ∈ Z/𝑁 is
sampled from noise sampler by given 𝑟 and 𝑠𝑒𝑒𝑑 .

3. Generate a 𝑑 ×𝑑 matrix𝑴 , where each element𝑀𝑖, 𝑗 ∈ Z/𝑁 is sampled from uniform sampler by
given 𝑟 .

4. Obtain vector 𝒚 = (𝑦0, . . . , 𝑦𝑑−1) by computing each 𝑦𝑖 = 𝑏𝑖 + Σ𝑑−1𝑗=0𝑀 𝑗,𝑖 ∗ 𝑎 𝑗 mod 𝑁 , and compute
𝑥 = 𝑐 + Σ𝑑−1𝑗=0𝑧 𝑗 ∗ 𝑎 𝑗 mod 𝑁 .

33

CHAPTER 4. LIGHTWEIGHT THREEBEARS

5. Use Melas FEC encoder to encode 𝑠𝑒𝑒𝑑 , and use this encoded output together with 𝑥 to extract a
xed-length string 𝑓 .

6. Compute 𝑠𝑠 = Hash(𝑟, 𝑠𝑒𝑒𝑑).

7. Output 𝑠𝑠 as shared secret and (𝑓 ,𝒚) as ciphertext.

Decapsulation. The decapsulation gets a private key 𝑠𝑘 and ciphertext (𝑓 ,𝒚) as input and produces
a shared secret as output:

1. Generate a noise vector (𝑎0, . . . , 𝑎𝑑−1), where 𝑎𝑖 ∈ Z/𝑁 is sampled from a noise sampler by given
𝑠𝑘 .

2. Compute 𝑥 = Σ𝑑−1𝑗=0𝑦 𝑗 ∗ 𝑎 𝑗 mod 𝑁 .

3. Derive a string from 𝑓 together with 𝑥 , and use Melas FEC decoder to decode this string to obtain
the string 𝑠𝑒𝑒𝑑 .

4. Generate the public key (𝑟 ′, 𝒛′) through Key Generation by given 𝑠𝑘 .

5. Repeat Encapsulation to get 𝑠𝑠 ′ and (𝑓 ′,𝒚′) by using the obtained 𝑠𝑒𝑒𝑑 and key pair (𝑠𝑘 , (𝑟 ′, 𝒛′)).

6. Check whether (𝑓 ′,𝒚′) equals to (𝑓 ,𝒚); if they are equal then output 𝑠𝑠 ′ as shared secret; if not
then output Hash(𝑠𝑘, 𝑓 ,𝒚) as shared secret.

Auxiliary functions. The three operations described above use a few auxiliary functions such as
samplers (noise sampler and uniform sampler), hash functions, and a function for the correction of
errors. Both the samplers and hash functions are based on cSHAKE256 [KCP16], which uses the Keccak
permutation [BDPA13] at the lowest layer. In addition, ThreeBears adopts Melas BCH code for For-
ward Error Correction (FEC) since it is very fast, has low RAM consumption and small code size, and
can also be easily implemented to have constant execution time.

The impact of polynomial multiplication on performance. We determined the execution time
of several implementations contained in the ThreeBears NIST submission package on an AVR mi-
crocontroller. Like is the case with other lattice-based cryptosystems, the arithmetic computations of
ThreeBears determine the memory footprint and have a big impact on the overall execution time.
Hence, our work primarily focuses on the optimization of the costly MAC operation of the form 𝑟 =

𝑟 +𝑎 ∗𝑏 mod 𝑁 . Concerning the auxiliary functions, we were able to signicantly improve their perfor-
mance (in relation to the C code of the submission package) thanks to a highly-optimizedAVR assembler
implementation of the permutation of Keccak1. Further details about the auxiliary functions are outside
of the scope of this work; we refer the reader to the specication of ThreeBears [Ham19].

The specic AVR device used. The specic AVR microcontroller on which we simulated the exe-
cution time of our software is the ATmega1284; it features 16 kB SRAM and 128 kB ash memory for
storing program code.

1https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8.

34

https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8

4.3. IMPLEMENTATION

4.3 Implementation

The Multiply-ACcumulate (MAC) operation of ThreeBears, in particular the 3120-bit multiplication
that is part of it, is very costly on 8-bit microcontrollers and requires special attention. This section
deals with optimization techniques for the MAC operation on the AVR platform. As already stated in
Section 4.1, we follow two strategies to optimize the MAC, one whose goal is to minimize the RAM
footprint, whereas the other aims to maximize performance. The result is a memory-optimized MAC
and a speed-optimized MAC, which are described in Section 4.3.3 and Section 4.3.4, respectively.

4.3.1 The MAC operation of ThreeBears

ThreeBears denes its eld operations (+, ∗) as

𝑎 + 𝑏 := 𝑎 + 𝑏 mod 𝑁 and 𝑎 ∗ 𝑏 := 𝑎 · 𝑏 · 𝑥−𝐷/2 mod 𝑁

where + and · (at the right hand side of the equations) are the conventional integer addition and mul-
tiplication, respectively. Note that a so-called clarier 𝑥−𝐷/2 is multiplied with the factors in the eld
multiplication, which serves to reduce the distortion of the noise. As shown in [Ham15], the Solinas
prime 𝑁 enables very fast Karatsuba multiplication [KO63]. We can write the eld multiplication in
the following way, where _ = 𝑥𝐷/2 and the subscripts 𝐻 and 𝐿 are used to denote the higher/lower half
of an integer:

𝑧 = 𝑎 ∗ 𝑏 = 𝑎 · 𝑏 · _−1 = (𝑎𝐿 + 𝑎𝐻_) (𝑏𝐿 + 𝑏𝐻_) · _−1
= 𝑎𝐿𝑏𝐿_

−1 + (𝑎𝐿𝑏𝐻 + 𝑎𝐻𝑏𝐿) + 𝑎𝐻𝑏𝐻_
= 𝑎𝐿𝑏𝐿 (_ − 1) + (𝑎𝐿𝑏𝐻 + 𝑎𝐻𝑏𝐿) + 𝑎𝐻𝑏𝐻_
= (𝑎𝐿𝑏𝐻 + 𝑎𝐻𝑏𝐿 − 𝑎𝐿𝑏𝐿) + (𝑎𝐿𝑏𝐿 + 𝑎𝐻𝑏𝐻)_
= (𝑎𝐻𝑏𝐻 − (𝑎𝐿 − 𝑎𝐻) (𝑏𝐿 − 𝑏𝐻)) + (𝑎𝐿𝑏𝐿 + 𝑎𝐻𝑏𝐻)_ mod 𝑁 (4.1)

Compared to a conventional Karatsuba multiplication, which requires three half-size multiplications
and six additions/subtractions, the Karatsuba method for multiplication in Z/𝑁 saves one addition or
subtraction. Consequently, the MAC operation can be performed as specied by Equation (4.2) and
Equation (4.3):

𝑟 = 𝑟 + 𝑎 ∗ 𝑏 mod 𝑁
= (𝑟𝐿 +𝑎𝐻𝑏𝐻 − (𝑎𝐿 −𝑎𝐻) (𝑏𝐿 −𝑏𝐻)) + (𝑟𝐻 +𝑎𝐿𝑏𝐿 +𝑎𝐻𝑏𝐻)_ mod 𝑁 (4.2)
= (𝑟𝐿 +𝑎𝐻𝑏𝐿 −𝑎𝐿 (𝑏𝐿 −𝑏𝐻)) + (𝑟𝐻 + (𝑎𝐿 +𝑎𝐻)𝑏𝐻 +𝑎𝐿 (𝑏𝐿 −𝑏𝐻))_ mod 𝑁 (4.3)

4.3.2 Full-radix representation for eld elements

Implementations provided in the NIST package. The NIST submission package of ThreeBears
consists of dierent implementations, including a reference implementation, optimized implementa-
tions, and additional implementations (e.g., a low-memory implementation). As mentioned in Sec-
tion 4.1, they all use a reduced-radix representation for the 3120-bit integers (e.g., on a 32-bit platform,
each limb is 26 bits long, and an element of the eld consists of 120 limbs). Since this representation im-
plies that there are six free bits in a 32-bit word, it is possible to store the carry (or borrow) bits that are
generated during a eld operation instead of immediately propagating them to the next-higher word,
which reduces dependencies and enables instruction-level parallelism. Modern super-scalar processors
can execute several instructions in parallel and, in this way, improve the running time of ThreeBears.

35

CHAPTER 4. LIGHTWEIGHT THREEBEARS

standard L H C 0

aligned L 0 H C
0 1568 3136

Figure 4.1: Standard and aligned form of a eld element (AVR uses little-endian).

Our full-radix representation. Our implementations of BabyBear for AVR use a full-radix rep-
resentation for the eld elements for a number of reasons. First, small 8-bit microcontrollers have a
single-issue pipeline and can not execute instructions in parallel, even when there are no dependencies
among instructions. Furthermore, leaving six bits of “headroom” in a 32-bit word increases the number
of limbs (in relation to the full-radix case) and, hence, the number of (32× 32)-bit multiplications to be
carried out. This is a bigger problem on AVR than on high-end processors where multiplications are a
lot faster. Finally, the reduced-radix representation requires more space for a eld-element (i.e., larger
memory footprint) and more load/store instructions. In our full-radix representation, an element of the
eld consists of 98 words of a length of 32 bits and consumes 98 × 4 = 392 bytes in RAM, while the
original representation requires 120 × 4 = 480 bytes. The full-radix representation with 32-bit words
has also arithmetic advantages since (as mentioned in Section 4.1) it allows one to accelerate the MAC
operation using the RPS method [LSGK14]. Thus, we x the number representation radix to 232, despite
the fact that we are working on an 8-bit microcontroller.

Re-alignment. We dene two forms of storage for a full-radix eld element: standard and aligned.
Both forms are visually sketched in Figure 4.1, where “L” and “H” stands respectively for the lower
and higher 1560 bits of a 3120-bit eld element. The standard form is basically the straightforward
way of storing a multi-precision integer. Since a 3120-bit integer occupies 98 32-bit words, there are
16 unused bits (i.e., two empty bytes) in the most signicant word. In our optimized MAC operations,
the result is not always strictly in the range [0, 𝑁) but can also be in [0, 2𝑁), which means the second
most signicant byte is either 0 or 1. We call this byte “carry byte” and mark it with a “C” in Figure 4.1.
Furthermore, we use “0” to indicate the most signicant byte because it is 0 all the time. The reason
why we convert a standard integer into aligned form is because it allows us to perform the Karatsuba
multiplication more eciently. From an implementer’s viewpoint, the standard form is suboptimal for
Karatsuba since it does not place the lower (“L”) and upper (“H”) 1560 bits into the lower and upper half
of the operand space (see Figure 4.1). Concretely, the lowest byte of the upper 1560 bits is located at the
most signicant byte of the lower half in the space, which introduces some extra eort for alignment
and addressing. The aligned form splits the lower and upper 1560 bits in such a way that they are
ideally located for Karatsuba multiplication.

4.3.3 Memory-optimized MAC operation

The NIST submission package of ThreeBears includes a low-memory implementation for each in-
stance, which aims to minimize stack consumption. These low-memory variants are based on a special
memory-ecient MAC operation that uses one level of Karatsuba’s technique [KO63], which follows
a modication of Equation (4.3), namely Equation (4.4) shown below:

𝑟 = 𝑟 + 𝑎 ∗ 𝑏 mod 𝑁
= (𝑟𝐿 + 𝑎𝐻𝑏𝐿 − 2𝑎𝐿 (𝑏𝐿 − 𝑏𝐻)) + (𝑟𝐻 + (𝑎𝐿 + 𝑎𝐻)𝑏𝐻)_ + 𝑎𝐿 (𝑏𝐿 − 𝑏𝐻)_2 mod 𝑁 (4.4)

ThisMAC implements themultiplications using the product-scanningmethod and operates on reduced-
radix words. Our memory-optimized MAC operation was developed on basis of this original low-

36

4.3. IMPLEMENTATION

𝑍0 𝑍1 𝑍2 𝑍0

_0 _ _2 _3 _4

Figure 4.2: Three accumulators for coecients of _0 = 1, _, and _2 of a product 𝑅.

memory MAC, but performs all its computations on aligned full-radix words (after some alignment
operations).

Algorithm 4.1 shows our low-RAM one-level Karatsuba MAC, which consists of two major parts:
a main MAC loop interleaved with the modular reduction (from line 3 to 23) and a nal reduction
modulo 𝑁 (from line 24 to 38). The designer of ThreeBears coined the term “tripleMAC” to refer to
the three word-level MACs in the inner loops (line 8 to 10 and 15 to 17). Certainly, this tripleMAC is
the most frequent computation carried out by Algorithm 4.1 and dominates the overall execution time.
In order to reach peak performance on AVR, we replace the conventional product-scanning technique
by an optimized variant of the hybrid multiplication method [GPW+04], namely the so-called Reverse
Product-Scanning (RPS) method [LSGK14], which processes four bytes (i.e., 32 bits) of the operands
per loop-iteration. In addition, we split each of the inner loops containing a tripleMAC up into three
separate loops, and each of these three loops computes one word-level MAC. Due to the relatively small
register space of AVR, it is not possible to keep all three accumulators (i.e., 𝑍0, 𝑍1, and 𝑍2) in registers,
which means executing three word-level MACs in the same inner loop would require a large number of
LD and ST instructions to load and store the accumulators in each iteration. Thanks to our modication,
an accumulator has to be loaded/stored only before/after the whole inner loop.

The three inputs and the output of Algorithm 4.1 are aligned integers, where 𝑠 is 98 and𝜔 is 32. The
parameter 𝛽 species the shift-distance (in bits) when converting an ordinary integer to aligned form
(𝛽 = 8 in our case). Each of the three accumulators 𝑍0, 𝑍1, and 𝑍2 in Algorithm 4.1 is 80 bits long and
occupies 10 registers. Figure 4.2 illustrates the relation between the accumulators and the coecients
of _0, _, and _2 in an aligned output 𝑅. Referring to Equation (4.4), we suppose each coecient can be
3120 bits long, but 𝑍0, 𝑍1, and 𝑍2 accumulate only the lower 1560 bits of the coecients of _0, _, and
_2, respectively, in the rst tripleMAC (line 8 to 10). After the rst inner loop, double of 𝑍2 must be
subtracted from 𝑍0 (line 11), which corresponds to the operation of the form 𝑎𝐻𝑏𝐿 − 2𝑎𝐿 (𝑏𝐿 − 𝑏𝐻) in
Equation (4.4). The second inner loop (beginning at line 13) computes the higher half of each coecient,
but this time the word-products are added to dierent accumulators compared to the rst tripleMAC
(e.g., the 64-bit word-products of the form 𝐴 𝑗+𝑙 · 𝐵𝑘 are added to 𝑍1 instead of 𝑍0). In the second
tripleMAC, the factor 2𝛽 needs to be considered in order to ensure proper alignment. The third word-
level MAC (at line 17) can be regarded as computing (the lower half of) the coecient of _3. Normally,
we should use an additional accumulator 𝑍3 for this third MAC, but it is more ecient to re-use 𝑍0.
This is possible since, after the second inner loop, we would normally have to compute 𝑍1 ← 𝑍1−2 ·𝑍3,
a similar operation as at line 11. But because

_3 = _2 · _ = (_ + 1) · _ = _2 + _ = (_ + 1) + _ = 2_ + 1 mod 𝑁,

we also have to compute 𝑍0 ← 𝑍0 +𝑍3 and 𝑍1 ← 𝑍1 + 2 · 𝑍3. Combining these two computations with
𝑍1 ← 𝑍1 − 2 · 𝑍3 implies that 𝑍1 can simply keep its present value and only 𝑍0 accumulates the value
of 𝑍3. Thus, Algorithm 4.1 does not compute 𝑍1 ← 𝑍1 − 2 · 𝑍3, but instead directly accumulates the
sum of the word-products 𝐴 𝑗 · (𝐵𝑘 − 𝐵𝑘+𝑙) into 𝑍0 (which also saves a few load and store instructions).
This “shortcut” is indicated in Figure 4.2 with a dashed arrow from 𝑍0 to the coecient of _3. Line 18
to 23 add the lower 32-bit words of 𝑍0 and 𝑍1 to the corresponding words of the result 𝑅 and right-shift
𝑍0 and 𝑍1. The part from line 24 to 27 brings the output of the MAC into a properly aligned form.
Thereafter (line 28 to 38), a modulo-𝑁 reduction (based on the relation _2 ≡ _ + 1 mod 𝑁) along with a

37

CHAPTER 4. LIGHTWEIGHT THREEBEARS

Algorithm 4.1:Memory-optimized MAC operation.
Input: Aligned 𝑠-word integers 𝐴 = (𝐴𝑠−1, . . . , 𝐴1, 𝐴0), 𝐵 = (𝐵𝑠−1, . . . , 𝐵1, 𝐵0), and

𝑅 = (𝑅𝑠−1, . . . , 𝑅1, 𝑅0), each word contains 𝜔 bits; 𝛽 is a parameter of alignment.
Output: Aligned 𝑠-word product 𝑅 = 𝑅 +𝐴 · 𝐵 · 𝑥−𝐷/2 mod 𝑁 = (𝑅𝑠−1, . . . , 𝑅1, 𝑅0).

1 𝑍0 ← 0, 𝑍1 ← 0
2 𝑙 ← 𝑠/2
3 for 𝑖 from 0 to 𝑙 − 1 by 1 do
4 𝑍2 ← 0
5 𝑘 ← 𝑖 + 1
6 for 𝑗 from 0 to 𝑖 by 1 do
7 𝑘 ← 𝑘 − 1
8 𝑍0 ← 𝑍0 +𝐴 𝑗+𝑙 · 𝐵𝑘
9 𝑍1 ← 𝑍1 + (𝐴 𝑗 +𝐴 𝑗+𝑙) · 𝐵𝑘+𝑙

10 𝑍2 ← 𝑍2 +𝐴 𝑗 · (𝐵𝑘 − 𝐵𝑘+𝑙)
11 𝑍0 ← 𝑍0 − 2 · 𝑍2
12 𝑘 ← 𝑙
13 for 𝑗 from 𝑖 + 1 to 𝑙 − 1 by 1 do
14 𝑘 ← 𝑘 − 1
15 𝑍1 ← 𝑍1 + 2𝛽 · 𝐴 𝑗+𝑙 · 𝐵𝑘
16 𝑍2 ← 𝑍2 + 2𝛽 · (𝐴 𝑗 +𝐴 𝑗+𝑙) · 𝐵𝑘+𝑙
17 𝑍0 ← 𝑍0 + 2𝛽 · 𝐴 𝑗 · (𝐵𝑘 − 𝐵𝑘+𝑙)
18 𝑍0 ← 𝑍0 + 𝑍2 + 𝑅𝑖
19 𝑍1 ← 𝑍1 + 𝑍2 + 𝑅𝑖+𝑙
20 𝑅𝑖 ← 𝑍0 mod 2𝜔
21 𝑍0 ← 𝑍0/2𝜔
22 𝑅𝑖+𝑙 ← 𝑍1 mod 2𝜔
23 𝑍1 ← 𝑍1/2𝜔
24 𝑍0 ← 2𝛽 · 𝑍0 + 𝑅𝑙−1/2𝜔−𝛽
25 𝑍1 ← 2𝛽 · 𝑍1 + 𝑅𝑠−1/2𝜔−𝛽
26 𝑅𝑙−1 ← 𝑅𝑙−1 mod 2𝜔−𝛽
27 𝑅𝑠−1 ← 𝑅𝑠−1 mod 2𝜔−𝛽
28 𝑍0 ← 𝑍0 + 𝑍1
29 for 𝑖 from 0 to 𝑙 − 1 by 1 do
30 𝑍1 ← 𝑍1 + 𝑅𝑖
31 𝑅𝑖 ← 𝑍1 mod 2𝜔
32 𝑍1 ← 𝑍1/2𝜔
33 𝑍0 ← 2𝛽 · 𝑍0 + 𝑅𝑙−1/2𝜔−𝛽
34 𝑅𝑙−1 ← 𝑅𝑙−1 mod 2𝜔−𝛽
35 for 𝑖 from 𝑙 to 𝑠 − 1 by 1 do
36 𝑍0 ← 𝑍0 + 𝑅𝑖
37 𝑅𝑖 ← 𝑍0 mod 2𝜔
38 𝑍0 ← 𝑍0/2𝜔
39 return (𝑅𝑠−1, . . . , 𝑅1, 𝑅0)

38

4.3. IMPLEMENTATION

Algorithm 4.2: Speed-optimized MAC operation.
Input: Aligned eld elements 𝐴 = (𝐴𝐻 , 𝐴𝐿), 𝐵 = (𝐵𝐻 , 𝐵𝐿) and 𝑅 = (𝑅𝐻 , 𝑅𝐿)
Output: Aligned product 𝑅 = 𝑅 +𝐴 · 𝐵 · 𝑥−𝐷/2 mod 𝑁 = (𝑅𝐻 , 𝑅𝐿)

1 (𝑍𝐻 , 𝑍𝐿) ← (0, 0), (𝑇𝐻 ,𝑇𝐿) ← (0, 0)
2 𝑇𝐿 ← |𝐴𝐿 −𝐴𝐻 |
3 if 𝐴𝐿 −𝐴𝐻 < 0 then
4 𝑠𝑎 ← 1
5 else

6 𝑠𝑎 ← 0
7 𝑇𝐻 ← |𝐵𝐿 − 𝐵𝐻 |
8 if 𝐵𝐿 − 𝐵𝐻 < 0 then
9 𝑠𝑏 ← 1

10 else

11 𝑠𝑏 ← 0
12 (𝑍𝐻 , 𝑍𝐿) ← 𝑇𝐿 ·𝑇𝐻 · (−1)1−(𝑠𝑎⊕𝑠𝑏) /* 1st half-size multiplication */
13 (𝑅𝐻 , 𝑅𝐿) ← (𝑅𝐻 , 𝑅𝐿) + (𝑍𝐻 , 𝑍𝐿)
14 𝑇𝐿 ← 𝐴𝐻 ,𝑇𝐻 ← 𝐵𝐻
15 (𝑍𝐻 , 𝑍𝐿) ← 𝑇𝐿 ·𝑇𝐻 /* 2nd half-size multiplication */
16 𝑅𝐻 ← 𝑅𝐻 + 𝑍𝐻
17 𝑇𝐿 ← 𝑍𝐻 + 𝑍𝐿
18 𝑅𝐿 ← 𝑅𝐿 +𝑇𝐿
19 𝑅𝐻 ← 𝑅𝐻 +𝑇𝐿
20 𝑇𝐿 ← 𝐴𝐿,𝑇𝐻 ← 𝐵𝐿
21 (𝑍𝐻 , 𝑍𝐿) ← 𝑇𝐿 ·𝑇𝐻 /* 3rd half-size multiplication */
22 𝑅𝐻 ← 𝑅𝐻 + 𝑍𝐿
23 𝑅𝐿 ← 𝑅𝐿 + 𝑍𝐻
24 𝑅𝐻 ← 𝑅𝐻 + 𝑍𝐻
25 (𝑅𝐻 , 𝑅𝐿) ← (𝑅𝐻 , 𝑅𝐿) mod 𝑁 /* modular-𝑁 reduction and carry propagation */
26 return (𝑅𝐻 , 𝑅𝐿)

conversion to 32-bit words is performed. The output of Algorithm 4.1 is an aligned integer in the range
of [0, 2𝑁).

We implemented Algorithm 4.1 completely in AVR Assembly language. Even though each accu-
mulator 𝑍𝑖 consists of 80 bits (ten bytes), we only load and store nine bytes of 𝑍𝑖 in each inner loop.
A simple analysis shows that that the accumulator values in the rst inner loop can never exceed 272,
which allows us to only load and store the nine least-signicant bytes. In the second tripleMAC loop,
each word-product is multiplied by 2𝛽 (i.e., shifted left by eight bits) and so it is not necessary to load-
/store the least-signicant accumulator byte.

4.3.4 Speed-optimized MAC operation

The MAC operations of the implementations in the NIST submission package of ThreeBears are not
suitable to reach high speed on AVR. Therefore, we developed our speed-optimized MAC operation
from scratch and implemented it according to a variant of Equation (4.2), namely Equation (4.5) specied
below. We divide the three full-size 3120-bit products (e.g., 𝑎𝐿𝑏𝐿) of Equation (4.2) into two halves, and

39

CHAPTER 4. LIGHTWEIGHT THREEBEARS

Table 4.1: Execution time (in clock cycles) of our AVR implementations of BabyBear.

Implementation Security MAC KeyGen Encaps Decaps
ME-BBear CCA-secure 1,033,728 8,746,418 12,289,744 18,578,335

ME-BBear-Eph CPA-secure 1,033,728 8,746,418 12,435,165 3,444,154
HS-BBear CCA-secure 604,703 6,123,527 7,901,873 12,476,447

HS-BBear-Eph CPA-secure 604,703 6,123,527 8,047,835 2,586,202

use 𝑙 for representing 𝑎𝐿𝑏𝐿 ,𝑚 for −(𝑎𝐿 − 𝑎𝐻) (𝑏𝐿 − 𝑏𝐻) and ℎ for 𝑎𝐻𝑏𝐻 :

𝑟 = (𝑟𝐿 + ℎ +𝑚) + (𝑟𝐻 + 𝑙 + ℎ)_ mod 𝑁
= (𝑟𝐿 + (ℎ𝐿 + ℎ𝐻_) + (𝑚𝐿 +𝑚𝐻_)) + (𝑟𝐻 + (𝑙𝐿 + 𝑙𝐻_) + (ℎ𝐿 + ℎ𝐻_))_
= (𝑟𝐿 + ℎ𝐿 +𝑚𝐿) + (𝑟𝐻 + 𝑙𝐿 + ℎ𝐿 +𝑚𝐻 + ℎ𝐻)_ + (𝑙𝐻 + ℎ𝐻)_2
= (𝑟𝐿 +𝑚𝐿 + ℎ𝐿 + ℎ𝐻 + 𝑙𝐻) + (𝑟𝐻 +𝑚𝐻 + ℎ𝐻 + 𝑙𝐿 + ℎ𝐿 + ℎ𝐻 + 𝑙𝐻)_ (4.5)

The underlined parts in Equation (4.5) are common parts of the coecients of _0 and _. Algorithm 4.2
species our speed-optimized MAC, which operates on half-size (i.e., 1560-bit) parts of the operands
𝐴, 𝐵, and 𝑅. We omitted the details of the nal step (line 19) in Algorithm 4.2, i.e., the modulo-𝑁
reduction, because it is very similar to line 27 to 43 in Algorithm 4.1. Compared with Algorithm 4.1,
the speed-ecient MAC operation is designed in a more straightforward way since it computes each
entire half-size multiplication separately to obtain a full-size intermediate product (line 6, 9, and 15).
However, it consumes more memory to store the intermediate products (e.g., 𝑍𝐻 , 𝑍𝐿 and 𝑇𝐻 , 𝑇𝐿).

We still take advantage of RPS technique to speed up the inner-loop operation, but combine it
Karatsuba’s method. Our experiments with dierent levels of Karatsuba multiplication showed that
the 2-level Karatsuba approach with the RPS technique underneath (i.e., 2-level KRPS) yields the best
performance for a multiplication of 1560-bit operands. Consequently, we execute three levels of Karat-
suba (i.e., 3-level KRPS) altogether for the MAC operation. Each level uses the so-called subtractive
Karatsuba algorithm described in [HS15] to achieve fast and constant execution time. All half-size
multiplications performed at the second and third level use space that was initially occupied by input
operands to store intermediate values, i.e., we do not allocate additional RAM inside the half-size multi-
plications. This is also the reason for the two operations at line 14 and 20, where we move the operands
to 𝑇𝐻 and 𝑇𝐿 before the multiplication so that we do not modify the inputs 𝐴 and 𝐵.

4.4 Evaluation

Except for the MAC operations, all components of our ME and HS software are taken from the low-
memory and speed-optimized implementation contained in the NIST package of ThreeBears (with mi-
nor optimizations). Our software consists of amix of C andAVR assembly language, i.e., the performance-
critical MAC operation and Keccak permutation are written in AVR assembly, and all other functions
in C. Atmel Studio v7.0, our development environment, comes with the 8-bit AVR GNU toolchain in-
cluding avr-gcc version 5.4.0. We used the cycle-accurate instruction set simulator of Atmel Studio to
precisely determine the execution times. The source codes were compiled with optimization option
-O2 using the ATmega1284 microcontroller as target device.

Exectuin time. Table 4.1 shows the execution time of a MAC operation, key generation, encapsula-
tion, and decapsulation of our software. A speed-optimized MAC takes only 605 k clock cycles, while
thememory-optimized version requires 70%more cycles. The speed dierence between these two types
of MAC directly impacts the overall running time of ME-BBear(-Eph) versus HS-BBear(-Eph), because

40

4.4. EVALUATION

Table 4.2: RAM usage and code size (both in bytes) of our AVR implementations.

MAC KeyGen Encaps Decaps TotalImplementation RAM Size RAM Size RAM Size RAM Size RAM Size
ME-BBear 82 2,760 1,715 6,432 1,735 7,554 2,368 10,110 2,368 12,264

ME-BBear-Eph 82 2,760 1,715 6,432 1,735 7,640 1,731 8,270 1,735 10,998
HS-BBear 934 3,332 2,733 7,000 2,752 8,140 4,559 10,684 4,559 11,568

HS-BBear-Eph 934 3,332 2,733 7,000 2,752 8,226 2,356 8,846 2,752 10,296

Table 4.3: Comparison of our implementationwith other key-establishment schemes (all of which target
128-bit security) on the 8-bit AVR platform (the execution times of Encaps and Decaps are in clock
cycles; RAM and code size are in bytes).

Implementation Algorithm Encaps Decaps RAM Size
This work (ME-CCA) ThreeBears 12,289,744 18,578,335 2,368 12,264
This work (ME-CPA) ThreeBears 12,435,165 3,444,154 1,735 10,998
This work (HS-CCA) ThreeBears 7,901,873 12,476,447 4,559 11,568
This work (HS-CPA) ThreeBears 8,047,835 2,586,202 2,752 10,296
Cheng et al. [CDG+19] NTRU Prime 8,160,665 15,602,748 - 11,478

Düll et al. [DHH+15] (ME) X25519 14,146,844 14,146,844 510 9,912
Düll et al. [DHH+15] (HS) X25519 13,900,397 13,900,397 494 17,710

there are several MACs in KeyGen, Encaps and Decaps. Taking HS-BBear as example, KeyGen, Encaps,
and Decaps needs 6.12M, 7.90M, and 12.48M clock cycles, respectively. Their ME counterparts are
roughly 1.5 times slower.

RAM usage and code size. Table 4.2 species both the memory footprint and code size of the four
basic operations (MAC, KeyGen, Encaps, and Decaps). The speed-optimized MAC consumes 934 bytes
of memory, while the memory-optimized MAC requires as little as 82 bytes, which is just 9% of the
former. Due to the memory-optimized MAC operation and full-radix representation of eld elements,
ME-BBear has a RAM footprint of 1.7 kB for each KeyGen and Encaps, while Decaps is more memory-
demanding and needs 2.4 kB RAM. However, ME-BBear-Eph requires only 1.7 kB of RAM altogether.
On the other hand, the HS implementations need over 1.5 times more RAM than their ME counterparts.
In terms of code size, each of the four implementations requires roughly 11 kB.

Comparison with other AVR implementations. Table 4.3 compares implementations of both pre
and post-quantum schemes (targeting 128-bit security) on 8-bit AVRmicrocontrollers. Compared to the
CCA-secure version of the second-round NIST candidate NTRU Prime [CDG+19], HS-BBear is slightly
faster for both Encapsulation and Decapsulation. On the other hand, when compared with the opti-
mized implementation of X25519 in [DHH+15], the Encapsulation operation of each BabyBear variant
in Table 4.3 is faster than a variable-base scalar multiplication, while the Decaps of ME-BBear is slower,
but that of the HS variant still a bit faster. Notably, the Decaps operation of our CPA-secure implemen-
tations is respectively 4.0 times (ME) and 5.4 times (HS) faster than X25519.

Comparison with other MCU implementation: RAM usage. One of the most signicant ad-
vantages of the ThreeBears cryptosystem is its relatively low RAM consumption, which is important
for deployment on constrained devices. Table 4.4 compares the RAM footprint of implementations
of ThreeBears and a few other NIST candidates on microcontrollers. Due to the very small num-
ber of state-of-the-art implementations of NIST candidates for the 8-bit AVR platform, we include in

41

CHAPTER 4. LIGHTWEIGHT THREEBEARS

Table 4.4: Comparison of RAM consumption (in bytes) of NIST PQC implementations (all of which
target NIST security category 1 or 2) on 8-bit AVR and on 32-bit ARM Cortex-M4 microcontrollers.

Implementation Algorithm Platform KeyGen Encaps Decaps
CCA-secure schemes

This work (ME) ThreeBears AVR 1,715 1,735 2,368
Hamburg [Ham19] ThreeBears Cortex-M4 2,288 2,352 3,024

pqm4 ThreeBears Cortex-M4 3,076 2,964 5,092
pqm4 NewHope Cortex-M4 3,876 5,044 5,044
pqm4 Round5 Cortex-M4 4,148 4,596 5,220
pqm4 Kyber Cortex-M4 2,388 2,476 2,492
pqm4 NTRU Cortex-M4 11,848 6,864 5,144
pqm4 Saber Cortex-M4 9,652 11,388 12,132

CPA-secure schemes
This work (ME) ThreeBears AVR 1,715 1,735 1,731

Hamburg [Ham19] ThreeBears Cortex-M4 2,288 2,352 2,080
pqm4 ThreeBears Cortex-M4 3,076 2,980 2,420
pqm4 NewHope Cortex-M4 3,836 4,940 3,200
pqm4 Round5 Cortex-M4 4,052 4,500 2,308

Table 4.4 also some recent results from the pqm4 library, which targets 32-bit ARM Cortex-M4. In addi-
tion, we list the results of the original low-RAM implementations of BabyBear (for both the CCA and
CPA variant) from the NIST package. Our memory-optimized BabyBear is the most RAM-ecient
implementation among all CCA-secure PQC schemes and needs 5% less RAM than the second most
RAM-ecient scheme Kyber. Furthermore, ME-BBear-Eph requires the least amount of RAM of all
(CPA-secure) second-round NIST PQC candidates, and improves the original low-memory implemen-
tation of the designer by roughly 26.2%.

4.5 Conclusion

We presented the rst highly-optimized Assembler implementation of ThreeBears for the 8-bit AVR
architecture. Our simulation results show that, even with a xed parameter set like BabyBear, many
trade-os between execution time and RAM consumption are possible. The memory-optimized CPA-
secure version of BabyBear requires only slightly more than 1.7 kB RAM, which sets a new record
for memory eciency among all known software implementations of second-round candidates. Due
to this low memory footprint, BabyBear ts easily into the SRAM of 8-bit AVR ATmega microcon-
trollers and will even run on severely constrained devices like an ATmega128L with 4 kB SRAM. While
a RAM footprint of 1.7 kB is still clearly above the 500 B of X25519, the execution times are in favor of
BabyBear since a CPA-secure decapsulation is four times faster than a scalar multiplication. Three-
Bears is also very well suited to be part of a hybrid pre/post-quantum key agreement protocol since the
multiple-precision integer arithmetic can (potentially) be shared with the low-level eld arithmetic of
X25519, thereby reducing the overall code size when implemented in software or the total silicon area
in the case of hardware implementation. For all these reasons, ThreeBears is an excellent candidate
for a post-quantum cryptosystem to secure the IoT.

42

Part III

Vectorized Implementation of
Isogeny-Based Cryptography

43

CHAPTER

5

VECTORIZED CSIDH

This Chapter is based on our paper [CFG+21]. While we were conducting the research work described
in this Chapter, CTIDH [BBC+21a], a constant-time and faster CSIDH variant (using a new key space),
had not yet been published.

5.1 Introduction

Post-quantum cryptography. Quantum computing exploits quantum-mechanical eects and phe-
nomena, such as state superposition and entanglement, to eciently solve certain computational prob-
lems, in particular optimization and search problems [KLM07]. However, quantum computing has also
a destructive side since it is assumed that a quantum computer with a few thousand logical qubits
would be capable to break essentially any public-key cryptosystem in use today [RNSL17]. The dawn-
ing era of quantum computing has spurred much research on Post-Quantum Cryptography (PQC), a
sub-domain of cryptography concerned with the design, analysis and implementation of cryptosys-
tems that are expected to resist attacks executed on both conventional and quantum computers [SL21].
Almost all of the to-date existing post-quantum key establishment and signature algorithms fall into
one of ve categories, which are lattice-based cryptography, multivariate cryptography, hash-based
cryptography, code-based cryptography, and supersingular isogeny cryptography. These categories
dier with respect to the hard mathematical problems their security is based on, but also in terms of
computational cost, key lengths, and the length of ciphertexts (resp. signatures) [SL21]. The security of
isogeny-based cryptosystems rests upon the intractability of the problem of nding an explicit isogeny
between two (supersingular) elliptic curves over a nite eld that are known to be isogenous [DeF17].
While isogeny-based schemes are computation-intensive, their key sizes are among the smallest of the
ve categories and come even close to that of pre-quantum elliptic curve schemes.

Isogeny-based cryptography. Various isogeny-based cryptosystems have appeared in the literature
in the past ten years. SIKE (short for Supersingular Isogeny Key Encapsulation) is a key encapsulation
mechanism whose security relies upon the supersingular isogeny walk problem between two elliptic
curves in the same isogeny class, which asks to nd a path made of isogenies of small degree [Cos19].
A variant of SIKE is an alternative candidate in the third round of the PQC standardization project of
the NIST [JAC+22]. CSIDH (an abbreviation of Commutative Supersingular Isogeny Die-Hellman)

45

CHAPTER 5. VECTORIZED CSIDH

is an “ECDH-like” key-exchange scheme based on a commutative group action of an ideal class group
[CLM+18]. Given an initial elliptic curve 𝐸, a secret key in CSIDH is an ideal class 𝔞 in a class group
(represented by its list of exponents), and the corresponding public key can be obtained by computing
the group action 𝐸 ′ = 𝔞★𝐸. The security of CSIDH is based on the hard problem of nding an isogeny
path from the isogenous curves 𝐸 and 𝐸 ′. CSIDH has received a lot of attention in recent years since
it comes with highly attractive features like ecient validation of public keys, making it suitable for
non-interactive (i.e., static) key exchange protocols. In fact, CSIDH can serve as “drop-in” replacement
for classical ECDH key exchange and does even comply with the requirements of “0-RTT” protocols
such as QUIC. Furthermore, class group actions provide a rich foundation for the design of various
other cryptosystems, e.g., signature schemes [BKV19, DG19]. However, the downside of CSIDH is
that the computation of group actions is very costly, which makes CSIDH extremely slow, not only in
relation to X25519 [Ber06] and other pre-quantum ECDH variants, but also when compared to SIKE.
For example, while an Intel Skylake processor can execute a variable-base scalar multiplication on
Curve25519 in less than 100 k cycles [NS21] and a SIKEp434 encapsulation or decapsulation in about
10M cycles [JAC+22], the to-date best constant-time implementation of a CSIDH-512 group action
evaluation and key validation requires close to 240M clock cycles [HLKA20].

Motivation. The lengthy computation time of CSIDH poses a major obstacle for its application in
security protocols like TLS or HTTPS when taking into account that, for example, the web servers
of large enterprises like Google or Facebook are confronted with thousands of HTTPS requests per
second. In order to be able to copewith such extreme volumes of trac, the server infrastructure of such
enterprises often includes a so-called TLS termination proxy or TLS reverse proxy, which transparently
translates HTTPS sessions to TCP sessions for back-end servers (e.g., web or database servers), see
[JHH+11]. This ooading of the TLS termination to a dedicated proxy frees the web server from having
to execute computation-intensive TLS handshakes that involve public-key operations to authenticate
the server to the client and establish a shared secret key using e.g., X25519 key exchange [Ber06]. A TLS
termination proxy equipped with a high-end 64-bit Intel processor clocked at 4GHz is (in theory) able
to perform 40,000 X25519 key exchanges per second per core since, as mentioned before, a variable-
base scalar multiplication on Curve25519 costs below 100 k cycles1. Replacing X25519 by SIKEp434
would decrease the (theoretical) upper bound of the number of key exchanges per second on one core
to around 400. Even worse, when X25519 gets replaced by CSIDH-512, the number of key exchanges
per core would go down to a mere 17 per second, which is more than three orders of magnitude below
the (theoretical) throughput of X25519. Therefore, it is little surprising that techniques to speed up
CSIDH are eagerly sought.

Contributions. The straightforward way of maximizing the throughput of CSIDH is to minimize the
latency of the underlying group action. However, we demonstrate in this work that the usual approach
of maximizing throughput by minimizing latency leads to sub-optimal results on Intel processors that
are equipped with recent vector (i.e., SIMD) extensions such as AVX-512. To be more concrete, we show
that, when using AVX-512 instructions, minimizing the latency of one group action requires dierent
optimization strategies than maximizing the throughput of several group actions that are executed
in SIMD fashion. We explain how the “limb-slicing” method presented in [CGT+20] can be applied to
compute eight independent CSIDH group actions in parallel using AVX-512 instructions, whereby each
group action uses a 64-bit element of a 512-bit vector. Limb-slicing is somewhat related to the well-
known “bit-slicing” technique used in symmetric cryptography since it increases throughput at the
expense of latency. We discuss in detail the obstacles we had to overcome to eciently batch group ac-

1These 40,000 key exchanges per second are a theoretical upper bound for the throughput of a single processor core,
which can only be reached under the assumption that the core executes nothing else than scalar multiplications (i.e., all other
operations, such as the transfer of public keys, are ignored).

46

5.2. BACKGROUND

tions and execute them in a SIMD-parallel way. Further, we describe software optimization techniques
that enable a highly-ecient (8 × 1)-way parallel execution of the prime-eld arithmetic operations
using AVX-512F and AVX-512IFMA instructions. We also present a latency-optimized implementation
of the group action for AVX-512IFMA, which can be used to speed up client-side TLS processing (while
our throughput-optimized implementation targets the server side2 and can be used for TLS termina-
tion as described in [JHH+11]). Our results for CSIDH-512 show that batch processing and limb-slicing
achieve a throughput gain by a factor of 3.64 compared to an optimized (but non-vectorized) x64 imple-
mentation. In light of the recent debate about the post-quantum security of CSIDH-512, we emphasize
that our optimizations can also be applied to parameter sets with larger primes, and we expect similar
improvements in performance over non-vectorized implementations.

Source code. The source code of the presented software library is publicly available at https://
gitlab.uni.lu/apsia/avx-csidh.

5.2 Background

In this section, we give a brief overview of the CSIDH protocol and the CSIDH class group action of Cas-
tryck, Lange, Martindale, Panny, and Renes [CLM+18]. Further, we summarize the existing constant-
time implementations of the CSIDH class group action. For a detailed analysis of the theory of elliptic
curves that is relevant for isogeny-based cryptography, we refer the reader to the lecture notes of De Feo
[DeF17].

5.2.1 CSIDH

Underlying arithmetic. The CSIDH protocol works over a nite eld F𝑝 , where 𝑝 is a large prime
of the special form 𝑝 = 4 · ℓ1 · · · ℓ𝑛 − 1 and ℓ1 < . . . < ℓ𝑛 are small odd primes. In addition, it uses
supersingular elliptic curves3 𝐸𝐴, dened over F𝑝 and represented in Montgomery form 𝐸𝐴 : 𝑦2 =

𝑥3 +𝐴𝑥2 + 𝑥 , with 𝐴2 ≠ 4, where the F𝑝-endomorphism ring4 of such curves is isomorphic to an order
in the imaginary quadratic eld Q(√−𝑝). Specically, the authors in [CLM+18] choose a supersingular
Montgomery curve 𝐸0 (i.e., 𝐴 = 0) with 𝑝 ≡ 3 (mod 4), where in this case EndF𝑝 (𝐸0) � Z[

√−𝑝].
Further, we dene EℓℓF𝑝 (Z[

√−𝑝]) as the set of all supersingular elliptic curves with the same F𝑝-
endomorphism ring Z[√−𝑝].

Class group action. The ideal class groupCl(Z[√−𝑝]) acts freely and transitively onEℓℓF𝑝 (Z[
√−𝑝]),

via isogenies5 ([CLM+18, Theorem 7]). Every principal ideal (ℓ𝑖) ⊂ Z[√−𝑝] splits as a product of prime
ideals (ℓ𝑖) = 𝔩𝑖 𝔩𝑖 = 〈ℓ𝑖 , 𝜋 − 1〉〈ℓ𝑖 , 𝜋 + 1〉, where 𝜋 =

√−𝑝 is the Frobenius endomorphism6 and since (ℓ𝑖)
is principal, we get 𝔩𝑖 = 𝔩−1𝑖 ∈ Cl(Z[

√−𝑝]). In CSIDH we are interested in computing the action of an
ideal 𝔞 = 𝔩

𝑒1
1 · · · 𝔩𝑒𝑛𝑛 ∈ Cl(Z[

√−𝑝]), where 𝑒1, . . . , 𝑒𝑛 are small exponents, chosen uniformly from some
interval [−𝑏,𝑏]. This is done by computing in sequence the action of the ideal 𝔩𝑖 , if 𝑒𝑖 ≥ 0, or 𝔩𝑖 , if 𝑒𝑖 < 0,

2A TLS server under heavy load may have to serve thousands of connections per second, which means it may have to
compute eight or more key exchanges every few milliseconds. On the other hand, if the load is low, it makes more sense
to use a latency-optimized implementation. But when the load increases and the server gets confronted with (at least) eight
connections in a short period of time, switching from the latency-optimized to the throughput-optimized implementation will
lead to better performance. To date, OpenSSL and other TLS stacks do not support the batching of public-key cryptosystems,
but an integration of batch processing is possible as demonstrated by SSLShader (see [JHH+11] for details).

3An elliptic curve 𝐸 dened over F𝑝 (where 𝑝 > 3) is called supersingular, i #𝐸 (F𝑝) = 𝑝 + 1, otherwise it is ordinary.
4For an elliptic curve 𝐸, the F𝑝 -endomorphism ring EndF𝑝 (𝐸) contains all endomorphisms from 𝐸 to itself, that are dened

over F𝑝 .
5An isogeny 𝜙 : 𝐸 → 𝐸 ′ dened over F𝑝 is a non-constant rational map dened over F𝑝 , which is also a group homomor-

phism from 𝐸 (F𝑝) to 𝐸 ′(F𝑝).
6The Frobenius endomorphism 𝜋 maps a point 𝑃 = (𝑥,𝑦) on an elliptic curve 𝐸 dened over F𝑝 to (𝑥𝑝 , 𝑦𝑝).

47

https://gitlab.uni.lu/apsia/avx-csidh
https://gitlab.uni.lu/apsia/avx-csidh

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.1: Original-style CSIDH class group action computation [CLM+18].
Input: 𝐴 ∈ F𝑝 and a list of integers (𝑒1, . . . , 𝑒𝑛).
Output: 𝐵 ∈ F𝑝 , such that (𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛) ★ 𝐸𝐴 = 𝐸𝐵 , where 𝐸𝐵 : 𝑦2 = 𝑥3 + 𝐵𝑥2 + 𝑥 .

1 while some 𝑒𝑖 ≠ 0 do
2 Sample a random 𝑥 ∈ F𝑝
3 𝑠 ← +1 if 𝑥3 +𝐴𝑥2 + 𝑥 is a square in F𝑝 , else 𝑠 ← −1
4 Let 𝑆 = {𝑖 | 𝑒𝑖 ≠ 0, sign(𝑒𝑖) = sign(𝑠)}. If 𝑆 = ∅ then start over with a new 𝑥 .
5 Let 𝑃 = (𝑥 : 1), 𝑞 ←∏

𝑖∈𝑆 ℓ𝑖 and compute 𝑇 ← [(𝑝 + 1)/𝑞]𝑃
6 for each 𝑖 ∈ 𝑆 do

7 𝑅 ← [𝑞/ℓ𝑖]𝑇 /* 𝑅 is the kernel generator */
8 if 𝑅 ≠ ∞ then

9 Compute 𝜙 : 𝐸𝐴 → 𝐸𝐵 = 𝔩𝑖 ★ 𝐸𝐴 with ker(𝜙) = 〈𝑅〉
10 𝐴← 𝐵, 𝑇 ← 𝜙 (𝑇), 𝑞 ← 𝑞/ℓ𝑖 , 𝑒𝑖 ← 𝑒𝑖 − 𝑠

11 return 𝐵

exactly |𝑒𝑖 | times for every 𝑖 ∈ {1, . . . , 𝑛}. For the action of the ideal 𝔩𝑖 we choose a point 𝑅 ∈ 𝐸 (F𝑝)
of order ℓ𝑖 that lies in the kernel of 𝜋 − 1 and compute the isogeny 𝜙𝔩𝑖 : 𝐸 → 𝐸/〈𝑅〉 = 𝔩𝑖 ★ 𝐸, with
ker(𝜙𝔩𝑖) = 〈𝑅〉 and deg(𝜙𝔩𝑖) = ℓ𝑖 . For the action of the ideal 𝔩𝑖 we choose a random point 𝑅 ∈ 𝐸 (F𝑝2)
(i.e., the quadratic twist of 𝐸), of order ℓ𝑖 in the kernel of 𝜋 + 1. Note that in this case, 𝑅 = (𝑥, 𝑖𝑦), where
𝑥,𝑦 ∈ F𝑝 and 𝑖 =

√−1. Then we compute the isogeny 𝜙
𝔩𝑖
: 𝐸 → 𝐸/〈𝑅〉 = 𝔩𝑖 ★𝐸, with ker(𝜙

𝔩𝑖
) = 〈𝑅〉 and

deg(𝜙
𝔩𝑖
) = ℓ𝑖 . Both isogenies are computed using the Vélu formulæ [Vél71], which require 𝑂 (ℓ𝑖 log𝑝2)

bit operations, hence they are eciently computed for relatively small primes ℓ𝑖 . Iterating each isogeny
computation |𝑒𝑖 | times, depending on the sign of 𝑒𝑖 and composing the resulting isogenies in each step,
yields the nal codomain curve 𝔞 ★ 𝐸 = (𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛) ★ 𝐸 (see Algorithm 5.1 [CLM+18]).

Key exchange. The public parameters are the prime 𝑝 = 4 · ℓ1 · · · ℓ𝑛 − 1, the starting curve 𝐸0 : 𝑦2 =
𝑥3+𝑥 and a positive integer 𝑏, such that (2𝑏+1) ≥ 𝑛

√︁
#Cl(Z[√−𝑝]) in order to maintain security. Alice’s

secret key is a list of exponents 𝑠𝑘𝐴 = (𝑒1, . . . , 𝑒𝑛) ∈ [−𝑏,𝑏]𝑛 , while her public key is derived from the
action of the ideal 𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛 on the curve 𝐸0, using Algorithm 5.1, i.e., 𝑝𝑘𝐴 = 𝐸𝐴 = (𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛) ★ 𝐸0,
which is sent to Bob. In the same vein, Bob’s secret key is 𝑠𝑘𝐵 = (𝑑1, . . . , 𝑑𝑛) ∈ [−𝑏, 𝑏]𝑛 , and his public
key 𝑝𝑘𝐵 = 𝐸𝐵 = (𝔩𝑑11 · · · 𝔩𝑑𝑛𝑛) ★ 𝐸0 is sent to Alice. For the shared secret, Alice and Bob compute the
codomain curves 𝑘𝐴 = (𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛) ★ 𝐸𝐵 and 𝑘𝐵 = (𝔩𝑑11 · · · 𝔩𝑑𝑛𝑛) ★ 𝐸𝐴 respectively, using Algorithm 5.1.
The two curves are F𝑝-isomorphic, because they are derived from the action of the ideal 𝔩𝑒1+𝑑11 · · · 𝔩𝑒𝑛+𝑑𝑛𝑛

on the initial curve 𝐸0, as a result of the commutativity property of the ideal class group Cl(Z[√−𝑝]).
Note that the public keys and the shared secret, are elliptic curves in Montgomery form, hence they
are represented as a single coecient in F𝑝 . CSIDH features an ecient public-key validation process,
which corresponds to testing whether the public key is a supersingular Montgomery curve, and it is
accomplishedwith a series of scalarmultiplications [CLM+18]. Castryck, Lange, Martindale, Panny, and
Renes presented a concrete instantiation for CSIDH. They choose a 511-bit prime 𝑝 = 4 · ℓ1 · · · ℓ74 − 1,
where ℓ1, . . . , ℓ73 are the rst odd primes starting from ℓ1 = 3, and ℓ74 = 587. The secret exponents
(𝑒1, . . . , 𝑒74) are sampled from [−5, 5]74 (hence 𝑏 = 5), in which case 74 log2(2 · 5 + 1) ≈ 256. This
instantiation is referred to as CSIDH-512.

Security. The security of CSIDH is based on the Group Action Inverse Problem (GAIP). That is,
given two supersingular elliptic curves 𝐸 and 𝐸 ′, dened over F𝑝 , with the same F𝑝-endomorphism
ring Z[√−𝑝], to nd an ideal 𝔞 = 𝔩

𝑒1
1 · · · 𝔩𝑒𝑛𝑛 such that 𝔞 ★ 𝐸 = 𝐸 ′. The best known classical attack

for solving GAIP is the meet-in-the-middle attack with fully exponential complexity 2𝑂 (
√
𝑁) , where

48

5.2. BACKGROUND

𝑁 = #Cl(𝐵𝑍 [√−𝑝]) ≈ √𝑝 . In the quantum setting, Childs, Jao, and Soukharev [CJS14] have shown
that solving the GAIP problem can be reduced to the abelian hidden-shift problem, for which the subex-
ponential quantum algorithms of Regev [Reg04] and Kuperberg [Kup05] can be applied, where the
latter has complexity 2𝑂 (

√
log𝑁) and the quantum space complexity 𝑂 (log𝑁). Based on the above,

Castryck, Lange, Martindale, Panny, and Renes [CLM+18] conjectured that CSIDH-512 would achieve
NIST’s post-quantum security level 1 based on the asymptotic complexity of Kuperberg’s algorithm
[Kup05, Kup13]. However, the concrete security of CSIDH-512 is under debate since the works of Peik-
ert [Pei20], Bonnetain and Schrottenloher [BS20], and more recently Chávez-Saab, Chi-Domínguez,
Jaques, and Rodríguez-Henríquez [CCJR20], estimate that the prime 𝑝 should be signicantly larger in
order to meet NIST’s security level 1. In particular, [CCJR20] suggests that 𝑝 should be updated to 4096
bits.

5.2.2 Optimization techniques for constant-time CSIDH

In practice, we require a constant-time implementation of Algorithm 5.1 to resist against side-channel
attacks. Given a secret exponent list (𝑒1, . . . , 𝑒𝑛), Algorithm 5.1 computes |𝑒1 | + . . . + |𝑒𝑛 | isogenies,
and thus its execution time fully depends on the secret key. Meyer, Campos, and Reith [MCR19] pre-
sented three leakage scenarios that appear when implementing Algorithm 5.1. Timing leakage occurs
since dierent secret keys lead to dierent execution times of evaluating the class group action. Power
analysis leaks information on the sign distribution of the secret key since unbalanced, in terms of the
sign, secret exponents lead to scalar multiplications with larger scalars. Cache timing attacks are also
possible and leak information based on branch conditions or array indices. The authors in [CLM+18]
argued that a constant-time implementation can be obtained when adding certain “dummy” operations,
which will not be considered nor aect the nal output of the group action. The rst constant-time
implementations of Algorithm 5.1 are due to Bernstein, Lange, Martindale, Panny [BLMP19] and Jalali,
Azarderakhsh, Kermani, Jao [JAKJ19], which add a large amount of dummy operations and have a
probability of failure in the class group action computation.

Meyer, Campos, and Reith. A constant-time implementation of the CSIDH class group action with
signicant optimizations is presented in [MCR19], and it is known as theMCR-style. The algorithm uses
only positive secret exponents 𝑒𝑖 , each sampled from its own space [0, 𝑏𝑖] where all 𝑏𝑖 are chosen such
that security is maintained. This mitigates power attacks, while the dierent intervals allow to reduce
the number of large degree isogenies. Meyer et al. use dummy isogenies so that the same number of
isogenies is computed in each class group action. For each 𝑖 their algorithm computes 𝑒𝑖 “real” and
𝑏𝑖 − 𝑒𝑖 “dummy” ℓ𝑖-isogenies. Further, they use the Elligator 2 map [BHKL13] for sampling points on
the curve. As observed in [MR18], they compute the class group action in descending order in terms of
the primes ℓ𝑖 , which results in a speedup over the ascending order. The most signicant optimization
is the SIMBA-𝑚-` (Splitting Isogeny computations into Multiple BAtches) technique, where the idea is
to partition the indices {1, . . . , 𝑛} into𝑚 disjoint subsets and evaluate the group action on each subset
individually, which results in smaller scalars in step 7 of Algorithm 5.1. However, this should be done
for a specic number of rounds `, and the subsets should be merged back after this threshold. The
authors argue that nding optimal values for𝑚 and `, as well as for the upper bounds 𝑏𝑖 is a hard task.
They present various choices, based on the CSIDH-512 instance, where the best example is SIMBA-5-11.

Onuki, Aikawa, Yamazaki, and Takagi. In [OAYT19] the authors present a constant-time imple-
mentation of Algorithm 5.1, known as the OAYT-style, that improves on the MCR-style by 29.03%. In
their algorithm each 𝑒𝑖 is also sampled from its own space, but in contrast to the MCR-style, each 𝑒𝑖 is
allowed to be negative as well. The algorithm mitigates timing attacks by keeping track of two points
𝑃0 ∈ 𝐸 [𝜋 − 1] and 𝑃1 ∈ 𝐸 [𝜋 + 1] and picking the appropriate point, depending on the sign of 𝑒𝑖 , in

49

CHAPTER 5. VECTORIZED CSIDH

Table 5.1: The latency (in clock cycles) and throughput (CPI) of relevant AVX-512 instructions on Intel
Ice Lake Core processor.

Type Mnemonic Instruction Latency CPI

Arithmetic ADD/SUB vpaddq/vpsubq 1 0.5
MUL vpmuludq − 1

Logic SHL/SHR vpsllq/vpsrlq 1 1
AND vpandd 1 0.5

Permutation
PERM vpermq 3 1
BCAST vpbroadcastq 3 1
ZERO vpxorq † 1 0.5

IFMA MACLO vpmadd52luq 4 1
MACHI vpmadd52huq 4 1

† XOR a ZMM register with itself to set it to zero.

order to create the kernel generator. Both points 𝑃0 and 𝑃1 are mapped through the isogeny, and the
point not used to derive the kernel is multiplied by ℓ𝑖 . The algorithm also uses the Elligator 2 map for
generating points on the curve and dummy isogenies as in the MCR-style.

Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith. The
work in [CCC+19] provides signicant improvements on both the MCR- and OAYT-style algorithms.
The authors present ecient formulas in the twisted Edwards model for performing isogeny compu-
tations, isogeny evaluations and curve operations (point addition/doubling). They also use dierential
addition chains which provide a 25% improvement compared to the classical Montgomery ladder, for
computing scalar multiplications. Besides the optimizations for the MCR- and OAYT-style algorithms,
the authors present a constant-time implementation that excludes the dummy operations, known as
dummy-free-style. Although this is less ecient compared to the MCR- and OAYT-style, it is resistant
against fault-injection attacks, i.e., stronger attackers who can interfere in computations and determine
whether a modication happened on a “real” or a “dummy” isogeny. Their optimized OAYT-style with
SIMBA-3-8 is 39% faster than the MCR-style presented in [MCR19], and their dummy-free-style group
action is two times slower compared to their OAYT-style implementation.

Optimal strategies. In [HLKA20], Hutchinson, LeGrow, Koziel, and Azarderakhsh further studied
problems of choosing the optimal bounds 𝑏𝑖 for sampling secret exponents, the optimal ordering of
primes ℓ𝑖 , and the optimal partition 𝑚 for SIMBA technique. Such selections are referred to as opti-
mal strategies. Their optimal strategies oer 5.06% improvement for the OAYT-style implementation in
[CCC+19]. In [CR22], Chi-Domínguez and Rodríguez-Henríquez generalized the computational strate-
gies that are used in the SIKE implementation [JAC+22] for the case of CSIDH. Their new algorithms do
not rely on the SIMBA approach and provide an improvement of 12.09%, 3.36%, and 10.58% compared to
the MCR-, OAYT-, and dummy-free-style implementations of [CCC+19], respectively. The OAYT-style
algorithm of [HLKA20], the MCR- and dummy-free-style algorithms of [CR22] are to date the most
ecient constant-time implementations of CSIDH in the literature. These algorithms are further op-
timized by Adj, Chi-Domínguez, and Rodríguez-Henríquez [ACR22] when applying certain tricks that
reduce the computational cost of new Vélu formulæ of [BDLS20].

5.2.3 Target platform

In this work, we target the Intel Ice Lake processor which supports IFMA extension. The specic
processor we used in our experiments is Intel Core i3-1005G1 CPU clocked at 1.2GHz.

50

5.3. IMPLEMENTATION: HIGH-THROUGHPUT BATCHED SOFTWARE

Relevant instructions. Table 5.1 lists the most relevant AVX-512 instructions used in this work,
along with their latency and throughput data7 on the Ice Lake processor which we obtained from Intel
ocial document [Int20]; the throughput data is shown in Clock Per Instructions (CPI) ratio [Int18b];
the instruction mnemonic is used to facilitate the description of algorithms.

5.3 Implementation: high-throughput batched software

Starting point. Recall from Section 5.2.2 that the to-date fastest constant-time CSIDH implementa-
tions are the two OAYT-style variants of [HLKA20] and [CR22]. According to our measurements of
their group action evaluation (see Table 5.3), the former is 1% faster than the latter. The optimization
techniques used in both variants improve the OAYT-style implementation of [CCC+19] by 5%, and they
are all considered in terms of x64 implementation. When the same optimization techniques are applied
to AVX-512 software, the resulting eects may be dierent. In this work we focus on the OAYT-style
implementation of [CCC+19]. However, we argue that the optimization techniques of [HLKA20, CR22]
as well as [ACR22] can also be applied in our implementation.

The instantiation of OAYT-style group aciton. The OAYT-style class group action algorithm of
[CCC+19] is described in Algorithm 5.2, which was originally presented in [OAYT19]. Algorithm 5.2
takes advantage of the SIMBA-𝑚-` technique [MCR19], in which the set of indices 𝑆 = {1, . . . , 𝑛} is
partitioned into𝑚 subsets 𝑆1, . . . , 𝑆𝑚 , where 𝑆 𝑗 = { 𝑗,𝑚+ 𝑗, 2𝑚+ 𝑗, . . .} for each 𝑗 ∈ {1, . . .𝑚}. The OAYT-
style class group action algorithm of [CCC+19] is described in Algorithm 5.2, which was originally
presented in [OAYT19]. Algorithm 5.2 takes advantage of the SIMBA-𝑚-` technique [MCR19], in which
the set of indices 𝑆 = {1, . . . , 𝑛} is partitioned into𝑚 subsets 𝑆1, . . . , 𝑆𝑚 , where 𝑆 𝑗 = { 𝑗,𝑚+ 𝑗, 2𝑚+ 𝑗, . . .}
for each 𝑗 ∈ {1, . . .𝑚}. For the CSIDH-512 instantiation, the best choices according to [OAYT19] are
𝑚 = 3 and ` = 8. In this case, Algorithm 5.2 computes 404 “real” and “dummy” isogenies, i.e., the
variable 𝑡max =

∑𝑛
𝑖=1 𝑏𝑖 = 404. The ordering of the small primes ℓ = (ℓ1, . . . , ℓ74) is:

ℓ = (349, 347, 337, 331, 317, 313, 311, 307, 293, 283, 281, 277, 271,
269, 263, 257, 251, 241, 239, 233, 229, 227, 223, 211, 199, 197,
193, 191, 181, 179, 173, 167, 163, 157, 151, 149, 139, 137, 131,
127, 113, 109, 107, 103, 101, 97, 89, 83, 79, 73, 71, 67,
61, 59, 53, 47, 43, 41, 37, 31, 29, 23, 19, 17, 13,
11, 7, 5, 3, 587, 373, 367, 359, 353)

The secret key space or equivalently, the list of bounds for the secret exponents is:

𝒃 = (2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10,
10, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 5, 1, 2, 2, 2, 2)

Following [CCC+19], we dene the constant-time equality test and constant-time conditional swap
functions isequal and cswap, respectively, as:

isequal(𝑥,𝑦) =
{
1, if 𝑥 = 𝑦

0, if 𝑥 ≠ 𝑦
, cswap(𝑥,𝑦, 𝑎) =

{
𝑥 ↔ 𝑦, if 𝑎 = 1
𝑥 = 𝑦, if 𝑎 = 0

7Here we consider the case that these instructions work on 512-bit ZMM registers not 128-bit XMM or 256-bit YMM registers.
The instruction CPI of the latter case is lower since Port 1 can handle AVX-512 instructions working on XMM or YMM but on
ZMM registers (see [Int18b, Figure 2-1]).

51

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.2: OAYT-style CSIDH class group action computation (with SIMBA-𝑚-`).
Input: 𝐴 ∈ F𝑝 , bound 𝒃 = (𝑏1, . . . , 𝑏𝑛), exponents 𝒆 = (𝑒1, . . . , 𝑒𝑛) where 𝑒𝑖 ∈ [−𝑏𝑖 , 𝑏𝑖].
Output: 𝐵 ∈ F𝑝 , such that (𝔩𝑒11 · · · 𝔩𝑒𝑛𝑛) ★ 𝐸𝐴 = 𝐸𝐵 , where 𝐸𝐵 : 𝑦2 = 𝑥3 + 𝐵𝑥2 + 𝑥 .

1 (𝑒 ′1, . . . , 𝑒 ′𝑛) ← (𝑒1, . . . , 𝑒𝑛), (𝑏 ′1, . . . , 𝑏 ′𝑛) ← (𝑏1, . . . , 𝑏𝑛)
2 𝐸𝐵 ← 𝐸𝐴, 𝑡max ←

∑𝑛
𝑖=1 𝑏𝑖 , 𝑡isog ← 0, 𝑟 ← 0, 𝑗 ← 0

3 while 𝑡isog < 𝑡max do
4 𝑗 ← (𝑗 mod𝑚) + 1 /* Subset index */
5 if 𝑟 = ` ·𝑚 then

6 𝑆1 ← {𝑖 | 𝑏𝑖 ≠ 0}, 𝑗 ← 1,𝑚 ← 1 /* Merge subsets */
7 𝑢 ← random({2, . . . , (𝑝 − 1)/2}), 𝑞 ←∏

𝑖∈𝑆 𝑗
ℓ𝑖

8 (𝑃0, 𝑃1) ← Elligator(𝐸𝐵, 𝑢) /* 𝑃0 ∈ 𝐸 [𝜋 − 1] and 𝑃1 ∈ 𝐸 [𝜋 + 1] */
9 (𝑇0,𝑇1) ← ([(𝑝 + 1)/𝑞]𝑃0, [(𝑝 + 1)/𝑞]𝑃1)

10 for each 𝑖 ∈ 𝑆 𝑗 do
11 𝑠 ← sign(𝑒 ′𝑖)
12 cswap(𝑇0,𝑇1, 1 − 𝑠)
13 𝑅 ← [𝑞/ℓ𝑖]𝑇0 /* 𝑅 is the kernel generator */
14 if 𝑅 ≠ ∞ then

15 𝑤 ← 1 − isequal(𝑒 ′𝑖 , 0)
16 Compute isogeny 𝜙 : 𝐸𝐵 → 𝐸𝐶 = 𝔩𝑖 ★ 𝐸𝐵 s.t. ker(𝜙) = 〈𝑅〉
17 𝑇1 ← [ℓ𝑖]𝑇1
18 (𝑇2,𝑇3) ← (𝜙 (𝑇0), 𝜙 (𝑇1))
19 𝑇0 ← [ℓ𝑖]𝑇0
20 cswap(𝑇0,𝑇2,𝑤), cswap(𝑇1,𝑇3,𝑤), cswap(𝐵,𝐶,𝑤)
21 𝑒 ′𝑖 ← 𝑒 ′𝑖 + (−1)𝑠 ·𝑤 , 𝑏 ′𝑖 ← 𝑏 ′𝑖 − 1, 𝑡isog ← 𝑡isog + 1
22 else

23 𝑇1 ← [ℓ𝑖]𝑇1
24 cswap(𝑇0,𝑇1, 1 − 𝑠), 𝑞 ← 𝑞/ℓ𝑖
25 if 𝑏 ′𝑖 = 0 then
26 Remove 𝑖 from 𝑆 𝑗

27 𝑟 ← 𝑟 + 1
28 return 𝐵

Further, we consider a constant-time function sign(𝑥), which returns 0 if 𝑥 < 0while returns 1 if 𝑥 ≥ 0.
More details on Algorithm 5.2 are given in [OAYT19, CCC+19].

5.3.1 Obstacles to batching CSIDH group actions

Requirements. We conceive our batched software where eight CSIDH group action instances in the
fashion of Algorithm 5.2 are to be computed simultaneously by AVX-512 instructions. Besides, each
instance is computed in a 64-bit lane, and instances are independent of each other. Since AVX-512 is
in the paradigm of Single Instruction Multiple Data, from another perspective, this requires that the
same instruction must be executed at the same time in eight instances. In other words, each of the
eight instances in the execution of our batched software must process the same instruction sequence
or, we say, the same operation sequence at a higher layer. This is a crucial requirement, in addition to
having a constant-time implementation which is already accomplished by Algorithm 5.2. The sequence
of operations in Algorithm 5.2, relies on specic conditional statements, which are (indirectly) aected
by the value of the random curve points generated internally at line 7 to 8.

52

5.3. IMPLEMENTATION: HIGH-THROUGHPUT BATCHED SOFTWARE

Mismatch problem. Specically, a closer look at Algorithm 5.2 reveals that the sequence of oper-
ations (and instructions) that are carried out depends on whether the kernel generator 𝑅 at line 13 is
innity or not. If 𝑅 ≠ ∞, the algorithm computes either a “real” or a“dummy” isogeny (depending on
whether 𝑒𝑖 is non-zero or not) in the “if”-branch, whereas it performs a scalar multiplication in the
“else”-branch if 𝑅 = ∞. In the scenario of eight parallel class group actions that we are considering,
this is problematic, and especially, it is very likely that at some iterations the point 𝑅 will be innity at
least in one of the parallel instances. In particular, the probability for a point of order ℓ𝑖 to be innity is
1/ℓ𝑖 , which is considerably high when ℓ𝑖 is small (e.g., 3, 5, 7, . . . in CSIDH). This will cause a mismatch
between the simultaneous instances and will aect other variables as well, such as the update of 𝑏 ′𝑖 and
the isogeny counter 𝑡isog at line 21, leading to dierent instruction sequences for the dierent instances.

Solutions. Clearly, in order to obtain a constant-time batched software where eight running in-
stances follow the same instruction sequence, we need to mitigate the mismatch caused by the innity
check at line 14. We explore three methodologies that achieve a batching-friendly CSIDH group action
and deal with this specic if-else statement. In our rst method, the idea is to rewrite Algorithm 5.2
so that this if-else clause is no longer needed. This requires the computation of additional dummy
isogenies in the case where the kernel point is innity, and hence we refer to this method as extra-
dummy method (Section 5.3.2). In the second method, we still keep this if-else statement but we force
all eight instances to always agree on the same branch. That is, if at least one kernel point in the eight
instances is the point at innity, then all instances will enter the “else”-branch at line 22. We refer to
this methodology as extra-innity method (Section 5.3.3). The third idea is based on the combination of
the extra-dummy and extra-innity methods, therefore we call it the combined method (Section 5.3.4).

Hybrid mode. Notably, all of our three methods are constructed in a hybrid mode which signi-
cantly improves the performance of the batched CSIDH implementation. In the context of this work,
hybrid mode means that the entire batched software is composed of two dierent types of class group
action implementations, namely the batched component and the unbatched component. The batched
component is an incomplete implementation that performs eight class group action evaluations simul-
taneously. The unbatched component is a latency-optimized implementation accelerating a single class
group action evaluation (such as the implementation of Algorithm 5.2, presented in [CCC+19]). The
key idea in the three methods is to rst take advantage of the batched component to compute the main
bulk of the CSIDH group action (including almost all isogeny computations) for all instances, and then
use eight times in sequence the unbatched component to handle the remaining computations needed in
each instance. The three methods are based on the OAYT-style implementation of Algorithm 5.2 with
SIMBA-𝑚-`. However, in Section 5.3.5, we show that all three methods can also be applied to batch
the dummy-free-style algorithm of [CCC+19], which is considered to be secure against fault-injection
attacks.

5.3.2 Extra-dummy method

Our rst batching method initially aims at making Algorithm 5.2 independent of all inputs as well as
all randomness. In brief, we remove the if-else clause (line 14 and line 22) that checks whether 𝑅 is
innity, at a cost of extra dummy isogeny computations. This idea was rst presented in [BLMP19] and
also adopted in [JAKJ19] for a constant-time CSIDH implementation on 64-bit ARM processors. For
both implementations there exists a probability of failure in computing the correct codomain curve,
and a large number of dummy isogeny computations are required to make this probability negligible
(e.g., 2−32). In detail, according to [CCC+19], given a point 𝑃 = (𝑌 : 𝑇) represented in twisted Edwards

53

CHAPTER 5. VECTORIZED CSIDH

𝑌𝑇 -coordinates8, we dene a constant-time function for checking whether the point 𝑃 is innity as:

isinfinity(𝑃) =
{
1, if 𝑌 = 𝑇 ⇔ 𝑃 = ∞
0, if 𝑌 ≠ 𝑇 ⇔ 𝑃 ≠ ∞

This time we compute a “real” isogeny from the kernel point 𝑅, if 𝑅 ≠ ∞ and 𝑒 ′𝑖 ≠ 0; whereas we
compute a “dummy” isogeny if either 𝑅 = ∞ or 𝑒 ′𝑖 = 0. Similarly, these dummy isogenies will not be
considered in the nal result, but they will cause the counter 𝑡isog to increment. Consequently, there is
a possibility that for some indices 𝑖 , the number of the computed “dummy” isogenies exceeds the value
𝑏𝑖 − |𝑒𝑖 | in which case we lose “real” isogenies that should be computed. This implies that although the
algorithm will terminate, the resulting codomain curve will be incorrect since it will not correspond
to the secret exponents (𝑒1, . . . , 𝑒𝑛). This probability of failure can be reduced by xing the number
of dummy isogenies to be computed, as done in [BLMP19, JAKJ19]. In other words, except for the
dummy isogenies originally needed by Algorithm 5.2 to make the group action independent of the
secret exponents (we call them initial dummy isogenies), we import extra dummy isogenies to make
the group action independent of the randomness (we call them extra dummy isogenies). The modied
group action has now the same operation sequence in each execution, which meets the requirement for
batching. However, according to our calculation, it requires to import more than

∑𝑛
𝑖=1 𝑏𝑖 extra dummy

isogenies to make the failure probability below 2−32. Hence, this idea needs to compute more than two
times the number of isogenies needed in Algorithm 5.2, which signicantly reduces the eciency of
the algorithm, while the probability of failure still exists.

Based on the above discussion, we are looking for a way to drastically reduce the number of extra
dummy isogenies and eliminate the probability of failure, but meanwhile retain this batching-friendly
fashion of group action. This can be done using the hybrid mode. As introduced in the previous subsec-
tion, the hybrid mode consists of the batched component and the unbatched component. In the batched
component, we still compute

∑𝑛
𝑖=1 𝑏𝑖 (“real” and “dummy”) isogenies, where in this case, dummy iso-

genies appear whenever a secret exponent is zero, or the kernel point is innity. In addition, we keep
track of all the dummy isogenies that occurred from innity kernel points. After the batched compo-
nent terminates, we take advantage of the unbatched component to compute “compensatory” isogenies
based on the previously recorded innity cases. Since this method adds extra dummy isogenies for each
instance that occurred from the innity cases, we refer to it as the extra-dummy method.

Algorithm 5.3 explains the batched component of our extra-dummy method. We rst apply this
batched component for computing eight group action instances in parallel. Hence, in our batched
software, the input is composed of a secret exponent list and a starting curve:

〈(𝑒 (1)1 , . . . , 𝑒 (1)𝑛), (𝑒 (2)1 , . . . , 𝑒 (2)𝑛), . . . , (𝑒 (8)1 , . . . , 𝑒 (8)𝑛)〉 and 〈𝐴 (1) , 𝐴 (2) , . . . , 𝐴 (8)〉.

In Algorithm 5.3, apart from the bound list (𝑏 ′1, . . . , 𝑏 ′𝑛), we also create an additional bound list for each
instance to record the innity cases:

〈(𝑏 (1)1 , . . . , 𝑏 (1)𝑛), (𝑏 (2)1 , . . . , 𝑏 (2)𝑛), . . . , (𝑏 (8)1 , . . . , 𝑏 (8)𝑛)〉,

which only decreases when an isogeny is computed from a non-innity kernel point (line 22 in Algo-
rithm 5.3). At the beginning of the batched component, each list (𝑏 (𝑘)1 , . . . , 𝑏 (𝑘)𝑛) is initialized to 𝒃 (same
as (𝑏 ′1, . . . , 𝑏 ′𝑛)).

When the batched component terminates, it outputs for each instance, a curve coecient �̂� (𝑘) ,
the list (𝑏 (𝑘)1 , . . . , 𝑏 (𝑘)𝑛), and the list of exponents (𝑒 ′ (𝑘)1 , . . . , 𝑒 ′ (𝑘)𝑛), where most of the 𝑒 ′ (𝑘)

𝑖
(as well as

current 𝑏 (𝑘)
𝑖

) are 0, for 𝑖 ∈ {1, . . . , 𝑛} and 𝑘 ∈ {1, . . . , 8}. As a result, there are only a few “real” (and
8A point 𝑃 on a projective twisted Edwards curve in 𝑌𝑇 -coordinate representation is expressed as 𝑃 = (𝑌 : 𝑇), where 𝑌/𝑇

is the ane 𝑦-coordinate of the point 𝑃 .

54

5.3. IMPLEMENTATION: HIGH-THROUGHPUT BATCHED SOFTWARE

Algorithm 5.3: The batched component of our extra-dummy method for OAYT-style CSIDH
class group action computation.
Input: 𝐴 ∈ F𝑝 , bound 𝒃 = (𝑏1, . . . , 𝑏𝑛), exponents 𝒆 = (𝑒1, . . . , 𝑒𝑛) where 𝑒𝑖 ∈ [−𝑏𝑖 , 𝑏𝑖].
Output: �̂� ∈ F𝑝 , the lists (𝑏1, . . . , 𝑏𝑛) and (𝑒 ′1, . . . , 𝑒 ′𝑛).

1 (𝑒 ′1, . . . , 𝑒 ′𝑛) ← (𝑒1, . . . , 𝑒𝑛), (𝑏 ′1, . . . , 𝑏 ′𝑛) ← (𝑏1, . . . , 𝑏𝑛), (𝑏1, . . . , 𝑏𝑛) ← (𝑏1, . . . , 𝑏𝑛)
2 𝐸�̂� ← 𝐸𝐴, 𝑡max ←

∑𝑛
𝑖=1 𝑏𝑖 , 𝑡isog ← 0, 𝑟 ← 0, 𝑗 ← 0

3 while 𝑡isog < 𝑡max do
4 𝑗 ← (𝑗 mod𝑚) + 1 /* Subset index */
5 if 𝑟 = ` ·𝑚 then

6 𝑆1 ← {𝑖 | 𝑏𝑖 ≠ 0}, 𝑗 ← 1,𝑚 ← 1 /* Merge subsets */
7 𝑢 ← random({2, . . . , (𝑝 − 1)/2}), 𝑞 ←∏

𝑖∈𝑆 𝑗
ℓ𝑖

8 (𝑃0, 𝑃1) ← Elligator(𝐸�̂�, 𝑢) /* 𝑃0 ∈ 𝐸 [𝜋 − 1] and 𝑃1 ∈ 𝐸 [𝜋 + 1] */
9 (𝑇0,𝑇1) ← ([(𝑝 + 1)/𝑞]𝑃0, [(𝑝 + 1)/𝑞]𝑃1)

10 for each 𝑖 ∈ 𝑆 𝑗 do
11 𝑠 ← sign(𝑒 ′𝑖)
12 cswap(𝑇0,𝑇1, 1 − 𝑠)
13 𝑅 ← [𝑞/ℓ𝑖]𝑇0 /* 𝑅 is the kernel generator */
14 𝑓 ← 1 − isinfinity(𝑅)
15 𝑤 ← 1 − isequal(𝑒 ′𝑖 , 0)
16 Compute isogeny 𝜙 : 𝐸�̂� → 𝐸𝐶 = 𝔩𝑖 ★ 𝐸�̂� with ker(𝜙) = 〈𝑅〉
17 𝑇1 ← [ℓ𝑖]𝑇1
18 (𝑇2,𝑇3) ← (𝜙 (𝑇0), 𝜙 (𝑇1))
19 𝑇0 ← [ℓ𝑖]𝑇0
20 cswap(𝑇0,𝑇2, 𝑓&𝑤), cswap(𝑇1,𝑇3, 𝑓&𝑤), cswap(�̂�,𝐶, 𝑓&𝑤)
21 𝑒 ′𝑖 ← 𝑒 ′𝑖 + (−1)𝑠 · (𝑓&𝑤), 𝑏 ′𝑖 ← 𝑏 ′𝑖 − 1, 𝑡isog ← 𝑡isog + 1
22 𝑏𝑖 ← 𝑏𝑖 − 𝑓
23 cswap(𝑇0,𝑇1, 1 − 𝑠), 𝑞 ← 𝑞/ℓ𝑖
24 if 𝑏 ′𝑖 = 0 then
25 Remove 𝑖 from 𝑆 𝑗

26 𝑟 ← 𝑟 + 1
27 return �̂�, (𝑏1, . . . , 𝑏𝑛), (𝑒 ′1, . . . , 𝑒 ′𝑛)

“dummy”) remaining isogenies that need to be computed for each instance, based on (𝑒 ′ (𝑘)1 , . . . , 𝑒 ′ (𝑘)𝑛)
and (𝑏 (𝑘)1 , . . . , 𝑏 (𝑘)𝑛). Our experiments indicate that for each instance there are often around 10 (“real”
and “dummy”) isogenies remaining to be computed, i.e., current

∑𝑛
𝑖=1 𝑏

(𝑘)
𝑖
≈ 10. We compute the re-

maining isogenies by executing the unbatched component for each instance in sequence:

𝐵 (𝑘) ← unbatched(�̂� (𝑘) , (𝑏 (𝑘)1 , . . . , 𝑏 (𝑘)𝑛), (𝑒 ′ (𝑘)1 , . . . , 𝑒 ′ (𝑘)𝑛))

for 𝑘 ∈ {1, . . . , 8}. Following the concrete CSIDH-512 parameters of [CCC+19], for each instance,
there are exactly 404 isogeny computations (“real” and “dummy”) in the batched component while
a few isogeny computations corresponding to non-zero 𝑏 (𝑘)

𝑖
in the unbatched component. Thus, for

each instance, the extra-dummy method computes only a few more extra isogenies, compared to the
conventional OAYT-style implementation (Algorithm 5.2). Moreover, since the unbatched component
has no failure probability, we conclude that the extra-dummy method has no failure probability either.

55

CHAPTER 5. VECTORIZED CSIDH

5.3.3 Extra-innity method

We assume that eight dierent instances of Algorithm 5.2 are computed in parallel. In brief, the idea in
our second method is that for each iteration of the inner loop (line 10 to line 26 of Algorithm 5.2), if the
kernel generator is innity in at least one of the eight instances, then we force all instances to execute
the “else”-branch at line 22. In particular, we dene the variable inf as:

inf = isinfinity(𝑅 (1)) | isinfinity(𝑅 (2)) | . . . | isinfinity(𝑅 (8)),

where 𝑅 (𝑘) denotes the kernel generator in the 𝑘 th simultaneous instance. If inf = 0, then 𝑅 (𝑘) ≠ ∞ for
all 𝑘 ∈ {1, . . . , 8} and all eight instances will enter the “if”-branch at line 14 in Algorithm 5.2, in order to
compute a “real” or a “dummy” ℓ𝑖-isogeny. On the other hand, if inf = 1, then 𝑅 (𝑘) = ∞ for at least one
𝑘 ∈ {1, . . . , 8} and all instances will proceed to the “else”-branch. In this case, we need to execute the
scalar multiplication𝑇 (𝑘)0 = [ℓ𝑖]𝑇 (𝑘)0 , in addition to𝑇 (𝑘)1 = [ℓ𝑖]𝑇 (𝑘)1 . This is not needed in Algorithm 5.2,
because the ℓ𝑖-torsion part of the point 𝑇0 has already vanished (since 𝑅 = ∞). In our approach, when
inf = 1, we are forcing all instances to proceed as if all 𝑅 (𝑘) were innity, however the ℓ𝑖-torsion parts
of some points 𝑇 (𝑘)0 have not vanished.

However, when inf = 1, the above idea imports some extra innity-related computations, which
in principle are not needed by every instance. In addition to the two scalar multiplications for 𝑇 (𝑘)0
and 𝑇 (𝑘)1 in the “else”-branch, these innity-related computations may include more point generation
operations (using the Elligator map at line 8), which will result in more scalar multiplications for the
full order points 𝑃 (𝑘)0 , 𝑃 (𝑘)1 (line 9) and the kernel generator 𝑅 (𝑘) (line 13). For this reason, we refer to
this method as the extra-innity method. Note also that the probability of inf = 1 is 1−(1−1/ℓ𝑖)8, which
is considerably higher when ℓ𝑖 is small (e.g., 3, 5, and 7). As a result, an increased number of inf = 1
cases (and hence, an increased number of innity-related computations) is expected, which aects the
eciency of the extra-innity method.

We mitigate this problem by considering again the hybrid mode. More precisely, we divide the
primes ℓ = (ℓ1, . . . , ℓ𝑛) into two subsets, ℓbatch for the batched component and ℓunbatch for the unbatched
component. ℓunbatch contains only the smaller primes, specically 3, 5, 7, 11, 13, 17 and 19 in our
implementation, whereas ℓbatch includes the remaining primes in ℓ . In the same way, the bound list
𝒃 = (𝑏1, . . . , 𝑏𝑛) and the secret exponent list 𝒆 (𝒌) = (𝑒 (𝑘)1 , . . . , 𝑒 (𝑘)𝑛) of each instance are split in two
subsets, i.e. {𝒃batch, 𝒃unbatch} and {𝒆 (𝒌)batch, 𝒆

(𝒌)
unbatch} for 𝑘 ∈ {1, . . . , 8}.

In the extra-innity method, we rst execute the batched component for eight parallel group action
instances, to compute the isogenies for the larger primes with the corresponding subsets. The batched
component outputs the resulting curve �̂� (𝑘) for each instance:

〈�̂� (1) , �̂� (2) , . . . , �̂� (8)〉 ← batched(〈𝐴 (1) , 𝐴 (2) , . . . , 𝐴 (8)〉, 𝒃batch, 〈𝒆 (1)batch, 𝒆
(2)
batch, . . . , 𝒆

(8)
batch〉)

Then we execute the unbatched component (such as Algorithm 5.2) sequentially in order to obtain the
correct codomain curve for each instance:

𝐵 (𝑘) ← unbatched(�̂� (𝑘) , 𝒃unbatch, 𝒆 (𝒌)unbatch)

for 𝑘 ∈ {1, . . . , 8}. The number of total isogenies (“real” and “dummy”) that are computed in the batched
component for each instance is the sum of all 𝑏𝑖 in 𝒃batch, which is 358 when considering the CSIDH-
512 parameters of [CCC+19]. In the unbatched component, the number of total isogenies (“real” and
“dummy”) is 46, i.e. the sum of all 𝑏𝑖 in 𝒃unbatch.

56

5.3. IMPLEMENTATION: HIGH-THROUGHPUT BATCHED SOFTWARE

5.3.4 The combination of extra-dummy and extra-innity methods

Before we introduce the combined method, we give a few more details on the extra-dummy and extra-
innitymethods. We consider an example where in an iteration of the inner loop,𝑛inf of the eight kernel
points 𝑅 (𝑘) = ∞, in the batched component of both methods. The extra-dummy method will complete
the computations of this iteration (from line 14 to 25 in Algorithm 5.3), and later it will compute 𝑛inf
“compensatory” isogenies with the unbatched component. On the other hand, the extra-innitymethod
will enter its “else”-branch to compute two scalar multiplications, for all eight instances, and it may later
perform the other innity-related computations, which are in theory needed by𝑛inf instances. Based on
the operations that are carried out in each method, we observe that the extra-dummy method handles
the innity cases more eciently than the extra-innity method when only few 𝑅 (𝑘) = ∞, hence when
𝑛inf is small. On the other hand, the extra-innity method seems to be more ecient in handling the
innity cases, when most of the eight 𝑅 (𝑘) = ∞ (i.e. when 𝑛inf is close to 8).

Based on the above observation, our idea is to combine the two approaches, aiming at obtaining a
more ecient method. In order to do this, we set the variable 𝑛inf as:

𝑛inf = isinfinity(𝑅 (1)) + isinfinity(𝑅 (2)) + . . . + isinfinity(𝑅 (8)),

so that 𝑛inf ∈ [0, 8]. Taking Algorithm 5.3 to describe this combined method, after the computation at
line 13 (where the kernel generator𝑅 (𝑘) is computed), we add an if-else statement to check if the variable
𝑛inf is within a predened threshold 𝑛thld. If 𝑛inf ≤ 𝑛thld which means there are few 𝑅 (𝑘) = ∞, we do the
same computations as in the extra-dummymethod (line 14 to 22 of Algorithm 5.3). On the other hand, if
𝑛inf > 𝑛thld which means there are more 𝑅 (𝑘) = ∞, we proceed to the “else”-branch of the extra-innity
method and perform the two scalar multiplications𝑇 (𝑘)1 = [ℓ𝑖]𝑇 (𝑘)1 and𝑇 (𝑘)0 = [ℓ𝑖]𝑇 (𝑘)0 . After this if-else
statement, the operations at line 23 to 25 will be performed. Additionally, the unbatched component
of the combined method is the same as the one in the extra-dummy method. From our experiments,
when the threshold 𝑛thld = 3, this combined method provides the best performance, and particularly, it
is slightly faster than the extra-dummy method and quite faster than the extra-innity method.

5.3.5 Batching dummy-free-style group actions

The methods that we have considered in Section 5.3.2, Section 5.3.3, and Section 5.3.4 for batching
CSIDH group actions are all based on the OAYT-style algorithm of [OAYT19] and require the compu-
tation of dummy isogenies. More precisely, recall that Algorithm 5.2 computes |𝑒𝑖 | “real” and 𝑏𝑖 − |𝑒𝑖 |
“dummy” isogenies. Such implementations are vulnerable to fault injection attacks. As observed in
[CCC+19], an attacker can modify the codomain curve or the images of the points 𝑇0,𝑇1 under the
isogeny𝜙 in Algorithm 5.2 (fault injections), and if the result is correct, he knows that a dummy isogeny
is computed and thus 𝑒𝑖 = 0. This is also true in Algorithm 5.3. If the same modication produces the
correct result, then the attacker knows that either 𝑒𝑖 = 0, or the current kernel generator 𝑅 = ∞.

In [CCC+19], Cervantes-Vázquez, Chenu, Chi-Domínguez, De Feo, Rodríguez-Henríquez, and Smith
presented a constant-time evaluation of the CSIDH class group action, without the need of dummy
isogeny computations [CCC+19, Algorithm 5]. In their dummy-free approach, the secret exponents
are chosen such that 𝑒𝑖 ∈ [−𝑏𝑖 , 𝑏𝑖] and 𝑒𝑖 ≡ 𝑏𝑖 (mod 2). This choice allows the algorithm to compute
the required |𝑒𝑖 | isogenies, while for the remaining 𝑏𝑖 − |𝑒𝑖 |, it alternates between the actions of the
ideals 𝔩𝔦 and 𝔩𝔦−1 and hence these 𝑏𝑖 − |𝑒𝑖 | isogenies cancel out (see [CCC+19, Section 5] for details). The
dummy-free approach is based on the SIMBA-𝑚-` technique, where the implementation of [CCC+19]
uses𝑚 = 5 and ` = 11. The secret key space or equivalently, the list of bounds for the secret exponents

57

CHAPTER 5. VECTORIZED CSIDH

is:
𝒃 = (7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 5, 7, 7, 7, 7)

We argue that the three methods that we have introduced in Section 5.3.2, Section 5.3.3, and Sec-
tion 5.3.4 can also be used to batch the dummy-free-style algorithm of [CCC+19]. In particular, for the
extra-dummy and the combined methods, we are still using dummy isogenies for the case where the
kernel generator 𝑅 = ∞, however, these dummy isogenies do not reveal any information about the se-
cret exponent, since they depend only on the random kernel generator. For the extra-innity method,
we follow the same strategy as in Section 5.3.3, with the only dierence being that the small prime list
in the unbatched component is ℓunbatch = (3, 5, 7, 11, 13, 17, 19, 23, 29). For the combined method in the
dummy-free-style, the optimal threshold to achieve the best performance is 𝑛thld = 5.

5.3.6 (8 × 1)-way prime-eld arithmetic

In the batched components of all batching methods, we use the same curve and isogeny arithmetic im-
plementation that we developed, based on [CCC+19], with minor optimizations to better t the batched
software. At a lower layer, we developed all the needed (8×1)-way9 prime-eld operations from scratch,
using respectively AVX-512F and IFMA, by taking advantage of “limb-slicing” technique [CGT+20].
This section only studies our IFMA vectorized implementation of prime-eld operations. Compared to
the IFMA version, the AVX-512F implementation has two fundamental dierences; 1) it uses vpmuludq
instead of IFMA instructions to perform vector multiplication; 2) the eld element is represented in
radix-229 (with 18 limbs) due to the 32-bit multiplier.

Radix-252 (8 × 1)-way limb vector set IFMA naturally provides a reduced radix representation,
namely radix-252, for large integers. Fortunately, radix-252 is well-suited for CSIDH-512. Specically,
there are ten limbs for a 511-bit eld element under radix-252. When considering a smaller radix, such
as radix-251, the representation of an element will require at least eleven limbs, which leads to a higher
consumption than radix-252. Formally, a eld element 𝑓 represented in radix-252 is shown as:

𝑓 = 𝑓0 + 252 𝑓1 + 2104 𝑓2 + 2156 𝑓3 + 2208 𝑓4 + 2260 𝑓5 + 2312 𝑓6 + 2364 𝑓7 + 2416 𝑓8 + 2468 𝑓9,

where 0 ≤ 𝑓𝑖 < 252 for 0 ≤ 𝑖 ≤ 9. This representation allows eld elements to be up to 520-bit during
computations.

The main data structure of our parallel software is a (8× 1)-way limb vector set, which is composed
of eight radix-252 elements. Given eight integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ ∈ F𝑝 , a (8× 1)-way limb vector set 𝑽
is dened as:

𝑽 = 〈𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ〉 =

[𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑒0, 𝑓0, 𝑔0, ℎ0]
[𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓1, 𝑔1, ℎ1]

...

[𝑎9, 𝑏9, 𝑐9, 𝑑9, 𝑒9, 𝑓9, 𝑔9, ℎ9]

= (𝑉0,𝑉1, . . . ,𝑉9)

where each𝑉𝑖 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑓𝑖 , 𝑔𝑖 , ℎ𝑖] is called a limb vector. All the inputs and outputs of our (8×1)-
way eld operations are limb vector sets of which each limb is precisely 52 bits long. In terms of our eld

9The (𝑛 ×𝑚)-way implementation performs 𝑛 eld operations in parallel, where each eld operation is executed in a
𝑚-way parallel fashion and, thus, uses𝑚 elements of a vector.

58

5.3. IMPLEMENTATION: HIGH-THROUGHPUT BATCHED SOFTWARE

operations, we saved the nal subtraction in Montgomery reduction, and our addition and subtraction
perform reduction modulo 2𝑝 instead of 𝑝 . This means all the integers inputted to or outputted from
our eld operations are in the range [0, 2𝑝−1]. We use 𝑷 = 〈𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝, 𝑝〉 to denote an (8×1)-way
limb vector set of prime 𝑝 , and 𝑸 = 2 × 𝑷 = 〈2𝑝, 2𝑝, 2𝑝, 2𝑝, 2𝑝, 2𝑝, 2𝑝, 2𝑝〉.

Addition and subtraction. Field addition 𝒁 ← 𝑿 + 𝒀 mod 𝑸 is performed in three steps. At rst,
we add 𝑿 with 𝒀 and store their sum in 𝒁 . We then subtract 𝑸 from 𝒁 , so there might be negative
results in some lanes of 𝒁 . Finally, we create a 512-bit mask vector where the 64-bit element is set to
all-1 if the corresponding lane’s integer in 𝒁 is negative, or to all-0 if non-negative. Through the bitwise
AND between this mask vector and 𝑸 , we add 2𝑝 to the negative integers in 𝒁 whereas add 0 to the
non-negative integers. There are only two steps in the eld subtraction 𝒁 ← 𝑿 −𝒀 mod 𝑸 , which rst
subtracts 𝒀 from 𝑿 and then carries out a same nal step of eld addition.

Multiplication. Field multiplication has a signicant impact on the performance of any isogeny-
based cryptosystem and deserves special care. The eld multiplication used in CSIDH is Montgomery
multiplication [Mon85] which consists of two phases, namely integer multiplication and Montgomery
reduction. There exist some dierent variants of Montgomery multiplication, often termed with their
implementation fashion, such as Separated Operand Scanning (SOS) [KAK96], Finely Integrated Prod-
uct Scanning (FIPS) [KAK96], Karatsuba-Comba-Montgomery (KCM) [GAST05] and etc. The number
of instructions (including addition, multiplication, load/store) and memory consumption required for
dierent variants are dierent. Taking these two factors into account, implementers can choose a
proper variant when they develop software especially on resource-constrained devices like AVR or
ARM microcontrollers. For the cost comparison of dierent variants we refer to [KAK96, Table 1] and
[GAST05, Table 4]. However, things become more complicated when developing on a processor with
more computing power. Considering our case, Ice Lake processor is equipped with ten execution ports
(and various execution units), so the processor can execute several instructions simultaneously. Ex-
cluding the number of needed instructions and instruction latency/throughput, we are supposed to
take instruction-level parallelism into account. The memory consumption receives less attention in
this case since an Ice Lake machine usually possesses a GB-level memory.

Currently, most of the related AVX-512 implementations are designed for accelerating 1-, 2- or 4-
way Montgomery multiplication. However, these optimization techniques are not ideally applicable to
our 8-way software. We discuss these implementations in more detail in Section 5.4.1. Due to the “limb-
slicing” pattern, our 8-way Montgomery multiplication essentially “duplicates” 1-way implementation
to eight lanes by AVX-512 instructions. To the best of our knowledge, there are only two AVX-512
implementations of this type in the literature. Takahashi proposed both AVX-512F and IFMA imple-
mentation of 8-wayMontgomerymultiplication in [Tak20], but this software works on 62-bit and 52-bit
operands, respectively, and not in the case of large integers. Buhrow, Gilbert, and Haider in [BGH22]
presented a Block Product Scanning (BPS) variant of Montgomery multiplication, which is based on
radix-232 representation. An 8-way 512-bit BPS variant implemented with AVX-512F takes 189 clock
cycles for each instance, which translates to 1512 clock cycles for a whole 8-way implementation.

In order to nd an optimal eld multiplication for our software, the best way is to develop the cor-
responding 8-way AVX-512 implementation of various Montgomery multiplication variants and select
the fastest one among them. From an algorithmic viewpoint, all the variants dier in three aspects:
1) dierent methods to implement integer multiplication, e.g., operand-scanning, product-scanning, or
the advanced technique such as Karatsuba algorithm [KO63]; 2) dierent methods to implement Mont-
gomery reduction, e.g., operand-scanning or product-scanning; 3) whether Montgomery reduction is
separated from or interleaved with integer multiplication (and how it is interleaved in the latter case).
For our IFMA version, we conducted experiments in which we developed a dozen of implementation
candidates of 8-way eld multiplication based on various combinations from above three aspects. No-

59

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.4: (8 × 1)-way Montgomery multiplication using IFMA.
Input: Operands 𝑿 and 𝒀 , prime 𝑷 ,𝑤 = −𝑝−1 mod 252
Output: Product 𝒁 = 𝑿 × 𝒀 × 2−520 mod 𝑸

1 𝑍𝑖 ← ZERO for 𝑖 ∈ {0, 1, . . . , 19}
2 𝑊 ← BCAST(𝑤),𝑀 ← BCAST(252 − 1)
3 for 𝑖 from 0 to 9 by 1 do
4 for 𝑗 from 0 to 𝑖 by 1 do
5 𝑍𝑖 ← MACLO(𝑍𝑖 , 𝑋 𝑗 , 𝑌𝑖−𝑗)
6 𝑍𝑖+1 ← MACHI(𝑍𝑖+1, 𝑋 𝑗 , 𝑌𝑖−𝑗)
7 for 𝑖 from 0 to 9 by 1 do
8 for 𝑗 from 𝑖 + 1 to 9 by 1 do /* Skip this loop when 𝑖 = 9 */
9 𝑍𝑖+10 ← MACLO(𝑍𝑖+10, 𝑋 𝑗 , 𝑌𝑖−𝑗+10)

10 𝑍𝑖+11 ← MACHI(𝑍𝑖+11, 𝑋 𝑗 , 𝑌𝑖−𝑗+10)
11 𝑇 ← MACLO(ZERO, 𝑍𝑖 ,𝑊)
12 for 𝑗 from 0 to 9 do
13 𝑍𝑖+𝑗 ← MACLO(𝑍𝑖+𝑗 ,𝑇 , 𝑃 𝑗)
14 𝑍𝑖+𝑗+1 ← MACHI(𝑍𝑖+𝑗+1,𝑇 , 𝑃 𝑗)
15 𝑍𝑖+1 ← ADD(𝑍𝑖+1, SHR(𝑍𝑖 , 52))
16 for 𝑖 from 10 to 18 by 1 do
17 𝑍𝑖+1 ← ADD(𝑍𝑖+1, SHR(𝑍𝑖 , 52))
18 𝑍𝑖−10 ← AND(𝑍𝑖 , 𝑀)
19 𝑍9 ← 𝑍19
20 return 𝒁 = (𝑍0, 𝑍1, . . . , 𝑍9)

Table 5.2: Information of our (8 × 1)-way implementation of eld multiplication and squaring.

Field operation ISA/ISE Integer Mul/Sqr Reduction Structure Latency†

Multiplication IFMA Product-Scanning Operand-Scanning Interleaved 436
Squaring IFMA Product-Scanning Operand-Scanning Interleaved 344

Multiplication AVX-512F Karatsuba Product-Scanning Separated 848
Squaring AVX-512F Product-Scanning Product-Scanning Interleaved 723

† Latency (in clock cycles) is the execution time of eight parallel Montgomery multiplication/squaring instances, and it
was measured on Ice Lake i3-1005G1 processor with turbo boost disabled.

tably, our 8-way implementation candidates are not straightforwardly “duplicating” the ordinary 1-way
x64 implementation of dierent variants (or we say combinations). We rather concentrated on improv-
ing instruction-level parallelism in each implementation candidate. In order to achieve this purpose, we
tried to improve the ports utilization by optimizing dependency chains in the code. From our bench-
marking results on Ice Lake processor, the implementation candidate with the lowest latency is shown
in Algorithm 5.4, which possesses a similar structure as Coarsely Integrated Hybrid Scanning (CIHS)
[KAK96], and it serves as eld multiplication in our 8-way IFMA software. Our eld multiplication
uses product-scanning for integer multiplication and utilizes operand-scanning to handle Montgomery
reduction, and reduction is interleaved with the second outer loop of product-scanning integer multi-
plication (line 7 to 15 in Algorithm 5.4). As for our AVX-512F version, we carried out a similar procedure
to evaluate also a dozen of AVX-512F implementation candidates. The optimal eld multiplication in
AVX-512F version switches to Karatsuba algorithm for integer multiplication since there are 18 limbs of
each element, and uses a product-scanning Montgomery reduction that is separated from integer mul-
tiplication. The information and latency of eld multiplication in both versions are shown in Table 5.2,

60

5.4. IMPLEMENTATION: LOW-LATENCY UNBATCHED SOFTWARE

which indicates that our Karatsuba-based AVX-512F implementation outperforms the BPS variant in
[BGH22]. We herein emphasize on the importance of using an optimal eld multiplication in such
parallel AVX-512 software of an isogeny-based cryptosystem. In our experiments for IFMA version,
the 8-way Separated Product Scanning (SPS) variant [LG14] or 8-way original FIPS variant [KAK96]
(i.e., the one that has not been optimized for improving instruction-level parallelism) costs more than
700 clock cycles, i.e., taking 60% more CPU-cycles than Algorithm 5.4. From our experiments, using
such unsuitable eld multiplication and squaring implementation will nally result in up to 30% more
CPU-cycles for CSIDH group action evaluation compared to the one using optimal variants.

Squaring. Most of the existing CSIDH implementations, e.g. [MCR19, OAYT19, CCC+19, CR22,
HLKA20], take advantage of a same x64 assembly implementation of eld operations originally from
[CLM+18]. In this assembly implementation, a eld squaring just invokes a eldmultiplication in which
two operands are same. In other words, eld squaring possesses the same latency as eldmultiplication.
In this work, we developed a dedicated Montgomery squaring instead of directly using eld multipli-
cation. Specically, compared to eld multiplication, our eld squaring utilizes a dedicated integer
squaring instead of integer multiplication.

In essence, integer squaring is a special instance of multiplication, where all partial products in
the form of 𝑓𝑖 · 𝑓𝑗 with 𝑖 ≠ 𝑗 appear twice due to 𝑓𝑖 · 𝑓𝑗 = 𝑓𝑗 · 𝑓𝑖 . A classic technique for optimizing
squaring is to just compute these partial products once and double them, thereby saving numerous
multiplication instructions. We develop our integer squaring by this classic technique, and again we
developed many squaring candidates to obtain an optimal implementation. The information of our
eld squaring implementation is also listed in Table 5.2 where it proves a dedicated eld squaring saves
at least 15% CPU-cycles than a eld multiplication. The algorithmic description of our IFMA 8-way
Montgomery squaring is shown in Algorithm 5.5.

5.4 Implementation: low-latency unbatched software

In our hybrid mode which is introduced in Section 5.3.1, the low-latency implementation of a single
group action evaluation serves as the unbatched component and is needed by each instance. More
importantly, this low-latency implementation can also be used in more applications e.g., accelerating
the CSIDH key exchange protocol on the client side.In this section we describe our (2 × 4)-way IFMA
implementation, which is developed for accelerating a single group action evaluation and used as the
unbatched component in our IFMA throughput-optimized software. In the case of AVX-512F, our ex-
periments showed that the (2 × 4)-way AVX-512F implementation is slower than the x64 implementa-
tion of [CCC+19] (on target Ice Lake Core processor). Hence, for our AVX-512F throughput-optimized
software, we use the [CCC+19] implementation as the unbatched component.

5.4.1 (2 × 4)-way prime-eld arithmetic

Radix-243 (2 × 4)-way limb vector set. Neither the structure nor the radix of the (2 × 4)-way limb
vector set is the same compared to the (8×1)-way set. To be specic, we take advantage of (2×4)-way
interleaved vectors combined with radix-243 this time. The (2 × 4)-way limb vector set 𝑽 = 〈𝑎, 𝑏〉 is
dened as follows:

𝑽 = 〈𝑎, 𝑏〉 =

[𝑎0, 𝑎3, 𝑎6, 𝑎9 , 𝑏0, 𝑏3, 𝑏6, 𝑏9]
[𝑎1, 𝑎4, 𝑎7, 𝑎10, 𝑏1, 𝑏4, 𝑏7, 𝑏10]
[𝑎2, 𝑎5, 𝑎8, 𝑎11, 𝑏2, 𝑏5, 𝑏8, 𝑏11]

 = (𝑉0,𝑉1,𝑉2)

Each limb vector 𝑉𝑖 = [𝑎𝑖 , 𝑎𝑖+3, 𝑎𝑖+6, 𝑎𝑖+9, 𝑏𝑖 , 𝑏𝑖+3, 𝑏𝑖+6, 𝑏𝑖+9] contains four limbs from each integer 𝑎 and
𝑏, and limbs are arranged in an interleaved pattern. The reason for using radix-243 instead of radix-252

61

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.5: (8 × 1)-way Montgomery squaring using IFMA.
Input: Operand 𝑿 , prime 𝑷 ,𝑤 = −𝑝−1 mod 252
Output: Product 𝒁 = 𝑿2 × 2−520 mod 𝑸

1 𝑍𝑖 ← ZERO for 𝑖 ∈ {0, 1, . . . , 19}
2 𝑊 ← BCAST(𝑤),𝑀 ← BCAST(252 − 1)
3 for 𝑖 from 1 to 9 by 1 do
4 for 𝑗 from 0 to b(𝑖 − 1)/2c by 1 do
5 𝑍𝑖 ← MACLO(𝑍𝑖 , 𝑋 𝑗 , 𝑋𝑖−𝑗)
6 𝑍𝑖+1 ← MACHI(𝑍𝑖+1, 𝑋 𝑗 , 𝑋𝑖−𝑗)
7 𝑍𝑖 ← ADD(𝑍𝑖 , 𝑍𝑖)
8 if 𝑖 is odd then

9 𝑘 ← (𝑖 − 1)/2
10 𝑍𝑖−1 ← MACLO(𝑍𝑖−1, 𝑋𝑘 , 𝑋𝑘)
11 𝑍𝑖 ← MACHI(𝑍𝑖 , 𝑋𝑘 , 𝑋𝑘)
12 for 𝑖 from 0 to 9 by 1 do
13 for 𝑗 from b𝑖/2c + 6 to 9 by 1 do /* Skip this loop when 𝑖 = 8 or 9 */
14 𝑍𝑖+10 ← MACLO(𝑍𝑖+10, 𝑋 𝑗 , 𝑌𝑖−𝑗+10)
15 𝑍𝑖+11 ← MACHI(𝑍𝑖+11, 𝑋 𝑗 , 𝑌𝑖−𝑗+10)
16 𝑍𝑖+10 ← ADD(𝑍𝑖+10, 𝑍𝑖+10)
17 if 𝑖 is odd then

18 𝑘 ← (𝑖 + 9)/2
19 𝑍𝑖+9 ← MACLO(𝑍𝑖+9, 𝑋𝑘 , 𝑋𝑘)
20 𝑍𝑖+10 ← MACHI(𝑍𝑖+10, 𝑋𝑘 , 𝑋𝑘)
21 𝑇 ← MACLO(ZERO, 𝑍𝑖 ,𝑊)
22 for 𝑗 from 0 to 9 do
23 𝑍𝑖+𝑗 ← MACLO(𝑍𝑖+𝑗 ,𝑇 , 𝑃 𝑗)
24 𝑍𝑖+𝑗+1 ← MACHI(𝑍𝑖+𝑗+1,𝑇 , 𝑃 𝑗)
25 𝑍𝑖+1 ← ADD(𝑍𝑖+1, SHR(𝑍𝑖 , 52))
26 for 𝑖 from 10 to 18 by 1 do
27 𝑍𝑖+1 ← ADD(𝑍𝑖+1, SHR(𝑍𝑖 , 52))
28 𝑍𝑖−10 ← AND(𝑍𝑖 , 𝑀)
29 𝑍9 ← 𝑍19
30 return 𝒁 = (𝑍0, 𝑍1, . . . , 𝑍9)

62

5.4. IMPLEMENTATION: LOW-LATENCY UNBATCHED SOFTWARE

Algorithm 5.6: (2 × 4)-way Montgomery multiplication using IFMA.
Input: Operands 𝑿 = 〈𝑎, 𝑏〉 and 𝒀 = 〈𝑐, 𝑑〉, prime 𝑷 = 〈𝑝, 𝑝〉,𝑤 = −𝑝−1 mod 243.
Output: Product 𝒁 = 〈𝑒, 𝑓 〉 where 𝑒 = 𝑎 · 𝑐 · 2−516 mod 2𝑝 and 𝑓 = 𝑏 · 𝑑 · 2−516 mod 2𝑝 .

1 𝐿𝑖 ← ZERO, 𝐻𝑖 ← ZERO for 𝑖 ∈ {0, 1, . . . , 14}
2 𝑊 ← BCAST(𝑤),𝑀 ← BCAST(243 − 1)
3 for 𝑖 from 0 to 11 by 1 do
4 𝑇 ← PERM(𝑌𝑖 mod 3, 0x55 · b𝑖/3c)
5 for 𝑗 from 0 to 2 by 1 do
6 𝐿𝑖+𝑗 ← MACLO(𝐿𝑖+𝑗 ,𝑇 , 𝑋 𝑗)
7 𝐻𝑖+𝑗 ← MACHI(𝐻𝑖+𝑗 ,𝑇 , 𝑋 𝑗)
8 𝑈 ← AND(MACLO(ZERO,𝑊 , PERM(𝐿𝑖 , 0x00)), 𝑀)
9 for 𝑗 from 0 to 2 by 1 do
10 𝐿𝑖+𝑗 ← MACLO(𝐿𝑖+𝑗 ,𝑈 , 𝑃 𝑗)
11 𝐻𝑖+𝑗 ← MACHI(𝐻𝑖+𝑗 ,𝑈 , 𝑃 𝑗)
12 𝐿𝑖+3 ← ADD(𝐿𝑖+3, 0x77, 𝐿𝑖+3, PERM(𝐿𝑖 , 0x39))
13 𝐿𝑖+1 ← ADD(𝐿𝑖+1, 0x11, 𝐿𝑖+1, SHR(𝐿𝑖 , 43))
14 𝐿𝑖+1 ← ADD(𝐿𝑖+1, SHL(𝐻𝑖 , 9))
15 𝐿13 ← ADD(𝐿13, SHL(𝐻12, 9))
16 𝐿14 ← ADD(𝐿14, SHL(𝐻13, 9))
17 𝑍0 ← 𝐿12, 𝑍1 ← 𝐿13, 𝑍2 ← 𝐿14
18 for 𝑖 from 0 to 1 by 1 do
19 𝐶 ← SHR(𝑍𝑖 , 43)
20 𝑍𝑖 ← AND(𝑍𝑖 , 𝑀)
21 𝑍𝑖+1 ← ADD(𝑍𝑖+1,𝐶)
22 𝐶 ← SHR(𝑍2, 43)
23 𝑍2 ← AND(𝑍2, 𝑀)
24 𝑍0 ← ADD(𝑍0, 0xEE, 𝑍0, PERM(𝐶, 0x93))
25 return 𝒁 = (𝑍0, 𝑍1, 𝑍2)

is now easily inferred from the equation above. It is because there will still remain three limb vectors if
using radix-252 (ten limbs for each integer), whereas radix-243 oers more headroom in each limb (𝑎𝑖 or
𝑏𝑖) and is thus friendly for delaying the carry propagation. Similar to the (8 × 1)-way implementation,
our (8 × 1)-way implementation also saves a nal subtraction in Montgomery reduction and performs
modulo 2𝑝 instead of 𝑝 reduction in eld addition and subtraction.

Mixed addition and subtraction. In curve and isogeny arithmetic, we can generally perform a
pair of eld addition and subtraction simultaneously, but not two additions or two subtractions due
to sequential dependency. Therefore, it makes more sense to develop a parallel and mixed operation
of addition and subtraction. We denote this mixed operation as “±”. Formally, it works as 〈𝑟, 𝑠〉 ←
〈𝑎, 𝑏〉 ± 〈𝑐, 𝑑〉 where 𝑟 = 𝑎 + 𝑐 mod 2𝑝 and 𝑠 = 𝑏 − 𝑑 mod 2𝑝 . In essence, this mixed operation executes
the similar steps described in Section 5.3.6. At rst, we construct two (2×4)-way limb vector sets 〈𝑐, 0〉
and 〈2𝑝,𝑑〉. We add 〈𝑎, 𝑏〉 with 〈𝑐, 0〉, and then subtract 〈2𝑝, 𝑑〉 from the sum to reach 〈𝑎 +𝑐 − 2𝑝,𝑏 −𝑑〉.
The nal step is similar to Section 5.3.6 in order to ensure the results of this mixed operation are in
[0, 2𝑝 − 1] by a mask vector.

Multiplication. As wementioned in Section 5.3.6, some work has already been done for accelerating
1-, 2-, or 4-way Montgomery multiplication or squaring with AVX-512. Several papers have been pub-
lished which focus on using IFMA to accelerate 1-way large integer arithmetic such as integer multipli-

63

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.7: (2 × 4)-way integer squaring using IFMA.
Input: Operand 𝑿 = 〈𝑎, 𝑏〉.
Output: 𝑳 = 〈𝑙𝑜 (𝑒), 𝑙𝑜 (𝑓)〉 and 𝑯 = 〈ℎ𝑖 (𝑒), ℎ𝑖 (𝑓)〉, where 𝑒 = 𝑎2 and 𝑓 = 𝑏2.

1 𝐿𝑖 ← ZERO, 𝐻𝑖 ← ZERO for 𝑖 ∈ {0, 1, . . . , 14}
2 for 𝑖 from 0 to 11 do
3 𝑘 ← 𝑖 mod 3
4 𝑇 ← PERM(𝑋𝑘 , 0x55 · b𝑖/3c)
5 𝐿𝑖+𝑘 ← MACLO(𝐿𝑖+𝑘 ,𝑇 , 𝑋𝑘)
6 𝐻𝑖+𝑘 ← MACHI(𝐻𝑖+𝑘 ,𝑇 , 𝑋𝑘)
7 𝐷 ← ADD(𝑇,𝑇) /* Skip this addition when 𝑘 = 2 */
8 for 𝑗 from 𝑘 + 1 to 2 by 1 do /* Skip this loop when 𝑘 = 2 */
9 𝐿𝑖+𝑗 ← MACLO(𝐿𝑖+𝑗 , 𝐷, 𝑋 𝑗)

10 𝐻𝑖+𝑗 ← MACHI(𝐻𝑖+𝑗 , 𝐷, 𝑋 𝑗)
11 return 𝑳 = (𝐿0, 𝐿1, . . . , 𝐿14), 𝑯 = (𝐻0, 𝐻1, . . . , 𝐻14)

cation [GK16, KG19] and Montgomery squaring [DG18]. Edamatsu and Takahashi in [ET19] presented
an IFMA implementation of single large integer multiplication, which takes advantage of Karatsuba
algorithm. Apart from the work on 1-way implementation acceleration, Orisaka, Aranha, and López
presented a well-designed and fast (4 × 2)-way Montgomery multiplication for SIDH in [OAL18] by
AVX-512F, and their approach is working on the 4-way interleaved vectors. We designed our (4×2)-way
IFMAMontgomery multiplication based on the approach of [OAL18] with several modications: 1) we
use IFMA instructions to replace vpmuldq and save vpaddq; 2) we apply our (2×4)-way limb vector set;
3) we implement integer multiplication and reduction in interleaved fashion instead of separated one
which is originally-used, because the interleaved fashion is measured to be faster than the separated
one from our experiments. Our (2 × 4)-way eld multiplication is described in Algorithm 5.6. Vector
sets 𝑳 and 𝑯 respectively accumulate the partial products produced by vpmadd52lo and vpmadd52hi.
Notably, excluding the computation at line 14, there is no dependency between 𝑳 and 𝑯 in the main
loop (line 3 to 14), which benets the ecient utilization of ports.

Squaring. Orisaka et al. did not present a dedicated integer squaring in [OAL18] but planned it as a
future work. We herein propose a fast integer squaring by using the classic optimization technique that
we described in Section 5.3.6. Our integer squaring can be slightly modied to t any (2×4)-way or (2×
4)-way AVX-512 Montgomery squaring that uses interleaved vectors, e.g. the integer squaring needed
in [OAL18]. Our method is described in Algorithm 5.7, which saves 24 IFMA instructions compared
to an integer multiplication (corresponding to line 5 to 7 in Algorithm 5.6) which requires 72 IFMA
instructions in total. We keep the output of Algorithm 5.7 in two sets 𝑳 and 𝑯 , since our Montgomery
reduction is designed to directly work on them. Our complete Montgomery squaring just replaces the
integer multiplication part of Algorithm 5.6 by Algorithm 5.7.

5.4.2 Curve and isogeny arithmetic

Following [CCC+19], the curve arithmetic mainly includes 𝑦-coordinate point doubling, point addi-
tion and scalar multiplication (using addition chains) on twisted Edwards curve, whereas the isogeny
operations contains 𝑦-coordinate isogeny computation and isogeny evaluation. Fortunately, all of the
above ve operations can be internally parallelized in 2-way, where the cost10 switches from 𝑖𝑴 + 𝑗𝑺
to 𝑖

2𝑴
2 + 𝑗

2𝑺
2.

10𝑴 , 𝑺 , 𝑨 denote a 1-way eld multiplication, squaring, addition/subtraction operation, respectively; 𝑴2, 𝑺2, 𝑨2 denote a
2-way eld multiplication, squaring, mixed addition and subtraction operation, respectively.

64

5.4. IMPLEMENTATION: LOW-LATENCY UNBATCHED SOFTWARE

Algorithm 5.8: 2-way implementation of Elligator 2 map.
Input: The values (𝐴0 : 𝐴1) = (𝑎 : 𝑎 − 𝑑), 𝑢 ← random({2, . . . , (𝑝 − 1)/2}) and Montgomery

constant 𝑅 = 2516 mod 𝑝 .
Output: A pair of points 𝑃0 ∈ 𝐸𝑎,𝑑 [𝜋 − 1] and 𝑃1 ∈ 𝐸𝑎,𝑑 [𝜋 + 1].

1 𝛼 ← 0
2 𝑡0 ← 𝐴0 −𝐴1
3 𝑡0 ← 𝐴0 + 𝑡0
4 𝑡0 ← 𝑡0 + 𝑡0 = 𝐴′
5 𝑡1 ← 𝑢 × 𝑅2 𝑠1 ← 𝑡0 ×𝐴1
6 𝑡2 ← 𝑡21 𝑠2 ← 𝑡20
7 𝑡3 ← 𝑡2 + 𝑅 𝑠3 ← 𝑡2 − 𝑅
8 𝑡4 ← 𝐴1 × 𝑠3 𝑠4 ← 𝑠1 × 𝑠3
9 𝑡5 ← 𝑡4 × 𝑡4 𝑠5 ← 𝑠2 × 𝑡2

10 𝑡5 ← 𝑠5 + 𝑡5 𝑠0 ← 𝛼 − 𝑡0 = −𝐴′
11 𝑡6 ← 𝑠4 × 𝑡5 𝑠6 ← 𝑠0 × 𝑡2
12 cswap(𝛼, 𝑡1, isequal(𝑡6, 0)) /* 𝛼 ← 𝑢 if 𝑡6 = 0; else 𝛼 ← 0 */
13 𝑡3 ← 𝛼 × 𝑡3 𝑠3 ← 𝛼 × 𝑡4
14 𝑡5 ← 𝑡0 + 𝑠3 𝑠5 ← 𝑠6 − 𝑡3
15 𝑡3 ← 𝑡3 + 𝑡6
16 𝑚 ← issquare(𝑡3) /*𝑚 ← 1 if 𝑡3 is a square in F𝑝 ; else𝑚 ← 0 */
17 𝑌0 ← 𝑡5 − 𝑡4 𝑇0 ← 𝑡5 + 𝑡4
18 𝑌1 ← 𝑠5 − 𝑡4 𝑇1 ← 𝑠5 + 𝑡4
19 cswap(𝑌0, 𝑌1, 1 −𝑚) cswap(𝑇0,𝑇1, 1 −𝑚)
20 return 𝑃0 = (𝑌0 : 𝑇0) and 𝑃1 = (𝑌1 : 𝑇1)

Elligator 2. The Elligator 2mapwas originally introduced in [BHKL13] for generating random points
on Montgomery curves and was modied in [CCC+19] for the twisted Edwards case. The latter takes
as input the values𝐴0 = 𝑎 and𝐴1 = 𝑎−𝑑 where 𝑎, 𝑑 ∈ F𝑝 are the coecients of the curve 𝐸𝑎,𝑑 in twisted
Edwards form, a random𝑢 ∈ {2, . . . , (𝑝−1)/2}which is used to derive the random curve points. Then it
outputs two points 𝑃0 ∈ 𝐸𝑎,𝑑 [𝜋−1] and 𝑃1 ∈ 𝐸𝑎,𝑑 [𝜋+1]. Themethod of [CCC+19] requires 8𝑴+3𝑺+16𝑨
plus one square test for the Legendre symbol, which we slightly improved by saving 2𝑨. Our 2-way
implementation of the Elligator 2 map is based on [CCC+19], and it is presented in Algorithm 5.8, with
total cost 5𝑴2 + 1𝑺2 + 9𝑨2 plus the square test for the Legendre symbol. Specically, the value 𝑢 will
be used to derive the random curve points, and the Montgomery constant 𝑅 is used to map the random
value 𝑢 to the Montgomery domain. The algorithm rst generates the two points using 𝑋𝑍 -coordinate
representation, namely 𝑃0 = (𝑋0 : 𝑍0) and 𝑃1 = (𝑋1 : 𝑍1) on the birationally equivalent Montgomery
curve, 𝐶 ′𝑌 2𝑍 2 = 𝐶 ′𝑋 3𝑍 + 𝐴′𝑋 2𝑍 2 + 𝐶 ′𝑋𝑍 3, where 𝐴′ = 2(𝑎 + 𝑑) and 𝐶 ′ = 𝑎 − 𝑑 . More precisely, the
two points are dened as:

𝑃0 = (𝐴′ + 𝛼𝐶 ′(𝑢2 − 1) : 𝐶 ′(𝑢2 − 1)) and 𝑃1 = (−𝐴′𝑢2 − 𝛼𝐶 ′(𝑢2 − 1) : 𝐶 ′(𝑢2 − 1)),

where 𝛼 = 0, if 𝐴′ ≠ 0; and 𝛼 = 𝑢, if 𝐴′ = 011. Then, the algorithm converts the two points in twisted
Edwards form, using 𝑌𝑇 -coordinate representation, at line 17 and 18. This is relatively cheap, since it
requires only 2𝑨2 operations, namely

𝑃0 = (𝑌0 : 𝑇0) = (𝑋0 − 𝑍0 : 𝑋0 + 𝑍0) and 𝑃1 = (𝑌1 : 𝑇1) = (𝑋1 − 𝑍1 : 𝑋1 + 𝑍1).
11Given a point 𝑃 = (𝑋 : 𝑌 : 𝑍) on a Montgomery curve in projective form, the 𝑋𝑍 -coordinate representation of 𝑃 is

𝑃 = (𝑋 : 𝑍), where 𝑥 = 𝑋/𝑍 is the 𝑥 coordinate of 𝑃 in ane form.

65

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.9: 2-way implementation for 𝑌𝑇 -coordinate point doubling.
Input: A point 𝑃 = (𝑌𝑃 : 𝑇𝑃) on the curve 𝐸𝑎,𝑑 and the values (𝐴0 : 𝐴1) = (𝑎 : 𝑎 − 𝑑).
Output: The point 𝑅 = [2]𝑃 = (𝑌𝑅 : 𝑇𝑅).

1 𝑡0 ← 𝑌 2
𝑃

𝑠0 ← 𝑇 2
𝑃

2 𝑡1 ← 𝑠0 − 𝑡0
3 𝑡2 ← 𝐴0 × 𝑡1 𝑠2 ← 𝐴1 × 𝑡0
4 𝑡3 ← 𝑠2 + 𝑡2
5 𝑡0 ← 𝑡1 × 𝑡3 𝑠0 ← 𝑠2 × 𝑠0
6 𝑌𝑅 ← 𝑠0 − 𝑡0 𝑇𝑅 ← 𝑠0 + 𝑡0
7 return 𝑅 = (𝑌𝑅 : 𝑇𝑅)

Algorithm 5.10: 2-way implementation for 𝑌𝑇 -coordinate (dierential) addition.
Input: Points 𝑃 = (𝑌𝑃 : 𝑇𝑃), 𝑄 = (𝑌𝑄 : 𝑇𝑄) and 𝑃𝑄 = (𝑌𝑃−𝑄 : 𝑇𝑃−𝑄) on 𝐸𝑎,𝑑 .
Output: The point 𝑅 = 𝑃 +𝑄 = (𝑌𝑅 : 𝑇𝑅).

1 𝑡0 ← 𝑇𝑃−𝑄 + 𝑌𝑃−𝑄 𝑠0 ← 𝑇𝑃−𝑄 − 𝑌𝑃−𝑄
2 𝑡1 ← 𝑌𝑃 ×𝑇𝑄 𝑠1 ← 𝑌𝑄 ×𝑇𝑃
3 𝑡2 ← 𝑡1 − 𝑠1 𝑠2 ← 𝑡1 + 𝑠1
4 𝑡2 ← 𝑡22 𝑠2 ← 𝑠22
5 𝑡1 ← 𝑡0 × 𝑡2 𝑠1 ← 𝑠0 × 𝑠2
6 𝑌𝑅 ← 𝑠1 − 𝑡1 𝑇𝑅 ← 𝑠1 + 𝑡1
7 return 𝑅 = (𝑌𝑅 : 𝑇𝑅)

At line 16, we use the constant time function issquare to check whether the value

𝑡3 = 𝛼 (𝑢2 + 1) +𝐴′𝐶 ′(𝑢2 − 1) ((𝐴′𝑢)2 + (𝐶 ′(𝑢2 − 1))2)

is a square in F𝑝 . If it is a square (𝑚 = 1), then the generated point lies on 𝐸𝑎,𝑑 , otherwise (𝑚 = 0), the
point lies on the quadratic twist of 𝐸𝑎,𝑑 . At the nal step (line 19), the two points are swapped according
to𝑚, so that the point 𝑃0 ∈ 𝐸𝑎,𝑑 [𝜋 − 1] and 𝑃1 ∈ 𝐸𝑎,𝑑 [𝜋 + 1].

Point doubling. For a point 𝑃 = (𝑌𝑃 : 𝑇𝑃) on the curve 𝐸𝑎,𝑑 , the point 𝑅 = [2]𝑃 is dened as:

𝑌𝑅 = 𝑒𝑌 2
𝑃𝑇

2
𝑃 − (𝑇 2

𝑃 − 𝑌 2
𝑃) (𝑒𝑌 2

𝑃 + 𝑎(𝑇 2
𝑃 − 𝑌 2

𝑃))
𝑇𝑅 = 𝑒𝑌 2

𝑃𝑇
2
𝑃 + (𝑇 2

𝑃 − 𝑌 2
𝑃) (𝑒𝑌 2

𝑃 + 𝑎(𝑇 2
𝑃 − 𝑌 2

𝑃)),

where 𝑒 = 𝑎 − 𝑑 [CCC+19]. Algorithm 5.9 describes our 2-way doubling process using 𝑌𝑇 -coordinate
arithmetic, with cost 2𝑴2 + 1𝑺2 + 3𝑨2.

Point addition. For point addition, we use the formulas that are presented in [CCC+19]. These
formulas correspond to the dierential addition using 𝑌𝑇 -coordinates on twisted Edwards curves. In
particular, let 𝑃 = (𝑌𝑃 : 𝑇𝑃) and 𝑄 = (𝑌𝑄 : 𝑇𝑄) be two points on the curve and let 𝑃𝑄 = 𝑃 − 𝑄 =

(𝑌𝑃−𝑄 : 𝑇𝑃−𝑄). The point 𝑅 = 𝑃 + 𝑄 is derived from the coordinates of the points 𝑃,𝑄 and 𝑃𝑄 , using
the formulas:

𝑌𝑅 = (𝑇𝑃−𝑄 − 𝑌𝑃−𝑄) (𝑌𝑃𝑇𝑄 + 𝑌𝑄𝑇𝑃)2 − (𝑇𝑃−𝑄 + 𝑌𝑃−𝑄) (𝑌𝑃𝑇𝑄 − 𝑌𝑄𝑇𝑃)2
𝑇𝑅 = (𝑇𝑃−𝑄 − 𝑌𝑃−𝑄) (𝑌𝑃𝑇𝑄 + 𝑌𝑄𝑇𝑃)2 + (𝑇𝑃−𝑄 + 𝑌𝑃−𝑄) (𝑌𝑃𝑇𝑄 − 𝑌𝑄𝑇𝑃)2,

Algorithm 5.10 is the 2-way (dierential) addition process using 𝑌𝑇 -coordinate arithmetic with cost
2𝑴2 + 1𝑺2 + 3𝑨2.

66

5.4. IMPLEMENTATION: LOW-LATENCY UNBATCHED SOFTWARE

Algorithm 5.11: 2-way ℓ-isogeny computation, with ℓ = 2𝑘 + 1.
Input: Point 𝑃 = (𝑌𝑃 : 𝑇𝑃), (𝐴0 : 𝐴1) = (𝑎 : 𝑎 − 𝑑), ℓ = 2𝑘 + 1.
Output: Curve (𝐴′0 : 𝐴′1) = (𝑎′ : 𝑎′ − 𝑑 ′), list {𝑃1 = (𝑌1 : 𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)}.

1 (ℓ)2 ← (𝑏𝑛, . . . , 𝑏0)2 binary representation of ℓ
2 𝑡1 ← 𝐴0 −𝐴1
3 𝑡0 ← 𝐴0, 𝑌1 ← 𝑌𝑃 , 𝑌𝑄 ← 𝑌𝑃 𝑠0 ← 𝑡1, 𝑇1 ← 𝑇𝑃 , 𝑇𝑄 ← 𝑇𝑃
4 𝑃2 ← [2]𝑃 = (𝑌2 : 𝑇2) /* point doubling */
5 for 𝑖 from 3 to 𝑘 by 1 do
6 𝑌𝑄 ← 𝑌𝑄 × 𝑌𝑖−1 𝑇𝑄 ← 𝑇𝑄 ×𝑇𝑖−1
7 𝑃𝑖 ← 𝑃𝑖−1 + 𝑃 = (𝑌𝑖 : 𝑇𝑖) /* point addition */
8 end

9 𝑡2 ← 𝑌𝑄 × 𝑌𝑘 𝑠2 ← 𝑇𝑄 ×𝑇𝑘
10 𝑚 ← isequal(ℓ, 3)
11 cswap(𝑌𝑄 , 𝑡2, 1 −𝑚) cswap(𝑇𝑄 , 𝑠2, 1 −𝑚)
12 for 𝑖 from 𝑛 − 1 to 0 by 1 do
13 𝑡0 ← 𝑡20 𝑠0 ← 𝑠20
14 if 𝑏𝑖 = 1 then
15 𝑡0 ← 𝑡0 ×𝐴0 𝑠0 ← 𝑠0 × 𝑡1
16 end

17 end

18 for 𝑖 from 0 to 2 by 1 do
19 𝑌𝑄 ← 𝑌 2

𝑄
𝑇𝑄 ← 𝑇 2

𝑄

20 end

21 𝐴′0 ← 𝑡0 ×𝑇𝑄 𝐴′1 ← 𝑠0 × 𝑌𝑄
22 𝐴′1 ← 𝐴′0 −𝐴′1
23 return (𝐴′0 : 𝐴′1), {𝑃1 = (𝑌1 : 𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)}

ℓ-isogeny computation. Algorithm 5.11 describes the procedure for computing an isogeny of some
odd degree ℓ , using 𝑌𝑇 -coordinate representation on twisted Edwards curves. The algorithm takes as
input the values 𝐴0 = 𝑎,𝐴1 = 𝑎 − 𝑑 , where 𝐸𝑎,𝑑 is an elliptic curve in twisted Edwards form, a point
𝑃 = (𝑌𝑃 : 𝑇𝑃) and the degree of the isogeny ℓ = 2𝑘+1. Then the algorithm computes the codomain curve
𝐸𝑎′,𝑑′ and the list of points {𝑃1 = (𝑌1 : 𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)}, where 𝑃𝑖 = [𝑖]𝑃 , for each 𝑖 ∈ {1, . . . , 𝑘}.
Based on the work of Moody and Shumow [MS16], the coecients of the codomain curve are dened
as:

𝑎′ = 𝑎ℓ
(

𝑘∏
𝑖=1

𝑇𝑖

)8
and 𝑑 ′ = 𝑑ℓ

(
𝑘∏
𝑖=1

𝑌𝑖

)8
.

Algorithm 5.11 outputs the values 𝐴′0 = 𝑎′ and 𝐴′1 = 𝑎′ − 𝑑 ′, as well as the list of points {𝑃1 = (𝑌1 :
𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)}.

ℓ-isogeny evaluation. Algorithm 5.12 computes the image 𝑅 = (𝑌𝑅 : 𝑇𝑅) of a point 𝑄 = (𝑌𝑄 : 𝑇𝑄)
under an isogeny of odd degree ℓ = 2𝑘 + 1, that is computed with Algorithm 5.11. In particular, the
algorithm takes as input the point 𝑄 and the list of points {𝑃1 = (𝑌1 : 𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)} that was
computed in Algorithm 5.12, where 𝑃 is the kernel point and 𝑃𝑖 = [𝑖]𝑃 , for each 𝑖 ∈ {1, . . . , 𝑘}. Based

67

CHAPTER 5. VECTORIZED CSIDH

Algorithm 5.12: 2-way ℓ-isogeny evaluation, with ℓ = 2𝑘 + 1.
Input: Point 𝑄 = (𝑌𝑄 : 𝑇𝑄) and list {𝑃1 = (𝑌1 : 𝑇1), . . . , 𝑃𝑘 = (𝑌𝑘 : 𝑇𝑘)}.
Output: The point 𝑅 = 𝜙 (𝑄) = (𝑌𝑅 : 𝑇𝑅).

1 𝑡0 ← 𝑌𝑄 ×𝑇1 𝑠0 ← 𝑇𝑄 × 𝑌1
2 𝑌𝑅 ← 𝑡0 + 𝑠0 𝑇𝑅 ← 𝑡0 − 𝑠0
3 for 𝑖 from 2 to 𝑘 by 1 do
4 𝑡0 ← 𝑌𝑄 ×𝑇𝑖 𝑠0 ← 𝑇𝑄 × 𝑌𝑖
5 𝑡1 ← 𝑡0 + 𝑠0 𝑠1 ← 𝑡0 − 𝑠0
6 𝑌𝑅 ← 𝑌𝑅 × 𝑡1 𝑇𝑅 ← 𝑇𝑅 × 𝑠1
7 end

8 𝑌𝑅 ← 𝑌 2
𝑅

𝑇𝑅 ← 𝑇 2
𝑅

9 𝑡0 ← 𝑇𝑄 + 𝑌𝑄 𝑠0 ← 𝑇𝑄 − 𝑌𝑄
10 𝑡0 ← 𝑡0 × 𝑌𝑅 𝑠0 ← 𝑠0 ×𝑇𝑅
11 𝑌𝑅 ← 𝑡0 − 𝑠0 𝑇𝑅 ← 𝑡0 + 𝑠0
12 return 𝑅 = (𝑌𝑅 : 𝑇𝑅)

on the formulas provided in [CCC+19], the image 𝑅 of 𝑄 has coecients:

𝑌𝑅 = (𝑇𝑄 + 𝑌𝑄)
(

𝑘∏
𝑖=1
(𝑌𝑄𝑇𝑖 +𝑇𝑄𝑌𝑖)

)2
− (𝑇𝑄 − 𝑌𝑄)

(
𝑘∏
𝑖=1
(𝑌𝑄𝑇𝑖 −𝑇𝑄𝑌𝑖)

)2
𝑇𝑅 = (𝑇𝑄 + 𝑌𝑄)

(
𝑘∏
𝑖=1
(𝑌𝑄𝑇𝑖 +𝑇𝑄𝑌𝑖)

)2
+ (𝑇𝑄 − 𝑌𝑄)

(
𝑘∏
𝑖=1
(𝑌𝑄𝑇𝑖 −𝑇𝑄𝑌𝑖)

)2
The total cost for our 2-way isogeny evaluation, that is described in Algorithm 5.12 is 2𝑘𝑴2 +1𝑺2 + (𝑘 +
2)𝑨2.

Higher-layer arithmetic. At the top layer, we respectively implemented an OAYT-style group ac-
tion and a dummy-free-style group action according to [CCC+19].

5.5 Evaluation

We downloaded the original CSIDH software [CLM+18], all the OAYT-style and dummy-free-style
constant-time CSIDH software including [OAYT19], [CCC+19], [HLKA20] and [CR22]. All the source
codes are publicly available. In particular, the source code of [CLM+18] is available at CSIDH website12,
while the authors of [CCC+19], [HLKA20] and [CR22] provided their source code links in their articles.
In addition, although the authors of [OAYT19] did not give the link of their source code in the article,
we found the source code repository of the implementation in [OAYT19] on GitHub13.

In order to gure out the real improvement of our work, we benchmarked our software and the
CSIDH group action evaluation of all the above implementations on an Intel Core i3-1005G1 Ice Lake
CPU clocked at 1.2GHz. All source codes were compiled with GCC version 9.3.0 and Turbo boost was
disabled during the performance measurements. The results of the OAYT-style implementations are
shown in Table 5.3, where the speedup ratio is dened by comparing the “CPU-cycles/#instances” be-
tween the baseline and the specic implementation, i.e., the normalized throughput. We use [CCC+19]
as baseline, because in this waywe know precisely howmuch our vector processing techniques improve
the results (note that [CCC+19] also served as baseline in other papers, e.g., [HLKA20, CR22]).

12https://csidh.isogeny.org/software.html.
13https://github.com/hiroshi-onuki/constant-time-csidh.

68

https://csidh.isogeny.org/software.html
https://github.com/hiroshi-onuki/constant-time-csidh

5.5. EVALUATION

Table 5.3: Benchmark of OAYT-style CSIDH-512 group action implementations on the Ice Lake Core
processor.

Implementation ISA/ISE Vectorization #Inst. CPU-Cycles Speedup†

[CLM+18]‡ x64 1-way 1 133.7M 1.52×
[OAYT19] x64 1-way 1 248.4M 0.82×
[CCC+19] x64 1-way 1 203.6M 1.00×
[HLKA20] x64 1-way 1 194.7M 1.05×
[CR22] x64 1-way 1 195.0M 1.04×
Low-latency AVX-512F (2 × 4)-way 1 232.2M 0.88×

This Extra-dummy AVX-512F (8 × 1)-way 8 858.0M 1.90×
work Extra-innity AVX-512F (8 × 1)-way 8 1003.9M 1.62×

Combined AVX-512F (8 × 1)-way 8 850.1M 1.92×
Low-latency IFMA (2 × 4)-way 1 132.1M 1.54×

This Extra-dummy IFMA (8 × 1)-way 8 454.1M 3.59×
work Extra-innity IFMA (8 × 1)-way 8 550.5M 2.96×

Combined IFMA (8 × 1)-way 8 446.9M 3.64×
† The speedup ratio is calculated with “CPU-cycles/#instances” and uses [CCC+19] as the baseline.
‡ This implementation is not constant-time.

Table 5.4: Benchmark of dummy-free-style CSIDH-512 group action implementations on the Ice Lake
Core processor.

Implementation ISA/ISE Vectorization #Inst. CPU-cycles Speedup†

[CCC+19] x64 1-way 1 433.3M 1.00×
[CR22] x64 1-way 1 394.3M 1.10×
Low-latency AVX-512F (2 × 4)-way 1 447.0M 0.97×

This Extra-dummy AVX-512F (8 × 1)-way 8 1811.0M 1.91×
work Extra-innity AVX-512F (8 × 1)-way 8 2172.3M 1.60×

Combined AVX-512F (8 × 1)-way 8 1801.4M 1.92×
Low-latency IFMA (2 × 4)-way 1 253.8M 1.71×

This Extra-dummy IFMA (8 × 1)-way 8 967.0M 3.58×
work Extra-innity IFMA (8 × 1)-way 8 1220.5M 2.84×

Combined IFMA (8 × 1)-way 8 955.3M 3.63×
† The speedup ratio is calculated with “CPU-cycles/#instances” and uses [CCC+19] as the baseline.

OATY-style implementation. As shown in Table 5.3, our 2-way low-latency IFMA implementation
has roughly the same latency as the original non-constant-time implementation in [CLM+18], and it is
about 1.5 times faster than the x64 implementation of [CCC+19]. Our (8 × 1)-way IFMA implementa-
tion, when applied with the combined batching method, takes 446.9M clock cycles for eight parallel
instances, which represents a 3.64 times higher throughput compared to the x64 implementation in
[CCC+19]. An analysis of the execution times of our (8 × 1)-way software shows that all the IFMA
implementations are nearly 1.9 times faster than the corresponding AVX-512F implementations, which
conrms that the IFMA extension indeed signicantly accelerates CSIDH compared to general AVX-
512F.

Dummy-free-style implementation. The benchmarking results of dummy-free-style implemen-
tations are summarized in Table 5.4. These results show that our proposed batching methods still work
eciently when applied to the dummy-free-style CSIDH group action and can yield an up to 3.63 times
higher throughput compared to the x64 implementation in [CCC+19].

69

CHAPTER 5. VECTORIZED CSIDH

Analysis: high-throughput implementation. ThoughAVX-512 canwork on eight 64-bit elements
simultaneously with a single instruction, the theoretical maximum speedup factor of an AVX-512 im-
plementation (compared to x64 implementation) of isogeny-based crypto is actually far from eight.
The main reason is the multiplier. An x64 implementation executed on an Ice Lake Core CPU has to
use a single multiplier sequentially, but this multiplier can execute a full (64 × 64 → 128)-bit mul-
tiplication, which is very benecial for the eld arithmetic. On the other hand, AVX-512F can exe-
cute eight (64 × 64 → 64)-bit multiplications (vpmullq) or eight (32 × 32 → 64)-bit multiplications
(vpmuludq/vpmuldq) in parallel, whereby the latter is typically used in multi-precision arithmetic. An
AVX-512IFMA instruction can perform eight multiplications on 52-bit operands, but the result is either
the lower half or the upper half of the eight 104-bit products, i.e., two IFMA instructions are necessary.
Taking the multiplication of 512-bit integers using the schoolbook method as example, an x64 imple-
mentation needs 82 = 64 mul instructions for one instance, while AVX-512F needs at least 162 = 256
vectorized mul instructions for eight instances (a radix-229 representation would even need more in-
structions) and AVX-512IFMA requires 102 · 2 = 200 IFMA instructions for eight instances. Since the
CPI of these mul instructions is same on Ice Lake Core CPU (see [Int20]), the approximate speed-up
(compared to an x64 implementation) of AVX-512F and AVX-512IFMA is a factor of 2.0 and 2.56, respec-
tively. This is also the case for the Montgomery reduction. As we mentioned before in Section 5.3.6,
the eld multiplication signicantly aects the performance of CSIDH so that the theoretical maximum
speedup factor of AVX-512 for CSIDH group action evaluation should be far from 8. Taking this analysis
into account, our throughput-optimized AVX-512 implementations have the expected speed-ups.

Analysis: low-latency implementation. As for the latency-optimized implementation, a 2-way
IFMA latency-optimized implementation of SIKEp503 was presented by Kostic and Gueron in [KG19],
which is 1.72 times faster than the x64 assembly implementation of SIKEp503. We can thus conclude
that our 2-way IFMA low-latency implementations (which achieve speed-up factors of 1.54 and 1.71, re-
spectively) also correspond to the expected acceleration. There are several reasons that make the 2-way
latency-optimized implementation less ecient than the throughput-optimized implementation, in-
cluding 1) the overheads caused by aligning and blending AVX-512 vectors in 2-way curve and isogeny
operations; 2) the fact that some point operations (e.g., 𝑦-coordinate doubling and Elligator 2) can not
be parallelized in an ideal14 2-way fashion due to the dependencies of internal eld operations; 3) some
computations in the eld operations (e.g., the complete carry propagation) cannot be parallelized in
an ideal (2 × 4)-way fashion due to sequential dependencies of instructions; 4) the instruction-level
parallelism of (2 × 4)-way is lower than (2 × 4)-way since four limbs are stored in one vector. For all
these reasons and because of the 32-bit multiplier in AVX-512F, the 2-way AVX-512F implementation
is actually slower than the x64 implementation, which is conrmed by our experimental results.

5.6 Conclusion

Summary. Vector engines like Intel’s AVX have become steadily more powerful from one generation
to the next, not only because of the addition of new functionality, but also through the extension of
the supported vector lengths. The expectation of this trend to continue in the coming years makes
AVX an important platform for the implementation of PQC, in particular for computation-intensive
isogeny-based cryptosystems. Although CSIDH has a couple of highly-desirable and unique features,
the massive computational cost of the underlying class group action hampers its deployment in security
protocols like TLS. In this work we demonstrated how the enormous parallel processing power of
AVX-512 can be exploited to, respectively, maximize the throughput of eight instances and minimize

14We dene an ideal 2-way parallelized fashion of point or isogeny operation has the cost of 𝑖
2𝑴

2 + 𝑗
2 𝑺

2 + 𝑘
2𝑨

2 when the
corresponding 1-way implementation has the cost of 𝑖𝑴 + 𝑗𝑺 + 𝑘𝑨.

70

5.6. CONCLUSION

the latency of one instance of CSIDH-512 group action evaluation; the former alleviates the burden
of server-side TLS processing, while the latter is benecial on the client side. Our latency-optimized
implementation makes CSIDH-512 group action evaluation roughly 1.5 times faster compared to a
state-of-the-art non-vectorized x64 implementation that can resist timing attacks. On the other hand,
by developing ecient batching methods for the class group action and combining them with highly-
optimized (8 × 1)-way parallel eld arithmetic based on the “limb-slicing” technique, we were able to
achieve a 3.6-fold gain in throughput compared to a state-of-the-art x64 implementation of the CSIDH-
512 group action evaluation. In light of this signicant improvement, we expect that our batching
methods are also highly benecial for optimizing CSIDH-based digital signature schemes, such as CSI-
FiSh [BKV19] and SeaSign [DG19], in which multiple independent class group actions are computed in
the key generation, signing and verication processes.

Migration to a larger prime eld. The correct parameterization of CSIDH (including the order of
the underlying prime eld) to achieve NIST’s security level 1 is currently still a topic of debate. It was
suggested that, for level-1 security, the prime 𝑝 should be much longer than 512 bits, e.g., 4096 bits
[CCJR20]. Our CSIDH software was developed in a modular and parameterized way so as to reduce the
eort when adapting it for other parameter sets since the point arithmetic (e.g., point addition, point
doubling, scalar multiplication) and also certain parts of the eld arithmetic can be re-used.

71

CHAPTER 5. VECTORIZED CSIDH

72

CHAPTER

6

VECTORIZED SIKE

This Chapter is based on our paper [CFGR22]. While we were conducting the research work described
in this Chapter, the NIST PQC standardization process was in its third round, and the destructive attacks
on SIDH/SIKE, i.e., [CD23, MMP+23, Rob23], had not yet been published.

6.1 Introduction

SIKE. The Supersingular Isogeny Key Encapsulation (SIKE) protocol [JAC+22] is one of the alter-
nate candidates for quantum-safe key encapsulation retained by the NIST. Its main attractions are rela-
tively short secret and public keys, making it somewhat comparable with conventional (“pre-quantum”)
elliptic-curve key exchange protocols like ECDH and X25519 [HMV04]. Furthermore, since the low-
level arithmetic of SIKE is basically long-integer arithmetic, implementers can (potentially) re-use ex-
isting hardware accelerators and software libraries for pre-quantum cryptosystems like RSA and ECC.
SIKE is based on the Supersingular Isogeny Die-Hellman (SIDH) key exchange, which was proposed
by Jao and De Feo in 2011 [JD11] as a post-quantum cryptosystem whose security rests on the diculty
of nding isogenies between supersingular curves. In short, SIKE applies a Fujisaki-Okamoto transfor-
mation [HHK17] on SIDH to obtain a Key-Encapsulation Mechanism (KEM) that is secure against Cho-
sen Ciphertext Attacks (CCA). State-of-the-art parameter sets for SIKE use supersingular curves over
quadratic extension elds of prime characteristic, where the length of the prime is between 434 and
751 bits. The main drawback of SIKE is high computing costs and long latency, caused mainly by the
serial computation of these isogenies, which represents a serious bottleneck for practical applications.
For example, the currently fastest software implementation of SIKE for the ARM Cortex-M4 platform
[AAK21] is more than two orders of magnitude slower than the best lattice-based KEMs benchmarked
in [PQM4]. Therefore, optimization techniques to accelerate SIDH and SIKE are an important topic in
PQC research.

Performance optimizations for SIKE. An analysis of the academic literature on performance op-
timizations for SIDH and SIKE shows that past research can be broadly divided into two categories.
Research in the rst category is concerned with mathematical techniques and higher-level arithmetic
optimizations to make the point arithmetic and isogeny computations more ecient, see e.g., [CLN16,

73

CHAPTER 6. VECTORIZED SIKE

ABJK18, FLOR18, COR22]. The second category covers research on software optimizations for the un-
derlying eld arithmetic, whereby the modular reduction received particular attention [SLLH18, BF20,
BI21, TWL+22]. Most of the highly-tuned implementations published in the literature adopt the Mont-
gomery modular reduction method [Mon85] since it is extremely ecient in software. The very rst
implementation of SIDH was introduced roughly 10 years ago [JD11] and uses the GMP library for
the low-level arithmetic. Since then, many implementations of SIDH or SIKE with dedicated eld-
arithmetic functions written in Assembly language have been developed. Microsoft’s PQCrypto-SIDH
library, which is available on GitHub under MIT license, contains the to-date fastest x64 Assembler
implementation of SIKE. This library features most of the improvements and optimizations that were
presented in the literature to accelerate the SIKE protocol and make it more practical. However, despite
a large body of research on fast software implementation, SIKE is still signicantly slower than other
post-quantum KEMs, in particular the lattice-based third-round NIST candidates.

Intel x64 architecture and vector extensions. The 64-bit Intel architecture (i.e., x64) serves as
the main benchmarking platform to analyze and compare the eciency of the NIST PQC candidates.
Besides the x64 base instruction set, 64-bit Intel processors also support dierent kinds of vector in-
structions for a SIMD-parallel execution of workloads. Vector extensions for the Intel architecture have
a history that stretches back some 25 years and began with the introduction of the MMX extensions
for the 32-bit x86 architecture. Thereafter came numerous generations of Streaming SIMD Extensions
(SSE), which support vectors of a length of 128 bits, and Advanced Vector eXtensions (AVX). The most
recent new member of the AVX family is AVX-512, which augments the execution environment of x64
by 32 registers of a length of 512 bits and various new instructions. These instructions can operate on
e.g., sixteen 32-bit elements or eight 64-bit elements in a SIMD-parallel fashion. AVX-512 comprises a
set of core instructions called AVX-512F and multiple extensions that are optional and may be imple-
mented independently. One of these optional extensions provides the so-called “Integer Fused Multiply
and Add” (IFMA) instructions, which were designed to speed up big-integer arithmetic [GK16]. The
IFMA extension is supported by all mobile and workstation/server processors code-named “Ice Lake”
and their successors1.

Contributions. In this work, we study how the massive parallel processing capabilities of the latest
generation of the AVX vector engines, in particular AVX-512IFMA, can be used to improve the eciency
of SIKE-based key encapsulation. Since AVX-512IFMA is a relatively recent extension of the AVX-512
architecture, it is still (widely) unexplored how its new instructions can be used to speed up SIKE. To
our knowledge, there exists currently only one publication dealing with AVX-512 optimizations for
SIKE, namely the ARITH 2019 paper of Kostic and Gueron [KG19], but their work focuses solely on the
low-level eld arithmetic, i.e., they did not explore avenues for parallel processing at the higher levels
of SIKE. Hence, it is still unknown how AVX-512IFMA can be exploited to unleash the full potential of
modern Intel processors for executing SIKE and what latency (resp. throughput) a carefully optimized
implementation could achieve.

The present paper aims to ll this gap by introducing novel techniques to parallelize (and speed
up) the eld arithmetic, point arithmetic, and isogeny computations. At the lowest level, we present
a carefully-optimized library for arithmetic operations in F𝑝 and F𝑝2 that uses a radix-251 representa-
tion for the operands (i.e., 51 bits/limb) and adopts Montgomery’s algorithm for modular reduction.
We developed dierent variants of this arithmetic library, including one that minimizes the latency of
two (resp. four) instances of an arithmetic operation, and one that maximizes the throughput of eight

1According to Intel there exist currently 13 “Ice Lake” processors for the mobile segment and 43 “Ice Lake” processors
for the workstation/server segment, see https://ark.intel.com/content/www/us/en/ark/products/codename/74979/
products-formerly-ice-lake.html.

74

https://ark.intel.com/content/www/us/en/ark/products/codename/74979/products-formerly-ice-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/74979/products-formerly-ice-lake.html

6.2. BACKGROUND

instances using the so-called limb-slicing technique2. At the medium level, we describe techniques for
parallel point arithmetic operations on Montgomery curves, whereby we paid special attention to nd
viable trade-os between the number of parallel instances of point and eld operations, respectively.
Finally, at the highest layer, we discuss various approaches for vectorized isogeny computation and key
encapsulation. All these parallel processing techniques are combined in AvxSike, an optimized imple-
mentation of SIKE using Intel’s AVX-512IFMA instructions. AvxSike supports all four (uncompressed)
parameter sets given in [JAC+22] and comes with a low-latency version and a high-throughput version
of SIKE, which we call AvxSike-LL and AvxSike-HT, respectively. Both versions are resistant against
timing-based side-channel attacks in the sense that they do not contain any secret-dependent condi-
tional statements or memory accesses. Our latency-optimized AvxSike instantiated with the SIKEp503
parameters is about 1.5 times faster than the AVX-512IFMA-based SIKE software presented in [KG19].
It also outperforms Microsoft’s x64 Assembler implementation3 of SIKE by a factor of about 2.5 for
both key generation and decapsulation, and even 3.2 for encapsulation, when benchmarked on an Intel
Core i3-1005G1 processor. Furthermore, our throughput-optimized AvxSike reaches an up to 4.6-fold
higher throughput than Microsoft’s SIKE library.

Source code. The source code of our AvxSike software is available online at https://gitlab.uni.
lu/apsia/avxsike. This repository contains both the low-latency version AvxSike-LL and the high-
throughput version AvxSike-HT.

Organization. In Section 6.2, we review the SIKE key encapsulation mechanism and describe our
target platform (focussing on the AVX-512IFMA vector instructions) as well as the experimental envi-
ronment for collecting benchmarking results. Then, from Section 6.3 to Section 6.6, we introduce our
AvxSike software layer by layer. Section 6.3 explains two dierent types of vectorized integer multi-
plication and Montgomery reduction. Various vectorized implementations of quadratic extension-eld
operations are described in detail in Section 6.4. Later, in Section 6.5, we focus on vectorized imple-
mentations of arithmetic operations on Montgomery curves. In Section 6.6, we present a low-latency
version and a high-throughput version of AvxSike, our vectorized SIKE software. We compare the
performance of AvxSike, Microsoft’s SIDHv3.4 assembly library, and the IFMA-based SIKEp503 imple-
mentation of Kostic and Gueron in Section 6.7. Finally, in Section 6.8, we draw conclusions and discuss
avenues for future work.

6.2 Background

We start with a summary of the mathematical background of isogenies of elliptic curves and proceed
with a concise description of the SIKE mechanism [JAC+22]. Later, we give an overview of the AVX-512
instruction set architecture and introduce our experimental environment for performance measure-
ments.

Isogeny. Let 𝐸 and 𝐸 ′ be two elliptic curves over a nite eld F𝑞 of prime characteristic 𝑝 . An isogeny
𝜙 : 𝐸 → 𝐸 ′ dened over F𝑞 is a non-constant rational map dened over F𝑞 , which is also a group ho-
momorphism from 𝐸 (F𝑝) to 𝐸 ′(F𝑝). And we say 𝐸, 𝐸 ′ are isogenous if and only if #𝐸 (F𝑞) = #𝐸 ′(F𝑞)
[Tat66]. In isogeny-based cryptography, we are interested in separable isogenies [JD11]. Such isogenies

2Limb-slicing uses a “reduced-radix” representation for the operands and is somewhat similar to the bit-slicing technique
used in symmetric cryptography, i.e., it allows one to compute a batch of arithmetic operations in a SIMD-parallel way, which
increases throughput at the expense of latency [CGT+20].

3We used version 3.4 of Microsoft’s PQCrypto-SIDH library (i.e., SIDHv3.4), which is available on GitHub at https:
//github.com/Microsoft/PQCrypto-SIDH, as starting point for our work and the x64 assembly implementation of SIKE
contained in this library as baseline for performance comparisons.

75

https://gitlab.uni.lu/apsia/avxsike
https://gitlab.uni.lu/apsia/avxsike
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH

CHAPTER 6. VECTORIZED SIKE

have nite kernel and their degree is dened as deg𝜙 = # ker𝜙 . In addition, given an elliptic curve 𝐸
over F𝑞 and a nite subgroup 𝐺 ⊆ 𝐸 (F𝑞), there exists a unique isogeny 𝜙 : 𝐸 → 𝐸 ′ = 𝐸/𝐺 , with
ker(𝜙) = 𝐺 and deg(𝜙) = #𝐺 . Isogeny-based cryptosystems generally use supersingular elliptic curves
of smooth order since they facilitate the computation of isogenies of exponentially large degree by
composing lower-degree isogenies that can be eciently computed with Vélu’s formulæ [Vél71]. Fur-
thermore, every supersingular elliptic curve 𝐸 dened over F𝑞 can also be dened over F𝑝2 , in which
case #𝐸 (F𝑝2) = (𝑝 + 1)2.

Montgomery curve. In the SIKE protocol, supersingular elliptic curves are represented using the
Montgomery model [JAC+22]. A Montgomery curve in ane form is given by the equation 𝐸 (𝑎,𝑏) :
𝑏𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑥 , where 𝑎, 𝑏 ∈ F𝑝2 and 𝑏 (𝑎2 − 4) ≠ 0. It is often benecial to work in the projective
form, both in terms of curve points and curve coecients. In this case, we write 𝐸 (𝐴:𝐵:𝐶) : 𝐵𝑌 2𝑍 =

𝐶𝑋 3 + 𝐴𝑋 2𝑍 + 𝐶𝑋𝑍 2 with 𝑎 = 𝐴/𝐶 , 𝑏 = 𝐵/𝐶 , and (𝑥,𝑦) = (𝑋/𝑍,𝑌/𝑍). Montgomery curves are
well known for ecient point arithmetic on their Kummer line, originally proposed in [Mon87], which
entirely ignores the projective 𝑌 coordinate. In addition, they allow one to ignore the coecient 𝐵 in
point operations and isogeny computations. Consequently, we will denote by 𝐸 (𝐴:𝐶) a Montgomery
curve with 𝐵 = 1 and by 𝑃 = (𝑋𝑃 : 𝑍𝑃) a point on the curve.

6.2.1 Supersingular Isogeny Key Encapsulation (SIKE)

SIKE is a key encapsulation mechanism from the family of isogeny-based schemes. It was inspired by
the SIDH protocol of Jao and De Feo [JD11] and is currently evaluated as an alternate candidate in the
NIST PQC standardization process [AAC+22].

Public parameters. We x two positive integers 𝑒2 and 𝑒3 such that 𝑝 = 2𝑒23𝑒3 − 1 is prime. Primes
of this form are Montgomery-friendly, meaning that they allow for some optimizations of the modular
arithmetic, see e.g., [CLN16]. We dene the two key spacesK2 = {0, . . . , 2𝑒2−1} andK3 = {0, . . . , 3𝑒3−1}
for sampling secret keys. Further, we also x a starting supersingular elliptic curve 𝐸0 : 𝑦2 = 𝑥3+6𝑥2+𝑥
over F𝑝2 , where #𝐸0(F𝑝2) = (2𝑒23𝑒3)2, and two bases {𝑃2, 𝑄2} and {𝑃3, 𝑄3}, which generate the torsion
subgroups 𝐸0 [2𝑒2] and 𝐸0 [3𝑒3], respectively. The public parameters consist of the curve 𝐸0 and the 3-
tuples {𝑥𝑃2, 𝑥𝑄2, 𝑥𝑃𝑄2} and {𝑥𝑃3, 𝑥𝑄3, 𝑥𝑃𝑄3}, where 𝑥𝑃𝑄2 = 𝑥𝑃2 − 𝑥𝑄2 and 𝑥𝑃𝑄3 = 𝑥𝑃3 − 𝑥𝑄3

4. For each
ℓ ∈ {2, 3}, we denote by (𝐸 ′, 𝜙ℓ) ← isogenyℓ (𝐸, 𝑥𝑅ℓ

) the computation of an isogeny 𝜙ℓ : 𝐸 → 𝐸 ′ of
degree ℓ𝑒ℓ and ker𝜙ℓ = 〈𝑥𝑅ℓ

〉, where 𝑥𝑅ℓ
= 𝑥𝑃ℓ + [skℓ]𝑥𝑄ℓ

. Each secret key skℓ is chosen randomly
from Kℓ and the corresponding public key is obtained as pkℓ = (𝜙ℓ (𝑥𝑃𝑚), 𝜙ℓ (𝑥𝑄𝑚

), 𝜙ℓ (𝑥𝑃𝑄𝑚
)), where

𝑚 ∈ {2, 3} such that𝑚 ≠ ℓ .

SIKE and SIPKE. The SIKE submission comes with four parameter sets that provide dierent lev-
els of security and are named according to the size of the underlying prime 𝑝: SIKEp434, SIKEp503,
SIKEp610, and SIKEp751. In all versions, the public parameters 𝑒2 and 𝑒3 are chosen so that 2𝑒2 ≈ 3𝑒3 .
At the core of SIKE is the Supersingular Isogeny Public Key Encryption scheme (SIPKE) [DJP14], which
oers the usual three functions (Gen, Enc, Dec) for key generation, encryption, and decryption (see Al-
gorithm 6.1). Note that the ciphertext consists of two components 𝑐1 = (𝜙2(𝑥𝑃3), 𝜙2(𝑥𝑄3), 𝜙2(𝑥𝑃𝑄3)) and
𝑐2 = ℎ⊕𝑚, whereℎ is the hash of 𝑗 (𝐸32), the 𝑗-invariant of curve 𝐸32. The rst component is essential in
the decryption process, particularly for the computation of the kernel generator 𝜙2(𝑥𝑃3) + [sk3]𝜙2(𝑥𝑄3),
which denes the isogeny 𝜙 ′3 : 𝐸2 → 𝐸23. Decryption works because 𝐸32 � 𝐸23 and hence 𝑗 (𝐸32) =
𝑗 (𝐸23). Like any other key encapsulation mechanism, SIKE consists of the usual three functions (Key-
Gen, Encaps, Decaps) for the key generation, encapsulation, and decapsulation, as described in Algo-
rithm 6.2. In the original SIKE submission, the hash function used by both SIPKE and SIKE is actually

4The 𝑥 coordinates of 𝑃𝑄2 = 𝑃2 −𝑄2 and 𝑃𝑄3 = 𝑃3 −𝑄3 are used in the dierential addition.

76

6.2. BACKGROUND

Algorithm 6.1: Public key encryption: SIPKE = (Gen, Enc, Dec)
1 function Gen()
2 sk3 ←$ K3 /* choose random secret key from K3 */
3 𝑥𝑅3 ← 𝑥𝑃3 + [sk3]𝑥𝑄3 /* construct kernel generator 𝑅3 ∈ 𝐸0 [3𝑒3] */
4 (𝜙3, 𝐸3) ← isogeny3(𝐸0, 𝑥𝑅3) /* 𝜙3 : 𝐸0 → 𝐸3 with deg𝜙3 = 3𝑒3 , ker𝜙3 = 〈𝑥𝑅3〉 */
5 pk3 ← (𝜙3(𝑥𝑃2), 𝜙3(𝑥𝑄2), 𝜙3(𝑥𝑃𝑄2)) /* evaluate 𝜙3 at points 𝑃2, 𝑄2, 𝑃𝑄2 ∈ 𝐸0 [2𝑒2] */
6 return (sk3, pk3)
7 function Enc(pk3,𝑚 ∈ M, sk2 ∈ K2) /* message𝑚 from message spaceM */
8 𝑥𝑅2 ← 𝑥𝑃2 + [sk2]𝑥𝑄2 /* construct kernel generator 𝑅2 ∈ 𝐸0 [2𝑒2] */
9 (𝜙2, 𝐸2) ← isogeny2(𝐸0, 𝑥𝑅2) /* 𝜙2 : 𝐸0 → 𝐸2 with deg𝜙2 = 2𝑒2 , ker𝜙2 = 〈𝑥𝑅2〉 */

10 𝑐1 ← (𝜙2(𝑥𝑃3), 𝜙2(𝑥𝑄3), 𝜙2(𝑥𝑃𝑄3)) /* evaluate 𝜙2 at points 𝑃3, 𝑄3, 𝑃𝑄3 ∈ 𝐸0 [3𝑒3] */
11 𝑥 ′

𝑅2
← 𝜙3(𝑥𝑃2) + [sk2]𝜙3(𝑥𝑄2) /* construct kernel generator 𝑅′2 ∈ 𝐸3 [2𝑒2] */

12 (𝜙 ′2, 𝐸32) ← isogeny2(𝐸3, 𝑥 ′𝑅2
) /* 𝜙 ′2 : 𝐸3 → 𝐸32, deg𝜙 ′2 = 2𝑒2 , ker𝜙 ′2 = 〈𝑥 ′𝑅2

〉 */
13 ℎ ← SHAKE256(𝑗 (𝐸32)) /* compute the hash of the 𝑗-invariant of 𝐸32 */
14 𝑐2 ← ℎ ⊕𝑚 /* XOR hash ℎ with message𝑚 */
15 return (𝑐1, 𝑐2) /* the ciphertext is the pair (𝑐1, 𝑐2) */
16 function Dec(sk3, (𝑐1, 𝑐2))
17 𝑥 ′

𝑅3
← 𝜙2(𝑥𝑃3) + [sk3]𝜙2(𝑥𝑄3) /* construct kernel generator 𝑅′3 ∈ 𝐸2 [3𝑒3] from 𝑐1 */

18 (𝜙 ′3, 𝐸23) ← isogeny3(𝐸2, 𝑥 ′𝑅3
) /* 𝜙 ′3 : 𝐸2 → 𝐸23, deg𝜙 ′3 = 3𝑒3 , ker𝜙 ′3 = 〈𝑥 ′𝑅3

〉 */
19 ℎ ← SHAKE256(𝑗 (𝐸23)) /* compute the hash of the 𝑗-invariant of 𝐸23 */
20 𝑚 ← ℎ ⊕ 𝑐2 /* XOR hash ℎ with message 𝑐2 */
21 return𝑚

Algorithm 6.2: Key encapsulation: SIKE = (KeyGen, Encaps, Decaps)
1 function KeyGen()
2 (sk3, pk3) ← Gen() /* generate key pair with Gen function */
3 𝑠 ←$ {0, 1}𝑛 /* generate a secret random bitstring of length 𝑛 */
4 return (𝑠, sk3, pk3)
5 function Encaps(pk3)
6 𝑚 ←$ {0, 1}𝑛
7 sk2 ← SHAKE256(𝑚 ‖ pk3) /* random message and secret key sk2 */
8 (𝑐1, 𝑐2) ← Enc(pk3,𝑚, sk2) /* encrypt the message𝑚 with public key pk3 */
9 𝑘 ← SHAKE256(𝑚 ‖ (𝑐1, 𝑐2)) /* compute shared key 𝑘 */

10 return (𝑘, (𝑐1, 𝑐2))
11 function Decaps(𝑠, sk3, pk3, (𝑐1, 𝑐2))
12 𝑚′← Dec(sk3, (𝑐1, 𝑐2)) /* decrypt ciphertext to obtain message𝑚′ */
13 sk′2 ← SHAKE256(𝑚′ ‖ pk3) /* reconstruct secret key sk2 */
14 𝑥𝑅2 ← 𝑥𝑃2 + [sk′2]𝑥𝑄2 /* construct kernel generator 𝑅2 ∈ 𝐸0 [2𝑒2] */
15 (𝜙2, 𝐸2) ← isogeny2(𝐸0, 𝑥𝑅2) /* 𝜙2 : 𝐸0 → 𝐸2 with deg𝜙2 = 2𝑒2 , ker𝜙2 = 〈𝑥𝑅2〉 */
16 𝑐 ′1 ← (𝜙2(𝑥𝑃3), 𝜙2(𝑥𝑄3), 𝜙2(𝑥𝑃𝑄3)) /* reconstruct rst compoenent of ciphertext */
17 if 𝑐 ′1 = 𝑐1 then
18 𝑘 ← SHAKE256(𝑚′ ‖ (𝑐1, 𝑐2)) /* compute shared key 𝑘 */
19 else

20 𝑘 ← SHAKE256(𝑠 ‖ (𝑐1, 𝑐2))
21 return 𝑘

77

CHAPTER 6. VECTORIZED SIKE

an eXtendable Output Function (XOF), namely SHAKE256 [Dwo15], which belongs to the SHA-3 family
and has been approved by the NIST and other standardization bodies.

Security of SIKE. The security of SIKE relies on the SIDH problem, which is dened as follows:
given the curves 𝐸0, 𝐸2, 𝐸3 and points 𝜙2(𝑃3), 𝜙2(𝑄3), 𝜙3(𝑃2), 𝜙3(𝑄2), determine the 𝑗-invariant of the
curve 𝐸2/〈𝜙2(𝑃3) + [sk3]𝜙3(𝑄3)〉 or 𝐸3/〈𝜙3(𝑃2) + [sk2]𝜙3(𝑄2)〉. To date, the best classical algorithm
for attacking SIKE is due to Galbraith [Gal99] and has a complexity of 𝑂 (4√𝑝), while the best quantum
attack is Tani’s claw nding algorithm [Tan09] with a complexity of𝑂 (6√𝑝). In addition, Proposition 1
in the SIKE specication [JAC+22] proves that the SIPKE scheme described in Algorithm 6.1 is IND-CPA
secure in the random oracle model, if the SIDH problem is hard and the SIKE mechanism is also proven
to be IND-CCA secure. The parameter sets SIKEp434, SIKEp503, SIKEp610, and SIKEp751 correspond
to NIST security level 1, 2, 3, and 5, respectively [JAC+22].

6.2.2 Optimized isogeny computations

Multiplication-oriented approach. The most demanding part of the SIKE protocol is the isogeny
computations. Namely, in all three functions the SIKE suite consists of, an isogeny 𝜙 : 𝐸0 → 𝐸𝑒ℓ of
degree ℓ𝑒ℓ has to be computed, with kernel generated by a point 𝑅0 = 𝑃0 + [skℓ]𝑄0 ∈ 𝐸 [ℓ𝑒ℓ], where
ℓ ∈ {2, 3} and skℓ ∈ {0, . . . , ℓ𝑒ℓ − 1}. Instead of directly computing this isogeny 𝜙 , the best practice is
to break the computation in smaller parts where we iteratively compute 𝑒ℓ isogenies of degree ℓ using
the Vélu formulæ [Vél71] and compose them to obtain the desired ℓ𝑒ℓ -isogeny. The straightforward
approach is to carry out an iterative procedure for 0 ≤ 𝑖 < 𝑒ℓ , whereby in each iteration we x the
kernel point 𝑆𝑖 = [ℓ ℓ𝑖−𝑖−1]𝑅𝑖 to be of order ℓ and compute an isogeny 𝜙𝑖 : 𝐸𝑖 → 𝐸𝑖+1 = 𝐸𝑖/〈𝑆𝑖〉 of degree
ℓ . Thereafter, we compute the image 𝑅𝑖+1 = 𝜙𝑖 (𝑅𝑖) in order to be able to obtain the kernel point on
the new curve 𝐸𝑖+1 for the next isogeny. The desired ℓ𝑒ℓ -isogeny 𝜙 : 𝐸0 → 𝐸ℓ is represented as the
composition 𝜙 = 𝜙𝑒ℓ−1 ◦ . . . ◦ 𝜙0. This approach is multiplication-oriented since, in each iteration, a
scalar multiplication [ℓ ℓ𝑖−𝑖−1]𝑆𝑖 has to be performed [JD11].

Isogeny-oriented approach. An alternative method, known as isogeny-oriented, was proposed by
Jao and De Feo [JD11]. The aim in this method is to reduce the number of scalar multiplications at the
cost of extra isogeny computations. This is done by computing an initial list of points ([ℓ 𝑗]𝑅0) 𝑗<𝑒ℓ on
the starting curve and then, in each iteration for 0 ≤ 𝑖 < 𝑒ℓ , update this list as the image of the points
under the isogeny 𝜙𝑖 , i.e. [ℓ 𝑗]𝑅𝑖+1 = 𝜙𝑖 ([ℓ 𝑗]𝑅𝑖), for each 𝑗 = 𝑖, . . . , 𝑒ℓ − 1. In [DJP14], De Feo, Jao, and
Plût showed that it is possible to speed up the isogeny-oriented approach by introducing the notion
of optimal strategies, which allow for less scalar multiplications compared to the multiplication-based
approach and less isogeny computations compared to the isogeny-based approach. These strategies are
presented and implemented in the SIKE specication document [JAC+22] for the small primes ℓ ∈ {2, 3}.
Instead of point additions, the authors of the SIKE specication use only point doubling for the case
ℓ = 2 and point tripling for the case ℓ = 3. Moreover, in the case ℓ = 2, the authors compute iteratively
isogenies of degree 4 instead of 2.

6.2.3 Target platform

AVX-512IFMA started to become commonly available with the Intel x64 processor family codenamed
“Ice Lake” and its successors, e.g., “Tiger Lake”, “Rocket Lake”, and “Sapphire Rapids”. The “Ice Lake”
family comprises 10th generation Intel Core mobile and 3rd generation Xeon scalable server processors
based on the “Sunny Cove”microarchitecture. We developed ourAvxSike software on (and optimized it
for) a 10th generation Core, namely the i3-1005G1. On an “Ice Lake” Core CPU, both vpmadd52luq and
vpmadd52luq have a throughput of one instruction/cycle and a latency of four cycles (see details in Ta-
ble 5.1). AvxSike was written in C and uses compiler intrinsics to perform AVX-512 vector operations.

78

6.3. IMPLEMENTATION: PRIME-FIELD ARITHMETIC

We compiled the source code of AvxSike and the Microsoft SIDHv3.4 library with GCC version 9.3.0
and measured their execution times on our Core CPU, whereby turbo boost was disabled. However,
we could not measure the execution time of the AVX-512IFMA implementation of Kostic and Gueron
because the source code is not publicly available. Therefore, we resort to the timings reported in [KG19]
and include these in our performance comparisons.

6.3 Implementation: prime-eld arithmetic

In this section, we describe vectorized implementations of big-integer multiplication and Montgomery
reduction at the F𝑝-arithmetic layer, which are highly performance-critical operations of our AvxSike
software. Note that AvxSike uses only IFMA instructions (i.e., vpmadd52luq and vpmadd52huq) for all
vector-parallel multiplications, i.e. the basic AVX-512Fmultiply instructions like vpmuludq and vpmuldq
are not executed at all. We adopt the term “(𝑦×𝑧)-way parallelism” to describe an implementation that
performs 𝑦 prime-eld (or integer-arithmetic) operations simultaneously, whereby each operation is
executed in a 𝑧-way parallel fashion and, thus, uses 𝑧 elements of a vector. For example, Algorithm 2 in
[KG19] contains pseudo-code of a (1 × 8)-way-way integer multiplication for SIKEp503, which means
it is a single multiplication of 512-bit integers that uses all eight 64-bit elements of an AVX-512 vec-
tor. Due to better instruction-level parallelism and the possibility of taking advantage of Karatsuba’s
method, the theoretically-optimal (8×1)-way approach is more ecient than other parallel processing
techniques such as (4 × 2)-way, (2 × 4)-way, and (1 × 8)-way. Taking into account options for higher-
level parallelism oered by the F𝑝2-arithmetic layer and the curve-arithmetic layer, we found that all
prime-eld operations can be executed in either an (8 × 1)-way or a (4 × 2)-way fashion, i.e., AvxSike
always performs eight or four F𝑝-operations simultaneously.

In this section (and also the four subsequent sections), we focus on SIKEp503 as case study to explain
our vectorization techniques since it is the only parameter set that was considered in essentially every
previous paper on fast SIKE software, including [KG19].

6.3.1 Radix-251 representation

Due to the 52-bit wide vector multiplier, most AVX-512IFMA implementations, such as [KG19, CFG+21],
directly adopt the natural radix-252 (i.e., 52 bits/limb) representation for the operands. However, in
this work, we take advantage of a radix-251 representation based on two main considerations. First,
although a radix of 252 is a reduced radix with respect to the 64-bit length of an element of an AVX-
512 vector (there are still 12 bits of “headroom” for storing carry bits to delay carry propagation), it is
saturating for the 52-bit multiplier because all limbsmust be reduced to 52 bits before IFMA instructions
can be executed on them. This is not ideal for operations like our (8 × 1)-way parallel version of
Karatsuba multiplication [KO63], where the sums of two half-length additions are operands of the
last half-length multiplication5. In such a situation, a representation based on radix 252 would make
it necessary to instantly propagate the carries produced by the two additions, which does not only
require extra instructions, but also generates one more limb. In contrast, a radix of 251 allows one to
simply keep the carry bits and delay the carry propagation, thereby increasing the length of limbs to
52 bits. A second reason to favor a radix of 251 is the ecient (4×2)-way carry propagation introduced
in [OAL18], which we use in our (4× 2)-way implementation of the prime-eld arithmetic operations.
This ecient carry propagation is “incomplete” in the sense that, after the propagation, two limbs are
allowed to exceed the nominal limb-length by one bit. But in our case, when using a radix of 252, it is
not possible to tolerate two over-length limbs (i.e., all limbs strictly have to t into 52 bits, which costs

5An 2𝑛-bit integer multiplication according to Karatsuba’s algorithm is computed via the equation 𝑟 = 𝑎 · 𝑏 = (𝑎0 + 𝑎1 ·
2𝑛) · (𝑏0 +𝑏1 · 2𝑛) = 𝑎0𝑏0 + [(𝑎0 +𝑎1) (𝑏0 +𝑏1) −𝑎0𝑏0 −𝑎1𝑏1] · 2𝑛 +𝑎1𝑏1 · 22𝑛 . To obtain (𝑎0 +𝑎1) (𝑏0 +𝑏1), two 𝑛-bit additions
have to be carried out before the 𝑛-bit multiplication.

79

CHAPTER 6. VECTORIZED SIKE

some extra instructions). On the other hand, with a radix of 251, this problem does not arise since we
can allow two limbs to have a length of 52 bits, while the other limbs are still 51 bits long. Finally, we
remark that using a radix-251 representation does not increase the number of limbs (in relation to a
radix of 252) for any of the four parameter sets of SIKE.

(8×1)-way limb vector set. The main data structure of our (8×1)-way prime-eld operations is the
(8×1)-way limb vector set composed of eight radix-251 integers. Given eight integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ ∈
F𝑝 , an (8 × 1)-way limb vector set 𝑼 for SIKEp503 is dened as:

𝑼 = 〈𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ〉 =

[𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑒0, 𝑓0, 𝑔0, ℎ0]
[𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, 𝑓1, 𝑔1, ℎ1]

...

[𝑎9, 𝑏9, 𝑐9, 𝑑9, 𝑒9, 𝑓9, 𝑔9, ℎ9]

= (𝑈0,𝑈1, . . . ,𝑈9)

where each𝑈𝑖 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝑒𝑖 , 𝑓𝑖 , 𝑔𝑖 , ℎ𝑖] is called a limb vector.

(4×2)-way limb vector set. Our (4×2)-way eld-operations use (4×2)-way limb vector sets, which
also based on the radix 251, but contain only four integers. In the case of SIKEp503, a (4 × 2)-way limb
vector set 𝑽 = 〈𝑎, 𝑏, 𝑐, 𝑑〉 has the following form:

𝑽 = 〈𝑎, 𝑏, 𝑐, 𝑑〉 =

[𝑎0, 𝑎5, 𝑏0, 𝑏5, 𝑐0, 𝑐5, 𝑑0, 𝑑5]
[𝑎1, 𝑎6, 𝑏1, 𝑏6, 𝑐1, 𝑐6, 𝑑1, 𝑑6]

...

[𝑎4, 𝑎9, 𝑏4, 𝑏9, 𝑐4, 𝑐9, 𝑑4, 𝑑9]

= (𝑉0,𝑉1, . . . ,𝑉4)

Each limb vector 𝑉𝑖 = [𝑎𝑖 , 𝑎𝑖+5, 𝑏𝑖 , 𝑏𝑖+5, 𝑐𝑖 , 𝑐𝑖+5, 𝑑𝑖 , 𝑑𝑖+5] contains two 51-bit limbs from each integer,
whereby the limbs are arranged in an interleaved pattern.

Reduction modulo 2𝑝. Similar to SIDHv3.4, both our (8 × 1)-way and (4 × 2)-way implementation
omit the nal subtraction in the Montgomery reduction. All prime-eld operations of AvxSike actu-
ally perform the reduction modulo 2𝑝 instead of 𝑝 . To give a concrete example, the modular addition
operation rst computes 𝑡 ← 𝑎 + 𝑏 and then performs a subtraction 𝑟 ← 𝑡 − 2𝑝 . If 𝑟 < 0 we add 2𝑝
to 𝑟 , otherwise we add 0 (to have operand-independent execution time). The modular subtraction just
directly computes 𝑟 ← 𝑎 − 𝑏 and then executes the same correction step as the modular addition.

6.3.2 Integer multiplication

(8 × 1)-way implementation. All (8 × 1)-way prime-eld arithmetic functions operate on (8 ×
1)-way limb vector sets and were developed based on the “limb-slicing” approach [CGT+20], which
essentially duplicates a 1-way implementation to eight 64-bit elements using AVX-512 instructions. The
multiplication consists of one level of Karatsuba with product scanning underneath because, according
to our experiments, this combination is faster than other techniques (e.g., basic operand scanning and
product scanning) for all four parameter sets of SIKE. Note that our implementation of the integer
multiplication does not involve a carry propagation, which reduces sequential dependencies among
the instructions (though carries are always propagated during Montgomery reduction).

(4×2)-way Implementation. Orisaka, Aranha, and López introduced in [OAL18] an ecient (4×2)-
way AVX-512F implementation of Montgomery multiplication, which is composed of integer multipli-
cation, Montgomery reduction, and carry propagation. This implementation operates on the (4×2)-way

80

6.3. IMPLEMENTATION: PRIME-FIELD ARITHMETIC

Table 6.1: Experimental results of F𝑝-arithmetic operations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 100 100 1.00×Integer AvxSike AVX-512 (8 × 1)-way 8 165 21 4.85×multiplication AvxSike AVX-512 (4 × 2)-way 4 102 26 3.92×
SIDHv3.4 x64 asm 1-way 1 75 75 1.00×Montgomery AvxSike AVX-512 (8 × 1)-way 8 144 18 4.17×reduction AvxSike AVX-512 (4 × 2)-way 4 140 35 2.14×
SIDHv3.4 x64 asm 1-way 1 201 201 1.00×

Montgomery [KG19] AVX-512 hybrid 1 195 195 1.03×
multiplication AvxSike AVX-512 (8 × 1)-way 8 302 38 5.32×

AvxSike AVX-512 (4 × 2)-way 4 264 66 3.05×

limb vector sets we dened in the previous subsection and uses the normal vpmuldqmultiply instruction
of AVX-512F but not the two IFMA instructions. The integer multiplication part of this implementa-
tion is based on the operand-scanning method. We developed our (4 × 2)-way integer multiplication
following the approach of [OAL18] but replaced vpmuldq by IFMA instructions.

6.3.3 Montgomery reduction

(8× 1)-way implementation. SIKE uses so-called “SIDH-friendly” primes, which are a special form
of Montgomery-friendly primes and allow one to speed up the modular reduction operation compared
to general primes [CLN16]. The optimized Montgomery reduction for a SIDH-friendly prime 𝑝 =

2𝑒23𝑒3 − 1 is given in [CLN16, Algorithm 1] and exploits the fact that the 𝑒2 least signicant bits of
𝑝 + 1 are all 0 (i.e., 𝑝 + 1 is nothing else than 3𝑒3 left-shifted by 𝑒2 bits). In other words, 𝑝 + 1 consists of
many limbs that are 0 and this makes it possible to save a large number of instructions compared to a
conventional Montgomery reduction. As already mentioned above, the reduction operation involves a
carry propagation to get a nal result represented by 51-bit limbs.

(4 × 2)-way implementation. The modular reduction part of the implementation from [OAL18] is
a (4 × 2)-way version of conventional Montgomery reduction. We optimized this implementation by
applying the approach of [CLN16] and using IFMA instructions to obtain our (4×2)-way Montgomery
reduction. In addition, a nal carry propagation is always performed after the Montgomery reduction
to get a nal result whose limbs are suciently short. As already mentioned earlier, there is one limb
vector (containing two limbs of each eld-element) in this nal result that is one bit longer than the
other limb vectors, i.e., in our case 52 bits instead of 51 (see [OAL18, Algorithm 4] for details).

6.3.4 Results and comparison

Table 6.1 shows the execution times of integermultiplication, Montgomery reduction, andMontgomery
multiplication of dierent implementations. As mentioned in Section 6.1, we use the SIDHv3.4 x64
assembly library as baseline for comparisons. Since our software is vectorized, the “cycles/instance”
is a useful metric for us, and the speed-up ratio relates a specic implementation with the baseline
under this metric. The (8 × 1)-way and the (4 × 2)-way parallel integer multiplication is respectively
4.9 and 3.9 times faster than SIDHv3.4. Regarding our parallel Montgomery reduction, the (8× 1)-way
version has almost the same latency as the (4× 2)-way implementation, which means it is twice as fast
from the viewpoint of a single instance. This massive dierence of speed-up factors (in relation to the
integer multiplication) can be explained with sequential dependencies in the (4× 2)-way Montgomery
reduction and, as a consequence, lower instruction-level parallelism compared to the (8×1)-way parallel

81

CHAPTER 6. VECTORIZED SIKE

Algorithm 6.3: F𝑝2-multiplication with 1-way parallelization at F𝑝-level.
Input: F𝑝2 elements 𝑎 = 𝑎0 + 𝑎1𝑖 and 𝑏 = 𝑏0 + 𝑏1𝑖 .
Output: F𝑝2 element 𝑟 = 𝑟0 + 𝑟1𝑖 = (𝑎0𝑏0 − 𝑎1𝑏1) + [(𝑎0 + 𝑎1) (𝑏0 + 𝑏1) − 𝑎0𝑏0 − 𝑎1𝑏1]𝑖 .

1 𝑡1 ← 𝑎0 + 𝑎1
2 𝑡2 ← 𝑏0 + 𝑏1
3 𝑡𝑡1 ← 𝑎0 × 𝑏0
4 𝑡𝑡2 ← 𝑎1 × 𝑏1

5 𝑡𝑡3 ← 𝑡1 × 𝑡2
6 𝑡𝑡3 ← 𝑡𝑡3 − 𝑡𝑡1 − 𝑡𝑡2
7 𝑡𝑡1 ← 𝑡𝑡1 − 𝑡𝑡2
8 𝑟0 ← 𝑡𝑡1 mod 𝑝

9 𝑟1 ← 𝑡𝑡3 mod 𝑝
10 return 𝑟 = 𝑟0 + 𝑟1𝑖

version. Finally, when looking at the results for the Montgomery multiplication, it is striking that
the IFMA implementation of Kostic and Gueron [KG19] is merely a few cycles faster than SIDHv3.4.
According to [KG19], their Montgomery multiplication combines a (1 × 8)-way integer multiplication
using IFMA with an x64 assembly implementation of Montgomery reduction. Thus, it is necessary to
convert between radix-252 vectors and radix-264 large integers, which is an obvious bottleneck of their
software. Since the multiplication is vectorized, but not the reduction, we can say that their software
follows a hybrid implementation approach.

6.4 Implementation: quadratic extension-eld arithmetic

Werst dene an “(𝑥×𝑦×𝑧)-way” parallel F𝑝2-arithmetic implementation: it performs 𝑥 F𝑝2-operations
in parallel, whereby each of them executes𝑦 prime-eld operations in parallel, and each of the𝑦 prime-
eld operation uses 𝑧 64-bit elements of a vector. In all algorithms of this section, the variable 𝑡 denotes
an integer having a similar length as an element of F𝑝 , whereas 𝑡𝑡 usually represents an integer of
roughly twice the length of an F𝑝-element; mod 𝑝 stands for a Montgomery reduction modulo 𝑝 , but
as mentioned in Section 6.3.1, the result is in the range of [0, 2𝑝 − 1] and not always fully reduced;
× denotes an integer multiplication and + is an integer addition (except of Algorithm 6.5, where it is
a modular addition). Note that, for reasons of brevity and to have succinct pseudo-code descriptions
of algorithms, we do not distinguish between various (integer and modular) subtractions, which are
uniformly denoted as −, but the result of a subtraction is always non-negative. We refer readers who
are interested in the full details of the algorithms to the source code of Microsoft’s SIDHv3.4 or our
AvxSike.

6.4.1 F𝑝2-multiplication

1-way parallelization at F𝑝-level. In this implementation of a parallel F𝑝2-multiplication, each F𝑝2-
multiplication instance performs only one integer-arithmetic or prime-eld operation at a time. For-
mally, based on the above-dened (𝑥 ×𝑦 ×𝑧)-way notation, we have 𝑦 = 1. For such an (𝑥 × 1×𝑧)-way
F𝑝2-multiplication, we use the same technique as the SIDHv3.4 library, namely Karatsuba’s method.
We explain this variant with a single F𝑝2-multiplication instance in Algorithm 6.3. Unlike to SIDHv3.4,
which can perform the carry propagation through instructions like ADC, ADCX, and ADOX, our AVX-512
software has to carefully handle the carry propagation. Since carry propagation normally causes strong
instruction dependencies, it always requires more clock cycles than a basic limb addition or subtraction.
Algorithm 6.3 was designed to perform as few carry propagations as possible; the integer multiplica-
tion does not involve a propagation of carries and the subtractions at line 6 and 7 can “postpone” the
carry propagations and integrate them into the subsequent Montgomery reductions. Using the (8× 1)-
way F𝑝-arithmetic, we developed an (8 × 1 × 1)-way F𝑝2-multiplication via Algorithm 6.3, while the
(4 × 1 × 2)-way implementation is based on the (4 × 2)-way F𝑝-arithmetic.

82

6.4. IMPLEMENTATION: QUADRATIC EXTENSION-FIELD ARITHMETIC

Algorithm 6.4: F𝑝2-multiplication with 2-way parallelization at F𝑝-level.
Input: F𝑝2 elements 𝑎 = 𝑎0 + 𝑎1𝑖 and 𝑏 = 𝑏0 + 𝑏1𝑖 .
Output: F𝑝2 element 𝑟 = 𝑟0 + 𝑟1𝑖 = (𝑎0𝑏0 − 𝑎1𝑏1) + (𝑎0𝑏1 + 𝑎1𝑏0)𝑖 .

1 𝑡𝑡1 ← 𝑎0 × 𝑏0 𝑠𝑠1 ← 𝑎0 × 𝑏1
2 𝑡𝑡2 ← 𝑎1 × 𝑏0 𝑠𝑠2 ← 𝑎1 × 𝑏1
3 𝑡𝑡3 ← 𝑡𝑡1 − 𝑠𝑠2 𝑠𝑠3 ← 𝑡𝑡2 + 𝑠𝑠1
4 𝑟0 ← 𝑡𝑡3 mod 𝑝 𝑟1 ← 𝑠𝑠3 mod 𝑝
5 return 𝑟 = 𝑟0 + 𝑟1𝑖

Algorithm 6.5: F𝑝2-multiplication with 4-way parallelization at F𝑝-level.
Input: F𝑝2 elements 𝑎 = 𝑎0 + 𝑎1𝑖 and 𝑏 = 𝑏0 + 𝑏1𝑖 .
Output: F𝑝2 element 𝑟 = 𝑟0 + 𝑟1𝑖 = (𝑎0𝑏0 − 𝑎1𝑏1) + (𝑎0𝑏1 + 𝑎1𝑏0)𝑖 .

1 𝑡𝑡1 ← 𝑎0 × 𝑏0 𝑠𝑠1 ← 𝑎0 × 𝑏1 𝑡𝑡2 ← 𝑎1 × 𝑏0 𝑠𝑠2 ← 𝑎1 × 𝑏1
2 𝑡1 ← 𝑡𝑡1 mod 𝑝 𝑠1 ← 𝑠𝑠1 mod 𝑝 𝑡2 ← 𝑡𝑡2 mod 𝑝 𝑠2 ← 𝑠𝑠2 mod 𝑝
3 𝑟0 ← 𝑡1 − 𝑠2 𝑟1 ← 𝑡2 + 𝑠1
4 return 𝑟 = 𝑟0 + 𝑟1𝑖

2-way parallelization at F𝑝-level. In this variant (Algorithm 6.4), each F𝑝2-multiplication instance
is internally parallelized in a 2-way fashion, namely each instance executes two prime-eld (or integer-
arithmetic) operations simultaneously, i.e., 𝑦 = 2 according to the (𝑥 ×𝑦 ×𝑧)-way notation from above.
This variant uses the schoolbook method instead of Karatsuba’s algorithm because it turned out that
the latter is less ecient for 2-way parallelization at the F𝑝-level. Compared to the (𝑥 × 1 × 𝑧)-way
F𝑝2-multiplication, this 2-way variant has fewer additions, subtractions, and carry propagations, but
needs one more multiplication at the F𝑝-level. Using (8 × 1)-way and (4 × 2)-way F𝑝 arithmetic, we
developed a (4×2×1)-way and a (2×2×2)-way F𝑝2-multiplication, respectively. In terms of a parallel
F𝑝2-multiplication performing four instances, there are currently the (4×2×1)-way and (4×1×2)-way
options. Note that, although the former option does not use Karatsuba at the F𝑝2-layer, its underlying
(8 × 1)-way integer multiplication is implemented with Karatsuba’s algorithm. On the other hand, the
(4 × 1 × 2)-way option uses Karatsuba at the F𝑝2-layer, whereas the (4 × 2)-way integer multiplication
is simply a vectorized schoolbook multiplication.

4-way parallelization at F𝑝-level. Algorithm 6.5 illustrates our 4-way F𝑝2-multiplication variant.
Since the F𝑝2-multiplication using schoolbook involves four multiplications, it is possible to execute
them all in parallel. Performing the Montgomery reductions before the operations at line 3 halves the
length of the operands, which means the addition and subtraction at line 3 are single-length operations
and can use the fast reduction modulo 2𝑝 we briey described in Section 6.3.1. For a parallel F𝑝2-
multiplication performing two instances, this 4-way variant could be used to develop a (2× 4× 1)-way
implementation based on the optimal (8 × 1)-way prime-eld operations.

6.4.2 F𝑝2-Squaring

A conventional squaring operation in F𝑝2 with the operand 𝑎 = 𝑎0 + 𝑎1𝑖 is computed as 𝑟 = 𝑎2 = (𝑎20 −
𝑎21)+2𝑎0𝑎1𝑖 = 𝑟0+𝑟1𝑖 , whichmeans two conventional integer squarings and an integer multiplication are
required. A classic optimization, which is also used in SIDHv3.4, is to replace 𝑎20−𝑎21 by (𝑎0+𝑎1) (𝑎0−𝑎1),
i.e., two squaring operations are substituted by one multiplication. Since the conventional F𝑝2-squaring
consists of three integer multiplication (or squaring) operations, and the optimized version still involves
two integer multiplications, the 4-way variant for F𝑝2-squaring is not ecient. Thus, we only present a

83

CHAPTER 6. VECTORIZED SIKE

Algorithm 6.6: F𝑝2-squaring with 1-way parallelization at F𝑝-level.
Input: F𝑝2 element 𝑎 = 𝑎0 + 𝑎1𝑖 .
Output: F𝑝2 element 𝑟 = 𝑟0 + 𝑟1𝑖 = (𝑎0 + 𝑎1) (𝑎0 − 𝑎1) + 2𝑎0𝑎1𝑖 .

1 𝑡1 ← 𝑎0 + 𝑎1
2 𝑡2 ← 𝑎0 − 𝑎1
3 𝑡3 ← 𝑎0 + 𝑎0

4 𝑡𝑡1 ← 𝑡1 × 𝑡2
5 𝑡𝑡2 ← 𝑡3 × 𝑎1
6 𝑟0 ← 𝑡𝑡1 mod 𝑝

7 𝑟1 ← 𝑡𝑡2 mod 𝑝
8 return 𝑟 = 𝑟0 + 𝑟1𝑖

Algorithm 6.7: F𝑝2-squaring with 2-way parallelization at F𝑝-level.
Input: F𝑝2 element 𝑎 = 𝑎0 + 𝑎1𝑖 .
Output: F𝑝2 element 𝑟 = 𝑟0 + 𝑟1𝑖 = (𝑎0 + 𝑎1) (𝑎0 − 𝑎1) + 2𝑎0𝑎1𝑖 .

1 𝑡1 ← 𝑎0 + 𝑎1 𝑠1 ← 𝑎0 + 𝑎0
2 𝑡2 ← 𝑎0 − 𝑎1
3 𝑡𝑡1 ← 𝑡1 × 𝑡2 𝑠𝑠1 ← 𝑠1 × 𝑎1
4 𝑟0 ← 𝑡𝑡1 mod 𝑝 𝑟1 ← 𝑠𝑠1 mod 𝑝
5 return 𝑟 = 𝑟0 + 𝑟1𝑖

1-way and a 2-way variant for F𝑝2-squaring, both of which take advantage of the optimization described
above.

1-way parallelization at F𝑝-level. The (𝑥 ×1×𝑧)-way parallel F𝑝2 squaring is implemented accord-
ing to Algorithm 6.6. Using (8× 1)-way and (4× 2)-way F𝑝-arithmetic, we developed a (8× 1× 1)-way
and a (4 × 1 × 2)-way version of F𝑝2-squaring, respectively.

2-wayparallelization at F𝑝-level. The 2-way variant for squaring inF𝑝2 is specied inAlgorithm 6.7,
whereby a “perfect” parallelization is not possible at line 2. Based on this algorithm, we developed
(4× 2× 1)-way and (2× 2× 2)-way F𝑝2-squaring with our two dierent implementations of the prime-
eld operations.

6.4.3 F𝑝2-addition and subtraction

A vectorized implementation of F𝑝2-addition/subtraction is fairly straightforward. The addition 𝑟 =

𝑎 +𝑏 = (𝑎0 +𝑎1𝑖) + (𝑏0 +𝑏1𝑖) = (𝑎0 +𝑏0) + (𝑎1 +𝑏1)𝑖 = 𝑟0 + 𝑟1𝑖 in F𝑝2 is composed of two additions in F𝑝 .
Our (𝑥×2×𝑧)-way implementation executes just the two additions in parallel, while the (𝑥×1×𝑧)-way
version performs them sequentially one after the other. The F𝑝2-subtraction is vectorized in the same
way.

6.4.4 Results and comparison

The execution times of F𝑝2-multiplication and F𝑝2-squaring for SIKEp503 are shown in Table 6.2. We
used our “Ice Lake” CPU to measure the execution times of AvxSike and the Microsoft SIDHv3.4 x64
assembly library, while the timings of Kostic and Gueron’s IFMA implementation were taken from
[KG19]. As explained in [KG19], they used the schoolbook method instead of Karatsuba’s algorithm to
develop their F𝑝2-multiplication and F𝑝2-squaring in order to mitigate the overhead caused by conver-
sions between the radix-252 vector representation and the radix-264 big-integer representation. The
results in Table 6.2 show that our vectorized implementations are more ecient than [KG19] and
SIDHv3.4 when considering the “cycles/instance” metric. Furthermore, according to the measured tim-
ings, the (4×2×1)-way version is faster than the (4×1×2)-way version for both F𝑝2-multiplication and

84

6.5. IMPLEMENTATION: MONTGOMERY ELLIPTIC CURVE ARITHMETIC

Table 6.2: Experimental results of F𝑝2-arithmetic implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 503 503 1.00×
[KG19] AVX-512 hybrid 1 282 282 1.78×
AvxSike AVX-512 (8 × 1 × 1)-way 8 900 113 4.47×

F𝑝2 AvxSike AVX-512 (4 × 2 × 1)-way 4 570 143 3.53×Multiplication AvxSike AVX-512 (4 × 1 × 2)-way 4 684 171 2.94×
AvxSike AVX-512 (2 × 2 × 2)-way 2 439 220 2.29×
AvxSike AVX-512 (2 × 4 × 1)-way 2 395 198 2.55×
SIDHv3.4 x64 asm 1-way 1 427 427 1.00×
[KG19] AVX-512 hybrid 1 287 287 1.49×

F𝑝2 AvxSike AVX-512 (8 × 1 × 1)-way 8 666 83 5.13×
Squaring AvxSike AVX-512 (4 × 2 × 1)-way 4 380 95 4.49×

AvxSike AVX-512 (4 × 1 × 2)-way 4 576 144 2.97×
AvxSike AVX-512 (2 × 2 × 2)-way 2 307 168 2.78×

squaring, which means vectorization at the F𝑝-layer has more impact on the performance than vector-
ization at the F𝑝2-layer. Furthermore, the (2× 4× 1)-way F𝑝2-multiplication requires fewer cycles than
the (2×2×2)-way version because (8×1)-way integer multiplication is muchmore ecient than (4×2)-
way, while the two vectorized reduction variants have similar latency (see Table 6.1). However, there is
no (2×4×1)-way F𝑝2-squaring, which means we have to use the (2×4×1)-way F𝑝2-multiplication also
for squaring. As a result, when implementing curve arithmetic with (2 × 𝑦 × 𝑧)-way F𝑝2-operations,
the (2 × 4 × 1)-way version has faster F𝑝2-multiplication (by 22 cycles) but slower F𝑝2-squaring (by
30 cycles) than the (2 × 2 × 2)-way version. In light of these results, we can not decide yet whether
(2 × 4 × 1)-way or (2 × 2 × 2)-way is the more ecient option for the higher layers (see Section 6.5 for
further discussions).

6.5 Implementation: Montgomery elliptic curve arithmetic

In this section, we dene a “(𝑤 × 𝑥 × 𝑦 × 𝑧)-way” parallel Montgomery-curve arithmetic implementa-
tion: it performs𝑤 curve operations (e.g., point doublings, point triplings) in parallel, whereby each of
them executes 𝑥 F𝑝2-operations simultaneously, and each of the F𝑝2-operations performs 𝑦 prime-eld
operations in parallel, and each of the prime-eld operations uses 𝑧 64-bit elements of a vector. Fur-
ther, given an elliptic curve 𝐸 (𝐴:𝐶) in Montgomery form, we dene the three constants 𝐴+24 = 𝐴 + 2𝐶 ,
𝐴−24 = 𝐴−2𝐶 , as well as𝐶24 = 4𝐶 , which are used in the isogeny computations and the point arithmetic.

6.5.1 Three-point ladder

SIKE uses the three-point ladder algorithm from [FLOR18] as standard way to compute the kernel gen-
erator 𝑅 ← 𝑃+[𝑘]𝑄 . For each bit of the scalar 𝑘 , this algorithm performs a so-calledMontgomery ladder
step (xDBLADD), which essentially consists of a dierential point addition and a point doubling; both op-
erations are carried out using (projective)𝑋 and 𝑍 coordinates only, i.e., the𝑌 coordinate is not needed.
The ladder step executes a xed operation (resp. instruction) sequence, which means the three-point
ladder has constant run-time. Various papers in the literature describe vectorized implementations of
the Montgomery ladder-step, focusing particularly on reducing the latency of X25519 key exchange
[Ber06]. For example, [Cho15, FL15, FLD19] discuss how to vectorize the Montgomery ladder-step in
a 2-way fashion, while 4-way parallel implementations were presented in [CS09, HEY20, NS21]. The
benchmarking results in [NS21, Table 2] and in [HEY20, Table 1] clearly indicate that the 4-way vec-
torized Montgomery ladder is more ecient than the 2-way variant on both AVX2 and AVX-512, and

85

CHAPTER 6. VECTORIZED SIKE

hence we decided to focus on the vectorization of the ladder-step for AvxSike-LL in 4-way fashion, or
more precisely, by adopting (1 × 4 ×𝑦 × 𝑧)-way parallelization. In addition, Table 6.2 suggests that the
(4× 2× 1)-way F𝑝2-operations are faster than the (4× 1× 2)-way versions, and so we nally chose the
(1 × 4 × 2 × 1)-way implementation for the ladder-step.

In [NS21], Nath and Sarkar analyze in detail four dierent methods to vectorize the Montgomery
ladder step in 4-way fashion (one from [CS09], one from [HEY20], and two developed by themselves)
and compared in [NS21, Table 1] the operations that all these methods have to perform. The meth-
ods presented in [CS09] and in [NS21] require three 4-way vectorized eld-multiplications (resp. eld-
squarings), plus a special multiplication by a small constant in each step of the ladder. This special mul-
tiplication computes the product of a eld-element and the coecient of Curve25519, which is much
faster than a conventional eld multiplication. However, for some scalar multiplications of SIKE, the
coecient of theMontgomery curve is not a small constant but an element of F𝑝2 . As a consequence, the
vectorization of [CS09] and [NS21] will, in the case of SIKE, require four vectorized F𝑝2-multiplication
(or F𝑝2-squaring) operations. On the other hand, the vectorization technique presented by Hisil, Egrice,
and Yassi in [HEY20] needs only two vectorized eld multiplications and one vectorized eld squar-
ing in each ladder step (no special multiplication by a small curve-constant is carried out). Thus, the
vectorization proposed in [HEY20] is the better choice for a low-latency SIKE implementation.

Based on the 4-way vectorization from [HEY20] and our (4× 2× 1)-way F𝑝2-operations, we devel-
oped a (1×4×2×1)-way parallel ladder step for the latency-optimizedAvxSike-LL. In addition, to speed
up the SIPKE encryption operation (Algorithm 6.15) of AvxSike-LL, we implemented a (2× 4× 1× 1)-
way ladder step for two simultaneous scalar multiplications, which uses the ecient (8 × 1 × 1)-way
F𝑝2-operations. For the throughput-orientedAvxSike-HT software, we developed an (8×1×1×1)-way
parallel ladder step according to the batched X25519 implementation described in [CFG+21].

6.5.2 Point doubling and tripling

Given a point 𝑃 = (𝑋𝑃 : 𝑍𝑃) on the Montgomery curve 𝐸 (𝐴:𝐶) , we dene the double [2]𝑃 = (𝑋 [2]𝑃 :
𝑍 [2]𝑃) as:

𝑋 [2]𝑃 = 𝐶24(𝑋 2
𝑃 − 𝑍 2

𝑃)2 and 𝑍 [2]𝑃 = 4𝑋𝑃𝑍𝑃
(
4𝐴+24𝑋𝑃𝑍𝑃 +𝐶24(𝑋𝑃 − 𝑍𝑃)2

)
.

Algorithm 6.8 shows our 2-way parallel implementation of the doubling operation. For the tripling,
we took advantage of a new formula that uses the value 𝐶24 instead of 𝐴−24 as in the original xTPL
function from the SIKE specication (Algorithm 6 in [JAC+22]) since the latter is less ecient for 2-way
vectorization. Given 𝑃 = (𝑋𝑃 : 𝑍𝑃) on the curve 𝐸 (𝐴:𝐶) , we compute the point [3]𝑃 = (𝑋 [3]𝑃 : 𝑍 [3]𝑃)
via the formulae:

𝑋 [3]𝑃 = 𝑋𝑃

[
𝐶24

(
𝑋 2
𝑃 − 𝑍 2

𝑃

)2 − 4𝑍 2
𝑃

(
4𝐴+24𝑋𝑃𝑍𝑃 +𝐶24(𝑋𝑃 − 𝑍𝑃)2

)]2
𝑍 [3]𝑃 = 𝑍𝑃

[
𝐶24

(
𝑋 2
𝑃 − 𝑍 2

𝑃

)2 − 4𝑋 2
𝑃

(
4𝐴+24𝑋𝑃𝑍𝑃 +𝐶24(𝑋𝑃 − 𝑍𝑃)2

)]2
.

The 2-way implementation of our point-tripling function is described in Algorithm 6.9.

6.5.3 Isogeny generation

Recall that in SIKE the 2𝑒2-isogeny and the 3𝑒3-isogeny are computed as a composition of 4-isogenies
and 3-isogenies, respectively. Given a point 𝑅4 = (𝑋4 : 𝑍4) of order 4 on 𝐸 (𝐴:𝐶) , a 4-isogeny𝜙4 : 𝐸 (𝐴:𝐶)→
𝐸 (𝐴′:𝐶′) is constructed with ker𝜙4 = 〈𝑅4〉. Algorithm 6.10 describes our 2-way implementation of such
a 4-isogeny computation. This algorithm outputs the two parameters𝐴+24 = 𝐴′+2𝐶 ′ and𝐶24 = 4𝐶 ′ that
dene the target curve 𝐸 (𝐴′:𝐶′) (where 𝐴+24 = 4𝑋 4

4 , 𝐶24 = 4𝑍 4
4) and the values 𝐾0 = 4𝑍 2

4 , 𝐾1 = 𝑋4 − 𝑍4,
and 𝐾2 = 𝑋4 + 𝑍4, which are used when evaluating the 4-isogeny 𝜙4 at a point. When the point

86

6.5. IMPLEMENTATION: MONTGOMERY ELLIPTIC CURVE ARITHMETIC

Algorithm 6.8: 𝑋𝑍 -coordinate point doubling with 2-way parallelization at F𝑝2-level.
Input: 𝑃 = (𝑋𝑃 : 𝑍𝑃), (𝐴+24 : 𝐶24).
Output: 𝑄 = [2]𝑃 = (𝑋𝑄 : 𝑍𝑄).

1 𝑡0 ← 𝑋𝑃 + 𝑍𝑃 𝑠0 ← 𝑋𝑃 − 𝑍𝑃
2 𝑡1 ← 𝑡20 𝑠1 ← 𝑠20
3 𝑡0 ← 𝑡1 − 𝑠1
4 𝑡2 ← 𝐶24 × 𝑠1 𝑠2 ← 𝐴+24 × 𝑡0
5 𝑡3 ← 𝑡2 + 𝑠2
6 𝑋𝑄 ← 𝑡2 × 𝑡1 𝑍𝑄 ← 𝑡3 × 𝑡0
7 return 𝑄 = (𝑋𝑄 : 𝑍𝑄)

Algorithm 6.9: 𝑋𝑍 -coordinate point tripling with 2-way parallelization at F𝑝2-level.
Input: 𝑃 = (𝑋𝑃 : 𝑍𝑃), (𝐴+24 : 𝐶24).
Output: 𝑄 = [3]𝑃 = (𝑋𝑄 : 𝑍𝑄).

1 𝑡0 ← 𝑋𝑃 + 𝑍𝑃 𝑠0 ← 𝑋𝑃 − 𝑍𝑃
2 𝑡1 ← 𝑡20 𝑠1 ← 𝑠20
3 𝑡0 ← 𝑋𝑃 + 𝑋𝑃 𝑠0 ← 𝑡1 − 𝑠1
4 𝑡2 ← 𝑡1 + 𝑡1 𝑠2 ← 𝑠0 + 𝑠0
5 𝑡3 ← 𝐶24 × 𝑠1 𝑠3 ← 𝐴+24 × 𝑠0
6 𝑡0 ← 𝑡3 × 𝑡1 𝑠0 ← 𝑡0 × 𝑡0
7 𝑡1 ← 𝑡2 + 𝑡2 𝑠1 ← 𝑠0 + 𝑠2
8 𝑡3 ← 𝑡3 + 𝑠3 𝑠3 ← 𝑡1 − 𝑠1
9 𝑡4 ← 𝑠3 × 𝑡3 𝑠4 ← 𝑠0 × 𝑡3

10 𝑡4 ← 𝑡0 − 𝑡4 𝑠4 ← 𝑡0 − 𝑠4
11 𝑡4 ← 𝑡24 𝑠4 ← 𝑠24
12 𝑋𝑄 ← 𝑋𝑃 × 𝑡4 𝑍𝑄 ← 𝑍𝑃 × 𝑠4
13 return 𝑄 = (𝑋𝑄 : 𝑍𝑄)

Algorithm 6.10: 4-isogeny computation with 2-way parallelization at F𝑝2-level.
Input: 𝑃4 = (𝑋4 : 𝑍4).
Output: (𝐴+24 : 𝐶24), (𝐾0 : 𝐾1 : 𝐾2).

1 𝐾2 ← 𝑋4 + 𝑍4 𝐾1 ← 𝑋4 − 𝑍4
2 𝑡0 ← 𝑍 2

4 𝑠0 ← 𝑋 2
4

3 𝑡0 ← 𝑡0 + 𝑡0 𝑠0 ← 𝑠0 + 𝑠0
4 𝐶24 ← 𝑡20 𝐴+24 ← 𝑠20
5 𝐾0 ← 𝑡0 + 𝑡0
6 return (𝐴+24 : 𝐶24), (𝐾0 : 𝐾1 : 𝐾2)

87

CHAPTER 6. VECTORIZED SIKE

Algorithm 6.11: 3-isogeny computation with 2-way parallelization at F𝑝2-level.
Input: 𝑃3 = (𝑋3 : 𝑍3).
Output: (𝐴+24 : 𝐶24), (𝐾1 : 𝐾2).

1 𝐾2 ← 𝑋3 + 𝑍3 𝐾1 ← 𝑋3 − 𝑍3
2 𝑡0 ← 𝐾2

2 𝑠0 ← 𝐾2
1

3 𝑡1 ← 𝑋3 + 𝑋3 𝑠1 ← 𝑠0 − 𝑡0
4 𝑡2 ← 𝑡21 𝑠2 ← 𝑍 2

3
5 𝑡1 ← 𝑡2 + 𝑡2 𝑠1 ← 𝑠1 + 𝑠1
6 𝑡3 ← 𝑡1 − 𝑠1 𝑠3 ← 𝑠2 + 𝑠2
7 𝑡4 ← 𝑡3 + 𝑠0 𝑠4 ← 𝑡2 − 𝑡0
8 𝐶24 ← 𝑠1 × 𝑠3 𝐴+24 ← 𝑡4 × 𝑠4
9 return (𝐴+24 : 𝐶24), (𝐾1 : 𝐾2)

Algorithm 6.12: 4-isogeny evaluation with 2-way parallelization at F𝑝2-level.
Input: 𝑃 = (𝑋𝑃 : 𝑍𝑃), (𝐾0 : 𝐾1 : 𝐾2).
Output: 𝑃 ′ = 𝜙4(𝑃) = (𝑋𝑃 ′ : 𝑍𝑃 ′).

1 𝑡0 ← 𝑋𝑃 + 𝑍𝑃 𝑠0 ← 𝑋𝑃 − 𝑍𝑃
2 𝑡1 ← 𝐾1 × 𝑡0 𝑠1 ← 𝑡0 × 𝑠0
3 𝑡2 ← 𝐾2 × 𝑠0 𝑠2 ← 𝐾0 × 𝑠1
4 𝑡0 ← 𝑡2 + 𝑡1 𝑠0 ← 𝑡2 − 𝑡1
5 𝑡0 ← 𝑡20 𝑠0 ← 𝑠20
6 𝑡1 ← 𝑡0 + 𝑠2 𝑠1 ← 𝑠0 − 𝑠2
7 𝑋𝑃 ′ ← 𝑡1 × 𝑡0 𝑍𝑃 ′ ← 𝑠1 × 𝑠0
8 return (𝑋𝑃 ′ : 𝑍𝑃 ′)

Algorithm 6.13: 3-isogeny evaluation with 2-way parallelization at F𝑝2-level.
Input: 𝑃 = (𝑋𝑃 : 𝑍𝑃), (𝐾1 : 𝐾2).
Output: 𝑃 ′ = 𝜙3(𝑃) = (𝑋𝑃 ′ : 𝑍𝑃 ′).

1 𝑡0 ← 𝑋𝑃 + 𝑍𝑃 𝑠0 ← 𝑋𝑃 − 𝑍𝑃
2 𝑡0 ← 𝐾1 × 𝑡0 𝑠0 ← 𝐾2 × 𝑠0
3 𝑡1 ← 𝑡0 + 𝑠0 𝑠1 ← 𝑡0 − 𝑠0
4 𝑡1 ← 𝑡21 𝑠1 ← 𝑠21
5 𝑋𝑃 ′ ← 𝑋𝑃 × 𝑡1 𝑍𝑃 ′ ← 𝑍𝑃 × 𝑠1
6 return (𝑋𝑃 ′ : 𝑍𝑃 ′)

88

6.6. IMPLEMENTATION: HIGHER-LAYER ARITHMETIC

𝑅3 = (𝑋3 : 𝑍3) on 𝐸 (𝐴:𝐶) is of order 3, a 3-isogeny 𝜙3 : 𝐸 (𝐴:𝐶) → 𝐸 (𝐴′:𝐶′) has to be constructed with
ker𝜙3 = 〈𝑅3〉. Algorithm 6.11 shows our 2-way implementation of the function to compute an isogeny
of degree 3. The 3-isogeny generation algorithm outputs the values 𝐴+24 = 𝐴′ + 2𝐶 ′, 𝐶24 = 4𝐶 ′6 that
dene the target curve 𝐸 (𝐴′:𝐶′) , namely:

𝐴+24 = (3𝑋 2
3 − 2𝑋3𝑍3 − 𝑍 2

3) (3𝑋3 + 𝑍3)2 and 𝐶24 = −16𝑋3𝑍
3
3 .

The algorithm also outputs the constants 𝐾1 = 𝑋3 − 𝑍3 and 𝐾2 = 𝑋3 + 𝑍3, which will be used in the
evaluation of a 3-isogeny at a point.

6.5.4 Isogeny evaluation

Let 𝜙4 : 𝐸 (𝐴:𝐶) → 𝐸 (𝐴′:𝐶′) be a 4-isogeny with kernel ker𝜙4 = 〈(𝑋4 : 𝑍4)〉 and let the point 𝑃 = (𝑋𝑃 : 𝑍𝑃)
be on curve 𝐸 (𝐴:𝐶) . Then, the point 𝑃 ′ = 𝜙4(𝑃) = (𝑋𝑃 ′ : 𝑍𝑃 ′) is derived after the evaluation of the 4-
isogeny 𝜙4 at 𝑃 and dened as:

𝑋𝑃 ′ = 16
((𝑋4𝑋𝑃 − 𝑍4𝑍𝑃)2 + 𝑍 2

4 (𝑋 2
𝑃 − 𝑍 2

𝑃)
) (𝑋4𝑋𝑃 − 𝑍4𝑍𝑃)2

𝑍𝑃 ′ = 16
((𝑋4𝑍𝑃 − 𝑍4𝑋𝑃)2 − 𝑍 2

4 (𝑋 2
𝑃 − 𝑍 2

𝑃)
) (𝑋4𝑍𝑃 − 𝑍4𝑋𝑃)2

Our 2-way implementation for the 4-isogeny evaluation is specied in Algorithm 6.12. In the case of
3-isogeny, let 𝜙3 : 𝐸 (𝐴:𝐶) → 𝐸 (𝐴′:𝐶′) with kernel ker𝜙3 = 〈(𝑋3 : 𝑍3)〉 and 𝑃 = (𝑋𝑃 : 𝑍𝑃) be a point on
curve 𝐸 (𝐴:𝐶) . Then, the image of 𝑃 under the 3-isogeny 𝜙3 is a point 𝑃 ′ = 𝜙3(𝑃) = (𝑋𝑃 ′ : 𝑍𝑃 ′) such that:

𝑋𝑃 ′ = 4𝑋𝑃 (𝑋3𝑋𝑃 − 𝑍3𝑍𝑃)2 and 𝑍𝑃 ′ = 4𝑍𝑃 (𝑋3𝑍𝑃 − 𝑍3𝑋𝑃)2 .

The 2-way implementation of the 3-isogeny evaluation is presented in Algorithm 6.13.

6.5.5 Results and comparison

Because of dependencies among the involved operations, ourAvxSike-LL only requires a (1×𝑥×𝑦×𝑧)-
way implementation of the point tripling and 3-isogeny generation. On the other hand, for the doubling
operation and 4-isogeny generation, we can besides the (1 × 𝑥 ×𝑦 × 𝑧)-way implementation also use a
(2× 𝑥 ×𝑦 × 𝑧)-way implementation in an optimized version of SIPKE encryption (see Algorithm 6.15).
Table 6.3 indicates that the (1 × 2 × 2 × 2)-way point-operations outperform their (1 × 2 × 4 × 1)-
way counterparts by a few clock cycles. In addition, the 4-isogeny computation (Algorithm 6.10) just
uses F𝑝2-squaring but not F𝑝2-multiplication and, therefore, the (1 × 2 × 4 × 1)-way version is clearly
not ecient in this case. As a result, we chose (1 × 2 × 2 × 2)-way parallelism to implement all the
(1×𝑥 ×𝑦 ×𝑧)-way operations for the curve arithmetic. According to Table 6.4, the dierence (in terms
of cycles/instance) between the (8 × 1 × 1 × 1)-way and the (4 × 2 × 1 × 1)-way parallelism is rather
small. Both of these parallelization options are much more ecient than the (2 × 2 × 2 × 1)-way and
(1 × 2 × 2 × 2)-way versions.

6.6 Implementation: higher-layer arithmetic

6.6.1 Low-latency implementation

All functions in Algorithm 6.1 and Algorithm 6.2 contain two types of costly operations, namely the
computation of the kernel generator 𝑅 ← 𝑃 + [𝑘]𝑄 and the generation/evaluation of the ℓ𝑒ℓ -isogeny

6The 3-isogeny generation algorithm in the SIKE specication (Algorithm 15 in [JAC+22]) originally outputs 𝐴−24. Our
formula outputs 𝐶24 instead of 𝐴−24 since our point tripling takes 𝐶24 as input.

89

CHAPTER 6. VECTORIZED SIKE

Table 6.3: Experimental results of point-operation implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 5056 5056 1.00×Ladder AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 9417 1177 4.30×step AvxSike AVX-512 (2 × 4 × 1 × 1)-way 2 2880 1440 3.51×(xDBLADD) AvxSike AVX-512 (1 × 4 × 2 × 1)-way 1 1757 1757 2.88×
SIDHv3.4 x64 asm 1-way 1 2873 2873 1.00×
[KG19] AVX-512 hybrid 1 1782 1782 1.61×Point AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 5052 632 4.55×doubling AvxSike AVX-512 (2 × 2 × 2 × 1)-way 2 1660 830 3.46×(xDBL) AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 1273 1273 2.26×
AvxSike AVX-512 (1 × 2 × 4 × 1)-way 1 1319 1319 2.18×
SIDHv3.4 x64 asm 1-way 1 5794 5794 1.00×

Point [KG19] AVX-512 hybrid 1 3527 3527 1.64×
tripling AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 10063 1258 4.61×
(xTPL) AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 2730 2730 2.12×

AvxSike AVX-512 (1 × 2 × 4 × 1)-way 1 2745 2745 2.11×

Table 6.4: Experimental results of isogeny-operation implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 1729 1729 1.00×

4-isogeny [KG19] AVX-512 hybrid 1 1379 1379 1.25×
generation AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 3113 389 4.44×

(get_4_isog) AvxSike AVX-512 (2 × 2 × 2 × 1)-way 2 843 422 4.10×
AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 673 673 2.57×
SIDHv3.4 x64 asm 1-way 1 3852 3852 1.00×
[KG19] AVX-512 hybrid 1 2292 2292 1.68×4-isogeny AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 6925 866 4.45×evaluation AvxSike AVX-512 (4 × 2 × 1 × 1)-way 4 3569 892 4.32×(eval_4_isog) AvxSike AVX-512 (2 × 2 × 2 × 1)-way 2 2289 1145 3.36×
AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 1858 1858 2.07×
SIDHv3.4 x64 asm 1-way 1 2783 2783 1.00×3-isogeny [KG19] AVX-512 hybrid 1 2011 2011 1.38×generation AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 4508 564 4.93×(get_3_isog) AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 1350 1350 2.06×
SIDHv3.4 x64 asm 1-way 1 2893 2893 1.00×
[KG19] AVX-512 hybrid 1 1628 1628 1.78×3-isogeny AvxSike AVX-512 (8 × 1 × 1 × 1)-way 8 5130 641 4.51×evaluation AvxSike AVX-512 (4 × 2 × 1 × 1)-way 4 2651 663 4.36×(eval_3_isog) AvxSike AVX-512 (2 × 2 × 2 × 1)-way 2 1521 761 3.80×
AvxSike AVX-512 (1 × 2 × 2 × 2)-way 1 1235 1235 2.34×

90

6.6. IMPLEMENTATION: HIGHER-LAYER ARITHMETIC

Algorithm 6.14: Vectorized isogeny2 in SIKEp503 using the optimal strategies.
Input: Curve 𝐸𝐴, public parameter 𝑒2, point (𝑋𝑅, 𝑍𝑅), and a strategy (𝑠1, . . . , 𝑠𝑒2/2−1).
Output: Curve 𝐸𝐵 such that 𝜙2 : 𝐸𝐴 → 𝐸𝐵 with deg𝜙2 = 2𝑒2 , ker𝜙2 = 〈(𝑋𝑅 : 𝑍𝑅)〉.

1 pts← [], 𝑖 ← 0, 𝐸𝐵 ← 𝐸𝐴, 𝑘 ← 1
2 for 𝑗 from 1 to 𝑒2/2 − 1 by 1 do
3 while 𝑖 < 𝑒2/2 − 𝑗 do
4 push (𝑋𝑅, 𝑍𝑅, 𝑖) to pts /* Append it to the end of pts */
5 𝑒 ← 𝑠𝑘
6 (𝑋𝑅, 𝑍𝑅) ← xDBLe_1x2x2x2w(𝑋𝑅, 𝑍𝑅, 𝐸𝐵, 2𝑒) /* [22𝑒]𝑅 */
7 𝑖 ← 𝑖 + 𝑒 , 𝑘 ← 𝑘 + 1
8 𝐸𝐵, 𝜙 ← get_4_isog_1x2x2x2w(𝑋𝑅, 𝑍𝑅) /* 4-isogeny generation */
9 pts← eval_4_isog_parallel(𝜙, pts) /* Parallel 4-isogeny evaluation */

10 pop (𝑋𝑆 , 𝑍𝑆 , 𝑖𝑆) from pts /* Remove it from the end of pts */
11 𝑋𝑅 ← 𝑋𝑆 , 𝑍𝑅 ← 𝑍𝑆 , 𝑖 ← 𝑖𝑆

12 𝐸𝐵, 𝜙 ← get_4_isog_1x2x2x2w(𝑋𝑅, 𝑍𝑅) /* 4-isogeny generation */
13 return 𝐸𝐵

for ℓ ∈ {2, 3}. The former is performed using the three-point ladder, whose ecient four-way vector-
ization has been explained in Section 6.5.1. On the other hand, as discussed in Section 6.2.2, SIKE takes
advantage of the optimal strategies from [DJP14] to reduce the execution time of the ℓ𝑒ℓ -isogeny gen-
eration and evaluation (these algorithms for ℓ ∈ {2, 3} are analyzed in detail in the SIKE specication,
see [JAC+22, Algorithm 19 and 20]).

Vectorized ℓ𝑒ℓ -isogeny computation and evaluation. We pick the 2𝑒2-isogeny case as example
to demonstrate our vectorized implementation (note that the 3𝑒3-isogeny can be vectorized in a very
similar fashion). It is common practice that, when 𝑒2 is even, the 2𝑒2-isogeny is computed as the com-
position of 𝑒2/2 isogenies of degree 4, while an extra isogeny of degree 2 needs to be computed when 𝑒2
is odd. The 2𝑒2-isogeny generation for even 𝑒2 is described in Algorithm 6.14. Because of dependencies
among the operations in each iteration, we choose the (1 × 2 × 2 × 2)-way parallel point doubling7 to
compute the kernel [22𝑒]𝑅 of the 4-isogeny, and the (1 × 2 × 2 × 2)-way 4-isogeny generation to ob-
tain the coecients of the target curve. The vector (𝑠1, . . . , 𝑠𝑒2/2−1) denotes the tree traversal strategy
used for fast isogeny computations. These strategies are described in [JAC+22, Appendix D] for the
four parameter sets of our SIKE implementation. On the other hand, for the 4-isogeny evaluation at
dierent points in the 𝑝𝑡𝑠 queue, we decided to develop a dedicated eval_4_isog_parallel function
to achieve a fast simultaneous isogeny evaluation, which uses the more ecient (8 × 1 × 1 × 1)-way
and (4 × 2 × 1 × 1)-way parallel implementations. This function checks at rst the number of points
in the pts queue and then uses the dierent vectorized implementations of 4-isogeny evaluation (i.e.,
eval_4_isog) with corresponding points in pts to handle the computation8:

#𝑝𝑡𝑠 = 1 : (1 × 2 × 2 × 2)-way #𝑝𝑡𝑠 = 5 : (4 × 2 × 1 × 1)-way + (1 × 2 × 2 × 2)-way
#𝑝𝑡𝑠 = 2 : (2 × 2 × 2 × 1)-way #𝑝𝑡𝑠 = 6 : (4 × 2 × 1 × 1)-way + (2 × 2 × 2 × 1)-way
#𝑝𝑡𝑠 = 3 : (4 × 2 × 1 × 1)-way #𝑝𝑡𝑠 = 7 : (8 × 1 × 1 × 1)-way
#𝑝𝑡𝑠 = 4 : (4 × 2 × 1 × 1)-way #𝑝𝑡𝑠 = 8 : (8 × 1 × 1 × 1)-way

7 (𝑋𝑄 , 𝑍𝑄) ←xDBLe (𝑋𝑃 , 𝑍𝑃 , 𝐸, 𝑛) denotes computing𝑄 ← [2𝑛]𝑃 on curve 𝐸 by using𝑛 times the point-doubling operation
xDBL.

8Note that the number of points in the pts queue (i.e., #pts) is public information. Hence, using the dierent vectorized
4-isogeny evaluation implementations does not leak any secrets.

91

CHAPTER 6. VECTORIZED SIKE

Algorithm 6.15: Optimized SIPKE encryption operation.
1 function EncOpt(pk3,𝑚 ∈ M, sk2 ∈ K2)
2 𝑥𝑅2 ← 𝑥𝑃2 + [sk2]𝑥𝑄2 𝑥 ′

𝑅2
← 𝜙3(𝑥𝑃2) + [sk2]𝜙3(𝑥𝑄2)

3 (𝜙2, 𝐸2) ← isogeny2(𝐸0, 𝑥𝑅2) (𝜙 ′2, 𝐸32) ← isogeny2(𝐸3, 𝑥 ′𝑅2
)

4 𝑐1 ← (𝜙2(𝑥𝑃3), 𝜙2(𝑥𝑄3), 𝜙2(𝑥𝑃𝑄3))
5 ℎ ← SHAKE256(𝑗 (𝐸32))
6 𝑐2 ← ℎ ⊕𝑚
7 return (𝑐1, 𝑐2)

Optimized SIKE encapsulation. Even at the highest layer of SIKE, there are options to parallelize
some internal operations. For example, we managed to further optimize the Encaps operation by paral-
lelizing two scalarmultiplications (computedwith the same scalar sk2) and parallelizing two 2𝑒2-isogeny
generation and evaluation operations, which are denoted as isogeny2 in our optimized Enc function for
SIPKE that is described in Algorithm 6.15. As stated in Section 6.5.1, the kernel generator inAvxSike-LL
is obtained with help of the (1× 4× 2× 1)-way three-point ladder. However, Algorithm 6.15 computes
in line 2 two kernel generators simultaneously, and therefore it is possible to use a more ecient lad-
der, namely the (2 × 4 × 1 × 1)-way vectorized version. More importantly, in line 3, the algorithm
performs two 2𝑒2-isogeny generation and evaluation operations in parallel, which makes it possible to
use the (2× 2× 2× 1)-way implementation for the point doubling and 4-isogeny generation instead of
the (1 × 2 × 2 × 2)-way version. This will lead to a signicant dierence in performance because the
underlying F𝑝-arithmetic implementation changes from (4 × 2)-way to (8 × 1)-way. According to our
results, the optimized SIPKE encryption in Algorithm 6.15 improves the speed of a SIKE encapsulation
by around 27% compared to the straightforward version of Enc (i.e., Algorithm 6.1).

6.6.2 High-throughput implementation

Since constant-time SIKE executes a xed operation sequence, a batched implementation using AVX-
512 is fairly easy to develop. We modied the SIDHv3.4 x64 implementation by using our (8×1×1×1)-
way curve arithmetic, (8 × 1 × 1)-way F𝑝2-operations, and (8 × 1)-way F𝑝-operations at the dierent
layers. We also developed a (8 × 1 × 1 × 1)-way version of some other subroutines of AvxSike-HT,
most notably the computation of the 𝑗-invariant (j_inv) and the curve coecient (get_A), as well as a
3-way simultaneous inversion (inv_3_way), which takes advantage of the (8 × 1)-way F𝑝-inversion.

Parallel SHAKE256. As explained in Section 6.2, the hash function used by SIKE is an XOF, namely
SHAKE256, which employs the Keccak permutation. ForAvxSike-HT, we developed a batched SHAKE256
implementation based on AVX-512 instructions that can process eight inputs independently and in par-
allel. The eXtended Keccak Code Package (XKCP) contains various Keccak-related software artifacts,
including highly-optimized implementations of the Keccak permutation for two generations of AVX,
namely AVX2 and AVX-5129. Sinha Roy showed in [Sin19] that the AVX2-based Keccak source code
from XKCP can serve as a starting point to build a batched SHAKE256 implementation capable to pro-
cess four inputs simultaneously, each using a 64-bit slot of a 256-bit AVX2 vector. We followed Sinha
Roy’s idea and used the AVX-512 implementation of Keccak from the XKCP to batch SHAKE256 with
AVX-512 instructions.

92

6.7. EVALUATION

Table 6.5: Execution times (in cycles) of implementations of SIKEp503 on an Intel Core i3-1005G1 pro-
cessor. The cycle-counts for SIDHv3.4, Kostic-Gueron’s work [KG19], and AvxSike-LL are for the exe-
cution of one instance of an operation and “Speed-up” is the speed-up factor compared to SIDHv3.4. The
cycle-counts forAvxSike-HT are for the execution of eight instances of an operation and “Throughput”
is the throughput gain compared to SIDHv3.4 when it executes eight instances.

SIDHv3.4 Kostic [KG19] AvxSike-LL AvxSike-HT
Operation (1 instance) (1 instance) (1 instance) (8 instances)

Cycles Cycles Speed-up Cycles Speed-up Cycles Throughput
KeyGen 8,078,669 4,842,909 1.67× 3,215,375 2.51× 14,179,026 4.56×
Encaps 13,188,788 7,923,514 1.66× 4,111,650 3.21× 22,992,807 4.59×
Decaps 14,026,750 8,513,409 1.65× 5,715,005 2.45× 24,619,263 4.56×

6.7 Evaluation

SIKEp503. Table 6.5 shows the cycle counts for the dierent SIKEp503 implementations. The timings
for SIDHv3.4 and AvxSike are measured on our target Ice Lake CPU, while the results for the imple-
mentation reported in [KG19] are taken from the paper. As the rst three implementations in Table 6.5
are designed to reduce the latency, we can compare them in terms of speed, while AvxSike-HT aims at
increasing throughput and, thus, it makes sense to compare it with SIDHv3.4 in terms of throughput.
Regarding key generation and decapsulation, AvxSike-LL is about 2.5 times faster than SIDHv3.4 and
outperforms the implementation of [KG19] by a factor of 1.5.Furthermore, due to our optimizations
for encapsulation (see Section 6.6.1), AvxSike-LL reaches a 3.2-fold higher encapsulation speed com-
pared to SIDHv3.4, which can be benecial for, e.g., server-side TLS processing since, when SIKE is
integrated into TLS, the server has to perform encapsulations. TLS servers could prot even more from
our high-throughput AvxSike-HT implementation because it outperforms SIDHv3.4 throughput-wise
by a factor of almost 4.6.

Analysis. An x64 implementation of SIKE executed on an Ice Lake Core has to use one single (64 ×
64 → 128)-bit multiplier sequentially, whereas AVX-512IFMA is able to perform eight parallel (52 ×
52 + 64→ 64)-bit multiply-add operations. But this does not mean that IFMA instructions can lead to
an (almost) eight-fold performance gain, not even in theory. Though the IFMA engine can carry out
eight element-wise multiplications simultaneously, various other architectural and micro-architectural
features and eects have to be considered, e.g., dierent multiplier widths (52 vs. 64 bits), dierent carry
chains and other sequential dependencies, dierent instruction latencies and throughputs, as well as
dierences in the register space and occupation10. For all these reasons, the theoretical speed-up factor
of an IFMA implementation compared to an x64 implementation like SIDHv3.4 is far from eight and
very dicult to estimate. Kostic and Gueron focused in [KG19] on optimizing the F𝑝 and F𝑝2 layer
of SIKE, especially the multiplication of eld elements, using AVX-512IFMA and achieved a reduction
of the overall execution time by a factor of roughly 1.7 (these results still represent the speed record
for SIKE on an Intel CPU). On the other hand, AvxSike takes advantage of sophisticated vectorization
of the higher layers of SIKE, in addition to notably more ecient vectorized prime-eld arithmetic.
Thanks to careful optimizations at the higher layers, AvxSike-LL reaches 1.5 times faster execution
times for both key generation and decapsulation compared to [KG19] (see Table 6.5). Furthermore, the
encapsulation is almost two times faster.

9https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512.
10The SIDHv3.4 library uses a full-radix representation (64 bits/limb) for eld elements, which enables a 100% occupation

of the registers (except for the register with the highest limb), while our 51 bits/limb representation implies that around 20%
of each 64-bit element of an AVX-512 register is empty.

93

https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512

CHAPTER 6. VECTORIZED SIKE

Table 6.6: Execution times (in cycles) of implementations of SIKEp434, SIKEp610, and SIKEp751 on an
Intel Core i3-1005G1 processor. The cycle-counts for SIDHv3.4 andAvxSike-LL are for the execution of
one instance of an operation and “Speed-up” is the speed-up factor compared to SIDHv3.4. The cycle-
counts for AvxSike-HT are for the execution of eight instances of an operation and “Throughput” is
the throughput gain compared to SIDHv3.4 when it executes eight instances.

SIDHv3.4 AvxSike-LL AvxSike-HT
Scheme Operation (1 instance) (1 instance) (8 instances)

Cycles Cycles Speed-up Cycles Throughput
KeyGen 5,976,700 2,474,187 2.42× 10,442,609 4.58×

SIKEp434 Encaps 9,690,764 3,062,491 3.16× 16,801,041 4.61×
Decaps 10,357,218 4,341,099 2.39× 18,053,398 4.59×
KeyGen 14,096,085 6,918,618 2.04× 32,172,538 3.51×

SIKEp610 Encaps 25,875,968 10,001,282 2.59× 58,747,976 3.52×
Decaps 26,040,095 13,124,052 1.98× 59,103,361 3.52×
KeyGen 23,843,419 10,212,410 2.33× 46,662,723 4.09×

SIKEp751 Encaps 38,446,643 12,804,923 3.00× 74,885,499 4.11×
Decaps 41,368,995 17,834,974 2.32× 80,684,214 4.10×

SIKEp434, SIKEp610, and SIKEp751. The benchmarking results ofMicrosoft’s SIDHv3.4 andAvxSike
for the other three parameter sets are given in Table 6.6. When analyzing the cycle counts achieved by
the low-latency version AvxSike-LL, it is apparent that the speed-up factors (in relation to SIDHv3.4)
for SIKEp434 and SIKEp751 are similar to the speed-up for SIKEp503, though a bit smaller. This reduced
performance gain can be explained by the number of limbs needed for the elements of a 434-bit and
751-bit prime eld, respectively. Namely, due to the radix-251 representation, the number of limbs is
odd in both the 434-bit case (nine limbs) and the 751-bit case (15 limbs), whereas it is even for the 503-bit
eld. An odd number of limbs is not ideal for the structure of (4 × 2)-way limb vector set (since there
are four elements unused in the last limb vector) and causes an “underutilization” of the parallelism in
many of the executed AVX-512 vector instructions. Furthermore, also the register allocation (i.e., how
many operands and results can be kept in registers) impacts the overall performance, which, in turn,
depends on the length of the eld elements. In general, the larger the order of the underlying prime
eld, the more dicult it becomes to keep operands in the register le and the more register spills will
happen in both the low-latency and the high-throughput version, respectively. While the speed-up fac-
tors for SIKEp434 and SIKEp751 are only marginally smaller than that for SIKEp503, it turns out that
the gap between SIKEp610 and SIKEp503 is bigger. Even though the elements of a 610-bit eld can be
represented by an even number of limbs (51 × 12 = 612), there are only two bits of “headroom” in this
representation, which is not ideal with respect to lazy reduction. Concretely, when using the SIKEp610
parameters, a number of additional modular reductions have to be carried out to prevent overows,
which impacts both the low-latency version and the high-throughput version of AvxSike.

6.8 Conclusion

Summary. Vector processing engines like Intel’s AVX oer a great potential to reduce the execu-
tion time (or increase the throughput) of public-key cryptosystems, and this is also the case for post-
quantum KEMs such as SIKE. The AVX-512IFMA instructions deserve special attention because they
allow one to execute eight multiplications of 52-bit operands in parallel, followed by a parallel addi-
tion of the upper or lower halves of the products to eight 64-bit operands. By developing sophisticated
vector processing techniques for eld arithmetic, point arithmetic, and isogeny computations, all of
which are integrated into our AvxSike software, we were able to signicantly improve both the la-

94

6.8. CONCLUSION

tency and the throughput of SIKE on modern Intel processors. For example, AvxSike-LL instantiated
with the SIKEp503 parameters is about 1.5 times faster than the AVX-512IFMA-based SIKE implemen-
tation described in [KG19] and outperforms Microsoft’s highly-optimized SIDHv3.4 library by a factor
of roughly 2.5 for key generation and decapsulation, while the speed-up factor for the encapsulation
reaches even 3.2. In summary, AvxSike does not only set new software speed and throughput records
for SIKE on Intel CPUs, but also narrows the gap between SIKE and lattice-based post-quantum KEMs,
mainly because the IFMA instructions are more benecial for the multiplication in prime elds than
the multiplication in the polynomial rings of e.g., NTRU, Kyber, or Saber.

Future work. We envision that follow-up work in two directions can yield interesting results. The
rst direction concerns the integration of AvxSike into an existing SSL/TLS protocol stack likeOpenSSL
to evaluate the impact of the latency-optimized implementation on the side of the client and the impact
of the throughput-optimized implementation on the server side. In particular, it would be interesting
to gure out to what extent the speed and throughput improvements of AvxSike propagate up to the
protocol layer. A second research direction could target the question of how benecial the presented
vectorization techniques can be for compressed SIKE. For example, the public-key compression process
described in [JAC+22] requires the execution of some very expensive operations, such as pairing and
discrete logarithm computations over F𝑝2 . Since these operations constitute the main bottleneck in the
compression algorithm, it can be expected that utilizing the parallel processing power of AVX-512IFMA
has the potential to signicantly accelerate the overall execution of compressed SIKE.

95

CHAPTER 6. VECTORIZED SIKE

96

Part IV

Efficient Cryptographic Instruction
Set Extension Design

97

CHAPTER

7

RISC-V ISES FOR LIGHTWEIGHT
SYMMETRIC CRYPTOGRAPHY

This Chapter is based on our paper [CGM+23]. While we were conducting the research work described
in this Chapter, the NIST LWC standardization process was in its third and nal round.

7.1 Introduction

The LWC selection process. In a detailed survey of various examples, Bernstein [Ber20] notes that
modern, open cryptographic selection processes (or contests) are not without their issues. Set within
the broader context of standardized cryptographic functionality, however, they represent an undeniably
important and inuential mechanism: modulo imperfections stemming from the non-trivial technical
and non-technical challenges involved, they act to motivate and organize collaborative eort, and, at
best, produce more robust outcomes as a result.

The (ongoing) nal round of LWC standardization is expected to last approximately 12 months,
implying a conclusion to the process in 2022. Beyond application of the minimum acceptability re-
quirements [NIS18, Section 3], a range of factors mean that objective comparison between and then
selection of submissions in each round, the nal round perhaps most importantly, is a signicant chal-
lenge. First, even in the nal round, there are a large number of submissions and variants thereof.
Second, there are a large number of relevant implementation technologies: these include hardware-
oriented (e.g., FPGA, ASIC) and software-oriented (e.g., micro-controller) instances. Third, there are
a large number of relevant evaluation criteria [NIS18, Section 4]: focusing on implementation-related
examples, and so ignoring the complex, stand-alone challenge of cryptanalytic evaluation, these span
at least cost [NIS18, Section 4.3] (e.g., area and/or memory footprint1), eciency [NIS18, Section 4.3]
(e.g., latency, throughput), and resilience to implementation (e.g., side-channel and fault) attack [NIS18,
Section 4.2]. The product of these and other factors demands signicant eort be invested, in part due
to the design space of implementation techniques (spanning representation of data, and computation
with it) and technologies which must be explored.

1Whereas the termmemory footprint includes, e.g., static and dynamic data, we focus on instruction (or code) throughout:
instruction footprint is the amount of memory required to house the instructions for a given implementation, which is a proxy
for the number of instructions required.

99

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

ISE-supported software implementation. Instruction Set Extensions (ISEs) attempt to add domain-
specic support (e.g., state, instructions) to an otherwise general-purpose base Instruction Set Architec-
ture (ISA). Although applicable to many domains, the study of cryptographic ISEs [BGM09, HV11, RI16]
spans at least a 25 year period; work by Nahum et al. [NOOS95] is among the rst identiable instances.

As a fundamental and long-lived computer systems interface, the design and extension of an ISA
demands careful consideration (cf. [Gue09, Section 4]) and must deliver quantied improvement for the
workload of interest to be viable. ISEs often are viable, however, because, for example, they represent
a hybrid between use of hardware or software alone. This is particularly true with respect to the
constrained platforms and evaluationmetrics of relevance to the LWC selection process: a well designed
ISE can result in lower memory footprint and latency than a software-only implementation, and greater
exible and eciency (with respect to improvement per additional logic gate) than a hardware-only
implementation.

ISEs were not (explicitly) considered during the AES selection process, but, after it concluded in
2002, were added to almost every major ISA; at the time of writing, these include (at least) x86 [Int18a,
Section 12.13] (see also [Gue09, DGK19]), POWER [POW18, Section 6.11.1], ARMv8-A [ARM20, Sec-
tionA2.3], SPARC [SPA16, Sections 7.3+7.4], and RISC-V [RVK22, Sections 2.4+2.5] (see also [MNP+21]).
Using this fact as motivation, we argue that considering ISEs during the LWC selection process is im-
portant because doing so oers 1) improved understanding and concrete evidence which can inform
the LWC process itself, and 2) preparatory analysis which can inform ISA designers seeking to support
the LWC process outcome.

Contributions. As such, this work makes two central contributions:

1. Based on careful analysis, we present the design, implementation, and evaluation of one separate
ISE for each of the 10 LWC nal round submissions; for most submissions, our work represents
the rst exploration of implementations supported by domain-specic ISEs.

2. We present a number of novel software-only (i.e., without requiring an ISE) techniques and imple-
mentations. For most submissions, our work represents the rst exploration of implementations
supported by special-purpose, cryptographic Zbkb and Zbkx bit manipulation extensions, an ap-
proach which is particularly eective for Elephant (Section 7.3.3) andGIFT-COFB (Section 7.3.4);
in the latter case, for example, we demonstrate how to optimize bit-sliced implementations of
GIFT-128 (as used in GIFT-COFB) using Zbkb, rendering it more ecient than either standard or
x-sliced alternatives for short plaintexts/ciphertexts.

Source code. Note that all material associated with this work, e.g., documentation and source code
relating to all hardware and software implementations, are openly available at https://github.com/
scarv/lwise under an open source license: we expect this material to evolve throughout the remainder
of the LWC process and beyond.

7.2 Background

Scope. In part to cope with the large design space considered, and thus engineering eort required,
we x the scope of our work in the following ways:

1. For each submission, we only consider the primary algorithm; each such algorithm is based on
a “building block” component or kernel which dominates computation. We only consider intra-
kernel ISEs, i.e., ISEs for use within a given kernel: the denition of a kernel implies that any
extra-kernel opportunities for ISEs have at best a marginal impact, so are not considered viable.

100

https://github.com/scarv/lwise
https://github.com/scarv/lwise

7.2. BACKGROUND

Furthermore, we only consider partial implementation of a given kernel where appropriate. Ro-
mulus is based on the Skinny-128-384+ kernel, for example, but only uses it to encrypt data; we
do not consider support for decryption, therefore, although it would clearly be possible to do so
if it were more generally useful.

2. We do not consider the hash function API: focusing on the the AEAD API alone seems sucient,
because, for each submission, use of the same kernel is evident across the algorithms which
support both APIs.

3. We only consider a 32-bit ISA (and also ISEs for it therefore). Although consideration of a wider
set of ISAs is more generally useful, we rationalize this decision by noting it aligns with the
(implied) scope of the LWC process: the NIST call outlines a requirement to consider “8-bit, 16-
bit and 32-bit microcontroller architectures” [NIS18, Section 3.4], for example, meaning a 64-bit
ISA is deemed out of scope.

4. Although some discussion of the topic is included for completeness in Section 7.5, we do not
consider support in the ISA nor ISEs for countermeasures against implementation attacks (other
than their ability to deliver data-independent execution latency). We rationalize this decision by
noting it aligns with the (implied) scope of the RISC-V scalar cryptographic extensions [RVK22]:
for example, the Zkne and Zknd extensions [RVK22, Sections 2.4+2.5] for AES do not consider
interaction with masking-based countermeasures against DPA-like attacks [KJJ99, MOP07].

5. For most submissions, we considered multiple ISE design variants. However, we only present
results for the single ISE design variant we deem most eective, i.e., that which oers the great-
est improvement in execution latency per additional logic gate. We stress that the results are
therefore a “snapshot”, rather than exhaustive exploration of the (large) design space.

RISC-V. In line with our scope, we focus on use of the unextended ISA RV32GC [RV19, Chapter 2]
as a starting point. We dene the base ISA, i.e., a baseline for our work, as the unextended ISA plus
Zbkb and Zbkx: it therefore includes the 32-bit integer ISA plus the general-purpose M (multiplica-
tion) [RV19, Chapter 7], A (atomic) [RV19, Chapter 8], F (single-precision oating-point) [RV19, Chap-
ter 11], D (double-precision oating-point) [RV19, Chapter 12], and C (compressed) [RV19, Chapter 16]
extensions, plus the special-purpose, cryptographic Zbkb (a subset of K for bit manipulation instruc-
tions) [RVK22, Section 2.1] and Zbkx (a subset of K for crossbar permutation instructions) [RVK22,
Section 2.2] extensions. We dene an extended ISA as then capturing our work, i.e., the base ISA
extended with support for an LWC-specic ISE.

Notation. Let 𝑥 (𝑏) denote an 𝑥 expressed in radix- or base-𝑏; the base may be omitted, in which case
it is safe to assume 𝑏 = 10. Let MEM[𝑖]𝑏 denote a 𝑏-byte access to some byte-addressable memory,
using the address 𝑖; note that where 𝑏 = 1, the access granularity may be omitted. Let GPR[𝑖], for
0 ≤ 𝑖 < 32, denote the 𝑖-th entry of the general-purpose register le. Note that GPR[0] is xed to 0,
in the sense reads from it always yield 0 and writes to it are ignored. Let 𝑥 � 𝑦 and 𝑥 ≪ 𝑦 (resp.
𝑥 � 𝑦 and 𝑥 ≫ 𝑦) denote left-shift and left-rotate (resp. right-shift and right-rotate) of 𝑥 by 𝑦 bits
respectively. Let 𝑥 ‖ 𝑦 denote concatenation of 𝑥 and 𝑦, and 𝑥ℎ...𝑙 denote extraction of bits ℎ (the high,
or more-signicant index) through 𝑙 (the low, or less-signicant index) inclusive from some 𝑥 . RISC-V
uses XLEN to denote the word size. We adopt same approach, meaning XLEN = 32 because the context
is RV32GC.

101

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

7.3 Design

NIST are careful to use “algorithm(s)” throughout [NIS18, Section 5], presumably to at least allow se-
lection of a suite of rather than a single algorithm. Although one could conclude that multi-algorithm
ISEs, i.e., ISEs which support more than one algorithm, are attractive therefore, focusing on them is ar-
guably premature until the outcome is clear. In this section, we therefore adopt a 2-step design process.
First, we focus on independently developing an ISE design for each algorithm: each of the following
subsections rst summarizes such a design at a high level and then provides the associated lower-level
technical detail (e.g., instruction encoding, semantics, etc.). We use a uniform structure in each such
subsection by presenting, at a higher-level, 1) an overview of the submission, 2) an overview of the ker-
nel within said submission that we focus on, 3) implementation options (including related work, e.g.,
implementation results), 4) a description of the ISE design, then, nally, at a lower-level, 5) the detailed
material relating to the ISE design. Second, and based on the above, Section 7.3.12 concludes with a
broader discussion of opportunities relating to design of ISAs, ISEs, and the algorithms themselves; by
taking a broader perspective, this second step therefore highlights if and where multi-algorithm ISEs
can be extracted from the single-algorithm ISE designs.

7.3.1 Constraints

In their study of support for AES in RISC-V, Marshall et al. [MNP+21, Section 3] codify a set of ISE
requirements to guide their subsequent design process. We adopt the same requirements, which, for
completeness, we reproduce here (numbered to match, noting we omit their AES-specic requirement
1):

Requirement 2. The ISE must align with the wider RISC-V design principles. This means it should
favour simple building-block operations, and use instruction encodings with at most 2 source register
addresses and 1 destination register address.

Requirement 3. The ISE must use the RISC-V general-purpose scalar register le to store operands.

Requirement 4. The ISE must not introduce special-purpose architectural state, nor rely on special-
purpose micro-architectural state.

On one hand, we recognize that adopting these constraints means potential ISE designs might be
ignored; this fact potentially renders our results sub-optimal, at least versus a more permissive alterna-
tive where the constraints are not adhered to. A pertinent example is the approach of Steinegger and
Primas [SP21], which captures the 320-bitAscon state within 10 general-purpose registers then used as
input and output by a tightly-coupled accelerator for an entire round. This approach may be reasonable
for a specic use-cases, and variants of it are in fact viable for all the LWC candidates. However, the
approach violates Requirement 2: although a useful option in the overall design space, our approach
(namely a focus on more traditional, RISC-like ISEs) is fundamentally dierent.

On the other hand, we argue that the same constraints maximize potential utility of our ISE designs.
For example, within the context of RISC-V they 1) support multiple implementation options, including
a more traditional integrated approach or via the in-development Custom Function Unit (CFU)2 spec-
ication, and 2) oer an easier route to standardization and deployment as a result of limiting impact
on other aspects of the ISA. Beyond this, the constraints also permit extrapolation to other ISAs, e.g.,
via the ARMv8-M custom instruction mechanism [CP20]; doing so would be more dicult otherwise.

2https://cfu.readthedocs.io.

102

https://cfu.readthedocs.io

7.3. DESIGN

7.3.2 Ascon

Submission overview. The Ascon [DEMS21] submission species the AEAD algorithms [DEMS21,
Section 2.4] Ascon-128, Ascon-128a, and Ascon-80pq, and the hash function algorithms [DEMS21,
Section 2.5] Ascon-Hash and Ascon-Hasha. We focus on the primary algorithm Ascon-128, and,
more specically therefore, a kernel represented by the 𝑝𝑎 and 𝑝𝑏 permutations [DEMS21, Section 2.6]
(a single permutation 𝑝 , often referred to as Ascon-𝑝 , with 𝑎 and 𝑏 rounds respectively).

Kernel overview. The Ascon-𝑝 permutation manipulates a 320-bit state, which is organized in
ve 64-bit words, by iteratively applying a round function 𝑝 . This round function is essentially a
Substitution-Permutation Network (SPN) and comprises three parts: 1) the addition of an 8-bit round
constant 𝑐𝑟 to a 64-bit state-word, 2) a substitution layer that operates across the ve words of the state
and implements an ane equivalent of the S-box in the 𝜒 mapping of Keccak, and 3) a permutation
layer consisting of linear functions that are similar to the Σ functions in SHA2 and performed on each
state-word individually. The S-box maps ve input bits to ve output bits and is applied to each column
of the state, whereby the ve state-words are arranged vertically.

Implementation options. The substitution layer is normally implemented in a bit-sliced fashion
using logical ANDs, XORs, and NOTs. On the other hand, the permutation layer performs an operation
of the form 𝑥 = 𝑥 ⊕ (𝑥 ≫ 𝑛) ⊕ (𝑥 ≫ 𝑚) on each 64-bit word 𝑥 of the state. On 32-bit architectures,
the Ascon-𝑝 permutation is usually implemented in a Bit-Interleaved (BI) fashion, which means each
64-bit word of the state is split up into two 32-bit words, one containing the bits at even positions
and the other the bits at odd positions. This representation has the advantage that one can perform a
64-bit rotation through two 32-bit rotations, which is particularly benecial on 32-bit ARM Cortex-M
microcontrollers due to their “free” rotations. Even though bit-interleaving has the potential to speed
up the linear functions ofAscon-𝑝 on any 32-bit platform (including RV32), one has to take into account
that this performance gain for the permutation comes at the expense of conversions between the BI
representation and normal representation whenever data is injected into or extracted from the state.

ISE description. The substitution layer consists of logical operations on 64-bit words, which can be
split up into two operations on 32-bit chunks. An optimized implementation of the S-box requires 17
native RV32GC instructions [CJL+20], which can be reduced to 15 with the help of two Zbkb instruc-
tions. The permutation layer can achieve a more signicant speed-up since its operations of the form
𝑥 = 𝑥 ⊕ (𝑥 ≫ 𝑛) ⊕ (𝑥 ≫ 𝑚) map naturally to two custom sigma instructions that use the upper
and lower part of a 64-bit state-word as input and produce either the upper or lower part of the result.
The rotation amounts can be specied through immediate values. In this way, the instruction-count of
the full permutation layer can be reduced from 80 (i.e., 16 per-word) to only 10. This reduction of the
number of instructions to 10 is independent of whether bit-interleaving is applied or not, which means
that using the BI representation has actually an adverse impact on the overall performance due to the
conversions between BI and normal representation.

ISE design. The additional, more detailed material relating to the ISE design is shown below.

012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0101011 ascon.sigma.lo

01 imm rs2 rs1 111 rd 0101011 ascon.sigma.hi

• additional notation

103

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

1 /* Define the look -up tables */
2 ROT_0 = { 19, 61, 1, 10, 7 }
3 ROT_1 = { 28, 39, 6, 17, 41 }

• ascon.sigma.lo rd, rs1, rs2, imm

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 x ← x_hi || x_lo
4 r ← x ^ (x >>> ROT_0[imm]) ^ (x >>> ROT_1[imm])
5 GPR[rd] ← r_{31.. 0}

• ascon.sigma.hi rd, rs1, rs2, imm

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 x ← x_hi || x_lo
4 r ← x ^ (x >>> ROT_0[imm]) ^ (x >>> ROT_1[imm])
5 GPR[rd] ← r_ {63..32}

7.3.3 Elephant

Submission overview. The Elephant [BCDM21] submission species the AEAD algorithms

Dumbo = Elephant-Spongent-𝜋 [160]
Jumbo = Elephant-Spongent-𝜋 [176]

Delirium = Elephant-Keccak-𝑓 [200]

We focus on the primary algorithm Dumbo, and, more specically therefore, a kernel represented by
the Spongent-𝜋 [160] permutation (see also [BKL+13]).

Kernel overview. Spongent-𝜋 [160] used in Dumbo is a 80-round Spongent permutation [BKL+13]
(essentially a PRESENT-type permutation [BKL+07]). It operates on a 160-bit state and consists of three
layers in each round: 1) XORing the state with two round constants, of which one is computed by a
7-bit LFSR ICounter160, i.e., 0153 ‖ ICounter160(𝑖), while the other one is rev (0153 ‖ ICounter160(𝑖)),
where 𝑖 denotes the round index and rev is a function reversing the order of the bits of its input; 2)
sBoxLayer160, a 4-bit S-box applied 40 times in parallel; 3) pLayer160, moving the bit 𝑗 of state to bit
position 40 · 𝑗 mod 159 while the bit 159 keeps unmoved.

Implementation options. We developed the pure-software implementation of Spongent-𝜋 [160]
from scratch by ourselves, in which we presented several optimisation techniques based on our base
ISA. The 160-bit state is stored in ve 32-bit words 𝑆0, 𝑆1, 𝑆2, 𝑆3, and 𝑆4, where each 𝑆𝑖 stores bits 32𝑖
to 32𝑖 + 31 of the state. First, we precompute all the round constants so that the rst layer is simplied
to require only few instructions to load/prepare the constants plus then two XOR instructions. Second,
Zbkx provides a dedicated instruction for the parallel 4-bit S-box, namely xperm4, which is very ben-
ecial for sBoxLayer160. Concretely, the xperm-style look-up table for sBoxLayer160 is construct with
three registers before Spongent-𝜋 [160] starts:

1 li rl , 0xF4120BDE /* the lower half of S-box look -up table */
2 li rh , 0x63C958A7 /* the higher half of S-box look -up table */
3 li rm , 0x88888888 /* the mask used in xperm -style S-box */

Each 32-bit word 𝑆𝑖 (stored in rx) can perform eight 4-bit S-boxes simultaneously with two xperm4 and
two XOR instructions via

1 xperm4 ry , rl, rx
2 xor rx, rx, rm

104

7.3. DESIGN

3 xperm4 rx , rh, rx
4 xor rx , rx, ry

so in each round the whole sBoxLayer160 needs 20 instructions in total. Last, we divide the pLayer160
into two steps: 1) for each word 𝑆𝑖 , we rstly apply the unzip instruction (from Zbkb) twice and thus
make 𝑆𝑖 be a form shown in the third row of Figure 7.1; 2) we then take advantage of eight SWAPMOVE
operations (SWAPMOVE will be explained in detail in Section 7.3.12) to swap the bits between dierent
words, i.e.,

SWAPMOVE(S0, S1, 0x000000FF, 8);
SWAPMOVE(S0, S3, 0x000000FF, 24);
SWAPMOVE(S1, S4, 0x000000FF, 24);
SWAPMOVE(S2, S4, 0x0000FF00, 16);

SWAPMOVE(S0, S2, 0x000000FF, 16);
SWAPMOVE(S1, S2, 0x0000FF00, 8);
SWAPMOVE(S2, S3, 0x0000FF00, 8);
SWAPMOVE(S3, S4, 0x00FF0000, 8);

and, afterwards, we use three rori instructions (for right-rotation, also from Zbkb) to make 𝑆1, 𝑆2, and
𝑆3 correctly-aligned.

ISE description. At rst, we designed a custom instruction for the parallel 4-bit S-box, where we
integrated the rst step of pLayer160 (i.e., two unzip instructions) at the end. Moreover, we designed
two instructions for the specic SWAPMOVE operations used in our second step of pLayer160. Because
each of our custom instruction has 1 destination register and each SWAPMOVE swaps bits between two
dierent words, so 2 custom instructions are therefore required to perform one complete SWAPMOVE

here. We also integrated the nal three right-rotations into the custom instruction to further reduce
the latency.

ISE design. The additional, more detailed material relating to the ISE design is shown below, where
we let SBOX denote the 4-bit Spongent S-box per [BKL+13].

012345678910111213141516171819202122232425262728293031

0000 imm rs2 rs1 111 rd 0001011 elephant.pstep.x

0001 imm rs2 rs1 111 rd 0001011 elephant.pstep.y

0010 imm 00000 rs1 110 rd 0001011 elephant.sstep

• additional notation

1 /* Define the functions */
2 SWAPMOVE32(x,m,n) {
3 t ← x ^ (x >> n)
4 t ← t & m
5 t ← t ^ (t << n)
6 x ← t ^ x
7 return x
8 }
9 SWAPMOVE32_X(x,y,m,n) {
10 t ← y ^ (x >> n)
11 t ← t & m
12 x ← x ^ (t << n)
13 return x
14 }
15 SWAPMOVE32_Y(x,y,m,n) {
16 t ← y ^ (x >> n)
17 t ← t & m
18 y ← y ^ (t)
19 return y
20 }

105

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

• elephant.pstep.x rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 0) {
5 r ← SWAPMOVE32_X(x, y, 0x000000FF , 8)
6 }
7 else if (imm == 1) {
8 r ← SWAPMOVE32_X(x, y, 0x000000FF , 16)
9 }
10 else if (imm == 2) {
11 r ← SWAPMOVE32_X(x, y, 0x000000FF , 24)
12 }
13 else if (imm == 3) {
14 r ← SWAPMOVE32_X(x, y, 0x0000FF00 , 8)
15 }
16 else if (imm == 4) {
17 r ← SWAPMOVE32_X(x, y, 0x000000FF , 24) >>> 24
18 }
19 else if (imm == 5) {
20 r ← SWAPMOVE32_X(x, y, 0x0000FF00 , 16) >>> 16
21 }
22 else if (imm == 6) {
23 r ← SWAPMOVE32_X(x, y, 0x00FF0000 , 8) >>> 8
24 }
25
26 GPR[rd] ← r

• elephant.pstep.y rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 0) {
5 r ← SWAPMOVE32_Y(x, y, 0x000000FF , 8)
6 }
7 else if (imm == 1) {
8 r ← SWAPMOVE32_Y(x, y, 0x000000FF , 16)
9 }
10 else if (imm == 2) {
11 r ← SWAPMOVE32_Y(x, y, 0x000000FF , 24)
12 }
13 else if (imm == 3) {
14 r ← SWAPMOVE32_Y(x, y, 0x0000FF00 , 8)
15 }
16 else if (imm == 4) {
17 r ← SWAPMOVE32_Y(x, y, 0x000000FF , 24)
18 }
19 else if (imm == 5) {
20 r ← SWAPMOVE32_Y(x, y, 0x0000FF00 , 16)
21 }
22 else if (imm == 6) {
23 r ← SWAPMOVE32_Y(x, y, 0x00FF0000 , 8)
24 }
25
26 GPR[rd] ← r

• elephant.sstep rd, rs1

1 x ← GPR[rs1]
2
3 r ← SBOX[x_ {31..28}] || SBOX[x_ {27..24}] ||
4 SBOX[x_ {23..20}] || SBOX[x_ {19..16}] ||
5 SBOX[x_ {15..12}] || SBOX[x_{11.. 8}] ||
6 SBOX[x_{ 7.. 4}] || SBOX[x_{ 3.. 0}]
7
8 r ← SWAPMOVE32(r, 0x0A0A0A0A , 3)

106

7.3. DESIGN

9 r ← SWAPMOVE32(r, 0x00CC00CC , 6)
10 r ← SWAPMOVE32(r, 0x0000F0F0 , 12)
11 r ← SWAPMOVE32(r, 0x0000FF00 , 8)
12
13 GPR[rd] ← r

7.3.4 GIFT-COFB

Submission overview. The GIFT-COFB [BCI+21] submission species an eponymous AEAD algo-
rithm. We focus on this, the only and therefore primary algorithm, and, more specically therefore, a
kernel represented by the GIFT-128 block cipher (see also [BPP+17]).

Kernel overview. GIFT-128, belonging to GIFT block cipher family, is based on a SPN with a key
length and a block size of both 128 bits. It is a 40-round block cipher with an identical round function
that consists of three steps, namely SubCells, PermBits, and AddRoundKey. A typical technique to
implement GIFT-128 is bit-slicing [BPP+17], where the 128-bit cipher state is expressed as four 32-bit
slices 𝑆0, 𝑆1, 𝑆2, and 𝑆3. SubCells is essentially a 4-bit S-box, which needs 11 bitwise logical operations
in bit-slicing. PermBits has a special property that bits in 𝑆𝑖 remain in the same slice through the
permutation. AddRoundKey includes three sub-steps: add round key (to 𝑆1 and 𝑆2), add round constant
(to 𝑆3), and key state update (with a main operation of two 16-bit word-wise rotations). We refer readers
to [BPP+17] or the GIFT-COFB specication [BCI+21] for more details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

31 27 23 19 15 11 7 3 30 26 22 18 14 10 6 2 29 25 21 17 13 9 5 1 28 24 20 16 12 8 4 0

28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

unzip

unzip

rev8

Figure 7.1: PermBits of GIFT-COFB using instructions from Zbkb. The numbers denote the bit indices
of the input 32-bit state slice.

Implementation options. In addition to naive bit-slicing, a new representation forGIFT-128, namely
the x-slicing, is proposed in [ANP20]. In this work, we considered both dierent types of state rep-
resentation for GIFT-128. According to [ANP20], x-slicing is faster on 32-bit ARM Cortex-M micro-
controllers in relation to the naive bit-slicing. However, thanks to Zbkb instructions, we are able to
execute the PermBits very eciently, which makes naive bit-slicing outperform x-slicing on our base
ISA. In detail, only three or four instructions are required in order to permute a 32-bit state slice 𝑆𝑖 in
each PermBits operation (we save the last rori for 𝑆3):

1 unzip rx, rx
2 unzip rx, rx
3 rev8 rx , rx
4 rori rx , rx, imm

107

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

Figure 7.1 illustrates how unzip and rev8 permute bits (of a single 𝑆𝑖) during PermBits, from which we
observe that the output of rev8 is already the output for 𝑆3 [BCI+21, Table 2.2]. For 𝑆0, 𝑆1, and 𝑆2, we just
further rotate the resulting state slice to the right (using rori) with the corresponding oset (i.e., 24, 16,
and 8 respectively). Furthermore, Zbkb can also speed up the key state update operation. Concretely,
we assume a 32-bit key state word𝑊6 ‖ 𝑊7 (stored in rx). With the help of pack instruction, we can
quickly obtain𝑊6 ≫ 2 ‖ 𝑊7 ≫ 12 through

1 pack ry, rx , rx /* ry = (W7) || (W7) */
2 rori rx, rx , 16 /* rx = (W7) || (W6) */
3 pack rx, rx , rx /* rx = (W6) || (W6) */
4 rori ry, ry , 12 /* ry = (W7 >>> 12) || (W7 >>> 12) */
5 rori rx, rx , 2 /* rx = (W6 >>> 2) || (W6 >>> 2) */
6 pack rx, ry , rx /* rx = (W6 >>> 2) || (W7 >>> 12) */

ISE description. We implemented both the x-slicing and the naive bit-slicing implementation of
GIFT-128 on the base ISA, and designed ISE for each of them. The x-slicing implementation sepa-
rates the computation of round key-update from the main GIFT-128 and uses an ecient round key
pre-computation to align with the x-slicing representation. On the other hand, the ISE for the bit-
slicing implementation includes only two instructions to accelerate PermBits and the key state update,
respectively. In essence, the ISE for x-slicing include an instruction for the so-called SWAPMOVE oper-
ation (which will be discussed in detail in Section 7.3.12), three instructions for the rotation of nibbles,
bytes, and halfwords in a 32-bit register, whereby the rotation amount is encoded as an immediate
value, and three further instructions for the key-update function. The latter three instructions perform
a sequence of SWAPMOVEs and operations that consist of rotations of 32-bit words, logical ANDs with a
constant, and logical ORs. Each of the three key-update instructions operates on a single 32-bit word.

ISE design for x-slicing implementation. The additional, more detailed material relating to the
ISE design is shown below.

012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0001011 gift.swapmove

01 imm 00000 rs1 110 rd 0001011 gift.rori.n

10 imm 00000 rs1 110 rd 0001011 gift.rori.b

11 imm 00000 rs1 110 rd 0001011 gift.rori.h

00 imm 00000 rs1 110 rd 0101011 gift.key.reorg

01 00000 00000 rs1 110 rd 0101011 gift.key.updstd

10 imm 00000 rs1 110 rd 0101011 gift.key.updfix

• additional notation

1 /* Define the function */
2 SWAPMOVE32(x,m,n) {
3 t ← x ^ (x >> n)
4 t ← t & m
5 t ← t ^ (t << n)
6 x ← t ^ x
7 return x
8 }

• gift.swapmove rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 m ← GPR[rs2]

108

7.3. DESIGN

3 r ← SWAPMOVE32(x, m, imm)
4 GPR[rd] ← r

• gift.rori.n rd, rs1, imm

1 x_7 ← GPR[rs1]_{31..28}
2 x_6 ← GPR[rs1]_{27..24}
3 x_5 ← GPR[rs1]_{23..20}
4 x_4 ← GPR[rs1]_{19..16}
5 x_3 ← GPR[rs1]_{15..12}
6 x_2 ← GPR[rs1]_{11.. 8}
7 x_1 ← GPR[rs1]_{ 7.. 4}
8 x_0 ← GPR[rs1]_{ 3.. 0}
9 r ← (x_7 >>> imm) || (x_6 >>> imm) ||
10 (x_5 >>> imm) || (x_4 >>> imm) ||
11 (x_3 >>> imm) || (x_2 >>> imm) ||
12 (x_1 >>> imm) || (x_0 >>> imm)
13 GPR[rd] ← r

• gift.rori.b rd, rs1, imm

1 x_3 ← GPR[rs1]_{31..24}
2 x_2 ← GPR[rs1]_{23..16}
3 x_1 ← GPR[rs1]_{15.. 8}
4 x_0 ← GPR[rs1]_{ 7.. 0}
5 r ← (x_3 >>> imm) || (x_2 >>> imm) ||
6 (x_1 >>> imm) || (x_0 >>> imm)
7 GPR[rd] ← r

• gift.rori.h rd, rs1, imm

1 x_1 ← GPR[rs1]_{31..16}
2 x_0 ← GPR[rs1]_{15.. 0}
3 r ← (x_1 >>> imm) || (x_0 >>> imm)
4 GPR[rd] ← r

• gift.key.reorg rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← SWAPMOVE32(x, 0x00550055 , 9)
5 r ← SWAPMOVE32(r, 0x00003333 , 18)
6 r ← SWAPMOVE32(r, 0x000F000F , 12)
7 r ← SWAPMOVE32(r, 0x000000FF , 24)
8 }
9 else if (imm == 1) {
10 r ← SWAPMOVE32(x, 0x11111111 , 3)
11 r ← SWAPMOVE32(r, 0x03030303 , 6)
12 r ← SWAPMOVE32(r, 0x000F000F , 12)
13 r ← SWAPMOVE32(r, 0x000000FF , 24)
14 else if (imm == 2) {
15 r ← SWAPMOVE32(x, 0x0000AAAA , 15)
16 r ← SWAPMOVE32(r, 0x00003333 , 18)
17 r ← SWAPMOVE32(r, 0x0000F0F0 , 12)
18 r ← SWAPMOVE32(r, 0x000000FF , 24)
19 else if (imm == 3) {
20 r ← SWAPMOVE32(x, 0x0A0A0A0A , 3)
21 r ← SWAPMOVE32(r, 0x00CC00CC , 6)
22 r ← SWAPMOVE32(r, 0x0000F0F0 , 12)
23 r ← SWAPMOVE32(r, 0x000000FF , 24)
24 }
25
26 GPR[rd] ← r

• gift.key.updstd rd, rs1

109

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

1 x ← GPR[rs1]
2
3 r ← ((x >> 12) & 0x0000000F)
4 r ← r | ((x & 0x00000FFF) << 4)
5 r ← r | ((x >> 2) & 0x3FFF0000)
6 r ← r | ((x & 0x00030000) << 14)
7
8 GPR[rd] ← r

• gift.key.updfix rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← SWAPMOVE32(x, 0x00003333 , 16)
5 r ← SWAPMOVE32(r, 0x55554444 , 1)
6 }
7 else if (imm == 1) {
8 r ← ((x & 0x33333333) >>> 24)
9 r ← r | ((x & 0xCCCCCCCC) >>> 16)
10 r ← SWAPMOVE32(r, 0x55551100 , 1)
11 }
12 else if (imm == 2) {
13 r ← ((x >> 4) & 0x0F000F00) | ((x & 0x0F000F00) << 4)
14 r ← r | ((x >> 6) & 0x00030003) | ((x & 0x003F003F) << 2)
15 }
16 else if (imm == 3) {
17 r ← ((x >> 6) & 0x03000300) | ((x & 0x3F003F00) << 2)
18 r ← r | ((x >> 5) & 0x00070007) | ((x & 0x001F001F) << 3)
19 }
20 else if (imm == 4) {
21 r ← ((x & 0xAAAAAAAA) >>> 24)
22 r ← r | ((x & 0x55555555) >>> 16)
23 }
24 else if (imm == 5) {
25 r ← ((x & 0x55555555) >>> 24)
26 r ← r | ((x & 0xAAAAAAAA) >>> 20)
27 }
28 else if (imm == 6) {
29 r ← ((x >> 2) & 0x03030303) | ((x & 0x03030303) << 2)
30 r ← r | ((x >> 1) & 0x70707070) | ((x & 0x10101010) << 3)
31 }
32 else if (imm == 7) {
33 r ← ((x >> 18) & 0x00003030) | ((x & 0x01010101) << 3)
34 r ← r | ((x >> 14) & 0x0000C0C0) | ((x & 0x0000E0E0) << 15)
35 r ← r | ((x >> 1) & 0x07070707) | ((x & 0x00001010) << 19)
36 }
37 else if (imm == 8) {
38 r ← ((x >> 4) & 0x0FFF0000) | ((x & 0x000F0000) << 12)
39 r ← r | ((x >> 8) & 0x000000FF) | ((x & 0x000000FF) << 8)
40 }
41 else if (imm == 9) {
42 r ← ((x >> 6) & 0x03FF0000) | ((x & 0x003F0000) << 10)
43 r ← r | ((x >> 4) & 0x00000FFF) | ((x & 0x0000000F) << 12)
44 }
45
46 GPR[rd] ← r

ISE design for bit-slicing implementation. The additional, more detailed material relating to the
ISE design is shown below.

110

7.3. DESIGN

012345678910111213141516171819202122232425262728293031

01 00000 00000 rs1 110 rd 0101011 gift.key.updstd

11 imm 00000 rs1 110 rd 0101011 gift.permbits.step

• additional notations

1 /* Define the function */
2 SWAPMOVE32(x,m,n) {
3 t ← x ^ (x >> n)
4 t ← t & m
5 t ← t ^ (t << n)
6 x ← t ^ x
7 return x
8 }

• gift.key.updstd rd, rs1

1 x ← GPR[rs1]
2
3 r ← ((x >> 12) & 0x0000000F)
4 r ← r | ((x & 0x00000FFF) << 4)
5 r ← r | ((x >> 2) & 0x3FFF0000)
6 r ← r | ((x & 0x00030000) << 14)
7
8 GPR[rd] ← r

• gift.permbits.step rd, rs1, imm

1 x ← GPR[rs1]
2
3 r ← SWAPMOVE32(x, 0x0A0A0A0A , 3)
4 r ← SWAPMOVE32(r, 0x00CC00CC , 6)
5 r ← SWAPMOVE32(r, 0x0000F0F0 , 12)
6 r ← SWAPMOVE32(r, 0x000000FF , 24)
7 r ← r >>> imm
8
9 GPR[rd] ← r

7.3.5 Grain-128AEADv2

Submission overview. The Grain-128AEADv2 [HJM+21] submission species an eponymous AEAD
algorithm. We focus on this, the only and therefore primary algorithm, and, more specically therefore,
a kernel represented by the keystream-generation function of the underlying Grain-128a stream cipher
(see also [HJM07, AHJM11]).

Kernel overview. Grain-128a is based on (a variant of) the “original” stream cipher Grain, which
was a candidate of the eSTREAM competition and selected for the nal eSTREAM portfolio. The kernel
is a function that computes a 32-bit word of the keystream using an internal state of a size of 256 bits.
This state consists of a 128-bit Linear Feedback Shift Register (LFSR) and a 128-bit Nonlinear Feedback
Shift Register (NFSR). The kernel consists of three major sub-functions: one to update the LFSR (called
𝑓 function), and one to update the NFSR (called 𝑔 function) and one to compute the 32-bit output word
(called ℎ function).

Implementation options. A naive implementation of the sub-functions to update the LFSR and
NFSR consists of a large number of bit-level operations. It is therefore more ecient to implement the
sub-functions such that they operate on 32-bit words, in which case the kernel basically consists of
shifts, ANDs, and XORs. The kernel of Grain-128AEADv2 is simpler (and, therefore, faster) than the

111

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

kernel of the other NIST nalists, but this simplicity comes at the expense that the kernel is executed
more often. Another specic property of this kernel is that the instructions provided by Zbkb/x (e.g.,
rotations) are not capable to reduce the execution time signicantly.

ISE description. The kernel can be accelerated through a set of ten custom instructions, the most
important of which is an instruction to extract a 32-bit word that lies at a certain position within a 64-bit
word (held in two source registers). Furthermore, the set includes two instructions for the 𝑓 function,
three instructions for the 𝑔 function, and four for the ℎ function. Each of these instruction gets two
state-words as input and computes the contribution of these two state-words to the result of 𝑓 , 𝑔, and
ℎ, respectively. Finally, all the contributions have to be XORed together.

ISE design. The additional, more detailed material relating to the ISE design is shown below.

012345678910111213141516171819202122232425262728293031

00 imm rs2 rs1 111 rd 0001011 grain.extr

0000 000 rs2 rs1 111 rd 0101011 grain.fln0

0001 000 rs2 rs1 111 rd 0101011 grain.fln2

0010 000 rs2 rs1 111 rd 0101011 grain.gnn0

0011 000 rs2 rs1 111 rd 0101011 grain.gnn1

0100 000 rs2 rs1 111 rd 0101011 grain.gnn2

0101 000 rs2 rs1 111 rd 0101011 grain.hnn0

0110 000 rs2 rs1 111 rd 0101011 grain.hnn1

0111 000 rs2 rs1 111 rd 0101011 grain.hnn2

1000 000 rs2 rs1 111 rd 0101011 grain.hln0

• grain.extr rd, rs1, rs2, imm

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← x >> imm
5 GPR[rd] ← r_{31.. 0}

• grain.fln0 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x_lo) ^ (x >> 7)
5 GPR[rd] ← r_{31.. 0}

• grain.fln2 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x_hi) ^ (x >> 6) ^ (x >> 17)
5 GPR[rd] ← r_{31.. 0}

• grain.gnn0 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x_lo) ^ (x >> 26) ^ ((x >> 11) & (x >> 13)) ^

112

7.3. DESIGN

5 ((x >> 17) & (x >> 18)) ^
6 ((x >> 22) & (x >> 24) & (x >> 25))
7 GPR[rd] ← r_{31.. 0}

• grain.gnn1 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x >> 24) ^ ((x >> 8) & (x >> 16))
5 GPR[rd] ← r_{31.. 0}

• grain.gnn2 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x_hi) ^ (x >> 27) ^ ((x >> 4) & (x >> 20)) ^
5 ((x >> 24) & (x >> 28) & (x >> 29) & (x >> 31)) ^
6 ((x >> 6) & (x >> 14) & (x >> 18))
7 GPR[rd] ← r_{31.. 0}

• grain.hnn0 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x >> 2) ^ (x >> 15)
5 GPR[rd] ← r_{31.. 0}

• grain.hnn1 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x >> 4) ^ (x >> 13)
5 GPR[rd] ← r_{31.. 0}

• grain.hnn2 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x_lo) ^ (x >> 9) ^ (x >> 25)
5 GPR[rd] ← r_{31.. 0}

• grain.hln0 rd, rs1, rs2

1 x_hi ← GPR[rs1]
2 x_lo ← GPR[rs2]
3 x ← x_hi || x_lo
4 r ← (x >> 13) & (x >> 20)
5 GPR[rd] ← r_{31.. 0}

7.3.6 ISAP

Submission overview. The ISAP [DEM+21] submission species a family of permutation-based
AEAD algorithms [DEMS21, Section 2.5] consisting of Isap-A-128a, Isap-K-128a, Isap-A-128, and Isap-
K-128. We focus on the primary algorithm Isap-A-128a, and, more specically therefore, a kernel rep-
resented by the Ascon-𝑝 permutation (see [DEMS21] and Section 7.3.2).

113

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

Kernel overview. The main distinguishing feature of the ISAP family is their built-in mode-level
countermeasures against passive side-channel attacks. However, from a kernel perspective, the main
instance Isap-A-128a uses exactly the same Ascon-𝑝 permutation as the Ascon family of AEAD al-
gorithms. Isap-A-128a evaluates this permutation over either 1, 6, or 12 rounds, depending on the
concrete (sub-)operation the permutation is part of. As already explained in Section 7.3.2, Ascon-𝑝
operates over a 320-bit state and consists of 1) a round-constant addition, 2) a substitution layer based
on a bit-sliced 5-bit S-box, and 3) a linear layer performing XORs and rotations of 64-bit words.

Implementation options. Similar to Ascon, optimized implementation of Isap-A-128a for 32-bit
platforms can take advantage of bit-interleaving to speed up the linear layer of the permutation. How-
ever, as explained in Section 7.3.2, bit-interleaving has actually a negative eect on the overall perfor-
mance when the linear layer is accelerated through a small set of custom instructions. This is because
an ISE-supported implementation of the linear layer always consists of only 10 instructions, regardless
of whether bit-interleaving is applied or not, which means the conversions between bit-interleaved and
normal representation actually slow down the execution.

ISE description. The ISE described in Section 7.3.2 for Ascon-𝑝 can re-used for Isap-A-128a.

ISE design. The ISE for ISAP is the same as for Ascon, which can be found in Section 7.3.2.

7.3.7 PHOTON-Beetle

Submission overview. The PHOTON-Beetle [BCD+21] submission species the AEAD algorithm fam-
ily PHOTON-Beetle-AEAD [BCD+21, Section 3.2] and the hash function algorithm family PHOTON-Beetle-
Hash [BCD+21, Section 3.3]. We focus on the primary algorithm PHOTON-Beetle-AEAD[128], and, more
specically therefore, a kernel represented by the PHOTON256 permutation (see also [GPP11]).

Kernel overview. The PHOTON256 permutation operates on an internal state of 256 bits, organized into
an (8×8)-elementmatrix of 4-bit nibbles. The permutation is SPN-like, consisting of 12 rounds that each
apply 4 round functions: these are AddConstant, SubCells, ShiftRows, and MixColumnsSerial. Per
[GPP11, Section 2.2], the 4-bit PRESENT S-box is used in SubCells; in contrast to the AES MixColumns
round function, MixColumnsSerial is specically optimized to facilitate a serial application of opera-
tions in F24 .

Implementation options. As reected by the submission, 3 implementation techniques are appli-
cable to PHOTON256; in line with the similar SPN-like structure, and, at least to some extent, round
functions, said techniques to analogous to those for AES. First, one can focus on online computation.
Doing so mirrors the algorithmic description, whereby each round function is computed; this poten-
tially includes arithmetic in F24 , bar small look-up tables, e.g., for the S-box. Second, one can focus
on oine pre-computation. Doing so mirrors the AES T-tables technique: the action of SubCells and
MixColumnsSerial is pre-computed using a look-up table, careful indexing into which can also cater
for ShiftRows. Third, and nally, one can use bit-slicing.

ISE description. The ISE design assumes a column-packed representation, and consists of 1 instruc-
tion: the second implementation strategy above is followed, but the look-up table that would normally
be computed oine is instead computed online (in hardware). Given an input column, the instruction
computes 1 nibble of the output column by applying SubCells and MixColumnsSerial. This allows
8 such instructions to compute an entire output column (including AddConstant and ShiftRows, the
latter realized simply through indexing of the columns); 64 such instructions can be used to compute

114

7.3. DESIGN

an entire round. In a sense, this approach is similar to the design adopted by RISC-V [RVK22, Sections
2.4+2.5] for AES (as documented in [MNP+21], stemming from work by Nadehara et al. [NIK04] and
Saarinen [Saa20]).

ISE design. The additional, more detailed material relating to the ISE design is shown below, where
we let SBOX denote the 4-bit PHOTON S-box per [GPP11] and GF2N_MUL denote multiplication in the
PHOTON nite eld.

012345678910111213141516171819202122232425262728293031

0000 imm rs2 rs1 111 rd 1011011 photon.step

• additional notation

1 /* Define the look -up table */
2 M = { { 0x2, 0x4, 0x2, 0xB, 0x2, 0x8, 0x5, 0x6 },
3 { 0xC, 0x9, 0x8, 0xD, 0x7, 0x7, 0x5, 0x2 },
4 { 0x4, 0x4, 0xD, 0xD, 0x9, 0x4, 0xD, 0x9 },
5 { 0x1, 0x6, 0x5, 0x1, 0xC, 0xD, 0xF, 0xE },
6 { 0xF, 0xC, 0x9, 0xD, 0xE, 0x5, 0xE, 0xD },
7 { 0x9, 0xE, 0x5, 0xF, 0x4, 0xC, 0x9, 0x6 },
8 { 0xC, 0x2, 0x2, 0xA, 0x3, 0x1, 0x1, 0xE },
9 { 0xF, 0x1, 0xD, 0xA, 0x5, 0xA, 0x2, 0x3 } }

• photon.step rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 t ← SBOX[(y >> (4 * imm)) & 0xF]
5 r ← 0
6
7 for(int i = 0; i < 8; i++) {
8 r ← r | ((GF2N_MUL(M[i][imm], t)) << (4 * i))
9 }
10
11 r ← r ^ x
12
13 GPR[rd] ← r

7.3.8 Romulus

Submission overview. The Romulus [GIK+21] submission species the AEAD algorithms Romulus-
N [GIK+21, Section 2.4.3], Romulus-M [GIK+21, Section 2.4.4], and Romulus-T [GIK+21, Section 2.4.5],
and the hash function algorithmRomulus-H [GIK+21, Section 2.4.6]. We focus on the primary algorithm
Romulus-N, and, more specically therefore, a kernel represented by the Skinny-128-384+ tweakable
block cipher (which is a reduced round variant of Skinny-128-384; see also [BJK+16]).

Kernel overview. Skinny-128-384 is an SPN-based tweakable block cipher that uses a compact S-box,
a very sparse diusion layer, and a very light key schedule. Due to the high security margin of Skinny,
the Romulus designers decided to use a Skinny variant with a reduced number of rounds, namely 40
instead of 56. Skinny-128-384 operates on an internal state of a size of 128 bits that can be viewed as a
(4× 4)-element matrix of bytes, similar to the AES. The round function is composed of ve operations
in the following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows, and MixColumns.
SubCells applies an 8-bit S-box, which can be eciently implemented in hardware, to every byte of
the state. The AddConstants operation XORs some round-dependent constants to the rst column of
the state. AddRoundTweakey extracts eight bytes from the tweakey state and XORs them to the state,

115

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

whereby the bytes are permuted and updated with simple LFSRs. ShiftRows rotates the bytes of the
state row-wise to the right by 0, 1, 2, and 3 positions, similar to the ShiftRows transformation of the
AES. Finally, MixColumns multiplies each byte-column of the state by a binary matrix.

Implementation options. The most ecient software implementations of Skinny-128-384 for 32-
bit platforms are based on the x-slicing technique, which can be seen as a special form of bit-slicing
[AP20]. In this work, we considered both the straightforward implementation that uses a look-up table
for S-box as well as the x-slicing implementation.

ISE description. For the table-based implementation, the ISE design assumes a row-packed repre-
sentation of the state matrix, and can be described as supporting 1) update and use of the round constant
(which involves application of an LFSR), 2) update of the tweak key (which involves application of an
LFSR), and 3) application of the round functions. Using a row-packed representation, MixColumns can
be realized via a short sequence of XORs; this allows the latter aspect of the ISE to focus on the remain-
ing, row-oriented round functions, i.e, SubCells, ShiftRows, and AddRoundTweakey. Application of
SubCells across an entire packed row of the state matrix is rationalized by the low cost S-box design:
even if 4 parallel S-box instances are used, the cost in terms of area is still low in relative terms. For the
x-slicing implementation, the ISE includes instructions for MixColumns, specic SWAPMOVE operations,
and round key pre-computation (e.g., LFSR, key permutation, and key update).

ISE design for table-based implementation. The additional, more detailed material relating to the
ISE design is shown below, where we let SBOX denote the 8-bit Skinny S-box per [BJK+16].

012345678910111213141516171819202122232425262728293031

0000 000 00000 rs1 110 rd 0001011 romulus.rc.upd.enc

0010 000 rs2 rs1 111 rd 0001011 romulus.rc.use.enc.0

0011 000 rs2 rs1 111 rd 0001011 romulus.rc.use.enc.1

0001 imm rs2 rs1 111 rd 0101011 romulus.tk.upd.enc.0

0010 imm rs2 rs1 111 rd 0101011 romulus.tk.upd.enc.1

0000 imm rs2 rs1 111 rd 1011011 romulus.rstep.enc

• additional notation

1 /* Define the functions */
2 LFSR_RC(x) {
3 return x_4 || x_3 || x_2 || x_1 || x_0 || (x_5 ^ x_4 ^ 1)
4 }
5 LFSR_TK2(x) {
6 return x_6 || x_5 || x_4 || x_3 || x_2 || x_1 || x_0 || (x_5 ^ x_7)
7 }
8 LFSR_TK3(x) {
9 return (x_6 ^ x_0) || x_7 || x_6 || x_5 || x_4 || x_3 || x_2 || x_1
10 }

• romulus.rc.upd.enc rd, rs1

1 x ← GPR[rs1]
2 r ← LFSR_RC(x)
3 GPR[rd] ← r

• romulus.rc.use.enc.0 rd, rs1, rs2

1 x ← GPR[rs1]

116

7.3. DESIGN

2 y ← GPR[rs2]
3 r ← y ^ x_ {3..0}
4 GPR[rd] ← r

• romulus.rc.use.enc.1 rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← y ^ x_ {6..4}
4 GPR[rd] ← r

• romulus.tk.upd.enc.0 rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 1) {
5 r ← y_{15.. 8} || x_{ 7.. 0} ||
6 y_ {31..24} || x_{15.. 8}
7 }
8 else if(imm == 2) {
9 r ← LFSR_TK2(y_{15.. 8}) || LFSR_TK2(x_{ 7.. 0}) ||
10 LFSR_TK2(y_ {31..24}) || LFSR_TK2(x_{15.. 8})
11 }
12 else if(imm == 3) {
13 r ← LFSR_TK3(y_{15.. 8}) || LFSR_TK3(x_{ 7.. 0}) ||
14 LFSR_TK3(y_ {31..24}) || LFSR_TK3(x_{15.. 8})
15 }
16
17 GPR[rd] ← r

• romulus.tk.upd.enc.1 rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 1) {
5 r ← x_ {31..24} || y_{ 7.. 0} ||
6 y_ {23..16} || x_ {23..16}
7 }
8 else if(imm == 2) {
9 r ← LFSR_TK2(x_ {31..24}) || LFSR_TK2(y_{ 7.. 0}) ||
10 LFSR_TK2(y_ {23..16}) || LFSR_TK2(x_ {23..16})
11 }
12 else if(imm == 3) {
13 r ← LFSR_TK3(x_ {31..24}) || LFSR_TK3(y_{ 7.. 0}) ||
14 LFSR_TK3(y_ {23..16}) || LFSR_TK3(x_ {23..16})
15 }
16
17 GPR[rd] ← r

• romulus.rstep.enc rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 2) {
5 y ← 2
6 }
7 else if(imm == 3) {
8 y ← 0
9 }
10
11 t ← SBOX[x_ {31..24}] || SBOX[x_ {23..16}] ||
12 SBOX[x_{15.. 8}] || SBOX[x_{ 7.. 0}]
13
14 t ← t ^ y

117

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

15
16 if (imm == 0) {
17 r ← t <<< 0
18 }
19 else if(imm == 1) {
20 r ← t <<< 8
21 }
22 else if(imm == 2) {
23 r ← t <<< 16
24 }
25 else if(imm == 3) {
26 r ← t <<< 24
27 }
28
29 GPR[rd] ← r

ISE design for x-slicing implementation. The additional, more detailed material relating to the
ISE design is shown below.

012345678910111213141516171819202122232425262728293031

0000 imm 00000 rs1 110 rd 1111011 romulus.mixcolumns

0001 imm rs2 rs1 111 rd 1111011 romulus.swapmove.x

0010 imm rs2 rs1 111 rd 1111011 romulus.swapmove.y

0100 imm 00000 rs1 110 rd 0101011 romulus.permtk

0101 imm 00000 rs1 110 rd 0101011 romulus.tkupd.0

0110 imm 00000 rs1 110 rd 0101011 romulus.tkupd.1

0100 000 rs2 rs1 111 rd 0001011 romulus.lfsr2
0101 000 rs2 rs1 111 rd 0001011 romulus.lfsr3

• additional notation

1 /* Define the functions */
2 SWAPMOVE32_X(x,y,m,n) {
3 t ← y ^ (x >> n)
4 t ← t & m
5 x ← x ^ (t << n)
6
7 return x
8 }
9 SWAPMOVE32_Y(x,y,m,n) {
10 t ← y ^ (x >> n)
11 t ← t & m
12 y ← y ^ (t)
13
14 return y
15 }

• romulus.mixcolumns rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← x ^ (((x >>> 24) & 0x0C0C0C0C) >>> 30)
5 r ← r ^ (((r >>> 16) & 0xC0C0C0C0) >>> 4)
6 r ← r ^ (((r >>> 8) & 0x0C0C0C0C) >>> 2)
7 }
8 else if (imm == 1) {
9 r ← x ^ (((x >>> 16) & 0x30303030) >>> 30)
10 r ← r ^ (((r) & 0x03030303) >>> 28)
11 r ← r ^ (((r >>> 16) & 0x30303030) >>> 2)

118

7.3. DESIGN

12 }
13 else if (imm == 2) {
14 r ← x ^ (((x >>> 8) & 0xC0C0C0C0) >>> 6)
15 r ← r ^ (((r >>> 16) & 0x0C0C0C0C) >>> 28)
16 r ← r ^ (((r >>> 24) & 0xC0C0C0C0) >>> 2)
17 }
18 else if (imm == 3) {
19 r ← x ^ (((x) & 0x03030303) >>> 30)
20 r ← r ^ (((r) & 0x30303030) >>> 4)
21 r ← r ^ (((r) & 0x03030303) >>> 26)
22 }
23
24 GPR[rd] ← r

• romulus.swapmove.x rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 0) {
5 r ← SWAPMOVE32_X(x, y, 0x55555555 , 1)
6 }
7 else if (imm == 1) {
8 r ← SWAPMOVE32_X(x, y, 0x30303030 , 2)
9 }
10 else if (imm == 2) {
11 r ← SWAPMOVE32_X(x, y, 0x0C0C0C0C , 4)
12 }
13 else if (imm == 3) {
14 r ← SWAPMOVE32_X(x, y, 0x03030303 , 6)
15 }
16 else if (imm == 4) {
17 r ← SWAPMOVE32_X(x, y, 0x0C0C0C0C , 2)
18 }
19 else if (imm == 5) {
20 r ← SWAPMOVE32_X(x, y, 0x03030303 , 4)
21 }
22 else if (imm == 6) {
23 r ← SWAPMOVE32_X(x, y, 0x03030303 , 2)
24 }
25 else if (imm == 7) {
26 r ← SWAPMOVE32 (x, 0x0A0A0A0A , 3)
27 }
28
29 GPR[rd] ← r

• romulus.swapmove.y rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3
4 if (imm == 0) {
5 r ← SWAPMOVE32_Y(x, y, 0x55555555 , 1)
6 }
7 else if (imm == 1) {
8 r ← SWAPMOVE32_Y(x, y, 0x30303030 , 2)
9 }
10 else if (imm == 2) {
11 r ← SWAPMOVE32_Y(x, y, 0x0C0C0C0C , 4)
12 }
13 else if (imm == 3) {
14 r ← SWAPMOVE32_Y(x, y, 0x03030303 , 6)
15 }
16 else if (imm == 4) {
17 r ← SWAPMOVE32_Y(x, y, 0x0C0C0C0C , 2)
18 }
19 else if (imm == 5) {
20 r ← SWAPMOVE32_Y(x, y, 0x03030303 , 4)

119

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

21 }
22 else if (imm == 6) {
23 r ← SWAPMOVE32_Y(x, y, 0x03030303 , 2)
24 }
25
26 GPR[rd] ← r

• romulus.permtk rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← (((x >>> 14) & 0xCC00CC00))
5 r ← r | (((x) & 0x000000FF) << 16)
6 r ← r | (((x) & 0xCC000000) >> 2)
7 r ← r | (((x) & 0x0033CC00) >> 8)
8 r ← r | (((x) & 0x00CC0000) >> 18)
9 }
10 else if (imm == 1) {
11 r ← (((x >>> 22) & 0xCC0000CC))
12 r ← r | (((x >>> 16) & 0x3300CC00))
13 r ← r | (((x >>> 24) & 0x00CC3300))
14 r ← r | (((x) & 0x00CC00CC) >> 2)
15 }
16 else if (imm == 2) {
17 r ← (((x >>> 6) & 0xCCCC0000))
18 r ← r | (((x >>> 24) & 0x330000CC))
19 r ← r | (((x >>> 10) & 0x00003333))
20 r ← r | (((x & 0x000000CC) << 14)
21 r ← r | (((x & 0x00003300) << 2)
22 }
23 else if (imm == 3) {
24 r ← (((x >>> 24) & 0xCC000033))
25 r ← r | (((x >>> 8) & 0x33CC0000))
26 r ← r | (((x >>> 26) & 0x00333300))
27 r ← r | (((x) & 0x00333300) >> 6)
28 }
29 else if (imm == 4) {
30 r ← (((x >>> 8) & 0xCC330000))
31 r ← r | (((x >>> 26) & 0x33000033))
32 r ← r | (((x >>> 22) & 0x00CCCC00))
33 r ← r | (((x) & 0x00330000) >> 14)
34 r ← r | (((x) & 0x0000CC00) >> 2)
35 }
36 else if (imm == 5) {
37 r ← (((x >>> 8) & 0x0000CC33))
38 r ← r | (((x >>> 30) & 0x00CC00CC))
39 r ← r | (((x >>> 10) & 0x33330000))
40 r ← r | (((x >>> 16) & 0xCC003300))
41 }
42 else if (imm == 6) {
43 r ← (((x >>> 24) & 0x0033CC00))
44 r ← r | (((x >>> 14) & 0x00CC0000))
45 r ← r | (((x >>> 30) & 0xCC000000))
46 r ← r | (((x >>> 16) & 0x000000FF))
47 r ← r | (((x >>> 18) & 0x33003300))
48 }
49
50 GPR[rd] ← r

• romulus.tkupd.0 rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← ((x >>> 26) & 0xC3C3C3C3)
5 }
6 else if (imm == 1) {

120

7.3. DESIGN

7 r ← ((x >>> 16) & 0xF0F0F0F0)
8 }
9 else if (imm == 2) {
10 r ← ((x >>> 10) & 0xC3C3C3C3)
11 }
12
13 GPR[rd] ← r

• romulus.tkupd.1 rd, rs1, imm

1 x ← GPR[rs1]
2
3 if (imm == 0) {
4 r ← ((x >>> 28) & 0x03030303)
5 r ← r | ((x >>> 12) & 0x0C0C0C0C)
6 }
7 else if (imm == 1) {
8 r ← ((x >>> 14) & 0x30303030)
9 r ← r | ((x >>> 6) & 0x0C0C0C0C)
10 }
11 else if (imm == 2) {
12 r ← ((x >>> 12) & 0x03030303)
13 r ← r | ((x >>> 28) & 0x0C0C0C0C)
14 }
15 else if (imm == 3) {
16 r ← ((x >>> 30) & 0x30303030)
17 r ← r | ((x >>> 22) & 0x0C0C0C0C)
18 }
19
20 GPR[rd] ← r

• romulus.lfsr2 rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x ^ ((y & 0xAAAAAAAA))
4 r ← (((r) & 0xAAAAAAAA) >> 1) |
5 (((r << 1) & 0xAAAAAAAA))
6 GPR[rd] ← r

• romulus.lfsr3 rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x ^ ((y & 0xAAAAAAAA) >> 1)
4 r ← (((r) & 0xAAAAAAAA) >> 1) |
5 (((r << 1) & 0xAAAAAAAA))
6 GPR[rd] ← r

7.3.9 Sparkle

Submission overview. The Sparkle [BBC+21b] submission species the AEAD algorithm family
Schwaemm [BBC+21b, Section 2.3] and the hash function algorithm family Esch [BBC+21b, Section 2.2].
We focus on the primary algorithm Schwaemm256-128 and, more specically therefore, a kernel rep-
resented by the Sparkle permutation [BBC+21b, Section 2.1] (see also [BBC+20b], noting underlying
use of the Alzee [BBC+20a] ARX-box).

Kernel overview. The Sparkle permutation consists of three basic building blocks, namely 1) a non-
linear layer that is composed of six parallel instances of the ARX-box Alzee, 2) a simple linear diusion
layer, 3) the addition of a step counter and round constant to the 384-bit state. Alzee can be seen as
a small 64-bit block cipher that operates on two 32-bit words and performs three additions and four
XORs whereby one of the operands is rotated by a xed distance, as well as one ordinary addition and

121

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

four ordinary XORs. On the other hand, the linear layer is, in essence, a Feistel round with a linear
Feistel function, followed by a swap of the left and right half of the state.

Implementation options. AnARMCortex-M implementation of Alzee consists of only 12 instruc-
tions when exploiting the “free” rotation of the second operand. On the other hand, when Alzee is
implemented using the base RV32GC instruction set, a total of 33 arithmetic/logical instruction are nec-
essary, which can be reduced to 19 instructions when the bit-manipulation extension Zbkb is available.
The linear layer consists of two rotations of 32-bit words (which are part of the so-called ℓ operation)
and a number of xor and register-move (i.e., mv) instructions. Using the base-ISA, the linear layer con-
sists of 32 instructions, among which are six mv instructions. However, these mv instructions can be
avoided when the permutation is fully unrolled, thereby reducing the instruction count of the linear
layer to 24. A further reduction by four instructions is possible when using the rotation instructions
from Zbkb.

ISE description. There are two basic options for speeding up Alzeewith the help of custom instruc-
tions. The rst is to dene instructions for operations of the form 𝑥 = 𝑥⊕(𝑦≫ 𝑛) and 𝑥 = 𝑥+(𝑦≫ 𝑛),
where 𝑥 and 𝑦 are two 32-bit words and 𝑛 is a xed rotation amount, which can be encoded as an im-
mediate value. In this case, a single instance of Alzee consists of 12 instructions and is very similar
to an ARM Cortex-M implementation. A more speed-optimized ISE would consist of two custom in-
structions, of which one computes the 𝑥 word of the output and the other the 𝑦 word. Each of these
instructions can be encoded with two source register addresses, one destination register address, and
an immediate value specifying one of six 32-bit constants. In this case, Alzee consists of only two
instructions. The instruction count of the linear layer can be reduced from 24 to 16 with the help of a
custom instruction for the ℓ operation.

ISE design. The additional, more detailed material relating to the ISE design is shown below.

012345678910111213141516171819202122232425262728293031

0000010 rs2 rs1 111 rd 1111011 sparkle.ell

0000 imm rs2 rs1 110 rd 1011011 sparkle.rcon

1000 imm rs2 rs1 111 rd 1011011 sparkle.whole.enci.x

1001 imm rs2 rs1 111 rd 1011011 sparkle.whole.enci.y

• additional notation

1 /* Define the look -up tables */
2 ROT_0 = { 31, 17, 0, 24 }
3 ROT_1 = { 24, 17, 31, 16 }
4 RCON = { 0xB7E15162 , 0xBF715880 , 0x38B4DA56 , 0x324E7738 ,
5 0xBB1185EB , 0x4F7C7B57 , 0xCFBFA1C8 , 0xC2B3293D }
6
7 /* Define the function */
8 ELL(x) {
9 return (x ^ (x << 16)) >>> 16
10 }

• sparkle.ell rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← ELL(x ^ y)
4 GPR[rd] ← r

122

7.3. DESIGN

• sparkle.rcon rd, rs1, imm

1 x ← GPR[rs1]
2 r ← x ^ RCON[imm]
3 GPR[rd] ← r

• sparkle.whole.enci.x rd, rs1, rs2, imm

1 xi ← GPR[rs1]
2 yi ← GPR[rs2]
3 ci ← RCON[imm]
4 xi ← xi + (yi >>> 31)
5 yi ← yi ^ (xi >>> 24)
6 xi ← xi ^ ci
7 xi ← xi + (yi >>> 17)
8 yi ← yi ^ (xi >>> 17)
9 xi ← xi ^ ci
10 xi ← xi + (yi >>> 0)
11 yi ← yi ^ (xi >>> 31)
12 xi ← xi ^ ci
13 xi ← xi + (yi >>> 24)
14 yi ← yi ^ (xi >>> 16)
15 xi ← xi ^ ci
16 GPR[rd] ← xi

• sparkle.whole.enci.y rd, rs1, rs2, imm

1 xi ← GPR[rs1]
2 yi ← GPR[rs2]
3 ci ← RCON[imm]
4 xi ← xi + (yi >>> 31)
5 yi ← yi ^ (xi >>> 24)
6 xi ← xi ^ ci
7 xi ← xi + (yi >>> 17)
8 yi ← yi ^ (xi >>> 17)
9 xi ← xi ^ ci
10 xi ← xi + (yi >>> 0)
11 yi ← yi ^ (xi >>> 31)
12 xi ← xi ^ ci
13 xi ← xi + (yi >>> 24)
14 yi ← yi ^ (xi >>> 16)
15 xi ← xi ^ ci
16 GPR[rd] ← yi

7.3.10 TinyJAMBU

Submission overview. The TinyJAMBU [WH21] submission species an eponymous AEAD algo-
rithm family. We focus on the primary algorithm TinyJAMBU-128 [WH21, Section 3.3], and, more
specically, a kernel represented by the keyed permutation 𝑃𝑛 , which is iterated either 𝑛 = 640 times
(𝑃640) or 𝑛 = 1024 times (𝑃1024).

Kernel overview. The permutation 𝑃 is based on a 128-bit non-linear feedback shift register whose
feedback path consists of four bit-wise XORs and a bit-wise NAND, which is the only non-linear opera-
tion of TinyJAMBU. One can easily identify the state-update function as the most performance-critical
operation; it gets besides the 128-bit state and the number of rounds also a key as input. However, Tiny-
JAMBU does not involve a key-schedule. The permutation 𝑃𝑛 distinguishes itself from the permutations
of other nalists like Ascon, Sparkle, and Xoodyak by an extremely small state size the fact that it is
keyed (i.e., 𝑃𝑛 is a non-public permutation). Furthermore, the number of rounds is much higher, which
is compensated by an extremely simple round function (basically just a shift of the 128-bit state along
with ve bit-operations).

123

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

Implementation options. On a 32-bit processor, it is possible to compute 32 instances of the per-
mutation simultaneously, which means the XOR and NAND operations are performed on 32-bit words.
One of them is a word of the state, one is a word from the key and the other four are extracted from the
state at certain positions. The latter boils down to extracting a 32-bit word from two adjacent 32-bit
state-words through an operation of the form𝑤 = (𝑆𝑖 � 𝑛) ∧ (𝑆 𝑗 � (32 − 𝑛)).

ISE description. Extracting a 32-bit words from two state-words can be done with three native
RV32GC instructions. However, this operation can be easily mapped to a custom instruction (which
we call fsri) that reads two 32-bit words from registers and gets the position of the word to extract
through an immediate value. Even though fsri saves only two instructions, it still improves the ex-
ecution time of TinyJAMBU signicantly since these word-extractions account for about 80% of the
execution time of the state-update operation.

ISE design. The additional, more detailed material relating to the ISE design is shown below.

012345678910111213141516171819202122232425262728293031

00 00000 rs2 rs1 111 rd 1111011 jambu.fsr.15

00 00001 rs2 rs1 111 rd 1111011 jambu.fsr.6

00 00010 rs2 rs1 111 rd 1111011 jambu.fsr.21

00 00011 rs2 rs1 111 rd 1111011 jambu.fsr.27

• jambu.fsr.15 rd, rs1, rs2

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← (x_hi || x_lo) >>> 15
4 GPR[rd] ← r_{31.. 0}

• jambu.fsr.6 rd, rs1, rs2

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← (x_hi || x_lo) >>> 6
4 GPR[rd] ← r_{31.. 0}

• jambu.fsr.21 rd, rs1, rs2

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← (x_hi || x_lo) >>> 21
4 GPR[rd] ← r_{31.. 0}

• jambu.fsr.27 rd, rs1, rs2

1 x_hi ← GPR[rs2]
2 x_lo ← GPR[rs1]
3 r ← (x_hi || x_lo) >>> 27
4 GPR[rd] ← r_{31.. 0}

7.3.11 Xoodyak

Submission overview. TheXoodyak [DHM+21] submission species an eponymous algorithm, which
supports both AEAD and hash function modes. We focus on this, the only and therefore primary algo-
rithm, and, more specically therefore, a kernel represented by the Xoodoo[12] permutation (see also
[DHAK18]).

124

7.3. DESIGN

Kernel overview. The state of the Xoodoo[12] permutation has the form of a (3×4)-element matrix
of 32-bit words, which can be visualized via three horizontal 128-bit planes (one above the other), each
consisting of four 32-bit lanes. It is also possible to view the 384-bit state as 128 columns of three
bits lying upon another (i.e., each bit belongs to a dierent plane). As its name indicates, Xoodoo[12]
executes 12 iterations of a round function consisting of ve steps: a column-parity mixing layer \ ,
a non-linear layer 𝜒 , two plane-shifting layers (𝜌west and 𝜌east) between them, and a round-constant
addition. Both 𝜌 layers move bits horizontally and perform lane-wise rotations of planes as well as
rotations of lanes by 11, 1, and 8 bits to the left. On the other hand, in the parity-computation part of
\ and in the 𝜒 layer, state-bits interact only vertically, i.e., within 3-bit columns. The \ layer mainly
executes XORs and left-rotations by 5 and 14 bits. Finally, the non-linear layer 𝜒 applies a 3-bit S-box to
each column of the state, which can be computed using logical ANDs, XORs, and bitwise complements.

Implementation options. Anoptimized implementation ofXoodoo[12] permutation on RV32IMAC
was proposed in [CJL+20]. This implementation takes advantage of a technique known as lane comple-
menting, which allows one to reduce the number of bitwise complements that have to be carried out in
the 𝜒 transformation from 12 per round to three. However, this optimization is not necessary on our
base ISA, due to the andn instruction provided by Zbkb. andn combines a logical AND with a bitwise
complement of the second operand, which benets the implementation of 𝜒 to be more straightforward
and more ecient on our base ISA.

ISE description. When adhering to the requirements for custom instructions mentioned in Sec-
tion 7.2, then the only opportunity to speed up Xoodoo[12] is the manipulation of the parity-plane
(i.e., three 32-bit parity-lanes) through an operation of the form 𝑒 = (𝑝 ≪ 5) ⊕ (𝑝 ≪ 14). We call the
custom instruction implementing this operation xorrol.

ISE design. The additional, more detailed material relating to the ISE design is shown below.

012345678910111213141516171819202122232425262728293031

01 00000 rs2 rs1 111 rd 0101011 xoodyak.xorrol

• xoodyak.xorrol rd, rs1, rs2

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← (x <<< 5) ^ (y <<< 14)
4 GPR[rd] ← r

7.3.12 Discussion

Observations regarding ISA design.

• There are several algorithms (e.g., Sparkle) where operations of the form

GPR[𝑟𝑑] ← GPR[𝑟𝑠1] � (GPR[𝑟𝑠2] � 𝑖𝑚𝑚)

for � ∈ {⊕, +,−, . . .} and � ∈ {�,�,≪,≫} are useful. Consider, without loss of generality, an
example operation where � = ⊕ and � =� is realized using the base ISA by the 2-instruction
sequence

1 slli rx, ry, imm
2 xor rx , rx, rz

125

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

One could imagine two dierent approaches to improving this starting point. The arguably more
CISC-like approach (see [CDPA16, Section V]) would be to add a dedicated “shift-then-XOR”
instruction to the base ISA; more general-purpose instances of this same approach include the
ARM Cortex-M “exible second operand” mechanism. The arguably more RISC-like approach
(see [CDPA16, Section VI]) would be to retain the original instructions (resp. micro-ops) only, but
implement a mechanism by which they can be fused (or combined, into a macro-op). By using
compressed instructions [RV19, Chapter 16], for example, one can express a similar operation
as

1 c.slli ry , imm
2 c.xor ry, rz

Celio et al. [CDPA16] argue that by fusing these 2 instructions in the micro-architecture front-
end, the same (eective) instruction throughput is achieved as use of the 1 non-compressed, ded-
icated instruction, but, crucially, without “bloating” the base ISA. However, a micro-architecture
which supports fusion is more complex as a result; for resource-constrained devices, support for
dynamic, run-time fusion is potentially unattractive therefore. A conceptual alternative would be
static, compile-time fusion. If there were a way to “merge” 2 compressed instructions into 1 non-
compressed instruction, their fused semantics could be expressed at compile-time and executed
by a less complex micro-architecture.

• There are several algorithms which use 32-bit (e.g., Sparkle) or 64-bit (e.g.,Ascon) rotation. This
fact relates to a more general challenge of selecting an 𝑛-bit natural word size for an algorithm:
one could say that a larger 𝑛 can be a positive for base ISAs with a large word size (e.g., allowing
more eective use of the data-path) but a negative for base ISAs with a small word size (e.g.,
because 𝑛-bit operations need to be synthesized by a sequence of𝑚-bit alternatives, for𝑚 < 𝑛),
and vice versa. Put another way, choice of an𝑛 somewhat biases how ecient an implementation
of the algorithm can be when using a given base ISA.
The other dimension to this choice, however, is how well a particular ISA supports a particular
𝑛. There is precedent in RISC-V for supporting 32-bit operations when XLEN = 64 (e.g., rorw in
Zbkb [RVK22, Section 3.26] and similar), but not 64-bit operations when XLEN = 32. Following
a RISC-like design philosophy, the argument would likely be that the latter, e.g., 64-bit rotation,
can and so therefore should be synthesized using a sequence of 32-bit instructions. That said,
and although total orthogonality is clearly unrealistic, it seems there are some opportunities
along similar lines. A pertinent example is a family of so-called funnel shift instructions, which
appeared in drafts3 of the B extension but not the ratied B (i.e., Zba, Zbb, Zbc, and Zbs) nor
Zbkb extensions. Although counterarguments (e.g., their ternary, 4-address format) exist, one
could view their omission as a missed opportunity: a general-purpose funnel shift eliminates the
need for bit-interleaving (where relevant) without needing a further, special-purpose ISE.

Observations regarding ISE design.

• For some algorithms, an ISE design for RV32GC is harder to scale (or generalize) into one for
RV64GC than for other algorithms. PHOTON-Beetle uses PHOTON256, for example, which uses an
(8×8)-element state matrix of 4-bit nibbles. WhereXLEN = 32 it is possible to pack 1 column into
each 32-bit word; where XLEN = 64, the natural generalization is to pack 2 columns into each
64-bit word. However, this natural generalization of the representation renders the associated
implementation more dicult, e.g., with respect to the ShiftRows round function.
On one hand, this does not seem a signicant problem; it is already true of support for AES in
RISC-V (cf. aes32esi versus aes64es in Zkne [RVK22, Section 2.5]), for example. On the other

3See, e.g., Section 2.9.3 of version 0.93 via https://github.com/riscv/riscv-bitmanip.

126

https://github.com/riscv/riscv-bitmanip

7.4. IMPLEMENTATION

hand, however, one could also argue that scalability is an attractive property and so favour designs
which facilitate it.

• There are several algorithms (e.g., Elephant and Romulus) where “small” 𝑛-bit LFSRs, for 𝑛 <

XLEN, are used. Although the LFSR update is typically dominated by other components of a
given algorithm, an associated ISE could plausibly oer incremental improvement over use of
the base ISA alone; if it were parameterizable (e.g., with respect to the tap sequence), such an ISE
could represent a somewhat general-purpose primitive.

• There are several algorithms (e.g., GIFT and Romulus) where the implementation technique of
x-slicing [ANP20, AP21] is applicable; this fact is specically highlighted and explored byAdom-
nicai and Peyrin [AP20]. Where x-slicing is applied, an implementation will often make use of
a primitive termed SWAPMOVE. May et al. [MPC00, Section 3.1] are among the rst4 to dene
and make use of this primitive: the basic idea is that some bits in an operand 𝑥 are swapped
with some bits in another operand 𝑦, with 𝑛 and 𝑚 controlling which bits. As such, SWAPMOVE
has 3 inputs of XLEN bits (𝑥 , 𝑦, and𝑚), 1 input of dlog2 XLENe bits (𝑛), and 2 outputs of XLEN
bits (𝑥 and 𝑦). In various ISE designs, we cope with the number and type of inputs and outputs
through specialization, e.g., employing 1) a 1-operand variant that involves only 𝑥 , and 2) a small,
hard-coded set of 𝑛 and𝑚. Given a more general-purpose ISE for SWAPMOVE is more attractive,
however, it seems useful to carefully explore the trade-o between general- and special-purpose.
For example, through careful inter-algorithm analysis, it might be possible to identify a somewhat
general-purpose set of 𝑛 and𝑚 which aord a compact and so viable encoding.

Observations regarding algorithm design.

• For some algorithms, a change to the interface could plausibly yield more ecient implementa-
tions. PHOTON-Beetle uses PHOTON256 for example, which initializes an (8 × 8)-element state ma-
trix of 4-bit nibbles from a 16-element array of 8-bit bytes using a row-major ordering. Use of a
column-oriented representation of the state matrix can imply a signicant conversation overhead
therefore, which could be reduced by changing the interface to allow a column-major ordering
(although doing so clearly then penalizes row-oriented representation in the same way).

• For some algorithms, a change to the parameterisation could plausibly yield more ecient imple-
mentations. PHOTON-Beetle, uses PHOTON256 for example, which, per [GPP11, Section 2.2], implies
use of the 4-bit PRESENT S-box. A dierent parameterization is possible, however, which im-
plies use of the 8-bit AES S-box: although reasonable counterarguments also exist, one could
argue that opting for the latter will maximize overlap with existing ISEs and so minimize the ad-
ditional hardware components required (e.g., by using an AES S-box shared with Zkne [RVK22,
Section 2.5], if that extension were also supported).

7.4 Implementation

In the same way as the ISA, a given ISE design represents an interface between hardware and software.
In this section we consider both sides of said interface, as dened in Section 7.3: Section 7.4.1 considers
the hardware-oriented side, i.e., how the ISE is realized, then Section 7.4.2 considers the software-
oriented side, i.e., how the ISE is utilized. Doing so shifts our focus from abstract design to concrete
implementation, which then represents the basis for evaluation in Section 7.5.

4Their goal is ecient software implementation of permutations, such as those used by DES; they cite some prior art, e.g.,
noting “[t]his technique is utilised in versions of DES available from the Internet (for example Eric Young’s libdes)”.

127

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

𝑅0
Instruction

cache 𝑅1

Instruction
decode

Register
le

𝑅2

Mul/Div

Zbkb/x FU

LWC FU

𝑅3
Data
cache 𝑅4

+4

BTB

Fetch Decode Execute Memory Commit

Figure 7.2: A block diagram highlighting features in our hardware implementation (e.g., integration of
the Zbkb/x and LWC FUs) in red. Note that 𝑅𝑖 denotes the 𝑖-th pipeline register, the component labelled
Mul/Div supports multiplication and division, and a Branch Target Buer (BTB) is shown toward the
left-hand end of the pipeline.

7.4.1 Hardware

Host core. To realize each ISE design, we use the highly congurable, RISC-V compliant Rocket
[AAB+16] host core. At a high level, the core executes instructions using a 5-stage, in-order pipeline;
support is included within the core for a branch prediction mechanism, and in the wider system for a
16 kB instruction cache and a 16 kB data cache.

To support the execution of associated instructions, two modications are made to the host core for
each ISE design. First, an ISE-specic Functional Unit (FU) is integrated into the host core. At least two
dierent approaches are possible, namely 1) an internal integration, where the FU is integrated directly
into the pipeline, and 2) an external integration, which integrates the FU using the Rocket Custom
Coprocessor (RoCC) [AAB+16, Section 4] interface. Although it requires less micro-architectural mod-
ication, using the RoCC interface locates the FU in the commit stage; this can degrade performance,
due to ineciency resulting from how forwarding is implemented. Our ISE designs are intended to per-
mit single-cycle execution, which means the eciency of forwarding is important. As such, we opt for
the former approach, which allows location of the FU in the execute stage. Second, ISE-specic modi-
cations are made to the instruction decoder, which, e.g., allow it to correctly provide input operands
to the FU, control the FU so it performs the required computation, and accept output operands from
the FU.

What we term the unextended core, i.e., Rocket as is, supports RV32GC only. In line with our
denition of base ISA, we dene the base core, i.e., a baseline for our work, as the unextended core
plus additional5 support for Zbkb and Zbkx. We then further extend this base core with support for an
LWC-specic ISE, yielding what we term an extended core. Figure 7.2 illustrates the outcome, with
ourmodications highlighted in red. Note that the Zbkb/x FU realizes the Zbkb and Zbkx extensions, so
is xed across all ISE designs; the LWC FU realizes a given ISE design, so is dierent for each ISE design
therefore. Also note that neither the Zbkb/x FU nor any of the LWC FU extend the existing critical path,
so have no impact on the clock frequency. As such, and by design, the associated instructions have a 1
cycle execution latency.

LWC FU. The implementation of each LWC FU stems fairly directly from the associated ISE de-
nition; each such denition uses pseudo-code which is intentionally similar to the openly available6
Register Transfer Language (RTL) implementation used.

5Per Section 7.2, recall that although Zbkb and Zbkx represent extensions to RV32GC, for example, they form part of the
dened base ISA. Viewed from the perspective of the unextended core, however, they represent unsupported extensions and
thus need an associated implementation.

6See https://github.com/scarv/lwise.

128

https://github.com/scarv/lwise

7.4. IMPLEMENTATION

Submission Base implementation Kernel implementation
Ascon ascon128v12/ref P[6|12]
Elephant elephant160v2/ref permutation

GIFT-COFB giftcofb128v1/ref giftb128
Grain-128AEADv2 grain128aeadv2/x64 grain_keystream32

ISAP isapa128av20/ref Ascon_Permute_Nrounds
PHOTON-Beetle photonbeetleaead128rate128v1/ref PHOTON_Permutation

Romulus romulusn/[ref|fixslice_opt32] Skinny[_128_384_plus_enc|128_384_plus]
Sparkle schwaemm256128v2/opt Sparkle_opt

TinyJAMBU tinyjambu128v2/opt state_update
Xoodyak xoodyakround3/ref Xoodoo_Permute_12rounds

Table 7.1: A per-algorithm summary of the base and kernel implementations.

Experimental platform. To produce an experimental platform which permits evaluation of, e.g.,
area and cycle-accurate execution latency, we make use of the SASEBO-GIII [HKSS12]: this includes
two FPGAs, namely a Xilinx Kintex-7 (model xc7k160tfbg676) target FPGA, and a Xilinx Spartan-6
(model xc6slx45) support FPGA. We use the former exclusively, synthesizing stand-alone designs for
it using Xilinx Vivado 2019.1; default synthesis settings are used, with no eort invested in synthesis or
post-implementation optimization. The FPGA uses a 200MHz external clock input, which is adjusted
into a 50MHz internal clock signal for use by the host core itself.

7.4.2 Software

High-level strategy. To utilize each ISE design, we developed a software implementation which can
be executed by the associated extended core. For a given algorithm, we start with a base implementa-
tion. This is the source code7 submitted for a given algorithm. The base implementation is used as is,
with one exception: the submission for Grain-128AEADv2 was ported from C++ to C, then adapted to
cope with, e.g., assumptions around unaligned access to memory. Using appropriate C pre-processor
directives, we make minor alterations to the base implementation so the kernel implementation is se-
lectable between the original and a compatible replacement developed by us; Table 7.1 summarizes this
information on a per-algorithm basis. We try to be consistent, using the most ecient parameterization
of and implementation strategy for the base implementation which is compatible with our replacement
kernel.

We view this approach as eective, in the sense it 1) allows focus on the kernel in question (so limits
the volume of work involved), but, equally, 2) allows evaluation of the ISE design within a algorithm-
wide rather than kernel-only context (so maximizes utility of the outcomes).

Low-level strategy. We use a RISC-V capable instance of the GNU tool-chain8 to compile each
software implementation. Each replacement kernel implementation is written in assembly language.
Rather than modify the tool-chain, instances of the .insn directive are used to generate ISE-based
instructions.

• Each replacement kernel implementation is captured in a single, leaf function; there is no further
opportunity for, e.g., function inlining. We respect the ABI, in the sense that a function prologue
and epilogue are careful to preserve and restore any callee-save registers by using the stack.

• Use of an ISE almost always reduces the number of instructions required to implement a replace-
ment kernel, meaning loop overhead which stems from iteration, e.g., over rounds within it, can
become more prominent.

7For submission X, use of a base implementation Y typically means use of source code located in
X/Implementations/crypto_aead/Y within the submission archive X.zip.

8We use commit b468107e701433e1caca3dbc8aef8d40e0c967ed of https://github.com/riscv/riscv-gnu-
toolchain, yielding, e.g., a working GCC whose version was 9.2.0.

129

b468107e701433e1caca3dbc8aef8d40e0c967ed
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

To address this while providing at least some consistency, we support either partial, 2-fold un-
rolling or full, 𝑛-fold unrolling (for an appropriate 𝑛) of rounds within a replacement kernel. The
former is often useful, for example, to avoid unnecessary copying of state output by an 𝑖-th round
for use as input by the subsequent, (𝑖 + 1)-th round.

7.5 Evaluation

In this section, we present the result of evaluating our ISEs designs from both hardware and software
perspectives. As a non-LWC comparison point, we consider an existing9 ISE-supported implementation
of AES-GCM [NIS07]. We attempt to align said implementation as closely as possible with the API used,
by 1) “upgrading” it to support additional data, and 2) parameterising it using a 128-bit key. A set of
results, limited to the relevant, extended ISA case only, are included for reference alongside those for
LWC candidates.

Note throughout that, within the context of GIFT-COFB, we use FS and BS to refer to implemen-
tations based on x-slicing and bit-slicing respectively; within the context of Romulus, we use FS and
TB to refer to implementations based on x-slicing and look-up tables respectively.

Hardware. Table 7.2 presents a summary of synthesis results for each ISE design. Reecting the
constraints in Section 7.3.1, note that all ISE design require combinational logic only, i.e., no state, so
we report the number of FPGA Look-up Tables (LUTs) only. Wemeasure (cumulative) overhead relative
to the unextended core alone, and so exclude the wider system: doing so seems more representative, in
that, e.g., the caches, would dominate otherwise. For example, the ISE for Sparkle (resp. TinyJAMBU)
demands the most (resp. least) area: implementation of the Zbkb/x and LWC FUs produce a 14% and
10% (resp. 3%) overhead respectively, meaning 24% (resp. 17%) cumulative versus the unextended core.

For comparison, the ISE-supported implementation of AES-GCM makes use of Zbkc (for carryless
multiplication) [RVK22, Section 2.2], Zbnd (for AES decryption) [RVK22, Section 2.4] and Zbne (for
AES encryption) [RVK22, Section 2.5]. Our synthesis results show implementation of these extensions
requires 567 additional LUTs, meaning an overhead of 31% cumulative versus the unextended core.

Software: kernel. Table 7.3 presents a summary of low-level results, focusing on the kernels in
isolation. For each kernel, we report both absolute results i.e., execution latency (measured in clock
cycles) and instruction footprint (measured in bytes), and relative results i.e., increase/decrease fac-
tor versus use of the base ISA alone. Note that for some kernels, e.g., GIFT and Romulus, we use
auxiliary functions relating to pre-computation of round keys. For clarity, and because our ISEs can
be used within them, we include these in addition to the kernel itself. For comparison, single-block
encryption via aes128_enc_ecb_rvk32 (resp. decryption via aes128_dec_ecb_rvk32) using the ISE-
supported implementation of AES-GCM requires 324 (resp. 321) cycles; the encryption key schedule
via aes128_enc_key_rvk32 (resp. decryption key schedule via aes128_dec_key_rvk32) requires 264
(resp. 719) cycles; the GHASH function (dominated by a multiplication in F2128) via ghash_mul_rv32

requires 135 cycles.

Software: API. Table 7.4, Table 7.5, and Table 7.6 present a summary of high-level results, focusing
on the kernels in context, i.e., as invoked via the API using the aead_encrypt and aead_decrypt func-
tions for a 16, 128, and 1024 byte plaintext (resp. ciphertext) respectively. This is important, because
one kernel may represent a dierent proportion of the associated algorithm than another, and thus
yield dierent overall improvements. We consider a range of cases, constrained such that the associ-
ated data and plaintext/ciphertext lengths are equal: counterarguments clearly exist (e.g., one might

9https://github.com/rvkrypto/rvkrypto-fips.

130

https://github.com/rvkrypto/rvkrypto-fips

7.5. EVALUATION

Submission Unextended core:
RV32GC

Base core:
RV32GC
+

Zbkb/x

Extended core:
RV32GC
+

Zbkb/x + ISE
Ascon

3303 (1.000×) 3764 (1.140×)

4234 (1.282×)
Elephant 3938 (1.192×)

GIFT-COFB (BS) 3906 (1.183×)
GIFT-COFB (FS) 4370 (1.323×)

Grain-128AEADv2 4271 (1.293×)
ISAP 4234 (1.282×)

PHOTON-Beetle 3892 (1.178×)
Romulus (TB) 3998 (1.210×)
Romulus (FS) 4205 (1.273×)
Sparkle 4097 (1.240×)

TinyJAMBU 3863 (1.170×)
Xoodyak 3814 (1.155×)
AES-GCM 4331 (1.311×)

Table 7.2: Hardware-oriented evaluation, i.e., realization of each ISE design: area measured in FPGA
LUTs (plus increase/decrease factor versus unextended core in parentheses).

Submission Kernel Metric

Replacement
kernel

implementation
Base ISA:
RV32GC
+

Zbkb/x

Extended ISA:
RV32GC
+

Zbkb/x + ISE

Ascon P6
latency 700 (1.00×) 280 (2.50×)
footprint 2718 (1.00×) 1050 (2.59×)

Elephant permutation
latency 15804 (1.00×) 1944 (8.13×)
footprint 25662 (1.00×) 7702 (3.33×)

GIFT-COFB (BS) giftb128
latency 1481 (1.00×) 842 (1.76×)
footprint 5770 (1.00×) 3210 (1.80×)

GIFT-COFB (FS)
giftb128

latency 1386 (1.00×) 972 (1.43×)
footprint 4888 (1.00×) 3412 (1.43×)

precompute_rkeys
latency 1306 (1.00×) 251 (5.20×)
footprint 4830 (1.00×) 768 (6.29×)

Grain-128AEADv2 grain_keystream32
latency 235 (1.00×) 86 (2.73×)
footprint 858 (1.00×) 262 (3.27×)

ISAP Ascon_Permute_Nrounds
latency 736 (1.00×) 316 (2.33×)
footprint 5980 (1.00×) 2364 (2.53×)

PHOTON-Beetle PHOTON_Permutation
latency 67035 (1.00×) 1473 (45.51×)
footprint 82486 (1.00×) 3466 (23.80×)

Romulus (TB) Skinny_128_384_plus_enc
latency 14268 (1.00×) 1502 (9.50×)
footprint 23508 (1.00×) 4612 (5.10×)

Romulus (FS)

Skinny128_384_plus
latency 6208 (1.00×) 2156 (2.88×)
footprint 17402 (1.00×) 7274 (2.39×)

precompute_rtk1
latency 867 (1.00×) 200 (4.34×)
footprint 2814 (1.00×) 610 (4.61×)

precompute_rtk2_3
latency 3402 (1.00×) 1557 (2.18×)
footprint 11290 (1.00×) 5186 (2.18×)

Sparkle Sparkle_opt
latency 1647 (1.00×) 525 (3.14×)
footprint 5908 (1.00×) 1816 (3.25×)

TinyJAMBU state_update (P1024)
latency 575 (1.00×) 319 (1.80×)
footprint 2208 (1.00×) 1184 (1.86×)

Xoodyak Xoodoo_Permute_12rounds
latency 873 (1.00×) 777 (1.12×)
footprint 3394 (1.00×) 3010 (1.13×)

AES-GCM

aes128_enc_ecb_rvk32
latency 324
footprint 556

aes128_dec_ecb_rvk32
latency 321
footprint 570

aes128_enc_key_rvk32
latency 264
footprint 266

aes128_dec_key_rvk32
latency 719
footprint 348

ghash_mul_rv32
latency 135
footprint 252

Table 7.3: Software-oriented evaluation, i.e., utilization of each ISE design: latency measured in clock
cycles and instruction footprint measured in bytes (plus increase/decrease factor versus base ISA in
parentheses) for direct kernel use.

131

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC
+

Zbkb/x

Extended ISA:
RV32GC
+

Zbkb/x + ISE
Ascon aead_encrypt 14801 (1.00×) 7839 (1.89×) 4059 (3.65×)

aead_decrypt 14523 (1.00×) 7862 (1.85×) 4083 (3.56×)
Elephant

aead_encrypt 3487575 (1.00×) 87596 (39.81×) 14209 (245.45×)
aead_decrypt 3487689 (1.00×) 87608 (39.81×) 14262 (244.54×)

GIFT-COFB (BS) aead_encrypt 118062 (1.00×) 6957 (16.97×) 5082 (23.23×)
aead_decrypt 118058 (1.00×) 6926 (17.05×) 5050 (23.38×)

GIFT-COFB (FS) aead_encrypt 118062 (1.00×) 7957 (14.84×) 5664 (20.84×)
aead_decrypt 118058 (1.00×) 7919 (14.91×) 5626 (20.98×)

Grain-128AEADv2
aead_encrypt 15471 (1.00×) 15025 (1.03×) 9962 (1.55×)
aead_decrypt 15389 (1.00×) 14988 (1.03×) 9917 (1.55×)

ISAP aead_encrypt 374476 (1.00×) 74480 (5.03×) 45521 (8.23×)
aead_decrypt 198129 (1.00×) 42721 (4.64×) 25305 (7.83×)

PHOTON-Beetle aead_encrypt 1407143 (1.00×) 203088 (6.93×) 5224 (269.36×)
aead_decrypt 1407742 (1.00×) 203254 (6.93×) 5227 (269.32×)

Romulus (TB) aead_encrypt 161068 (1.00×) 33293 (4.84×) 5287 (30.46×)
aead_decrypt 161103 (1.00×) 33453 (4.82×) 5318 (30.29×)

Romulus (FS) aead_encrypt 29686 (1.00×) 36613 (0.81×) 7104 (4.18×)
aead_decrypt 30093 (1.00×) 36458 (0.83×) 7186 (4.19×)

Sparkle aead_encrypt 13141 (1.00×) 5829 (2.25×) 2424 (5.42×)
aead_decrypt 13166 (1.00×) 5818 (2.26×) 2449 (5.38×)

TinyJAMBU aead_encrypt 7908 (1.00×) 6690 (1.18×) 3891 (2.03×)
aead_decrypt 7978 (1.00×) 6761 (1.18×) 3951 (2.02×)

Xoodyak aead_encrypt 57766 (1.00×) 4191 (13.78×) 3921 (14.73×)
aead_decrypt 57775 (1.00×) 4200 (13.76×) 3905 (14.80×)

AES-GCM aes128_enc_gcm 2144
aes128_dec_vfy_gcm 2309

Table 7.4: Software-oriented evaluation, i.e., utilization of each ISE design: latency measured in clock
cycles (plus increase/decrease factor versus unextended ISA in parentheses) for indirect kernel use via
AEAD API (with 16 B plaintext, ciphertext, and associated data).

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC
+

Zbkb/x

Extended ISA:
RV32GC
+

Zbkb/x + ISE
Ascon aead_encrypt 43005 (1.00×) 32316 (1.33×) 16775 (2.56×)

aead_decrypt 43414 (1.00×) 32694 (1.33×) 17159 (2.53×)
Elephant

aead_encrypt 16044010 (1.00×) 401543 (39.96×) 65118 (246.38×)
aead_decrypt 16044075 (1.00×) 402787 (39.83×) 65079 (246.53×)

GIFT-COFB (BS) aead_encrypt 687611 (1.00×) 42048 (16.35×) 31018 (22.17×)
aead_decrypt 687543 (1.00×) 42093 (16.33×) 30887 (22.26×)

GIFT-COFB (FS) aead_encrypt 687611 (1.00×) 41884 (16.42×) 33763 (20.36×)
aead_decrypt 687543 (1.00×) 41749 (16.47×) 33642 (20.44×)

Grain-128AEADv2
aead_encrypt 87682 (1.00×) 85826 (1.02×) 64083 (1.37×)
aead_decrypt 86656 (1.00×) 84897 (1.02×) 63148 (1.37×)

ISAP aead_encrypt 489529 (1.00×) 135851 (3.60×) 77577 (6.31×)
aead_decrypt 285242 (1.00×) 88894 (3.21×) 48138 (5.93×)

PHOTON-Beetle aead_encrypt 8065027 (1.00×) 1149521 (7.02×) 29372 (274.58×)
aead_decrypt 8063672 (1.00×) 1150013 (7.01×) 29407 (274.21×)

Romulus (TB) aead_encrypt 1018364 (1.00×) 213180 (4.78×) 32880 (30.97×)
aead_decrypt 1017990 (1.00×) 213444 (4.77×) 33049 (30.80×)

Romulus (FS) aead_encrypt 177043 (1.00×) 203476 (0.87×) 40351 (4.39×)
aead_decrypt 177326 (1.00×) 203444 (0.87×) 41257 (4.30×)

Sparkle aead_encrypt 30033 (1.00×) 12883 (2.33×) 5218 (5.76×)
aead_decrypt 30053 (1.00×) 12910 (2.33×) 5268 (5.70×)

TinyJAMBU aead_encrypt 39851 (1.00×) 33574 (1.19×) 19118 (2.08×)
aead_decrypt 40432 (1.00×) 34033 (1.19×) 19562 (2.07×)

Xoodyak aead_encrypt 192338 (1.00×) 14579 (13.19×) 13616 (14.13×)
aead_decrypt 192149 (1.00×) 14397 (13.35×) 13429 (14.31×)

AES-GCM aes128_enc_gcm 7566
aes128_dec_vfy_gcm 7716

Table 7.5: Software-oriented evaluation, i.e., utilization of each ISE design: latency measured in clock
cycles (plus increase/decrease factor versus unextended ISA in parentheses) for indirect kernel use via
AEAD API (with 128 B plaintext, ciphertext, and associated data).

132

7.5. EVALUATION

Submission Functionality

Original
kernel

implementation

Replacement
kernel

implementation
Unextended ISA:

RV32GC
Base ISA:
RV32GC
+

Zbkb/x

Extended ISA:
RV32GC
+

Zbkb/x + ISE
Ascon aead_encrypt 270239 (1.00×) 228119 (1.18×) 118500 (2.28×)

aead_decrypt 271095 (1.00×) 230828 (1.17×) 121209 (2.24×)
Elephant

aead_encrypt 109520728 (1.00×) 2749081 (39.84×) 444374 (246.46×)
aead_decrypt 109520760 (1.00×) 2746736 (39.87×) 444425 (246.43×)

GIFT-COFB (BS) aead_encrypt 5221431 (1.00×) 322059 (16.21×) 238677 (21.88×)
aead_decrypt 5220757 (1.00×) 322841 (16.17×) 237408 (21.99×)

GIFT-COFB (FS) aead_encrypt 5221431 (1.00×) 312881 (16.69×) 258136 (20.23×)
aead_decrypt 5220757 (1.00×) 312008 (16.73×) 257072 (20.31×)

Grain-128AEADv2
aead_encrypt 663938 (1.00×) 650688 (1.02×) 495442 (1.34×)
aead_decrypt 655304 (1.00×) 642831 (1.02×) 487569 (1.34×)

ISAP aead_encrypt 1504643 (1.00×) 631668 (2.38×) 337357 (4.46×)
aead_decrypt 1029262 (1.00×) 461594 (2.23×) 232652 (4.42×)

PHOTON-Beetle aead_encrypt 61215512 (1.00×) 8718676 (7.02×) 221919 (275.85×)
aead_decrypt 61215428 (1.00×) 8717466 (7.02×) 222088 (275.64×)

Romulus (TB) aead_encrypt 7587976 (1.00×) 1600969 (4.74×) 246905 (30.73×)
aead_decrypt 7579477 (1.00×) 1605325 (4.72×) 249031 (30.44×)

Romulus (FS) aead_encrypt 1282828 (1.00×) 1442806 (0.89×) 286404 (4.48×)
aead_decrypt 1287633 (1.00×) 1441150 (0.89×) 294374 (4.37×)

Sparkle aead_encrypt 185179 (1.00×) 78316 (2.36×) 30688 (6.03×)
aead_decrypt 185202 (1.00×) 78346 (2.36×) 30720 (6.03×)

TinyJAMBU aead_encrypt 295003 (1.00×) 248622 (1.19×) 140980 (2.09×)
aead_decrypt 299601 (1.00×) 251993 (1.19×) 144338 (2.08×)

Xoodyak aead_encrypt 1307532 (1.00×) 98574 (13.26×) 92139 (14.19×)
aead_decrypt 1306193 (1.00×) 96744 (13.50×) 90319 (14.46×)

AES-GCM aes128_enc_gcm 50742
aes128_dec_vfy_gcm 50896

Table 7.6: Software-oriented evaluation, i.e., utilization of each ISE design: latency measured in clock
cycles (plus increase/decrease factor versus unextended ISA in parentheses) for indirect kernel use via
AEAD API (with 1024 B plaintext, ciphertext, and associated data).

As
co
n

Ele
ph
an
t

GI
FT
-C
OF
B

Gr
ai
n-
12
8A
EA
Dv
2
ISA

P

PH
OT
ON
-Be
etl
e

Ro
mu
lus

Spa
rk
le

Tin
yJA

MB
U

Xo
od
yak

AE
S-G

CM

0
1,0

00
2,0

00
3,0

00
Cy

cl
es

pe
rb

yt
e

1024 byte
128 byte
16 byte

(a) Encryption using aead_encrypt.

As
co
n

Ele
ph
an
t

GI
FT
-C
OF
B

Gr
ai
n-
12
8A
EA
Dv
2
ISA

P

PH
OT
ON
-Be
etl
e

Ro
mu
lus

Spa
rk
le

Tin
yJA

MB
U

Xo
od
yak

AE
S-G

CM

0
1,0

00
2,0

00
3,0

00
Cy

cl
es

pe
rb

yt
e

1024 byte
128 byte
16 byte

(b) Decryption using aead_decrypt.

Figure 7.3: Two graphs summarizing the data in Table 7.4, Table 7.5, and Table 7.6, with respect to
encryption (left) and decryption (right): for each algorithm, we select the most ecient ISE variant
(with respect to execution latency) and plot the normalized cycles per byte across all parameterizations
considered (i.e., 16 B, 128 B, and 1024 B plaintext, ciphertext, and associated data).

133

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

expect common use-cases to require a short(er), xed length associated data, and a longer, variable
length plaintext/cipher), but adopting this approach aligns with the NIST micro-controller benchmark-
ing framework10 and so allows easier comparison of results. For comparison, multi-block encryption
via aes128_enc_gcm (resp. decryption via aes128_dec_vfy_gcm) using the ISE-supported implemen-
tation of AES-GCM requires 2144, 7566, and 50742 (resp. 2309, 7716, and 50896) cycles for a 16, 128,
and 1024 byte plaintext (resp. ciphertext).

Finally, Figure 7.3 presents a similar summary of the data to that used by NIST: for each algorithm,
we select themost ecient ISE variant (with respect to execution latency) and plot the normalised cycles
per byte across all parameterisations considered (i.e., 16 B, 128 B, and 1024 B plaintext, ciphertext, and
associated data). As well as more clearly illustrating relative execution latency, including for the AES-
GCM case, the graphs highlight cases where the overhead of initialization is more (resp. less) eectively
amortized for large (resp. small) inputs.

The results for the ISE-supported kernels show that the more hardware-oriented designs (e.g.,
Elephant, PHOTON-Beetle, Romulus (TB)) are generally accelerated by a larger extent than the more
software-oriented designs, such as Ascon, Sparkle, and Xoodyak, which were already relatively ef-
cient with only the base-ISA. Among the latter three algorithms, Sparkle achieves a much higher
speed-up than Xoodyak, which is mainly because the ARX-box Alzette can be implemented with only
two custom instructions since it operates on 64-bit parts of the state (i.e., two 32-bit words). On the
other hand,Xoodyak is not particularly well-suited for ISE because it does not containmany operations
that can be mapped to custom instructions with two source registers and one destination register.

An additional benet of the ISE-supported implementations is their signicantly smaller code size,
which is mainly due to the reduced footprint of the kernels. Such size reductions are often downplayed
and only seen as a minor side benet of ISE, but such a view neglects the fact that a size reduction
can yield a non-negligible reduction of execution time on processors with a small instruction cache.
For example, according to Table 7.3, the base-ISA implementations of the kernels of Elephant, PHOTON-
Beetle, and Romulus (TB) have a footprint of more than 16 kB and exceed the instruction-cache size
of our Rocket core, thereby slowing down the execution due to cache misses. On the other hand, all
ISE-supported kernels t conveniently into the instruction cache.

Comparison with related work: hardware. Strictly limited to cases based on RISC-V, and pre-
sented in chronological order, various elements of related work yield useful comparison points.

Tehrani et al. [TGSD20] describe an ISE for RV32 to support a range of lightweight, 64-bit block
ciphers including GIFT-64-128 and Skinny-64-128, implementing and evaluating it using the VexRiscv
core. First, they support computation of the substitution layer using a general-purpose instruction for
nibble-wise table look-up; doing so is achieved by capturing the table (i.e., S-box) in 3 CSRs, and then
applying it nibble-wise to a 32-bit input word supplied in GPR[𝑟𝑠1]. Second, they support computation
of the permutation layer. For GIFT-64-128 this takes the form of a special-purpose instruction, whereas
for Skinny-64-128, a general-purpose instruction for nibble-wise matrix-vector multiplication is used;
doing so is achieved by capturing a (constant) matrix in 8 CSRs, then applying it to a 64-bit input vector
supplied in GPR[𝑟𝑠1] and GPR[𝑟𝑠2] (with two instructions required to compute the most- and least-
signicant 32-bit half of the result). We do not present a comparison with this work, because the ISE
cannot be used11 for either GIFT-128-128 or Skinny-128-384+ so is not applicable to GIFT-COFB or
Romulus.

Altınay and Örs [AO21] describe an ISE for RV32 to support Ascon-𝑝 , implementing and eval-
uating it using the spike instruction set simulator. Their ISE includes two instructions. First, they

10See, e.g., https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking, and results in [TMC+21, Sec-
tion 4 + Appendix A]: note that although the data format allows “x bytes of associated data and y bytes of message”, the data
itself has x = y in all cases.

11This is due to, e.g., the ding substitution and permutation layers used, a fact which stems from the dierent block size
(per [BPP+17, Section 2] and [BJK+16, Section 2]).

134

https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

7.5. EVALUATION

support general-purpose rotation; similar instructions are now available via the standard B (bit ma-
nipulation) [RVB21, Section 1.3] and K (cryptography) [RVK22, Section 2.1] extensions. Second, they
support special-purpose computation of the S-box. Their instruction for doing so is CISC-like, in the
sense it operates on data resident in memory: using an input register address 𝑟𝑠1, it loads ve 32-bit
inputs 𝑥𝑖 ← MEM[GPR[𝑟𝑠1] + 4 · 𝑖]4, applies the S-box to produce outputs 𝑟𝑖 from the inputs 𝑥𝑖 , then
stores ve 32-bit outputs MEM[GPR[𝑟𝑠1] + 4 · 𝑖]4 ← 𝑟𝑖 , where 0 ≤ 𝑖 < 5 throughout. We do not
present a comparison with this work, because 1) the ISE falls outside our constraints as outlined in Sec-
tion 7.3.1, and, moreover, 2) no non-simulated evaluation results (i.e., area overhead, and cycle accurate
execution latency) are available for it.

Steinegger and Primas [SP21] describe an ISE for RV32 to support Ascon-𝑝 , implementing and
evaluating it using the RI5CY core. Their ISE includes one instruction, which essentially supports com-
putation of an entireAscon-𝑝 round in hardware. Implementation therefore demands tight integration
with the core (e.g., using 10 hard-wired general-purpose registers to store the state), which, although
delivering performance, arguably renders it more akin to a tightly-coupled accelerator than traditional
ISE. Although the ISE falls outside our constraints as outlined in Section 7.3.1, it does represent a compet-
itive trade-o: modulo dierences with respect to the core used, [SP21, Table 1 + Section 4] demonstrate
that a factor of 1.1 area overhead permits a signicant, factor of 50 improvement in execution latency
for Ascon. For certain use-cases, this trade-o can be argued as more attractive than one based on a
more hardware-oriented (e.g., purely using an IP core) or more software-oriented (i.e., using a more
tightly constrained ISE, as in our work) alternative.

Comparisonwith relatedwork: software. Strictly limited to cases based on RISC-V, and presented
in chronological order, various elements of related work yield useful comparison points.

Jellema [Jel19] presents an optimized implementation ofAscon, based on use of an E31 (supporting
RV32IMAC) core; [Jel19, Figure 10] suggests a measured 6 · 118 = 708 cycle execution latency for the
6-round Ascon-𝑝 permutation. Modulo the dierent core, this can be compared with the base ISA and
extended ISA columns of Table 7.3, where wemeasure 700 and 280 cycles respectively. At face value one
might expect use of Zbkb/x to oer greater improvement, but in fact this result is expected: although
we can use andn and orn within the substitution layer, we cannot use rol or ror within the diusion
layer (becauseXLEN = 32, so 64-bit rotation is not supported). Alternatively, [Jel19, Figure 11] suggests
a measured 552076 cycle execution latency for the encryption of a 4096 byte plaintext and (inferred) 0
byte associated data; for this parameterization, our implementation takes 479764 cycles using the base
ISA or 263043 cycles using the extended ISA, i.e., the LWC-specic ISE.

Lemmen [Lem20] presents an optimized implementation of Elephant, based on use of an E31 (sup-
porting RV32IMAC) core. We do not present a comparison with this work, because it focuses on the
non-primary parameterization Elephant-Keccak-𝑓 [200] so falls outside our scope.

Campos et al. [CJL+20] present a limited study of LWC algorithms, with the goal of assessing the
impact of selecting assembly language versus C for their implementation. Per [CJL+20, Section 2], their
work is based on use of an E31 (supporting RV32IMAC) or VexRiscv (supporting RV32IM) core; we
ignore use of the riscvOVPsim simulator, because, as they explain, it may not produce representative
results. Modulo the dierent core, can be compared with the base ISA and extended ISA columns of
Table 7.3. ForAscon, [CJL+20, Table 7] suggests a measured 750 cycle execution latency for the 6-round
Ascon-𝑝 permutation; per Table 7.3, use of Zbkb/x means our implementation takes 700 cycles, or 280
with an LWC-specic ISE. For Sparkle, [CJL+20, Section 3.2] suggests an approximated 1708 cycle
execution latency for the Sparkle-384 permutation; per Table 7.3, use of Zbkb/x means our implemen-
tation takes 1647 cycles, or 525 with an LWC-specic ISE. For Xoodyak, [CJL+20, Section 3.2] suggests
an approximated 1596 cycle execution latency for the 12-round Xoodoo permutation; per Table 7.3,
use of Zbkb/x means our implementation takes 873 cycles, or 777 with an LWC-specic ISE.

Renner et al. [RPM20] present a hardware-in-the-loop benchmarking framework for the LWC pro-

135

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

cess; since their focus is the framework, they use the source code submitted for a given algorithm. Their
work is based on use of a Kendryte K210 core. Modulo the dierent core, their results can be compared
with the unextended ISA column of Table 7.4, Table 7.5, and Table 7.6.

Resilience against implementation attack. For constrained platforms of relevance to the LWC
selection process, countermeasures against implementation attack are often classied as being either
based on hiding [MOP07, Chapter 7] and/or masking [MOP07, Chapter 10]. Although we do not con-
sider such countermeasures per se, some discussion of how our ISEs interact with them may still be
useful:

• The principle of constant-time implementation (i.e., that which exhibits data-independent exe-
cution latency) is important; delivering it acts as a hiding-based countermeasure against certain
forms of attack, and is generally easier for ISE-supported than software-only implementations.
We note that all our replacement kernel implementations are constant-time, in certain cases12
representing an improvement to the base implementation considered.

• Other hiding countermeasures instrumented at the ISA level, e.g., temporal skewing or shuing,
typically apply to ISE-supported implementationmuch like software-only implementations. That
said, however, one can debatewhether they are as eective. For example, an ISE-supported imple-
mentation will typically comprise fewer instructions, meaning less Instruction Level Parallelism
(ILP) to harness through shuing, and lower diversication. In turn, this acts to limit the security
improvement possible.

• The situation for masking-based countermeasures is more involved. For a linear operation, our
ISEs can be used on a share-wise basis. For a non-linear operation, this is not possible: one would
need to redene the ISE to accept masked inputs and outputs, and augment the associated FU so
it is mask-aware. We note that our adherence to 3-address instruction formats means [GGM+21]
would be one way to accommodate this for 𝑛 = 2 shares, whereas [MP21] would be another way
to do so more generally, i.e., for 𝑛 > 2 shares.

• It is important to note that ISAP is a somewhat special case, in the sense it delivers inherent
mitigation for selected side-channel and fault attacks; since this is achieved at the mode level and
our ISE applies at the kernel level (i.e., the Ascon-𝑝 permutation), we do not expect any negative
interaction between said ISE and any security argument for ISAP.
That said, it is important to keep this functionality in mind when interpreting performance re-
sults. Although inecient in relative terms, ISAP includes by-design mitigation that other can-
didates would have to deliver via post-design means: the resulting overhead is costed into ISAP
already, complicating any direct comparison.

7.6 Conclusion

Summary. ISEs to support standard cryptographic algorithms, e.g., AES, have now been included
in almost every major ISA. Anticipating the LWC process will yield an outcome that warrants similar
support, this work investigated ISEs for each of the 10 LWC nal round submissions. Through careful
analysis of the constituent algorithms, and following a set of principled constraints (e.g., alignment with
thewider RISC-V design principles, such as use of 3-address instructions), we rst developed ISE designs
for Ascon, Elephant, GIFT-COFB, Grain-128AEADv2, ISAP, PHOTON-Beetle, Romulus, Sparkle, Tiny-
JAMBU, andXoodyak, then implemented said designs using the RISC-V compliant Rocket core. Broadly

12It might be an unfair criticism given the overtly explanatory goal, but, for example, the reference implementation of
PHOTON-Beetle involves multiplication in F24 whose execution latency is data-dependent.

136

7.6. CONCLUSION

speaking, comparison with software-only alternatives shows that 1) the ISEs overhead in hardware is
low, 2) the ISEs allow a reduction in execution latency, the degree of which is algorithm-dependent
but signicant in some cases, and, at the same time, 3) the ISEs allow constant-time execution, and a
reduction in instruction footprint. Put together, these features highlight the value of ISEs within the
context of resource-constrained devices and therefore the LWC process.

Observations. Based on our work, several high-level observations seem important to stress. First,
and particularly when carefully paired with implementation techniques such as x-slicing, our results
demonstrate software-only implementations using Zbkb/x can be signicantlymore ecient than using
RV32GC alone. This fact paints Zbkb/x (and so also Zbb) in a positive light with respect to general-
purpose support: implementations and benchmarking for RISC-Vwhich do not consider Zbkb/x (or Zbb)
disadvantage it versus, e.g., ARM. Second, our results highlight a dierence in relative improvement
between algorithms that are more hardware-oriented versus more software-oriented. Put simply, ISEs
for the former (e.g., Elephant, PHOTON-Beetle, Romulus) typically oer a greater improvement than for
the latter (e.g., Ascon, Sparkle, Xoodyak): although the most ecient software-only implementations
remain so when ISE support is considered, the dierence between most and least ecient algorithms
is signicantly smaller. Stemming from the hybrid nature of ISE-supported software, this fact could be
read as complicating the classication of hardware- versus software-oriented algorithms; either way,
it highlights the need to consider use of ISEs as part of their evaluation. Third, our results act as evi-
dence that ISEs which target an implementation technique (e.g., x-slicing) are typically more general-
purpose but less ecient, whereas ISEs which target an algorithm are typically less general-purpose
but more ecient. Although a somewhat obvious statement, this suggests that once an outcome from
the LWC process is known, the latter approach is more sensible in the longer term.

137

CHAPTER 7. RISC-V ISES FOR LIGHTWEIGHT SYMMETRIC CRYPTOGRAPHY

138

CHAPTER

8

RISC-V ISES FOR MULTI-PRECISION
INTEGER ARITHMETIC

This Chapter is based on our paper [CFG+23].

8.1 Introduction

Motivation. Public-key cryptosystems like RSA and ECC are highly computation-intensive and,
therefore, relatively slow when implemented in software on general-purpose processors. The high
cost of public-key cryptography has initiated a large body of research on hardware acceleration to
speed up the underlying arithmetic operations, in particular the modular multiplication and squaring
of long integers. Besides classical hardware accelerators in the form of loosely-coupled cryptographic
co-processors also various forms of hardware-software co-design have been studied in the literature. A
promising approach is to extend the Instruction Set Architecture (ISA) of a general-purpose processor
by a small set of custom instructions tailored specically to speed up the most performance-critical
operations of long integer arithmetic, which are the operations carried out in the “inner loops” of
algorithms for multiplication, squaring, and modular reduction. In some sense, such Instruction Set
Extensions (ISEs) allow one to combine the exibility of software with the performance of hardware
and, in this way, get the best of both worlds. Flexibility in the context of public-key cryptography
usually refers to algorithm agility and/or parameter agility. Namely, a set of custom instructions for
long-integer arithmetic allows one to accelerate not only pre-quantum schemes like ECDH and ECDSA,
but also public-key algorithms that will remain secure in the post-quantum world, e.g., isogeny-based
schemes. However, since many isogeny-based cryptosystems are still in their infancy, it can be ex-
pected that basic parameters such as the order of the underlying nite eld may need to be adjusted
in response to new cryptanalytic techniques, which is much easier for ISE-supported software than for
an algorithm cast in silicon.

Data-paths for 𝑛-bit integer arithmetic. The storage of and computation with 𝑛-bit integers oers
a low-level basis for higher-level structures (e.g., Z𝑁 or F𝑝) of fundamental importance to public-key
cryptography. Consider a 𝑤-bit data-path which is able to support 𝑤-bit integers, where 𝑤 is termed
the word size. The case 𝑤 = 𝑛 implies a bit-parallel data-path which directly supports 𝑛-bit integers;

139

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

the resulting trade-o favours eciency over area, implying a “wide”, high-area data-path but low-
latency (e.g., 1-cycle) computational steps. However, if 𝑤 < 𝑛 then the data-path cannot oer such
direct support. Instead, one must oer indirect support via data-structures and algorithms for multi-
precision integer arithmetic which harness the 𝑤-bit data-path available. A standard approach, for
example, would be to employ a radix-2𝑤 representation [MOV96, Section 14.2.1] of some 𝑛-bit 𝑥 ∈ Z,
thereby splitting it into 𝑙 = d𝑛/𝑤e digits (or limbs); since 0 ≤ 𝑥𝑖 < 2𝑤 for 0 ≤ 𝑖 < 𝑙, operations on
digits can therefore be supported by the 𝑤-bit data-path. The case 𝑤 = 1 implies a bit-serial data-
path; the resulting trade-o favours area over eciency, implying a “narrow”, low-area data-path but
high-latency (e.g., 𝑛-cycle) computational steps. Any intermediate case where 1 < 𝑤 < 𝑛 implies a
digit-serial data-path, which allows a more nuanced balance between area and eciency.

Constraints on software implementation of 𝑛-bit integer arithmetic. From a hardware per-
spective, design of a special-purpose data-path is possible;𝑤 typically represents a selectable parameter
in such a case. From a software perspective, in contrast,𝑤 is a specied aspect of the ISA: one is reliant
on the data-path provided by an associated micro-architecture, both of which are necessarily general-
purpose. Typically examples include𝑤 ∈ {8, 16, 32, 64}. Beyond this, however, further aspects of the ISA
constrain how implementation of multi-precision integer arithmetic is approached. For example, stan-
dard algorithms for multiple-precision integer addition [MOV96, Algorithm 14.7] and multiplication
[MOV96, Algorithm 14.12] have𝑂 (𝑙) and𝑂 (𝑙2) execution latencies respectively. Although 𝑙 asymptot-
ically dominates therefore, the constant factors are an important consideration; these are inuenced,
at least in part, by features of the ISA such as the instructions (and their semantics) plus general- and
special-purpose registers available. ARMv7-M [ARM21, Section A4.4.3] oers a concrete example, in
the sense it oers a rich set of instructions for unsigned integer multiplication that includes (using the
same notation): mul (multiply: 32 = 32 × 32), mla (multiply accumulate: 32 = 32 + 32 × 32), umull
(multiply long: 64 = 32× 32), umlal (multiply accumulate long: 64 = 64+ 32× 32), and umaal (multiply
accumulate accumulate long: 64 = 32 + 32 + 32 × 32). These cases use up to 4 general-purpose register
input and output operands (in some cases with inputs reused as outputs), to cater for 1) dierent com-
putation (e.g., including or excluding accumulation), and 2) dierent types (e.g., a half- or full-width
product).

Contributions. In this work, we start with the premise that a software-based implementation of
multi-precision integer arithmetic might, depending on the use-case, be either advantageous or even
necessary. Versus a hardware-based alternative, for example, any disadvantage related to eciency
might be oset by advantages such as exibility; the latter can be rationalized by considering the value
of algorithmic agility, which has been brought into sharp focus by, e.g., recent cryptanalytic results
[CD23, MMP+23, Rob23] relating to the post-quantum construction SIKE [JAC+22].

We aim to explore implementations of this type based on use of RISC-V, an ISA whose strongly
RISC-like design principles present various challenges. For example, the base ISA, e.g., RV64I, is sparse
enough that any form ofmultiplication instruction is captured in the standardM (multiplication) [RV19,
Chapter 7] extension, and, e.g., to facilitate ecient pipelined micro-architectures, no special-purpose
status register that reects carries is included. However, the increased deployment of RISC-V cores
and by-design modularity of the ISA acts as motivation for and a vehicle to address such challenges.
For example, Stoelen [Sto19] explores implementation of multi-precision integer arithmetic on RISC-
V (specically, an RV32I-compliant E31 core), and, in doing so, 1) evaluates the eciency of dierent
data-structures (e.g., reduced- and full-radix representations) and algorithms [Sto19, Section 6] and 2)
asymptotically studies the impact of a hypothetical ISE, namely an add-with-carry instruction [Sto19,
Section 7.4]. At a high level, this work aims to oer broader, more concrete insight into similar ques-
tions. We claim it makes two lower-level contributions:

140

8.2. BACKGROUND

1. We study the ecient ISA-only implementation (i.e., using only base ISA instructions) of multi-
precision integer arithmetic, including both full- and reduced-radix, on RV64GC base ISA. We
take (the prime-eld arithmetic of) X25519 [Ber06] and CSIDH [CLM+18] key-exchange as the
case study, with developing and benchmarking their highly-optimized assembly implementa-
tions. Although no carry ag exists on RISC-V architecture, our timing results show that the
full-radix representation is a more ecient option for CSIDH-512 on the 64-bit Rocket host core.
For X25519, full-radix and reduced-radix are equally ecient.

2. We propose two instruction set extensions for multi-precision integer arithmetic; one for full-
radix representation while the other one for reduced-radix representation. Each ISE includes a
pair of novel fused multiply-add instructions and one instruction to accelerate carry propaga-
tion. After using our custom instructions, the reduced-radix representation achieves a better
performance; ISE-supported X25519 and CSIDH-512 reach respectively 1.60× and 1.71× faster
compared to their most ecient ISA-only implementation.

Source code. Note that all source code (software and hardware) and documentation associated with
this work are publicly available at https://github.com/scarv/mpise.

Organization. The paper is organized as follows. In Section 8.2 we present background information
on related RV64GC instructions, X25519 and CSIDH, which forms the basis for our work. In Section 8.3
we survey ISA-only implementation techniques applicable to RISC-V, before turning our attention to
the design and implementation of associated ISEs in Section 8.4. We present a set of evaluation results
in Section 8.5, then, nally, a concluding summary in Section 8.6.

8.2 Background

8.2.1 Related instructions

The frequently-used instructions in this work for the integer arithmetic computation are integer addi-
tion add, integer subtraction sub, and bitwise shift slli, srli, srai from RV64I; integer multiplication
mul and mulhu from RV64M. Notably, there is no carry ag existing on RISC-V, hence the correspond-
ing carry propagation on RISC-V takes two instructions, i.e., one sltu (from RV64I) for carry-out (i.e.,
overow) check, and one add for propagating the carry bit.

8.2.2 X25519

X25519 [Ber06] is an ecient Elliptic Curve Die-Hellman (ECDH) key exchange scheme that uses a
Montgomery curve (called Curve25519) dened over a 255-bit prime eld. Montgomery curves allow
for a remarkably simple method to compute a variable-base scalar multiplication 𝑄 = 𝑘𝑃 , the Mont-
gomery ladder, which gets the (ane) 𝑥-coordinate of a point 𝑃 as input and returns the 𝑥 coordinate of
𝑄 . The core operation is a ladder step consisting of ve multiplications, four squarings, a multiplication
by a small constant, and nine additions/subtractions in the underlying prime eld F𝑝 . Performing a
scalar multiplication according to the Montgomery ladder is not only extremely fast, but also provides
some intrinsic protection against timing attacks since it executes always the same sequence of eld op-
erations, independent of the actual value of the scalar 𝑘 . The prime 𝑝 used by Curve25519 is a so-called
pseudo-Mersenne prime, i.e., a prime of the form 𝑝 = 2𝑘 − 𝑐 where 𝑐 is small compared to 2𝑘 (ideally,
𝑐 ts into a single register of the target platform). More concretely, Curve25519 is dened over the
pseudo-Mersenne prime 𝑝 = 2255 − 19, which means the elements of F𝑝 are integers of a length of up
to 255 bits. Pseudo-Mersenne prime allow for ecient modular reduction by taking advantage of the
congruence 2𝑘 ≡ 𝑐 mod 𝑝 . In this way, a 2𝑘-bit product can be reduced modulo 𝑝 by multiplying the

141

https://github.com/scarv/mpise

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

higher half (i.e., the upper 𝑘 bits) of the product by 𝑐 and adding the result to the lower half. Repeating
this step a second time and performing a few conditional subtractions of 𝑝 will eventually yield a fully
reduced result in the range of [0, 𝑝 − 1].

8.2.3 CSIDH-512

CSIDH [CLM+18], the short for Commutative Supersingular Isogeny Die-Hellman, is an isogeny-
based key exchange protocol and can serve as a “drop-in” post-quantum replacement for the standard
elliptic curve Die-Hellman protocol. The core component of CSIDH is the action of an ideal class
group on a set of supersingular elliptic curves, which is built onMontgomery curve arithmetic and with
F𝑝 operations at the low level. In this work, we focus on CSIDH-512 (NIST PQ level 1) and particularly
its F𝑝 arithmetic. The prime 𝑝 is 511 bits long and in a form of 𝑝 = 4 · ℓ1 · · · ℓ74 − 1, where ℓ1, . . . , ℓ73
are the rst odd primes starting from ℓ1 = 3, and ℓ74 = 587. Unlike SIKE, which uses Montgomery-
friendly primes [CLN16] resulting in faster Montgomery reduction, the primes of CSIDH do not oer
any opportunities for optimizing generic reduction techniques such as Montgomery or Barrett reduc-
tion. Therefore, the software implementation for CSIDH F𝑝 arithmetic are in some sensemore ordinary,
i.e., it can be extended to other similar-size primes with only a minor modication.

8.2.4 Notation

We use GPR[𝑖] to denote the 𝑖-th entry of the General-Purpose Register le, where 0 ≤ 𝑖 < 32. GPR[0]
is hard-wired 0, which means writes to it are ignored and reads from it always get 0. We use 𝑥 � 𝑦

(resp. 𝑥 � 𝑦) to denote logical left-shift (resp. logical right-shift) of 𝑥 by 𝑦 bits. Additionally, taking
the same way to [RVK22], we use prex EXTS (Sign-EXTended) for arithmetic shift; EXTS(𝑥 � 𝑦) (resp.
EXTS(𝑥 � 𝑦)) denote arithmetic left-shift (resp. arithmetic right-shift) of 𝑥 by 𝑦 bits. We use 𝑥 ‖ 𝑦 to
denote concatenation of 𝑥 and 𝑦, and 𝑥 {ℎ...𝑙 } denote extraction of bits ℎ (the high, or more-signicant
index) through 𝑙 (the low, or less-signicant index) inclusive from some 𝑥 .

8.3 Implementation: ISA-only

Both case studies we are considering (i.e., X25519 and CSIDH-512) have to perform basic arithmetic op-
erations in F𝑝 , namely addition, subtraction, multiplication, and squaring. In this Section, we rst focus
on the ISA-only implementation of the most performance-critical operation, namely F𝑝 multiplication.
We then discuss two dierent (constant-time) implementation options of the fast modulo-𝑝 reduction,
which is used in CSIDH and in fact dominates the execution time of its F𝑝 addition and subtraction
(per Table 8.6). As described before, we consider both full-radix and reduced-radix representations in
this work. Concretely, the full-radix in this work means 64-bit-per-word (i.e., 264) representation, while
the reduced-radix means a classic 51-bit-per-limb (i.e., 251) representation for operands on Curve25519
and 57-bit-per-limb (i.e., 257) representation1 for CSIDH-512. The implementation of other basic F𝑝
operations are relatively straightforward, we refer readers to our source code for more details.

8.3.1 F𝑝 multiplication

High-level techniques. The F𝑝 multiplication (i.e., modular multiplication) is the most costly and
also the most complicated among the basic F𝑝 operations. It is composed of two main steps, namely
integer multiplication and modular reduction. There exist dierent techniques for optimizing integer
multiplication or modular reduction itself, e.g., operand-scanning (aka. schoolbook), product-scanning
[Com90], Karatsuba [KO63] multiplications. According to our experiments, the basic multiplication

1A prime-eld element in CSIDH-512 in full-radix representation needs 8 words, so an ideal reduced-radix representation
would need just 9 limbs but with the most headroom, hence we compute d511/9e = 57.

142

8.3. IMPLEMENTATION: ISA-ONLY

Table 8.1: Information about our F𝑝 multiplication implementations.

F𝑝 Radix Multiplication Reduction Fashion
X25519 full product-scanning pseudo-Mersenne prime separated
X25519 reduced operand-scanning pseudo-Mersenne prime integrated

CSIDH-512 full product-scanning Montgomery reduction separated
CSIDH-512 reduced product-scanning Montgomery reduction separated

with quadratic complexity (i.e., operand-scanning and product-scanning) is more ecient than Karat-
suba for the two case studies on our base core. In addition, various fashions about how to integrate in-
teger multiplication and modular reduction have also been studied, e.g., separated, coarsely-integrated,
nely-integrated (see more details in [KAK96]). These integration fashions mainly dier regarding the
number of memory accesses when the register-space is limited. However, RV64GC register-space is
large enough to store all operands and intermediates for our case, and we fully unroll the loops. There-
fore, all integration fashions are very similar in performance on our base ISA. The detailed information
about our implementations of F𝑝 multiplication in X25519 and CSIDH-512 is shown in Table 8.1.

Algorithm8.1: ISA-only full-radixMAC
operation.
Input: 192-bit accumulator 𝑒 ‖ ℎ ‖ 𝑙 ;

64-bit multiplicands 𝑎 and 𝑏.
Output: 192-bit accumulator 𝑒 ‖ ℎ ‖ 𝑙 .

1 mulhu 𝑧, 𝑎, 𝑏
2 mul 𝑦, 𝑎, 𝑏
3 add 𝑙 , 𝑙 , 𝑦

4 sltu 𝑦, 𝑙 , 𝑦

5 add 𝑧, 𝑧, 𝑦

6 add ℎ, ℎ, 𝑧
7 sltu 𝑧, ℎ, 𝑧
8 add 𝑒 , 𝑒 , 𝑧

9 return 𝑒 ‖ ℎ ‖ 𝑙

Algorithm 8.2: ISA-only reduced-radix
MAC operation.
Input: 128-bit accumulator ℎ ‖ 𝑙 ;

64-bit multiplicands 𝑎 and 𝑏.
Output: 128-bit accumulator ℎ ‖ 𝑙 .

1 mulhu 𝑧, 𝑎, 𝑏
2 mul 𝑦, 𝑎, 𝑏
3 add 𝑙 , 𝑙 , 𝑦

4 sltu 𝑦, 𝑙 , 𝑦

5 add 𝑧, 𝑧, 𝑦

6 add ℎ, ℎ, 𝑧

7 return ℎ ‖ 𝑙

Low-level building block. Although there are various high-level techniques for implementingmod-
ular multiplication, at a very low level all the dierent implementations (of integer multiplication and
Montgomery reduction) essentially rely on the same building block, namely 𝑤𝑖+𝑗 ← 𝑢𝑖 · 𝑣 𝑗 +𝑤𝑖+𝑗 . In
detail, it rst computes a partial product of two long-integer operands 𝑢 and 𝑣 , and then accumulates
the generated partial product𝑢𝑖 ·𝑣 𝑗 to a corresponding word/limb accumulator𝑤𝑖+𝑗 of the result𝑤 . This
Multiply-then-ACcumulate (MAC) operation is used the most frequently in integer multiplication and
also Montgomery reduction, which is actually the inner-loop operation if integer multiplication and/or
Montgomery reduction are implemented in a nested-loop way. Due to the purpose of this work which
is to design the ecient instructions, we take more care of this MAC operation. We list the RV64GC
assembly implementation of the mentioned MAC operation in Algorithm 8.1 for full-radix, i.e., compu-
tation of (𝑒 ‖ ℎ ‖ 𝑙) ← (𝑒 ‖ ℎ ‖ 𝑙) + 𝑎 · 𝑏, and in Algorithm 8.2 for reduced-radix, i.e., computation of
(ℎ ‖ 𝑙) ← (ℎ ‖ 𝑙) + 𝑎 · 𝑏.

For the MAC operation only, reduced-radix requires fewer instructions compared to full-radix (i.e.,
6 vs. 8). However, for the overall modular multiplication, there are some implicit overheads in the
reduced-radix implementation. First of all, an integer represented in reduced-radix (in most cases)
needs more limbs than in full-radix. Obviously, the more limbs, the more MAC operations are required.

143

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

In addition, reduced-radix needs extra instructions to align the accumulator and to propagate the carry
bits. In contrast, the alignment of accumulator in full-radix is automatic (i.e., no extra cost), and the
carry propagation is already included in Algorithm 8.1. Based on the above analysis, it is not obvious
whether the full-radix or the reduced-radix is more ecient on RISC-V. Instead, it is inuenced by
several dierent factors, e.g., the design of cryptographic algorithm itself, multiplication technique,
RISC-V core design, and etc.

8.3.2 Fast reduction modulo 𝑝

In the implementation of CSIDH-512, when the range of an operand 𝑢 is known to be [0, 2𝑝 − 1], a
fastmodulo-𝑝 reduction is performed instead of the relatively-costly Montgomery reduction to reduce
it to [0, 𝑝 − 1]. There are two steps in this fast reduction; 1) it subtracts the modulus 𝑝 from the
operand and gets 𝑡 = 𝑢 − 𝑝; 2) if 𝑡 < 0 which means 𝑢 is already in [0, 𝑝 − 1], it outputs the result
𝑟 = 𝑢, otherwise it outputs the result 𝑟 = 𝑡 . Regarding the second step, there are two constant-time
options to implement it, i.e., the addition-based and the (conditional-)swap-based. We show both options
respectively in Algorithm 8.3 and 8.4. Note that this fast modulo-𝑝 reduction is used in the F𝑝 addition
and the nal step of Montgomery reduction, and a variant of Algorithm 8.3 (Line 1 changes to be
𝑡 = 𝑢 − 𝑣 , where 𝑣 is another operand instead of modulus 𝑝) can be used as the F𝑝 subtraction.

Algorithm 8.3: Addition-based fast
modulo-𝑝 reduction.
Input: an operand 𝑢 ∈ [0, 2𝑝) and the

modulus 𝑝 .
Output: the result 𝑟 ∈ [0, 𝑝).

1 𝑡 ← 𝑢 − 𝑝
2 if 𝑡 < 0 then /* constant-time */
3 𝑚 ← -1 /* all 1 in binary */
4 else

5 𝑚 ← 0 /* all 0 in binary */
6 𝑚 ←𝑚 ∧ 𝑝
7 𝑟 ← 𝑡 +𝑚
8 return 𝑟

Algorithm 8.4: Swap-based fast
modulo-𝑝 reduction.
Input: an operand 𝑢 ∈ [0, 2𝑝) and the

modulus 𝑝 .
Output: the result 𝑟 ∈ [0, 𝑝).

1 𝑡 ← 𝑢 − 𝑝
2 if 𝑡 < 0 then /* constant-time */
3 𝑚 ← -1 /* all 1 in binary */
4 else

5 𝑚 ← 0 /* all 0 in binary */
6 𝑚 ←𝑚 ∧ (𝑢 ⊕ 𝑡)
7 𝑟 ← 𝑡 ⊕𝑚
8 return 𝑟

Full-radix. On most ISAs, the addition-based one is a more ecient option for the full-radix since it
saves one operation compared to a swap-based version (line 6 in Algorithm 8.3 and 8.4). However, this
is not the case for RISC-V, due to the lack of carry ag. On RISC-V, the last operation in Algorithm 8.3,
line 7, is relatively expensive, which in turn makes the swap-based version become a faster option for
our full-radix assembly implementation.

Reduced-radix. It is obvious that the swap-based version is a better choice for the nal step of
Montgomery reduction, since it can avoid the carry propagation caused by addition. But for the F𝑝
addition, the swap-based version is less ecient because it needs extra instructions to make the limbs
of the sum, i.e., the operand 𝑢, to be short enough.

8.4 Implementation: ISE-supported

This section discusses our ISE-supported implementation. After introducing some requirements of
ISE design in Section 8.4.1, we respectively explain our integer fused multiply-add instructions in Sec-

144

8.4. IMPLEMENTATION: ISE-SUPPORTED

Table 8.2: The overview of our custom instructions.

Functionality Custom instructions
full-radix reduced-radix

integer fused maddlu madd[51|57]lu
multiply-add maddhu madd[51|57]hu

carry propagation cadd sraiadd

tion 8.4.2 and our carry-propagation instructions in Section 8.4.3. Further, we in Section 8.4.4 analyze
the impact of our ISE on software side. At last in Section 8.4.5 we give the details of hardware imple-
mentation of our ISE on Rocket core.

Proposed ISEs. Before going into details, we present an overview of our custom instructions in
Table 8.2. Each custom instruction is designed to be single-cycle. Instructions are grouped into two
ISEs, and each ISE contains three instructions: 1) one ISE is designed for the full-radix representation
including maddlu, maddhu, and cadd; 2) the other ISE for the reduced-radix presentation including
madd51lu (resp. madd57lu), madd51hu (resp. madd57hu), and sraiadd. Note that in the case of using
reduced-radix ISE, in order to have a straightforward comparison (between full-radix and reduced-
radix), we suppose the core is extended with either the pair of madd51lu and madd51hu or the pair of
madd57lu and madd57hu, depending on the target algorithm (e.g., X25519 or CSIDH-512) or operand
length (e.g., 256-bit integers or 512-bit integers).

Developed implementations. With the ISEs we proposed, we are able to develop in total four dier-
ent types of the highly-optimized assembly implementation. Concretely, they are 1) ISA-only full-radix;
2) ISA-only reduced-radix; 3) ISE-supported full-radix; 4) ISE-supported reduced-radix.

8.4.1 Constraints

In their research of RISC-V ISE for AES, Marshall et al. codify a set of ISE requirements [MNP+21, Sec-
tion 3] to guide their design process. We aim to adopt the same requirements, and list here ((numbered
to match, noting we omit their AES-specic requirement 1)):

Requirement 2. The ISE must align with the wider RISC-V design principles. This means it should
favour simple building-block operations, and use instruction encodings with at most 2 source register
addresses and 1 destination register address.

Requirement 3. The ISE must use the RISC-V general-purpose scalar register le to store operands.

Requirement 4. The ISE must not introduce special-purpose architectural state, nor rely on special-
purpose micro-architectural state (e.g., caches or scratch-pad memory).

These requirements (resp. constraints) maximize potential utility of ISE designs and simplify their im-
plementation. For example, within the context of RISC-V they 1) support multiple implementation
options, including a more traditional integrated approach or via the in-development Custom Function
Unit (CFU)2 specication, and 2) oer an easier route to standardization and deployment as a result
of limiting impact on other aspects of the ISA. Beyond this, the constraints also permit extrapolation
to other ISAs, e.g., via the ARMv8-M custom instruction mechanism [CP20]; doing so would be more
dicult otherwise. However, we also recognize that adopting these constraints means potential ISE
designs might be ignored; this fact potentially renders results sub-optimal (e.g., with respect to the

2https://cfu.readthedocs.io

145

https://cfu.readthedocs.io

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

Table 8.3: Examples of existing integer fused multiply-add instructions.

Instruction ISA/ISE Operation Radix
mla ARM rd ← lo(rs1*rs2)+rs3 F + R
umlal ARM (rd2||rd1) ← (rs1*rs2)+(rd2||rd1) F + R
umaal ARM (rd2||rd1) ← (rs1*rs2)+rd2+rd1 F + R

vpmadd52luq AVX-512 rd ← lo52(rs1*rs2)+rs3 R
vpmadd52huq AVX-512 rd ← hi52(rs1*rs2)+rs3 R

achievable execution-time reduction), at least versus a more permissive alternative where one or more
of the constraints are not adhered to.

Notably and relevantly, we need to stress the only exception (violating the listed requirements) that
already exists on our base ISA is oating-point fused multiply-add F[N]MADD/F[N]MSUB instructions
[RV19, Section 11.6]. In detail, this sort of instructions violates Requirement 2 and exclusively takes
advantage of a new standard instruction format R4-type, which species 3 source register addresses
and 1 destination register address. This makes sense for multiply-add instructions, because with using
2 source registers, one can only design an instruction that accumulates the (partial) product into a
multiplicand, e.g.,

rd ← rs1 * rs2 + rs1 .

This kind of conceived instruction is of little use for oating-point kernels used in digital-signal pro-
cessing and other domains since these kernels require accumulation of products into a third register.
Without violating Requirement 2, it would not be possible to design an instruction that is capable to
accelerate fused multiply-add operations. However, the integration of R4-type instructions comes at
a cost since a third read port has to be added to the register le and an additional bus is necessary to
be able to transport all 3 source operands to the oating-point unit in one cycle. Nonetheless, since
fused multiply-add operations are so fundamentally important and performance-critical for many ker-
nels, the designers of the F extension came to the conclusion that the benets of R4-type instructions
outweighs issues related to their implementation and integration.

ISE design for long-integer arithmetic for public-key cryptography faces similar challenges as ISE
design for oating-point kernels in digital-signal processing since 1) the most performance-critical op-
eration are fused multiply-add (executed in, e.g., the inner loop of the product-scanning method) and 2)
these operations can not be accelerated through ISE without violating Requirement 2. Similarly as ar-
gued above, it makes sense to consider R4-type instructions (and violate Requirement 2) when designing
ISE for multi-precision integer arithmetic. By relaxing the ISE requirements, the operand-scanning and
product-scanning methods can benet from multiply-add instructions with three source register ad-
dresses (similar to the F[N]MADD/F[N]MSUB instructions). This naturally raises the question of whether
it would make sense to permit R4-type instructions for operations other than fused multiply-add. We
argue that instructions with 3 source and 1 destination register addresses should be used sparingly due
to the limited instruction space. Namely, since an R4-type instruction contains 4 register addresses,
consuming 20 bits altogether, only 12 bits are left for the encoding of the actual instruction. Therefore,
we decided to consider R4-type instructions only for the most performance-critical operations, namely
the operations in the inner loop of integer multiplication, squaring, and Montgomery reduction, i.e.,
the MAC operation described in Section 8.3.1.

8.4.2 Integer multiply-add instructions

Existing designs. Integer fused multiply-add instructions exist on almost all mainstream ISAs, e.g.,
x86 and ARM. From a viewpoint of cryptographic software implementation, such instructions are un-
doubtedly benecial for the public key cryptosystems like RSA and ECC, whose underlying arithmetic

146

8.4. IMPLEMENTATION: ISE-SUPPORTED

012345678910111213141516171819202122232425262728293031

rs3 00 rs2 rs1 111 rd 1111011 maddlu

rs3 01 rs2 rs1 111 rd 1111011 maddhu

• maddlu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1
5 r ← (x * y + z) & m
6 GPR[rd] ← r

• maddhu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1
5 r ← ((x * y + z) >> 64) & m
6 GPR[rd] ← r

Figure 8.1: Our integer multiply-add instructions for full-radix implementation.

is based on large integers. For example, Intel in [Int22b] explicitly states their newest AVX-512 vector
integer fused multiply-add instructions are “two new instructions for big number multiplication for
acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance”. We list in
Table 8.3 some integer multiply-add instructions currently existing on ARM and Intel AVX-512. These
instructions are chosen to showcase dierent design forms/styles, therefore we omit the dierent in-
struction variants that have a similar operation (e.g., unsigned multiplication vs. signed multiplication)
to the listed instructions. In Table 8.3, lo (resp. hi) means the lower half (resp. the higher half) of the
product; lo52 (resp. hi52) precisely takes the lower 52-bit (resp. the higher 52-bit) of a 104-bit product;
F (resp. R) is the short for full-radix (resp. reduced-radix). We rst analyze these existing instructions
and then introduce our own design. We discuss these instructions from three aspects; 1) operation: all
the instructions except for umaal can be formalized into a Multiply-Shift-And-Add (MSA2) paradigm,
i.e.,

rd ← (((rs1 * rs2) >> j) & m) + rs3 .

We default the length of multiplier here is in line with the register length (or the element width in the
case of vector instructions). The oset 𝑗 and the mask𝑚 jointly control whether the whole product or
the partial product will be accumulated, and if the latter, concretely which part. Moreover, in order to
accumulate the whole product, the instructions, like umlal and umaal, need to accordingly generate
a double-length output. Further, based on this fact, the umaal instruction can even perform two addi-
tions. However, considering we use standard R4-type, accumulating the whole product in our custom
instruction is impossible; 2) instruction encoding: all these instructions use at least 3 source register
addresses, and some of these instructions overwrite 1 or 2 source registers (i.e., some source registers at
the same time serve as the destination registers); 3) supported radix: normally the multiply-add in-
structions could support both full- and reduced-radix representations. The exceptions are vpmadd52luq
and vpmadd52huq, which work properly with the reduced-radix only.

Our design for the full-radix. As a result, when designing the integer fused multiply-add instruc-
tions for full-radix implementation, mla can serve as a good starting point. We rst design an instruction
maddlu having the same functionality, used for accumulating the lower half of the product. It makes
sense to accordingly design a counterpart maddhu to accumulate the higher half of the product (of the
unsigned multiplication). More detailed information of our maddlu and maddhu instructions is shown
in Figure 8.1. It should be noted that our maddhu is designed to be in a paradigm of Multiply-Add-Shift-
And instead of the typical MSA2. Because in this way, it can handle the carry propagation inside the
maddhu thus to save a carry-out check (i.e., one sltu instruction) on the software side.

147

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

012345678910111213141516171819202122232425262728293031

rs3 00 rs2 rs1 111 rd 1111011 madd51lu

rs3 01 rs2 rs1 111 rd 1111011 madd51hu

rs3 10 rs2 rs1 111 rd 1111011 madd57lu

rs3 11 rs2 rs1 111 rd 1111011 madd57hu

• madd51lu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 51) - 1
5 r ← ((x * y) & m) + z
6 GPR[rd] ← r

• madd57lu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 57) - 1
5 r ← ((x * y) & m) + z
6 GPR[rd] ← r

• madd51hu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1
5 r ← (((x * y) >> 51) & m) + z
6 GPR[rd] ← r

• madd57hu rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 m ← (1 << 64) - 1
5 r ← (((x * y) >> 57) & m) + z
6 GPR[rd] ← r

Figure 8.2: Our integer multiply-add instructions for reduced-radix implementation.

Our design for the reduced-radix. As for the reduced-radix implementation, vpmadd52luq and
vpmadd52huq (AVX-512IFMA) oer the helpful experience for our custom instruction design. How-
ever, as pointed out in [DeV18] and [CFGR22, Section 3.1], when using a representation whose limb
length is 52-bit (or slightly shorter than 52-bit), there exists a so-called multiplier saturating problem of
using these instructions. In specic, because of the delayed carry propagation, during the intermedi-
ate computation of a cryptographic implementation, a limb may increase few bits therefore exceeding
the multiplier length. In such case, if using AVX-512IFMA instructions on these limbs, the extra in-
structions are required to instantly propagate carry bits and increase the burden on execution time and
dependency chain. From a software perspective, the implementer should use a more conservative data
representation, i.e., a shorter limb length, to avoid multiplier saturation. However, in this work, we can
solve this saturating problem at the instruction design level (for our custom instructions). Concretely,
instead of using a reduced-length multiplier with respect to element width (e.g., 52-bit versus 64-bit in
AVX-512IFMA), we take advantage of a full 64-bit multiplier and use the oset 𝑗 and the mask 𝑚 to
control the accumulated partial product. The oset 𝑗 equals to the limb bit-length of a selected data
representation;𝑚 equals to (1 � 𝑗) − 1 in the instruction accumulating lower part of the product and
equals to (1 � 64)−1 in the instruction accumulating higher part. The instruction accumulating higher
part has to return more bits (i.e., a larger𝑚), because due to the delayed carry propagation the product
is usually larger than 2 𝑗 bits. Details of our custom integer multiply-add instructions for radix-251 and
radix-257 are illustrated in Figure 8.2, and our custom instructions are designed in MSA2 style.

8.4.3 Carry-propagation instructions

Our design for the full-radix. In the full-radix MAC operation (Algorithm 8.1), there are two carry
propagations (i.e., two sltu and two corresponding add instructions). Although our maddhu saves one
carry propagation, there is the other one still remaining. We therefore design an instruction to further
decrease the cost of this carry propagation, and our design is shown in Figure 8.3, and cadd stands for
get-Carry-then-ADD.

148

8.4. IMPLEMENTATION: ISE-SUPPORTED

012345678910111213141516171819202122232425262728293031

rs3 10 rs2 rs1 111 rd 1111011 cadd

1 imm rs2 rs1 111 rd 0101011 sraiadd

• cadd rd, rs1, rs2, rs3

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 z ← GPR[rs3]
4 r ← ((x + y) >> 64) + z
5 GPR[rd] ← r

• sraiadd rd, rs1, rs2, imm

1 x ← GPR[rs1]
2 y ← GPR[rs2]
3 r ← x + EXTS(y >> imm)
4 GPR[rd] ← r

Figure 8.3: Our custom carry-propagation instructions. cadd is designed for full-radix implementation.
sraiadd is designed for reduced-radix implementation.

Our design for the reduced-radix. Unlike full-radix implementation propagates the carry bit in-
stantly, the reduced-radix implementation delays some carry propagations in a certain intermediate
computation, and performs one-time propagation at the end. Even though in this way the delayed
carry propagation has already saved a number of instructions, the nal one-time propagation still has
high latency and, in particular, strong dependency, compared to arithmetic computations. We therefore
design a custom instruction aiming to accelerate this nal propagation in the reduced-radix implemen-
tation. Our design (see Figure 8.3) in essence fuses the sari and add instructions into one.

Algorithm 8.5: ISE-supported full-radix
MAC operation.
Input: 192-bit accumulator 𝑒 ‖ ℎ ‖ 𝑙 ;

64-bit multiplicands 𝑎 and 𝑏.
Output: 192-bit accumulator 𝑒 ‖ ℎ ‖ 𝑙 .

1 maddhu 𝑧, 𝑎, 𝑏, 𝑙
2 maddlu 𝑙 , 𝑎, 𝑏, 𝑙
3 cadd 𝑒 , ℎ, 𝑧, 𝑒

4 add ℎ, ℎ, 𝑧
5 return 𝑒 ‖ ℎ ‖ 𝑙

Algorithm 8.6: ISE-supported reduced-
radix MAC operation.
Input: 128-bit accumulator ℎ ‖ 𝑙 ;

64-bit multiplicands 𝑎 and 𝑏.
Output: 128-bit accumulator ℎ ‖ 𝑙 .

1 madd57hu ℎ, 𝑎, 𝑏, ℎ
2 madd57lu 𝑙 , 𝑎, 𝑏, 𝑙

3 return ℎ, 𝑙

8.4.4 Impact

On the full-radix implementation. Apparently, after applying madd[l|h]u and cadd to the full-
radix implementation, the instruction number for MAC operation is decreased. We show the ISE-
supported MAC implementation in Algorithm 8.5 for full-radix, i.e., computation of (𝑒 ‖ ℎ ‖ 𝑙) ← (𝑒 ‖
ℎ ‖ 𝑙) + 𝑎 · 𝑏. Compared with the ISA-only implementation in Algorithm 8.1, Algorithm 8.5 saves the
half of the instructions (i.e., the number of required instructions decreases from 8 to 4).

On the reduced-radix implementation. We show the ISE-supported MAC operation in Algo-
rithm 8.6 for reduced-radix, taking radix-257 as the example, i.e., computation of 𝑙 ← 𝑙 + (𝑎 · 𝑏){56...0}
and ℎ ← ℎ + (𝑎 · 𝑏){120...57}. Algorithm 8.6 (compared with Algorithm 8.2) not only reduces instruc-
tions (i.e., the number of required instructions decreases from 6 to 2) but also makes the accumulators
automatically aligned so that even saving further overheads. Hence, one can expect the reduced-radix

149

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

R0
Instruction

cache
R1

Instruction
decode

Register
file

R2

XMUL

R3
Data
cache

R4

+4

BTB

Fetch Decode Execute Memory Commit

Figure 8.4: A block diagram highlighting features in our hardware implementation (e.g., integration of
the extended multiplier (XMUL), and modied instruction decoder) in red. Note that 𝑅𝑖 denotes the 𝑖-th
pipeline register, a Branch Target Buer (BTB) is shown toward the left-hand end of the pipeline.

is supposed to get more performance improvement from an ISA-only to an ISE-supported implemen-
tation.

In addition, the instruction sequence for propagating the carry bits from the previous limb rx to
the next limb ry in an ISA-only radix-2𝑤 implementation is shown as follows (where rm stands for a
mask and holds the value of 2𝑤 − 1).

1 srai rz , rx, w
2 add ry , ry, rz
3 and rx , rx, rm

After utilizing the custom sraiadd instruction, the instruction sequence is simplied as follows.
1 sraiadd ry, ry, rx , w
2 and rx , rx, rm

This sraiadd reduces the number of instructions for the nal propagation and meanwhile weakens the
dependency chain.

8.4.5 Hardware implementation

Host core. To realize our ISE design, the highly congurable, RISC-V compliant Rocket-Chip [AAB+16]
host core is used. At a high level, the core executes instructions using a 5-stage, in-order pipeline; sup-
port is included within the core for a branch prediction mechanism, and in the wider system for a 16 kB
instruction cache and a 16 kB data cache. To support the execution of the proposed instructions in our
ISE design, two modications are made to the host core. First, an extended multiplier (XMUL) is added
to execute our proposed custom instructions. The XMUL unit extends the original pipelined multiplier
of the Rocket core, which means it supports not only our integer multiply-add and carry-propagation
instructions but also the original multiply instructions of base ISA. Second, new ISE modications are
made to the instruction decoder, which, e.g., allows it to correctly provide input operands to XMUL,
control the XMUL so it performs the required computation, and accept output operands from XMUL.
See details in Figure 8.4.

XMUL. XMUL is extended from the originalmultiplier so that it has the additional third input operand
to support the integer fused multiply-add instructions and the carry-propagation instruction, dened
in Section 8.4. Similar to the normal operands, the additional operand can be fetched from the for-
warding path to resolve the read-after-write hazard associated with the previous instructions. Like the
original multiplier, XMUL is implemented with a 2-stage pipelined architecture (including one register
stage at input operands and another at the output result) to avoid timing-critical paths, and it does not
extend the existing critical path so has no impact on the clock frequency. The implementation of XMUL
computation stems directly from the denition of the associated instructions with no eort invested

150

8.5. EVALUATION

Table 8.4: Results of hardware-oriented evaluation.

Core LUTs Regs DSPs CMOS
RV64GC base core 4935 2156 16 596660
RV64GC extended core (full-radix) 5188 2390 16 644172
RV64GC extended core (reduced-radix) 5275 2352 16 650964

Table 8.5: Results of software-oriented evaluation: the execution time (in clock cycles) of our implemen-
tations of X25519. The most ecient ISA-only implementation is used as the baseline for computing
the speed-up factor.

Operation Full-radix Reduced-radix
ISA-only ISE-sup. ISA-only ISE-sup.

F𝑝 mod add 52 51 33 32
F𝑝 mod sub 57 56 37 36
F𝑝 mod mul 200 138 238 134
F𝑝 mod sqr 178 138 163 89
Montgomery ladder step 2205 1698 2204 1344
variable-base scalar multiplication 634903 494192 633893 395578
(speed-up) (1.00×) (1.28×) (1.00×) (1.60×)

in optimizing the arithmetic circuitry. Certainly, the extension of XMUL causes an increased hardware
usage overhead compared to the original multiplier of the Rocket core.

8.5 Evaluation

Experimental platform. To produce an experimental platform which permits evaluation of, e.g.,
area and cycle-accurate execution latency, we make use of the Arty-100T board3, which hosts a Xilinx
Artix-7 (model XC7A100TCSG324) FPGA device. We synthesize the stand-alone design for our imple-
mentations using Xilinx Vivado 2019.1; default synthesis settings are used, with no eort invested in
synthesis or post-implementation optimization. The FPGA uses a 100MHz external clock input, which
is adjusted into a 50MHz internal clock signal for use by the host core itself.

Hardware. Table 8.4 presents a summary of synthesis results for each implementation. We mea-
sure (cumulative) hardware cost in terms of the number of LUTs, Regs, DSPs, and CMOS. The mea-
surement is compared to the RV64GC core alone, and so excludes the wider system: doing so seems
more representative, in that, e.g., the caches, would dominate otherwise. In line with our denition of
base ISA, what we term the base core, i.e., a baseline for our work, is a 64-bit Rocket core supporting
RV64GC only. We then further extend this RV64GC core with support for our proposed custom instruc-
tions, yielding what we term an extended core. The implementation of full-radix (resp. reduced-radix)
XMUL produces an increase of only 5% (resp. 7%) in the number of LUTs, and an increase of 11% (resp.
9%) in the number of Regs, on the extended core versus the RV64GC base core.

Software of X25519. Asmentioned in Section 8.4, we developed four dierent constant-time X25519
implementations to evaluate our ISE designs, whose execution times are shown in Table 8.5. First of all,
in terms of ISA-only implementations, the full-radix and the reduced-radix are equally ecient, because
compared with reduced-radix, the full-radix implementation has faster multiplication and squaring due
to a smaller word/limb number but slower addition and subtraction due to the costly carry-out check

3See https://digilent.com/reference/programmable-logic/arty-a7/start.

151

https://digilent.com/reference/programmable-logic/arty-a7/start

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

Table 8.6: Results of software-oriented evaluation: the execution time (in clock cycles) of our CSIDH-
512 implementations. The timing for CSIDH class group action includes a key validation. The most
ecient ISA-only implementation is used as the baseline for computing the speed-up factor.

Operation Full-radix Reduced-radix
ISA-only ISE-sup. ISA-only ISE-sup.

integer multiplication product-scan. 608 371 625 303
integer multiplication Karatsuba 650 500 708 342
integer squaring 440 371 398 216
Montgomery reduction 730 469 818 389
fast modulo-𝑝 reduction 107 107 112 104
eld addition 163 163 148 132
eld subtraction 143 143 139 123
eld multiplication 1446 954 1561 799
eld squaring 1279 951 1334 712
point addition 9344 6709 9877 5484
point doubling 9687 7053 10174 5759
Montgomery ladder step 18544 13279 19588 10835
CSIDH class group action 701.0M 502.9M 736.2M 411.1M
(speed-up) (1.00×) (1.39×) (0.95×) (1.71×)

and propagation (while the reduced-radix can simply use a delayed carry propagation). After using our
ISEs, the F𝑝 multiplication and squaring in reduced-radix implementation become even faster than the
full-radix ones. This enhancement (from multiplication and squaring) propagates up to the variable-
base scalar multiplication, and thus makes the reduced-radix 1.62× faster compared to the ISA-only
implementations, which veries the statement in Section 8.4.4 that reduced-radix is expected to get a
larger improvement after using our ISE.

Software of CSIDH-512. Table 8.6 shows the performance of dierent CSIDH-512 implementations.
Since this work focuses solely on the ISE design (i.e., instruction-level), so the Table 8.6 (i.e., the com-
parison) is done to mainly evaluate the impact of ISE. Per Table 8.6, the speed-up factors scale very well
from point operation to group action (e.g., in the case of reduced-radix ISE-supported implementation,
the speed-up factors are both 1.71× at these two levels). This means using dierent avours of CSIDH
(which dier in higher levels rather than point and F𝑝 arithmetic) does not really aect the speed-up
factor of ISE, so we simply use the original CSIDH software4 for the higher-level arithmetic and com-
putation. All of our prime-eld implementations are ensured to be constant-time. In order to have the
optimal eld multiplication implementation, we develop two versions of integer multiplication with
respectively product-scanning and Karatsuba technique. The result shows the product-scanning out-
performs Karatsuba across all cases. The full-radix pure-software implementation of CSIDH-512 group
action takes 701.0M clock cycles on our base ISA. However, after using our custom instructions, the
group action can just take 411.1M cycles, which means our ISE can result in a 1.71× speed-up.

8.6 Conclusion

In this work we provided new insights on the ecient implementation of multi-precision integer arith-
metic, in particular multiplication and modular reduction, on the RISC-V platform, both with and with-
out ISE. In the context of “pure” software implementation using only the base RV64GC instructions,
we studied the impact of full-radix versus reduced-radix representation of the operands. Intuitively,

4https://csidh.isogeny.org/software.html

152

https://csidh.isogeny.org/software.html

8.6. CONCLUSION

one would expect a reduced-radix implementation to outperform its full-radix counterpart since the
RISC-V architecture does not include an add-with-carry instruction. However, our results demonstrate
that, for relatively short operands of a length of 255 bits (using X25519 as case study), the two radix
representations achieve almost equal execution times, while for 511-bit operands (i.e., CSIDH-512), the
full-radix representation is the better option. Overall, this leads to the conclusion that implementers of
public-key cryptosystems should represent operands with the full radix of 64 bits. We then designed
a small set of custom instructions to speed up the execution of long-integer arithmetic, whereby we
focused primarily on the inner-loop operation of the product-scanning multiplication. Using our ISE,
we again analyzed the performance of reduced-radix versus full-radix representation and found that
the reduced-radix option is more suitable for ISE-supported long-integer arithmetic on RISC-V. This is
again somewhat counter-intuitive since virtually all previous ISE for multi-precision integer arithmetic
were designed for full-radix representation.

153

CHAPTER 8. RISC-V ISES FOR MULTI-PRECISION INTEGER ARITHMETIC

154

Part V

Side-Channel Leakage Analysis and
Elimination

155

CHAPTER

9

A LEAKAGE-FOCUSED RISC-V ISE FOR
MASKED IMPLEMENTATION

This Chapter is based on our paper [CP23].

9.1 Introduction

Use of masking to mitigate information leakage. Modern embedded computing devices are in-
creasingly used in applications that can be deemed security-critical in some sense. This role is chal-
lenging due to the inherent constraints on storage, computation, and communication, and also because
such devices may be deployed in an adversarial environment. Set within this context, implementation
attacks, which focus on the concrete implementation rather than abstract specication of some func-
tionality, represent a particularly potent threat. A side-channel attack is a category of implementation
attack: the idea is that an attacker passively observes a target device while it executes some target func-
tionality, using the observed behavior to make inferences about 1) the computation performed and/or
2) the data said computation is performed on. Doing so aords the attacker an advantage with respect
to some goal, such as recovery of any security-critical information (e.g., key material) involved; we say
such information is leaked via (or is leakage with respect to) the mechanism used for observation (i.e.,
the side-channel in question).

Although alternatives exist, we focus on Dierential Power Analysis (DPA) [KJJ99] and variants
thereof. The importance of robust countermeasures against DPA has motivated a signicant amount of
research activity, with techniques often classied as being based on hiding [MOP07, Chapter 7] and/or
masking [MOP07, Chapter 10]. We focus on the latter, and, more specically, the concept of a 𝑑-th
order Boolean masking scheme. Such a scheme represents a variable 𝑥 as 𝑥 = 〈𝑥0, 𝑥1, . . . , 𝑥𝑑〉, i.e., as
𝑑 + 1 statistically independent shares, where

𝑥 =

𝑖≤𝑑⊕
𝑖=0

𝑥𝑖 .

Application of the scheme to some functionality 𝑟 = 𝑓 (𝑥) can be described as three high-level steps: 1)
𝑥 is masked to yield 𝑥 , 2) an alternative but compatible functionality 𝑟 = 𝑓 (𝑥) is executed, then 3) 𝑟 is

157

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

Security guarantee
Overhead in software
Overhead in hardware

[GJM+17]
[DGH19]
[SS22]

pure
hardware

[TKS10]
[KS20]

[GGM+21]
[MP21]
[CKK+22]

compute-oriented
hybrid

[GMPP20]
this work

data-oriented
hybrid

see, e.g.,
[BWG+22, Table 1]

pure
software

Figure 9.1: A selective overview of the design space for masked software implementation; indicative
assessment of overhead and security guarantee is reected by zero (), low (), and high (), plus
various intermediate points.

unmasked to yield 𝑟 . An attacker is now tasked with recovering 𝑥𝑖 for all 0 ≤ 𝑖 ≤ 𝑑 using leakage which
stems from 𝑓 , because 𝑥 can no longer be recovered directly (as it might have been using leakage which
stems from 𝑓). Put another way, such a scheme is designed to prevent a 𝑡-th order attack, in which the
attacker is able to combine leakage from 𝑡 < 𝑑 + 1 points of interest. For example, a 1-st order scheme
prevents a 1-st order attack but may be vulnerable to a 2-nd order attack.

Challenges stemming from production of a masked implementation. Consider a software im-
plementation of some 𝑓 , intended for execution by a micro-processor that supports a given Instruction
Set Architecture (ISA), and the task of producing an associated masked implementation, i.e., an im-
plementation of 𝑓 . At least two signicant challenges stem from this task. The rst challenge relates
to eciency, i.e., ensuring the masked implementation is ecient enough to be viable. Doing so is
challenging because masking implies a notoriously high overhead due to factors such as computation
on shares (i.e., overhead related to each “gadget” which represent the masked version of some non-
masked functionality), storage of shares (e.g., register pressure due to the larger working set), and the
requirement for generation of randomness; all the above are amplied when scalability to larger 𝑑
is considered. The second challenge relates to security, i.e., translating theoretical security guaran-
tees related to the masking scheme into practical guarantees related to the masked implementation.
There is signicant evidence that doing is challenging (cf. Beckers et al. [BWG+22]), e.g., due to the
invalidity of theoretical assumptions on a given device. One common example is the occurrence of
micro-architectural leakage (see, e.g., [PV17, MPW22]), which can invalidate 1) the only computation
leaks assumption (“computation, and only computation, leaks information” [MR04, Section 2, Axiom 1]),
and 2) independent leakage assumption (“information leakage is local” [MR04, Section 2, Axiom 4]).

Adesign space formasked implementation. Given the task outlined above, Figure 9.1 attempts to
illustrate the design space of viable implementation strategies; a given strategy within said design space
essentially selects whether software and/or hardware is responsible for (resp. aware of) or not respon-
sible for (resp. unaware of) masking-specic properties of instructions and their execution. Toward
the right-hand side are pure software or ISA-based implementation strategies, which place responsi-
bility in software alone. These imply zero overhead in hardware, e.g., in relation to metrics such as
area, but high overhead in software, e.g., in relation to metrics such as execution latency and memory
footprint. Since hardware is unaware of masking, it cannot eliminate micro-architectural leakage; soft-

158

9.1. INTRODUCTION

ware must address micro-architectural leakage via purely architectural means, e.g., using the ISA-based
rewrite rules presented by Shelton et al. [SSB+21, Section V.C]. Toward the left-hand side are pure hard-
ware implementation strategies, which place responsibility in hardware alone (typically via an entirely
masked micro-architecture). These imply high overhead in hardware, but close to zero overhead in
software. Since hardware is aware of masking, it can eliminate micro-architectural leakage; hardware
can address micro-architectural leakage via micro-architectural means, e.g., through careful manage-
ment of instruction execution. A variety of hybrid, implementation strategies exist between the two
extremes. Generalizing a little, such strategies will typically share responsibility by 1) adding some lim-
ited, hardware-supported functionality for masking, and 2) exposing this functionality to software via
an Instruction Set Extension (ISE); an ISE-based implementation strategy of this type naturally implies
a compromise, namely some overhead in hardware and some overhead in software. Addressing micro-
architectural leakage could be a shared responsibility, although, since hardware is aware of masking, a
security guarantee more in line with a pure hardware implementation strategy is at least plausible.

It seems reasonable to claim there is no denitively best implementation strategy. Rather, each
strategy will simply oer a dierent trade-o in terms of the metrics above plus other important exam-
ples such as usability (i.e., the burden on a software developer) and invasiveness (i.e., whether alteration
of hardware is possible, and the scope and form of said alterations).

Contributions and organization. Within Figure 9.1, we claim there are (at least) two classes of
hybrid, ISE-based implementation strategy:

1. a class of compute-oriented ISEs (which are closer to a pure hardware implementation strategy),
where software indicates that the micro-architecture should execute masking-specic computa-
tion (e.g., a gadget) on masking-specic data (i.e., the shares used to represent a variable), and

2. a class of data-oriented ISEs (which are closer to a pure software implementation strategy), where
software indicates that the micro-architecture should execute generic computation on masking-
specic data.

We note that the data-oriented ISE class is at best less1 explored than the compute-oriented ISE
class, and at worst a gap in existing literature. In this Chapter we explore a specic instance of it.
Conceptually, the ISE allows a leakage-focused behavioral hint2 to be communicated from software to
the micro-architecture; doing so informs how existing, generic computation is realized when applied to
masking-specic data. After presenting relevant background information in Section 9.2, we organize
the Chapter content as follows:

• In Section 9.3 we provide some technical analysis that xes the scope of (i.e., provides a problem
statement for) subsequent content. In short, we aim support an ISE-based implementation strat-
egy which eliminates leakage stemming from architectural and micro-architectural overwriting.

• In Section 9.4 we present a concrete ISE design. We stress that although the design is based on
RISC-V, or, more specically, the RV32I [RV19, Section 2] base ISA, the concepts involved are
more generally applicable.

1We note that the RISC-V Zkt [RVK22, Chapter 5] (meta-)extension is conceptually analogous: we do not include it in
Figure 9.1, however, because it focuses on execution latency and so not masking nor micro-architectural leakage per se.

2As an aside, note that the same concept has been harnessed for various non-security use-cases across a range of exist-
ing ISAs. For example the ARMv6-M [ARM18, Section A6.6] and ARMv7-M [ARM21, Section A7.6] ISAs include a generic
mechanism that can “provide advance information to memory systems about future memory accesses, without actually loading or
storing any data”; the RISC-V RV32I [RV19, Section 2.9] and RV64I [RV19, Section 5.4] ISAs include a generic mechanism that
can be “used to communicate performance hints to the microarchitecture”; the x86 ISA includes various specic mechanisms
with applications that span branch prediction (e.g., branch taken and not taken prexes [Int22a, Page 2-2]), pre-fetching (e.g.,
as in prefetch [Int22a, Page 4-414]), and non-temporal memory access (e.g., as in movntdq [Int22a, Page 4-99]).

159

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

• In Section 9.5 we explore prototype, latency- and area-optimized implementations of our ISE
design, each based on the open source Ibex3 base core. We stress that any implementation of the
ISE will depend inherently on the base core (resp. micro-architecture); our implementations are
intended to act as exemplars, therefore, rather than a limit on how the ISE could or should be
implemented in general.

• In Section 9.6 we evaluate our prototype ISE implementations with respect to their impact on
area, execution latency, and security guarantee; for the latter, we utilize the Coco [GHP+21, HB21]
formal verication framework.
Among existing4 work with a similar remit, we view the Rosita tool of Shelton et al. [SSB+21] and
FENL design of Gao et al. [GMPP20] as the most closely related; Section 9.6 oers a comparative
evaluation of the ISE relative to such work.

Source code. Note that all material associated with this Chapter, e.g., documentation and source code
relating to all hardware and software implementations, is openly available at https://github.com/
scarv/eliminate under an open source license.

9.2 Background

9.2.1 RISC-V

We focus, without loss of generality, on a non-standard extension for RV32I, i.e., the 32-bit integer
RISC-V base ISA; although such base ISAs use XLEN to denote the word size abstractly, our focus
means we assume XLEN = 32 concretely throughout. We assume that some mechanism is available
which supports the generation of randomness and hence fresh masks, so deem this out of scope; such
a mechanism might, for example, but without loss of generality, be constructed using the RISC-V Zkr
[RVK22, Chapter 4] extension.

9.2.2 Notation

Let 𝑥 (𝑏) denote 𝑥 expressed in radix- or base-𝑏; if the base is omitted, it is safe to assume use of decimal
(i.e., that 𝑏 = 10). Let 𝑥 ← 𝑦 denote assignment of 𝑦 to 𝑥 , and 𝑥 $←−− 𝑦 denote selection of 𝑥 uniformly
at random from (e.g., a set) 𝑦. Let ¬, ∧, ∨, and ⊕, denote the Boolean NOT, AND, (inclusive) OR, and
(exclusive OR, or) XOR operators respectively, and 𝑥 � 𝑦 and 𝑥 ≪ 𝑦 (resp. 𝑥 � 𝑦 and 𝑥 ≫ 𝑦) denote
left-shift and left-rotate (resp. right-shift and right-rotate) of 𝑥 by 𝑦 bits respectively. Let 𝑥 ‖ 𝑦 denote
concatenation of 𝑥 and 𝑦. Let ext𝑤0 (𝑥) and ext𝑤± (𝑥) respectively denote zero- or sign-extension of 𝑥
to 𝑤-bits. Let MEM[𝑖]𝑏 denote a 𝑏-byte access to some byte-addressable memory, using the address 𝑖;
where 𝑏 = 1, the access granularity may be omitted. Let GPR[𝑖], for 0 ≤ 𝑖 < 𝑟 , denote the 𝑖-th, 𝑤-bit
entry in the 𝑟 -entry general-purpose register le. Note that our focus on RV32I means GPR[0] is xed
to 0, in the sense reads from it always yield 0 and writes to it are ignored,𝑤 = XLEN = 32, and 𝑟 = 32.
We allow reference to Control and Status Registers (CSRs) using either a numeric- or mnemonic-based
notation; per [RV21, Chapter 2], for example, CSR[𝐶00(16)] ≡ cycle both refer to the cycle counter
CSR.

3https://github.com/lowRISC/ibex.
4We note that the RISC-V Zkt [RVK22, Chapter 5] (meta-)extension is conceptually analogous: we omit it from Figure 9.1,

however, because it focuses on execution latency and so not masking nor micro-architectural leakage per se. Likewise, we
omit other fence instructions, e.g., [WSG+20, LHP20], due to the same lack of specicity.

160

https://github.com/scarv/eliminate
https://github.com/scarv/eliminate
https://github.com/lowRISC/ibex

9.2. BACKGROUND

The micro-architectural implementation of instructions may involve one or more steps. For exam-
ple, the RISC-V load word instruction

lw rd, imm(rs1) ↦→ GPR[rd] ← MEM[GPR[rs1] + imm]4

might be executed by 1) latching 𝑠 = GPR[rs1] +imm in a Memory Address Register (MAR), 2) carrying
out a memory access to yield 𝑣 = MEM[𝑠]4 then latching 𝑣 in a Memory Buer Register (MBR), 3)
writing-back MBR into GPR[rd]. When describing the semantics of such an instruction, it can be
important to show the cycle a given step is performed in. For example, we could describe the above as

lw rd, imm(rs1) ↦→

1 : MAR← GPR[rs1] + imm
2 : MBR← MEM[MAR]4
3 : GPR[rd] ← MBR

to show that the three steps are performed in cycles 1, 2 and 3, within what is therefore a 3-cycle
execution stage. Said annotation may include ranges, e.g., 1 . . . 3 denotes cycles 1 to 3 inclusive: a
step annotated as such is itself multi-cycle therefore. Annotation of multiple steps with the same cycle
means they are performed in parallel; if no annotation appears, this means all steps are performed, in
parallel, in cycle 1.

9.2.3 Terminology

Modulo details such as access granularity, memory and the register le can both be viewed as ad-
dressable forms of storage. As such, transfers between them can be modelled using the operation
T [𝑡] ← S[𝑠] noting that if S = GPR and T = MEM this models a store instruction type, whereas if
S = MEM and T = GPR this models a load instruction type; in both cases, 𝑠 and 𝑡 are the (eective)
source and target addresses respectively.

Terminology 1. We focus on data, and so, e.g., the MBR throughout: noting that neither use of nor
terminology for the MBR is consistent, if S = GPR and T = MEM we term it the store buer, if
S = MEM and T = GPR we term it the load buer, and if the MBR is bi-directional (i.e., one MBR is
used to support both operations) we term it the load/store buer.

Terminology 2. We distinguish between resources which are physically internal or external to the
micro-architecture: we term such resources intra-core or extra-core resources respectively.

Terminology 3. We distinguish between resources which permit direct control (e.g., via specic
control signals) or require indirect control (i.e., via an abstraction layer or interface).

For example, a load/store buer might be intra-core or extra-core (e.g., exist within an SRAM mod-
ule, or bus connecting such a module to the core): the former would permit direct control by the micro-
architecture but require indirect control by software, whereas the latter would require indirect control
by both the micro-architecture and software.

Various work has identied architectural and micro-architectural leakage eects which relate to
unintentional share recombination shown to occur during transfer of shares between forms of storage.
For example, using an ST-based ARM Cortex-M0 [ARM09] target device, Shelton et al. [SSB+21, Sec-
tion IV.E] carry out experiments which identify leakage stemming from overwriting one value with
another 1) within T = GPR (see [SSB+21, Section IV.E.1]) or T = MEM (see [SSB+21, Section IV.E.2]),
and 2) within the interface, i.e., a load or store buer between S and T (see [SSB+21, Section IV.E.4]).

Terminology 4. We refer to the cases above as architectural overwriting andmicro-architectural

overwriting, because they stem from architectural and micro-architectural resources respectively.

161

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

9.3 Analysis

Some leakage-focused requirements for share transfer. Gaspoz and Dhooghe [GD23] introduce
what they term horizontal [GD23, Denition 5] and vertical [GD23, Denition 6] non-completeness
requirements on the representation of variables: their goal is to prevent unintentional share recom-
bination that might stem from inter- and intra-register interaction respectively. One could imagine
attempting to introduce analogous requirements to guide the transfer of shares between memory and
the register le. For example:

Requirement 5 (Architectural overwriting). Imagine instructions of the form T [𝑡] ← 𝑣0 and T [𝑡] ←
𝑣1 are executed in cycles 𝑖 and 𝑗 > 𝑖 respectively, and that no intermediate instructions that update T [𝑡]
are executed, i.e., no instruction of the form T [𝑡] ← 𝑣2 is executed in cycle 𝑘 where 𝑖 < 𝑘 < 𝑗 . If 𝑣0
equals 𝑥𝑝 for some 0 ≤ 𝑝 ≤ 𝑑 , one must ensure that 𝑣1 ≠ 𝑥𝑞 for all 0 ≤ 𝑞 ≤ 𝑑 .
Requirement 6 (Micro-architectural overwriting). Imagine instructions of the form T [𝑡0] ← S[𝑠0]
and T [𝑡1] ← S[𝑠1] are executed in cycles 𝑖 and 𝑗 > 𝑖 respectively, and that no intermediate instructions
of the same type are executed, i.e., no instruction of the form T [𝑡2] ← S[𝑠2] is executed in cycle 𝑘
where 𝑖 < 𝑘 < 𝑗 . If S[𝑠0] equals 𝑥𝑝 for some 0 ≤ 𝑝 ≤ 𝑑 , one must ensure that S[𝑠1] ≠ 𝑥𝑞 for all
0 ≤ 𝑞 ≤ 𝑑 .

The aim of these requirements is to eliminate leakage stemming from 𝑥𝑝 being overwritten with
some 𝑥𝑞 : put simply, the former requirement does so by preventing architectural overwriting while
the latter requirement does so by preventing micro-architectural overwriting. Note that the former
requirement is more general than required by the context, in the sense it captures any instruction
which updates T [𝑡] (rather than load or store instructions specically).

ISA-based requirement satisfaction. As part of a pure software implementation strategy, both
architectural and micro-architectural overwriting must be prevented by using the ISA alone: for archi-
tectural resources this fact implies use of direct control, whereas for micro-architectural resources it
implies use of indirect control. The Rosita tool of Shelton et al. [SSB+21, Section V.C] oers an excellent
example of how to do so concretely. [SSB+21, Section V.A] outlines the main strategy: Rosita reserves a
(random) mask register r7, and uses this to ush architectural and micro-architectural state, i.e., shares,
by rewriting pertinent instructions. For example:

1. Imagine GPR[4] = 𝑥𝑝 . Per [SSB+21, Section V.A], Rosita might rewrite

movs r3, r4 ↦→ movs r3, r7 ; movs r3, r4

to prevent architectural overwriting: doing so randomizes GPR[3] before it is overwritten.
2. Imagine MEM[GPR[3]] = 𝑥𝑝 . Per [SSB+21, Section V.E], Rosita might rewrite

ldr r2, [r3] ↦→ push r7 ; pop r2 ; ldr r2, [r3]

to prevent architectural and micro-architectural overwriting: doing so randomizes GPR[2] and
the load buer before they are overwritten.

3. ImagineMEM[GPR[2]] = 𝑥𝑝 . Per [SSB+21, Section V.E], Rosita might rewrite

str r2, [r3] ↦→ str r7, [r3] ; str r2, [r3]

to prevent architectural andmicro-architectural overwriting: doing so randomizesMEM[GPR[3]]
and the store buer before they are overwritten.

162

9.4. DESIGN

Even given a set of requirements, whose specication is a challenge in and of itself, we make two
claims about an ISA-based strategy for their satisfaction along the lines above. First, an ISA-based
strategy may be sub-optimal with respect to eciency. Consider the example above, where Rosita
prevents architectural and micro-architectural overwriting related to an ldr instruction:the rewrite
translates 1 load instruction (resp. memory access) into 3. Although the overhead diers on a case-
by-case basis (both per-instruction and per-ISA), it clearly may be signicant. Second, an ISA-based
strategy may be sub-optimal with respect to security. In particular, there are clear limitations on how
eective indirect control of a micro-architectural resource can be. Consider the same example above:
the security guarantee oered will depend on validity of assumptions about the micro-architecture, e.g.,
that the push and pop instructions use the same data-path and hence store buer as the ldr instruction.
In fact, some instructions can prevent either direct or indirect control over pertinentmicro-architectural
resources. Consider the store instruction variants in ARMv6-M: in contrast to the single-access variant
str [ARM18, Section A6.7.60], the multi-access variant stm [ARM18, Section A6.7.58] “store[s] multiple
registers to consecutive memory locations using an address from a base register”. So if GPR[1] = 𝑥𝑝 and
GPR[2] = 𝑥𝑞 , then while executing stm r0, { r1, r2 } one cannot prevent 𝑥𝑞 from overwriting
𝑥𝑝 within a store buer: the instruction semantics mean one cannot control the order registers are
accessed in, nor take a Rosita-like approach by randomizing the store buer between accesses.

An argument for ISE-based requirement satisfaction. We claim the points above stem from the
role of an ISA as an abstraction of the micro-architecture, and thus relevant resources. Somewhat
aligned with the argument of Ge, Yarom, and Heiser [GYH18] for a “new security-oriented hardware/-
software contract”, we propose to address this fact using an ISE-based strategy. Specically, we aim to
design a data-oriented ISE class which is leakage-focused: the ISE should eliminate leakage stemming
from architectural and micro-architectural overwriting. This goal can be described as necessary but
not sucient, in the sense that additional forms of micro-architectural leakage may also need to be
considered.

It is important to stress that doing so has inherent limitations, reecting the idea in Section 9.1
that it simply oers a dierent trade-o. For example, relative to a compute-oriented ISE, a data-
oriented ISE cannot be competitive in terms of execution latency because it does not add support for
masking-specic computation; we focus on comparisonwith an ISA-based strategy therefore. Likewise,
under the conservative assumption that extra-core resources require indirect control by the micro-
architecture, neither a compute-oriented nor data-oriented ISEs can deliver an “ideal” security guaran-
tee: again, we focus on comparison with an ISA-based strategy therefore.

9.4 Design

In this Section, we present the ISE design. To explain it at a high level, consider, without loss of gener-
ality, the RISC-V load word instruction

lw rd, imm(rs1) ↦→GPR[rd] ← MEM[GPR[rs1] + imm]4

and some (abstractly dened) mechanism denoted

GPR[rd] 4←−− MEM[GPR[rs1] + imm]4

which represents a variant of the existing semantics. The existing and variant semantics are func-
tionally identical but may be behaviorally dierent: the existing semantics are expressed in [RV19,
Section 2.6] as “loads a 32-bit value from memory into rd”, whereas the variant semantics might be ex-
pressed as “loads a 32-bit value frommemory into rd, preventing any architectural andmicro-architectural
overwriting while doing so” by appending a written hint which controls how they are implemented: the

163

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

Cl
as
s-
1

se
c.
an
d
rd
,
rs
1,

rs
2

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

00
00
00
0

rs
2

rs
1

00
0

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]∧

G
PR
[r
s2
]

se
c.
an
di

rd
,
rs
1,

im
m

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

si
mm

rs
1

00
1

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]∧

ex
t𝑤 ±
(s
im
m)

se
c.
or

rd
,
rs
1,

rs
2

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

00
00
00
0

rs
2

rs
1

01
0

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]∨

G
PR
[r
s2
]

se
c.
or
i
rd
,
rs
1,

im
m

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

si
mm

rs
1

01
1

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]∨

ex
t𝑤 ±
(s
im
m)

se
c.
xo
r
rd
,
rs
1,

rs
2

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

00
00
00
0

rs
2

rs
1

10
0

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]⊕

G
PR
[r
s2
]

se
c.
xo
ri

rd
,
rs
1,

im
m

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

si
mm

rs
1

10
1

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]⊕

ex
t𝑤 ±
(s
im
m)

se
c.
sl
li

rd
,
rs
1,

im
m

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

00
00
00
0

im
m

rs
1

11
0

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]�

im
m

se
c.
sr
li

rd
,
rs
1,

im
m

:
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

00
00
00
0

im
m

rs
1

11
1

rd
00
01
0

11
↦→

G
PR
[r
d]

4 ←−−
G
PR
[r
s1
]�

im
m

Cl
as
s-
2

se
c.
lw

rd
,
rs
1,

im
m,

ms
:

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31 ms

im
m

rs
1

00
0

rd
01
01
0

11
↦→

G
PR
[r
d]

4 ←−−
M
EM
[G

PR
[r
s1
]+

im
m]

4

se
c.
sw

rs
2,

rs
1,

im
m,

ms
:

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31 ms

im
m

rs
2

rs
1

00
1

im
m

01
01
0

11
↦→

M
EM
[G

PR
[r
s1
]+

im
m]

4
4 ←−−

G
PR
[r
d]

Ta
bl
e9

.1:
A
su
m
m
ar
y
of

ad
di
tio

na
li
ns
tru

ct
io
ns

th
at
co
ns
tit
ut
et
he

IS
E,
de
sc
rib

ed
in

te
rm

so
fa
ss
em

bl
y
la
ng

ua
ge

sy
nt
ax

(le
ft)
,e
nc
od

in
g
(m

id
dl
e)
,a
nd

se
m
an
tic

s
(ri
gh

t).

164

9.4. DESIGN

hint essentially captures a guarantee that leakage stemming from architectural and micro-architectural
overwritingwill be eliminated by said implementation. Note that expression of thewritten hint requires
some care, because under-specication means any value it aords is degraded (because the semantics
oer too weak a security guarantee), whereas over-specication means the semantics may be unimple-
mentable. We attempt to balance these facts by capturing the goal in Section 9.3 while also permitting
some degree of micro-architectural exibility, i.e., multiple viable micro-architectural implementations.

Framed as such, the ISE can be viewed as two somewhat orthogonal components. First, a general
mechanism by which such a hint can be encoded programmatically: Section 9.4.1 explores and selects
from a range of candidate mechanisms, each of which oers advantages and disadvantages given the
goal at hand. Second, a specic set of instructions: as summarized by Table 9.1, we divide this set into
instruction classes outlined in Section 9.4.2 and Section 9.4.3.

9.4.1 Encoding

Candidate #1. One could dene variant instructions, providing the necessary hint via their use. For
example, one could dene and then use

sec.lw rd, imm(rs1) ↦→ GPR[rd] 4←−− MEM[GPR[rs1] + imm]4

for security-critical cases.

Candidate #2. One could redene existing instructions, providing the necessary hint via manage-
ment of a processor mode. For example, given SEC, a Control and Status Register (CSR)for said mode,
one could redene

lw rd, imm(rs1) ↦→
{

GPR[rd] 4←−− MEM[GPR[rs1] + imm]4 if SEC = 1
GPR[rd] ← MEM[GPR[rs1] + imm]4 otherwise

and then use SEC = 1 for security-critical cases. This approach is conceptually similar to those now
employed by ARM via Data Independent Timing (DIT) and by Intel via Data Operand Independent
Timing (DOIT). For a capability-enabled ISA (e.g., one that supports CHERI [WMSN19]), it may be
possible to control the mode via a capability associated with the program counter: this would allow the
variant semantics to be applied while executing the masked implementation, and the existing semantics
otherwise.

Candidate #3. One could redene existing instructions, providing the necessary hint via their operands.
For example, given SEC, a set of distinguished registers, one could redene

lw rd, imm(rs1) ↦→
{

GPR[rd] 4←−− MEM[GPR[rs1] + imm]4 if rd ∈ SEC
GPR[rd] ← MEM[GPR[rs1] + imm]4 otherwise

and then use an rd ∈ SEC for security-critical cases. This approach is conceptually similar to that
outlined by Escouteloup et al. [EFLL20, Recommendation 1], who apply some security-focused require-
ments and semantics to a set of general-purpose registers, e.g., SEC = {8, 9, . . . , 15}, deemed conden-
tial. As above, and at least for load and store instructions (where GPR[rs1] can be viewed as a pointer)
within a capability-enabled ISA, an alternative way to designate a register as distinguished might be
via a capability.

Candidate #4. One could redene existing instructions, providing the necessary hint via micro-
architectural compliancewith a suitable specication. For example, a non-compliantmicro-architecture

165

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

could retain
lw rd, imm(rs1) ↦→ GPR[rd] ← MEM[GPR[rs1] + imm]4,

whereas a compliant micro-architecture could redene

lw rd, imm(rs1) ↦→ GPR[rd] 4←−− MEM[GPR[rs1] + imm]4.

This approach is conceptually similar to the RISC-V Zkt [RVK22, Chapter 5] (meta-)extension, which,
rather than dening functionality per se, simply “attests that themachine has data-independent execution
time for a safe subset of instructions”.

Summary. The candidates presented above can be summarized as follows

Denition Invocation
Candidate #1 Variant Unconditionally dynamic
Candidate #2 Existing Conditionally dynamic
Candidate #3 Existing Conditionally dynamic
Candidate #4 Existing Static

using two properties. First, a given mechanism can either dene variant instructions or redene (or
overload) existing instructions. Second, invocation of a given mechanism can either be 1) static, i.e., the
variant semantics are “always on” or “always o”, 2) conditionally dynamic, i.e., the variant semantics
are “opt in” but there is some overhead or constraint, or 3) unconditionally dynamic, i.e., the variant
semantics are “opt in” and there is no overhead nor constraint.

We anticipate that a masked implementation will use a limited subset of the ISA and form a limited
component of the overall workload. Although all candidates are viable, these factors suggest candi-
date #1 would be an eective choice: although it consumes encoding space, it permits a targeted, self-
contained extension (limiting impact on the ISA as a whole) with no overhead related to invocation
(for masking-specic instruction sequences) or non-invocation (for generic instruction sequences).

9.4.2 Class-1 instructions: computation-related

Concept. Consider the (optimized) SecAnd and SecOr gadgets for 𝑑 = 2 presented by Biryukov et
al. [BDLU17, Table 1], for example, which represent the masked versions of AND and OR respectively:

function SecAND((𝑥0, 𝑥1), (𝑦0, 𝑦1))
𝑟1 ← (𝑥1 ∧ 𝑦1) ⊕ (𝑥1 ∨ ¬𝑦0)
𝑟0 ← (𝑥0 ∧ 𝑦1) ⊕ (𝑥0 ∨ ¬𝑦0)
return(𝑟0, 𝑟1)

function SecOR((𝑥0, 𝑥1), (𝑦0, 𝑦1))
𝑟1 ← (𝑥1 ∧ 𝑦1) ⊕ (𝑥1 ∨ 𝑦0)
𝑟0 ← (𝑥0 ∨ 𝑦1) ⊕ (𝑥0 ∧ 𝑦0)
return(𝑟0, 𝑟1)

Although generalization to other functionality and larger 𝑑 is clearly important, we claim these gadgets
act as exemplars: they are implemented using a (short) sequence of bit-wise logical and shift instruc-
tions. As such, the goal of this instruction class is to provide a minimal set of such instructions to
support the implementation of a maximal set of gadgets.

Instructions. Per Table 9.1, this instruction class includes sec.andi (resp. sec.and), sec.ori (resp.
sec.or), sec.xori (resp. sec.xor), sec.slli, and sec.srli: these instructions support register-
immediate (resp. register-register) variants of AND, OR, XOR, left-shift, and right-shift respectively.
In line with the approach taken by the base ISA, note that NOT can be synthesized by using XOR:
doing so relies on the fact that ¬𝑥 ≡ 𝑥 ⊕ ext𝑤± (−1).

166

9.4. DESIGN

Number Privilege Name Description
800(16) read/write ms0 Mask seed #0
801(16) read/write ms1 Mask seed #1
802(16) read/write ms2 Mask seed #2
803(16) read/write ms3 Mask seed #3

Table 9.2: Additional mask seed CSRs which support class-2 instructions.

9.4.3 Class-2 instructions: storage-related

Concept. The goal of this instruction class is to support transfer of shares between memory and the
register le using load and store instructions. During execution of the masked implementation, we
claim use of such instructions is dominated by spilling, i.e., temporary use of (a larger) memory to deal
with pressure on the register le (stemming from the smaller size); this implies some structure, in the
sense that loads (to pop, or restore some shares) and stores (to push, or preserve some shares) will be
“grouped” into phases rather than used in a more isolated, ad hoc manner.

As well as a destination (resp. source) register address, load (resp. store) instruction provided by this
class must specify 1) an eective address (via a base register address, plus an immediate oset), and 2) a
mask seed; the former mirrors existing RISC-V load (resp. store) word instructions, whereas the latter
is an addition to and so deviation from them. Furthermore, two constraints apply to their use. First,
from a functional perspective, we assume load and store instructions operate in pairs. For example,
consider two instructions: the rst stores 𝑣0 at address 𝑎0 using mask seed 𝑚0, whereas the second
loads 𝑣1 from address 𝑎1 using mask seed 𝑚1. These instructions form a load/store pair i. 𝑎0 = 𝑎1
and𝑚0 = 𝑚1; otherwise, there is no guarantee that 𝑣0 = 𝑣1. Second, from a behavioral perspective, a
security guarantee is oered i. each load/store pair uses a unique combination of address and mask
seed. For example, consider two instructions: the rst stores 𝑣0 at address 𝑎0 using mask seed 𝑚0,
whereas the second stores 𝑣1 at address 𝑎1 using mask seed𝑚1. If 𝑎0 ≠ 𝑎1 or𝑚0 ≠ 𝑚1, the guarantee
oered is that no leakage will stem from 𝑣1 overwriting 𝑣0.

As will becomes more obvious later in Section 9.5, the design represents an interface that allows
several micro-architectural implementations, e.g., enable an approach which randomizes (or remasks)
shares while storing them into memory then derandomizes shares while loading them from memory.
Variants of this approach are applied, e.g., De Mulder, Gummalla, and Hutter [DGH19, Section 4], and
Stangherlin and Sachdev [SS22, Section G]; one could also view it as an realization of Escouteloup et
al. [EFLL20, Recommendation 2], i.e., to “encrypt the condential data in memory, as soon as it leaves the
pipeline”.

State. Per Table 9.2, instructions in this class are supported by four additional CSRs: CSR[800(16) + 𝑖]
for 0 ≤ 𝑖 < 4 denotes the 𝑖-th mask seed. The CSRs must be initialized with fresh randomness before
execution of the masked implementation (or at least before their rst use); we assume the overhead
of doing so is amortized by the execution latency of said implementation as a whole. The CSRs may
need to be refreshed during execution of the masked implementation, e.g., to satisfy the two constraints
outlined above.

Instructions. Per Table 9.1, this instruction class includes sec.lw and sec.sw: these instructions
support load word and store word memory access respectively. The encodings for sec.lw and sec.sw

reserve two MSBs of imm for some meta-data ms, which is used to specify the mask seed, namely
CSR[800(16) + ms]. Note that doing so reduces imm from 12 to 10 bits, and thus the range from 212 = 4096
to 210 = 1024.

167

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

Figure 9.2: A block diagram describing the Ibex micro-architecture (image source: blockdiagram.svg,
obtained from https://github.com/lowRISC/ibex).

9.5 Implementation

In this Section, we present prototype implementations of our ISE design: Section 9.5.1 introduces the
base core, after which Section 9.5.2 and Section 9.5.3 then describe latency- and area-optimized imple-
mentations of the ISE within it.

We stress (again) that any implementation of the ISE will depend on the base core (resp. micro-
architecture), meaning certain aspects of them are tailored to suit Ibex specically. For example, we
assume use of a generic SRAM module: we can neither select nor modify the specic SRAM module
combined with the core. This suggests a conservative approach, where potential leakage (stemming,
e.g., from a potential load/store buer within the SRAM module) is eliminated using indirect control;
doing so means greater overhead, but also a more robust security guarantee. However, we note that it is
clearly possible and, depending on the context, attractive to do the opposite: in their CocoIbex core, for
example, Gigerl et al. [GHP+21, Section 4] use a special-purpose SRAM module that eliminates certain
forms of leakage.

9.5.1 Base core: Ibex

General overview. Ibex is a 32-bit, RISC-V compliant micro-processor core, which is designed for
embedded use-cases; originally developed as part of the PULP5 platform, the core (and a suite of asso-
ciated resources) is now maintained by lowRISC. Ibex supports both FPGA- and ASIC-based synthesis
targets: the block diagram in Figure 9.2 describes the micro-architectural design, which is highly con-
gurable. For example, the core can support either the integer (i.e., RV32I) or embedded (i.e., RV32E)
RISC-V base ISA; said base ISA can be supplemented by the multiplication [RV19, Chapter 7], com-
pressed [RV19, Chapter 16], or bit manipulation [RV19, Chapter 17] extensions; the micro-architecture
can use either a 2- or 3-stage pipeline (by excluding or including a dedicated write-back stage), and
supports options relating to the multiplier, branch prediction, and Physical Memory Protection (PMP).
Beyond this, implementation of specic units can be specialized to suit the underlying technology; the
register le can be implemented using ip-ops, latches, or RAM elements, for example, in order to suit
the synthesis target.

5https://pulp-platform.org.

168

blockdiagram.svg
https://github.com/lowRISC/ibex
https://pulp-platform.org

9.5. IMPLEMENTATION

𝜏 [0] = 0

𝜏 [1] = 1

𝜏 [2] = 2

𝜏 [3] = 3

.

.

.

𝜏 [31] = 31

𝜐 = 32

GPR[0]

GPR[1]

GPR[2]

GPR[3]
.
.
.

GPR[31]

0

𝜏 [0] = 0

𝜏 [1] = 32

𝜏 [2] = 2

𝜏 [3] = 3

.

.

.

𝜏 [31] = 31

𝜐 = 1

GPR[0]

0

GPR[2]

GPR[3]
.
.
.

GPR[31]

GPR[1]

𝜏 PR 𝜏 PR

rd = 1

rs1 = 2

rs2 = 3

Before execution After execution

Figure 9.3: A diagrammatic description of how PR, GPR, 𝜏 , and 𝜐 are managed during execution of
sec.xor x1, x2, x3 by the latency-optimized implementation.

Specic conguration. We develop the prototype ISE implementation and perform our experiments
on Ibex Demo System6, which is also developed by lowRISC and comprises the Ibex core. We select to
use a ip-op-based register le. For other settings, we adopt the default conguration of Ibex Demo
System; the ISA is RV32IMC, i.e., bit manipulation extension is not enabled; a fast multi-cycle multiplier
and an iterative divider are used; 2-stage pipeline is used, which includes an Instruction Fetch (IF) stage
and an Instruction Decode and Execute (ID+EX) stage, while Write-Back (WB) is not enabled as a
dedicated stage; PMP and instruction cache are disabled.

9.5.2 ISE implementation #1: latency-optimized

Class-1 instructions. For the implementation of class-1 instructions, we design a new mechanism
for indexing the registers. In order to make it clearer, we introduce a term Physical Register, denoted
by PR. In the base core, GPR[𝑖] and PR[𝑖] refer to exactly the same registers; given a register index (or
say address) 𝑘 there is only one map 𝑘 ⇒ PR[𝑘] (equally 𝑘 ⇒ GPR[𝑘]) used by reading (resp. writing)
the data from (resp. to) the target physical register. In our implementation, rst of all, GPR and PR are
dierent: the use of GPR is viewable to software in the sense that developers can see what GPRs are
being used and can choose what GPRs to use in their code (instructions); however, the use of PR is not
viewable to software and is controlled by only micro-architecture. We add a new index look-up table
𝜏 between the two objects of the original map, i.e., the register index and the target physical register,
and change to use two maps to link them such that 𝑘 ⇒ 𝜏 [𝑘] then 𝜏 [𝑘] ⇒ PR[𝜏 [𝑘]]. But for GPR,
it is still a direct map from 𝑘 to GPR[𝑘]. Furthermore, we add one more physical register PR[32] to
the register le. In our setting, in each clock cycle there are 32 general-purpose registers and 1 idle
register that holds a value 0 all the time. In more detail, there are 32 entries in 𝜏 (see a diagrammatic
description in Figure 9.3), each of which stores the index of a general-purpose register, and there is
another variable 𝜐 used to hold the index of the idle register. At the beginning (i.e., after a reset signal),
each entry of 𝜏 is initialized as 𝜏 [𝑖] ← 𝑖 , and 𝜐 points to PR[32]. In each instruction executed, we
always use the current idle register, i.e., PR[𝜐], as the destination (physical) register, and set PR[𝜏 [rd]]
to be the new idle register. In this way, the data is always written to a cleared register, which prevents
the architectural overwriting in the register le. Of course, the values of entries in 𝜏 and of 𝜐 update
dynamically according to the dierent instructions executed. Note if rd is 0, we will not update 𝜏 and 𝜐.

6https://github.com/lowRISC/ibex-demo-system.

169

https://github.com/lowRISC/ibex-demo-system

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

For the software side, there is no dierence in the use of GPR. Taking sec.xor as an example, a formal
denition is as follows:

sec.xor rd, rs1, rs2 ↦→

PR[𝜐] ← PR[𝜏 [rs1]] ⊕ PR[𝜏 [rs2]]
PR[𝜏 [rd]] ← 0
𝜏 [rd] ← 𝜐

𝜐 ← 𝜏 [rd]

For easy understanding, in Figure 9.3 we consider an example that sec.xor x1, x2, x3 is executed.
It reads operands PR[𝜏 [2]] and PR[𝜏 [3]], i.e., in essence PR[2] and PR[3] per current 𝜏 , computes the
result, writes the result to the idle register PR[𝜐], i.e., PR[32], and clears the register PR[𝜏 [1]], i.e.,
PR[1]. In the meantime, 𝜐 changes to be 𝜏 [1], i.e., 1, which indicates the idle register is now PR[1], and
𝜏 [1] should accordingly update to be 32 as well, i.e., GPR[1] is now essentially the register PR[32].

Class-2 instructions. We implement the class-2 instructions based on the re-masking method of De
Mulder et al. [DGH19, Section 4]. When storing (resp. loading) a share to (resp. from) the memory, the
share is always masked with a Load/Store Mask (LSM), which eliminates both the architectural over-
writing in the memory and the micro-architectural overwriting in the MBR. Plus our new mechanism
for indexing the registers, both sec.sw and sec.lw prevent the architectural and micro-architectural
overwriting. As described in [DGH19], it suggests using 2 or 3 rounds of Keccak-f100 permutation
[BDPA13] to generate an LSM, where the state is formed with the memory address and a mask seed
from a specic CSR. In our implementation, we use 2 rounds of Keccak-f100 and dene the generation
of an LSM as (given rs1, imm, and ms from a class-2 instruction):

LSM := keccak-f100-2rounds(0 · · · 0 ‖ (PR[𝜏 [rs1]] + imm) ‖ CSR[800(16) + ms])

We implement the 2 rounds of Keccak-f100 in an unrolled way to ensure a single-cycle execution. As
indicated in Table 9.2, we add four mask seed CSRs with the addresses of 800(16) to 803(16) , which,
dened in [RV21, Table 2.1], are preserved for the use of custom read/write. ms selects which CSR to
be used. In formal, sec.sw and sec.lw are dened as:

sec.sw rs2, rs1, imm, ms ↦→ MEM[PR[𝜏 [rs1]] + imm]4 ← PR[𝜏 [rs2]] ⊕ LSM

sec.lw rd, rs1, imm, ms ↦→

PR[𝜐] ← MEM[PR[𝜏 [rs1]] + imm]4 ⊕ LSM
PR[𝜏 [rd]] ← 0
𝜏 [rd] ← 𝜐

𝜐 ← 𝜏 [rd]

9.5.3 ISE implementation #2: area-optimized

Class-1 instructions. We again take the sec.xor as an example to elaborate the implementation
details of class-1 instructions. Note that we do not import and use the concept of PR in area-optimized
implementation. At the high-level operation viewpoint, the sec.xor instruction is composed of two
steps, namely:

sec.xor rd, rs1, rs2 ↦→
{
1 : GPR[rd] ← 0
2 : GPR[rd] ← GPR[rs1] ⊕ GPR[rs2]

For the low-level hardware implementation, in the decoder, a dedicated variable named sec_bwlogic

(secure bitwise logical instruction) will be set to 1 when the class-1 instruction is decoded, and to 0
otherwise. When sec_bwlogic is 1, the ID stage stalls in the rst clock cycle, and at the same time the

170

9.6. EVALUATION

Core Registers LUTs
Base core 2363 (1.00×) 3602 (1.00×)
Base core + latency-optimized class-1 2585 (1.09×) 4829 (1.34×)
Base core + latency-optimized class-1+2 2713 (1.15×) 5000 (1.39×)
Base core + area-optimized class-1 2365 (1.00×) 3565 (0.99×)
Base core + area-optimized class-1+2 2365 (1.00×) 3847 (1.07×)

Table 9.3: Comparison of area, stemming from synthesis of the base core plus implementation #1
(latency-optimized, per Section 9.5.2) and implementation #2 (area-optimized, per Section 9.5.3) of the
ISE; note that cumulative support for instruction classes is presented to highlight their individual con-
tribution.

signal of sec_bwlogic is transmitted to register le and drives to clear the destination register. In the
next clock cycle, it just works the same as the case of a normal xor, i.e., computing the result andwriting
it to the destination register. The computation of class-1 instructions is realized by simply (re-)using
the hardware implementation of normal bitwise logical instructions (in ALU), hence its hardware cost
is negligible.

Class-2 instructions. Essentially, the memory access instructions are implemented based on a pure-
software implementation strategy used in Rosita [SSB+21]. Therefore, the LSM as well as the mask seed
are not needed in this implementation; we also do not add four mask seed CSRs to further save the area
overhead, and ms has no impact on the action of instruction. In detail, sec.sw consists of two steps
whereas sec.lw needs three steps, and they are shown as follows:

sec.sw rs2, rs1, imm, ms ↦→
{
1−2 : MEM[GPR[rs1] + imm]4 ← 0
3−4 : MEM[GPR[rs1] + imm]4 ← GPR[rs2]

sec.lw rd, rs1, imm, ms ↦→

1−2 : MEM[GPR[sp] + (-4)]4 ← 0
3−4 : GPR[rd] ← MEM[GPR[sp] + (-4)]4
5−6 : GPR[rd] ← MEM[GPR[rs1] + imm]4

In the low-level hardware implementation, in order to make class-2 instructions work correctly in each
of their dierent steps, it is required to introduce some new states to the nite state machine (FSM) of
the ID stage and of the load-store unit respectively, which constitute the most of additional hardware
cost of class-2. Similar to class-1 instructions, we add two dedicated variables sec_store (secure store)
and sec_load (secure load), whose values get updated in the decoder, and they are used by the ID-
stage FSM and the load-store unit FSM. Furthermore, some other modications in the decoder are also
needed; e.g., in the rst two steps of sec.lw, it reads the data of stack pointer register sp instead of the
source register rs1.

9.6 Evaluation

To produce an experimental platform which permits evaluation of area and cycle-accurate execution
latency, we use an Arty-100T board7, which hosts a Xilinx Artix-7 (model XC7A100TCSG324) FPGA de-
vice. We synthesise the stand-alone design for our implementations using Xilinx Vivado 2019.1; default
synthesis settings are used, with no eort invested in synthesis or post-implementation optimization.

7https://digilent.com/reference/programmable-logic/arty-a7/start

171

https://digilent.com/reference/programmable-logic/arty-a7/start

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

Class-1 Class-2

[s
ec

.]
an

d

[s
ec

.]
an

di

[s
ec

.]
or

[s
ec

.]
or

i

[s
ec

.]
xo

r

[s
ec

.]
xo

ri

[s
ec

.]
sl

li

[s
ec

.]
sr

li

[s
ec

.]
lw

[s
ec

.]
sw

Base core 1 1 1 1 1 1 1 1 2 2
Base core + latency-optimized 1 1 1 1 1 1 1 1 2 2
Base core + area-optimized 2 2 2 2 2 2 2 2 6 4

Table 9.4: Comparison of execution latency (measured in clock cycles), stemming from use of the
base core plus implementation #1 (latency-optimized, per Section 9.5.2) and implementation #2 (area-
optimized, per Section 9.5.3) of the ISE; note that functionally comparable instructions are included in
the ISE-based (e.g., sec.and) and ISA-(e.g., and) cases respectively.

9.6.1 Area

Table 9.3 summarizes the ISE overhead in terms of area: it lists the resource utilization for base core and
base core plus ISE (for both latency and area-optimized implementation variants), using an incremental
approach to demonstrate the overhead of each instruction class. For the case of latency-optimized
implementation, the extra area overhead of class-1 instructions mostly comes from our newmechanism
of register indexing, e.g., the cost brought by index look-up table 𝜏 and an extra register PR[32]; the
overhead of class-2 is obviously due to the generation of LSM, e.g., additional hardware resources for
four mask seed CSRs and for the associated 2 rounds of keccak-f100 permutation. The total overhead
of class-1 and class-2 amounts to 15% more Regs and 39% more LUTs compared to the base core. For
the area-optimised variant, compared to the base core, the class-1 plus class-2 instructions take nearly
no extra Regs and only 7% more LUTs.

9.6.2 Latency

Table 9.4 summarizes the ISE overhead in terms of execution latency: it lists the number of cycles
required to execute each instruction on base core and base core plus ISE (for both latency and area-
optimized implementation variants). The latency of the class-1 and class-2 instructions in latency-
optimized implementation is as same as the latency of their counterparts on the base core, which is
as designed and as expected. The latency of instructions in area-optimized implementation is as same
as the latency of ISA-based strategy, e.g., the latency of a sec.xor x1, x2, x3 equals the latency
of a mv x1, x0 plus an xor x1, x2, x3. This translates to, when using area-optimized variant of
our ISE for a masked implementation, it might take a similar execution time as an ISA-based strategy.
This is less attractive for a use case where the execution time is the priority. However, apart from the
timing, the eciency of a software also includes other metrics, e.g., instruction footprint. When using
the area-optimized version of our ISE, the instruction footprint of a masked implementation can get
signicantly reduced compared to an ISA-based strategy, which is important for the deployment of
masked implementation on memory-constrained devices, e.g., C0 and C1 devices dened in RFC 7228
[BEK14, Table 1].

9.6.3 Security

We use Coco [GHP+21, HB21] to evaluate the security (i.e., no leakage stemming from overwriting) of
our ISE. In [GHP+21, Section 3], it states when using base Ibex core there are two constraints that a
masked implementation should fulll:

Constraint 1. Shares of the same secret must not be accessed within two successive instructions.

172

9.6. EVALUATION

Constraint 2. A register or memory location which contains one share must not be overwritten with
its counterparts.

Architectural overwriting. Recall that our ISE aims at eliminating the architectural and micro-
architectural overwriting, which means, when using our secure instructions the constraint 2 should be
no longer required. We then use Coco to perform the evaluation, where we label GPR[5] and GPR[12]
to hold two shares of the same secretwhile we labelGPR[6] andGPR[7] to hold the static random values.
We use the following micro-benchmarks8 to evaluate the class-1 instructions (using [sec.]xor as an
example):

1 /* base core */
2 xor x5 , x5 , x7
3 and x6 , x6 , x6
4 xor x12 , x5, x7
5 /* leakage captured */

1 /* latency -optimized */
2 sec.xor x5, x5, x7
3 and x6 , x6, x6
4 sec.xor x12 , x5, x7
5 /* no leakage */

1 /* area -optimized */
2 sec.xor x5, x5 , x7
3 and x6 , x6 , x6
4 sec.xor x12 , x5 , x7
5 /* no leakage */

Line 4 checks if there is a leakage when writing a share to a register that already contains another
share of the same secret. This leakage is captured in the base core whereas it does not exist in the core
extended with our ISE, which proves our class-1 instructions are secure in the sense of eliminating the
architectural overwriting. We use the following micro-benchmarks to evaluate the store:

1 /* base core */
2 li x13 , 0x20
3 sw x5 , 0(x13)
4 and x6 , x6 , x6
5 sw x12 , 0(x13)
6 /* leakage captured */

1 /* latency -optimized */
2 li x13 , 0x20
3 sec.sw x5 , x13 , 0, 0
4 and x6 , x6, x6
5 sec.sw x12 , x13 , 0, 1
6 /* no leakage */

1 /* area -optimized */
2 li x13 , 0x20
3 sec.sw x5 , x13 , 0, 0
4 and x6 , x6 , x6
5 sec.sw x12 , x13 , 0, 0
6 /* no leakage */

A leakage caused by overwriting in memory is expected in the base core since we write two shares
to the same memory address, and it is successfully captured by Coco. When using our secure store
instructions, this leakage does not exist, i.e., sec.sw eliminates this leakage as expected. Note that
when evaluating the latency-optimized implementation, the initialization of mask seed CSRs is already
done before the micro-benchmark. The micro-benchmarks used for evaluating the load are shown as
follows:

1 /* base core */
2 li x13 , 0x20
3 sw x5 , 0(x13)
4 and x6 , x6 , x6
5 lw x12 , 0(x13)
6 /* leakage captured */

1 /* latency -optimized */
2 li x13 , 0x20
3 sec.sw x5 , x13 , 0, 0
4 and x6 , x6, x6
5 sec.lw x12 , x13 , 0, 0
6 /* no leakage */

1 /* area -optimized */
2 li x13 , 0x20
3 sw x5 , 0(x13)
4 and x6 , x6 , x6
5 sec.lw x12 , x13 , 0, 0
6 /* no leakage */

The same results are also obtained from the evaluation of load instructions, i.e., no leakage is captured
in the micro-benchmarks of our secure load.

Micro-architectural overwriting. One thing must be noted is that there is no MBR in the Ibex core,
which means the above security evaluation can only straightforwardly prove our ISE is capable to elimi-
nate the architectural overwriting (i.e., in the register le and in the memory). As we mentioned before,
the location of MBR can be intra-core or extra-core, and our ISE is designed to be capable to work in
both cases. It is not trivial to directly perform the security evaluation in this situation, especially when

8For the case of latency-optimized ISE implementation, we make sure that the register indices do not get updated before
execution of the micro-benchmarks.

173

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

extra-core MBR is used. However, it is possible and easy to conclude that (if it is correctly implemented)
our sec.sw and sec.lw can eliminate the micro-architectural overwriting (i.e., in MBR) based on the
above security evaluation for architectural overwriting; 1) in the case of latency-optimized implemen-
tation, what sec.sw and sec.lw act in MBR is completely the same as what sec.sw acts in the memory,
i.e., overwriting with a re-masked share; 2) as for area-optimized implementation, sec.sw also acts the
same in both MBR and the memory. What the last two steps (i.e., steps that interact with the load
buer) of sec.lw act in MBR is the same as what sec.sw acts in the memory. In other words, for both
latency-optmized and area-optmized implementations, if there is no architectural overwriting leakage
captured in the micro-benchmarks of sec.sw, then we can claim sec.sw and sec.lw can eliminate the
micro-architectural overwriting.

9.6.4 Usability

The latency-optimized implementation demands a software developer correctly manages use of the
mask seed CSRs to eliminate architectural and micro-architectural overwriting; in contrast, the area-
optimized implementation does so transparently. This implies a clear dierence in terms of their us-
ability.

9.6.5 Comparison with related work

The two closest alternatives, and hence most natural comparison points, are 1) the ISA-based strategy
provided by Rosita [SSB+21], and 2) the ISE-based strategy provided by FENL [GMPP20]; we focus
on the most similar, zeroization-based variant of FENL. Use of all three can be framed as rewriting
instructions within an existing software implementation, with the goal of eliminating leakage. Rosita
and FENL introduce additional instructions; eLIMInate replaces existing instructions (from ISA- to ISE-
based, e.g., xor to sec.xor). FENL and eLIMInate use ISE-based instructions, so require support from
hardware; Rosita uses ISA-based instructions, so requires no support from hardware. Note that Rosita,
FENL, and eLIMInate are all largely agnostic to properties of the masking scheme or attacks on them.
For example, Rosita++ [SCS+21] addresses the challenge of higher-order leakage elimination using the
same set of rewrite rules as Rosita [SSB+21].

A direct comparison is dicult, because the ISAs, cores, and indeed stated remits dier. However,
Table 9.5 attempts to oer a somewhat quantitative, somewhat qualitative summary that is derived
from the analysis below:

• Security. The scope of Rosita addresses both architectural and micro-architectural leakage. As
an ISA-based strategy, it uses indirect control of extra- and intra-core resources; per Section 9.3,
doing so oers a weaker guarantee than, e.g., direct control. The scope of FENL addresses only
micro-architectural leakage with any extra-core resources deemed out of scope. As an ISE-based
strategy, it uses direct control of intra-core resources.

• Usability. A careful security analysis is required to identify where Rosita rewrite rules are ap-
plied. They can be described as local, in the sense they can be applied by using “peephole-like”
translation which has no global impact (and so does not require any global functional analysis).
The diculty of doing so is signicantly reduced by the associated, automated tooling. A similar
argument to that above for can be applied to FENL, in the sense one needs to analyze 1) how
to congure and 2) where to place fence instructions. However, although it is plausible to use
Rosita-like automation, a tool to do so for FENL currently does not exist. Application of eLIM-
Inate is local for the area-optimized implementation, but is local (for class-1 instructions) and
global (for class-2 instructions) for the latency-optimized implementation.

174

9.7. CONCLUSION

Se
cu
rit
y

Us
ab
ili
ty

Fo
ot
pr
in
t

La
te
nc
y

A
re
a

In
va
siv

en
es
s

Base core + latency-optimized versus Rosita + − + + − −
FENL + − + + − +

Base core + area-optimized versus Rosita + − + ≈ − −
FENL + ≈ + ≈ ≈ +

Table 9.5: A somewhat quantitative, somewhat qualitative comparison versus Rosita [SSB+21] and FENL
[GMPP20] (the two closest alternatives). Note that +, −, and ≈ suggest the comparison respectively
positive, negative, and approximately equal versus Rosita or FENL.

• Footprint. Both Rosita and FENL imply marginal overhead in memory footprint, since their ap-
plication demands at least one additional instruction; all else being equal, the additional memory
access required to fetch said instructions could plausibly contribute to greater energy consump-
tion.

• Latency. For both Rosita and FENL, the global impact on execution latency depends where the
mechanism is or is not applied, so we focus only on local instances where it is. Translating the
ARM-based Rosita rewrite rules to RISC-V yields a similar outcome: as suggested by Section 9.3,
this means a 2-cycle latency for class-1 instructions, a 6-cycle latency for the class-2 instruction
lw, and a 4-cycle latency for the class-2 instruction swwhen executed on the base core. For FENL,
comparison is more dicult. For the case most similar to the base core, [GMPP20, Section 3.3.3]
lists two options in which fenl.fence has 1) a 1 cycle (non-bubbling) or 2) a 1 or 4 cycle ex-
ecution latency (bubbling: depending whether or not a pipeline stall is required to deliver the
security guarantee). Using the former, this suggests a 2-cycle latency for class-1 instructions, a
3-cycle latency for the class-2 instruction lw, and a 3-cycle latency for the class-2 instruction sw.
However, note that FENL deems extra-core resources such as SRAM out of scope; the comparison
is only reasonable for class-1 instructions, therefore.

• Area. Rosita implies no overhead in hardware area. FENL implies modest overhead in hardware
area: for the core most similar to Ibex, [GMPP20, Table 2] cites 0.7% additional ip-ops plus
1.0% additional LUTs.

• Invasiveness. Rosita is an ISA-base strategy, so is not invasive. FENL is an ISE-base strategy, so
is somewhat invasive: assuming existing instructions to manage CSRs, it adds 1 instruction and
1 CSR. Implementation of that instruction could be viewed as invasive, however, because it 1)
has a global impact, potentially throughout the micro-architecture, and 2) intentionally exposes
micro-architectural detail to software.

9.7 Conclusion

Summary. In this Chapter, we presented a functionally light-weight, leakage-focused ISE with the
aim of supporting masked software implementation. By developed two concrete, prototype implemen-
tations of an underlying design concept, we demonstrate that use of the ISE can close the gap between
assumptions about and actual behavior of a device and thereby deliver an improved security guarantee.

In our view, it is important to stress that use of our ISE enables a subtle shift in how masked im-
plementations can be developed. Currently, the starting point is a masked implementation consisting

175

CHAPTER 9. A LEAKAGE-FOCUSED RISC-V ISE FOR MASKED IMPLEMENTATION

of instructions from the ISA this is functionally correct, insecure but ecient, implying a need to im-
prove security (e.g., by identifying and eliminating micro-architectural leakage). Anecdotal evidence
suggests that doing so is both conceptually dicult (and thus error-prone), and labour-intensive; the
impact of failure can be catastrophic, in the sense it can renders the implementation insecure. Now, the
starting point is a masked implementation consisting of instructions from the ISE: this is functionally
correct, secure but inecient, implying a need to improve eciency (e.g., by selectively replacing ISE
instructions, with ISA alternatives). We claim that doing so is conceptually easier, and the impact of
failure is lessened; it aligns with a more general secure-by-default ethos.

Future work. Given the scope of this Chapter, and work presented within it, the following points
seem to represent either useful or interesting future work:

1. Section 9.3 highlights an inherent limitation of the ISE, namely that extra-core resources require
indirect control; improvement beyond this requires a change to the resource interface. For exam-
ple, consider an SRAM module whose interface supports direct control via a “ush state” control
signal: by removing the need for assumptions around indirect control, securing access to the
SRAM can be more ecient and yield a more robust security guarantee. Realizing such a sys-
temic change is of course non-trivial, not least because of trade-os between security and other
metrics, but seems an important long-term goal.

2. Section 9.3 is clear about insuciency of the ISE, in the sense that additional forms of micro-
architectural leakage may also need to be considered. Doing so by extending the scope is some-
what open ended, but, for example, Section 9.4.2 includes sec.slli and sec.srli for left- and
right-shift; it would be plausible to extend the variant semantics for these instructions to, e.g.,
address the observation by Gao et al. [GMPO20] that bit-interaction within a barrel shifter can
produce leakage.

3. For the latency-optimized implementation, Section 9.6 highlights a challenge with respect to us-
ability: a software developer must correctly manage use of the mask seed CSRs. Alongside gen-
eration of ISE-based instructions rather than their ISA-based instructions analogue, this aspect
seems ripe for automation within an appropriate compilation tool-chain.

176

Part VI

Concluding Remarks

177

CHAPTER

10

CONCLUSION

10.1 Summary

This thesis described research on engineering aspects related to the deployment of next-generation
cryptography in the real world, and presented some useful approaches and techniques. We showed
that lattice-based cryptography is suitable to be employed on embedded devices. With xed parame-
ters, many trade-os (between time and memory) of lattice-based crypto implementations are possible,
which provide exibility for application scenarios with dierent requirements. Isogeny-based cryp-
tography is very new; there is thus great room for improving its performance both from theoretical
(focusing on the underlying mathematics) and implementation perspectives. We concentrated on vec-
tor instructions, and proved that their strong computing power, combined with smart vectorization
techniques, can result in a signicant gain for both the latency and the throughput of isogeny-based
crypto software. Instruction set extensions are a very helpful tool to further accelerate and assist soft-
ware implementations in both their eciency and/or security. They are like a bridge linking software
and hardware, and on RISC-V the developers have the right to decide how to build such bridges. For
eciency bottlenecks, ISE oers multiple dierent solutions for both symmetric and asymmetric cryp-
tography, and there exist various designs and associated trade-os. For the threats arising from power
side-channel analysis, especially the recently observed eects of micro-architectural leakage, we de-
signed a leakage-focused ISE and demonstrated that the use of our ISE can close the gap between
assumptions and the actual behavior of a device and thereby deliver an improved security guarantee.

10.2 Impact

The implementation techniques and evaluation results presented in this thesis have (potential) impact
on both the NIST PQC and NIST LWC cryptography standardization processes as well as, more gener-
ally, on cryptographic engineering.

Impact on the NIST PQC standardization process.

• There are currently only a few papers in the literature discussing and evaluating the software
performance of NIST PQC candidates on AVR microcontrollers. Hence, Chapter 3 and Chapter 4

179

CHAPTER 10. CONCLUSION

make contributions to lling this gap to some extent. The most important observation from these
two Chapters is that with their carefully-optimized assembly implementations lattice-based NIST
PQC candidates are feasible to be deployed on extremely constrained devices like AVR microcon-
trollers.

• On the other hand, regarding Chapter 6, SIKE is the only isogeny-based candidate in the NIST
PQC standardization. SIKE has the highest execution time among the NIST PQC third round
candidates but is already the fastest among various isogeny-based schemes in the literature.
Hence, how to further improve its performance is very important for not only SIKE but also
other isogeny-based algorithms. To the best of our knowledge, previous works about vectoriza-
tion of SIKE only focus partially on one or two arithmetic layers, and Chapter 6 is the rst one
which thoroughly analyzes all the layers of SIKE from a vectorization perspective. Chapter 6 plus
also Chapter 5 show that SIKE and other isogeny-based algorithms are vectorization-friendly,
and vector units and instructions can signicantly improve their software performance, espe-
cially given that vector units widely exist on high-performance CPUs and are constantly being
enhanced.

Impact on the NIST LWC standardization process.

• To the best of our knowledge, Chapter 7 is the only work in the literature that benchmarks NIST
LWC candidates from an ISE perspective. It provides useful evaluation results for NIST LWC stan-
dardization, and the associated paper [CGM+23] is taken into consideration in the NIST LWC
ocial report [TMC+23]. In addition, not limited to NIST LWC, we note that currently NIST
does not consider ISE in its cryptography competitions, e.g., in the way of dening a reference
platform that could support work on ISE, like what NIST usually did with (pure) software im-
plementations. However, ISE can clearly impact the evaluation results, and after standardization
commonly appear in real ISAs. Chapter 7 serves as an evidence to support the view that NIST
should take ISE into account in its cryptography standardizations.

Impact on cryptographic engineering.

• First of all, some techniques proposed in this thesis have already created impact, and inspired
and/or assisted follow-up work of other researchers, e.g., [PSRH23] of Phalakarn et al. builds on
Chapter 6.

• In particular, regarding the design and development of high-performance vectorized crypto-
graphic software, Part III demonstrates the analyses from three dierent perspectives, namely op-
eration, optimization, and vectorization, and provides a methodology rather than just a method:
though the eectiveness of our vectorization methodology is demonstrated using isogeny-based
cryptography as case study, it is widely applicable and potentially benecial for a wide variety
of cryptographic algorithms such as RSA, ECC, and pairing-based cryptography.

• In addition to observations regarding ISE design, Chapter 7 also discussed some observations
regarding ISA design, which are helpful for RISC-V community, and some observations regarding
symmetric algorithm design, which aim to assist the algorithm design phase.

• Given that Chapter 9 aims to harden masked software implementations at an instruction level, it
natively supports a large scope of cryptographic algorithms. Meanwhile, the presented concept
can be extended to other dierent instructions.

180

10.3. FUTURE WORK

10.3 Future work

For each of the four research topics described in this thesis, we propose some high-level ideas that can
potentially be either interesting or worthy for further exploration and research.

Lightweight implementation of lattice-based cryptography. CRYSTALS-Kyber [SAB+21] has
been selected by NIST as a standard KEM in the NIST PQC standardization1. There is thus great value
and signicance in researching how it can be deployed in the real world in an ecient and secure way.

1. Although many papers have studied the ecient software implementation of CRYSTALS-Kyber
on various constrained devices such as ARM Cortex-M and Cortex-A series, it is still unexplored
how CRYSTALS-Kyber can be optimized on “extremely-constrained” microcontrollers, e.g., 8-bit
AVR and 16-bit MSP430, and what performance a highly-optimized assembler implementation
can achieve.

2. Apart from RV32I [RV19, Chapter 2], RISC-V also denes another 32-bit base integer instruction
set RV32E [RV19, Chapter 4], which is a reduced version of RV32I and designed for embedded
systems. It would make sense to consider using it to design a power-ecient PQC-oriented pro-
cessor for the IoT but still retain high exibility, e.g., one can look at rst 1) a low-area, simple, and
power-ecient RISC-V RV32EM core design (i.e., a multiplier is also included and its lightweight
implementation should be considered); then 2) based on the core designed and developed, re-
search an extremely power-ecient software implementation of CRYSTALS-Kyber; nally 3)
propose various ISEs to assist and/or improve the implementations regarding, e.g., the eciency
and more importantly the security (namely masked implementation).

Vectorized implementation of isogeny-based cryptography. Isogeny-based cryptography is a
booming research area, and in particular many new isogeny-based signatures were proposed in the
recent years. A signature scheme has been submitted to NIST standardization for additional PQC digital
signature schemes2, i.e., SQISign [DKL+20, DLLW23]. Compared to other categories such as code-
based, hash-based, and multivariate, the execution time of isogeny-based signatures is usually orders
of magnitude slower, which means it makes sense to use them (only) on high-performance processors.

1. There were recently some new SIMD/vector instructions released, in particular the RISC-V vec-
tor extension [RVV21] and vector cryptography extension [RVK23]. They are more attractive
than other vector instruction sets in the sense that the developer can also add customized ISE
to enhance the vector core/unit. Therefore, one could 1) explore the ecient vectorization of
the arithmetic used in isogeny-based signatures (e.g., isogeny arithmetic, curve arithmetic) and
develop the associated ecient vectorized implementation of the full signature, and then 2) think
about an ecient vector ISE design.

2. Compared to CPUs, GPUs have more computing power. We could also consider ecient GPU
implementation of isogeny-based signatures. However, the transmission cost of data from mem-
ory/CPU to GPU might be a point to be wary of.

Ecient cryptographic instruction set extension design. Apart from the points already men-
tioned in the text above, there are also some other ideas and thoughts which seem to be interesting to
take note of. We are still considering RISC-V ISA in the context of ISE design.

1See, https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
2See, https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

181

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

CHAPTER 10. CONCLUSION

1. Multi-precision integer arithmetic is always important in the eld of cryptography; however,
the speed-up gained from the scalar ISEs presented in Chapter 8 is good but cannot be claimed
as signicant. It makes sense to consider the stronger computing power unleashed by vector
unit/instructions. To not overlap with the idea introduced before, i.e., designing ecient vector
ISEs for isogeny-based signatures, it could be useful to think about Residue Number System (RNS)
[Ana16] arithmetic. To be specic, RNS is believed to be ecient in SIMD fashion [PFPB19],
so we could design dedicated vector ISEs for RNS arithmetic, and evaluate whether a vector-
ISE-assisted RNS-based implementation is more ecient than a vector-ISE-assisted conventional
implementation for, e.g., Montgomery multiplication, as the rst step.

2. In current RISC-V scalar and vector cryptography extensions [RVK22, RVK23], there is no dedi-
cated instruction for Keccak [BDPA13]. Since Keccak is not only used in hash functions but also
in lattice-based and hash-based PQC schemes, it would make sense to think about the scalar and
vector ISE design of Keccak.

Side-channel leakage analysis and elimination. Since we spent only six months working on this
topic during the PhD studies, far from saying we are familiar with it, we therefore regard this topic as
our primary research focus in the coming years, and particularly pay more attention to the questions
and problems regarding the micro-architectural leakage.

1. Based on the ISE designed and developed in Chapter 9, our next step is to implement and show the
complete rst-order and higher-order masked implementations of AES using this data-oriented
ISE, andwewill evaluate and compare themwith corresponding implementations using compute-
oriented ISE, e.g., [GGM+21]. We will also seek whether there is an opportunity to combine both,
i.e., the data-oriented ISE with the compute-oriented ISE, on either software perspective or ISE
perspective to yield a win-win outcome.

2. It would be useful to research how to utilize the micro-architectural leakage (e.g., stemming from
MBR) as the main leakage source to perform attacks on various devices, and then study the
countermeasures.

182

ACRONYMS

ADK : Arbitrary Degree Karatsuba
AES : Advanced Encryption Standard
ALU : Arithmetic Logic Unit
ASIP : Application Specic Instruction Processor
AVX : Intel Advanced Vector Extensions
AVX2 : Intel Advanced Vector Extensions 2
AVX-512 : Intel Advanced Vector Extensions 512
AVX-512F : Intel AVX-512 Integer Fused Foundation
AVX-512IFMA : Intel AVX-512 Integer Fused Multiply-Add
BPS : Block Product Scanning
CIHS : Coarsely Integrated Hybrid Scanning
CMOS : Complementary Metal-Oxide Semiconductor
CPU : Central Processing Unit
CSIDH : Commutative Supersingular Isogeny Die-Hellman
CSR : Control/Status Register
DES : Data Encryption Standard
ECC : Elliptic Curve Cryptography
EM : ElectroMagnetic
FEC : Forward Error Correction
FIPS : Finely Integrated Product Scanning
FP : Floating Point
GAIP : Group Action Inverse Problem
HW : HardWare
IFMA : Integer Fused Multiply-Add
I-MLWE : Integer Module Learning with Errors
IoT : Internet of Things
ISA : Instruction Set Architecture
ISE : Instruction Set Extension
KCM : Karatsuba-Comba-Montgomery
KEM : Key Encapsulation Mechanism
LSU : Load-Store Unit

183

LUT : Look-Up Table
LWC : LightWeight Cryptography
LWE : Learning With Errors
MAC : Multiply-ACcumulate
MAR : Memory Address Register
MBR : Memory Buer Register
MCU : Micro-Controller (Unit)
NIST : (US) National Institute of Standards and Technology
NSA : (US) National Security Agency
NTT : Number Theoretic Transform
PKE : Public-Key Encryption
PQC : Post-Quantum Cryptography
QKD : Quantum Key Distribution
QKE : Quantum Key Establishment
RAM : Random-Access Memory
RFC : Request For Comments
RISC : Reduced Instruction Set Computer
RNS : Residue Number System
ROM : Read-Only Memory
RPS : Reverse Product-Scanning
RSA : Rivest-Shamir-Adleman cryptosystem
SCA : Side-Channel Attack
SHA : Secure Hash Algorithm
SIDH : Supersingular Isogeny Die-Hellman
SIKE : Supersingular Isogeny Key Encapsulation
SIMBA : Splitting Isogeny computations into Multiple BAtches
SIMD : Single Instruction Multiple Data
SIPKE : Supersingular Isogeny Public Key Encryption
SIS : Shortest Integer Solution
SPS : Separated Product Scanning
SSL : Secure Socket Layer
SW : SoftWare
TLS : Transport Layer Security

184

BIBLIOGRAPHY

[AAA+20] G. Alagic, J. Alperin-Sheri, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu, C. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, and D. Smith-Tone. Status report on the
second round of the nist post-quantum cryptography standardization process. National
Institute of Standards and Technology (NIST), Interagency Report 8309, 2020. https://

doi.org/10.6028/NIST.IR.8309.

[AAB+16] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt,
J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D.A. Patterson, B. Richards, C. Schmidt, S. Twigg,
H. Vo, and A. Waterman. The rocket chip generator. Technical Report UCB/EECS-
2016-17, EECS Department, University of California, Berkeley, 2016. http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[AAC+22] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger, C. Miller, D. Moody,
R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone, and Y.-K. Liu. Status report on the third
round of the nist post-quantum cryptography standardization process. National Institute
of Standards and Technology (NIST), Interagency Report 8413, 2022. https://doi.org/
10.6028/NIST.IR.8413-upd1.

[AAK21] M. Anastasova, R. Azarderakhsh, andM.M. Kermani. Fast strategies for the implementation
of SIKE round 3 on ARM Cortex-M4. IEEE Transactions on Circuits and Systems I (TCSI),
68(10):4129–4141, 2021. https://doi.org/10.1109/TCSI.2021.3096916.

[ABB+22] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, S. Gueron,
T. Guneysu, C.A. Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, G. Zemor,
V. Vasseur, S. Ghosh, and J. Richter-Brokmann. BIKE: Bit ipping key encapsulation, 2022.
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf.

[ABC+22] M. Alsahli, A. Borgognoni, L. Cardoso dos Santos, H. Cheng, C. Franck, and J. Großschädl.
Lightweight permutation-based cryptography for the ultra-low-power internet of things.
In G. Bella, M. Doinea, and H. Janicke, editors, Security for Information Technology and
Communications (SECITC), LNCS 13809, pages 17–36. Springer-Verlag, 2022. https://

doi.org/10.1007/978-3-031-32636-3_2.

185

https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/NIST.IR.8309
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.1109/TCSI.2021.3096916
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://doi.org/10.1007/978-3-031-32636-3_2
https://doi.org/10.1007/978-3-031-32636-3_2

BIBLIOGRAPHY

[ABJK18] R. Azarderakhsh, E. Bakos Lang, D. Jao, and B. Koziel. EdSIDH: supersingular isogeny
Die-Hellman key exchange on Edwards curves. In A. Chattopadhyay, C. Rebeiro, and
Y. Yarom, editors, Security, Privacy, and Applied Cryptography Engineering (SPACE), LNCS
11348, pages 125–141. Springer-Verlag, 2018. https://doi.org/10.1007/978-3-030-

05072-6_8.

[ACR22] G. Adj, J. Chi-Domínguez, and F. Rodríguez-Henríquez. Karatsuba-based square-root Vélu’s
formulas applied to two isogeny-based protocols. Journal of Cryptographic Engineering
(JCEN), 2022. https://doi.org/10.1007/s13389-022-00293-y.

[ADPS16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new
hope. In T. Holz and S. Savage, editors, USENIX Security Symposium, pages 327–343, 2016.
https://doi.org/10.5555/3241094.3241120.

[AHJM11] M. Agren, M. Hell, T. Johansson, andW. Meier. Grain128a: a new version of Grain-128 with
optional authentication. International Journal of Wireless and Mobile Computing (IJWMC),
5(1):48–59, 2011. https://doi.org/10.1504/IJWMC.2011.044106.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In G.L. Miller,
editor, Symposium on Theory of Computing (STOC), pages 99–108. ACM, 1996. https:

//doi.org/10.1145/237814.237838.

[Ana16] P.V. Ananda Mohan. Residue Number Systems. Springer-Verlag, 2016. https://doi.org/
10.1007/978-3-319-41385-3.

[ANP20] A. Adomnicai, Z. Najm, and T. Peyrin. Fixslicing: A new GIFT representation: Fast
constant-time implementations of GIFT and GIFT-COFB on ARM Cortex-M. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems (TCHES), 2020(3):402–427, 2020.
https://doi.org/10.13154/tches.v2020.i3.402-427.

[AO21] Ö. Altınay and B. Örs. Instruction extension of RV32I and GCC back end for Ascon
lightweight cryptography algorithm. In International Conference on Omni-Layer Intelli-
gent Systems (COINS), pages 1–6, 2021. https://doi.org/10.1109/COINS51742.2021.

9524190.

[AP20] A. Adomnicai and T. Peyrin. Fixslicing - application to some NIST LWC round 2 can-
didates. In 4-th Lightweight Cryptography Workshop, 2020. https://csrc.nist.gov/

Events/2020/lightweight-cryptography-workshop-2020.

[AP21] A. Adomnicai and T. Peyrin. Fixslicing AES-like ciphers: New bitsliced AES speed records
on ARM-Cortex M and RISC-V. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems (TCHES), 2021(1):402–425, 2021. https://doi.org/10.46586/tches.v2021.
i1.402-425.

[ARM09] Cortex-M0 Technical Reference Manual. Technical Report DDI-0432C, ARM Ltd., 2009.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html.

[ARM18] ARMv6-M Architecture Reference Manual. Technical Report DDI-0419E, ARM Ltd., 2018.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419e/index.html.

[ARM20] Arm architecture referencemanual: Armv8, for Armv8-A architecture prole. Technical re-
port, 2020. https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf.

[ARM21] ARMv7-M Architecture Reference Manual. Technical Report DDI-0403E.e, ARM Ltd., 2021.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.e/index.html.

186

https://doi.org/10.1007/978-3-030-05072-6_8
https://doi.org/10.1007/978-3-030-05072-6_8
https://doi.org/10.1007/s13389-022-00293-y
https://doi.org/10.5555/3241094.3241120
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/237814.237838
https://doi.org/10.1007/978-3-319-41385-3
https://doi.org/10.1007/978-3-319-41385-3
https://doi.org/10.13154/tches.v2020.i3.402-427
https://doi.org/10.1109/COINS51742.2021.9524190
https://doi.org/10.1109/COINS51742.2021.9524190
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://doi.org/10.46586/tches.v2021.i1.402-425
https://doi.org/10.46586/tches.v2021.i1.402-425
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419e/index.html
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.e/index.html

BIBLIOGRAPHY

[AVR21] AVR instruction set manual. Technical report, Microchip Technology, Inc., 2021.
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-

Manual-DS40002198.pdf.

[BB03] D. Brumley and D. Boneh. Remote timing attacks are practical. In USENIX Secu-
rity Symposium, 2003. https://www.usenix.org/conference/12th-usenix-security-
symposium/remote-timing-attacks-are-practical.

[BB14] C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. Theoretical Computer Science (TCS), 560:7–11, 2014. https://doi.org/10.1016/
j.tcs.2014.05.025.

[BBC+20a] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, L. Perrin, A. Udovenko,
V. Velichkov, and Q. Wang. Alzette: a 64-bit ARX-box (feat. CRAX and TRAX). In
Advances in Cryptology (CRYPTO), LNCS 12172, pages 419–448. Springer-Verlag, 2020.
https://doi.org/10.1007/978-3-030-56877-1_15.

[BBC+20b] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, L. Perrin, A. Udovenko,
V. Velichkov, and Q. Wang. Lightweight AEAD and hashing using the Sparkle permu-
tation family. IACR Transactions on Symmetric Cryptology (TOSC), 2020(S1):208–261, 2020.
https://doi.org/10.13154/tosc.v2020.iS1.208-261.

[BBC+20c] D.J. Bernstein, B.B. Brumley, M.-S. Chen, C. Chuengsatiansup, T. Lange, A. Marotzke, B.-
Y. Peng, N. Tuveri, C. van Vredendaal, and B.-Y. Yang. NTRU Prime, 2020. https://

ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf.

[BBC+21a] G. Banegas, D.J. Bernstein, F. Campos, T. Chou, T. Lange, M. Meyer, B. Smith, and
J. Sotáková. CTIDH: faster constant-time CSIDH. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2021(4):351–387, 2021. https://doi.org/10.
46586/tches.v2021.i4.351-387.

[BBC+21b] C. Beierle, A. Biryukov, L. Cardoso dos Santos, J. Großschädl, A. Moradi, L. Perrin,
A.R. Shahmirzadi, A. Udovenko, V. Velichkov, and Q. Wang. Schwaemm and esch:
Lightweight authenticated encryption and hashing using the sparkle permutation
family. Submission to NIST (version 1.2), 2021. https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/finalist-round/updated-spec-

doc/sparkle-spec-final.pdf.

[BCC+22] D.J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, N. Sendrier, J. Szefer, C.J. Tjhai, M. Tomlinson,
and W. Wang. Classic mceliece: conservative code-based cryptography, 2022. https:

//classic.mceliece.org/mceliece-spec-20221023.pdf.

[BCD+21] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and K. Yasuda.
PHOTON-beetle. Submission to NIST, 2021. https://csrc.nist.gov/CSRC/media/

Projects/lightweight-cryptography/documents/finalist-round/updated-spec-

doc/photon-beetle-spec-final.pdf.

[BCDM21] T. Beyne, Y.L. Chen, C. Dobraunig, and B. Mennink. Elephant. Submission to NIST
(version 2.0), 2021. https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-

final.pdf.

187

https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/AVR-InstructionSet-Manual-DS40002198.pdf
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.13154/tosc.v2020.iS1.208-261
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf

BIBLIOGRAPHY

[BCE+01] D.V. Bailey, D. Con, A.J. Elbirt, J.H. Silverman, and A.D. Woodbury. NTRU in con-
strained devices. In C.K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems (CHES), LNCS 2162, pages 262–272. Springer-Verlag, 2001.
https://doi.org/10.1007/3-540-44709-1_22.

[BCI+21] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin, Y. Sasaki,
S.M. Sim, and Y. Todo. GIFT-COFB. Submission to NIST (version 1.1),
2021. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf.

[BCLV17] D.J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU Prime: Re-
ducing attack surface at low cost. In C. Adams and J. Camenisch, editors, Selected Ar-
eas in Cryptography (SAC), LNCS 10719, pages 235–260. Springer-Verlag, 2017. https:

//dl.acm.org/doi/10.5555/3241094.3241120.

[BCLV19] D.J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU Prime: Round
2 specication, 2019. https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf.

[BDLS20] D.J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of isogenies of large
prime degree. Cryptology ePrint Archive, Paper 2020/341, 2020. https://eprint.iacr.
org/2020/341.

[BDLU17] A. Biryukov, D. Dinu, Y. Le Corre, and A. Udovenko. Optimal rst-order Boolean masking
for embedded IoT devices. In Smart Card Research and Advanced Applications (CARDIS),
LNCS 10728, pages 22–41. Springer-Verlag, 2017. https://doi.org/10.1007/978-3-

319-75208-2_2.

[BDPA13] G. Bertoni, J. Daemen, M. Peeters, and G. van Assche. Keccak. In Advances in Cryptology
(EUROCRYPT), LNCS 7881, pages 313–314. Springer-Verlag, 2013. https://doi.org/10.
1007/978-3-642-38348-9_19.

[BEK14] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-node networks. In-
ternet Engineering Task Force (IETF) Request for Comments (RFC) 7228, 2014. http:

//tools.ietf.org/html/rfc7228.

[Ber06] D.J. Bernstein. Curve25519: New Die-Hellman speed records. In M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, editors, Public Key Cryptography (PKC), LNCS 3958, pages 207–
228. Springer-Verlag, 2006. https://doi.org/10.1007/11745853_14.

[Ber20] D.J. Bernstein. Cryptographic competitions. Cryptology ePrint Archive, Report 2020/1608,
2020. https://eprint.iacr.org/2020/1608.

[BF20] J.W. Bos and S. Friedberger. Faster modular arithmetic for isogeny-based crypto on em-
bedded devices. Journal of Cryptographic Engineering (JCEN), 10(2):97–109, 2020. https:
//doi.org/10.1007/s13389-019-00214-6.

[BFG+17] J. Balasch, S. Faust, B. Gierlichs, C. Paglialonga, and F.-X. Standaert. Consolidating inner
product masking. In T. Takagi and T. Peyrin, editors, Advances in Cryptology (ASIACRYPT),
LNCS 10624, pages 724–754. Springer-Verlag, 2017. https://doi.org/10.1007/978-3-

319-70694-8_25.

[BGH22] B. Buhrow, B.K. Gilbert, and C.R. Haider. Parallel modular multiplication using 512-bit
advanced vector instructions. Journal of Cryptographic Engineering (JCEN), 12(1):95–105,
2022. https://doi.org/10.1007/s13389-021-00256-9.

188

https://doi.org/10.1007/3-540-44709-1_22
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://dl.acm.org/doi/10.5555/3241094.3241120
https://dl.acm.org/doi/10.5555/3241094.3241120
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://eprint.iacr.org/2020/341
https://eprint.iacr.org/2020/341
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
http://tools.ietf.org/html/rfc7228
http://tools.ietf.org/html/rfc7228
https://doi.org/10.1007/11745853_14
https://eprint.iacr.org/2020/1608
https://doi.org/10.1007/s13389-019-00214-6
https://doi.org/10.1007/s13389-019-00214-6
https://doi.org/10.1007/978-3-319-70694-8_25
https://doi.org/10.1007/978-3-319-70694-8_25
https://doi.org/10.1007/s13389-021-00256-9

BIBLIOGRAPHY

[BGM09] S. Bartolini, R. Giorgi, and E. Martinelli. Instruction set extensions for cryptographic appli-
cations. In Ç.K. Koç, editor, Cryptographic Engineering, chapter 9, pages 191–233. Springer,
2009. https://doi.org/10.1007/978-0-387-71817-0_9.

[BHKL13] D.J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve points
indistinguishable from uniform random strings. In A.-R. Sadeghi, V.D. Gligor, and M. Yung,
editors, Computer and Communications Security (CCS), pages 967–980. ACM, 2013. https:
//doi.org/10.1145/2508859.2516734.

[BI21] C. Bouvier and L. Imbert. An alternative approach for SIDH arithmetic. In J.A. Garay,
editor, Public-Key Cryptography (PKC), LNCS 12710, pages 27–44. Springer-Verlag, 2021.
https://doi.org/10.1007/978-3-030-75245-3_2.

[BJK+16] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich, and S.M.
Sim. The SKINNY family of block ciphers and its low-latency variant MANTIS. InAdvances
in Cryptology (CRYPTO), LNCS 9815, pages 123–153. Springer-Verlag, 2016. https://doi.
org/10.1007/978-3-662-53008-5_5.

[BKL+07] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin,
and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware
and Embedded Systems (CHES), LNCS 4727, pages 450–466. Springer-Verlag, 2007. https:
//doi.org/10.1007/978-3-540-74735-2_31.

[BKL+13] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. SPONGENT:
The design space of lightweight cryptographic hashing. IEEE Transactions on Computers,
62(10):2041–2053, 2013. https://doi.org/10.1109/TC.2012.196.

[BKV19] W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: ecient isogeny based signatures
through class group computations. In S.D. Galbraith and S. Moriai, editors, Advances in
Cryptology (ASIACRYPT), LNCS 11921, pages 227–247. Springer-Verlag, 2019. https://

doi.org/10.1007/978-3-030-34578-5_9.

[BLMP19] D.J. Bernstein, T. Lange, C. Martindale, and L. Panny. Quantum circuits for the CSIDH:
Optimizing quantum evaluation of isogenies. In Advances in Cryptology (EUROCRYPT),
LNCS 11477, pages 409–441. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-

030-17656-3_15.

[BPP+17] S. Banik, S.K. Pandey, T. Peyrin, Y. Sasaki, S.M. Sim, and Y. Todo. GIFT: A small present
- towards reaching the limit of lightweight encryption. In Cryptographic Hardware and
Embedded Systems (CHES), LNCS 10529, pages 321–345. Springer-Verlag, 2017. https:

//doi.org/10.1007/978-3-319-66787-4_16.

[BS20] X. Bonnetain and A. Schrottenloher. Quantum security analysis of CSIDH. In A. Canteaut
and Y. Ishai, editors, Advances in Cryptology (EUROCRYPT), LNCS 12106, pages 493–522.
Springer-Verlag, 2020. https://doi.org/10.1007/978-3-030-45724-2_17.

[BT11] B.B. Brumley and N. Tuveri. Remote timing attacks are still practical. In V. Atluri and
C. Díaz, editors, European Symposium on Research in Computer Security (ESORICS), LNCS
6879, pages 355–371. Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-

23822-2_20.

[BWG+22] A. Beckers, L. Wouters, B. Gierlichs, B. Preneel, and I. Verbauwhede. Provable secure
software masking in the real-world. In Constructive Side-Channel Analysis and Secure De-
sign (COSADE), LNCS 13211, pages 215–235. Springer-Verlag, 2022. https://doi.org/10.
1007/978-3-030-99766-3_10.

189

https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-030-75245-3_2
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1109/TC.2012.196
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-030-99766-3_10
https://doi.org/10.1007/978-3-030-99766-3_10

BIBLIOGRAPHY

[CCC+19] D. Cervantes-Vázquez, M. Chenu, J. Chi-Domínguez, L. De Feo, F. Rodríguez-Henríquez,
and B. Smith. Stronger and faster side-channel protections for CSIDH. In Progress in
Cryptology (LATINCRYPT), LNCS 11774, pages 173–193. Springer-Verlag, 2019. https:

//doi.org/10.1007/978-3-030-30530-7_9.

[CCJR20] J. Chávez-Saab, J.-J. Chi-Domínguez, S. Jaques, and F. Rodríguez-Henríquez. The SQALE of
CSIDH: Sublinear vélu quantum-resistant isogeny action with low exponents. Cryptology
ePrint Archive, Paper 2020/1520, 2020. https://eprint.iacr.org/2020/1520.

[CD23] W. Castryck and T. Decru. An ecient key recovery attack on SIDH. In C. Hazay
and M. Stam, editors, Advances in Cryptology (EUROCRYPT), LNCS 14008, pages 423–447.
Springer-Verlag, 2023. https://doi.org/10.1007/978-3-031-30589-4_15.

[CDG18] H. Cheng, D. Dinu, and J. Großschädl. Ecient implementation of the SHA-512 hash func-
tion for 8-bit AVR microcontrollers. In Security for Information Technology and Communi-
cations (SECITC), LNCS 11359, pages 273–287. Springer-Verlag, 2018. https://doi.org/
10.1007/978-3-030-12942-2_21.

[CDG+19] H. Cheng, D. Dinu, J. Großschädl, P.B. Rønne, and P.Y.A. Ryan. A lightweight implementa-
tion of NTRU Prime for the post-quantum internet of things. In Workshop on Information
Security Theory and Practices (WISTP), LNCS 12024, pages 103–119. Springer-Verlag, 2019.
https://doi.org/10.1007/978-3-030-41702-4_7.

[CDH+19] C. Chen, O. Danba, J. Hostein, A. Hulsing, J. Rijneveld, J.M. Schanck, P. Schwabe,
W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and K. Xagawa. NTRU, 2019. https:

//ntru.org/f/ntru-20190330.pdf.

[CDPA16] C. Celio, P. Dabbelt, D.A. Patterson, and K. Asanović. The renewed case for the reduced
instruction set computer: Avoiding ISA bloat with macro-op fusion for RISC-V. CoRR,
abs/1607.02318, 2016. https://arxiv.org/abs/1607.02318.

[CFG+21] H. Cheng, G. Fotiadis, J. Großschädl, P.Y.A. Ryan, and P.B. Rønne. Batching CSIDH group
actions using AVX-512. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2021(4):618–649, 2021. https://doi.org/10.46586/tches.v2021.i4.
618-649.

[CFG+23] H. Cheng, G. Fotiadis, J. Großschädl, D. Page, T. Pham, and P.Y.A. Ryan. RISC-V instruction
set extensions for multi-precision integer arithmetic. 2023. To be submitted.

[CFGR22] H. Cheng, G. Fotiadis, J. Großschädl, and P.Y.A. Ryan. Highly vectorized SIKE for AVX-512.
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2022(2):41–
68, 2022. https://doi.org/10.46586/tches.v2022.i2.41-68.

[CGGS22] L. Cardoso dos Santos, F. Gérard, J. Großschädl, and L. Spignoli. Rivain-prou on steroids:
Faster and stronger masking of the AES. In I. Buhan and T. Schneider, editors, Smart
Card Research and Advanced Applications (CARDIS), LNCS 13820, pages 123–145. Springer-
Verlag, 2022. https://doi.org/10.1007/978-3-031-25319-5_7.

[CGM+23] H. Cheng, J. Großschädl, B. Marshall, D. Page, and T. Pham. RISC-V instruction set ex-
tensions for lightweight symmetric cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2023(1):193–237, 2023. https://doi.org/10.
46586/tches.v2023.i1.193-237.

190

https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://eprint.iacr.org/2020/1520
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-12942-2_21
https://doi.org/10.1007/978-3-030-12942-2_21
https://doi.org/10.1007/978-3-030-41702-4_7
https://ntru.org/f/ntru-20190330.pdf
https://ntru.org/f/ntru-20190330.pdf
https://arxiv.org/abs/1607.02318
https://doi.org/10.46586/tches.v2021.i4.618-649
https://doi.org/10.46586/tches.v2021.i4.618-649
https://doi.org/10.46586/tches.v2022.i2.41-68
https://doi.org/10.1007/978-3-031-25319-5_7
https://doi.org/10.46586/tches.v2023.i1.193-237
https://doi.org/10.46586/tches.v2023.i1.193-237

BIBLIOGRAPHY

[CGRR20] H. Cheng, J. Großschädl, P.B. Rønne, and P.Y.A. Ryan. Lightweight post-quantum key en-
capsulation for 8-bit AVR microcontrollers. In Smart Card Research and Advanced Applica-
tions (CARDIS), LNCS 12609, pages 18–33. Springer-Verlag, 2020. https://doi.org/10.

1007/978-3-030-68487-7_2.

[CGRR21] H. Cheng, J. Großschädl, P.B. Rønne, and P.Y.A. Ryan. AVRNTRU: Lightweight NTRU-based
post-quantum cryptography for 8-bit AVR microcontrollers. In Design, Automation, and
Test in Europe (DATE), pages 1272–1277, 2021. https://doi.org/10.23919/DATE51398.
2021.9474033.

[CGT+20] H. Cheng, J. Großschädl, J. Tian, P.B. Rønne, and P.Y.A. Ryan. High-throughput elliptic
curve cryptography using AVX2 vector instructions. In Selected Areas in Cryptography
(SAC), LNCS 12804, pages 698–719. Springer-Verlag, 2020. https://doi.org/10.1007/

978-3-030-81652-0_27.

[CGZ20] J.-S. Coron, A. Greuet, and R. Zeitoun. Side-channel masking with pseudo-random genera-
tor. In A. Canteaut and Y. Ishai, editors,Advances in Cryptology (EUROCRYPT), LNCS 12107,
pages 342–375. Springer-Verlag, 2020. https://doi.org/10.1007/978-3-030-45727-

3_12.

[Cho15] T. Chou. Sandy2x: NewCurve25519 speed records. In O. Dunkelman and L. Keliher, editors,
Selected Areas in Cryptography (SAC), LNCS 9566, pages 145–160. Springer-Verlag, 2015.
https://doi.org/10.1007/978-3-319-31301-6_8.

[CJL+20] F. Campos, L. Jellema, M. Lemmen, L. Müller, D. Sprenkels, and B. Viguier. Assembly or
optimized C for lightweight cryptography on RISC-V? In Cryptology and Network Security
(CANS), LNCS 12579, pages 526–545. Springer-Verlag, 2020. https://doi.org/10.1007/
978-3-030-65411-5_26.

[CJS14] A.M. Childs, D. Jao, and V. Soukharev. Constructing elliptic curve isogenies in quantum
subexponential time. Journal of Mathematical Cryptology (JMC), 8(1):1–29, 2014. https:
//doi.org/10.1515/jmc-2012-0016.

[CKK+22] P. Choi, W. Kong, J.-H. Kim, M.-K. Lee, and D.K. Kim. Architectural supports for block
ciphers in a RISC CPU core by instruction overloading. IEEE Transactions on Computers
(TOC), 71(11):2844–2857, 2022. https://doi.org/10.1109/TC.2021.3050515.

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an ecient post-
quantum commutative group action. In Advances in Cryptology (ASIACRYPT), LNCS 11274,
pages 395–427. Springer-Verlag, 2018. https://doi.org/10.1007/978-3-030-03332-

3_15.

[CLN16] C. Costello, P. Longa, andM. Naehrig. Ecient algorithms for supersingular isogeny Die-
Hellman. InAdvances in Cryptology (CRYPTO), LNCS 9814, pages 572–601. Springer-Verlag,
2016. https://doi.org/10.1007/978-3-662-53018-4_21.

[Com90] P.G. Comba. Exponentiation cryptosystems on the IBMPC. IBM Systems Journal, 29(4):526–
538, 1990. https://doi.org/10.1147/sj.294.0526.

[Coo66] S.A. Cook. On theMinimumComputation Time of Functions. PhD thesis, HarvardUniversity,
1966.

[Cor14] J.-S. Coron. Higher order masking of look-up tables. In P.Q. Nguyen and E. Oswald, editors,
Advances in Cryptology (EUROCRYPT), LNCS 8441, pages 441–458. Springer-Verlag, 2014.
https://doi.org/10.1007/978-3-642-55220-5_25.

191

https://doi.org/10.1007/978-3-030-68487-7_2
https://doi.org/10.1007/978-3-030-68487-7_2
https://doi.org/10.23919/DATE51398.2021.9474033
https://doi.org/10.23919/DATE51398.2021.9474033
https://doi.org/10.1007/978-3-030-81652-0_27
https://doi.org/10.1007/978-3-030-81652-0_27
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-030-45727-3_12
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1109/TC.2021.3050515
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.1007/978-3-642-55220-5_25

BIBLIOGRAPHY

[COR22] D. Cervantes-Vázquez, E. Ochoa-Jiménez, and F. Rodríguez-Henríquez. Parallel strategies
for SIDH: toward computing SIDH twice as fast. IEEE Transactions on Computers (TOC),
71(6):1249–1260, 2022. https://doi.org/10.1109/TC.2021.3080139.

[Cos19] C. Costello. Supersingular isogeny key exchange for beginners. Cryptology ePrint Archive,
Report 2019/1321, 2019. https://eprint.iacr.org/2019/1321.

[CP20] L. Choquin and F. Piry. Arm custom instructions: Enabling innovation and greater ex-
ibility on Arm. Technical report, Arm Ltd., 2020. https://www.arm.com/why-arm/

technologies/custom-instructions.

[CP23] H. Cheng and D. Page. eLIMInate: a Leakage-focused ISE for Masked Implementation.
Cryptology ePrint Archive, Paper 2023/966, 2023. https://eprint.iacr.org/2023/966.

[CR22] J. Chi-Domínguez and F. Rodríguez-Henríquez. Optimal strategies for CSIDH. Advances in
Mathematics of Communications (AMC), 16(2):383–411, 2022. https://doi.org/10.3934/
amc.2020116.

[Cro06] Micaz wireless measurement system. Technical report, Crossbow Technology, Inc.,
2006. Data sheet, http://www.xbow.com/Products/Product_pdf_files/Wireless_

pdf/MICAz_Datasheet.pdf.

[CS09] N. Costigan and P. Schwabe. Fast elliptic-curve cryptography on the cell broadband engine.
In B. Preneel, editor, Progress in Cryptology (AFRICACRYPT), LNCS 5580, pages 368–385.
Springer-Verlag, 2009. https://doi.org/10.1007/978-3-642-02384-2_23.

[DeF17] L. De Feo. Mathematics of isogeny based cryptography. CoRR, abs/1711.04062, 2017. http:
//arxiv.org/abs/1711.04062.

[DEM+21] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and T. Unter-
luggauer. ISAP. Submission to NIST (version 2.0), 2021. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/finalist-round/updated-

spec-doc/isap-spec-final.pdf.

[DEMS21] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläer. Ascon. Submission to NIST (ver-
sion 1.2), 2021. https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-

final.pdf.

[DeV18] H. De Valence. An AVX512-IFMA implementation of the vectorized point operation
strategy, 2018. https://github.com/dalek-cryptography/curve25519-dalek/blob/

main/docs/ifma-notes.md.

[DG18] N. Drucker and S. Gueron. Fast modular squaring with AVX512IFMA. Cryptology ePrint
Archive, Paper 2018/335, 2018. https://eprint.iacr.org/2018/335.

[DG19] L. De Feo and S.D. Galbraith. SeaSign: compact isogeny signatures from class group actions.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptology (EUROCRYPT), LNCS 11478, pages
759–789. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-17659-4_26.

[DGH19] E. De Mulder, S. Gummalla, and M. Hutter. Protecting RISC-V against side-channel attacks.
In Design Automation Conference (DAC), pages 45:1–45:4, 2019. https://doi.org/10.

1145/3316781.3323485.

192

https://doi.org/10.1109/TC.2021.3080139
https://eprint.iacr.org/2019/1321
https://www.arm.com/why-arm/technologies/custom-instructions
https://www.arm.com/why-arm/technologies/custom-instructions
https://eprint.iacr.org/2023/966
https://doi.org/10.3934/amc.2020116
https://doi.org/10.3934/amc.2020116
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
https://doi.org/10.1007/978-3-642-02384-2_23
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://github.com/dalek-cryptography/curve25519-dalek/blob/main/docs/ifma-notes.md
https://github.com/dalek-cryptography/curve25519-dalek/blob/main/docs/ifma-notes.md
https://eprint.iacr.org/2018/335
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1145/3316781.3323485
https://doi.org/10.1145/3316781.3323485

BIBLIOGRAPHY

[DGK19] N. Drucker, S. Gueron, and V. Krasnov. Making AES great again: The forthcoming vector-
ized AES instruction. In Information Technology New Generations (ITNG), AISC 800, pages
37–41. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-14070-0_6.

[DHAK18] J. Daemen, S. Hoert, G. van Assche, and R. van Keer. The design of Xoodoo and Xoof.
IACR Transactions on Symmetric Cryptology (TOSC), 2018(4):1–38, 2018. https://doi.

org/10.13154/tosc.v2018.i4.1-38.

[DHH+15] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A.H. Sánchez, and P. Schwabe. High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptog-
raphy (DCC), 77(2-3):493–514, 2015. https://doi.org/10.1007/s10623-015-0087-1.

[DHM+21] J. Daemen, S. Hoert, S. Mella, M. Peeters, G. van Assche, and R. van Keer.
Xoodyak, a lightweight cryptographic scheme. Submission to NIST (version 2.0),
2021. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf.

[DJP14] L. De Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. Journal of Mathematical Cryptology (JMC), 8(3):209–247, 2014.
https://doi.org/10.1515/jmc-2012-0015.

[DKL+20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. SQISign: Compact post-
quantum signatures from quaternions and isogenies. In S. Moriai and H. Wang, editors,
Advances in Cryptology (ASIACRYPT), LNCS 12491, pages 64–93. Springer-Verlag, 2020.
https://doi.org/10.1007/978-3-030-64837-4_3.

[DLLW23] L. De Feo, A. Leroux, P. Longa, and B. Wesolowski. New algorithms for the deuring corre-
spondence - towards practical and secure sqisign signatures. In C. Hazay and M. Stam, ed-
itors, Advances in Cryptology (EUROCRYPT), LNCS 14008, pages 659–690. Springer-Verlag,
2023. https://doi.org/10.1007/978-3-031-30589-4_23.

[Dwo15] M. Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions.
National Institute of Standards and Technology (NIST), Federal Information Processing
Standards (FIPS), 2015. https://doi.org/10.6028/NIST.FIPS.202.

[EFLL20] M. Escouteloup, J.J.A. Fournier, J.-L. Lanet, and R. Lashermes. Recommendations for a
radically secure ISA. In Computer Architecture Research with RISC-V (CARRV), 2020. https:
//carrv.github.io/2020.

[Eri23] Ericsson mobility report. Technical report, Ericsson Inc., 2023. https:

//www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/

documents/2023/ericsson-mobility-report-june-2023.pdf.

[ET19] T. Edamatsu and D. Takahashi. Accelerating large integer multiplication using intel AVX-
512IFMA. In S. Wen, A.Y. Zomaya, and L.T. Yang, editors, International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP), LNCS 11944, pages 60–74.
Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-38991-8_5.

[FL15] A. Faz-Hernández and J.C. López-Hernández. Fast implementation of Curve25519 using
AVX2. In K.E. Lauter and F. Rodríguez-Henríquez, editors, Progress in Cryptology (LATIN-
CRYPT), LNCS 9230, pages 329–345. Springer-Verlag, 2015. https://doi.org/10.1007/

978-3-319-22174-8_18.

193

https://doi.org/10.1007/978-3-030-14070-0_6
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/s10623-015-0087-1
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/xoodyak-spec-final.pdf
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-30589-4_23
https://doi.org/10.6028/NIST.FIPS.202
https://carrv.github.io/2020
https://carrv.github.io/2020
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
https://www.ericsson.com/49dd9d/assets/local/reports-papers/mobility-report/documents/2023/ericsson-mobility-report-june-2023.pdf
https://doi.org/10.1007/978-3-030-38991-8_5
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18

BIBLIOGRAPHY

[FLD19] A. Faz-Hernández, J. López, and R. Dahab. High-performance implementation of elliptic
curve cryptography using vector instructions. ACM Transactions on Mathematical Software
(TOMS), 45(3):1–35, 2019. https://doi.org/10.1145/3309759.

[FLOR18] A. Faz-Hernández, J.C. López-Hernández, E. Ochoa-Jiménez, and F. Rodríguez-Henríquez.
A faster software implementation of the supersingular isogeny Die-Hellman key ex-
change protocol. IEEE Transactions on Computers (TOC), 67(11):1622–1636, 2018. https:
//doi.org/10.1109/TC.2017.2771535.

[Gal99] S.D. Galbraith. Constructing isogenies between elliptic curves over nite elds. LMS
Journal of Computation and Mathematics, 2:118–138, 1999. https://doi.org/10.1112/

S1461157000000097.

[GAST05] J. Großschädl, R.M. Avanzi, E. Savaş, and S. Tillich. Energy-ecient software implemen-
tation of long integer modular arithmetic. In Cryptographic Hardware and Embedded Sys-
tems (CHES), LNCS 3659, pages 75–90. Springer-Verlag, 2005. https://doi.org/10.1007/
11545262_6.

[GCC17] GCC Team. AVR-GCC wiki, 2017. http://gcc.gnu.org/wiki/avr-gcc#Exceptions_

to_the_Calling_Convention.

[GD23] J. Gaspoz and S. Dhooghe. Threshold implementations in software: Micro-architectural
leakages in algorithms. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2023(2):155–179, 2023. https://doi.org/10.46586/tches.v2023.i2.
155-179.

[GGM+21] S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham, and F. Regazzoni. An instruction
set extension to support software-based masking. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2021(4):283–325, 2021. https://doi.org/10.
46586/tches.v2021.i4.283-325.

[GHP+21] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem. Coco: Co-design and co-
verication of masked software implementations on CPUs. In USENIX Security Symposium,
pages 1469–1468, 2021. https://www.usenix.org/conference/usenixsecurity21/

presentation/gigerl.

[GIK+21] C. Guo, T. Iwata, M. Khairallah, K. Minematsu, and T. Peyrin. Romulus. Submission to NIST
(version 1.3), 2021. https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-

final.pdf.

[GJM+17] H. Gross, M. Jelinek, S. Mangard, T. Unterluggauer, and M. Werner. Concealing secrets in
embedded processors designs. In Smart Card Research and Advanced Applications (CARDIS),
LNCS 10146, pages 89–104. Springer-Verlag, 2017. https://doi.org/10.1007/978-3-

319-54669-8_6.

[GK16] S. Gueron and V. Krasnov. Accelerating big integer arithmetic using intel IFMA extensions.
In P. Montuschi, M.J. Schulte, J. Hormigo, S.F. Oberman, and N. Revol, editors, Computer
Arithmetic (ARITH), pages 32–38. IEEE, 2016. https://doi.org/10.1109/ARITH.2016.

22.

[GMPO20] S. Gao, B. Marshall, D. Page, and E. Oswald. Share slicing: friend or foe? IACR Transactions
on Cryptographic Hardware and Embedded Systems (TCHES), 2020(1):152–174, 2020. https:
//doi.org/10.13154/tches.v2020.i1.152-174.

194

https://doi.org/10.1145/3309759
https://doi.org/10.1109/TC.2017.2771535
https://doi.org/10.1109/TC.2017.2771535
https://doi.org/10.1112/S1461157000000097
https://doi.org/10.1112/S1461157000000097
https://doi.org/10.1007/11545262_6
https://doi.org/10.1007/11545262_6
http://gcc.gnu.org/wiki/avr-gcc#Exceptions_to_the_Calling_Convention
http://gcc.gnu.org/wiki/avr-gcc#Exceptions_to_the_Calling_Convention
https://doi.org/10.46586/tches.v2023.i2.155-179
https://doi.org/10.46586/tches.v2023.i2.155-179
https://doi.org/10.46586/tches.v2021.i4.283-325
https://doi.org/10.46586/tches.v2021.i4.283-325
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://doi.org/10.1007/978-3-319-54669-8_6
https://doi.org/10.1007/978-3-319-54669-8_6
https://doi.org/10.1109/ARITH.2016.22
https://doi.org/10.1109/ARITH.2016.22
https://doi.org/10.13154/tches.v2020.i1.152-174
https://doi.org/10.13154/tches.v2020.i1.152-174

BIBLIOGRAPHY

[GMPP20] S. Gao, B. Marshall, D. Page, and T.H. Pham. FENL: an ISE to mitigate analogue micro-
architectural leakage. IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2020(2):73–98, 2020. https://doi.org/10.13154/tches.v2020.i2.73-98.

[GPP11] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of lightweight hash functions.
In Advances in Cryptology (CRYPTO), LNCS 6841, pages 222–239. Springer-Verlag, 2011.
https://doi.org/10.1007/978-3-642-22792-9_13.

[GPW+04] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz. Comparing elliptic curve cryp-
tography and RSA on 8-bit CPUs. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems (CHES), LNCS 3156, pages 119–132. Springer-Verlag, 2004.
https://doi.org/10.1007/978-3-540-28632-5_9.

[Gu17] C. Gu. Integer version of Ring-LWE and its applications. Cryptology ePrint Archive, Paper
2017/641, 2017. https://eprint.iacr.org/2017/641.

[Gue09] S. Gueron. Intel’s new AES instructions for enhanced performance and security. In Fast
Software Encryption (FSE), LNCS 5665, pages 51–66. Springer-Verlag, 2009. https://doi.
org/10.1007/978-3-642-03317-9_4.

[GYH18] Q. Ge, Y. Yarom, and G. Heiser. No security without time protection: we need a new
hardware-software contract. In Asia-Pacic Workshop on Systems (APSys), pages 1:1–1:9,
2018. https://doi.org/10.1145/3265723.3265724.

[Ham15] M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive, Paper
2015/625, 2015. https://eprint.iacr.org/2015/625.

[Ham19] M. Hamburg. ThreeBears, 2019. https://www.shiftleft.org/papers/threebears/

threebears-spec.pdf.

[HB21] V. Hadzic and R. Bloem. COCOALMA: A versatile masking verier. In Formal Methods in
Computer Aided Design (FMCAD), pages 1–10. IEEE, 2021. https://doi.org/10.34727/
2021/isbn.978-3-85448-046-4_9.

[HBD+22] A. Hulsing, D.J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag, P. Kam-
panakis, S. Kolbl, T. Lange, M.M. Lauridsen, F. Mendel, R. Niederhagen, C. Rechberger,
J. Rijneveld, P. Schwabe, J.-P. Aumasson, B. Westerbaan, andW. Beullens. SPHINCS+, 2022.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf.

[HEY20] H. Hisil, B. Egrice, and M. Yassi. Fast 4 way vectorized ladder for the complete set of
Montgomery curves. Cryptology ePrint Archive, Paper 2020/388, 2020. https://eprint.
iacr.org/2020/388.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Y. Kalai and L. Reyzin, editors, Theory of Cryptography (TCC), LNCS
10677, pages 341–371. Springer-Verlag, 2017. https://doi.org/10.1007/978-3-319-

70500-2_12.

[HJM07] M. Hell, T. Johansson, and W. Meier. Grain: a stream cipher for constrained environments.
International Journal of Wireless and Mobile Computing (IJWMC), 2(1):86–93, 2007. https:
//doi.org/10.1504/IJWMC.2007.013798.

[HJM+21] M. Hell, T. Johansson, A. Maximov, W. Meier, J. Sönnerup, and H. Yoshida.
Grain-128AEADv2. Submission to NIST (version 2.0), 2021. https://csrc.nist.

195

https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-540-28632-5_9
https://eprint.iacr.org/2017/641
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1145/3265723.3265724
https://eprint.iacr.org/2015/625
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://www.shiftleft.org/papers/threebears/threebears-spec.pdf
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://eprint.iacr.org/2020/388
https://eprint.iacr.org/2020/388
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1504/IJWMC.2007.013798
https://doi.org/10.1504/IJWMC.2007.013798
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf

BIBLIOGRAPHY

gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-

round/updated-spec-doc/grain-128aead-spec-final.pdf.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware security evaluation
board equipped with a 28-nm FPGA. In IEEE Global Conference on Consumer Electronics,
pages 657–660, 2012. https://doi.org/10.1109/GCCE.2012.6379944.

[HLKA20] A. Hutchinson, J. LeGrow, B. Koziel, and R. Azarderakhsh. Further optimizations of CSIDH:
A systematic approach to ecient strategies, permutations, and bound vectors. In Applied
Cryptography and Network Security (ACNS), LNCS 12146, pages 481–501. Springer-Verlag,
2020. https://doi.org/10.1007/978-3-030-57808-4_24.

[HMV04] D.R. Hankerson, A.J. Menezes, and S.A. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004. https://doi.org/10.1007/b97644.

[HPS98] J. Hostein, J. Pipher, and J.H. Silverman. NTRU: a ring-based public key cryptosystem.
In J. Buhler, editor, Algorithmic Number Theory (ANTS-III), LNCS 1423, pages 267–288.
Springer-Verlag, 1998. https://doi.org/10.1007/BFb0054868.

[HS03] J. Hostein and J.H. Silverman. Random small hamming weight products with applications
to cryptography. Discrete Applied Mathematics, 130(1):37–49, 2003. https://doi.org/10.
1016/S0166-218X(02)00588-7.

[HS15] M. Hutter and P. Schwabe. Multiprecision multiplication on AVR revisited. Journal of Cryp-
tographic Engineering (JCEN), 5(3):201–214, 2015. https://doi.org/10.1007/s13389-

015-0093-2.

[HV11] A. Hakkala and S. Virtanen. Accelerating cryptographic protocols: A review of theory and
technologies. In Communication Theory, Reliability, and Quality of Service (CTRQ), pages
103–109, 2011.

[Int18a] Intel 64 and IA-32 architectures – software developer’s manual (volume 1: Basic architec-
ture). Technical Report 325383-067US, Intel Corp., 2018. http://software.intel.com/
en-us/articles/intel-sdm.

[Int18b] Intel 64 and ia-32 architectures optimization reference manual. Technical report, In-
tel Corp., 2018. https://software.intel.com/content/dam/develop/public/us/en/
documents/64-ia-32-architectures-optimization-manual.pdf.

[Int20] 10th generation intel core processor based on ice lake microarchitecture in-
struction throughput and latency. Technical report, Intel Corp., 2020. https:

//software.intel.com/content/www/us/en/develop/download/10th-generation-

intel-core-processor-instruction-throughput-and-latency-docs.html.

[Int22a] Intel 64 and IA-32 architectures – software developer’s manual (volume 2: Instruction set
reference a-z). Technical Report 325383-078US, Intel Corp., 2022. http://software.

intel.com/en-us/articles/intel-sdm.

[Int22b] Intel 64 and IA-32 architectures optimization reference manual. Technical report, Intel
Corp., 2022. http://software.intel.com/en-us/articles/intel-sdm.

[JAC+22] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Hutchinson,
A. Jalali, K. Karabina, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes,
V. Soukharev, and D. Urbanik. Supersingular Isogeny Key Encapsulation, 2022. https:

//sike.org/files/SIDH-spec.pdf.

196

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://doi.org/10.1109/GCCE.2012.6379944
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/b97644
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1016/S0166-218X(02)00588-7
https://doi.org/10.1016/S0166-218X(02)00588-7
https://doi.org/10.1007/s13389-015-0093-2
https://doi.org/10.1007/s13389-015-0093-2
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/content/dam/develop/public/us/en/documents/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/www/us/en/develop/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs.html
https://software.intel.com/content/www/us/en/develop/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs.html
https://software.intel.com/content/www/us/en/develop/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs.html
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf

BIBLIOGRAPHY

[JAKJ19] A. Jalali, R. Azarderakhsh, M. Kermani, and D. Jao. Towards optimized and constant-time
CSIDH on embedded devices. In Constructive Side-Channel Analysis and Secure Design
(COSADE), LNCS 11421, pages 215–231. Springer-Verlag, 2019. https://doi.org/10.

1007/978-3-030-16350-1_12.

[JD11] D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In B.-Y. Yang, editor, Post-Quantum Cryptography (PQCrypto), LNCS 7071,
pages 19–34. Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-25405-5_2.

[Jel19] L. Jellema. Optimizing Ascon on RISC-V. BSc thesis, Radboud University,
2019. https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___

Optimizing_Ascon_on_RISC-V.pdf.

[JHH+11] K. Jang, S. Han, S. Han, S.B. Moon, and K. Park. SSLShader: Cheap SSL acceleration with
commodity processors. In D.G. Andersen and S. Ratnasamy, editors, Networked Systems
Design and Implementation (NSDI). USENIX Association, 2011.

[KAK96] Ç.K. Koç, T. Acar, and B.S. Kaliski Jr. Analyzing and comparing Montgomery multiplication
algorithms. IEEE Micro, 16(3):26–33, 1996. https://doi.org/10.1109/40.502403.

[KBSV18] A. Karmakar, J.M. Bermudo Mera, S. Sinha Roy, and I. Verbauwhede. Saber on ARM:
CCA-secure module lattice-based key encapsulation on ARM. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (TCHES), 2018(3):243–266, 2018. https://doi.
org/10.13154/tches.v2018.i3.243-266.

[KCP16] J. Kelsey, S.-J. Chang, and R. Perlner. SHA-3 derived functions: cSHAKE, KMAC, Tuple-
Hash and ParallelHash. National Institute of Standards and Technology (NIST), Special
Publication 800-185, 2016. https://doi.org/10.6028/NIST.SP.800-185.

[KG19] D. Kostic and S. Gueron. Using the new VPMADD instructions for the new post quantum
key encapsulation mechanism SIKE. In N. Takagi, S. Boldo, and M. Langhammer, editors,
Computer Arithmetic (ARITH), pages 215–218. IEEE, 2019. https://doi.org/10.1109/

ARITH.2019.00050.

[KJJ99] P.C. Kocher, J. Jae, and B. Jun. Dierential power analysis. In Advances in Cryptology
(CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999. https://doi.org/10.1007/
3-540-48405-1_25.

[KLM07] P.R. Kaye, R. Laamme, and M. Mosca. An Introduction to Quantum Computing. Oxford
University Press, 2007.

[KO63] A.A. Karatsuba and Y.P. Ofman. Multiplication of multidigit numbers on automata. Soviet
Physics - Doklady, 7(7):595–596, 1963.

[Koç09] Ç.K. Koç. About cryptographic engineering. In Ç.K. Koç, editor, Cryptographic Engineering,
chapter 1, pages 1–4. Springer, 2009. https://doi.org/10.1007/978-0-387-71817-0_9.

[Koc96] P.C. Kocher. Timing attacks on implementations of Die-Hellman, RSA, DSS, and other
systems. In N. Koblitz, editor,Advances in Cryptology (CRYPTO), LNCS 1109, pages 104–113.
Springer-Verlag, 1996. https://doi.org/10.1007/3-540-68697-5_9.

[KRS19] M.J. Kannwischer, J. Rijneveld, and P. Schwabe. Faster multiplication in Z2𝑚 [𝑥] on Cortex-
M4 to speed up NIST PQC candidates. In R.H. Deng, V. Gauthier-Umaña, M. Ochoa, and
M. Yung, editors, Applied Cryptography and Network Security (ACNS), LNCS 11464, pages
281–301. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-21568-2_14.

197

https://doi.org/10.1007/978-3-030-16350-1_12
https://doi.org/10.1007/978-3-030-16350-1_12
https://doi.org/10.1007/978-3-642-25405-5_2
https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
https://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
https://doi.org/10.1109/40.502403
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.1109/ARITH.2019.00050
https://doi.org/10.1109/ARITH.2019.00050
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-0-387-71817-0_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-030-21568-2_14

BIBLIOGRAPHY

[KS20] P. Kiaei and P. Schaumont. Domain-oriented masked instruction set architecture for RISC-
V. Cryptology ePrint Archive, Report 2020/465, 2020. https://eprint.iacr.org/2020/
465.

[Kup05] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM Journal on Computing, 35(1):170–188, 2005. https://doi.org/10.1137/
S0097539703436345.

[Kup13] G. Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. In S. Severini and F.G.S.L. Brandão, editors, Theory of Quantum Com-
putation (TQC), volume 22 of LIPIcs, pages 20–34. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2013. https://doi.org/10.4230/LIPIcs.TQC.2013.20.

[LDK+21] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehle, and
S. Bai. CRYSTALS-DILITHIUM, 2021. https://pq-crystals.org/dilithium/data/

dilithium-specification-round3-20210208.pdf.

[Lem20] M. Lemmen. Optimizing Elephant for RISC-V. BSc thesis, Radboud University,
2020. https://www.cs.ru.nl/bachelors-theses/2020/Mauk_Lemmen___4798937___

Optimizing_Elephant_for_RISC-V.pdf.

[LG14] Z. Liu and J. Großschädl. New speed records for Montgomery modular multiplication on 8-
bit AVRmicrocontrollers. In D. Pointcheval and D. Vergnaud, editors, Progress in Cryptology
(AFRICACRYPT), LNCS 8469, pages 215–234. Springer-Verlag, 2014. https://doi.org/10.
1007/978-3-319-06734-6_14.

[LHP20] T. Li, B. Hopkins, and S. Parameswaran. SIMF: Single-instructionmultiple-ushmechanism
for processor temporal isolation. CoRR, abs/2011.10249, 2020. https://arxiv.org/abs/
2011.10249.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In H. Gilbert, editor, Advances in Cryptology (EUROCRYPT), LNCS 6110, pages 1–23.
Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-13190-5_1.

[LSGK14] Z. Liu, H. Seo, J. Großschädl, and H. Kim. Reverse product-scanning multiplication and
squaring on 8-bit AVR processors. In L.C.K. Hui, S.H. Qing, E. Shi, and S.-M. Yiu, editors,
Information and Communications Security (ICICS), LNCS 8958, pages 158–175. Springer-
Verlag, 2014. https://doi.org/10.1007/978-3-319-21966-0_12.

[MAB+23] C.A.Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, E. Per-
sichetti, G. Zémor, J. Bos, A. Dion, J. Lacan, J.-M. Robert, and P. Veron. Hamming Quasi-
Cyclic (hqc), 2023. http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf.

[MBTM17] K. McKay, L. Bassham, M.S. Turan, and N. Mouha. Report on lightweight cryptography.
Technical report, 2017. https://doi.org/10.6028/NIST.IR.8114.

[MCR19] M. Meyer, F. Campos, and S. Reith. On lions and elligators: An ecient constant-time
implementation of CSIDH. In Post-Quantum Cryptography (PQCrypto), LNCS 11505, pages
307–325. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-25510-7_17.

[MMP+23] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. A direct key recovery
attack on SIDH. In C. Hazay and M. Stam, editors, Advances in Cryptology (EUROCRYPT),
LNCS 14008, pages 448–471. Springer-Verlag, 2023. https://doi.org/10.1007/978-3-

031-30589-4_16.

198

https://eprint.iacr.org/2020/465
https://eprint.iacr.org/2020/465
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://www.cs.ru.nl/bachelors-theses/2020/Mauk_Lemmen___4798937___Optimizing_Elephant_for_RISC-V.pdf
https://www.cs.ru.nl/bachelors-theses/2020/Mauk_Lemmen___4798937___Optimizing_Elephant_for_RISC-V.pdf
https://doi.org/10.1007/978-3-319-06734-6_14
https://doi.org/10.1007/978-3-319-06734-6_14
https://arxiv.org/abs/2011.10249
https://arxiv.org/abs/2011.10249
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-21966-0_12
http://pqc-hqc.org/doc/hqc-specification_2023-04-30.pdf
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16

BIBLIOGRAPHY

[MNP+21] B. Marshall, G.R. Newell, D. Page, M.-J.O. Saarinen, and C. Wolf. The design of scalar AES
instruction set extensions for RISC-V. IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), 2021(1):109–136, 2021. https://doi.org/10.46586/tches.
v2021.i1.109-136.

[Mon85] P.L. Montgomery. Modular multiplication without trial division. Mathematics of Compu-
tation (MCOM), 44(170):519–521, 1985. https://doi.org/10.1090/S0025-5718-1985-

0777282-X.

[Mon87] P.L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math-
ematics of Computation (MCOM), 48(177):243–264, 1987. https://doi.org/10.1090/

S0025-5718-1987-0866113-7.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, 2007. https://doi.org/10.1007/978-0-387-38162-6.

[MOV96] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

[MP21] B. Marshall and D. Page. SME: Scalable Masking Extensions. Cryptology ePrint Archive,
Paper 2021/1416, 2021. https://eprint.iacr.org/2021/1416.

[MPC00] L.May, L. Penna, andA. Clark. An implementation of bitslicedDES on the PentiumMMXTM

processor. In Australasian Conference on Information Security and Privacy (ACISP), LNCS
1841, pages 112–122. Springer-Verlag, 2000. https://doi.org/10.1007/10718964_10.

[MPW22] B. Marshall, D. Page, and J. Webb. MIRACLE: MIcRo-ArChitectural Leakage Evalua-
tion. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2022(1):175–220, 2022. https://doi.org/10.46586/tches.v2022.i1.175-220.

[MR04] S. Micali and L. Reyzin. Physically observable cryptography. In Theory of Cryptography
(TCC), LNCS 2951, pages 278–296. Springer-Verlag, 2004. https://doi.org/10.1007/

978-3-540-24638-1_16.

[MR18] M. Meyer and S. Reith. A faster way to the CSIDH. In D. Chakraborty and T. Iwata, editors,
Progress in Cryptology (INDOCRYPT), LNCS 11356, pages 137–152. Springer-Verlag, 2018.
https://doi.org/10.1007/978-3-030-05378-9_8.

[MS16] D. Moody and D. Shumow. Analogues of Vélu’s formulas for isogenies on alternate models
of elliptic curves. Mathematics of Computation (MCOM), 85(300):1929–1951, 2016. https:
//doi.org/10.1090/mcom/3036.

[Nat19] National Academies of Sciences, Engineering, andMedicine. Quantum Computing: Progress
and Prospects. The National Academies Press, 2019. https://doi.org/10.17226/25196.

[NIK04] K. Nadehara, M. Ikekawa, and I. Kuroda. Extended instructions for the AES cryptography
and their ecient implementation. In Signal Processing Systems (SIPS), pages 152–157, 2004.
https://doi.org/10.1109/SIPS.2004.1363041.

[NIS07] Recommendation for block cipher modes of operation: Galois/Counter Mode (GCM) and
GMAC. National Institute of Standards and Technology (NIST), Special Publication 800-
38D, 2007. http://csrc.nist.gov.

199

https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.46586/tches.v2021.i1.109-136
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1007/978-0-387-38162-6
https://eprint.iacr.org/2021/1416
https://doi.org/10.1007/10718964_10
https://doi.org/10.46586/tches.v2022.i1.175-220
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1090/mcom/3036
https://doi.org/10.1090/mcom/3036
https://doi.org/10.17226/25196
https://doi.org/10.1109/SIPS.2004.1363041
http://csrc.nist.gov

BIBLIOGRAPHY

[NIS18] Submission requirements and evaluation criteria for the lightweight cryptography
standardization process. National Institute of Standards and Technology (NIST),
2018. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/

documents/final-lwc-submission-requirements-august2018.pdf.

[NOOS95] E. Nahum, S. O’Malley, H. Orman, and R. Schroeppel. Towards high performance cryp-
tographic software. In High Performance Communication Subsystems (HPCS), pages 69–72,
1995. https://doi.org/10.1109/HPCS.1995.662009.

[NS21] K. Nath and P. Sarkar. Ecient 4-way vectorizations of the Montgomery ladder. IEEE
Transactions on Computers (TOC), 71(3):712–723, 2021. https://doi.org/10.1109/TC.

2021.3060505.

[OAL18] G. Orisaka, D. Aranha, and J. López. Finite eld arithmetic using AVX-512 for isogeny-based
cryptography. In XVIII Simpósio Brasileiro de Segurança da Informação e Sistemas Com-
putacionais (SBSeg), pages 49–56, 2018. https://sol.sbc.org.br/index.php/sbseg/

article/view/4269/4200.

[OAYT19] H. Onuki, Y. Aikawa, T. Yamazaki, and T. Takagi. A faster constant-time algorithm of
CSIDH keeping two points. In International Workshop on Security (IWSEC), LNCS 11689,
pages 23–33. Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-26834-3_2.

[Pei20] C. Peikert. He gives C-sieves on the CSIDH. In A. Canteaut and Y. Ishai, editors, Advances
in Cryptology (EUROCRYPT), LNCS 12106, pages 463–492. Springer-Verlag, 2020. https:

//doi.org/10.1007/978-3-030-45724-2_16.

[PFH+20] T. Prest, P.-A. Fouque, J. Hostein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset,
G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-based compact signatures
over ntru, 2020. https://falcon-sign.info/falcon.pdf.

[PFPB19] L. Papachristodoulou, A.P. Fournaris, K. Papagiannopoulos, and L. Batina. Practical eval-
uation of protected residue number system scalar multiplication. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2019(1):259–282, 2019. https:

//doi.org/10.13154/tches.v2019.i1.259-282.

[Por18] T. Pornin. Why constant-time crypto? BearSSL, 2018. https://bearssl.org/

constanttime.html.

[POW18] Power ISA. Technical Report 2.07 B, IBM, 2018. https://ibm.ent.box.com/s/

jd5w15gz301s5b5dt375mshpq9c3lh4u.

[PQM4] M.J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, and K. Stoelen. PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4.

[Pre23] Precedence Research. Microcontroller (MCU) market - global market size, trends
analysis, segment forecasts, regional outlook 2022 - 2030, 2023. https://www.

precedenceresearch.com/microcontroller-mcu-market.

[PSRH23] K. Phalakarn, V. Suppakitpaisarn, F. Rodríguez-Henríquez, and M.A. Hasan. Vectorized
and parallel computation of large smooth-degree isogenies using precedence-constrained
scheduling. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES),
2023(3):246–269, 2023. https://doi.org/10.46586/tches.v2023.i3.246-269.

200

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://doi.org/10.1109/HPCS.1995.662009
https://doi.org/10.1109/TC.2021.3060505
https://doi.org/10.1109/TC.2021.3060505
https://sol.sbc.org.br/index.php/sbseg/article/view/4269/4200
https://sol.sbc.org.br/index.php/sbseg/article/view/4269/4200
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://falcon-sign.info/falcon.pdf
https://doi.org/10.13154/tches.v2019.i1.259-282
https://doi.org/10.13154/tches.v2019.i1.259-282
https://bearssl.org/constanttime.html
https://bearssl.org/constanttime.html
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://github.com/mupq/pqm4
https://www.precedenceresearch.com/microcontroller-mcu-market
https://www.precedenceresearch.com/microcontroller-mcu-market
https://doi.org/10.46586/tches.v2023.i3.246-269

BIBLIOGRAPHY

[PV17] K. Papagiannopoulos and N. Veshchikov. Mind the gap: Towards secure 1st-order masking
in software. In Constructive Side-Channel Analysis and Secure Design (COSADE), LNCS
10348, pages 282–297. Springer-Verlag, 2017. https://doi.org/10.1007/978-3-319-

64647-3_17.

[Reg04] O. Regev. A subexponential time algorithm for the dihedral hidden subgroup problem with
polynomial space. arXiv preprint, 2004. https://arxiv.org/abs/quant-ph/0406151.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
H.N. Gabow and R. Fagin, editors, Symposium on Theory of Computing (STOC), pages 84–
93. ACM, 2005. https://doi.org/10.1145/1060590.1060603.

[RI16] F. Regazzoni and P. Ienne. Instruction set extensions for secure applications. In Design,
Automation, and Test in Europe (DATE), pages 1529–1534, 2016.

[RNSL17] M. Roetteler, M. Naehrig, K.M. Svore, and K.E. Lauter. Quantum resource estimates for
computing elliptic curve discrete logarithms. In T. Takagi and T. Peyrin, editors, Advances
in Cryptology (ASIACRYPT), LNCS 10625, pages 241–270. Springer-Verlag, 2017. https:

//doi.org/10.1007/978-3-319-70697-9_9.

[Rob23] D. Robert. Breaking SIDH in polynomial time. In C. Hazay and M. Stam, editors, Advances
in Cryptology (EUROCRYPT), LNCS 14008, pages 472–503. Springer-Verlag, 2023. https:

//doi.org/10.1007/978-3-031-30589-4_17.

[RP10] M. Rivain and E. Prou. Provably secure higher-order masking of AES. In S. Man-
gard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded Systems (CHES),
LNCS 6225, pages 413–427. Springer-Verlag, 2010. https://doi.org/10.1007/978-3-

642-15031-9_28.

[RPM20] S. Renner, E. Pozzobon, and J. Mottok. A hardware in the loop benchmark suite to eval-
uate NIST LWC ciphers on microcontrollers. In International Conference on Information
and Communications Security (ICICS), LNCS 12282, pages 495–509. Springer-Verlag, 2020.
https://doi.org/10.1007/978-3-030-61078-4_28.

[RSA78] R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. https://

doi.org/10.1145/359340.359342.

[RV19] The RISC-V instruction set manual, Volume I: User-level ISA (version 20191213-base-
ratied). Technical report, 2019. http://riscv.org/specifications.

[RV21] The RISC-V instruction set manual, Volume II: Privileged architecture (version 20211203-
priv-msu-ratied). Technical report, 2021. http://riscv.org/specifications.

[RVB21] RISC-V bit-manipulation ISA-extensions (version 1.0.0). Technical report, 2021. https:

//github.com/riscv/riscv-bitmanip.

[RVK22] RISC-V cryptographic extension proposals, Volume I: Scalar & entropy source instruc-
tions (version 1.0.1). Technical report, 2022. https://github.com/riscv/riscv-crypto/
releases/download/v1.0.1-scalar/riscv-crypto-spec-scalar-v1.0.1.pdf.

[RVK23] RISC-V cryptographic extension proposals, Volume II: Vector instructions (version
0.9.5). Technical report, 2023. https://github.com/riscv/riscv-crypto/releases/

download/v20230509/riscv-crypto-spec-vector.pdf.

201

https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-319-64647-3_17
https://arxiv.org/abs/quant-ph/0406151
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-319-70697-9_9
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-030-61078-4_28
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://riscv.org/specifications
http://riscv.org/specifications
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-crypto/releases/download/v1.0.1-scalar/riscv-crypto-spec-scalar-v1.0.1.pdf
https://github.com/riscv/riscv-crypto/releases/download/v1.0.1-scalar/riscv-crypto-spec-scalar-v1.0.1.pdf
https://github.com/riscv/riscv-crypto/releases/download/v20230509/riscv-crypto-spec-vector.pdf
https://github.com/riscv/riscv-crypto/releases/download/v20230509/riscv-crypto-spec-vector.pdf

BIBLIOGRAPHY

[RVV21] RISC-V “V” vector extension. Technical report, 2021. https://github.com/riscv/riscv-
v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf.

[Saa20] M.-J.O. Saarinen. A lightweight ISA extension for AES and SM4. 2020. https://ascslab.
org/conferences/secriscv/program.html.

[SAB+21] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck,
G. Seiler, and D. Stehle. CRYSTALS-Kyber, 2021. https://pq-crystals.org/kyber/

data/kyber-specification-round3-20210804.pdf.

[Sco18] M. Scott. Missing a trick: Karatsuba variations. Cryptography and Communications, 10(1):5–
15, 2018. https://doi.org/10.1007/s12095-017-0217-x.

[SCS+21] M.A. Shelton, L. Chmielewski, N. Samwel, M. Wagner, L. Batina, and Y. Yarom. Rosita++:
Automatic higher-order leakage elimination from cryptographic code. In Computer
and Communications Security (CCS), pages 685–699, 2021. https://doi.org/10.1145/

3460120.3485380.

[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Foundations of Computer Science (FOCS), pages 124–134. IEEE Computer Society, 1994.
https://doi.org/10.1109/SFCS.1994.365700.

[Sin19] S. Sinha Roy. SaberX4: high-throughput software implementation of saber key encapsu-
lation mechanism. In International Conference on Computer Design (ICCD), pages 321–324.
IEEE, 2019. https://doi.org/10.1109/ICCD46524.2019.00050.

[SL21] N. Smart and T. Lange. Post-quantum cryptography: Current state and quantum
mitigation. Technical report, European Union Agency for Cybersecurity (ENISA),
2021. https://www.enisa.europa.eu/publications/post-quantum-cryptography-

current-state-and-quantum-mitigation.

[SLLH18] H. Seo, Z. Liu, P. Longa, and Z. Hu. SIDH on ARM: faster modular multiplications for
faster post-quantum supersingular isogeny key exchange. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems (TCHES), 2018(3):1–20, 2018. https://doi.org/
10.13154/tches.v2018.i3.1-20.

[SP21] S. Steinegger and R. Primas. A fast and compact RISC-V accelerator for Ascon and friends.
In Smart Card Research and Advanced Applications (CARDIS), LNCS 12609, pages 53–67.
Springer-Verlag, 2021. https://doi.org/10.1007/978-3-030-68487-7_4.

[SPA16] Oracle SPARC architecture 2011. Technical Report D1.0.0, Oracle Corp., 2016.
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/

documentation/140521-ua2011-d096-p-ext-2306580.pdf.

[SS22] K. Stangherlin and M. Sachdev. Design and implementation of a secure RISC-V micropro-
cessor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(11):1705–1715,
2022. https://doi.org/10.1109/TVLSI.2022.3203307.

[SSB+21] M.A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M.Wagner, and Y. Yarom. Rosita: Towards
automatic elimination of power-analysis leakage in ciphers. InNetwork and Distributed Sys-
tem Security Symposium (NDSS), 2021. https://doi.org/10.14722/ndss.2021.23137.

[Sto19] K. Stoelen. Ecient cryptography on the RISC-V architecture. In Progress in Cryptology
(LATINCRYPT), LNCS 11774, pages 323–340. Springer-Verlag, 2019. https://doi.org/10.
1007/978-3-030-30530-7_16.

202

https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://ascslab.org/conferences/secriscv/program.html
https://ascslab.org/conferences/secriscv/program.html
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/s12095-017-0217-x
https://doi.org/10.1145/3460120.3485380
https://doi.org/10.1145/3460120.3485380
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/ICCD46524.2019.00050
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://doi.org/10.13154/tches.v2018.i3.1-20
https://doi.org/10.13154/tches.v2018.i3.1-20
https://doi.org/10.1007/978-3-030-68487-7_4
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://doi.org/10.1109/TVLSI.2022.3203307
https://doi.org/10.14722/ndss.2021.23137
https://doi.org/10.1007/978-3-030-30530-7_16
https://doi.org/10.1007/978-3-030-30530-7_16

BIBLIOGRAPHY

[Tak20] D. Takahashi. Fast multipleMontgomerymultiplications using Intel AVX-512IFMA instruc-
tions. In International Conference on Computational Science and Its Applications (ICCSA),
LNCS 12253, pages 655–663. Springer-Verlag, 2020. https://doi.org/10.1007/978-3-

030-58814-4_52.

[Tan09] S. Tani. Claw nding algorithms using quantum walk. Theoretical Computer Science (TCS),
410(50):5285–5297, 2009. https://doi.org/10.1016/j.tcs.2009.08.030.

[Tat66] J. Tate. Endomorphisms of abelian varieties over nite elds. Inventiones Mathematicae,
2(2):134–144, 1966. https://doi.org/10.1007/BF01404549.

[TGSD20] E. Tehrani, T. Graba, A. Si-Merabet, and J.-L. Danger. RISC-V extension for lightweight
cryptography. In Euromicro Conference on Digital System Design (DSD), pages 222–228,
2020. https://doi.org/10.1109/DSD51259.2020.00045.

[TKS10] S. Tillich, M. Kirschbaum, and A. Szekely. SCA-resistant embedded processors: The next
generation. In Annual Computer Security Applications Conference (ACSAC), pages 211–220,
2010. https://doi.org/10.1145/1920261.1920293.

[TLP05] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation with
precise timing. In Information Processing in Sensor Networks (IPSN), pages 477–482. IEEE,
2005. https://doi.org/10.1109/IPSN.2005.1440978.

[TMC+21] M.S. Turan, K. McKay, D. Chang, C. Calik, L. Bassham, J. Kang, and J. Kelsey. Status re-
port on the second round of the NIST lightweight cryptography standardization process.
Technical report, 2021. https://doi.org/10.6028/NIST.IR.8369.

[TMC+23] M.S. Turan, K. McKay, D. Chang, L. Bassham, J. Kang, N.Waller, J. Kelsey, and D. Hong. Sta-
tus report on the nal round of the NIST lightweight cryptography standardization process.
Technical report, 2023. https://doi.org/10.6028/NIST.IR.8454.

[Too63] A. Toom. The complexity of a scheme of functional elements realizing the multiplication
of integers. Soviet Mathematics-Doklady, 7:714–716, 1963.

[TWL+22] J. Tian, P. Wang, Z. Liu, J. Lin, Z. Wang, and J. Großschädl. Ecient software implementa-
tion of the SIKE protocol using a new data representation. IEEE Transactions on Computers
(TOC), 71(3):670–683, 2022. https://doi.org/10.1109/TC.2021.3057331.

[Vél71] J. Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de
Paris, 273:238–241, 1971.

[Wat16] A. Waterman. Design of the RISC-V Instruction Set Architecture. PhD thesis, University
of California at Berkeley, 2016. https://people.eecs.berkeley.edu/~krste/papers/
EECS-2016-1.pdf.

[WH21] H. Wu and T. Huang. TinyJAMBU. Submission to NIST (version 2.0), 2021.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf.

[WMSN19] R.N.M. Watson, S.W. Moore, P. Sewell, and P.G. Neumann. An introduction to CHERI.
Technical Report UCAM-CL-TR-941, University of Cambridge, 2019. https://www.cl.

cam.ac.uk/techreports/UCAM-CL-TR-941.pdf.

[WSG+20] N. Wisto, M. Schneider, F.K. Gürkaynak, L. Benini, and G. Heiser. Prevention of microar-
chitectural covert channels on an open-source 64-bit RISC-V core. In Computer Architecture
Research with RISC-V (CARRV), 2020. https://carrv.github.io/2020.

203

https://doi.org/10.1007/978-3-030-58814-4_52
https://doi.org/10.1007/978-3-030-58814-4_52
https://doi.org/10.1016/j.tcs.2009.08.030
https://doi.org/10.1007/BF01404549
https://doi.org/10.1109/DSD51259.2020.00045
https://doi.org/10.1145/1920261.1920293
https://doi.org/10.1109/IPSN.2005.1440978
https://doi.org/10.6028/NIST.IR.8369
https://doi.org/10.6028/NIST.IR.8454
https://doi.org/10.1109/TC.2021.3057331
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf
https://carrv.github.io/2020

	I Introductory remarks
	Introduction
	Next-generation cryptography
	Cryptographic engineering
	Contributions and organization
	Publications

	Background
	Platform
	Trade-off
	Efficiency
	Security

	II Lightweight implementation of lattice-based cryptography
	Lightweight NTRU Prime
	Introduction
	Background
	Implementation
	Evaluation
	Conclusion

	Lightweight ThreeBears
	Introduction
	Background
	Implementation
	Evaluation
	Conclusion

	III Vectorized implementation of isogeny-based cryptography
	Vectorized CSIDH
	Introduction
	Background
	Implementation: high-throughput batched software
	Implementation: low-latency unbatched software
	Evaluation
	Conclusion

	Vectorized SIKE
	Introduction
	Background
	Implementation: prime-field arithmetic
	Implementation: quadratic extension-field arithmetic
	Implementation: Montgomery elliptic curve arithmetic
	Implementation: higher-layer arithmetic
	Evaluation
	Conclusion

	IV Efficient cryptographic instruction set extension design
	RISC-V ISEs for lightweight symmetric cryptography
	Introduction
	Background
	Design
	Implementation
	Evaluation
	Conclusion

	RISC-V ISEs for multi-precision integer arithmetic
	Introduction
	Background
	Implementation: ISA-only
	Implementation: ISE-supported
	Evaluation
	Conclusion

	V Side-channel leakage analysis and elimination
	A leakage-focused RISC-V ISE for masked implementation
	Introduction
	Background
	Analysis
	Design
	Implementation
	Evaluation
	Conclusion

	VI Concluding remarks
	Conclusion
	Summary
	Impact
	Future work

	Acronyms
	Bibliography

