

PhD-FSTM-2022-049

The Faculty of Science, Technology and

Medicine

 Faculty of Applied Sciences

 Department of Aerospace and

 Mechanical Engineering

DISSERTATION

Defence held on 25/04/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN SCIENCES DE L’INGÉNIEUR

AND

DOCTEUR DE L’UNIVERSITÉ DE LIÈGE

EN SCIENCES DE L’INGÉNIEUR

by

Soumianarayanan Vijayaraghavan
Born on 30 January 1992 in Chennai, India

MACHINE LEARNING FOR PROJECTION-BASED

MODEL-ORDER-REDUCTION OF

 ELASTOPLASTICITY

Dissertation defence committee
Prof. Andreas Zilian, Chairman
Professor, Université du Luxembourg

Dr Ling Wu, Vice-Chairwoman
Research Scientist, Université de Liège

Prof. Stéphane P.A. Bordas, Dissertation Supervisor
Professor, Université du Luxembourg

Prof. Ludovic Noels, Dissertation Co-Supervisor
Professor, Université de Liège

Prof. David Ryckelynck, Member
Professor, Mines ParisTech

Prof. Christian Duriez, Member

Professor, INRIA-Lille

Machine learning for projection-based
model-order-reduction of elastoplasticity

Thesis by
Soumianarayanan Vĳayaraghavan

In partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

UNIVERSITY OF LUXEMBOURG
Esch-sur-Alzette, Luxembourg

and

UNIVERSITY OF LIÈGE
Liège, Belgium

April 2022

ii

ABSTRACT

Projection-based model-order-reduction (MOR) accelerates computations of phys-
ical systems in case the same computation must be performed many times for
different load parameters (e.g. parameters, geometries, initial conditions, boundary
conditions). It therefore finds its use in application domains such as inverse mod-
elling, optimization, uncertainty quantification and computational homogenization.
Projection-based MOR uses the solutions of an initial set of (training/offline) com-
putations to construct the solutions of the remaining (online) computations. For
finite element computations of hyperelastic solids, projection-based MOR is ac-
curate and fast. However, for finite element computations of hyperelastoplastic
solids, conventional projection-based MOR is far from accurate and fast. This
thesis explores different numerical approaches to improve projection-based MOR
for hyperelastoplastic finite element simulations. The first investigated innovation
focuses on enhancing the interpolation employed in projection-based MOR with
an additional interpolation associated with a coarse finite element discretization.
Because inconsistent results are obtained with this approach, the second innova-
tion focuses on equipping the projection-based MOR with a neural network. This
substantially accelerates the online computations, and although the reported accu-
racy can be argued to be reasonable, it is definitely not excellent. To this end, the
third innovation investigates the use of machine learning to adaptively select the
interpolation functions of projection-based MOR during the course of a simulation.

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to everyone who has
provided their assistance, guidance and support over the duration of my PhD.

First, I would like to thank Prof.Stephane Bordas for providing me the opportunity
to pursue my doctoral study. In-spite of his busy schedule, he was always available
for discussions, and paved a great path for my research work and also for my career.
I thank prof.Bordas for his patience in listening to my problems and uplifting me a
numerous times. I appreciate the informality of our relationship leading to a relaxed
working environment.

I would like to thank Prof.Ludovic Noels for all his support and valuable suggestions.
Every meeting with Prof.Noels has lead to an improvement in my PhD.

I am extremely grateful to my daily supervisor Dr.Lars Beex, without him my PhD
thesis would have not been possible. Dr Beex guidedme in every step of the research.
I am thankful for his patience in clearly teaching me the technical concepts and also
for his outstanding ideas, that has tremendously contributed my thesis. I greatly
acknowledge his humbleness in correcting all my mistakes in both programming
and writing.

I would also like to thank Dr Ling Wu for her kind help in Neural Network im-
plementation, and other fruitful discussions on machine learning concepts. I am
grateful to Prof. Andreas Zilian for accepting to be the chair of my defence. I greatly
thank the external examiners Professors David Ryckelynck and Christian Duriez for
the time they spent to review my thesis.

I thankmy officemates Diego, Chris and Raphael for all the office ideas and support.
I especially thank Hussein, for guiding me through all the annoying questions and
extremely supporting me both personally and professionally. I would also like to
thank Nandha, Juan and Kevin for the amazing office support I had at the University
of Liege.

I would like to thank my parents for their extreme support and love, without their
understanding and sacrifices, I would have not reached the stage I am right now.
Finally, I thank my wife, Aishwarya, for her constant support, especially during the
last year of my doctoral study.

iv

TABLE OF CONTENTS

Abstract . ii
Acknowledgements . iii
Table of Contents . iv
List of Illustrations . vi
List of Tables . xii
Chapter I: Introduction . 1

1.1 Model-order-reduction . 1
1.2 Projection-based model-order-reduction: interpolation & hyperre-

duction . 2
1.3 Elasticity versus elastoplasticity . 3
1.4 Neural network acceleration of projection-basedmodel-order-reduction 4
1.5 Machine learning for adaptive basis selection 5
1.6 Aims and innovations . 6
1.7 Outline . 7
1.8 Additional notes . 7

Chapter II: Local interpolation to aid projection-based model-order-reduction
for elastoplasticity . 9

Abstract . 10
2.1 Introduction . 11
2.2 Direct Numerical Simulations . 13
2.3 POD-based model order reduction 15
2.4 Local/Global interpolation approaches 21
2.5 Results and discussion . 29
2.6 Conclusion . 39

Chapter III: Neural-network acceleration of projection-based model-order-
reduction for finite plasticity . 42

Abstract . 43
3.1 Introduction . 44
3.2 ANN-acceleration . 45
3.3 Results . 49
3.4 Conclusion . 58

Chapter IV: Machine learning for adaptive basis selection in projection-based
model-order-reduction for elastoplasticity 60

Abstract . 61
4.1 Introduction . 62
4.2 Direct Numerical Simulations . 65
4.3 Conventional projection-based model-order-reduction 67
4.4 Clustering for adaptive basis selection 73
4.5 :-NN for adaptive basis selection 85

v

4.6 Results and discussion . 90
4.7 Conclusion . 101

Chapter V: Conclusions and outlook . 104
Appendix A: Activation functions . 107
Appendix B: RNN units . 110

B.1 Long Short Term Memory . 110
B.2 Gated Recurrent Unit . 112

vi

LIST OF ILLUSTRATIONS

Number Page
1.1 The singular values for two the same quasi-static FE computations:

one with a hyperelastic constitutive model (red curve) and one with
a hyperelastoplastic constitutive model (blue curve). Except for the
constitutive model, all other aspects are the same (e.g. mechanical
parameters, geometry, FE discretization, boundary conditions). The
decay of the singular values is substantially faster for the hyperelas-
tic configuration than for the hyperelastoplastic configuration. This
indicates that substantially less basis functions (i.e. modes) need to
be used for the hyperelastic case than for the hyperelastoplastic case
if projection-based ROM is to be applied. 4

2.1 The number of required (reduced) quadrature points as a function of
the number of global bases for the hyperreduction of [35]. 12

2.2 Illustration of the additive split of an RVE’s displacement field in a
homogeneous displacement field and a microstructurally fluctuating
displacement field employed in a projection-based MOR. The basis
functions (Φ) are only used for the fluctuating displacement field. . . 19

2.3 Scheme I: Illustration of a 3 × 3 local grid 23
2.4 Local/Global scheme I: Split of a solution, D, in to a homogeneous

part, D̄, a locally fluctuating part, D̃
!
, that is captured by the interpo-

lation of an FE discretization/grid, and a globally fluctuating part D̃
�

from which the basis functions are extracted. 25
2.5 Local/Global scheme II: Split of a solution, D, in to a homogeneous

part, D̄, a locally fluctuating part, D̃
!
, that is captured by the interpo-

lation of an FE discretization/grid restricted to affine deformations,
and a globally fluctuating part D̃

�
. 26

2.6 Scheme II: Illustration of a 3 × 3 FE grid with the same number of
FEs along the horizontal and vertical directions, also with the same
volume (size). 27

2.7 The discretized RVE with stiff, elastic particles. 29
2.8 36 training load path as red dashed lines and four verification load

paths as black solid lines. 30

vii

2.9 Orthonormality investigated for scheme I: using a 4×4 local grid and
ten global basis functions, which are the same in the conventional
MOR. 31

2.10 Orthonormality investigated for scheme I: using a 4 × 4 local grid
and ten global basis functions, which are identified assuming that the
local interpolation captures most of the fluctuating displacement field. 32

2.11 Scheme I: total error in 1st Piola Kirchhoff stress at all quadrature
points using the same global basis functions as in conventional ROM. 34

2.12 Scheme I: total error in 1st Piola Kirchhoff stress at all quadrature
points using global basis functions to compensate for the deficiency
of the local interpolation to describe the fluctuating displacement field. 36

2.13 Scheme II: total error in 1st Piola Kirchhoff stress at all quadrature
points using the same global basis functions as in conventional ROM. 37

2.14 Scheme II: total error in 1st Piola Kirchhoff stress at all quadrature
points using global basis functions to compensate for the deficiency
of the local interpolation to describe the fluctuating displacement field. 38

2.15 A coarse, periodic, conforming mesh on the left and the DNS’ FE
mesh on the right for comparison. 38

2.16 The results of scheme I for the conforming mesh of Fig. 2.15 for
verification simulation T2, together with the results of the DNS, the
conventional MOR and scheme I (with corrected basis functions) for
the 6 × 6 and the 12 × 12 grid for ten global basis functions. 39

3.1 A single artificial neuron at layer 9 . The outputs of previous layer
$ 9−1 are the inputs of current layer 9 46

3.2 A feed forward neural network with three layers: Two hidden layers
with five neurons each (ℎ 9

8
), two neurons for the input layer and three

for the output layer. 46
3.3 Neural network architecure used in this chapter. The red dashed box

indicates the GRU. 47
3.4 The discretized RVE with particles. 49
3.5 Aflowchart of themain steps necessary to obtain theRNN-accelerated

POD-based MOR. 50
3.6 Left: Each red line presents the load path of a cyclic training simu-

lation. Right: Load path of a single training simulation for random
loading. Bounds 0.75 < *"

11 < 1.25, 0.75 < *"
22 < 1.25 and

0.75 < *"
12 < 1.25 of surface det(U") = 1 are presented by blue lines. 50

viii

3.7 The loss function value of training data after training for 60,000
epochs for three neural network parameters: (i) Number of hidden
layers in the ��#$, (ii) Number of neurons ‘#’ in the hidden layers
of ��#� and (iii) Number of hidden variables ‘�’ of the GRU. The
size of the bar corresponds to the value of the loss function (i.e. a
large bar corresponds to a large value of the loss function). 52

3.8 The loss function value of verification data after training for 60,000
epochs for three neural network parameters: (i) Number of hidden
layers in the ��#$, (ii) Number of neurons ‘#’ in the hidden layers
of ��#� and (iii) Number of hidden variables ‘�’ of the GRU. The
size of the bar corresponds to the value of the loss function (i.e. a
large bar corresponds to a large value of the loss function). 53

3.9 (a) Right: The evolution of loss function for both training data (blue)
and verification data (red) for first 50,000 epochs. (b) Left: The loss
function evolution from 350,000 to 450,000 epochs. 54

3.10 Cyclic loading verification simulations: SomeRNNpredictions (crosses)
and the actual values (lines). The colors distinguish the four verifi-
cation simulations. 54

3.11 Random loading verification simulations: Some RNN predictions
(crosses) and the actual values (lines). The colors distinguish two
verification simulations. 55

3.12 Components of the macroscale 1BC Piola-Kirchhoff stress as func-
tions of the deformation for a cyclic loading verification simulation
predicted by the DNS (black solid), by the conventional MOR (blue
dashed), and by the RNN-accelerated MOR (red dotted). 56

3.13 The plastic variable (_) computed by the three methods for one of the
cyclic loading verification simulations. Top-left: the DNS results,
top-right: the difference between the POD results and the DNS re-
sults, bottom-left: the difference between the RNN-POD results and
the POD results, bottom-right; the difference between the RNN-POD
results and the DNS results. 56

3.14 Components of the macroscale 1BC Piola-Kirchhoff stress values as
functions of the number of increments for a random loading verifi-
cation simulation predicted by the DNS (black solid), by the conven-
tional MOR (blue dashed), and by the RNN-accelerated MOR (red
dotted). 57

ix

3.15 The plastic variable (_) computed by the three methods for one of
the random loading verification simulations. Top-left: the DNS
results, top-right: the difference between the POD results and the
DNS results, bottom-left: the difference between the RNN-POD
results and the POD results, bottom-right; the difference between the
RNN-POD results and the DNS results. 57

4.1 Illustration of the additive split of an RVE’s displacement field in a
homogeneous displacement field and a microstructurally fluctuating
displacement field is employed in a projection-basedMOR. The basis
functions (Φ) are only used for the fluctuating displacement field. . . 68

4.2 Illustrative comparison of :-means clustering and DBSCAN. Left
column: random data set, right column: data set with patterns. Top
row: :-means clustering for =2 = 4 (cluster centers are presented as
the large shapes). Bottom row: DBSCAN clustering, which is better
capable of distinguishing patterns (bottom right). Note that in the
bottom left image, DBSCAN classifies the blue circles as outliers. . . 78

4.3 Illustrations for the measure of similarity of Eq. (4.40) on the left and
of Eq. (4.41) on the right. The blue dashed curves denote a part of
the the 8th training load path and the red curves the online load path.
The measure of similarity is the integral of the distance between the
two load paths, which we have attempted to illustrate by the green
arrows. 87

4.4 The discretized RVE with voids. 92
4.5 Training load paths for all monotonic loading simulations shown

in red. The black curves present the load path of the verification
simulations. 92

4.6 Monotonic loading: The results for the DNS, conventional POD-
based MOR, :-means clustering (with sharing the training solutions,
weighing the training solutions and mixing the training solutions) for
verification simulation 1 using 10 basis functions and different num-
bers of clusters. Left column: :-means clustering results together
with the load path of verification simulation 1. Right column: One of
the components of the homogenized 1st Piola-Kirchhoff stress tensor
as predicted by the different frameworks. Row 1: =2 = 3, row 2:
=2 = 5, row 3: =2 = 10 and row 4: =2 = 15. 94

x

4.7 Monotonic loading: The results for the DNS, conventional POD-
based MOR, :-means clustering (with sharing the training solutions,
weighing the training solutions and mixing the training solutions) for
verification simulation 2 using 10 basis functions and different num-
bers of clusters. Left column: :-means clustering results together
with the load path of verification simulation 2. Right column: One of
the components of the homogenized 1st Piola-Kirchhoff stress tensor
as predicted by the different frameworks. Row 1: =2 = 3, row 2:
=2 = 5, row 3: =2 = 10 and row 4: =2 = 15. 95

4.8 Monotonic loading: The results for the DNS, conventional POD-
basedMOR, DBSCAN clustering (with sharing the training solutions
and weighing the training solutions) for verification simulation 1
using 10 basis functions and different numbers of clusters. Left
column: DBSCAN clustering results together with the load path of
verification simulation 1. Right column: One of the components of
the homogenized 1st Piola-Kirchhoff stress tensor as predicted by the
different frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10
and row 4: =2 = 15. 96

4.9 Monotonic loading: The results for the DNS, conventional POD-
basedMOR, DBSCAN clustering (with sharing the training solutions
and weighing the training solutions) for verification simulation 2
using 10 basis functions and different numbers of clusters. Left
column: DBSCAN clustering results together with the load path of
verification simulation 2. Right column: One of the components of
the homogenized 1st Piola-Kirchhoff stress tensor as predicted by the
different frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10
and row 4: =2 = 15. 97

xi

4.10 Monotonic loading: The results for the DNS, conventional POD-
basedMOR, DBSCAN (with mixing the training solutions), :-means
clustering (with mixing the training solutions) and :-NN search for
verification simulation 3 using 10 basis functions with five clusters
of training solutions for DBSCAN and :-means. Top-left: :-means
clustering results for =2 = 5 together with the load path of verification
simulation 3. Top-right: DBSCAN clustering results for =2 = 5 with
the load path of verification simulation 3. Bottom: One of the
components of the homogenized 1st Piola-Kirchhoff stress tensor as
predicted by the different frameworks. 98

4.11 The discretized RVE with stiff elastic particles. 99
4.12 Parametrization used for the cyclic load paths. 100
4.13 Cyclic loading: The results for the DNS, conventional POD-based

MOR, and K-NN for three verification simulations using 10 basis
functions. Left column: The load path of each verification simula-
tion. Right column: One of the components of the homogenized 1st

Piola-Kirchhoff stress tensor as predicted by K-NN framework. . . . 101
B.1 A detailed LSTM architecture. Red dashed box represents the forget

gate. Green dotted box is the input gate, blue dash dotted is the
output gate and the orange dash dot box shows the cell state. + and
× is an element-wise summation and element-wise multiplication
operator respectively. 110

B.2 A detailed GRU architecture. Red dashed box is the reset gate,
blue dotted box represents the update gate. 1− is an element-wise
subtraction operator. 112

xii

LIST OF TABLES

Number Page
3.1 Computational time for data preparation 58
3.2 Computational time for verification simulations 58
4.1 The MOR approaches employing clustering. 91

1

C h a p t e r 1

INTRODUCTION

1.1 Model-order-reduction
Model-order-reduction (MOR) encompasses numerical methods that accelerate
time-consuming computations. Whereas surrogate models such as response sur-
faces and Kriging replace the input-output relation of the computation of interest
by a fast alternative, MOR only modifies the computation in order to accelerate it.
Consequently, more results often remain available for post-processing using MOR,
whereas surrogate models only provide the output for which they are trained [83].
In the field of numerical predictions of physical systems such as finite element (FE)
simulations, two MOR categories may be distinguished: a posteriori methods and
a priori methods.
A posteriori MOR involves precomputing numerous responses of the physical sys-
tem of interest in advance and utilizing the precomputed solutions to accelerate the
subsequent simulations that remain. A posteriori MOR is thus only useful if the
same physical system must be simulated numerous times, each time with different
load parameters (e.g. material parameters, boundary conditions, geometries). Con-
sequently, a posterioriMOR finds its use in applications such as inverse modelling,
optimization, uncertainty quantification and computational homogenization.
On the other hand, a priori MOR does not require any precomputations to be
performed and hence, it can be used the very first time the physical system of
interest is simulated. Consequently, a priori MOR is more widely applicable than
a posteriori MOR, since a posteriori MOR is only useful if the same type of
computation must be performed numerous times. On the other hand, a prioriMOR
often yields smaller accelerations.

One type of a prioriMOR is proper generalized decomposition [57, 15]. It enriches
the approximation of the computation’s solution per iteration, thereby approaching
the exact result as more iterations are computed. Another type of a priori MOR
is the quasicontinuum method, which superimposes a finite element interpolation,
including associated quadrature points (i.e. ’summation’ or ’sampling’ in quasicon-
tinuum terminology, or ’hyperreduction’ in projection-based MOR terminology)
over an atomistic [5], spring [6] or beam [14] lattice. Clearly, a posterioriMOR and
a priori MOR both have their pros and cons.

2

1.2 Projection-based model-order-reduction: interpolation & hyperreduc-
tion

This thesis focuses onaposterioriMORsuch as the proper-orthogonal-decomposition
(POD) method [42, 43, 52, 11] and the reduced-basis (RB) method [59, 60]. Both
approaches involve an ’offline’ training stage, from which solutions are harvested to
construct the solutions of the future computations (i.e. in the ’online’ stage). The
difference between the POD method and the RB method concerns the manner in
which the training solutions are handled to construct the solutions of future com-
putations. In the POD method, the precomputed solutions are decomposed using
singular value decomposition (SVD) in order to extract the most dominant character-
istics of the training solutions. In the method of RB on the other hand, precomputed
training solutions are directly employed (after orthonormalisation) to construct the
solutions of future computations. Similar as in the POD method, the ensemble of
selected training solutions in the RB method should enclose the characteristic fea-
tures of the possible solutions of future simulations. This is often performed using
a greedy algorithm. In both the POD and RB method, the precomputed solutions
yield orthonormalized vectors which together reconstruct the solutions of future
computations. These vectors are referred to as basis functions or modes.

In projection-based MOR such as the POD and RB method, each basis function
comes with its own degree of freedom (i.e. ‘coefficient’), all of which must be (si-
multaneously) computed during an online computation. Consequently, it is essential
for the speed of the online computations to minimize the number of employed basis
functions and hence, the number of degrees of freedom. In the case of non-linear
computations however, besides the time needed to solve the linearized governing
equations, another bottleneck is present: the time to construct the linearized gov-
erning equations. In implicit non-linear computations based on Newton’s method,
the linearized governing equations (i.e the column with first-order derivatives and
the matrix with second-order derivatives) must be constructed for each iteration,
for each increment. Whereas the interpolation of the basis functions reduces the
number of equations and hence, the time to solve the systems of linear equations, it
does not reduce the time to construct the linearized governing equations.

Approaches to reduce the time to construct the linearized governing equations in
projection-based MOR are often referred to as ’hyperreduction’. Hyperreduction
involves the sampling of quantities at only a limited number of spatial locations to
approximate the first-order and second-order derivatives of the system of interest.

3

These quantities may be the derivatives themselves, as in the discrete empirical
interpolation method [12, 13, 58, 62], or quadrature points [68, 66, 24, 53, 35].

1.3 Elasticity versus elastoplasticity
Projection-based MOR using interpolation and hyperreduction as described above
has successfully been used to accelerate FE simulations of hyperelastic solids [40,
56]. The use of only a small number of basis functions yields excellent results
for hyperelastic FE computations. Consequently, the associated systems of linear
equations are small and fast to solve. Hyperreduction using the discrete empirical
interpolation method is furthermore highly accurate using only a small number
of sampled derivatives, thanks to the spatially smooth fields of the derivatives
associated with (hyper)elasticity.

Projection-based MOR using interpolation and hyperreduction as described above
is substantially less trivial to accelerate FE simulations of hyperelastoplastic solids
[29]. The reason is twofold. First, elastoplastic FE computations require many more
basis functions to obtain a similar accuracy as for hyperelastic FE computations.
This is illustrated in Fig. 1.1, in which the same FE model is considered with
a hyperelastic and a hyperelastoplastic material description. The singular values
decay substantially faster for hyperelasticity than for hyperelastoplasticity. Because
many more basis functions are required for elastoplasticity, the number of equations
(i.e. of degrees of freedom) remains relatively large and hence, solving the system
of linear equations (once per iteration) requires more time.

Second, hyperreduction is substantially less trivial to be effectively exploited. This
has two causes. First, the fact that many basis functions are required entails that more
quantities need to be sampled to accurately approximate the linearized governing
equations. Second, elastoplasticity entails that the spatial fields of derivatives and
second-order derivatives are non-smooth and the spatial domain in which smooth-
ness is lacking changes for each online computation.
The first aim of this thesis is therefore to devise a projection-based MOR for
elastoplasticity such that substantially less basis functions are required. The
intent is not necessarily to reduce the number of degrees of freedom, but to ensure
that hyperreduction can be applied more effectively, i.e. to ensure that less quantities
need to be sampled to approximate the linearized governing equations. Reducing
the number of basis functions is investigated in this thesis by using the additional
interpolation of an additional, rather coarse FE discretization. Since each basis
function interpolates over the entire domain, and the additional FEs only have

4

Figure 1.1: The singular values for two the same quasi-static FE computations: one
with a hyperelastic constitutive model (red curve) and one with a hyperelastoplastic
constitutive model (blue curve). Except for the constitutive model, all other aspects
are the same (e.g. mechanical parameters, geometry, FE discretization, boundary
conditions). The decay of the singular values is substantially faster for the hypere-
lastic configuration than for the hyperelastoplastic configuration. This indicates that
substantially less basis functions (i.e. modes) need to be used for the hyperelastic
case than for the hyperelastoplastic case if projection-based ROM is to be applied.

local support, the interpolation of the basis functions is referred to as the global
interpolation and that of the additional FE discretization as the local interpolation.
1.4 Neural network acceleration of projection-based model-order-reduction
Because the local/global MOR approach mentioned above does not yield consistent
results (as will be explained in detail in the next chapter), another projection-based
MOR approach is also exploited and developed in this thesis. The ansatz of this
approach is to let a neural network emulate the coefficients of the basis functions for
each increment. This implies that no iterative solution process is required to compute
the basis function coefficients. This not only avoids the need to solve a system of
linear equations (once per iteration), it also avoids the construction of the matrix
with second order derivatives (i.e. the stiffness matrix) and the column with first
order derivatives (i.e. the force column) per iteration. The only issue that remains is
the construction of the force column once per increment. Because constructing the
force column once per increment does not require much time, hyperreduction does
not need to be applied to achieve a signifant acceleration.

5

Projection-based MOR with neural networks to rapidly predict the basis function
coefficients is not new. Several of such frameworks were developed for fluid prob-
lems [45, 81, 7], just like the first projection-based MOR to be developed [73].
Also in the field of solid mechanics, such frameworks have recently been proposed
for hyperelastic computations [80, 9, 17]. However, no such approaches have been
constructed for projection-based MOR for elastoplastic FE computations.

The second aim of this thesis is therefore to devise a projection-based MOR for
elastoplasticity where the basis function coefficients are emulated by a neural
network. The scientific challenges are to ensure that the framework can accurately
treat the path-dependency of elastoplasticity and that appropriate input parameters
are selected for the neural network. As will become clear later in the thesis, the
treatment of the path-dependency in the framework is strived by using recurrent
neural networks as the type of neural network.

Because the number of basis function coefficients has not much influence on the
computational times of the aforementioned (neural-network-accelerated) projection-
based MOR, a large number can be used. However, even if a large number of
100 basis functions is employed, the accuracy of the neural-network-accelerated
projection-based MOR is acceptable, but not perfect. This relative inaccuracy does
not originate from the neural network, but from the projection-based MOR itself,
which is also without neural network acceleration relative inaccurate due to the
non-ellipticity of the partial differential equations (see Fig.1.1 again).

1.5 Machine learning for adaptive basis selection
To ensure that projection-based MOR itself is more accurate, several studies have
proposed to group the training solutions in clusters (based on some appropriate
quantities). In such approaches, one set of basis functions is identified for each
cluster independently. During the course of an online computation, the same quantity
that was used to group the training solutions parametrises the current configuration
(i.e. increment) and is consequently used to decide from which cluster the set of
basis functions must be used.

In [19, 21], the authors themselves grouped the training computations in clusters
based on the time. Since time also elapses during the course of the online com-
putations, a different set of basis functions is used during the online computations,
yielding an approach in which the basis functions are adaptively changed during an
online simulation.

6

Although in some cases the clustering for adaptive selection of the basis function
can be performed manually, it is inaccurate and impractical in most scenarios:
for instance if several quantities must be used (instead of just one like the time),
and/or if some manifold is more suited than an Euclidian space. For this reason,
machine learning has recently been proposed to perform the clustering; in particular
unsupervised learning [79, 2, 58, 29, 51, 10]. However, no studies have investigated
this for elastoplasticity.

The third aim of this thesis is therefore to propose a projection-basedMOR for
elastoplasticity with an adaptive selection of the basis functions based on ma-
chine learning. The start is made with the unsupervised :-means clustering of [79,
2], but as will become clear in Chapter 4, every time the basis functions are changed
during the course of a simulation, the results are momentarily highly inaccurate. For
this reason, instead of :-means clustering, DBSCAN is also investigated. DBSCAN
indeed clusters the training solutions such that less changes of basis functions are
needed in case of monotonic elastoplastic simulations, but the significant inaccuracy
that occurs when the basis functions are changed remains. For this reason, several
approaches are introduced in Chapter 4 which intend to change the basis functions
more smoothly, but they do not yield a satisfying accuracy. A new approach is
therefore proposed in Chapter 4 based on : nearest neighbour (:-NN) searching. In
this approach the basis functions potentially change each iteration. The results are
highly accurate for only a few basis functions.

1.6 Aims and innovations
The three aforementioned aims of this thesis are the three main innovations of this
thesis and are summarized as follows:

• to formulate a projection-basedMOR for elastoplasticity to reduce the number
of basis functions by introducing an additional local interpolation using coarse
FE discretizations. The ultimate intent is not to reduce the number of degrees
of freedom in the online simulations, but to reduce the efforts to approximate
the linearized governing equations (i.e. the force column and stiffness matrix).

• to investigate if a neural network is able to emulate the coefficients of the
basis functions of projection-based MOR for elastoplasticity, such that both
(1) many basis functions can be used, and (2) the neural network can account
for the path-dependency of elastoplasticity.

7

• to investigate if machine learning can be used to adaptively change the basis
functions during the course of an online elastoplastic projection-based MOR
simulation.

1.7 Outline
The remainder of this thesis consists of four more chapters. Chapter 2 discusses
the projection-based MOR in which a reduction of the number of basis functions
is strived by combining the global interpolation of the basis functions with an
additional interpolation associated with a course FE discretization (Innovation 1).
Because the local/global approach of chapter 2 does not yield consistent results,
a different approach is the focus of Chapter 3. The approach of Chapter 3 uses
neural networks to emulate the basis function coefficients (Innovation 2). To further
improve the neural-network-accelerated projection-based MOR of Chapter 3, Chap-
ter 4 discusses machine learning to adaptively select the basis functions during the
course of a simulation (Innovation 3). Finally, Chapter 5 presents conclusions and
identifies potential avenues for future work.

1.8 Additional notes
It must be noted that projection-based MOR frameworks exist in which large plastic
deformations (or damage) occur in a small part of the domain [42, 41, 61]. In those
frameworks, MOR is used for the largest part of the domain that deforms elastically
and the original FE discretization in the small domain in which dissipation occurs
remains in place. This is different from the scenarios considered in this thesis, in
which large plastic deformations occur in the entire domain.

It it also worth to note that both the local and global elastoplastic deformations that
occur in the simulations considered in this thesis, as well as the fluctuations of these
deformations, are considerably larger than those considered in [79]. This poses a
larger challenge for projection-based MOR.

The hyperelastoplastic problem to which all the introduced projection-based MOR
approaches are applied are 2D periodic representative volume elements, as useful
for computational homogenization. However, true multiscale simulations are not
performed, amongst others because the approaches are not limited to computational
homogenization. In fact, they can in principle be used for any type of application
where an elastoplastic model is exposed to uncertain boundary conditions.

8

The following three chapters in which the scientific and technological work and
novelties are described in detail are extracted from three manuscripts that have been,
or are in the process of being submitted for publication in peer-reviewed journals.
Consequently, some repetition in the chapters is present.

9

C h a p t e r 2

LOCAL INTERPOLATION TO AID PROJECTION-BASED
MODEL-ORDER-REDUCTION FOR ELASTOPLASTICITY

10

ABSTRACT

Projection-based model-order reduction approaches are accurate and fast for finite
element simulations with hyperelastic constitutive models: the use of only a limited
number of global basis functions generally provides an excellent accuracy. In con-
trast to (hyper)elasticity, (hyper)elastoplasticity require many global basis functions
to achieve a reasonable accuracy. The fact that many basis functions are required
for hyperelastoplasticity is not only problematic because a relatively large number
of degrees of freedom remains, it also entails the need for many integration points
in the online simulations (the stress update must be iteratively computed at each
quadrature point in each iteration). This chapter investigates two approaches to keep
the number of global basis functions of finitely plastically deforming finite element
simulations small - ultimately in order to keep the number of reduced quadrature
points of the hyperreduction small. This is performed by combining the global basis
functions with local interpolation functions. For the two approaches combining the
global and local interpolation, two manners are investigated to identify the global
basis functions. Although the results are clearly improved, a truly consistent trend
is lacking for the time being. Hence, several avenues can be taken to improve the
frameworks.

11

2.1 Introduction
Often in engineering practice, the same mechanical model must be computed nu-
merous times, but with different sets of material parameters, geometries, and/or
boundary conditions. Examples are optimization problems, inverse problems, for-
ward uncertainty propagation, and nested multiscale approaches. To speed up the
computations of such problems, one can revert to a computational approach that
rapidly emulates the output parameters of interest. Response surface models are
one such approach that has been studied persistently [76, 31, 30]. Neural networks,
currently popular in computational mechanics [83, 26, 36, 69, 70], can also be used
to rapidly predict the required output. One may also employ a priori [57, 15] or a
posteriori [8] model-order-reduction (MOR).

Each of these approaches comes with its own advantages and disadvantages. The
construction of response surface models is for instance not trivial if the Euclidean
space is insufficient to formulate a response surface. Neural networks are fast at the
‘online/prediction stage’, but require many ‘offline training simulations’ (i.e. direct
numerical simulations - DNS) to achieve a good accuracy in the online stage. a
posterioriMOR has the advantage that many local results of the online simulations
remain available, whilst complex geometries and periodic boundary conditions can
easily be treated. A disadvantage is that offline training simulations are required.

This chapter focuses on a posteriori projection-based model order reduction. Proj-
ection-based MOR utilizes solutions of so-called training simulations to construct
global basis functions in order to interpolate kinematic variables. They use either
a representative set of orthonormalized training solutions as the basis functions
(i.e. the method of ‘reduced basis’ [59, 60]), or apply singular value decomposi-
tion to the training solutions, and use the left-singular vectors associated with the
highest singular values as basis functions (i.e. the method of ‘Proper Orthogonal
Decomposition’ - POD. [48, 42, 43, 52, 11]).

The global basis functions in POD-basedMOR interpolate the kinematic variables to
reduce the number of degrees of freedom in the online simulations. This accelerates
the process to solve the governing equations, but it does not reduce the time required
to construct the governing equations - which is important for non-linear models, as
the governing equations must be solved and constructed numerous times. In those
cases, to alleviate the computational burden, a reduced set of quadrature points is
selected (directly or indirectly, often referred to as ‘hyperreduction’ [38, 12, 67, 66,
35]).

12

Projection-based MOR only needs a limited number of basis functions for finite
element computations of hyperelastic solids [62]). However, for simulations of
elastoplasticity, a high number of basis functions is required to obtain an acceptable
accuracy in the online simulations. The difference in their working can be deduced
from Fig. 1.1, in which the largest singular values are presented for the same
finite element problem described by hyperelasticity and by hyperelastoplasticity.
The singular values clearly decay substantially faster for hyperelasticity than for
hyperelastoplasticity.

The requirement of a large number of basis functions for hyperelastoplasticity has not
only the disadvantage that the number of degrees of freedom (DoFs) must remain
relatively large to achieve an acceptable accuracy, it also increases the required
number of reduced quadrature points (at which the stress update must be iteratively
computed, i.e. the efficiency of the hyperreduction). The increase of the number
of reduced quadrature points for an increase of the number of basis functions is
illustrated in Fig. 2.1, in which the hyperreduction strategy of [35] is applied to the
elastoplastic model of interest in this thesis. The explanation for the increase of the
number of reduced integration points for an increase of the number of global basis
functions is that the spatial fluctuations in consecutive basis functions increase.

Figure 2.1: The number of required (reduced) quadrature points as a function of the
number of global bases for the hyperreduction of [35].

13

Hence, the number of basis functions for hyperelastoplasticitymust remain relatively
small in order to substantially reduce the number of reduced integration points.
Therefore, this chapter aims to reduce the number of basis functions, by binding
together the global interpolation of the conventional basis functions with a local
interpolation.

The global/local interpolation schemes are similar to the approach in [20], but with
an important difference. In the current chapter, the local and global interpolations
are combined additively, whereas [20] uses themmultiplicatively. The issue with the
multiplicative use of the two interpolations [20] is that the effective basis functions
change from iteration to iteration (and from increment to increment). This results in
a limited reduction of the number of quadrature points if the hyperreduction of [35]
is employed (which is our final goal, although not treated in the current chapter).

It is also worth noting that the local/global approaches are different from the sub-
structuring method in [61]. [61] employs a spatially concurrent projection-based
MORapproach to distinguish between regionswith elastoplastic deformation (where
the original FE interpolation is employed) and regions with purely elastic deforma-
tion (where the global interpolation of projection-based MOR is used to reduce the
number of DoFs). In the current chapter however, elastoplastic deformation occurs
in the entire modeling domain.

In this chapter, two local/global interpolations are investigated. They are applied to a
hyperelastoplastic representative volume element (RVE) with stiff elastic particles,
exposed to monotonic loading. In the next section, the DNS are concisely dis-
cussed. Section 2.3 describes a standard POD-based MOR, and the two local/global
interpolation approaches are discussed in section 2.4. The results are presented
in section 2.5, where the results of the two local/global interpolation schemes are
compared with each other and with those of a conventional POD-based MOR for
different numbers of global basis functions and different local refinements. A short
conclusion and outlook are presented in section 2.6.

2.2 Direct Numerical Simulations
The plane strain simulations employ bilinear quadrilateral (four node) finite ele-
ments with four Gauss quadrature points. An F-bar method is utilized to alleviate
locking due to the incompressibility of the plastic deformation. In the employed
F-bar method, the volume change of the deformation gradient tensor at a quadrature
point is replaced with the volume change at the center of the element. The result-

14

ing deformation gradient tensor, F̄, is multiplicatively decomposed into an elastic
(subscript 4) and a plastic (subscript ?) deformation gradient tensor: F̄ = F4 · F?.

The following strain energy density is employed:

, =
� (�4 − 3 − 2ln(�4))

4(1 + a) + �a(ln(�4))2
2(1 + a) (1 − 2a) , (2.1)

where � and a denote Young’s modulus and Poisson’s ratio, respectively. Further-
more: �4 = tr(F)4 ·F4) and �4 = det(F4), where superscript) denotes the transpose.
Differentiating the strain energy with respect to F4 gives a 1st Piola-Kirchhoff stress
tensor, P4: P4 = m,

mF4 , which is related to the Mandel stress, M, as M = F)4 · P4.

The employed yield function reads:

H =

√
3
2

M34E : M34E − "0 − ℎ _=, (2.2)

where material parameters "0, ℎ and = denote the initial yield stress, the hardening
modulus and an exponential hardening parameter, respectively. Furthermore, M34E

denotes the deviatoric Mandel stress and _ the plastic multiplier. The following
associated flow rule is employed:

¤F? = ¤_
m H

mM · F? . (2.3)

The Karush-Kuhn-Tucker conditions close the constitutive model:

H ≤ 0, ¤_ ≥ 0, H ¤_ = 0. (2.4)

A periodic mesh is employed in the simulations, Dirichlet boundary conditions are
used for the four corner nodes, where the displacement values are dictated by the
right stretch tensor of the macroscale deformation (U" , assuming that the RVE is
used in a nested multiscale computation), given by:

u 9 − u8 =
(
U" − I

)
·
(
X 9 − X8

)
, (2.5)

where u and X denote the displacement vector and reference location of a finite
element node, respectively. The subscripts denote the numbers of two corner nodes.

15

As the displacement of one of the four corner nodes is set to zero (and all reference
locations are known), the displacement vectors of the other three corner nodes are
completely known, since U" is known for each increment.

In case of nodes on the RVE’s opposing edges, the above vector equation yields two
scalar constraints in a 2D setting (as is the case here). In this thesis, these constraints
are enforced using Lagrange multipliers.

The incorporation of periodic boundary conditions using Lagrange multipliers re-
sults in the following system of linear equations, which must be constructed and
solved for each iteration, at each increment:



int
(D, I)

(
m2

mD

))
m2

mD
0


[
3D

36

]
=

[
5
ext
− 5

int
(D, I) − 6) m2

mD

2(D)

]
, (2.6)

where column D collects the displacement components of all FE nodes at an inter-
mediate solution, column I the plastic variables at all Gauss quadrature points at an
intermediate solution (_ and F?), column 6 the Lagrange multipliers, column 2 the
scalar constraints due to the periodic boundary conditions of Eq. (4.5) (2 is linear
in D), column 5

ext
the components of the reaction forces, column 5

int
the compo-

nents of the internal forces (5
int

depends non-linearly on D and I) and matrix
int

the derivatives of the internal forces components with respect to the displacement
components (

int
depends non-linearly on D and I). 3D and 36 together denote the

correction to the intermediate solution given by D and 6, that is to be computed each
iteration. The new plastic variables are computed together with the new internal
forces for each quadrature point, after new solution D + 3D is computed.

2.3 POD-based model order reduction
One of the computational challenges of theDNS is the large number ofDoFs involved
in the systems of equations (2.6) that need to be computed for each iteration, for
each increment. Projection-based MOR overcomes this computational drawback by
substantially reducing the number of equations and hence, the number of DoFs. In
this thesis, we consider a posteriori projection-based MOR, which works based on
the idea of precomputing solutions in advance and use the precomputed solutions
to speed up the simulations in a later stage.

The precomputations are performed in an offline training stage, during which the
parameter-dependent DNS (the parameters in this chapter are formed by the paths

16

of U"), is solved for numerous parameter sets of interest. Projection-based MOR
assumes that the various precomputed DNS solutions, obtained for different param-
eters, can be well represented in a lower-dimensional subspace.

To reduce the number of equations and hence, the number of DoFs, the first stage of
projection-based MOR is to identify the basis functions (Φ) that capture the lower
dimensional subspace. In the online stage subsequently, all =D kinematic variables
D are interpolated using the identified =1 global basis functions according to:

D ≈
=1∑
8=1

q
8
U8 = ΦU, (2.7)

where q
8
of length =D denotes the 8th basis function and scalarU8 denotes its associated

coefficient that is to be computed for each increment in an online simulation. Φ and
U collect all the global basis functions and their associated coefficients in an =D × =1
matrix and a column of length =1, respectively.

In the subsequent part of this section we discuss the identification of the global
basis functions (Φ) in the offline stage, using the proper orthogonal decomposition
method, one of the variants of projection-based MOR. Subsequently, the computa-
tion of the associated coefficients (U) in the online simulations is discussed.

Offline stage: Construction of the global basis
In POD-based MOR, the global basis functions are identified using the method of
snapshots introduced in [73]. In this method, training simulations are performed
using theDNS for different sets of parameter values. Incremental solutions are stored
in a matrix referred to as a snapshot matrix (S) of size =D × =C , where =C denotes
the number of training solutions. Therefore, a column in matrix S corresponds to
an incremental solution of a training simulation and one is obviously not obliged to
store the solution of all increments.

To obtain Φ, the snapshot matrix (S) is decomposed into three matrices according
to singular value decomposition:

(= * Σ+) , (2.8)

where matrices * (of size =D × =C) and V (of size =C × =C) are the left and the right
singular vectors of (, which are orthonormal with respect to each other. Matrix Σ

17

is a diagonal matrix (of size =C × =C), with singular values arranged in a decreasing
order (f1 ≥ f2 ≥ ... ≥ f=C ≥ 0). The =1 left singular vectors in * that correspond
to the largest singular values are chosen as the POD basis functions.

An important question is how many basis functions are required to use in the online
simulations. On the one hand, one desires to maximize the acceleration of the
online simulations, limiting the number of basis functions in order to minimize the
number of DoFs. On the other hand, one desires a high accuracy by incorporating
a sufficiently large number of basis functions.

A traditional approach to decide the number of basis vectors is based on the singular
values. The reason to use singular values as a measure is that, according to the
Schmidt-Eckart-Young theorem [1, 22], if the first =1 left singular vectors are con-
sidered as basis functions, the projection error of the basis on the training solutions
can be evaluated using the (=1 + 1)th to =C singular values, given as:

min
Φ∈R=D×=1

=C∑
8=1
‖B8 −ΦΦ) B8‖22 =

=C∑
8==1+1

f2
8 , (2.9)

where B
8
denotes the 8th training solution (i.e. the 8th column of () and ‖.‖2 denotes

the !2-norm. It can be inferred from Eq. (2.9) that the sum of squares of singular
values, corresponding to the left singular vectors that are not included in the basis,
represents the square of the error in the snapshot representation. Therefore, an
optimal number of basis functions (=1) are chosen such that the following error
measure (a) is sufficiently low [42]:

a2
%$� =

∑=C
8==1+1 f8∑=C
8=1 f8

. (2.10)

It is also worth to note that in case =D � =C , a faster way to identify the basis
functions is by the application of eigenvalue decomposition. to (̂ = ()(((̂ is
symmetric and of size =C=B × =C=B), which may be expressed by finding eigenvalues
18 and eigenvectors 1∗8 according to:

(
(̂ − 18 �

)
1∗8 = 0, (2.11)

18

1∗8)1∗ 9 =


1 if 8 = 9

0 else = 0,
(2.12)

where 18 > 18+1 and � is of size =C=B × =C=B. The matrix with the left singular values
can then be computed as:

Φ = (

[
1∗1 1∗2 1∗3 ... 1∗=1

]
, (2.13)

where the eigenvalues of the associated eigenvectors are ordered according to 11 >

12 > ... > 1=1 . It may be clear that eigenvalue decomposition is so important that,
similarly as for singular value decomposition, practically all numerical software
packages have their own dedicated functions to efficiently compute it.

In RVE simulations with periodic boundary conditions, the global basis functions
are not directly extracted from the training solutions. Rather, each training solution
is additively decomposed into a homogeneous contribution, D̄, and a fluctuating
contribution, D̃:

D = D̄ + D̃, (2.14)

which is graphically illustrated in Fig. 2.2. Because the right stretch tensor of
the macroscale deformation, U" , is the input for RVE simulations in multiscale
computations, homogeneous displacement field D̄, is known and does not need to
be computed. The global basis functions are thus only used to interpolate the
fluctuating part of the kinematic variables, yielding the following expression:

D = Ψ V +ΦU, (2.15)

where column V contains the known components of U" (three in 2D simulations)
and matrix Ψ (of size =D × 3 in 2D) homogeneously interpolates the kinematic
variables (see Fig. 2.2).

If the bottom-left corner node of the 2D RVE is the first node of the discretization
and we set its reference location to the zero vector and consider it not to displace
during a simulation, we express V as follows:

V =

[
*"
GG − 1 *"

GH *"
HH − 1

])
, (2.16)

19

<latexit sha1_base64="8TBEfvqYtCqPOrSaaYqgsADv0V0=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIiYIQLmVv2YMPe3mV3z4Rc+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVlLVoLGL1EKBmgkvWMtwI9pAohlEgWCcY38z8zhNTmsfy3kwS5kc4lDzkFI2VHqs9FMkI+161X664NXcOskq8nFQgR7Nf/uoNYppGTBoqUOuu5ybGz1AZTgWblnqpZgnSMQ5Z11KJEdN+Nr94Ss6sMiBhrGxJQ+bq74kMI60nUWA7IzQjvezNxP+8bmrCKz/jMkkNk3SxKEwFMTGZvU8GXDFqxMQSpIrbWwkdoUJqbEglG4K3/PIqaddr3kXNu6tXGtd5HEU4gVM4Bw8uoQG30IQWUJDwDK/w5mjnxXl3PhatBSefOYY/cD5/AHF0kBw=</latexit>↵1

<latexit sha1_base64="xThVurqibTolu7SZzEzg7mDXpeU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIiYIQLmVv2YMPe3mV3z4Rc+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVlLVoLGL1EKBmgkvWMtwI9pAohlEgWCcY38z8zhNTmsfy3kwS5kc4lDzkFI2VHqs9FMkI+/Vqv1xxa+4cZJV4OalAjma//NUbxDSNmDRUoNZdz02Mn6EynAo2LfVSzRKkYxyyrqUSI6b9bH7xlJxZZUDCWNmShszV3xMZRlpPosB2RmhGetmbif953dSEV37GZZIaJuliUZgKYmIye58MuGLUiIklSBW3txI6QoXU2JBKNgRv+eVV0q7XvIuad1evNK7zOIpwAqdwDh5cQgNuoQktoCDhGV7hzdHOi/PufCxaC04+cwx/4Hz+AHL5kB0=</latexit>↵2

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="feYJlqRAt9N6RJRnwkNptAVwjek=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI7FjMc=</latexit>=

<latexit sha1_base64="p1g1IBsDw0M9lZ0CHKeAeZdNiBE=">AAACInicbVC7TsMwFHXKq5RXgZHFokUqS5V04LFVsDAWqS+pqSrHuWmtOk5kO0hV1G9h4VdYGEDAhMTH4LQdoOVIlo7Oudf33uPFnClt219Wbm19Y3Mrv13Y2d3bPygeHrVVlEgKLRrxSHY9ooAzAS3NNIduLIGEHoeON77N/M4DSMUi0dSTGPohGQoWMEq0kQbFa5eC0CCZGKbNSBOOfaZiTiiERseuiwMG3MeVspsIH2Q2J02m5fPpoFiyq/YMeJU4C1JCCzQGxQ/Xj2iS/Us5Uarn2LHup0RqRjlMC26iICZ0TIbQM1SQEFQ/nZ04xWdG8XEQSfPMXjP1d0dKQqUmoWcqQ6JHatnLxP+8XqKDq37KRJxoEHQ+KEg41hHO8jJxSKCaTwwhVDKzK6YjIgk1oamCCcFZPnmVtGtV56Lq3NdK9ZtFHHl0gk5RBTnoEtXRHWqgFqLoET2jV/RmPVkv1rv1OS/NWYueY/QH1vcPuXekXQ==</latexit>

Total displacement
field (u)

<latexit sha1_base64="evXpmrgCFbc9N9YuOiZo5bjoQeY=">AAACXnicbVDLSitBEO0Z3/GVqxvBTWMUFCTMuNC7EUQ3LiMYFTIh1PTUxMae7qEfQhjmJ91d7sZPsSdmER8HGk6fU0VVnbQU3Ngo+heEC4tLyyura631jc2t7fafnQejnGbYZ0oo/ZSCQcEl9i23Ap9KjVCkAh/Tl5vGf3xFbbiS93ZS4rCAseQ5Z2C9NGq7hKG0qLkcV7eqUGOUqJyhGTelAIaFd2mS0JyjyOjxYZKCrhInM9TNyMrV9eXcd572DK/r5HReStFCfXhSj9qdqBtNQX+SeEY6ZIbeqP2WZIq5ZhsmwJhBHJV2WIG2nAmsW4kzWAJ7gTEOPJVQoBlW03hqeuSVjOZK++evmarzHRUUxkyK1FcWYJ/Nd68Rf/MGzuZ/hxWXpbMo2eeg3AlqFW2y9iFqZFZMPAGmud+VsmfQwHzgpuVDiL+f/JM8nHXj8258d9a5up7FsUr2yQE5JjG5IFfklvRInzDyPwiCVrAevIfL4Wa4/VkaBrOeXfIF4d4H/Vi4XQ==</latexit>

Homogeneous displacement
field (ū = �)

<latexit sha1_base64="94RQk6zfiFSahdG0Wvo3ZV/SS3Y=">AAACZHicbVBNS+RAEO1Ed9VZ3Y2KJ0EaR8GFZUg8rF4EURCPIzgqTIah0qnMNHY6oT+UIeRPevPoxd9hZ5zD+PGg4fV7VVTVS0rBtQnDZ89fWPzxc2l5pfVrde33n2B940YXVjHssUIU6i4BjYJL7BluBN6VCiFPBN4m9+eNf/uASvNCXptJiYMcRpJnnIFx0jCoYobSoOJyVF0Iy4x1hhzRlOtSAMPcuTSOM44ipQd78SNP0XCRYhVbmaJq5la2rk/mvvO0O+Z1Hf+bl0CUY6j3/tbDoB12winoVxLNSJvM0B0GT3FaMNvsxARo3Y/C0gwqUIYzgXUrthpLYPcwwr6jEnLUg2oaUk33nZLSrFDuuZum6nxHBbnWkzxxlTmYsf7sNeJ3Xt+a7HhQcVlag5K9D8qsoKagTeIuSoXMiIkjwBR3u1I2BgXMxa5bLoTo88lfyc1hJ/rfia4O26dnsziWyTbZJQckIkfklFySLukRRl68JS/w1r1Xf9Xf9LfeS31v1rNJPsDfeQNFN7tb</latexit>

Fluctuating displacement
field (eu = �↵)

<latexit sha1_base64="yrfh5kUhY01jFcLTnFeHLm9eOSc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaECbbbbt0swm7G6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSgXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVjVAzwSVrGW4E66aKYRwJ1onGdzO/88SU5ol8NJOUBTEOJR9wisZKvo8iHWGYyzCahtWaW3fnIKvEK0gNCjTD6pffT2gWM2moQK17npuaIEdlOBVsWvEzzVKkYxyynqUSY6aDfH7zlJxZpU8GibIlDZmrvydyjLWexJHtjNGM9LI3E//zepkZ3AQ5l2lmmKSLRYNMEJOQWQCkzxWjRkwsQaq4vZXQESqkxsZUsSF4yy+vkvZF3buqew+XtcZtEUcZTuAUzsGDa2jAPTShBRRSeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBTC5Hg</latexit>↵nb

<latexit sha1_base64="Sd94Sbp5rTEPMz0WPGGzf04/BnE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7iZD3su8aa9ccavuHGSVeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOC11U40JZSM6wI6lkkao/Wx+75ScWaVPwljZkobM1d8TGY20nkSB7YyoGeplbyb+53VSE974GZdJalCyxaIwFcTEZPY86XOFzIiJJZQpbm8lbEgVZcZGVLIheMsvr5LmRdW7qnoPl5XabR5HEU7gFM7Bg2uowT3UoQEMBDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABDmP9Q==</latexit>

�1

<latexit sha1_base64="YOESxL62gus72pw8S29VvBFmNOY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6SUj3s9q03654lbdOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n83ik5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex5MuAKmRETSyhT3N5K2IgqyoyNqGRD8JZfXiWtWtW7rHr3F5X6TR5HEU7gFM7Bgyuowx00oAkMBDzDK7w5j86L8+58LFoLTj5zDH/gfP4ABb6P9g==</latexit>

�2

Figure 2.2: Illustration of the additive split of an RVE’s displacement field in a
homogeneous displacement field and a microstructurally fluctuating displacement
field employed in a projection-based MOR. The basis functions (Φ) are only used
for the fluctuating displacement field.

with *"
GG , *"

GH and *"
HH denoting the three independent, known components of U" .

If the horizontal and vertical displacement components of all nodes are stored as
follows in D: (

D
)
8
=


DGd 82 e

if 8 is odd

D
H

d 82 e
if 8 is even

, (2.17)

where d•e denotes the ceiling, and DGd 82 e
and DHd 82 e

denote the horizontal and verti-

cal displacement components of node d 82e, respectively, then, row 8 of Ψ can be
expressed as follows:

(
Ψ

)
8,:
=


[
-d 82 e

.d 82 e
0
]

if 8 is odd[
0 -d 82 e

.d 82 e

]
if 8 is even

, (2.18)

where -d 82 e and .d 82 e denote the horizontal and vertical component of the reference
location of node d 82e, respectively.

The additive decomposition of the kinematic variables entails that SVD is not
directly applied to the training solutions. Instead, the homogeneous deformations

20

are first subtracted from the training solutions, and SVD is applied to the resultant,
fluctuating displacement field (i.e. D̃). The decomposition produces global basis
functions that are themselves periodic and hence, periodicity does not need to be
actively enforced in the online simulations.

Online stage: Computing the coefficients
The online stage involves computing the solutions of the reduced order model for
new parameter values, that were not a part of the training simulations. In this thesis
we use the conventional framework of Galerkin projection method to compute the
coefficients (U) of the basis functions, according to which the solution of U is defined
as:

Φ)'(Ψ V +ΦU, I) = 0, (2.19)

where the residual ' = 5
int
(Ψ V +ΦU, I) − 5

ext
.

Linearisation of Eq. (2.19) leads to:

(Φ)
int
Φ)3U = Φ) 5

ext
−Φ) 5

int
−Φ)

int
Ψ3V. (2.20)

where update 3V is known. Both 5
int

and
int

depend on D = Ψ V +ΦU and I.

It is worth to recall that although the number of DoFs is reduced relative to that
of the DNS (from all =D displacement components in D to the =1 coefficients in
U), the stress update (i.e. history variables _ and F?) must still be computed for
all quadrature points that are present in the DNS. The base of this work is built
upon incorporating POD with a hyperreduction strategy of [35], which also reduces
the number of quadrature points. However, according to the strategy of [35],
increasing the number of POD basis functions increases the number of quadrature
points quadrature (look back to Fig. 2.1). Therefore, in the following section, we
propose two local/global interpolations that aim to reduce the number of global
basis functions for finite plasticity but aim to preserve the accuracy in the online
simulations.

Remark The number of load parameters are reduced by considering macroscale
right stretch tensor U" instead of macroscale deformation gradient tensor F" . The
macroscale right stretch tensor and the macroscale deformation gradient tensor are

21

related via the following multiplicative decomposition:

F" = R" · U" , (2.21)

where R" denotes the macroscale rotation tensor. When F" is known, U" can
be easily determined by applying an eigenvalue decomposition to the macroscale
Green’s deformation tensor. In the online simulations, macroscale 1st Piola-Kirchhoff
stress tensor P" can then be determined as follows:

P" = R" · P̄" , (2.22)

where P̄" denotes the macroscale 1st Piola-Kirchhoff stress tensor that is calculated
using the POD-based MOR in the online stage (for U" instead of F").

2.4 Local/Global interpolation approaches
In this section we discuss the two local/global interpolation approaches that are
incorporated with the traditional POD-based MOR. The two approaches employ an
additional FE interpolation, on top of the DNS’ FE mesh (the discretization of this
additional interpolation is refereed to as a grid, to distinguish it from the conventional
FE mesh of the DNS). The term local refers to the fact that each kinematic variable
associated with the interpolation of the additional grid only affects the displacement
field in a part of the RVE. On the other hand, the term global is used for the
conventional basis functions of the POD-based MOR, as each kinematic variable
associated with each MOR basis function affects the displacement field in the entire
RVE (except for the RVE’s corners).

The difference between conventional POD-based MOR and the proposed enhance-
ments is thus the following. In conventional POD-basedMOR, the global basis func-
tions are used to interpolate the entire fluctuating displacement field (D̃), whereas
the local/global extensions use both the global basis functions, as well as the local
interpolation of the additional grid to interpolate the fluctuating displacement field
(cf. Fig. 2.4 and Fig. 2.5).

The presence of an additional local interpolation requires several issues to be treated.
First, we investigate the effect of orthonormalizing local and global interpolation
functions with respect to each other. Second, we make sure that the local interpo-
lation functions are constructed such that periodicity does not need to be actively
enforced in the online simulations (similar as for the global interpolation). The main
difficulty is the identification of the global basis functions under the presence of the
local interpolation.

22

We do not investigate the most suited locations for the grid nodes. Instead, we
mainly stick to regular, rectangular grid discretizations (see ahead to Fig. 2.4).

Scheme I
In the first scheme, the local interpolation is an additional FE interpolation (see
discretized picture in Fig. 2.4). The FE interpolation employs bilinear quadrilateral
(four node) elements. The discretization in scheme I is performed such that each el-
ement of the grid is a square and hence, the additional local interpolation completely
disregards the particles.

The interpolation of scheme I can be expressed as follows:

D ≈ Ψ V +ΦU +Ω W, (2.23)

and hence,
D̃ ≈ D̃

�
+ D̃

!
, (2.24)

with
D̃
�
= ΦU, D̃

!
= Ω W, (2.25)

where Ω stores each local interpolation function as a column. Ω is of size =D × =!
where =! denotes the number of variables associated with the local FE interpolation.
W of length =! denotes the variables of the local interpolation, which must be
computed online.

Each node of the additional interpolation grid comes with two variables (one for
the horizontal direction and one for the vertical direction in 2D as is the case here),
but there are exceptions. First, the corner nodes do not come with any variables.
This entails that the local interpolation has no influence on the displacement of the
corner nodes. Second, two nodes on opposing edges share the same two variables
(one for the horizontal direction and one for the vertical direction). This ensures
that the displacement field associated with the local interpolation is automatically
periodic and hence, periodicity does not need to be actively prescribed in the online
simulations.

As we mainly consider grids with the same number of nodes in horizontal and
vertical direction (see Fig. 2.4) and if we denote the number of grid nodes in one
direction by =6A (and hence, the total number of grid nodes equals =2

6A), the number

23

of variables (and hence, the width of Ω and the length of W) reads:

=! = 2
(
=2
6A − 4 − 2

(
=6A − 2

))
. (2.26)

We construct local interpolation matrix Ω as follows. First, we evaluate the shape
function of each grid node at the locations of all the nodes of the DNS mesh and
store these shape function evaluations in each column of Ω. (In the process of
storing the shape function evaluations, we keep in mind that each node of the grid
comes with two variables). For example, consider a 3× 3 gird of scheme I depicted
in fig. 2.3, the shape functions #1, #2, #3, and #4 for the local grid nodes 1,2,3,
and 4 are computed for all the DNS mesh nodes that falls inside the current local
grid element. In order to compute the shape functions, the local locations b; and [;
of each DNS mesh nodes are first identified, and the shape functions are computed
as #1 =

1
4 (1 − b;) (1 − [;), #2 =

1
4 (1 + b;) (1 − [;), #3 =

1
4 (1 + b;) (1 + [;), and

#4 =
1
4 (1 − b;) (1 + [;).

At this moment, the sum of all components in each row of Ω still equals one. Once
constructed, we remove the columns ofΩ that correspond to the corner nodes of the
grid. Then, we merge the columns of nodes on opposite edges (so that these nodes
indeed share the same variables).

<latexit sha1_base64="lbW1oXiHkx30gtpgL2zYN5kKrdQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh7ue1ytX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvUuqt79eaV2ncdRhCM4hlPw4BJqcAt1aACDATzDK7w5wnlx3p2PeWvByWcO4Q+czx/NnY18</latexit>

N1
<latexit sha1_base64="1gYQW3K2A4ar/X9PDDLss7busXQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04kkq2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw12v2iuV3Yo7A1kmXk7KkKPeK311+zFLI5SGCap1x3MT42dUGc4ETordVGNC2YgOsGOppBFqP5udOiGnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHpFG0I3uLLy6RZrXgXFe/+vFy7zuMowDGcwBl4cAk1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx/PIY19</latexit>

N2

<latexit sha1_base64="0G8W5NcHr5p8Z82LKNqRaS0X8zI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRiyepaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20OWn0w8Hhvhpl5QSK4Nq775RSWlldW14rrpY3Nre2d8u5eU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj66nfekSleSwfzDhBP6IDyUPOqLHS/W3vtFeuuFV3BvKXeDmpQI56r/zZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oQcWaVPwljZkobM1J8TGY20HkeB7YyoGepFbyr+53VSE176GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsv/yXNk6p3XvXuziq1qzyOIhzAIRyDBxdQgxuoQwMYDOAJXuDVEc6z8+a8z1sLTj6zD7/gfHwD0KWNfg==</latexit>

N3
<latexit sha1_base64="iaNQqFBcRXOzP2u5zg8gkBHn8ZU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mnGCfkQHkoecUWOlh7veea9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qHr355XadR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8A0imNfw==</latexit>

N4

Figure 2.3: Scheme I: Illustration of a 3 × 3 local grid

Offline stage: Identifying the global basis functions

The identification of the global basis functions is less straightforward than for the
conventional POD-based MOR. Several approaches may be used and we investigate
two of those.

24

In the first one, the global basis functions are assumed to capture as much of the
fluctuation field as possible and the local interpolation is intended to compensate
for the inaccuracies of the global interpolation. In practise, this means that the iden-
tification of the global basis functions is exactly the same as for the conventional
POD-based MOR of the previous section; first the training solutions are split in ho-
mogeneous displacements (D̄) and fluctuating displacements (D̃), and subsequently,
the fluctuating displacements are stored in the snapshot matrix ((), from which the
global basis functions (Φ) are extracted using SVD.

In the second approach, the local interpolation captures as much of the fluctuating
displacement field as possible, whereas the global basis functions are used to com-
pensate for the inaccuracies of the local interpolation. To this end, we again first split
each training solution in a homogeneous displacement field (D̄) and a fluctuating
displacement field (D̃). Subsequently, we find the variables of the local interpolation
(W) that best match the fluctuation field of each training solution. This is achieved
by solving the following minimization problem:

W∗ = argmin
W

‖D̃ −Ω W‖22, (2.27)

where W∗ denotes the values of the variables of the local interpolation that best
describe the fluctuating displacement field. This minimization problem is solved
using Newton’s approach, requiring only one iteration as the objective function is
quadratic in W.

The global basis functions are found by storing D̃ −Ω W∗ of each training solution as
a column in matrix (and applying SVD in the same manner as described in section
2.3.

Online stage: Computing the variables of the local/global basis functions

A relevant change with the traditional POD-based MOR at the online stage is that
the DoFs of the new approach involves both the variables (U) of the basis functions
and the variables (W) of the local interpolation functions. Since both the local and
global basis functions are themselves periodic, similar to the global basis functions
of conventional POD-basedMOR, periodicity is not required to be actively enforced.

25

-8 4e-02

6.2e-02

-0.06
-0.04
-0.02
0
0.02
0.04

cl
da
ta

<latexit sha1_base64="R3JHF6XQjug1uD2reZKoKXm+9Iw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SqI0QtLFMwMRAcoS9zVyyZm/v2N0TwpFfYGOhiK0/yc5/4ya5QhMfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NZxqhi2WCxi1QmoRsEltgw3AjuJQhoFAh+C8e3Mf3hCpXks780kQT+iQ8lDzqixUvO6X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/yMyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSbtW9S6qXrNWqd/kcRThBE7hHDy4hDrcQQNawADhGV7hzXl0Xpx352PRWnDymWP4A+fzB44ljMU=</latexit>=
<latexit sha1_base64="AWqAFNb1FhuaUM451nTe28Vw5ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEErSg3osevHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWal70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3mXVa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHLdjLM=</latexit>

+
<latexit sha1_base64="AWqAFNb1FhuaUM451nTe28Vw5ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEErSg3osevHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWal70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3mXVa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHLdjLM=</latexit>

+

<latexit sha1_base64="f2Oaw+1zjf7OFKezKKEBH5/O7VU=">AAACOXicbVC7SgNBFJ31bXxFLW0Go6BN2E2hlqKNhUUEo0I2hNm7d+Pg7OwyDyEs+1s2/oWdYGOhiK0/4GxM4evAwOGce+fee6JccG18/9GbmJyanpmdm68tLC4tr9RX1y50ZhVgBzKRqauIaRRcYsdwI/AqV8jSSOBldHNc+Ze3qDTP5LkZ5thL2UDyhAMzTurX2yGgNKi4HBSnGTBBE2HBWGfLAQ1DGnOdCwaYujKacBQx3dkKDRcxFqGVMapqdGHLsn+6tUvLfr3hN/0R6F8SjEmDjNHu1x/COANb/Q+Cad0N/Nz0CqYMB4FlLbQacwY3bIBdRyVLUfeK0eUl3XZKTJNMuef2G6nfOwqWaj1MI1eZMnOtf3uV+J/XtSY56BVc5taghK9BiRXUZLSK0cWiEIwYOsJAcbcrhWumGLgsdc2FEPw++S+5aDWDvWZw1mocHo3jmCMbZJPskIDsk0NyQtqkQ4DckSfyQl69e+/Ze/Pev0onvHHPOvkB7+MT5RyuIQ==</latexit>

Local fluctuating
displacement field (ũL)

<latexit sha1_base64="GQbLoik5EdoKwpJ4XbOdHlVcxz0=">AAACL3icbVDLSgMxFM34rPVVdekm2Aq6KTNdqMuiIF0qWC10Sslk7tRgJhnyEMowf+TGX+lGRBG3/oWZ2oWvA4HDOffm3nuijDNtfP/Zm5tfWFxarqxUV9fWNzZrW9vXWlpFoUsll6oXEQ2cCegaZjj0MgUkjTjcRHdnpX9zD0ozKa7MOINBSkaCJYwS46Rh7TykIAwoJkZ5R6ZyBAKk1TgMccx0xgmF1BXghAGP8UEjjIjKQytiUOXI3BZF4xAXw1rdb/pT4L8kmJE6muFiWJuEsaS2/JtyonU/8DMzyIkyjHIoqqHVkBF6R0bQd1SQFPQgn95b4H2nxDiRyj2321T93pGTVOtxGrnKlJhb/dsrxf+8vjXJySBnIrMGBP0alFiOjcRleC4SBdTwsSOEKuZ2xfSWKEJdgrrqQgh+n/yXXLeawVEzuGzV26ezOCpoF+2hAxSgY9RGHXSBuoiiBzRBL+jVe/SevDfv/at0zpv17KAf8D4+Ab0lqg0=</latexit>

Homogeneous
displacement field (ū)

<latexit sha1_base64="UWAp/lFX4Zr6GGSnNyr7wqQyVg4=">AAACI3icbVC7TsMwFHXKq5RXgZHFokUqS5V0AMRUwcJYpL6kpqoc56a16jiR7SBVUf+FhV9hYQBVLAz8C07bAVqOZOnonHt97z1ezJnStv1l5TY2t7Z38ruFvf2Dw6Pi8UlbRYmk0KIRj2TXIwo4E9DSTHPoxhJI6HHoeOP7zO88gVQsEk09iaEfkqFgAaNEG2lQvHUpCA2SiWHajDTh2HWxz1TMCYXQWDhgwH1cKbuJ8EFmc9JkWr7E00GxZFftOfA6cZakhJZoDIoz149okv1KOVGq59ix7qdEakY5TAtuoiAmdEyG0DNUkBBUP53fOMUXRvFxEEnzzFZz9XdHSkKlJqFnKkOiR2rVy8T/vF6ig5t+ykScaBB0MShIONYRzgIzYUigmk8MIVQysyumIyIJNampggnBWT15nbRrVeeq6jzWSvW7ZRx5dIbOUQU56BrV0QNqoBai6Bm9onf0Yb1Yb9bM+lyU5qxlzyn6A+v7ByA9pIc=</latexit>

Total
displacement field (u)

<latexit sha1_base64="rwBoDKOoGrNdVh2/mO8+nSRb+dI=">AAACOXicbVDLSsNAFJ3Ud31VXboZrELdlKQLdSm6qMsKthWaUiaTm3boZBLmIZSQ33LjX7gT3LhQxK0/4KTtwteBgcM598699wQpZ0q77pNTWlhcWl5ZXSuvb2xubVd2djsqMZJCmyY8kbcBUcCZgLZmmsNtKoHEAYduML4s/O4dSMUScaMnKfRjMhQsYpRoKw0qLZ+C0CCZGGZNngSE44gbqo31xRD7Pg6ZSjmhENs6HDHgIa4d+prxEDLfiBBkMTszeT5oHh7ng0rVrbtT4L/Em5MqmqM1qDz6YUJN8T3lRKme56a6nxGpGeWQl32jICV0TIbQs1SQGFQ/m16e4yOrhDhKpH12van6vSMjsVKTOLCVMdEj9dsrxP+8ntHRWT9jIjUaBJ0NigzHOsFFjDYVCVTziSWESmZ3xXREJKE2S1W2IXi/T/5LOo26d1L3rhvV84t5HKtoHx2gGvLQKTpHV6iF2oiie/SMXtGb8+C8OO/Ox6y05Mx79tAPOJ9fSVyuYg==</latexit>

Global fluctuating
displacement field (ũG)

Figure 2.4: Local/Global scheme I: Split of a solution, D, in to a homogeneous
part, D̄, a locally fluctuating part, D̃

!
, that is captured by the interpolation of an FE

discretization/grid, and a globally fluctuating part D̃
�
fromwhich the basis functions

are extracted.

For simplicity of notation, the local and global interpolation matrices are stored
together as:

� =

[
Φ Ω

]
, (2.28)

where � is thus of size =D × (=1 + =!). The variables of both sets of interpolation
functions are gathered in:

0 =

[
U) W)

])
. (2.29)

Computing the variables using the Galerkin projection framework, leads to the
following linearized problem to be solved online:

(�)
int
�)30 = �) 5

ext
− �) 5

int
− �)

int
Ψ3V, (2.30)

Finally, it is worth mentioning that the conventional POD-based MOR of section
2.3 is recovered if the grid consists of a single element.

Scheme II
The second local/global interpolation scheme is similar to the scheme I, with the
only difference that the grid elements are restricted to deform affinely (i.e. homoge-
neously) (cf.Fig. 2.4 and 2.5). Restricting the deformation of the grid elements to
homogeneous deformation requires the need of an additional matrix in the interpo-
lation, denoted by " of size =! × =< (where =< is expressed as given in Eq. (2.33)),

26

that constrains the deformation of the grid elements to homogeneous deformation.
We now express the interpolation as follows:

D ≈ Ψ V +ΦU +Ω" W, (2.31)

where the meaning of the variables in W (which is now of length =<) has changed.
In scheme I, the variables in W are the DoFs of the grid nodes. In scheme II, the
variables are components of the deformation gradient tensors of the grid elements.

<latexit sha1_base64="R3JHF6XQjug1uD2reZKoKXm+9Iw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SqI0QtLFMwMRAcoS9zVyyZm/v2N0TwpFfYGOhiK0/yc5/4ya5QhMfDDzem2FmXpAIro3rfjuFtfWNza3idmlnd2//oHx41NZxqhi2WCxi1QmoRsEltgw3AjuJQhoFAh+C8e3Mf3hCpXks780kQT+iQ8lDzqixUvO6X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj90Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/yMyyQ1KNliUZgKYmIy+5oMuEJmxMQSyhS3txI2oooyY7Mp2RC85ZdXSbtW9S6qXrNWqd/kcRThBE7hHDy4hDrcQQNawADhGV7hzXl0Xpx352PRWnDymWP4A+fzB44ljMU=</latexit>=
<latexit sha1_base64="AWqAFNb1FhuaUM451nTe28Vw5ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEErSg3osevHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWal70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3mXVa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHLdjLM=</latexit>

+
<latexit sha1_base64="AWqAFNb1FhuaUM451nTe28Vw5ZI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBEErSg3osevHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWal70yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5odOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhtZ9xmaQGJVssClNBTExmX5MBV8iMmFhCmeL2VsJGVFFmbDYlG4K3/PIqadeq3mXVa9Yq9Zs8jiKcwCmcgwdXUIc7aEALGCA8wyu8OY/Oi/PufCxaC04+cwx/4Hz+AHLdjLM=</latexit>

+

<latexit sha1_base64="f2Oaw+1zjf7OFKezKKEBH5/O7VU=">AAACOXicbVC7SgNBFJ31bXxFLW0Go6BN2E2hlqKNhUUEo0I2hNm7d+Pg7OwyDyEs+1s2/oWdYGOhiK0/4GxM4evAwOGce+fee6JccG18/9GbmJyanpmdm68tLC4tr9RX1y50ZhVgBzKRqauIaRRcYsdwI/AqV8jSSOBldHNc+Ze3qDTP5LkZ5thL2UDyhAMzTurX2yGgNKi4HBSnGTBBE2HBWGfLAQ1DGnOdCwaYujKacBQx3dkKDRcxFqGVMapqdGHLsn+6tUvLfr3hN/0R6F8SjEmDjNHu1x/COANb/Q+Cad0N/Nz0CqYMB4FlLbQacwY3bIBdRyVLUfeK0eUl3XZKTJNMuef2G6nfOwqWaj1MI1eZMnOtf3uV+J/XtSY56BVc5taghK9BiRXUZLSK0cWiEIwYOsJAcbcrhWumGLgsdc2FEPw++S+5aDWDvWZw1mocHo3jmCMbZJPskIDsk0NyQtqkQ4DckSfyQl69e+/Ze/Pev0onvHHPOvkB7+MT5RyuIQ==</latexit>

Local fluctuating
displacement field (ũL)

<latexit sha1_base64="GQbLoik5EdoKwpJ4XbOdHlVcxz0=">AAACL3icbVDLSgMxFM34rPVVdekm2Aq6KTNdqMuiIF0qWC10Sslk7tRgJhnyEMowf+TGX+lGRBG3/oWZ2oWvA4HDOffm3nuijDNtfP/Zm5tfWFxarqxUV9fWNzZrW9vXWlpFoUsll6oXEQ2cCegaZjj0MgUkjTjcRHdnpX9zD0ozKa7MOINBSkaCJYwS46Rh7TykIAwoJkZ5R6ZyBAKk1TgMccx0xgmF1BXghAGP8UEjjIjKQytiUOXI3BZF4xAXw1rdb/pT4L8kmJE6muFiWJuEsaS2/JtyonU/8DMzyIkyjHIoqqHVkBF6R0bQd1SQFPQgn95b4H2nxDiRyj2321T93pGTVOtxGrnKlJhb/dsrxf+8vjXJySBnIrMGBP0alFiOjcRleC4SBdTwsSOEKuZ2xfSWKEJdgrrqQgh+n/yXXLeawVEzuGzV26ezOCpoF+2hAxSgY9RGHXSBuoiiBzRBL+jVe/SevDfv/at0zpv17KAf8D4+Ab0lqg0=</latexit>

Homogeneous
displacement field (ū)

<latexit sha1_base64="UWAp/lFX4Zr6GGSnNyr7wqQyVg4=">AAACI3icbVC7TsMwFHXKq5RXgZHFokUqS5V0AMRUwcJYpL6kpqoc56a16jiR7SBVUf+FhV9hYQBVLAz8C07bAVqOZOnonHt97z1ezJnStv1l5TY2t7Z38ruFvf2Dw6Pi8UlbRYmk0KIRj2TXIwo4E9DSTHPoxhJI6HHoeOP7zO88gVQsEk09iaEfkqFgAaNEG2lQvHUpCA2SiWHajDTh2HWxz1TMCYXQWDhgwH1cKbuJ8EFmc9JkWr7E00GxZFftOfA6cZakhJZoDIoz149okv1KOVGq59ix7qdEakY5TAtuoiAmdEyG0DNUkBBUP53fOMUXRvFxEEnzzFZz9XdHSkKlJqFnKkOiR2rVy8T/vF6ig5t+ykScaBB0MShIONYRzgIzYUigmk8MIVQysyumIyIJNampggnBWT15nbRrVeeq6jzWSvW7ZRx5dIbOUQU56BrV0QNqoBai6Bm9onf0Yb1Yb9bM+lyU5qxlzyn6A+v7ByA9pIc=</latexit>

Total
displacement field (u)

-9 0e-02

1.0e-01

-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08

cl
da
ta

<latexit sha1_base64="l87k9HybqNYLWcfbOYCtHvqBajQ=">AAACOXicbVDLSsNAFJ3Ud31VXboZrELdlKQLdSm6qMsKthWaUiaTm3boZBLmIZSQ33LjX7gT3LhQxK0/4KTtwteBgcM598699wQpZ0q77pNTWlhcWl5ZXSuvb2xubVd2djsqMZJCmyY8kbcBUcCZgLZmmsNtKoHEAYduML4s/O4dSMUScaMnKfRjMhQsYpRoKw0qLZ+C0CCZGGZNngSE44gbqo31xRD7Pg6ZSjmhENs6HDHgIa4d+kaEIIuhma8ZDyEzeT5oHh/mg0rVrbtT4L/Em5MqmqM1qDz6YUJN8T3lRKme56a6nxGpGeWQl32jICV0TIbQs1SQGFQ/m16e4yOrhDhKpH12van6vSMjsVKTOLCVMdEj9dsrxP+8ntHRWT9jIjUaBJ0NigzHOsFFjDYVCVTziSWESmZ3xXREJKE2S1W2IXi/T/5LOo26d1L3rhvV84t5HKtoHx2gGvLQKTpHV6iF2oiie/SMXtGb8+C8OO/Ox6y05Mx79tAPOJ9fSamuYg==</latexit>

Global fluctuating
displacement field (ũG)

Figure 2.5: Local/Global scheme II: Split of a solution, D, in to a homogeneous
part, D̄, a locally fluctuating part, D̃

!
, that is captured by the interpolation of an FE

discretization/grid restricted to affine deformations, and a globally fluctuating part
D̃
�
.

The constraints incorporated in scheme II can best be explained using an example,
for which we refer the reader to Fig. 2.6, in which a 3 × 3 interpolation grid is
superimposed on the FE mesh of the DNS. In scheme II, each column of grid
elements shares the same deformation gradient tensor components �GG and �HG
in order to guarantee displacement field compatibility over each column of grid
elements. Similarly, each row of grid elements shares the same deformation gradient
tensor components�HH and�GH in order to guarantee displacement field compatibility
over each row. Finally, the deformation gradient tensor components of the last
column and the last row are not variables in order to ensure that the total deformation
of the local interpolation is on average the same as the macroscopically applied
deformation. In other words, we incorporate the following constraint:

U" =
1
=�!

=�!∑
8=1

F8, (2.32)

27

where F8 denotes the deformation gradient tensor of the 8th grid element. Note that
Eq. (2.32) only holds if the reference area/volume of each grid element is the same.

In the 2D cases of this chapter, the number of variables in scheme II, =<, can thus
be expressed in terms of the number of grid nodes in one direction, =6A , as follows:

=< = 4
(
=6A − 2

)
. (2.33)

Similarly, if we assume that the bottom left corner node of the RVE does not displace
and the reference location of the bottom left corner node is set to the zero vector, we
can express the meaning of the variables in W as follows:

<latexit sha1_base64="5rK+dlLQqJHqSKO/f/GbA655ok0=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUmKqMuiIC4r2Ac0MUymk3boZBJmJtIQAm78FTcuFHHrT7jzb5y2WWjrgYFzz7mXO/f4MaNSWda3UVpaXlldK69XNja3tnfM3b22jBKBSQtHLBJdH0nCKCctRRUj3VgQFPqMdPzR1cTvPBAhacTvVBoTN0QDTgOKkdKSZx5ce9l4nN9nVj2HjgN1mRalZ1atmjUFXCR2QaqgQNMzv5x+hJOQcIUZkrJnW7FyMyQUxYzkFSeRJEZ4hAakpylHIZFuNr0hh8da6cMgEvpxBafq74kMhVKmoa87Q6SGct6biP95vUQFF25GeZwowvFsUZAwqCI4CQT2qSBYsVQThAXVf4V4iATCSsdW0SHY8ycvkna9Zp/V7NvTauOyiKMMDsEROAE2OAcNcAOaoAUweATP4BW8GU/Gi/FufMxaS0Yxsw/+wPj8ASuslzg=</latexit>

F 02
xx

F 02
yx

<latexit sha1_base64="RbgQkjQEWfKpcUF5UxMn2Z2khag=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwVRIRdVkUxGUF+4Amhsl00g6dPJiZSEsIuPFX3LhQxK0/4c6/cdpmoa0HBs49517u3OMnnEllWd/GwuLS8spqaa28vrG5tW3u7DZlnApCGyTmsWj7WFLOItpQTHHaTgTFoc9pyx9cjf3WAxWSxdGdGiXUDXEvYgEjWGnJM/evvWw4zO8zy86R4yBdjorSMytW1ZoAzRO7IBUoUPfML6cbkzSkkSIcS9mxrUS5GRaKEU7zspNKmmAywD3a0TTCIZVuNrkhR0da6aIgFvpFCk3U3xMZDqUchb7uDLHqy1lvLP7ndVIVXLgZi5JU0YhMFwUpRypG40BQlwlKFB9pgolg+q+I9LHAROnYyjoEe/bkedI8qdpnVfv2tFK7LOIowQEcwjHYcA41uIE6NIDAIzzDK7wZT8aL8W58TFsXjGJmD/7A+PwBKJOXNg==</latexit>

F 01
xx

F 01
yx

<latexit sha1_base64="NgOPhPt7B4Jr0pNqsJuv8pIXsg4=">AAACA3icbVDLSsNAFL2pr1pfUXe6GSyCq5KIqMuiIC4r2Ae0MUymk3bo5MHMRAwh4MZfceNCEbf+hDv/xmmbhbYeGDj3nHu5c48XcyaVZX0bpYXFpeWV8mplbX1jc8vc3mnJKBGENknEI9HxsKSchbSpmOK0EwuKA4/Ttje6HPvteyoki8JblcbUCfAgZD4jWGnJNfeu3CxN87vMtnLU6yFdPhSla1atmjUBmid2QapQoOGaX71+RJKAhopwLGXXtmLlZFgoRjjNK71E0hiTER7QrqYhDqh0sskNOTrUSh/5kdAvVGii/p7IcCBlGni6M8BqKGe9sfif102Uf+5kLIwTRUMyXeQnHKkIjQNBfSYoUTzVBBPB9F8RGWKBidKxVXQI9uzJ86R1XLNPa/bNSbV+UcRRhn04gCOw4QzqcA0NaAKBR3iGV3gznowX4934mLaWjGJmF/7A+PwBK8eXOA==</latexit>

F 10
yy

F 10
xy

<latexit sha1_base64="CRJtmU9NgiFJsAR5Rw/nXEtimVk=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwVZIi6rIoiMsK9gFtDJPppB06eTAzEUMIuPFX3LhQxK0/4c6/cdpmoa0HBs49517u3OPFnEllWd/GwuLS8spqaa28vrG5tW3u7LZklAhCmyTikeh4WFLOQtpUTHHaiQXFgcdp2xtdjv32PRWSReGtSmPqBHgQMp8RrLTkmvtXbpam+V1Ws3LU6yFdPhSla1asqjUBmid2QSpQoOGaX71+RJKAhopwLGXXtmLlZFgoRjjNy71E0hiTER7QrqYhDqh0sskNOTrSSh/5kdAvVGii/p7IcCBlGni6M8BqKGe9sfif102Uf+5kLIwTRUMyXeQnHKkIjQNBfSYoUTzVBBPB9F8RGWKBidKxlXUI9uzJ86RVq9qnVfvmpFK/KOIowQEcwjHYcAZ1uIYGNIHAIzzDK7wZT8aL8W58TFsXjGJmD/7A+PwBLuKXOg==</latexit>

F 20
yy

F 20
xy

<latexit sha1_base64="Ew/4cbcMBUKab0CWbbLVpNF+nbg=">AAACHHicbVDLSsNAFJ3UV62vqEs3g0UQxJK0om6EoiBuhAqmLbRpmEwn7dDJg5mJEEI+xI2/4saFIm5cCP6N04eirQcunDnnXube40aMCmkYn1pubn5hcSm/XFhZXVvf0De36iKMOSYWDlnImy4ShNGAWJJKRpoRJ8h3GWm4g4uh37gjXNAwuJVJRGwf9QLqUYykkhy9cumkSZJ10oqRwTNYsTrXIwEewm/HVM7Bz6tsZI5eNErGCHCWmBNSBBPUHP293Q1x7JNAYoaEaJlGJO0UcUkxI1mhHQsSITxAPdJSNEA+EXY6Oi6De0rpQi/kqgIJR+rviRT5QiS+qzp9JPti2huK/3mtWHqndkqDKJYkwOOPvJhBGcJhUrBLOcGSJYogzKnaFeI+4ghLlWdBhWBOnzxL6uWSeVwyb46K1fNJHHmwA3bBPjDBCaiCK1ADFsDgHjyCZ/CiPWhP2qv2Nm7NaZOZbfAH2scXZ2qgVQ==</latexit>

F 30
yy = 3UM

yy � F 10
yy + F 20

yy

<latexit sha1_base64="vdiZQT5I1u7ei4srgDQCLk7nxU8=">AAACHHicbVDLSgMxFM34rPVVdekmWARBLDOtqBuhKIgboYJ9QB9DJs20oZnMkGTEYZgPceOvuHGhiBsXgn9j2o6irQcunJxzL7n3OAGjUpnmpzEzOze/sJhZyi6vrK6t5zY2a9IPBSZV7DNfNBwkCaOcVBVVjDQCQZDnMFJ3BudDv35LhKQ+v1FRQNoe6nHqUoyUluxc6cKO76KkE5fMBJ7CUrVzNRLgAfx2LO3s/7yKZmLn8mbBHAFOEysleZCiYufeW10fhx7hCjMkZdMyA9WOkVAUM5JkW6EkAcID1CNNTTnyiGzHo+MSuKuVLnR9oYsrOFJ/T8TIkzLyHN3pIdWXk95Q/M9rhso9aceUB6EiHI8/ckMGlQ+HScEuFQQrFmmCsKB6V4j7SCCsdJ5ZHYI1efI0qRUL1lHBuj7Ml8/SODJgG+yAPWCBY1AGl6ACqgCDe/AInsGL8WA8Ga/G27h1xkhntsAfGB9fYPGgUQ==</latexit>

F 30
xy = 3UM

xy � F 10
xy + F 20

xy

<latexit sha1_base64="rWjVErXFnFb52xlibKEoQlOfTvM=">AAACHHicbVDLSgMxFM3UV62vUZdugkUQxDLTiroRioK4ESo4baGdlkyatqGZB0lGWob5EDf+ihsXirhxIfg3ptPBR+uBCyfn3EvuPU7AqJCG8all5uYXFpeyy7mV1bX1DX1zqyr8kGNiYZ/5vO4gQRj1iCWpZKQecIJch5GaM7gY+7U7wgX1vVs5Cojtop5HuxQjqaS2XrpsR8Nh3IqMUgzPYMlqXScCPITfjhnDg59XMW7reaNgJICzxExJHqSotPX3ZsfHoUs8iRkSomEagbQjxCXFjMS5ZihIgPAA9UhDUQ+5RNhRclwM95TSgV2fq/IkTNTfExFyhRi5jup0keyLaW8s/uc1Qtk9tSPqBaEkHp581A0ZlD4cJwU7lBMs2UgRhDlVu0LcRxxhqfLMqRDM6ZNnSbVYMI8L5s1RvnyexpEFO2AX7AMTnIAyuAIVYAEM7sEjeAYv2oP2pL1qb5PWjJbObIM/0D6+AFp2oE0=</latexit>

F 03
xx = 3UM

xx � F 01
xx + F 02

xx
<latexit sha1_base64="CQzBSyJFDjpf9rRLTPaXGhwN0ao=">AAACHHicbVDLSgMxFM34rPVVdekmWARBLDOtqBuhKIgboYJ9QB9DJs20oZnMkGTEYZgPceOvuHGhiBsXgn9j2g4+Wg9cODnnXnLvcQJGpTLNT2Nmdm5+YTGzlF1eWV1bz21s1qQfCkyq2Ge+aDhIEkY5qSqqGGkEgiDPYaTuDM6Hfv2WCEl9fqOigLQ91OPUpRgpLdm50oUdR3dJJzZLCTyFpWrnaiTAA/jtWAnc/3kVEzuXNwvmCHCaWCnJgxQVO/fe6vo49AhXmCEpm5YZqHaMhKKYkSTbCiUJEB6gHmlqypFHZDseHZfAXa10oesLXVzBkfp7IkaelJHn6E4Pqb6c9Ibif14zVO5JO6Y8CBXhePyRGzKofDhMCnapIFixSBOEBdW7QtxHAmGl88zqEKzJk6dJrViwjgrW9WG+fJbGkQHbYAfsAQscgzK4BBVQBRjcg0fwDF6MB+PJeDXexq0zRjqzBf7A+PgCYO+gUQ==</latexit>

F 03
yx = 3UM

yx � F 01
yx + F 02

yx

Figure 2.6: Scheme II: Illustration of a 3 × 3 FE grid with the same number of FEs
along the horizontal and vertical directions, also with the same volume (size).

(
W

)
8
=



�08
GG −*"GG if 8 ≤ =6A − 2

�
(8−=6A−2)0
HG −*"GH if =6A − 2 < 8 ≤ 2=6A − 4

�
(8−2=6A−4)0
HH −*"HH if 2=6A − 4 < 8 ≤ 3=6A − 6

�
(8−3=6A−6)0
HG −*"GH if 3=6A − 6 < 8

, (2.34)

where we refer the reader to Fig. 2.6 for the meaning of the superscripts of the
components of F. Associated with the definition of the variables in W according to
the previous equation, the expression for a component of matrix " on row 8, column
9 , reads:

28

(
"

)
8, 9
=



� (-̂d 82 e
− (9 − 1);); if 8 is odd & 9 ≤ =6A − 2

� (.̂d 82 e
− (9 − =6A + 1);); if 8 is odd & =6A − 2 < 9 ≤ 2=6A − 4

0 if 8 is odd & 2=6A − 4 < 9

0 if 8 is even & 9 ≤ 2=6A − 4

� (.̂d 82 e
− (9 − 2=6A + 3);); if 8 is even & 2=6A − 4 < 9 ≤ 3=6A − 6

� (-̂d 82 e
− (9 − 3=6A + 5);); if 8 is even & 3=6A − 6 < 9

, (2.35)

where the hat on top of - and . is used to distinguish the reference location vector
components of the grid nodes from those of the DNS mesh. Furthermore, � (•)
denotes the Heaviside step function (with � (0) = 0) and ; denotes the length of a
grid element (which we consider to be the same in horizontal and vertical direction
because the RVE of interest is a square).

Offline stage: Identification of the global basis functions

Similarly as for scheme I, we investigate the same two approaches to identify the
global basis functions. In the first approach, we again let the global interpolation
capture as much of the fluctuating displacement field as possible and assume that the
local interpolation captures the remaining inaccuracies. This entails that the global
basis functions are exactly the same as the ones of the conventional POD-based
MOR of the previous section.

In the second approach, we again let the local interpolation capture as much of
the fluctuating displacement field as possible, whereas the global interpolation is
intended to compensate for the remainder of the fluctuating displacement field. To
this end, similarly as for scheme I, we solve the following minimization problem for
each training solution:

W∗ = argmin
W

‖D̃ −Ω" W‖22. (2.36)

Subsequently, the global basis functions are found by storing D̃ − Ω" W∗ of each
training solution as a column in matrix (from which the global basis functions are
extracted using SVD.

Online stage: Computing the variables of the local/global basis functions

The linearized governing equations of the online simulations are similar to those
for the first scheme. The local (W) and global coefficients (U) are computed using

29

Eq. (2.30) at the online stage, with a small difference in the definition of matrix �,
which is now written as:

� =

[
Φ Ω"

]
. (2.37)

Equivalent to the scheme I, the conventional POD-based MOR of section 2.3 is
recovered if the local FE discretization consists of a single quadrilateral element.

The presence of an additional local interpolation is expected to improve the on-
line computations of conventional POD-based MOR using a less number of basis
functions, consequently reducing the required number of quadrature points for the
hyperreduction strategy of [35].

2.5 Results and discussion
We investigate the above discussed MOR methods for the RVE shown in Fig. 2.7
which consists of stiff elastic particles in an elastoplastic matrix and is subjected to
monotonic loading. The material parameters for the matrix are set to � = 1, a = 0.3,
"0 = 0.01, ℎ = 0.02 and< = 1.05. For the particles, the elastic material parameters
are set to � = 20, a = 0.3, while "0 = ∞ ensures that the particles behave purely
elastically. Because the matrix deforms mostly plastically and plastic deformation
is isochoric, and because the particles deform only minimally relative to the matrix
(due to the ratio of Young’s moduli), we only consider the application of isochoric
macroscale deformations (i.e. det(U") = 1), governed by bounds 0.5 ≤ *"

11 ≤ 1.5,
0.5 ≤ *"

22 ≤ 1.5 and −0.5 ≤ *"
12 ≤ 0.5.

X

Y

ZFigure 2.7: The discretized RVE with stiff, elastic particles.

30

Training data is generated by solving the DNS problem for 36 monotonically in-
creasing load paths shown as red dashed curves in Fig. 2.8. The online predictions
of the different MOR approaches are tested using four verification test simulations,
shown as black solid lines in Fig. 2.8. All load paths are applied in 1000 load
increments. The training solutions, i.e. the nodal displacement values, are extracted
after the first and at every 50th load increment of each training simulation.

<latexit sha1_base64="2A/2C/t6XMajRcXbdhBzxSepoO0=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGLCIQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmyTTjPsskYnuhNRwKRT3UaDknVRzGoeSP4bju7n/+MS1EYlq4STlQUyHSkSCUbSSX231vWq/XHFr7gJknXg5qUCOZr/81RskLIu5QiapMV3PTTGYUo2CST4r9TLDU8rGdMi7lioacxNMF8fOyIVVBiRKtC2FZKH+npjS2JhJHNrOmOLIrHpz8T+vm2F0E0yFSjPkii0XRZkkmJD552QgNGcoJ5ZQpoW9lbAR1ZShzadkQ/BWX14n7XrNu6p5D/VK4zaPowhncA6X4ME1NOAemuADAwHP8ApvjnJenHfnY9lacPKZU/gD5/MHjpaN3A==</latexit>

T1

<latexit sha1_base64="GWkf6WNuIRglGYXNs21Hbv2mKJM=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGLCIQlcyN6ywIa9vcvunAm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEhh0HW/ncLG5tb2TnG3tLd/cHhUPj5pmzjVjPsslrHuhNRwKRT3UaDknURzGoWSP4aTu7n/+MS1EbFq4TThQURHSgwFo2glv9rq16v9csWtuQuQdeLlpAI5mv3yV28QszTiCpmkxnQ9N8EgoxoFk3xW6qWGJ5RN6Ih3LVU04ibIFsfOyIVVBmQYa1sKyUL9PZHRyJhpFNrOiOLYrHpz8T+vm+LwJsiESlLkii0XDVNJMCbzz8lAaM5QTi2hTAt7K2FjqilDm0/JhuCtvrxO2vWad1XzHuqVxm0eRxHO4BwuwYNraMA9NMEHBgKe4RXeHOW8OO/Ox7K14OQzp/AHzucPkBuN3Q==</latexit>

T2

<latexit sha1_base64="xN56OTvLIrXyrDm4csjgBST4eb4=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYxUY9ELx4xYYEENqRbutDQdjdt14Rs+A1ePGiMV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRahPYh6rbog15UxS3zDDaTdRFIuQ0044uZ/7nSeqNItly0wTGgg8kixiBBsr+dXW4Ko6KFfcmrsAWideTiqQozkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPUslFlQH2eLYGbqwyhBFsbIlDVqovycyLLSeitB2CmzGetWbi/95vdREt0HGZJIaKslyUZRyZGI0/xwNmaLE8KklmChmb0VkjBUmxuZTsiF4qy+vk3a95l3XvMd6pXGXx1GEMziHS/DgBhrwAE3wgQCDZ3iFN0c6L86787FsLTj5zCn8gfP5A5Ggjd4=</latexit>

T3

<latexit sha1_base64="PAyl/PJQb8I5NwRRq1LsEvxnhWs=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHaJUY9ELx4xYYEENqRbutDQdjdt14Rs+A1ePGiMV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRahPYh6rbog15UxS3zDDaTdRFIuQ0044uZ/7nSeqNItly0wTGgg8kixiBBsr+dXW4Ko6KFfcmrsAWideTiqQozkof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPUslFlQH2eLYGbqwyhBFsbIlDVqovycyLLSeitB2CmzGetWbi/95vdREt0HGZJIaKslyUZRyZGI0/xwNmaLE8KklmChmb0VkjBUmxuZTsiF4qy+vk3a95l3XvMd6pXGXx1GEMziHS/DgBhrwAE3wgQCDZ3iFN0c6L86787FsLTj5zCn8gfP5A5Mljd8=</latexit>

T4

Figure 2.8: 36 training load path as red dashed lines and four verification load paths
as black solid lines.

The performances of the local/global schemes are investigated for the following
aspects:

1. DNS vs. Conventional POD-based ROM vs. Scheme I vs. Scheme II: which of
the two new schemes performs best and howmuch better than the conventional
ROM?

2. The orthonormality of the local interpolation functions: does the presence or
absence of the orthonormality of the local interpolation functions with respect
to each other, as well as with respect to the global basis functions influence
the results?

3. The grid refinement: does a finer grid improve the results?

4. The identification of the global basis functions: do the schemes perform better
if the same global basis functions are used as for conventional POD-based
ROM, or if the local interpolations capture the majority of the fluctuating
displacement field and the global basis functions only compensate for the
local interpolation’s deficiency?

31

In order to investigate the impact of the orthonormality of the local interpolation
functions with respect to the global basis functions, we only consider scheme I with
a 4 × 4 grid for verification simulation T1. The orthonormalization of the local
interpolation functions with respect to each other and the global basis functions is
performed using the Gram-Schmidt process. Fig. 2.9 presents the homogenized,
in-plane 1st Piola Kirchhoff stress values predicted using the DNS, the conven-
tional ROM and Scheme I with the same global basis as in the conventional ROM
(i.e. assuming that the global basis functions capture most of the flucuation dis-
placement field). The results with orthonormalized and non-orthonormalized local
interpolation functions match each other perfectly.

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
11

(N
/m

m
2)

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
12

(N
/m

m
2)

POD: 10 Global basis functions

POD: 4× 4 grid: Ω Non-orthogonalized

POD: 4× 4 grid: Ω orthogonalized

DNS

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
21

(N
/m

m
2)

0.0 0.1 0.2√
tr(CM)−

√
3

−0.03

−0.02

−0.01

0.00

P̄
22

(N
/m

m
2)

Figure 2.9: Orthonormality investigated for scheme I: using a 4 × 4 local grid and
ten global basis functions, which are the same in the conventional MOR.

Fig. 2.10 again shows the in-plane components of the homogenized 1st Piola Kirch-
hoff stress, but with the global basis functions identified assuming that the local
interpolation captures most of the fluctuating displacement field (scheme I, 4 × 4
grid). The orthonormalization of the local interpolation functions is again achieved
using the Gram-Schmidt process, before Eq. (2.27) is employed to identify the
global basis functions. Again, the results predicted with orthonormalized and non-
orthonormalized local interpolation functions are exactly the same.

32

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
11

(N
/m

m
2)

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
12

(N
/m

m
2)

POD: 10 Global basis functions

Scheme I: 4× 4 grid: Ω Non-orthogonalized

Scheme I: 4× 4 grid: Ω orthogonalized

DNS

0.0 0.1 0.2√
tr(CM)−

√
3

0.000

0.005

0.010

0.015

P̄
21

(N
/m

m
2)

0.0 0.1 0.2√
tr(CM)−

√
3

−0.03

−0.02

−0.01

0.00

P̄
22

(N
/m

m
2)

Figure 2.10: Orthonormality investigated for scheme I: using a 4 × 4 local grid and
ten global basis functions, which are identified assuming that the local interpolation
captures most of the fluctuating displacement field.

It can be inferred from Fig. 2.9 and 2.10 that orthonormalizing the local interpolation
functions with respect to each other and with respect to the global basis functions
has no influence on the results.

Scheme I
We now proceed to investigate the performance of scheme I on the basis of the
four verification tests for different grid refinements and different numbers of global
interpolation functions. We also investigate the two aforementioned approaches
to identify the global basis functions: (i) Global basis functions from traditional
MOR (which assumes that the local interpolation only corrects for the deficiency of
the global interpolation’s inaccuracy), and (ii) Global basis functions identified to
compensate for the deficiency of the local interpolation in capturing the fluctuating
displacement field (using Eq. (2.27)).

33

For each verification simulation, we measure a relative error of all in-plane compo-
nents of the 1st Piola Kirchhoff stress at all quadrature points at the final increment:

4 =

�����%8=2AGG,�#(
− %8=2A

GG,"$'

%8=2A
GG,�#(

�����+�����%8=2AGH,�#(
− %8=2A

GH,"$'

%8=2A
GH,�#(

�����+�����%8=2AHG,�#(
− %8=2A

HG,"$'

%8=2A
HG,�#(

�����+�����%8=2AHH,�#(
− %8=2A

HH,"$'

%8=2A
HH,�#(

����� ,
(2.38)

where subscripts �#(and"$' distinguish the DNS results from the ROM results,
respectively. The superscript 8=2A refers to the last converged increment of each
simulation. Scheme I and II do not always converge until the end of the verification
load paths. In those cases, the error in Eq. (2.38) is computed at the last converged
load increment.

The bar charts in Fig. 2.11 summarize all relative errors of scheme I using different
grid refinements and different numbers of global interpolation functions, in case the
same global basis functions are used as in the conventional MOR. In other words,
the global interpolation functions are calibrated such that the global interpolation
captures most of the fluctuating displacement field, whereas the local interpolation
is aimed to compensate for any inaccuracies. The left bar in each diagram presents
the error of the conventional MOR.

It is important to realize that verification simulation 1 failed to converge for the
12 × 12 grid with 10 global interpolation functions, 20 global basis functions, 30
global basis functions and with 40 global basis functions after increment 495, 463,
392 and 403, respectively. Verification simulation 2 failed to converge for the 2 × 2
grid with 10 global interpolation functions after increment 957, for the 4×4 grid with
10 global interpolation functions after increment 951 and for the 6 × 6 grid with 10
global interpolation functions after increment 949. Verification simulation 4 failed
to converge for the 4×4 grid and for the 8×8 grid, bothwith 10 global basis functions,
after increment 965 and 989, respectively. Failure to converge is generally caused
by the interplay of the local and global interpolation: the deformation in quadrature
points can become unphysical (det(F) < 0). On the other hand, it is also worth
to realize that the simulations include substantially large deformations (since the

34

bounds of the macroscale deformation are 0.5 ≤ *"
GG ≤ 1.5, −0.5 ≤ *"

GH ≤ 0.5 and
0.5 ≤ *"

HH ≤ 1.5) and hence, the frameworks are tested to their limits.

The results in Fig. 2.11 show that scheme I with the same global basis functions
as used in the conventional ROM indeed improves the overall accuracy. Refining
the local interpolation grid generally improves the accuracy, but for larger numbers
of global interpolation functions the accuracy actually reduces for the most refined
grid. If the number of DoFs is of primary interest, Fig. 2.11 demonstrates that it
is always better to increase the number of global basis functions, instead of using a
small number of global basis functions together with scheme I (with standard global
basis functions). However, if the primary interest is to limit the number of global
basis functions, scheme I indeed improves the overall accuracy in most cases.

10 Global basis functions
0

500

1000

1500

2000

2500

20 Global basis functions
0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

30 Global basis functions

0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

40 Global basis functions

0

500

1000

1500

2000

2500

Test 1

Test 2

Test 3

Test 4

Figure 2.11: Scheme I: total error in 1st Piola Kirchhoff stress at all quadrature
points using the same global basis functions as in conventional ROM.

35

We stick to scheme I, but change the identification of the global basis functions.
Instead of the same global basis functions as in the conventional MOR, we first
compute the best match of the local interpolation to capture the fluctuating displace-
ment field (according to Eq. (2.27)) and calibrate the global basis functions such
that they capture the difference between the locally interpolated fluctuation field and
the actual fluctuation field.

Substantially more verification simulations converge with the new calibration of the
global basis functions. Only verification simulation 1 fails for the 12 × 12 grid for
all numbers of global basis functions tested (after approximately increment 450)
and verification simulation 2 fails for the 4× 4 grid and the 6× 6 grid (both with 10
global basis functions) after increment 958 and 949, respectively.

The results in Fig. 2.12 generally show similar trends as the results in Fig. 2.11.
We see that refinement of the grid generally improves the accuracy, but that there is
again a limit to this for the largest numbers of global basis functions tested. One can
also notice that the increase of the accuracy is not as consistent as when the standard
global basis functions are employed. However, the best increase of the accuracy
can be observed for the smallest number of global basis functions, which is the aim
of this chapter. Comparing Figs. 2.11 (standard global basis functions) and 2.12
(alternative global basis functions), together with the fact that more simulations
converge for the new global basis functions, the global basis functions are favored
to be identified considering the treatment according to Eq. (2.27).

Scheme II
The results of scheme II with the use of conventional global basis functions are
presented in Fig. 2.13. None of the simulations failed to converge, but it is clear
that the accuracy is not increased at all (with a single exception). The fact that
the impact of scheme II is less pronounced than that of scheme I is twofold. First,
scheme II comes with substantially less DoFs than scheme I, especially for refined
grids. Second, the deformation of a grid element in scheme II is governed in a
substantially more nonlocal fashion than in scheme I, because each grid element
shares the components of its deformation gradient tensor with the row and column
in which is located.

When the new calibration of the global basis is used, the results change, as can be
seen in Fig. 2.14. In case 10 global basis functions are used, the accuracy is indeed
improved, albeit substantially less than for scheme I. In the case of 10 global basis

36

10 Global basis functions
0

500

1000

1500

2000

2500

20 Global basis functions
0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

30 Global basis functions

0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

40 Global basis functions

0

500

1000

1500

2000

2500

Test 1

Test 2

Test 3

Test 4

Figure 2.12: Scheme I: total error in 1st Piola Kirchhoff stress at all quadrature
points using global basis functions to compensate for the deficiency of the local
interpolation to describe the fluctuating displacement field.

functions on the other hand, verification test 4 fails for all grid refinements around
increment 985, except for the 2× 2 grid. For 30 global basis functions furthermore,
the accuracy deteriorates. Comparing the results of scheme I with scheme II, it is
clear that scheme I performs substantially better than scheme II.

Conforming mesh
A last illustrative result is presented for the use of the coarse discretization on the
left in Fig. 2.15 as the local interpolation. This coarse mesh is different from the
previously investigated grids, because its elements match the particles accurately.
The coarse, conforming mesh is only investigated for scheme I, because scheme II
is restricted to grids with perfectly rectangular elements.

The results obtained for the mesh with ten global basis functions are presented in
Fig. 2.16 for verification simulation T2, together with those of the conventional

37

10 Global basis functions
0

500

1000

1500

2000

2500

20 Global basis functions
0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

30 Global basis functions

0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

40 Global basis functions

0

500

1000

1500

2000

2500

Test 1

Test 2

Test 3

Test 4

Figure 2.13: Scheme II: total error in 1st Piola Kirchhoff stress at all quadrature
points using the same global basis functions as in conventional ROM.

POD-based MOR and the DNS. The results of scheme I for the 6×6 and the 12×12
grid are included in Fig. 2.16 for comparison, because the 6× 6 grid comes with 48
DoFs and the 12 × 12 grid with 240 DoFs, whereas the mesh of Fig. 2.15 with 190
DoFs. In other words, the conforming mesh comes with less DoFs than the 12 × 12
grid, but with more than the 6 × 6 grid.

Comparing the different curves in Fig. 2.16 with the naked eye is sufficient to
conclude that the conforming mesh outperforms the grids and the conventional
POD-based MOR. Nevertheless, the lack of robustness is even more present for
this conforming mesh. For instance, the simulations with the conforming mesh
for the other three verification simulations (not shown) maximally converged until
the 100th increment (out of a 1000 increments). Second, if the elements of the
conforming mesh of Fig. 2.15 are split in four so that the new mesh has four times as
many elements, divergence is observed for all verification simulations and at earlier
increments.

38

10 Global basis functions
0

500

1000

1500

2000

2500

20 Global basis functions
0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

30 Global basis functions

0

500

1000

1500

2000

2500

P
O
D

2
×

2

4
×

4

6
×

6

12
×

12

40 Global basis functions

0

500

1000

1500

2000

2500

Test 1

Test 2

Test 3

Test 4

Figure 2.14: Scheme II: total error in 1st Piola Kirchhoff stress at all quadrature
points using global basis functions to compensate for the deficiency of the local
interpolation to describe the fluctuating displacement field.

X

Y

Z

X

Y

ZFigure 2.15: A coarse, periodic, conforming mesh on the left and the DNS’ FE
mesh on the right for comparison.

39

0.0 0.1 0.2 0.3√
tr(CM)−

√
3

−0.03

−0.02

−0.01

0.00

P̄
11

(N
/m

m
2)

0.0 0.1 0.2 0.3√
tr(CM)−

√
3

0.00

0.01

0.02

0.03

0.04

0.05

P̄
12

(N
/m

m
2)

POD: 10 Global basis functions

Scheme I: Conforming mesh

Scheme I: 6× 6 grid

Scheme I: 12× 12 grid

DNS

0.0 0.1 0.2 0.3√
tr(CM)−

√
3

0.00

0.01

0.02

0.03

0.04

0.05

P̄
21

(N
/m

m
2)

0.0 0.1 0.2 0.3√
tr(CM)−

√
3

−0.0050

−0.0025

0.0000

0.0025

0.0050

P̄
22

(N
/m

m
2)

Figure 2.16: The results of scheme I for the conforming mesh of Fig. 2.15 for
verification simulation T2, together with the results of the DNS, the conventional
MOR and scheme I (with corrected basis functions) for the 6 × 6 and the 12 × 12
grid for ten global basis functions.

2.6 Conclusion
Projection-based model order reduction (MOR) for hyperelastoplastic simulations
requires large numbers of global basis functions in order to achieve an acceptable
accuracy. Large numbers of global basis functions need large numbers of quadrature
points (e.g. according to the hyperreduction strategy of [35]), thereby compromizing
the speed of the online simulations. Therefore, the goal of this chapter was to devise
a MOR approach that reduces the number of global interpolation functions for
hyperelastoplastic representative volume element simulations, so that less quadrature
points are required when hyperreduction is applied.

To this purpose, the global interpolation achieved using the basis functions of
conventional projection-based MOR is combined with the additional interpolation
of coarse finite element discretizations. Since the additional interpolations only
influence the displacement field in a part of the domain, the additional interpolation is
referred to as the local interpolation to distinguish it from the global interpolation of
the standard basis functions. The local interpolation functions are constructed such

40

that, similar to the global basis functions, they are periodic and hence, periodicity
does not need to be actively enforced in the online RVE simulations.

For the two new frameworks, we have considered conventional global basis func-
tions, which assumes that the global interpolation captures the majority of the
fluctuating displacement field and that the local interpolation compensates for the
global interpolation’s inaccuracy. We have also formulated an alternative calibration
of the global basis functions, which assumes that the local interpolation captures
the majority of the fluctuating displacement field and that the global interpolation
compensates for the local interpolation’s inaccuracies.

The results demonstrate that the local/global MOR approaches are indeed substan-
tially more accurate than the conventional POD-based MOR (which is not entirely
surprising because they introduce more DoFs than the conventional POD-based
MOR). Positive is also the fact that the increase of the accuracy of the local/global
approaches is more pronounced for small numbers of global (i.e. conventional) basis
functions, since the intention is to limit the number of basis functions.

The results also demonstrate that the local/global approaches clearly require more
development for use in a robust manner. The main issue is that for some simulations
(i.e. sets of load parameters), the new approaches perform extremely well, whereas
for other simulations the new approaches diverge before the simulation is finished.
This even occurred for substantially coarse grids, where each element interpolated
more than enough FE nodes of the underlying, original DNS discretization. On top
of that, the lack of robustness was even more pronounced for a mesh that conformed
the underlying topology than for perfectly structured meshes that did not follow the
underlying topology.

One potential avenue for further improvement may involve the identification of
the global basis functions. In this chapter, two approaches of identification were
investigated: (1) the conventional one that assumes that the global interpolation
will interpolate the majority of the displacement field (and the local interpolation
accounts for the deficiencies of the global interpolation), and (2) one that aims to let
the local interpolation describe the majority of the displacement field (and the global
interpolation accounts for the deficiencies of the local interpolation). Instead of these
two extremes of the spectrum, one may formulate types of identification more in
the center of the spectrum. How to formulate such an approach, and whether or not
such an approach should correct for the amount of plastic deformation occurring in
the training solutions, seems not trivial at this moment.

41

Another avenue for improvement may be found in staggered solution schemes. In
the present chapter, a monolithic approach was applied (see e.g. [63]), since we
simultaneously solve for the coefficients of the basis functions and for the DoFs of
the local interpolation. Staggered approaches, in which one solves for one set of
variables in one iteration and for the other set of variables in the next iteration, are
completely accepted in fluid-structure simulations (see e.g. [18]) and have shown to
provide stability to phase-field damage simulations [74]. They may therefore also
help the local/global schemes of the current chapter.

Another approach that may improve the robustness of the presented schemes is
increasing the hardening modulus in the stiffness matrix (ℎ in Eq. (2.2)). Such an
’engineering trick’ may be considered somewhat ad-hoc, because there is no theory
to choose the most appropriate value for this increase. On the other hand, for perfect
plasticity in infinitesimal strain settings, this modification is completely accepted to
achieve convergence.

42

C h a p t e r 3

NEURAL-NETWORK ACCELERATION OF
PROJECTION-BASED MODEL-ORDER-REDUCTION FOR

FINITE PLASTICITY

43

ABSTRACT

Compared to conventional projection-based model-order-reduction, its neural net-
work acceleration has the advantage that the online simulations are equation-free,
meaning that no system of equations needs to be solved iteratively. Consequently, no
stiffness matrix needs to be constructed and the stress update needs to be computed
only once per increment. In this chapter, a recurrent neural network is developed to
accelerate a projection-based model-order-reduction of the elastoplastic mechanical
behaviour of an RVE. In contrast to a neural network that merely emulates the
relation between the macroscopic deformation (path) and the macroscopic stress,
the neural network acceleration of projection-basedmodel-order-reduction preserves
all microstructural information, at the price of computing this information once per
increment.

44

3.1 Introduction
Relatively recently, artificial neural networks (ANNs) have been investigated to
emulate the relation between the macroscale deformation (path) and the macroscale
stress in nested multiscale approaches [28, 72, 77, 25, 33]. Although such ANN-
emulations are rapid, all microstructural information is in principle lost (some
microstructural information could be included in the ANN emulator [82]). In order
to preserve all microstructural information, ANNs can be combined with projection-
based model-order-reduction (MOR) [45, 75].

Projection-based MOR is an a posteriori method; it utilizes the solutions of train-
ing simulations as global basis functions to interpolate kinematic variables of the
original direct numerical simulation. It uses either a representative set of orthonor-
malized training solutions directly as global basis (i.e. the method of ‘reduced basis’
[59, 60]), or applies singular value decomposition to the training solutions, and uses
the basis vectors associated with the largest singular values as global basis functions
(i.e. the method of ‘Proper Orthogonal Decomposition’ - POD [42, 43, 52, 11]).

The global basis in projection-based MOR interpolates the kinematic variables to
reduce the number of degrees of freedom in the online simulations. In this chapter,
ANNs are used to emulate the values of these remaining degrees of freedom: the
coefficients of the global basis functions. This eliminates the need to construct
stiffness matrices, since the iterative process to solve for the basis coefficients is
avoided. The only issue that remains to be computed once per increment is the
stress update in each quadrature point (i.e. the plastic variables in the case of
elastoplasticity).

The aim of this chapter is to formulate an ANN-accelerated POD-based MOR for
finite plasticity under cyclic and random loading, applied to a representative volume
element (RVE). The use of projection-based MOR for systems governed by elasto-
plasticity requires a large number of global basis functions to achieve an acceptable
accuracy (we use 100 basis functions). As ANNs avoid the computation of the
basis coefficients, many basis functions can be used and hence, ANN-accelerated
projection-based MOR may be considered particularly useful in the context of
elastoplastic finite element computations.

Since elastoplasticity includes both reversible and irreversible physics, a suitable
ANN must be able to account for the deformation path. Since [54, 32, 83, 28] have
shown that the hidden variables in recurrent neural networks (RNNs) are able to
account for this (in the context of conventional finite element simulations to compute

45

inelastic responses), these types of ANNs are also used in the current chapter.

The remainder of this chapter is as follows: in the next section, the architecture
and working of ANNs is discussed, then a brief descriptions of feed forward neural
networks and recurrent neural networks are provided. Subsequently, the discussed
RNN is tested to predict the coefficients of basis functions for an elaso-plastic finite
element model. The results are discussed in section 3.3, where the predictions of the
RNN-accelerated POD-basedMOR are compared with those of the direct numerical
simulation (DNS) and the conventional POD-based MOR. A short conclusion is
presented in section 3.4.

The DNS are not discussed in this chapter, because they are the same as those of
the previous chapter. Similarly, a discussion on conventional POD-based MOR is
lacking (to promote conciseness), because it follows the same recipe as discussed in
section 2.2.

3.2 ANN-acceleration
In this section, we discuss the RNN that rapidly emulates the basis coefficients
in U for each increment (the input is U"). This circumvents the iterative process
(Eq. (2.20)) necessary for conventional POD-based MOR.

Introduction to neural networks
A neural network is a combination of numerous neurons. Each neuron receives
several input values ($ 9−1

1 to $ 9−1
:

in Fig. 3.1), and outputs a single value ($ 9
=) as a

function of weighing the input values (F8), adding a bias to it (1), and inserting the
result in an activation function (5) (AppendixA discusses commonly used activation
functions in more detail). A collection of neurons are grouped together to form a
layer.

The best known ANNs are feed forward deep neural networks (see Fig. 3.2). In
deep neural networks, several layers of neurons are placed one after another (see
Fig. 3.2). The neurons in subsequent layers are connected with each other [37].
Feed forward networks have a unique relationship between input and output data,
and cannot handle sequential information (i.e. a sequence of U"), as required for
path-dependent models such as elastoplasticity [65]. In other words, the output
predicted by a feed forward network for a given input does not depend on previous
input provided to the network.

46

<latexit sha1_base64="I96RT3yzR7ztTZoazDaaaDxZnQ0=">AAAB8nicbVBNSwMxEM3Wr1q/qh69LBbBi2Ujoh6LXrxZwX5Au5Zsmm1js8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBbHgBjzv2yksLa+srhXXSxubW9s75d29plGJpqxBlVC6HRDDBJesARwEa8eakSgQrBWMrid+64lpw5W8h3HM/IgMJA85JWClzm0vxdlD+niCs1654lW9KdxFgnNSQTnqvfJXt69oEjEJVBBjOtiLwU+JBk4Fy0rdxLCY0BEZsI6lkkTM+On05Mw9skrfDZW2JcGdqr8nUhIZM44C2xkRGJp5byL+53USCC/9lMs4ASbpbFGYCBeUO/nf7XPNKIixJYRqbm916ZBoQsGmVLIh4PmXF0nztIrPq/jurFK7yuMoogN0iI4RRheohm5QHTUQRQo9o1f05oDz4rw7H7PWgpPP7KM/cD5/ALdlkOM=</latexit>

Oj�1
1

<latexit sha1_base64="7VFipgLfhDyoQCW2okpC9QOAUXo=">AAAB8nicbVDLSgNBEOz1GeMr6tHLYBC8GHaDqMegF29GMA/YrGF2MpuMmZ1ZZmaFsOxnePGgiFe/xpt/4+Rx0MSChqKqm+6uMOFMG9f9dpaWV1bX1gsbxc2t7Z3d0t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXo/91hNVmklxb0YJDWLcFyxiBBsr+bfdrJo/ZI+nXt4tld2KOwFaJN6MlGGGerf01elJksZUGMKx1r7nJibIsDKMcJoXO6mmCSZD3Ke+pQLHVAfZ5OQcHVulhyKpbAmDJurviQzHWo/i0HbG2Az0vDcW//P81ESXQcZEkhoqyHRRlHJkJBr/j3pMUWL4yBJMFLO3IjLAChNjUyraELz5lxdJs1rxzive3Vm5djWLowCHcAQn4MEF1OAG6tAAAhKe4RXeHOO8OO/Ox7R1yZnNHMAfOJ8/uPCQ5A==</latexit>

Oj�1
2

<latexit sha1_base64="/8VePkpQCLh+BtpcBQSmiJAGb+4=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2VXRD0WvXizgv2Adi3ZNNvGZpMlyQpl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBTFn2rjut1NYWl5ZXSuulzY2t7Z3yrt7TS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD3xW09UaSbFvRnH1I/wQLCQEWys1LntpaPsIX088bJeueJW3SnQIvFyUoEc9V75q9uXJImoMIRjrTueGxs/xcowwmlW6iaaxpiM8IB2LBU4otpPpydn6MgqfRRKZUsYNFV/T6Q40nocBbYzwmao572J+J/XSUx46adMxImhgswWhQlHRqLJ/6jPFCWGjy3BRDF7KyJDrDAxNqWSDcGbf3mRNE+r3nnVuzur1K7yOIpwAIdwDB5cQA1uoA4NICDhGV7hzTHOi/PufMxaC04+sw9/4Hz+ABDykR0=</latexit>

Oj�1
k

<latexit sha1_base64="cmVhWxJlCFp3WhL/0TftlY3Qg2s=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbKroh6LXrxZwX7Adi3ZNG1js8mSzApl2Z/hxYMiXv013vw3pu0etPpg4PHeDDPzwlhwA6775RQWFpeWV4qrpbX1jc2t8vZO06hEU9agSijdDolhgkvWAA6CtWPNSBQK1gpHVxO/9ci04UrewThmQUQGkvc5JWAl/6abnmT36cORl3XLFbfqToH/Ei8nFZSj3i1/dnqKJhGTQAUxxvfcGIKUaOBUsKzUSQyLCR2RAfMtlSRiJkinJ2f4wCo93FfalgQ8VX9OpCQyZhyFtjMiMDTz3kT8z/MT6F8EKZdxAkzS2aJ+IjAoPPkf97hmFMTYEkI1t7diOiSaULAplWwI3vzLf0nzuOqdVb3b00rtMo+jiPbQPjpEHjpHNXSN6qiBKFLoCb2gVwecZ+fNeZ+1Fpx8Zhf9gvPxDbp7kOU=</latexit>

Oj�1
3

<latexit sha1_base64="8YV7t7R8rITDDbQaZubRghFCt64=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY9FL96sYD+kXUs2zbaxSXZJskJZ9ld48aCIV3+ON/+NabsHbX0w8Hhvhpl5QcyZNq777RSWlldW14rrpY3Nre2d8u5eU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDXxW09UaRbJOzOOqS/wQLKQEWysdH/TS2X2kD5mvXLFrbpToEXi5aQCOeq98le3H5FEUGkIx1p3PDc2foqVYYTTrNRNNI0xGeEB7VgqsaDaT6cHZ+jIKn0URsqWNGiq/p5IsdB6LALbKbAZ6nlvIv7ndRITXvgpk3FiqCSzRWHCkYnQ5HvUZ4oSw8eWYKKYvRWRIVaYGJtRyYbgzb+8SJonVe+s6t2eVmqXeRxFOIBDOAYPzqEG11CHBhAQ8Ayv8OYo58V5dz5mrQUnn9mHP3A+fwA16ZCu</latexit>

Oj
n

<latexit sha1_base64="+RcxdTalJ9QAsRPsXfxDQk2nQNs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEMIo2l</latexit>w1

<latexit sha1_base64="+xLy+k6Y+9X2HmaJyC3LmdO6wgk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindR8e7Oy7XrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AENpo2m</latexit>w2

<latexit sha1_base64="rYa9wQAiVYoAw0eE3AZlOgiSMb4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6WE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfZOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXrnVe/2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcPKo2n</latexit>w3

<latexit sha1_base64="QEdMVMjh/iJy3OKAYE+kDqAOaCQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+qNeuWKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1bs7r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QNkCo3f</latexit>wk

<latexit sha1_base64="r3RhxPibzptum5p4iWVmnNh7d98=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKoHD5e1xm0RRxlO4BTOIYBraMA9NKEFBMbwDK/w5gnvxXv3PhatJa+YOYY/8D5/ADPjjlk=</latexit>X <latexit sha1_base64="ctajA+Ew79AFF9gq5hDForI4aIg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPvlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBzOmM8A==</latexit>

f

<latexit sha1_base64="QzTPM+CNR+y8C8KBsh89VMddrQM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUCPrlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBxtmM7A==</latexit>

b

<latexit sha1_base64="3ASmda9z+KO9Xcfk/tMJpkcEer8=">AAACHnicbVDLSsNAFJ34tr6iLt1cLEJFLIn42hREN+5UsFpo0jCZTtqxkwczE6WEfIkbf8WNC0UEV/o3TmsWWj0wcDjnXO7c4yecSWVZn8bY+MTk1PTMbGlufmFxyVxeuZJxKgitk5jHouFjSTmLaF0xxWkjERSHPqfXfu9k4F/fUiFZHF2qfkLdEHciFjCClZY8c68GATg+63SgAj5sgSPT0MtYzc5bWS+HO4+deayV3WzbOUCR3PTMslW1hoC/xC5IGRU498x3px2TNKSRIhxL2bStRLkZFooRTvOSk0qaYNLDHdrUNMIhlW42PC+HDa20IYiFfpGCofpzIsOhlP3Q18kQq64c9Qbif14zVcGhm7EoSRWNyPeiIOWgYhh0BW0mKFG8rwkmgum/AuligYnSjZZ0CfboyX/J1U7V3q/aF7vlo+Oijhm0htZRBdnoAB2hU3SO6oige/SIntGL8WA8Ga/G23d0zChmVtEvGB9fe6Kfog==</latexit>

= f

✓
b +

kX

i=1

wiO
j�1
i

◆

Figure 3.1: A single artificial neuron at layer 9 . The outputs of previous layer $ 9−1

are the inputs of current layer 9 .

<latexit sha1_base64="BIu7c5psPY1NLjPxTP+e0GwdUts=">AAAB9HicbVC7SgNBFL3rM8ZX1NJmMAhWYTeFWgZtUkYwD0iWMDt7kwyZnV1nZgNhyXfYWChi68fY+TdOki008cDA4ZxzuXdOkAiujet+OxubW9s7u4W94v7B4dFx6eS0peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8gFn1FjJr/MwREkEndpMv1R2K+4CZJ14OSlDjka/9NULY5ZGKA0TVOuu5ybGz6gynAmcFXupxoSyMR1i11JJI9R+tjh6Ri6tEpJBrOyThizU3xMZjbSeRoFNRtSM9Ko3F//zuqkZ3PoZl0lqULLlokEqiInJvAEScoXMiKkllClubyVsRBVlxnZQtCV4q19eJ61qxbuueA/Vcu0ur6MA53ABV+DBDdSgDg1oAoMneIZXeHMmzovz7nwsoxtOPnMGf+B8/gCX3JH8</latexit>

Hidden layers
<latexit sha1_base64="VrSMBmN/Y1iTyhPQqXYRGvgHMM8=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkP6rHoxZsV7Ae0oWy2m3bpZhN2J0II/RtePCji1T/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7dJOeXdv/+CwcnTcNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbmd+54lrI2L1iFnC/YiOlAgFo2il/n2KSYpE0ozrQaXq1tw5yCrxClKFAs1B5as/jFkacYVMUmN6npugn1ONgkk+LfdTwxPKJnTEe5YqGnHj5/Obp+TcKkMSxtqWQjJXf0/kNDImiwLbGVEcm2VvJv7n9VIMr/1cKPsXV2yxKEwlwZjMAiBDoTlDmVlCmRb2VsLGVFOGNqayDcFbfnmVtOs177LmPdSrjZsijhKcwhlcgAdX0IA7aEILGCTwDK/w5qTOi/PufCxa15xi5gT+wPn8ASrqkcQ=</latexit>

Output layer

<latexit sha1_base64="XOO7wO0TRc1mP+GslErgrPB1Lhs=">AAAB7HicbVA9SwNBEJ3zM8avqKXNkiCkCrcWxjJoYxnBSwLJGfY2e8mSvb1jd08IR36DjYUSbP0vtnaiP8bNR6GJDwYe780wMy9IBNfGdT+dtfWNza3t3E5+d2//4LBwdNzQcaoo82gsYtUKiGaCS+YZbgRrJYqRKBCsGQyvp37zgSnNY3lnRgnzI9KXPOSUGCt5gy6+x91Cya24M6BVghekVCuWv7+q75N6t/DR6cU0jZg0VBCt29hNjJ8RZTgVbJzvpJolhA5Jn7UtlSRi2s9mx47RmVV6KIyVLWnQTP09kZFI61EU2M6ImIFe9qbif147NeGln3GZpIZJOl8UpgKZGE0/Rz2uGDViZAmhittbER0QRaix+eRtCHj55VXSOK/giwq+tWlcwRw5OIUilAFDFWpwA3XwgAKHR3iGF0c6T87EeZ23rjmLmRP4A+ftB0fWkhE=</latexit>

h1
1

<latexit sha1_base64="A5EetqUemnffHFiFX8FTb7E107Q=">AAAB7HicbVA9TwJBEJ3DL8SvU0ubDcSEitxRiCXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/OChDOlHefTym1sbm3v5HcLe/sHh0f28UlTxakk1CMxj2U7wIpyJqinmea0nUiKo4DTVjC6nvmtByoVi8WdHifUj/BAsJARrI3kDXvVe7dnl5yKMwdaJ+6SlOrF8vdX7X3a6Nkf3X5M0ogKTThWquM6ifYzLDUjnE4K3VTRBJMRHtCOoQJHVPnZ/NgJOjdKH4WxNCU0mqu/JzIcKTWOAtMZYT1Uq95M/M/rpDq89DMmklRTQRaLwpQjHaPZ56jPJCWajw3BRDJzKyJDLDHRJp+CCcFdfXmdNKsV96Li3po0rmCBPJxBEcrgQg3qcAMN8IAAg0d4hhdLWE/W1HpdtOas5cwp/IH19gNJXJIS</latexit>

h1
2

<latexit sha1_base64="x41JFaD4sJvwK4wjETRJdZ6EM4E=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLBmLCibSaiEeiF4+YWCCBSrbLFjZst83u1oQ0/AYvHjTEq//FqzejP8aFclDwJZO8vDeTmXl+zJnStv1p5dbWNza38tuFnd29/YPi4VFTRYkk1CURj2Tbx4pyJqirmea0HUuKQ5/Tlj+6nvmtByoVi8SdHsfUC/FAsIARrI3kDnvn906vWLar9hxolTgLUq6XKt9ftfdpo1f86PYjkoRUaMKxUh3HjrWXYqkZ4XRS6CaKxpiM8IB2DBU4pMpL58dO0KlR+iiIpCmh0Vz9PZHiUKlx6JvOEOuhWvZm4n9eJ9HBpZcyESeaCpItChKOdIRmn6M+k5RoPjYEE8nMrYgMscREm3wKJgRn+eVV0jyrOhdV59akcQUZ8nACJaiAAzWoww00wAUCDB7hGV4sYT1ZU+s1a81Zi5lj+APr7QdK4pIT</latexit>

h1
3

<latexit sha1_base64="X2PDoyvPtsHUJ64xcTOQ9rCHzJk=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLBmLCibTGiEeiF4+YWCCBSrbLFjZst83u1oQ0/AYvHjTEq//FqzejP8aFclDwJZO8vDeTmXl+zJnStv1p5dbWNza38tuFnd29/YPi4VFTRYkk1CURj2Tbx4pyJqirmea0HUuKQ5/Tlj+6nvmtByoVi8SdHsfUC/FAsIARrI3kDnvn906vWLar9hxolTgLUq6XKt9ftfdpo1f86PYjkoRUaMKxUh3HjrWXYqkZ4XRS6CaKxpiM8IB2DBU4pMpL58dO0KlR+iiIpCmh0Vz9PZHiUKlx6JvOEOuhWvZm4n9eJ9HBpZcyESeaCpItChKOdIRmn6M+k5RoPjYEE8nMrYgMscREm3wKJgRn+eVV0jyrOhdV59akcQUZ8nACJaiAAzWoww00wAUCDB7hGV4sYT1ZU+s1a81Zi5lj+APr7QdMaJIU</latexit>

h1
4

<latexit sha1_base64="JHA5YCYa10wqmCxa2hpJvQYpXDc=">AAAB7HicbVBNT8JAEJ3iF+IX6tHLBmLCibQmikeiF4+YWCCBSrbLFjZst83u1oQ0/AYvHjTEq//FqzejP8aFclDwJZO8vDeTmXl+zJnStv1p5dbWNza38tuFnd29/YPi4VFTRYkk1CURj2Tbx4pyJqirmea0HUuKQ5/Tlj+6nvmtByoVi8SdHsfUC/FAsIARrI3kDnvn906vWLar9hxolTgLUq6XKt9ftfdpo1f86PYjkoRUaMKxUh3HjrWXYqkZ4XRS6CaKxpiM8IB2DBU4pMpL58dO0KlR+iiIpCmh0Vz9PZHiUKlx6JvOEOuhWvZm4n9eJ9HBpZcyESeaCpItChKOdIRmn6M+k5RoPjYEE8nMrYgMscREm3wKJgRn+eVV0jyrOhdV59akcQUZ8nACJaiAAzWoww00wAUCDB7hGV4sYT1ZU+s1a81Zi5lj+APr7QdN7pIV</latexit>

h1
5

<latexit sha1_base64="ps6EKBzc1al+x/qDeBnRsJ+vTrQ=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGhInckgiXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/P8mDOlbfvTymxsbm3vZHdze/sHh0f545OmihJJqEsiHsm2jxXlTFBXM81pO5YUhz6nLX90PfNbD1QqFok7PY6pF+KBYAEjWBvJHfYu7iu9fNEu23OgdeIsSbFeKH1/1d6njV7+o9uPSBJSoQnHSnUcO9ZeiqVmhNNJrpsoGmMywgPaMVTgkCovnR87QedG6aMgkqaERnP190SKQ6XGoW86Q6yHatWbif95nUQHl17KRJxoKshiUZBwpCM0+xz1maRE87EhmEhmbkVkiCUm2uSTMyE4qy+vk2al7FTLzq1J4woWyMIZFKAEDtSgDjfQABcIMHiEZ3ixhPVkTa3XRWvGWs6cwh9Ybz9PcpIW</latexit>

h2
5

<latexit sha1_base64="EVD50orPVIYaefnsL0VnF02eFl4=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGhInfEgCXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/P8mDOlbfvTymxsbm3vZHdze/sHh0f545OmihJJqEsiHsm2jxXlTFBXM81pO5YUhz6nLX90PfNbD1QqFok7PY6pF+KBYAEjWBvJHfYu7iu9fNEu23OgdeIsSbFeKH1/1d6njV7+o9uPSBJSoQnHSnUcO9ZeiqVmhNNJrpsoGmMywgPaMVTgkCovnR87QedG6aMgkqaERnP190SKQ6XGoW86Q6yHatWbif95nUQHl17KRJxoKshiUZBwpCM0+xz1maRE87EhmEhmbkVkiCUm2uSTMyE4qy+vk2al7FTLzq1J4woWyMIZFKAEDtSgDjfQABcIMHiEZ3ixhPVkTa3XRWvGWs6cwh9Ybz9N7JIV</latexit>

h2
4

<latexit sha1_base64="/p9WhXqVTkzGfRTFCeRMLMubjYc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmAzGhIneYgCXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/P8mDOlbfvTymxsbm3vZHdze/sHh0f545OmihJJqEsiHsm2jxXlTFBXM81pO5YUhz6nLX90PfNbD1QqFok7PY6pF+KBYAEjWBvJHfYu7iu9fNEu23OgdeIsSbFeKH1/1d6njV7+o9uPSBJSoQnHSnUcO9ZeiqVmhNNJrpsoGmMywgPaMVTgkCovnR87QedG6aMgkqaERnP190SKQ6XGoW86Q6yHatWbif95nUQHl17KRJxoKshiUZBwpCM0+xz1maRE87EhmEhmbkVkiCUm2uSTMyE4qy+vk2al7FTLzq1J4woWyMIZFKAEDtSgDjfQABcIMHiEZ3ixhPVkTa3XRWvGWs6cwh9Ybz9MZpIU</latexit>

h2
3

<latexit sha1_base64="bA2BAlpBLMBhv1iyYS92l2OAths=">AAAB7HicbVA9TwJBEJ3DL8SvU0ubDcSEitxRiCXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/OChDOlHefTym1sbm3v5HcLe/sHh0f28UlTxakk1CMxj2U7wIpyJqinmea0nUiKo4DTVjC6nvmtByoVi8WdHifUj/BAsJARrI3kDXvV+2rPLjkVZw60TtwlKdWL5e+v2vu00bM/uv2YpBEVmnCsVMd1Eu1nWGpGOJ0UuqmiCSYjPKAdQwWOqPKz+bETdG6UPgpjaUpoNFd/T2Q4UmocBaYzwnqoVr2Z+J/XSXV46WdMJKmmgiwWhSlHOkazz1GfSUo0HxuCiWTmVkSGWGKiTT4FE4K7+vI6aVYr7kXFvTVpXMECeTiDIpTBhRrU4QYa4AEBBo/wDC+WsJ6sqfW6aM1Zy5lT+APr7QdK4JIT</latexit>

h2
2

<latexit sha1_base64="pFXn7eEZYRO3DzBXox3WiocRt1w=">AAAB7HicbVA9TwJBEJ3DL8SvU0ubDcSEitxRiCXRxhITD0jgJHvLHmzY27vs7pmQC7/BxkJDbP0vtnZGf4zLR6HgSyZ5eW8mM/OChDOlHefTym1sbm3v5HcLe/sHh0f28UlTxakk1CMxj2U7wIpyJqinmea0nUiKo4DTVjC6nvmtByoVi8WdHifUj/BAsJARrI3kDXvufbVnl5yKMwdaJ+6SlOrF8vdX7X3a6Nkf3X5M0ogKTThWquM6ifYzLDUjnE4K3VTRBJMRHtCOoQJHVPnZ/NgJOjdKH4WxNCU0mqu/JzIcKTWOAtMZYT1Uq95M/M/rpDq89DMmklRTQRaLwpQjHaPZ56jPJCWajw3BRDJzKyJDLDHRJp+CCcFdfXmdNKsV96Li3po0rmCBPJxBEcrgQg3qcAMN8IAAg0d4hhdLWE/W1HpdtOas5cwp/IH19gNJWpIS</latexit>

h2
1

<latexit sha1_base64="8l0QDA+gEu7C60KOIoWqLvvMmHk=">AAAB6nicbVC7SgNBFL3rM8ZXVLCxGQyCVdi1UMsQGzsTNA9IljA7mU2GzM4uM3eFEPIJNhaK2Nr6F36BnY3f4uRRaOKBC4dz7uXee4JECoOu++UsLa+srq1nNrKbW9s7u7m9/ZqJU814lcUy1o2AGi6F4lUUKHkj0ZxGgeT1oH819uv3XBsRqzscJNyPaFeJUDCKVrq9aXvtXN4tuBOQReLNSL54WPkW76WPcjv32erELI24QiapMU3PTdAfUo2CST7KtlLDE8r6tMublioaceMPJ6eOyIlVOiSMtS2FZKL+nhjSyJhBFNjOiGLPzHtj8T+vmWJ46Q+FSlLkik0XhakkGJPx36QjNGcoB5ZQpoW9lbAe1ZShTSdrQ/DmX14ktbOCd17wKjaNEkyRgSM4hlPw4AKKcA1lqAKDLjzAEzw70nl0XpzXaeuSM5s5gD9w3n4ArcuRGg==</latexit>

O1

<latexit sha1_base64="lbVmkAMUubMSgdk3+Ooj+aMKncY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuCrUMsbEzQfOAZAmzk9lkyOzMMjMrhCWfYGOhiK2tf+EX2Nn4LU4ehSYeuHA4517uvSeIOdPGdb+czMrq2vpGdjO3tb2zu5ffP2homShC60RyqVoB1pQzQeuGGU5bsaI4CjhtBsOrid+8p0ozKe7MKKZ+hPuChYxgY6Xbm26pmy+4RXcKtEy8OSmUj2rf7L3yUe3mPzs9SZKICkM41rrtubHxU6wMI5yOc51E0xiTIe7TtqUCR1T76fTUMTq1Sg+FUtkSBk3V3xMpjrQeRYHtjLAZ6EVvIv7ntRMTXvopE3FiqCCzRWHCkZFo8jfqMUWJ4SNLMFHM3orIACtMjE0nZ0PwFl9eJo1S0TsvejWbRgVmyMIxnMAZeHABZbiGKtSBQB8e4AmeHe48Oi/O66w148xnDuEPnLcfr0+RGw==</latexit>

O2

<latexit sha1_base64="PzfCk+Lj32I4JQvjVET1CyS0ruo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMKuglqG2NiZoHlAsoTZyWwyZGZ2mZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZml5ZXUtu57b2Nza3snv7tV1lChCayTikWoGWFPOJK0ZZjhtxopiEXDaCAZXY79xT5Vmkbwzw5j6AvckCxnBxkq3N52zTr7gFt0J0CLxZqRQOqh+s/fyR6WT/2x3I5IIKg3hWOuW58bGT7EyjHA6yrUTTWNMBrhHW5ZKLKj208mpI3RslS4KI2VLGjRRf0+kWGg9FIHtFNj09bw3Fv/zWokJL/2UyTgxVJLpojDhyERo/DfqMkWJ4UNLMFHM3opIHytMjE0nZ0Pw5l9eJPXTonde9Ko2jTJMkYVDOIIT8OACSnANFagBgR48wBM8O9x5dF6c12lrxpnN7MMfOG8/sNORHA==</latexit>

O3

<latexit sha1_base64="b2CuqOYrrRk6yfqbcRy4EgMdHr4=">AAAB6nicbVC7SgNBFL3rM8ZXVLCxGQyCVdi1UMsQG+0SNA9IljA7mU2GzM4uM3eFEPIJNhaK2Nr6F36BnY3f4uRRaOKBC4dz7uXee4JECoOu++UsLa+srq1nNrKbW9s7u7m9/ZqJU814lcUy1o2AGi6F4lUUKHkj0ZxGgeT1oH819uv3XBsRqzscJNyPaFeJUDCKVrq9aXvtXN4tuBOQReLNSL54WPkW76WPcjv32erELI24QiapMU3PTdAfUo2CST7KtlLDE8r6tMublioaceMPJ6eOyIlVOiSMtS2FZKL+nhjSyJhBFNjOiGLPzHtj8T+vmWJ46Q+FSlLkik0XhakkGJPx36QjNGcoB5ZQpoW9lbAe1ZShTSdrQ/DmX14ktbOCd17wKjaNEkyRgSM4hlPw4AKKcA1lqAKDLjzAEzw70nl0XpzXaeuSM5s5gD9w3n4ApKeRFA==</latexit>

I1

<latexit sha1_base64="J2EE+3vmDTqu1AN/DAObeqw44VY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuCrUMsdEuQfOAZAmzk9lkyOzMMjMrhCWfYGOhiK2tf+EX2Nn4LU4ehSYeuHA4517uvSeIOdPGdb+czMrq2vpGdjO3tb2zu5ffP2homShC60RyqVoB1pQzQeuGGU5bsaI4CjhtBsOrid+8p0ozKe7MKKZ+hPuChYxgY6Xbm26pmy+4RXcKtEy8OSmUj2rf7L3yUe3mPzs9SZKICkM41rrtubHxU6wMI5yOc51E0xiTIe7TtqUCR1T76fTUMTq1Sg+FUtkSBk3V3xMpjrQeRYHtjLAZ6EVvIv7ntRMTXvopE3FiqCCzRWHCkZFo8jfqMUWJ4SNLMFHM3orIACtMjE0nZ0PwFl9eJo1S0TsvejWbRgVmyMIxnMAZeHABZbiGKtSBQB8e4AmeHe48Oi/O66w148xnDuEPnLcfpiuRFQ==</latexit>

I2

<latexit sha1_base64="Db3JINW3wUXaMu1gp94LiQGzbdo=">AAAB8nicbVC7TsMwFL3hWcqrwMhiUSExVUkHYKxgga1I9CGlUeW4TmvVsSPbQYqifgYLAwix8jVs/A1OmwFajmTp6Jx75XtOmHCmjet+O2vrG5tb25Wd6u7e/sFh7ei4q2WqCO0QyaXqh1hTzgTtGGY47SeK4jjktBdObwu/90SVZlI8miyhQYzHgkWMYGMl/14kqUEcZ1QNa3W34c6BVolXkjqUaA9rX4ORJGlMhSEca+17bmKCHCvDCKez6iDVNMFkisfUt1TgmOogn588Q+dWGaFIKvuEQXP190aOY62zOLSTMTYTvewV4n+en5roOshZkYsKsvgoSjkyEhX50YgpSgzPLMFEMXsrIhOsMDG2paotwVuOvEq6zYZ32fAemvXWTVlHBU7hDC7AgytowR20oQMEJDzDK7w5xnlx3p2PxeiaU+6cwB84nz89DJE5</latexit>

Input layer

Figure 3.2: A feed forward neural network with three layers: Two hidden layers
with five neurons each (ℎ 9

8
), two neurons for the input layer and three for the output

layer.

On the other hand, recurrent neural networks (RNNs) have the intrinsic feature to
handle sequential data. RNNs (Fig. 3.3) employ hidden state variables (‘�’) as
memory elements to store and pass on information from the past to the upcoming
prediction. Therefore, the predictions of an RNN at time step ‘C’ are based on
the input at time step (‘C’) and the values of the hidden variables (‘�C−1’) at the
beginning of that time step (‘C’). Hidden variables ‘�’ can be considered as the
RNN's way to quantify the past, in analogy to history variables I in the DNS and

47

the conventional POD-based MOR.

Traditional RNNs suffer from the problem of vanishing gradients while handling
long sequential data using standard gradient based optimizers in the learning stage
[44]. This is due to the fact that the parameters at the beginning of the sequence
depend on the gradient of the parameters present later in the sequence. In this
process, the derivatives, which take small values, are multiplied several times,
resulting in significantly smaller values, explaining the term vanishing gradients.
To overcome this problem, a gated RNN, employing Long Short Term Memory
(LSTM) [39] or Gated Recurrent Unit (GRU) [16] is generally used.

In this chapter we use an RNN with a Gated Recurrent Unit (GRU). The GRU
enables control over the flow of information through its ‘hidden state’ variables ‘�’.
It uses an update gate and a reset gate to determine the amount of information to
be passed on and to be retained by the hidden variable. The gated structure of a
GRU also controls the flow of gradients during learning, such that the parameter
update value does not vanish. The reader is referred to appendix B for a detailed
description about the working of a LSTM and a GRU unit.

The RNN architecture used in this chapter is shown in Fig. 3.3. The feed forward
neural networks (��#� and ��#$) at the input and at the output of the GRU
increase the flexibility in the RNN design [83]. The hidden variables ‘H’ of the
GRU unit are initially set to -1, as recommended in [83].

<latexit sha1_base64="2qzrHBEBnPyFMlla0janLfqpzw8=">AAACFnicbVDLSgNBEJyNrxhfUY9eBhMhHgy7OajHoBD0EiKYB2RDmJ10kiGzs8vMrCEs+Qov/ooXD4p4FW/+jZPHQRMLGoqqbrq7vJAzpW3720qsrK6tbyQ3U1vbO7t76f2DmgoiSaFKAx7IhkcUcCagqpnm0AglEN/jUPcG1xO//gBSsUDc61EILZ/0BOsySrSR2ukzl4LQIJnoxSWADu4GckhkBwvQw0AOsOviXLZULrdvs6fjdjpj5+0p8DJx5iSD5qi0019uJ6CRb3ZQTpRqOnaoWzGRmlEO45QbKQgJHZAeNA0VxAfViqdvjfGJUaYHmRIaT9XfEzHxlRr5nun0ie6rRW8i/uc1I929bMVMhJEGQWeLuhHHOsCTjHCHSaCajwwhVDJzK6Z9Igk1QamUCcFZfHmZ1Ap55zzv3BUyxat5HEl0hI5RDjnoAhXRDaqgKqLoET2jV/RmPVkv1rv1MWtNWPOZQ/QH1ucPl82eUg==</latexit>

Feed forward network
(FNNI)

<latexit sha1_base64="m45AQNtzu9Twpw0BmT6HAtdXW00=">AAACAHicbVC7TsMwFHXKq5RXgIGBxaJCYqqSDsBYwcJYJNJWaqPKcW5Sq44T2Q5SFXXhV1gYQIiVz2Djb3DbDNByJFtH59x77XuCjDOlHefbqqytb2xuVbdrO7t7+wf24VFHpbmk4NGUp7IXEAWcCfA00xx6mQSSBBy6wfh25ncfQSqWigc9ycBPSCxYxCjRRhraJwMKQoNkIi68LCQacGyu6dCuOw1nDrxK3JLUUYn20P4ahCnNEzONcqJU33Uy7RdEakY5TGuDXEFG6JjE0DdUkASUX8wXmOJzo4Q4SqU5QuO5+rujIIlSkyQwlQnRI7XszcT/vH6uo2u/YCLLNQi6eCjKOdYpnqWBQyaBaj4xhFDJzF8xHRFJqIlE1UwI7vLKq6TTbLiXDfe+WW/dlHFU0Sk6QxfIRVeohe5QG3mIoil6Rq/ozXqyXqx362NRWrHKnmP0B9bnDzYzlsw=</latexit>

Update gate

<latexit sha1_base64="ZHnnm89VoqXMEAjvIBH1POLO4sE=">AAAB/3icbVC7SgNBFJ2NrxhfUcHGZjAIVmE3hVoGbSyjmAckS5id3E2GzM4uM3eFsKbwV2wsFLH1N+z8GyePQhMPXDicc+/MvSdIpDDout9ObmV1bX0jv1nY2t7Z3SvuHzRMnGoOdR7LWLcCZkAKBXUUKKGVaGBRIKEZDK8nfvMBtBGxusdRAn7E+kqEgjO0Urd41OGgELRQ/ewODCDtM4Rxt1hyy+4UdJl4c1Iic9S6xa9OL+ZpZB/jkhnT9twE/YxpFFzCuNBJDSSMD1kf2pYqFoHxs+n+Y3pqlR4NY21LIZ2qvycyFhkzigLbGTEcmEVvIv7ntVMML/1MqCRFUHz2UZhKijGdhEF7QgNHObKEcS3srpQPmGbcJmIKNgRv8eRl0qiUvfOyd1spVa/mceTJMTkhZ8QjF6RKbkiN1Aknj+SZvJI358l5cd6dj1lrzpnPHJI/cD5/AHaYlmI=</latexit>

Reset gate

<latexit sha1_base64="HBurHiz9g+6ttmoJxksHx6bQGXo=">AAACFnicbVA9SwNBEN2LXzF+RS1tFhMhFoa7FGoZFIKVRjAfkAthbzNJluztHbt7hnDkV9j4V2wsFLEVO/+Nm0sKjT4YeLw3w8w8L+RMadv+slJLyyura+n1zMbm1vZOdnevroJIUqjRgAey6REFnAmoaaY5NEMJxPc4NLzh5dRv3INULBB3ehxC2yd9wXqMEm2kTvbEpSA0SCb6cQWgi3uBHBHZxQL0KJBD7Lo4X6hUrjs3x/lJJ5uzi3YC/Jc4c5JDc1Q72U+3G9DINzsoJ0q1HDvU7ZhIzSiHScaNFISEDkkfWoYK4oNqx8lbE3xklOQgU0LjRP05ERNfqbHvmU6f6IFa9Kbif14r0r3zdsxEGGkQdLaoF3GsAzzNCHeZBKr52BBCJTO3YjogklATlMqYEJzFl/+SeqnonBad21KufDGPI40O0CEqIAedoTK6QlVUQxQ9oCf0gl6tR+vZerPeZ60paz6zj37B+vgGlKieUA==</latexit>

Feed forward network
(FFNO)

<latexit sha1_base64="RuJqBc0M/363U+jhZWnzQ9wX/QI=">AAACE3icbVC7TsMwFHXKq5RXgJHFokVCDFXSARgrWNgoEn1ITVQ57m1r1XEi20Gqov4DC7/CwgBCrCxs/A1OmwFajmTp6Jz78D1BzJnSjvNtFVZW19Y3ipulre2d3T17/6ClokRSaNKIR7ITEAWcCWhqpjl0YgkkDDi0g/F15rcfQCoWiXs9icEPyVCwAaNEG6lnn3kUhAbJxDC9TXScaOx5uOIlog8yG5p6hMcjMq1Me3bZqToz4GXi5qSMcjR69pfXj2gSmgWUE6W6rhNrPyVSM8phWvISBTGhYzKErqGChKD8dHbTFJ8YpY8HkTRPaDxTf3ekJFRqEgamMiR6pBa9TPzP6yZ6cOmnTJhTQdD5okHCsY5wFhDuMwlU84khhEpm/orpiEhCTUqqZEJwF09eJq1a1T2vune1cv0qj6OIjtAxOkUuukB1dIMaqIkoekTP6BW9WU/Wi/VufcxLC1bec4j+wPr8AcB0nrM=</latexit>

Output
↵

<latexit sha1_base64="Z4e9eJ5mFUIQLYBc/1ZQwkaoaXE=">AAACHHicbVC7SgNBFJ31GeMramkzmAhaGHYjqGXQJmUEo4FsDLOzN3FwdnaZuSuEZT/Exl+xsVDExkLwb5w8Cl8HBg7n3MfcEyRSGHTdT2dmdm5+YbGwVFxeWV1bL21sXpo41RxaPJaxbgfMgBQKWihQQjvRwKJAwlVwezbyr+5AGxGrCxwm0I3YQIm+4Ayt1Csd+hwUghZqkDVEGIKiBhkC9X26V/FTFYIezc4a+XWGB15e2c97pbJbdcegf4k3JWUyRbNXevfDmKeR3cQlM6bjuQl2M6ZRcAl50U8NJIzfsgF0LFUsAtPNxsfldNcqIe3H2j6FdKx+78hYZMwwCmxlxPDG/PZG4n9eJ8X+STcTKkkRFJ8s6qeSYkxHSdFQaOAoh5YwroX9K+U3TDNu4zJFG4L3++S/5LJW9Y6q3nmtXD+dxlEg22SH7BGPHJM6aZAmaRFO7skjeSYvzoPz5Lw6b5PSGWfas0V+wPn4AjNMoWg=</latexit>

Hidden state
(Ht�1)

<latexit sha1_base64="gRSS0EdElzw75ul3QUtTJWYZaAI=">AAACGnicbVC7TsMwFHV4U14FRhaLFqksVdIBGBEsHYtEC1JTKse5bS0cJ7JvkKoo38HCr7AwgBAbYuFvcEoHKBzJ0tE59+F7gkQKg6776czNLywuLa+sltbWNza3yts7HROnmkObxzLW1wEzIIWCNgqUcJ1oYFEg4Sq4PS/8qzvQRsTqEscJ9CI2VGIgOEMr9cuez0EhaKGGWVOEIShqkCFQ36e1qp+qEHQxO2vmNxnm1cO8X664dXcC+pd4U1IhU7T65Xc/jHka2T1cMmO6nptgL2MaBZeQl/zUQML4LRtC11LFIjC9bHJaTg+sEtJBrO1TSCfqz46MRcaMo8BWRgxHZtYrxP+8boqDk14mVJIiKP69aJBKijEtcqKh0MBRji1hXAv7V8pHTDNuwzIlG4I3e/Jf0mnUvaO6d9GonJ5N41ghe2Sf1IhHjskpaZIWaRNO7skjeSYvzoPz5Lw6b9+lc860Z5f8gvPxBTYsoPY=</latexit>

Hidden state
(Ht)

<latexit sha1_base64="HKFATj7pxAG6VV4QxN5gn6J+Jl8=">AAACD3icbVC7TsMwFHXKq5RXgZHFogUxVUkHYKxggQGpSPQhNaVy3NvWquNEtoNURfkDFn6FhQGEWFnZ+BucNgO0HMnS0Tn34Xu8kDOlbfvbyi0tr6yu5dcLG5tb2zvF3b2mCiJJoUEDHsi2RxRwJqChmebQDiUQ3+PQ8saXqd96AKlYIO70JISuT4aCDRgl2ki94rFLQWiQTAzjaxFGGrsuLruR6INMZ8aN5P6mnPSKJbtiT4EXiZOREspQ7xW/3H5AI98Mp5wo1XHsUHdjIjWjHJKCGykICR2TIXQMFcQH1Y2n9yT4yCh9PAikeULjqfq7Iya+UhPfM5U+0SM176Xif14n0oPzbszSO0HQ2aJBxLEOcBoO7jMJVPOJIYRKZv6K6YhIQk1CqmBCcOZPXiTNasU5rTi31VLtIosjjw7QITpBDjpDNXSF6qiBKHpEz+gVvVlP1ov1bn3MSnNW1rOP/sD6/AENt5yo</latexit>

Input
UM

Figure 3.3: Neural network architecure used in this chapter. The red dashed box
indicates the GRU.

48

Learning phase of the recurrent neural network
The learning phase is the termused for the phase inwhich the parameters of the neural
network are identified. This is effectively a least squares minimization problem for
which many input-output relations must be available (which are obtained by running
the conventional POD-based MOR for many input variations). The minimization is
performed using a stochastic steepest descent algorithm [64, 78], that requires the
gradient to be constructed for each iteration.

We perform a supervised learning strategy in which the data is passed through the
RNN numerous times, where every time the entire data is passed through is referred
to as an epoch. The learning stage, i.e. the identification of the weights and biases,
is an iterative process in which the following loss function (3.1) is minimized to
increase the network's accuracy:

!MSE =
1
=C

=C∑
8=1
‖Ũ8 − U8‖22, (3.1)

where the tilde is used to denote the reference coefficients (i.e. those predicted by
the conventional POD-based MOR, which the RNN must replicate).

An epoch has a forward propagation stage in which the information is passed from
the input layer to the output layer. At the beginning of learning, the parameters such
as weights and biases are initialized randomly.

In the backward propagation stage, the loss function's gradients with respect to the
RNN’s parameters are calculated starting at the output layer and ending at the input
layer. A gradient descent algorithm is used to update the RNN's parameters. The
procedure is repeated for thousands of epochs.

The data is fed to the network in multiple mini-batches in order to speed up the
training process. Since we have a large data set, updating the gradients for the
whole data at once as in the method of batch gradient descent is not computationally
efficient. Also, updating the gradients for one data at a time as in the method
of stochastic gradient descent will slow down the learning time of the network.
Therefore, mini-batch gradient descent is used to update the parameters of the RNN.
Each batch consists of a sequence of input-output pairs that are extracted as training
solutions at every load increment. The length of sequences is equal for all the
batches. In the current chapter, data in each batch corresponds to the solutions of a
single training simulation. There are 1000 load increments per simulation, therefore
each batch is of length 1000.

49

3.3 Results
Model setup and data collection
The discretized RVE is portrayed in Fig. 3.4 and is subjected to cyclic and random
loading. The material parameters for the elasto-plastic matrix are set to � = 1,
a = 0.3, "0 = 0.01, ℎ = 0.02 and < = 1.05 (see Eq. (2.2)). For the particles, the
elastic material parameters are set to � = 20, a = 0.3, while"0 = ∞ ensures that the
particles behave purely elastically. Because the matrix deforms mostly plastically
and plastic deformation is isochoric, and because the elastic particles deform only
minimally relative to the matrix (due to the ratio of Young’s moduli), we only
consider the application of isochoric macroscale deformations (i.e. det(U") = 1),
governed by bounds 0.75 < *"

11 < 1.25, 0.75 < *"
22 < 1.25 and −0.25 < *"

12 <

0.25. This means that it is sufficient to only consider components *"
11 and *"

12 as
input variables of the RNN (as det(U") = 1,*"

11 and*"
12 dictate the value of*"

22).
The work flow of the ANN-accelerated MOR is depicted in Fig. 3.5.

X

Y

ZFigure 3.4: The discretized RVE with particles.

A single RNN is simultaneously trained to emulate the basis coefficients for both
cyclic and random loading. Random loading is not per se simulated because it
is expected in nested multiscale simulations. Instead, it is considered to enhance
the training because in true multiscale simulations with cyclic loading, the cyclic
loading path of each RVE will slightly differ for each cycle [83]. The loading
paths of the cyclic training simulations are presented in the left diagram of Fig. 3.6.
Each involves a loading stage and an unloading stage, each stage consisting of 500
increments. In the random loading simulations (one loading path is shown on the

50

<latexit sha1_base64="fHX6ner73ggA40wzPRpfytDleHo=">AAACgnicbVFNb9NAEF2bQkv4CnDkMiKqhDgEu0hQoR6qwoETKtC0leIoWq/Hyar7Ye1HpcjKD+nf4savgbEbIWiZ09PMm31v3paNkj5k2c8kvbN19972zv3Bg4ePHj8ZPn126m10AifCKuvOS+5RSYOTIIPC88Yh16XCs/LiYzc/u0TnpTUnYdXgTPOFkbUUPFBrPrwqBJqATppFe+K4NATASx1VT/BQWweyIs6fJbA1kKSkWTSiZ32AooBv0cCnL9/7DRM1Ohs9KMsraLjjGknFdzxuKiDjCkWAsESopG8UF6hJBLxVsX9yPR+OsnHWF9wG+QaM2KaO58MfRWVF7J4Rins/zbMmzFrughQK14Miemy4uOALnBI0ZMnP2j7CNexSp+qt15Zs9N2/N1quvV/pkpiah6W/Oeua/5tNY6j3Z600TQxoxLVQHRUEC91/0PWOglArAlw4SV5BLCkv0cU1oBDymyffBqd74/zdOP+6Nzo82sSxw16wl+wVy9l7dsg+s2M2YYL9SnaTcfIm3Upfp3n69pqaJpud5+yfSg9+A9z1xIk=</latexit>

Training simulations for identification of basis functions:
Run DNS for numerous load parameters
and collect the displacement solutions

<latexit sha1_base64="Z5Kzmm9zcjjCOOoIzkHYhDfafAY=">AAACb3icbVFNTxsxEPVuP4D0g0APHECV1ahSe4l2OQBH1PbAEUQTkLJR5J2dTSy89soeI6JVrvzA3vofeuk/qDfJoXyMZOnpvTcez3NeK+koSX5H8YuXr15vbG513rx99367u7M7dMZbwAEYZex1LhwqqXFAkhRe1xZFlSu8ym++t/rVLVonjf5J8xrHlZhqWUoQFKhJ9z4D1IRW6mlzGQYSpxnyQrpaCcAqaNwZ5Vuz46IoJMlbVHOeZVzoguMdWQGrpvAM6XjpNazcpTVV6yuVB/Jhnp4+uNhx71rucvhjMen2kn6yLP4UpGvQY+s6n3R/ZYUB394DSjg3SpOaxo2wJEHhopN5h7WAGzHFUYBaVOjGzTKvBf8cmIKXxoYTFlyy/3c0onJuXuXBWQmaucdaSz6njTyVJ+NG6toTalgNKr3iZHgbfljfIlCIr5ACbMgSOMxEm2D4ok4IIX288lMwPOynR/304rB3+m0dxybbZ5/YF5ayY3bKztg5GzBgf6LdaD86iP7Ge/HHmK+scbTu+cAeVPz1HyBnvg0=</latexit>

Split the displacement solutions additively
and extract the basis functions from
fluctuating displacements using SVD

<latexit sha1_base64="kI7qPSmkhF0jXiLdq0p5C6SedR0=">AAACn3icbVFNb9NAEF2brxK+AhzhMBAhcSGyewDEqSqVQALSEJq2KI6i8XqdrLretXbXSJGVv8UP4ca/YdaNUGmZ09O8mfdm3+a1ks4nye8ovnb9xs1bO7d7d+7eu/+g//DRsTON5WLKjTL2NEcnlNRi6qVX4rS2AqtciZP87H3gT34I66TRR35di3mFSy1LydFTa9H/mXGhvbBSL9sji1ITACerRnUDDkpjQRY083cJTAmT0QhqtFgJ2nXvIMtg0mjwFgsZZlDB+PDgVbisgC+HE0BdAF2rBPfgVwKIkY46oiRZSfIuaASzwDoSBmWwuGACTdCSGg5G3zaL/iAZJl3BVZBuwYBta7zo/8oKw5uKnLhC52ZpUvt5i9ZLrsSml5F6jfwMl2JGUJOpm7ddvht40VmH40qjPXTdixstVs6tq5wmK/Qrd5kLzf9xs8aXb+et1HXjhebnRmWjwBsInwWFtBSYWhNAbilZDnxFifAQSI9CSC8/+So43h2mr4fp193B3v42jh32hD1nL1nK3rA99pGN2ZTx6Gm0H32KPsfP4g/xKB6fj8bRducx+6fi738AxNPNRw==</latexit>

Training simulations for identification of RNN parameters:
Run traditional POD-based MOR and collect the basis coe�cients

for the same load parameters used in DNS

<latexit sha1_base64="l31pBOLdiHCvVRY+MOLwnJYR7TQ=">AAACNnicbVC7SgNBFJ31GeMramkzGAQbw24KtQxqYZOHYlTIhjA7uUmGzMwu8xDCkq+y8Tvs0lgoYusnOBtT+DowcLj33LnnnijhTBvfn3hz8wuLS8u5lfzq2vrGZmFr+0bHVlFo0pjH6i4iGjiT0DTMcLhLFBARcbiNhmdZ//YelGaxvDajBNqC9CXrMUqMK3UK1ZCCNKCY7KcNUL1YCRzL7DesmbB8KtPYaifAYYivarVDQilwUMRAFzfq54fZ/i6u1q/GnULRL/lT4L8kmJEimqHRKTyF3Zha4TxQTrRuBX5i2ilRhlEO43xoNSSEDkkfWo5KIkC30+nZY7xvs73OsnvS4Gn1+0RKhNYjETmlIGagf/ey4n+9ljW9k3bKZGINSPq1qGc5NjHOMsRdpoAaPnKEUMWcV0wHRBHqgtR5F0Lw++S/5KZcCo5KwWW5WDmdxZFDu2gPHaAAHaMKukAN1EQUPaAJekGv3qP37L1571/SOW82s4N+wPv4BDwPrB8=</latexit>

Perform online simulations using
RNN-accelerated POD-based MOR

<latexit sha1_base64="r59+yPlJ3hpdTtgFvBEPlF3UXJc=">AAACcXicjVFNb9NAEF2brxK+AvSCEGjUBAkJKbJ7AMSpai9woBTUtJXiEI3X42TV9a7ZD6Rg+d7fx40/wYU/wDrNAVoOjLTS03vzNDNv81oK65LkRxRfuXrt+o2Nm71bt+/cvde//+DIam84jbmW2pzkaEkKRWMnnKST2hBWuaTj/HSv04+/krFCq0O3rGla4VyJUnB0gZr1zzJOypERat4cGhQK3ILg0/7+G8gyeKdq70BYUNpUKMU3KsDSF0+KE+gShplXBZlueDNuP78fdqYP3v2/K0NZL7AdtrP+IBklq4LLIF2DAVvXwaz/PSs091VYn0u0dpImtZs2aJzgktpe5i3VyE9xTpMAFVZkp80qsRaeBaaAUpvwlIMV+6ejwcraZZWHzgrdwl7UOvJf2sS78vW0EV1u4dzzQaWX4DR08UMhDHEnlwEgNyLsCnyBBnn4A9sLIaQXT74MjrZH6ctR+nF7sLO7jmODPWZb7DlL2Su2w96yAzZmnP2MNqMn0dPoV/wohnjrvDWO1p6H7K+KX/wGuw29NQ==</latexit>

Train the RNN:
Input is normalized sequence of UM

Output is normalized sequence of ↵

Figure 3.5: A flow chart of the main steps necessary to obtain the RNN-accelerated
POD-based MOR.

right in Fig. 3.6), the loading direction is randomly selected for each of the 1000
increments and the loading step is fixed.

Figure 3.6: Left: Each red line presents the load path of a cyclic training simulation.
Right: Load path of a single training simulation for random loading. Bounds
0.75 < *"

11 < 1.25, 0.75 < *"
22 < 1.25 and 0.75 < *"

12 < 1.25 of surface
det(U") = 1 are presented by blue lines.

In order to obtain the data for training the neural network, the DNS described in
section 2.2 is solved for 350 cyclic loading training simulations (+10 verification
simulations) and 10,000 random loading simulations (+100 verification simula-
tions). The displacement values are extracted at every load increment of the training
simulations. The extracted displacement solutions are additively decomposed into

51

a homogeneous and a fluctuating deformations following eq. (2.14) as depicted in
fig. 2.2. The basis functions representing the training solutions are obtained by per-
forming SVD to the fluctuating deformations. The the traditional POD-based MOR
described in section 2.3 is solved for the same set of load parameters. During the
online stage of POD, the coefficients U of the basis functions are extracted at every
load increments of all the POD simulations. Therefore, the data set for training
the RNN has an input of all the macroscopic deformation sequences prescribed as
load parameters of the RVE. The output of the data set is the coefficient sequences
of basis functions U, which are expected to be predicted by the RNN later during
online simulation.

In this chapter 100 POD basis functions are used, whose coefficients are extracted
at every load increment of each training simulation. We use a large number of basis
functions, because elastoplasticity yields non-ellipticity, entailing that a substantial
number of basis functions are required to obtain an acceptable accuracy.

RNN predictions
The learning stage of a neural network (i.e. the algorithm to minimise the loss func-
tion in order to identify the network's weights and biases) requires the selection of
several hyperparameters. Different combinations of the numbers of layers, neurons
and hidden variables are investigated with respect to the convergence of the loss
function. Fig. 3.8 shows that the number of hidden variables and the number of
hidden layers of ��#$ influence the RNN's accuracy the most.

It can also be inferred from Fig. 3.8 that increasing the number of layers in ��#$,
number of hidden variables ‘ℎ’ and neurons ‘#’ in ��#� increases the loss function.
Therefore, in this chapter the number of hidden layers in ��#� , ��#$ and the
number of GRU layers is set to 1. The number of neurons in the hidden layer of
the ��#� is set to 100. Both FFNs use the ‘Leaky ReLu’ activation function. The
number of hidden state variables in the GRU and the number of neurons in the
hidden layer of ��#$ are set to 1600.

In this chapter, the ADAM optimizer is used to perform the stochastic gradient
descent. The initial learning rate is set to 0.001 (i.e. symbol ’W’ in ADAM ter-
minology) and its exponential decay values are given by 0.9 (for the first moment
estimates) and 0.999 (for the second moment estimates) (symbols ’V1’ and ’V2’ in
ADAM terminology, respectively), whilst a cut-off values of 10−8 is used to prevent
dividing by zero (symbol ’n’ in ADAM terminology).

52

1 Hidden layer
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

2 Hidden layers
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
=

10
0

N
=

25
0

N
=

50
0

N
=

10
00

3 Hidden layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
=

10
0

N
=

25
0

N
=

50
0

N
=

10
00

4 Hidden layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
H=400

H=800

H=1600

H=2400

Figure 3.7: The loss function value of training data after training for 60,000 epochs
for three neural network parameters: (i) Number of hidden layers in the ��#$, (ii)
Number of neurons ‘#’ in the hidden layers of ��#� and (iii) Number of hidden
variables ‘�’ of the GRU. The size of the bar corresponds to the value of the loss
function (i.e. a large bar corresponds to a large value of the loss function).

The mini-batch size equals the total number of load increments in the traditional
POD problem, which is set to 1000. The RNN is trained for a total of 450,000
epochs, after which the loss function did not decrease further for both training and
verification data, as shown in Fig. 3.9 (a) and Fig. 3.9 (b). Each epoch consists of
approximately 1% of the whole training data in a mini-batch. Therefore, mini-batch
is switched every 50 epochs to include all the training simulations. After training,
the loss function (Eq. (3.1)) is reduced to 4.7 · 10−5.

Coefficients for some POD basis functions predicted by the RNN are presented
in Figs. 3.10 (cyclic loading) and 3.11 (random loading), together with the exact
coefficients. It is clearly visible that the RNN's accuracy for cyclic loading is higher
than for random loading, although the accuracy for random loading is still acceptable

53

1 Hidden layer
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

2 Hidden layers
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
=

10
0

N
=

25
0

N
=

50
0

N
=

10
00

3 Hidden layers

0.000

0.025

0.050

0.075

0.100

0.125

0.150

N
=

10
0

N
=

25
0

N
=

50
0

N
=

10
00

4 Hidden layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
H=400

H=800

H=1600

H=2400

Figure 3.8: The loss function value of verification data after training for 60,000
epochs for three neural network parameters: (i) Number of hidden layers in the
��#$, (ii) Number of neurons ‘#’ in the hidden layers of ��#� and (iii) Number
of hidden variables ‘�’ of the GRU. The size of the bar corresponds to the value of
the loss function (i.e. a large bar corresponds to a large value of the loss function).

in our opinion. The average error calculated using Eq. (3.1) for the 10 cyclic loading
verification simulations is around 3 · 10−5, whereas the average error for the 100
random loading verification simulations is around 4 · 10−4.

Mechanical predictions
In this subsection, we compare the results of RNN-accelerated MOR with those of
the conventionalMORand theDNS.We startwith Fig. 3.12 inwhich the components
of the homogenized 1BC Piola-Kirchhoff stress are presented for one of the cyclic
loading verification simulations. We can see that the POD results match those of the
DNS fairly accurately (albeit not perfectly), indicating that the number of 100 basis
functions is sufficiently large. The results of the RNN-accelerated MOR also match
those of the DNS and those of the MOR fairly accurately. Clearly, some differences

54

0 25000 50000
10°4

10°3

10°2

400000 425000

10°4

<latexit sha1_base64="MiRjNNBJpaPosjL/bkeSd3gzDhc=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJ4Krs9qMeiCB4ruG2hXUo2zbah2SQkWaEs/Q1ePCji1R/kzX9j2u5BWx8MPN6bYWZerDgz1ve/vbX1jc2t7dJOeXdv/+CwcnTcMjLThIZEcqk7MTaUM0FDyyynHaUpTmNO2/H4dua3n6g2TIpHO1E0SvFQsIQRbJ0U3ilJRv1K1a/5c6BVEhSkCgWa/cpXbyBJllJhCcfGdANf2SjH2jLC6bTcywxVmIzxkHYdFTilJsrnx07RuVMGKJHalbBorv6eyHFqzCSNXWeK7cgsezPxP6+b2eQ6yplQmaWCLBYlGUdWotnnaMA0JZZPHMFEM3crIiOsMbEun7ILIVh+eZW06rXgshY81KuNmyKOEpzCGVxAAFfQgHtoQggEGDzDK7x5wnvx3r2PReuaV8ycwB94nz+3W46f</latexit>

Epoch
<latexit sha1_base64="MiRjNNBJpaPosjL/bkeSd3gzDhc=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJ4Krs9qMeiCB4ruG2hXUo2zbah2SQkWaEs/Q1ePCji1R/kzX9j2u5BWx8MPN6bYWZerDgz1ve/vbX1jc2t7dJOeXdv/+CwcnTcMjLThIZEcqk7MTaUM0FDyyynHaUpTmNO2/H4dua3n6g2TIpHO1E0SvFQsIQRbJ0U3ilJRv1K1a/5c6BVEhSkCgWa/cpXbyBJllJhCcfGdANf2SjH2jLC6bTcywxVmIzxkHYdFTilJsrnx07RuVMGKJHalbBorv6eyHFqzCSNXWeK7cgsezPxP6+b2eQ6yplQmaWCLBYlGUdWotnnaMA0JZZPHMFEM3crIiOsMbEun7ILIVh+eZW06rXgshY81KuNmyKOEpzCGVxAAFfQgHtoQggEGDzDK7x5wnvx3r2PReuaV8ycwB94nz+3W46f</latexit>

Epoch

<latexit sha1_base64="vOD2vVkVf4aLsUtEm+Tpet0+geU=">AAAB9HicbVC7TsMwFL0pr1JeBUYWiwqJqUo6AGMFCwNDkehDaqPKcZ3WqmOntlOpivodLAwgxMrHsPE3OG0GaDnSlY7PuVe+9wQxZ9q47rdT2Njc2t4p7pb29g8Oj8rHJy0tE0Vok0guVSfAmnImaNMww2knVhRHAaftYHyX+e0pVZpJ8WRmMfUjPBQsZAQbK/kPUmsUJoJkr3654lbdBdA68XJSgRyNfvmrN5AkiagwhGOtu54bGz/FyjDC6bzUSzSNMRnjIe1aKnBEtZ8ulp6jC6sMUCiVLWHQQv09keJI61kU2M4Im5Fe9TLxP6+bmPDGT5mIE0MFWX4UJhwZibIE0IApSgyfWYKJYnZXREZYYWJsTiUbgrd68jpp1areVdV7rFXqt3kcRTiDc7gED66hDvfQgCYQmMAzvMKbM3VenHfnY9lacPKZU/gD5/MH2j2SJw==</latexit> L
os

s
fu

n
ct

io
n

<latexit sha1_base64="vOD2vVkVf4aLsUtEm+Tpet0+geU=">AAAB9HicbVC7TsMwFL0pr1JeBUYWiwqJqUo6AGMFCwNDkehDaqPKcZ3WqmOntlOpivodLAwgxMrHsPE3OG0GaDnSlY7PuVe+9wQxZ9q47rdT2Njc2t4p7pb29g8Oj8rHJy0tE0Vok0guVSfAmnImaNMww2knVhRHAaftYHyX+e0pVZpJ8WRmMfUjPBQsZAQbK/kPUmsUJoJkr3654lbdBdA68XJSgRyNfvmrN5AkiagwhGOtu54bGz/FyjDC6bzUSzSNMRnjIe1aKnBEtZ8ulp6jC6sMUCiVLWHQQv09keJI61kU2M4Im5Fe9TLxP6+bmPDGT5mIE0MFWX4UJhwZibIE0IApSgyfWYKJYnZXREZYYWJsTiUbgrd68jpp1areVdV7rFXqt3kcRTiDc7gED66hDvfQgCYQmMAzvMKbM3VenHfnY9lacPKZU/gD5/MH2j2SJw==</latexit> L
os

s
fu

n
ct

io
n

<latexit sha1_base64="+FyF60eUE45m6nkXllgL4Zkfjhw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzHBhtxRqCXRxhKjIAlcyNyyBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8CWTvLw3k5l5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epoqxFYxGrToCaCS5Zy3AjWCdRDKNAsMdgfDPzH5+Y0jyWD2aSMD/CoeQhp2isdF/F83654tbcOcgq8XJSgRzNfvmrN4hpGjFpqECtu56bGD9DZTgVbFrqpZolSMc4ZF1LJUZM+9n81Ck5s8qAhLGyJQ2Zq78nMoy0nkSB7YzQjPSyNxP/87qpCa/8jMskNUzSxaIwFcTEZPY3GXDFqBETS5Aqbm8ldIQKqbHplGwI3vLLq6Rdr3kXNe+uXmlc53EU4QROoQoeXEIDbqEJLaAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QOKA41O</latexit>

(a)
<latexit sha1_base64="7Bkk8x6m4VH6E3jcsbbyVs5f/1k=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmIzHBhtxRqCXRxhKjIAlcyN4yBxv29i67eybkwk+wsdAYW3+Rnf/GBa5Q8CWTvLw3k5l5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzGNzP/8QmV5rF8MJME/YgOJQ85o8ZK99XgvF+uuDV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/8jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7XvMuat5dvdK4zuMowgmcQhU8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weLiI1P</latexit>

(b)

Figure 3.9: (a) Right: The evolution of loss function for both training data (blue) and
verification data (red) for first 50,000 epochs. (b) Left: The loss function evolution
from 350,000 to 450,000 epochs.

Figure 3.10: Cyclic loading verification simulations: Some RNN predictions
(crosses) and the actual values (lines). The colors distinguish the four verifica-
tion simulations.

are present, but the results indicate that the errors introduced by the RNN hardly
influence the predicted macroscale stress.

As the appeal of RNN-accelerated MOR is the preservation of detailed information
(microstructural information in case of RVEs), we also compare the plastic variables
(_ in Eq. (2.3)) predicted by the different approaches. Fig. 3.13 shows that the
difference in the plastic variables predicted by the DNS and predicted by the MOR

55

Figure 3.11: Random loading verification simulations: Some RNN predictions
(crosses) and the actual values (lines). The colors distinguish two verification
simulations.

is not negligible, although also not completely unacceptable. The difference can
be minimized by incorporating even a large number of POD basis functions, as
opposed to 100 basis functions used in the current chapter. In turn, the difference
in the plastic variables predicted by the conventional MOR and predicted by the
RNN-accelerated MOR is substantially smaller.

We continue with results for random loading scenarios. In Fig. 3.14, the components
of the 1st Piola-Kirchhoff stress are again presented, but now for one of the random
loading verification simulations and as a function of the increment number (instead
of the deformation, for readability purpose). On the other hand, Fig. 3.15 shows the
plastic variables predicted by the different approaches. Comparing Fig. 3.12 with
Fig. 3.14 and Fig. 3.13 with Fig. 3.15, it can be concluded that the RNN-accelerated
MOR is more accurate for cyclic loading than for random loading. The results

56

Figure 3.12: Components of the macroscale 1BC Piola-Kirchhoff stress as functions
of the deformation for a cyclic loading verification simulation predicted by the DNS
(black solid), by the conventional MOR (blue dashed), and by the RNN-accelerated
MOR (red dotted).

Figure 3.13: The plastic variable (_) computed by the three methods for one of the
cyclic loading verification simulations. Top-left: the DNS results, top-right: the
difference between the POD results and the DNS results, bottom-left: the difference
between the RNN-POD results and the POD results, bottom-right; the difference
between the RNN-POD results and the DNS results.

can be argued to be sufficiently accurate, because, the random loading simulations
were considered only to effectively train the RNN. But, in practice, the purpose
of RNN accelerated MOR is to be utilized for loading cases arising in multi-scale
simulations, which are closer to cyclic loading simulations.

57

Figure 3.14: Components of the macroscale 1BC Piola-Kirchhoff stress values as
functions of the number of increments for a random loading verification simulation
predicted by the DNS (black solid), by the conventional MOR (blue dashed), and
by the RNN-accelerated MOR (red dotted).

Figure 3.15: The plastic variable (_) computed by the three methods for one of the
random loading verification simulations. Top-left: the DNS results, top-right: the
difference between the POD results and the DNS results, bottom-left: the difference
between the RNN-POD results and the POD results, bottom-right; the difference
between the RNN-POD results and the DNS results.

The computational time required to prepare the training data and to test the verifica-
tions are summarized in Table 3.1 and 3.2. The training of the RNN was performed
on HPC using 32GB of GPU computational resource for 7 days. Though the data

58

preparation and training the RNN required a total of two weeks of computational
time, the RNN-accelerated MOR is approximately 100 times as fast as the DNS and
22 times as fast as the conventional MOR in case of random loading. For cyclic
loading on the other hand, the RNN-accelerated MOR is only 13 times as fast as the
DNS, whilst the conventional MOR is hardly faster than the DNS.

The difference in time savings of the RNN-accelerated MOR for cyclic and random
loading is because the DNS and conventional MOR require more iterations for
random loading than for cyclic loading. The reasons are that (1) the load step at
each increment for cyclic loading are substantially shorter than those for random
loadingwhilst the same total number of increments is employed, and (2) the previous
plastic state is known at the start of each increment of a cyclic loading simulation
(i.e. DNS and conventionalMOR) in order to increase the speed of the cyclic loading
simulations.

Data preparation POD RNN-POD
Cyclic loading 350×1hr 350×1hr

+
350×0.75hr

Random loading 10000×7hr 10000×7hr
+

10000×1.5hr

Table 3.1: Computational time for data preparation

Online stage DNS POD RNN-POD
Cyclic loading 55 min 50 min 4 min
Random loading 7 hr 1.5 hr 4 min

Table 3.2: Computational time for verification simulations

3.4 Conclusion
In this chapter, a recurrent neural network (RNN) is used to emulate the basis
function coefficients of projection-based model-order-reduction (MOR) for a repre-
sentative volume element described by finite plasticity, subjected to cyclic loading
and random loading. The RNN is simultaneously trained for cyclic loading and ran-
dom loading. We have used an RNN, because elastoplasticity is history-dependent
and in analogy to the plastic variables in elastoplasticity, an RNN uses hidden
variables to quantify its history.

Our results have shown that the RNN-accelerated MOR yields speed ups between
factors 13 and 100 relative to the direct numerical simulations (and between factors
13 and 22 relative to conventional MOR). The accuracy is similar to conventional

59

MOR, which is not entirely negligible relative to the direct numerical simulations.
Nevertheless, with speeds up of up to factors of 100, the RNN-acceleration of MOR
seems to make MOR for finite plasticity an interesting possibility. A point to be
noted is that the accuracy of RNN-accelerated MOR can be increased by employing
even more number of basis functions. However, increasing the number of basis
functions could reduce the RNN efficiency. Therefore, the next chapter focuses on
improving the accuracy of POD-based MOR for elastoplastic solids with a reduced
number of basis functions.

60

C h a p t e r 4

MACHINE LEARNING FOR ADAPTIVE BASIS SELECTION IN
PROJECTION-BASED MODEL-ORDER-REDUCTION FOR

ELASTOPLASTICITY

61

ABSTRACT

Projection-based model-order-reduction is accurate and fast for simulations of (hy-
per)elastic solids, amongst others because only a few basis functions suffice. Model-
order-reduction for simulations of (hyper)elastoplastic solids however require many
more basis functions to achieve an acceptable accuracy. This compromizes the
acceleration of the model-order-reduction. The aim of this chapter is to reduce
the number of basis functions of elastoplastic reduced-order-models, by adaptively
selecting the basis functions during the course of a simulation. To this purpose,
several enhancements of a previously proposed unsupervised clustering approach
are investigated, but the results lack the desired accuracy. A new approach for the
adaptive selection of the basis functions is therefore formulated, which is based on
a k-nearest neighbour search. The framework is applied to monotonic and cyclic
loading of a representative volume element with stiff elastic particles in an elasto-
plastic matrix. The accuracy of the method using the :-nearest neighbour search is
orders of magnitude better than those of the previous approaches, whilst only a few
basis functions are used.

62

4.1 Introduction
Model-order-reduction (MOR) encompasses numerical methods that reduce the
complexity of time-consuming computations in order to accelerate them. Whereas
surrogate models such as response surfaces and Kriging replace the input-output
relation of the computation of interest by a fast alternative, MOR only modifies
the computation in order to accelerate it. Consequently, more results often remain
available for post-processing using MOR, whilst surrogate models only provide the
output for which they are trained [83].

In the field of numerical predictions of physical systems such as finite element (FE)
simulations, two MOR categories may be distinguished: a posteriori methods and
a priorimethods. A posterioriMOR involves precomputing numerous responses of
the physical system of interest in advance and utilizing the precomputed solutions
to accelerate the subsequent simulations that remain. A posterioriMOR is thus only
useful if the same physical system must be simulated numerous times, each time
with different ‘load’ parameters (e.g. material parameters or boundary conditions).
Consequently, a posteriori MOR finds its use in (probabilistic and deterministic)
inverse modelling, optimization, uncertainty quantification and computational ho-
mogenization, to name a few.

On the other hand, a priori MOR does not require any precomputations to be
performed and hence, it can be used the very first time the physical system of
interest is simulated. Consequently, a priori MOR is more widely applicable than
a posteriori MOR, since a posteriori MOR is only useful if the same type of
computation must be performed numerous times. On the other hand, a posteriori
MOR often yields larger accelerations.

One type of a priori MOR is proper generalized decomposition [57, 15], which
enriches the approximation of the computation’s solution per iteration, thereby
approaching the exact result as more iterations are computed. Another type of a
prioriMOR is the quasicontinuummethod, which superimposes an FE interpolation
with associated quadrature points (i.e. ’summation’ or ’sampling’ in quasicontinuum
terminology, or ’hyperreduction’ in projection-based MOR terminology) over an
atomistic [5], spring [6] or beam [14] lattice.

In this chapter, we focus on projection-based a posterioriMOR, in particular on the
proper-orthogonal-decomposition (POD) method [42, 43, 52, 11] and the reduced-
basis (RB)method [59, 60]. Both approaches involve an offline training stage, during
which numerous computations are performed, from which solutions are harvested

63

that are used to construct the solutions of the future computations (i.e. in the online
stage). The difference between the two methods concerns the manner in which the
training solutions are treated to construct the solutions of future simulations.

In the PODmethod, the precomputed solutions are decomposed using singular value
decomposition (SVD) in order to extract the most dominant features of the training
solutions. In the method of RB on the other hand, a selection of the precomputed
training solutions are directly employed (after orthonormalisation) to construct the
solutions of future computations. The ensemble of selected training solutions
should optimally enclose the characteristic features of the possible solutions of
future simulations. This is often performed using a greedy algorithm. In both the
POD and RB method, the precomputed solutions yield orthonormalized vectors
that are used to construct the solutions of future computations. These vectors are
referred to as basis functions or modes.

In projection-basedMOR, each basis function comes with its own degree of freedom
(i.e. basis coefficient), which together need to be computed in the online simulations.
Consequently, it is essential for the speed of the online simulations to minimize the
number of employed basis functions. In case of simulations of hyperelastic solids,
only a few basis functions yield an excellent accuracy of the online simulations.

Simulations of elastoplastic solids on the other hand require a large number of
basis functions to obtain an accuracy that is merely acceptable. This was for
instance demonstrated in [70], in which 100 basis functions were employed for
an elastoplastic model yielding an acceptable but not excellent accuracy. (The
acceleration on the other hand was excellent, because of the emulation of the basis
coefficients using AI-algorithms.)

The aim of this chapter is to devise a technique to reduce the number of employed
basis functions in elastoplastic reduced-order-models. Because the load parameters
that vary for each simulation of interest to this chapter are the load paths (which are
irrelevant for the mechanical response of (hyper)elastic solids, but have a substantial
effect in case of elastoplastic, i.e. history-dependent solids), the parametrization of
the load paths is employed to decide whether or not to adapt the basis.

Adaptive basis selection during the course of a simulation is not new. Generally, sev-
eral bases are identified during the offline stage, by clustering the training solutions
according to the load parameters of (e.g. physical) relevance. In the online stage,
the current load parameters are then used to classify to which group the current

64

configuration belongs and the basis functions of the associated group are employed.
Because the load parameters may change during the course of a simulation, basis
functions from different groups are typically used during the course of an online
simulation.

These types of approaches were for instance proposed and/or investigated in [19, 3,
34], where the timewas considered as the load parameter, based onwhich the training
simulations were clustered into different groups. Often however, manual clustering
yields rather poor results [58]. Consequently, machine learning, i.e. unsupervised
learning, was proposed to obtain more suitable groups and hence, more accurate
results [2, 58, 79].

To the best of the authors’ knowledge, unsupervised learning was exploited in the
context of projection-basedMOR for dissipative solids in [13] and for viscoplasticity
in [29]. [13] and [29] used clustering to improve the discrete emperical interpolation
method as suggested in [58]. Similarly as in the current chapter, [13] applied
clustering to the load paths. Clustering is also used for elastoplastic reduced order
models which are not based on projections. In [51] for instance, the clustering of
spatial domains is the essential ansatz for another type ofMOR, limited to multiscale
simulations.

The novelty of the current chapter startswith the application of unsupervised learning
to cluster training simulations as proposed in [2, 58, 79], to elastoplastic simulations.
When k-means clustering, as investigated in [2, 79], is applied to the elastoplastic
simulations of the interest to the current chapter, substantial inaccuracies occur dur-
ing the course of an online simulation every time the basis changes. We investigate
several techniques to reduce these inaccuracies that have not been investigated yet
(i.e. besides k-means clustering, we investigate DBSCAN [23], as well as approaches
to smooth the transition between clusters). However, the resulting accuracies are
not robustly better than that of conventional MOR based on POD.

The second novelty of this chapter is therefore to propose another technique to
adaptively change the basis. Because this chapter reports that the inaccuracies for
clustering appear when the (entire) basis is changed, a method that continuously
changes only part of the basis is proposed. To this purpose, a k-NN search is
exploited, which determines for each load increment which k training solutions are
nearest to the current load path. These : training solutions are then orthonormalized
with respect to each other and used as basis functions for the increment. The resulting
scheme is thus a type of RB approach.

65

The numerical methodology is investigated for a representative volume element
(RVE) with stiff elastic particles in an elastoplastic matrix that undergoes large
monotonic and asymmetrical cyclic loading, in order to work towards multiscale
simulations based on computational homogenization [46, 27]. The application to
an RVE is however somewhat arbitrary; the methodology can just as well be applied
to any other elastoplastic FE simulation.

The remainder of the chapter is organized as follows: two conventional projection-
based MOR strategies are discussed in section 4.3. Clustering to enable adaptive
basis selection is explained in section 4.4, including the different enhancements we
have incorporated to improve the results. The k-NN search to continuously change
the basis functions during the online simulations is described in section 4.5. The
results of the different approaches are presented and compared to each other in
section 4.6. Finally, a short conclusion is presented in section 4.7.

4.2 Direct Numerical Simulations
The plane strain simulations employ bilinear quadrilateral (four node) FEs with four
Gauss quadrature points. An F-bar method is utilized to alleviate locking due to
the incompressibility of the plastic deformation. In the employed F-bar method, the
volume change of the deformation gradient tensor at a quadrature point is replaced
with the volume change at the center of the element. The resulting deformation
gradient tensor, F̄, is multiplicatively decomposed into an elastic (subscript 4) and
a plastic (subscript ?) deformation gradient tensor: F̄ = F4 · F?.

The following strain energy density is employed:

, =
� (�4 − 3 − 2ln(�4))

4(1 + a) + �a(ln(�4))2
2(1 + a) (1 − 2a) , (4.1)

where � and a denote Young’s modulus and Poisson’s ratio, respectively. Further-
more: �4 = tr(F)4 ·F4) and �4 = det(F4), where superscript) denotes the transpose.
Differentiating the strain energy with respect to F4 gives a 1st Piola-Kirchhoff stress
tensor, P4: P4 = m,

mF4 , which is related to the Mandel stress, M, as M = F)4 · P4.

The employed Von Mises yield function reads:

H =

√
3
2

M34E : M34E − "0 − ℎ _=, (4.2)

66

where material parameters "0, ℎ and = denote the initial yield stress, the hardening
modulus and an exponential hardening parameter, respectively. Furthermore, M34E

denotes the deviatoric Mandel stress and _ the plastic multiplier. The following
associated flow rule is employed:

¤F? = ¤_
m H

mM · F? . (4.3)

The Karush-Kuhn-Tucker conditions close the constitutive model:

H ≤ 0, ¤_ ≥ 0, H ¤_ = 0. (4.4)

A periodic mesh is employed in the simulations. Dirichlet boundary conditions are
used for the four corner nodes, where the displacement values are dictated by the
right stretch tensor of the macroscale deformation (U" , assuming that the RVE is
used in a nested multiscale computation), given by:

u 9 − u8 =
(
U" − I

)
·
(
X 9 − X8

)
, (4.5)

where u and X denote the displacement vector and reference location of a finite
element node, respectively. The subscripts denote the numbers of two corner nodes.
As the displacement of one of the four corner nodes is set to zero (and all reference
locations are known), the displacement vectors of the other three corner nodes are
completely known, since U" is known for each increment.

In case of nodes on the RVE’s opposing edges, the above vector equation yields two
scalar constraints in a 2D setting (as is the case here). In this thesis, these constraints
are enforced using Lagrange multipliers.

The incorporation of periodic boundary conditions using Lagrange multipliers re-
sults in the following system of linear equations, which must be constructed and
solved for each iteration, at each increment:



int
(D, I)

(
m2

mD

))
m2

mD
0


[
3D

36

]
=

[
5
ext
− 5

int
(D, I) − 6) m2

mD

2(D)

]
, (4.6)

where column D collects the displacement components of all FE nodes at an inter-
mediate solution, column I the plastic variables in all Gauss quadrature points at an

67

intermediate solution (_ and F?), column 6 the Lagrange multipliers, column 2 the
scalar constraints due to the periodic boundary conditions of Eq. (4.5) (2 is linear
in D), column 5

ext
the components of the reaction forces, column 5

int
the compo-

nents of the internal forces (5
int

depends non-linearly on D and I) and matrix
int

the derivatives of the internal forces components with respect to the displacement
components (

int
depends non-linearly on D and I). 3D and 36 together denote the

correction to the intermediate solution given by D and 6, that is to be computed each
iteration. The new plastic variables are computed together with the new internal
forces for each quadrature point, after new solution D + 3D is computed.

4.3 Conventional projection-based model-order-reduction
Traditionally, projection-based MOR aims to reduce the computational times of the
DNS by ensuring that less governing equations need to be solved (i.e. to reduce
degrees of freedom, DoFs) and, often in case of non-linear governing equations, by
ensuring that the governing equations require less time to be constructed for each
iteration. The latter is typically achieved using hyperreduction (or by ensuring that
the governing equations only need to be constructed once per increment using an
artificial neural network, as demonstrated in the previous chapter). Because this
chapter solely focuses on the adaptive basis selection, the conventional projection-
based MOR of the current section are only discussed with respect to the reduction
of the DoFs with the help of basis functions.

The reduction of the DoFs in projection-based MOR is achieved by expressing all
=D kinematic variables of the DNS, D, in terms of only a limited number of =1
kinematic variables, U, according to:

D ≈
=1∑
8=1

q
8
U8 = ΦU, (4.7)

where q
8
of length =D denotes the 8th basis function andΦ denotes the =D ×=1 matrix

that stores all basis functions.

For RVEs however, which are the application of this thesis, the kinematic variables
(i.e. the displacement components of the FEnodes) are first additively decomposed in
a homogeneous, D̄, and a microstructurally fluctuating, D̃, contribution (see Fig. 4.1).

D = D̄ + D̃. (4.8)

68

<latexit sha1_base64="8TBEfvqYtCqPOrSaaYqgsADv0V0=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIiYIQLmVv2YMPe3mV3z4Rc+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVlLVoLGL1EKBmgkvWMtwI9pAohlEgWCcY38z8zhNTmsfy3kwS5kc4lDzkFI2VHqs9FMkI+161X664NXcOskq8nFQgR7Nf/uoNYppGTBoqUOuu5ybGz1AZTgWblnqpZgnSMQ5Z11KJEdN+Nr94Ss6sMiBhrGxJQ+bq74kMI60nUWA7IzQjvezNxP+8bmrCKz/jMkkNk3SxKEwFMTGZvU8GXDFqxMQSpIrbWwkdoUJqbEglG4K3/PIqaddr3kXNu6tXGtd5HEU4gVM4Bw8uoQG30IQWUJDwDK/w5mjnxXl3PhatBSefOYY/cD5/AHF0kBw=</latexit>↵1

<latexit sha1_base64="xThVurqibTolu7SZzEzg7mDXpeU=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIiYIQLmVv2YMPe3mV3z4Rc+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVlLVoLGL1EKBmgkvWMtwI9pAohlEgWCcY38z8zhNTmsfy3kwS5kc4lDzkFI2VHqs9FMkI+/Vqv1xxa+4cZJV4OalAjma//NUbxDSNmDRUoNZdz02Mn6EynAo2LfVSzRKkYxyyrqUSI6b9bH7xlJxZZUDCWNmShszV3xMZRlpPosB2RmhGetmbif953dSEV37GZZIaJuliUZgKYmIye58MuGLUiIklSBW3txI6QoXU2JBKNgRv+eVV0q7XvIuad1evNK7zOIpwAqdwDh5cQgNuoQktoCDhGV7hzdHOi/PufCxaC04+cwx/4Hz+AHL5kB0=</latexit>↵2

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="Qu5VIN1HN7JjOKrfOTwjzRNTDDI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhNBEMJuDuox6MVjRPOAZAmzk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5aMYJ+hEdSB5yRo2VHsoX5V6x5FbcOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeG1P+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrFa8y4p3Xy3VbrI48nACp3AOHlxBDe6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDKkmNDw==</latexit>

+

<latexit sha1_base64="feYJlqRAt9N6RJRnwkNptAVwjek=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI7FjMc=</latexit>=

<latexit sha1_base64="p1g1IBsDw0M9lZ0CHKeAeZdNiBE=">AAACInicbVC7TsMwFHXKq5RXgZHFokUqS5V04LFVsDAWqS+pqSrHuWmtOk5kO0hV1G9h4VdYGEDAhMTH4LQdoOVIlo7Oudf33uPFnClt219Wbm19Y3Mrv13Y2d3bPygeHrVVlEgKLRrxSHY9ooAzAS3NNIduLIGEHoeON77N/M4DSMUi0dSTGPohGQoWMEq0kQbFa5eC0CCZGKbNSBOOfaZiTiiERseuiwMG3MeVspsIH2Q2J02m5fPpoFiyq/YMeJU4C1JCCzQGxQ/Xj2iS/Us5Uarn2LHup0RqRjlMC26iICZ0TIbQM1SQEFQ/nZ04xWdG8XEQSfPMXjP1d0dKQqUmoWcqQ6JHatnLxP+8XqKDq37KRJxoEHQ+KEg41hHO8jJxSKCaTwwhVDKzK6YjIgk1oamCCcFZPnmVtGtV56Lq3NdK9ZtFHHl0gk5RBTnoEtXRHWqgFqLoET2jV/RmPVkv1rv1OS/NWYueY/QH1vcPuXekXQ==</latexit>

Total displacement
field (u)

<latexit sha1_base64="evXpmrgCFbc9N9YuOiZo5bjoQeY=">AAACXnicbVDLSitBEO0Z3/GVqxvBTWMUFCTMuNC7EUQ3LiMYFTIh1PTUxMae7qEfQhjmJ91d7sZPsSdmER8HGk6fU0VVnbQU3Ngo+heEC4tLyyura631jc2t7fafnQejnGbYZ0oo/ZSCQcEl9i23Ap9KjVCkAh/Tl5vGf3xFbbiS93ZS4rCAseQ5Z2C9NGq7hKG0qLkcV7eqUGOUqJyhGTelAIaFd2mS0JyjyOjxYZKCrhInM9TNyMrV9eXcd572DK/r5HReStFCfXhSj9qdqBtNQX+SeEY6ZIbeqP2WZIq5ZhsmwJhBHJV2WIG2nAmsW4kzWAJ7gTEOPJVQoBlW03hqeuSVjOZK++evmarzHRUUxkyK1FcWYJ/Nd68Rf/MGzuZ/hxWXpbMo2eeg3AlqFW2y9iFqZFZMPAGmud+VsmfQwHzgpuVDiL+f/JM8nHXj8258d9a5up7FsUr2yQE5JjG5IFfklvRInzDyPwiCVrAevIfL4Wa4/VkaBrOeXfIF4d4H/Vi4XQ==</latexit>

Homogeneous displacement
field (ū = �)

<latexit sha1_base64="94RQk6zfiFSahdG0Wvo3ZV/SS3Y=">AAACZHicbVBNS+RAEO1Ed9VZ3Y2KJ0EaR8GFZUg8rF4EURCPIzgqTIah0qnMNHY6oT+UIeRPevPoxd9hZ5zD+PGg4fV7VVTVS0rBtQnDZ89fWPzxc2l5pfVrde33n2B940YXVjHssUIU6i4BjYJL7BluBN6VCiFPBN4m9+eNf/uASvNCXptJiYMcRpJnnIFx0jCoYobSoOJyVF0Iy4x1hhzRlOtSAMPcuTSOM44ipQd78SNP0XCRYhVbmaJq5la2rk/mvvO0O+Z1Hf+bl0CUY6j3/tbDoB12winoVxLNSJvM0B0GT3FaMNvsxARo3Y/C0gwqUIYzgXUrthpLYPcwwr6jEnLUg2oaUk33nZLSrFDuuZum6nxHBbnWkzxxlTmYsf7sNeJ3Xt+a7HhQcVlag5K9D8qsoKagTeIuSoXMiIkjwBR3u1I2BgXMxa5bLoTo88lfyc1hJ/rfia4O26dnsziWyTbZJQckIkfklFySLukRRl68JS/w1r1Xf9Xf9LfeS31v1rNJPsDfeQNFN7tb</latexit>

Fluctuating displacement
field (eu = �↵)

<latexit sha1_base64="yrfh5kUhY01jFcLTnFeHLm9eOSc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOaECbbbbt0swm7G6GE/g0vHhTx6p/x5r9x2+agrQ8GHu/NMDMvSgXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTlLVoIhLVjVAzwSVrGW4E66aKYRwJ1onGdzO/88SU5ol8NJOUBTEOJR9wisZKvo8iHWGYyzCahtWaW3fnIKvEK0gNCjTD6pffT2gWM2moQK17npuaIEdlOBVsWvEzzVKkYxyynqUSY6aDfH7zlJxZpU8GibIlDZmrvydyjLWexJHtjNGM9LI3E//zepkZ3AQ5l2lmmKSLRYNMEJOQWQCkzxWjRkwsQaq4vZXQESqkxsZUsSF4yy+vkvZF3buqew+XtcZtEUcZTuAUzsGDa2jAPTShBRRSeIZXeHMy58V5dz4WrSWnmDmGP3A+fwBTC5Hg</latexit>↵nb

<latexit sha1_base64="Sd94Sbp5rTEPMz0WPGGzf04/BnE=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0s0l3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3nlBpHstHM0nQj+hA8pAzaqzU7iZD3su8aa9ccavuHGSVeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOC11U40JZSM6wI6lkkao/Wx+75ScWaVPwljZkobM1d8TGY20nkSB7YyoGeplbyb+53VSE974GZdJalCyxaIwFcTEZPY86XOFzIiJJZQpbm8lbEgVZcZGVLIheMsvr5LmRdW7qnoPl5XabR5HEU7gFM7Bg2uowT3UoQEMBDzDK7w5Y+fFeXc+Fq0FJ585hj9wPn8ABDmP9Q==</latexit>

�1

<latexit sha1_base64="YOESxL62gus72pw8S29VvBFmNOY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6SUj3s9q03654lbdOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n83ik5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex5MuAKmRETSyhT3N5K2IgqyoyNqGRD8JZfXiWtWtW7rHr3F5X6TR5HEU7gFM7Bgyuowx00oAkMBDzDK7w5j86L8+58LFoLTj5zDH/gfP4ABb6P9g==</latexit>

�2

Figure 4.1: Illustration of the additive split of an RVE’s displacement field in a
homogeneous displacement field and a microstructurally fluctuating displacement
field is employed in a projection-based MOR. The basis functions (Φ) are only used
for the fluctuating displacement field.

The macroscale deformation (U") fully governs the homogeneous part of the dis-
placement and as this is imposed by the macroscale in computational homogeniza-
tion, D̄ is completely known. Consequently, only D̃ needs to be computed. For this
reason, the interpolation of projection-based MOR is not applied to the complete
displacements as indicated in Eq. (4.3), but only to the fluctuating part:

D̃ ≈ ΦU. (4.9)

The approximation of the complete displacements may then be written as:

D ≈ Ψ V +ΦU, (4.10)

where Ψ V together denotes the known, homogeneous part of the displacements
with:

V =

[
*"
GG − 1 *"

GH *"
HH − 1

])
, (4.11)

69

where*"
GG ,*"

GH and*"
HH denote the three independent components of U" . Row 8 of

Ψ (of size =D × 3) is furthermore expressed as follows:

(
Ψ

)
8,:
=


[
-d 82 e

.d 82 e
0
]

if 8 is odd,[
0 -d 82 e

.d 82 e

]
if 8 is even.

(4.12)

This expression for Ψ is only valid if the reference location of the bottom-left FE
node of a 2D RVE is set to the origin, if the bottom-left FE node cannot displace,
and if the displacement components in D are ordered as follows:

(
D
)
8
=


Dd 82 e

if 8 is odd,

E d 82 e
if 8 is even,

(4.13)

where
(
D
)
8
denotes the 8th component of D, and Dd 82 e and E d 82 e denote the horizontal

and vertical displacement of FE node d 82e, respectively.

The expression for Φ depends on whether the POD or RB method is applied. How-
ever, both approaches have several aspects in common. First, the goal is that all
columns (each column is a basis function) in Φ together encapsulate all character-
istic features of the online solutions. Second, each column must be orthonormal, or
at least orthogonal, with respect to the other columns (i.e. Φ)Φ = �, where identity
matrix � is of size =1 × =1). Third, both approaches require numerous DNS to be
performed for different load parameters. In this contribution, each set of load param-
eters is a sequence of U" (C) (where C denotes a pseudo-time). From each training
simulation, the solutions at several increments (after deducting the homogeneous
displacements) are stored.

Proper-orthogonal-decomposition
In the method of proper-orthogonal-decomposition, the training solutions are stored
as columns in a so-called snapshot matrix, (. Matrix (is of size =D × =C=B, where =C
denotes the number of training simulations and =B the number of solutions extracted
from each training simulation. Singular value decomposition (SVD) is then applied
to snapshot matrix (and the left singular vectors with the =1 largest singular values
are used as basis functions. Because the fluctuating displacement parts of the
solutions (D̃), which are stored in the snapshot matrix are periodic, the left singular
vectors are periodic as well. (Furthermore, as the definition of the left singular
vectors implies, the basis functions are orthonormal with respect to each other.)

70

More formally, the SVD of the snapshot matrix may be written as the following
optimization problem:

[
%∗ �∗ &∗

]
= argmin

%,�,&

‖(− % � &) ‖� , (4.14)

such that � denotes a diagonal matrix of size =C=B × =C=B with entries
(
�

)
11
≥(

�

)
22
≥

(
�

)
33
≥ ... ≥

(
�

)
=C=B ,=C=B

and

%)% = &)& = �, (4.15)

where ‖ • ‖� denotes the Frobenius norm and matrices %, & and � are of size
=D × =C=B, =C=B × =C=B and =C=B × =C=B, respectively. This optimization problem is
so frequently used that each numerical software has its own dedicated function to
compute it. The matrix with basis functions, Φ, is obtained by only using the first
=1 columns of %∗.

Another way to obtain the =1 left singular values (and faster if =D � =C=B) is to
apply eigenvalue decomposition to (̂ = ()(((̂ is symmetric and of size =C=B×=C=B),
which may be expressed by finding eigenvalues 18 and eigenvectors 1∗8 according
to:

(
(̂ − 18 �

)
1∗8 = 0, (4.16)

1∗8)1∗ 9 =


1 if 8 = 9

0 else = 0,
(4.17)

where 18 > 18+1 and � is of size =C=B × =C=B. The matrix with the left singular values
can then be computed as:

Φ = (

[
1∗1 1∗2 1∗3 ... 1∗=1

]
, (4.18)

where the eigenvalues of the associated eigenvectors are ordered according to 11 >

12 > ... > 1=1 . It may be clear that eigenvalue decomposition is so important that,
similarly as for singular value decomposition, practically all numerical software
packages have their own dedicated functions to efficiently compute it.

71

Reduced basis
The method of reduced-basis (in its empirical sense) also uses the =C=B training
solutions, but does not require to store them in a snapshot matrix. The RB method
aims to find those =1 training solutions (whose numbers are stored in index set �∗

of length =1) of all =C=B training solutions (whose numbers are stored in index set
� = {1, 2, 3, ..., =C=B}, �∗ ⊆ �) which, after being orthonormalized with respect to
each other, together minimize the worst match with the training solutions.

It may thus be expressed as the following combinatorial optimization problem:

�∗ = argmin
�⊆�

max
8∈�

min
0
‖D̃8 −

∑
9∈�

ˆ̃D 90 9 ‖2, (4.19)

where ‖ • ‖2 denotes the !2-norm, the length of 0 is =1 and the hat on ˆ̃D
9
denotes

that the 9 th training solution (whose index is stored in �, 9 ∈ �) is orthonormalized
with respect to all other training solutions whose indices are in �, i.e.:

ˆ̃D 9) ˆ̃D: =


1 if 9 = :

0 else
where 9 , : ∈ �. (4.20)

The columns of Φ are thus those training solutions ˆ̃D 9 (after the homogeneous part
is deducted from them and after being orthogonalized with respect to each other)
whose indices are present in �∗.

It may be clear that the combinatorial optimization problem of Eq. (4.19) is non-
deterministic polynomial-time (NP) hard, yielding enormous computational times.
For this reason, the problem is often solved using some kind of greedy algorithm,
in which one training solution at a time is added to the set of training solutions
employed as basis functions. One greedy algorithm that avoids NP hardness can be
written as follows:

Algorithm 1 RB- Greedy algorithm 1
�∗ = { }, �̌ = �.
for =1 times

:∗ = argmin
:∈ �̌

max
8∈�

min
0
‖D̃8 −∑

9∈�∗ ˆ̃D 9+:0 9+: ‖2

�̆ = �̆ \ {:∗}, �∗ = �∗ ∪ {:∗}

where it may be clear that the length of 0 increases with one every time the for-loop
is repeated.

72

Although the latter combinatorial optimization problem is not NP hard, it is still time
consuming, because minimizer 0 must be computed numerous times (=C=B (=C=B=1 −
=1 (=1 − 1)/2) times in fact). For this reason, another greedy algorithm may be
exploited that avoids the computation of minimizer 0. This greedy algorithm can
be explained by starting that a number of training solutions are already selected for
use as basis functions. The question is which training solution of the remaining,
unselected training solutions, is best to add. The assumption is that the best one to be
added is the one that minimizes the projection with respect to the already selected
training solutions. (This assumes that the training solution that minimizes the
projection encompasses the most characteristic features that are not yet encapsulated
in the already selected training solutions.)

This substantially faster greedy algorithm starts with normalizing each training
solution (denoted by ˘̃D). The remainder may then be concisely written as:

Algorithm 2 RB- Greedy algorithm 2
Draw one sample from U(1, =1) as first number in �∗, �̌ = �.
for =1 times

:∗=argmin
:∈ �̌

∑
9∈�∗ ˆ̃D 9) ˘̃D:

Orthonormalize ˘̃D:
∗
with respect to ˆ̃D 9 (9 ∈ �∗)

�̆ = �̆ \ {:∗}, �∗ = �∗ ∪ {:∗}

As the two aforementioned greedy algorithms obviously yield suboptimal basis func-
tions (compared to the initial combinatorial optimization problem of Eq. (4.19)), one
would typically need a larger number of basis functions (=1) than if the PODmethod
is applied. RB methods are nevertheless useful if =D and =C=B are substantially large,
because then the singular value or eigenvalue decomposition in the POD method is
time consuming.

System of linear equations to be solved in the online simulations
Now the components of the interpolation employed in projection-based MOR are
defined, the resulting system of linear equations that must be computed for each
iteration, for each increment, can be rewritten as:

(
Φ)

8=C
(ΨV +ΦU, I)Φ

)
3U = Φ)

(
5
4GC
− 5

8=C
(ΨV +ΦU, I) −

8=C
(ΨV +ΦU, I)Ψ3V

)
,

(4.21)

73

where we repeat once more that update 3U denotes the DoFs that must be computed.
Furthermore, 3V = 0 during the application of Newton’s method.

Although the stiffness matrix of the projection-based MOR (Φ)
8=C
Φ) is full, in-

stead of sparse as the stiffness matrix of the DNS, its size is =1 × =1, which is
a significant reduction. It may also be noted that the periodicity constraints are
not present anymore (Eq. (4.6)), because the basis functions are formed using the
microstructurally fluctuating part of the training solutions, which are periodic. Con-
sequently, the basis functions, Φ, are also periodic, regardless if the POD method
or the RB method is employed.

4.4 Clustering for adaptive basis selection
As mentioned before, conventional projection-based MOR is accurate for (hy-
per)elastic, but not for simulations using elastoplastic constitutive models. A solu-
tion in these days often sought in the clustering of the training simulations and to
construct a group of basis functions for each cluster. During the course of an online
simulation, a classification is then performed to decide from which cluster the basis
functions must be used for a given time increment. Clustering training solutions has
been demonstrated to substantially improve the accuracy of projection-based MOR
for a range of different models [71, 49, 4], but not yet for simulations involving
elastoplastic solids.

Clustering is typically performed in terms of the ’load’ parameters that are con-
sidered in the projection-based MOR. To aid the concept of clustering of training
solutions, we now consider the current macroscale deformation imposed to the RVE
as the ’load’ parameters, i.e. U" (C2DA) where C2DA denotes the current time (although
due to the path-dependency of elastoplasticity, it makes more sense to consider both
the past and currently imposed macroscale deformations, i.e. U" (0 < C ≤ C2DA), as
load parameters).

If we assume that each load path is discretized with 100 increments, wemay consider
storing all 100 combinations of the load parameters for each path, (where one, at
C2DA , is given by U" (C2DA)). We also consider that for all 100 time increments, a
training solution is stored (i.e. =B = 100). Each combination of load parameters is
thus associated with one training solution (i.e. the microstructurally fluctuating part
of the training solution in fact).

74

The assumption is now that if an online simulation is performed with the load path
in a certain direction, the training solutions of load paths in completely different
directions do not provide any useful characteristics to construct the online solutions
for the current load path. Therefore, the idea is to only use training solutions of the
load paths that are close to the load path of the online simulation for the construction
of the current basis functions.

POD method per cluster
For now, we assume that clustering has taken place (based on the load parameters)
and this has resulted in =2 clusters of training solutions and load parameters. The
index set of the training solutions and load parameters used for the 8th cluster is
denoted by �∗8 such that � = �∗1 ∪ �∗2 ∪ ... ∪ �∗=2 and each index can only be
present in one of the subsets (�∗1 until �∗=2). The =B?2/8 (B?2 stands for training
solutions per cluster, =B?2/8 = #�∗8) training solutions and load parameters that
belong to the 8th cluster are stored in snapshot matrix (8 (of size =D × =B?2/8) and
load parameter column U"8 (of length =B?2/8). In order to determine the matrix with
the basis functions for the 8th cluster using the POD method (as performed here),
denoted by Φ8, one must solve the following minimization problem:

[
%∗8 �∗8 &∗8

]
= argmin
%8 ,�8 ,&8

‖(8 − %8 �8 &8) ‖� , (4.22)

such that �8 is a diagonal matrix of size =C=B × =C=B with entries
(
�8

)
11
≥

(
�8

)
22
≥(

�8
)

33
≥ ... ≥

(
�8

)
=B?2/8=B?2/8

and

%8)%8 = &8)&8 = �, (4.23)

where Φ8 is constructed by extracting the =1 left singular vectors, i.e. the first =1
columns of %∗8. It can be noted that, although each cluster may in principle come
with its own number of =B?2/8 basis functions, the same number of basis functions
is used for each cluster in the current chapter.

75

Classification in the online phase
Also in the current subsection, we still assume that clustering has taken place, which
has resulted in =2 clusters of training solutions and load parameters.

In an online simulation, one must decide to which cluster the load parameters of
the current time increment (U" (C2DA)) belongs, so that from that cluster the basis
functions are used (which may change during the course of an online simulation).
In order to answer this question, one must parametrize each cluster in the space
of the load parameters. These parametrizations may for instance use one or more
locations in the space of the load parameters. For the 8th cluster, these locations
are stored in column Ŭ"8. One then choses some classification function, A, that
quantifies some measure between the current online load parameters (U" (C2DA))
and the parametrization of the 8th cluster (Ŭ"8).

The decision towhich cluster the load parameters of the current time step in the online
simulation belongs is then formulated as a combinatorial optimization problem, in
the form of:

8∗ = argmin
8∈{1,2,...,=2}

A (U" (C2DA) |Ŭ"8). (4.24)

It may be clear that this combinatorial optimization problem must in principle be
solved for each time step of the online simulation and therefore has an influence on
the speed of the online simulation. It may then also be clear that this combinatorial
optimization problem affects the speed of the online simulation more substantially
if the number of employed clusters (=2) is large and if the number of locations in the
space of the load parameters needed to evaluate A (i.e. if the length of column Ŭ"8)
is large.

In the case of clustering using DBSCAN for instance, the load parameters used
for parametrization in this chapter are the same as the clustered load parameters,
i.e. Ŭ"8

= U"8 (for the 8th cluster). Classification function A in Eq. (4.24) is then
defined as follows:

A (U" (C2DA) |Ŭ"8) = min
9∈�∗8
‖U" (C2DA) − Ŭ" 9 ‖2. (4.25)

76

:-means clustering
To the best of the candidate’s knowledge, unsupervised clustering of training solu-
tions in projection-basedMORhasmainly been performed using :-means clustering
[58, 79, 29, 2]. :-means clustering has several advantages compared to other clus-
tering approaches. First, it requires only one hyperparameter to be selected by the
user: the number of clusters, =2. Second, the clustering algorithm is fast. In other
words, the speed of the computations in the offline stage is hardly affected by it.
Third, the classification is fast, because classification function A in Eq. (4.24) only
uses one location in the space of the load parameters to parametrize each cluster
(i.e. the center of each cluster). Consequently, the online simulations are hardly
affected by the classification.

:-means clustering aims to minimize the sum of the distances between each point
and the center of the cluster to which the point belongs, where the center of a
cluster is the average location of all points that belong to that cluster. This may
mathematically be written as the following combinatorial optimization problem:

[
�∗1, �∗2, �∗3, ..., �∗=2

]
= argmin
�1,�2,�3,...,�=2

=2∑
8=1

∑
9∈�8
‖U" 9 − 1

=B?2/8

∑
:∈�8

U": ‖2. (4.26)

It may be clear that the center of the 8th cluster, needed in classification function A,
is then given by:

Ŭ"8 =
1

=B?2/8

∑
:∈�∗8

U": . (4.27)

The problem with the above optimization problem is its NP hardness. For this
reason, most numerical software include dedicated (yet sub-optimal) functions for
:-means clustering, whose steps can roughly be described as follows:

One of the main advantages of :-means clustering is that the classification in the
online simulations is fast. The function A, that quantifies the measure between
the current online load parameters (U" (C2DA)) and the parametrization of the 8th

cluster (Ŭ"8) is the Euclidian distance between the current load parameter of the
online simulation, U" (C2DA), and the center of the 8th cluster (meaning that Ŭ"8 only
includes one location, i.e. the length of column Ŭ"8 is one).

A =‖ U" (C2DA) − Ŭ"8 ‖2, (4.28)

77

Algorithm 3 -Means clustering
Randomly select one point (U") as the center of each cluster
(Ŭ"8 for the 8th cluster).
Repeat until cluster centers do not change anymore

Initialise all subsets to be empty: �∗1 = { }, �∗2 = { }, ..., �∗=2 = { }
For each point 9 : 8∗ = argmin

8∈{1,2,3,...,=2}
‖U" 9 − Ŭ"8‖2 �∗8 = �∗8 ∪ { 9}

For each cluster 8: Ŭ"8 = 1
#�∗8

∑
:∈�∗8 U":

where the equation must be read such that the independent components of U" and
Ŭ"8 are stored in column format.

However, :-means clustering also has a number of disadvantages. An important one
is that :-means clustering has difficulties with clustering distinct patterns. This is
clearly visible in Fig. 4.2, in which clustering of two different data sets is presented:
a set with random data and a set with clear patterns. Another disadvantage is that :-
means clustering does not automatically determine how many clusters are optimal,
as the number of clusters (=2) is a hyperparameter that must be set by the user. This
is especially a problem in the high-dimensional case, in which the clustering results
are difficult to visually confirm.

DBSCAN: Density-based spatial clustering of applications with noise
Because of the disadvantages of :-means clustering, DBSCAN is also considered.
Compared to :-means clustering, DBSCAN has several advantages. First, it is
better capable to distinguish distinct patterns (see the images on the right in Fig. 4.2,
where DBSCAN has captured the individual curves in the data). Second, it is able
to distinguish outliers (see bottom left image in Fig. 4.2). Third, DBSCAN is hardly
stochastic, meaning that every time the algorithm is applied (with the same values
for the hyperparameters), the difference between the clusters is substantially smaller
compared to :-means clustering.

DBSCAN requires the user to set two hyperparameters. The first one, which is
typically denoted by n , is an Euclidian distance that defines a neighbourhood around
each point (a circle in 2D, a sphere in 3D). The second one is an integer, =<8=? > 2,
and is used to define core points. DBSCAN uses these two hyperparameters to
subdivide all points in three types: � = �2 ∪ �=2 ∪ �>, where each point can only
be present in one subset and superscripts 2, =2 and > refer to core points, non-core
points and outliers, respectively.

78

Figure 4.2: Illustrative comparison of :-means clustering and DBSCAN. Left col-
umn: random data set, right column: data set with patterns. Top row: :-means
clustering for =2 = 4 (cluster centers are presented as the large shapes). Bottom
row: DBSCAN clustering, which is better capable of distinguishing patterns (bot-
tom right). Note that in the bottom left image, DBSCAN classifies the blue circles
as outliers.

A core point is a point that has at least =<8=? points in its neighbourhood (including
the point itself), with n as the ‘radius’ of the neighbourhood. In more detail, if the
number of neighbours of point ?, given by U"?, is defined as follows:

=?n = #
{
8 ∈ �, such that ‖U"? − U"8‖2 ≤ n

}
, (4.29)

then point ? is a core point if =?n ≥ =<8=?. Alternatively, point ? is a non-core point
1 < =?n < =<8=?. Finally, point ? is an outlier if =?n = 1.

With this classification as a start, DBSCANperforms the clustering. First, all outliers
are dismissed (points that do not have a single other point in their neighbourhood).
This means that outliers will not be part of any cluster.

Subsequently, one core point is randomly taken as the start of the first cluster. All
other points in the neighbourhood of the first point are selected and will be part of
the same cluster, regardless whether they are core or non-core points. However,
for all neighbouring core points, the process is repeated: also for these points their

79

neighbouring points are selected to be part of the same cluster. The process of
adding new points if they are in the neighbourhoods of core points is repeated until
the cluster does not grow anymore.

When the first cluster does not grow anymore, a random core point that is not yet
selected to be part of the first cluster will form the start of the next cluster and the
same procedure as outlined in the previous paragraph is repeated until the second
cluster does not grow anymore. This process is repeated until all core points belong
to a cluster.

The clustering part of algorithm (excluding the classification into core points, non-
core points and outliers) can also be written as follows (where 2�=2 and =2�=2 denote
the sets of core points and non-core points of the set that is currently being formed):

Algorithm 4 DBSCAN clustering
=2 = 0
while #�2 ≠ 0

=2 = =2 + 1
Randomly select a point, 8, from �2

�2 = �2 \ {8}, 2�=2 = {8}, =2�=2 = { }
for 9 ∈ 2�=2
�2 =

{
: ∈ �2, such that‖U" 9 − U" ‖2 ≤ n

}
�=2 =

{
: ∈ �=2, such that‖U" 9 − U" ‖2 ≤ n

}
�2 = �2 \ �2, �=2 = �=2 \ �=2, 2�=2 = 2�=2 ∪ �2, =2�=2 = =2�=2 ∪ �=2

end
�=2 = 2�=2 ∪ =2�=2

end
�> = �> ∪ �=2

One may thus summarize that:

• All core points belong to a cluster - even if a core point is the only core point
of a cluster.

• The points in the neighbourhood of a core point are part of the same cluster
as the core point itself.

• Conversely, a non-core point is not used to enlarge the cluster with its neigh-
bouring points.

• Consequently, non-core points are reclassified as outliers if the only points in
their neighbourhood are non-core points.

80

Similar to :-means clustering, DBSCAN is so often used that many numerical
software include predefined functions to apply it. However, the implementation
is of course more wisely performed than conceptually outlined above, in order to
minimize the computational times.

Of course, DBSCAN also has a number of disadvantages. An important one is that,
similar to :-means clustering, the clustering result is difficult to visually assess in
case each point is governed by more than three dimensions. This makes it hard to
optimize the values of the hyperparameters.

Complications for elastoplasticity
There are two issues that make the two aforementioned unsupervised clustering
approaches difficult to employ for the clustering of training solutions of elastoplas-
tic FE simulations. The first one is that when one time increment in the online
simulation, let us denote this by C1, belongs to cluster 8 and the next time increment,
C2, belongs to cluster 9 , the employed basis functions abruptly change from Φ8 to
Φ 9 . Consequently, the online solution found at the end of C1, D̃1∗ = Φ8U1∗ (where
superscript ∗ refers to a converged solution at the end of a time increment), cannot
serve as the initial guess for time increment C2, because force equilibrium can then
often not be achieved for time increment C2.

One thus needs to first compute a suitable initial guess for time increment C2. This
is accomplished by two steps. First, one aims to find U2 such that the !2-norm
between D̃2 = Φ 9U2 and D̃1∗ is minimal. In other words, one first solves:

U2 = argmin
U

‖Φ8U1∗ −Φ 9U‖2. (4.30)

Solving thisminimization problem ensures that displacement fields D̃1∗ and D̃2 match
each other optimally. However, it also means that force equilibrium does not hold for
initial guess D̃2. For this reason, an additional increment must be applied (for which
no increment of U" is applied), in which D̃2 is adjusted (obviously via adjusting
U2), as well as the history variables, such that force equilibrium is achieved.

This unavoidable procedure comes with two problems. The first one is that it is not
at all guaranteed that force equilibrium can be found. Second, if force equilibrium
is found, it is very well possible that D̃2 and the corresponding history variables
have been adjusted so much that they do not match those of the DNS accurately
anymore. (as we will see in the results section, the mismatch between the results of

81

the projection-based MOR (with clustering) and those of the DNS reduces during
the next time increments to some extent, but it nevertheless causes substantial
differences between the results of projection-based MOR with clustering and those
of the DNS). For this reason, the next subsection describes several approaches
that are investigated that either aim to decrease the differences between the basis
functions of each cluster and its adjacent cluster, or aim to smooth the transition of
the basis functions of one cluster to those of another cluster.

The second issue that makes unsupervised clustering difficult to employ for the
grouping of training solutions of elastoplastic FE simulations involves the fact that
not only the currently imposed macroscale deformation should be considered as the
load parameters, but also the history of the imposed macroscale deformation. In
other words, one should consider U" (0 < C ≤ C2DA) instead of U" (C2DA) in order to
define the clusters.

The complication that this change entails is that clustering must not be applied
in two dimensions (in terms of *"

GG (C2DA) and *"
GH (C2DA)), as we focus on isochoric

macroscale deformations in 2D settings, i.e. det(U"), U" only has two independent
parameters), but in manymore dimensions. This not only makes it hard to determine
suitable values for the hyperparameters of the clustering algorithms (since visual
inspection is impossible), it also makes the clustering results less useful. The reason
for this is that the metric for clustering in both :-means clustering and DBSCAN
is the Euclidian distance, which loses its efficiency if the number of dimensions is
increased.

This chapter leaves the problem associated with clustering in high dimensions
untouched. The reason for this is that the smoothing of the transition between
clusters could not be appropriately overcome for monotonic loading (as will be
demonstrated in the results section), and for monotonic loading it is sufficient to
only consider the currently imposed macroscale deformation, U" (C2DA).

Smoothing the switch between clusters
The current subsection discusses three approaches that are investigated to ease
the transition between clusters. The first two approaches discussed below aim to
decrease the difference between the basis functions of each cluster. These approaches
may be perceived as suboptimal, because bymaking sure that the differences between
the different sets of basis functions reduce, one also ensures that each basis of a
particular cluster is not optimal for that cluster. The third approach discussed below

82

aims to not compromize on each basis at all. The issue that occurs then is that
force equilibrium can often not be found in a single additional increment. The third
approach overcomes this by introducing several additional increments and adjusting
cluster-wise weights for each increment.

Sharing training solutions between clusters

An approach that has been used in the literature [2] to ensure that the basis functions
of the clusters do not vary too significantly with respect to each other is to construct
the basis functions of a given cluster by not only using the training solutions asso-
ciated with that cluster, but to also use training solutions of other clusters that are
near the current cluster.

If we consider this approach for cluster 8, it can be summarized as follows. First, =3
points from cluster 8 (�∗8) are selected that are furthest away from its cluster center,
Ŭ"8. This entails that the points in �∗8 must be ranked in ascending order according
to the distance with the center.

As sets do not permit ordering, the notation here resorts to sequences. The indices
in �∗8 are now thus elements in sequence (1∗8

9
) 9∈{1,2,...,#�∗8}, and the ordering of

the sequence is such that one can write for each pair of sequential elements, with
:1, :2 ∈ �∗8:

1∗8
9
= :1

1∗8
9+1 = :2

such that ‖U":1 − Ŭ"8‖2 ≥ ‖U":2 − Ŭ"8‖2. (4.31)

We now compute the average distance of the =3 points that are furthest away from the
8th cluster center. In other words, we take the first =3 elements of (1∗8

9
) 9∈{1,2,...,#�∗8}

and compute their average distance from the cluster center, 3<40=:

3<40= =
1
=3

=3∑
9=1
‖U"1 9 − Ŭ"8‖2. (4.32)

Finally, we multiply the average distance with scalar d > 1 and search for all training
solutions that do not belong to cluster 8 for which the load parameters are within
distance 3<40=d from the 8thcluster center:

�∗8033 =
{
9 ∈ � \ �∗8 such that ‖U" 9 − Ŭ"8‖2 ≤ 3<40=d

}
. (4.33)

83

The training solutions of other clusters for which their load parameters fall within
3<40=d from the 8th cluster center are now used together with the training simulations
of the 8th cluster (i.e. �∗8 ∪ �∗8033) to construct its basis functions, Φ8, according to
Eq. (4.22). In other words, snapshot matrix (8 in Eq. (4.22) includes the training
solutions whose indices are stored in both �∗8 and �∗8033 .

Weighing the training solutions

Another approach to decrease the differences between the basis functions of the
different clusters is also investigated. In this second approach, all training solutions
are used for each cluster, but they are given a weight in the snapshot matrix. The
weight is set to one for each training solution of the considered cluster, but decreases
linearly with the distance away from the cluster.

In more detail, each snapshot matrix (8 is now of size =D × =C=B and the 9 th column
of the snapshot matrix can now be written as:

(
(8

)
:, 9
= F 9 D̃ 9 . (4.34)

Here, F 9 denotes the weight associated with the 9 th training solution. The value for
this weight is now calculated as follows:

F 9 =


1 if 9 ∈ �∗8

[9 else (i.e. 9 ∈ � \ (�∗8 ∪ �>)
, (4.35)

where �> again denotes the index set with outliers in case of DBSCAN (which is
empty for :-means clustering), and 0 ≤ [9 ≤ 1 reads:

[9 =
3∗ 9 − 3<0G
3<0G

. (4.36)

On the one hand, 3∗ 9 denotes the minimum distance between the 9 th load parameters
and all the load parameters that belong to the 8th cluster. In other words, one can
write:

3∗ 9 = min
:∈�∗8
‖U" 9 − U": ‖2, (4.37)

84

On the other hand, 3<0G denotes the maximum of all these minimum distances:

3<0G = max
9∈�\(�∗8∪�>)

3∗ 9 . (4.38)

Adaptively mixing the basis functions

As mentioned above, the previous two approaches have the disadvantage that they
reduce the accuracy of the basis functions of a given cluster, for the benefit that the
basis functions do not differ too much with the basis functions of other clusters. The
final approach investigated here does not affect the basis functions of the clusterswith
the benefit that the basis functions are not compromized. Instead, basis functions
Φ8 are entirely based on the training solutions associated with the 8th cluster. The
problem that then often occurs is that no force equilibrium is found when the basis
is changed, which would terminate the online simulation.

To alleviate this problem, the two-step procedure detailed in subsection 4.4 that aims
to find a suitable initial guess when the basis functions are changed is formulated in
an adaptive manner. First, the switch from Φ8 to Φ 9 is attempted directly. If after a
certain number of iterations force equilibrium has not been obtained, the two basis
sets are mixed and an additional intermediate increment is used. If again, no force
equilibrium is found, the two basis sets are mixed further and one or more additional
increments are used. This procedure continues until force equilibrium is found, and
until basis Φ 9 is used on its own.

The so-called ‘mixing’ of the two basis sets Φ8 and Φ 9 is written as follows:

Φ8 9 = F8Φ8 + F 9Φ 9︸ ︷︷ ︸, (4.39)

with F8 = 1 − F 9 and where the underbrace is used to denote that the columns
in matrix F8Φ8 + F 9Φ 9 are orthonormalized with respect to each other (using the
Gram-Schmidt algorithm).

85

Using this notation, this adaptive procedure can be summarized in more detail as
follows:

Algorithm 5 Adaptively mixing basis functions
F 9 = 0, ΔF 9 = 1, : = 0
while F 9 ≠ 1

F 9 = F 9 + ΔF 9

Φ8 9 = F8Φ8 + F 9Φ 9︸ ︷︷ ︸
Attempt 2-step procedure with Φ8 9

if no force equilibrium is found
F 9 = F 9 − ΔF 9

: = : + 1
ΔF 9 = 1

2:
end

end

4.5 :-NN for adaptive basis selection
Clustering as discussed in the previous section clearly has its disadvantages. The
disadvantage revealed in the results section below is that a substantial inaccuracy
occurs when the basis functions of one cluster transition to those of another cluster.
For this reason, the current section proposes an approach that avoids clustering
altogether.

The ansatz of the approach is to use the =1 training solutions of which the load
parameters are closest to the current load parameters in the online simulation directly
as basis functions (after orthonormalization). In this way, the characteristic features
of the employed training solutions can be expected to match those of the current
solution highly accurately. This approach is thus a type of adaptive RB method, in
which the basis functions are potentially changed at each time increment, based on
a : nearest neighbour (:-NN) search of the load parameters.

In the previous section on clustering, the load parameters were considered to be
the current macroscale deformation, U" (C2DA). This is sufficient for the particular
combination of (1) clustering, and (2) monotonic loading. For the :-NN search,
and in particular for the application to cyclic loading however, the load parameters
require a more elaborate definition.

86

General quantification of the load parameters: curve matching of the load
paths
For more general cases than monotonic loading, we propose to first quantify which
load paths of the training simulations (i.e. ’training load paths’) are most similar
to the current load path of the online simulation (i.e. ’online load path’). Once the
=1 most similar training load paths are determined, we chose one training solution
per selected training simulation. The reason for this is that two subsequent training
solutions of a single training simulation are highly similar to each other and hence,
hardly any new information is provided by selecting a second training solution
per training simulation. We will therefore first focus on quantifying the similarity
between the online load path and the 8th training load path.

To measure the similarity between the online load path and the 8th training load path,
we propose to measure the distance between the two load paths. To properly include
the history, the distance should be measured over the entire online load path, so
some integral form seems useful. One may therefore propose the following measure
of similarity:

B8 =

∫ C2DA

0
‖U" (C) − U"8 (C)‖23C, (4.40)

where U" (C) and U"8 (C) denote the online load path and the 8th training load path,
which are known in terms of pseudo-time C. The sketch on the left in Fig. 4.3
illustrates this measure of similarity. (Again, even though U" is written in tensor
format, one should consider the components of U" in column format in the above
expression.)

The convenience of the expression above is that U" and U"8 are indeed known in
terms of pseudo-time C. The disadvantage is that the length of the online load path
may not be the same as the length of training load path at pseudo-time C2DA . In other
words, even if both load paths would follow the same path but at different speeds
(given by C), measure of similarity B8 will not be zero. For viscoelastoplasticity
this may be desired, but for rate-independent elastoplasticity as considered here,
Eq. (4.40) will likely introduce some amount of error in the measure of similarity.

87

Generally, it may therefore be more appropriate to use the following measure of
similarity:

B8 =

∫ ;2DA

0
‖U" (;) − U"8 (;)‖23;, (4.41)

where ;2DA denotes the length of the online load path at current pseudo-time C2DA

and ; denotes the length parameter of both load paths. This measure of similarity is
illustrated on the right in Fig. 4.3.

tt

tcur

tcur

i training
load path

th

online
load path

UM

l

l cur
l cur

i training
load path

th

UM

l

online
load path

Figure 4.3: Illustrations for the measure of similarity of Eq. (4.40) on the left and of
Eq. (4.41) on the right. The blue dashed curves denote a part of the the 8th training
load path and the red curves the online load path. The measure of similarity is the
integral of the distance between the two load paths, which we have attempted to
illustrate by the green arrows.

Besides the fact that it is not trivial to integrate Eq. (4.41) (nor Eq. (4.40) for that
matter), one must also determine at which pseudo-time C: , the length of the 8th

training load path is the same as the current length of the online load path. To this
end, one first needs to integrate the online load path, from the start to the current
time:

;2DA =

∫ C2DA

0
‖ mU" (C)

m C
‖23C, (4.42)

and then determine at which pseudo-time C: the length of the 8th training load path
is the same:

;2DA =

∫ C:

0
‖ mU"8 (C)

m C
‖23C. (4.43)

88

If one assumes, that both pseudo-time C: and Eq. (4.41) is numerically accurately
integrated, one may then rank all measures of similarity, B8 (8 ∈ {1, 2, ..., =B})
from low to high and select the best =1 training simulations. For each selected
training simulation, the question is then which solution to use as basis function
(after orthonormalizing them altogether). Since generally no training solution is
available at pseudo-time C: , logical choices would be to either select the training
solution of which its time signature is nearest to C: , or one constructs some weighted
average using the two training solutions that are available before and after pseudo-
time C: .

In the result section below, the investigated test cases are monotonic loading and
particular case of cyclic loading. For both cases, the general quantification as
discussed above is not used in order to accelerate the :-NN search, since we consider
the aim of the current contribution to compare the capabilities of the :-NN-aided
MOR with clustering-aided MOR.

Approximated quantification for monotonic loading
In case of monotonic loading, both the training load paths and the online load
paths are assumed to be straight lines. Therefore, the employed approximation
for monotonic loading only uses the current macroscale deformation of the online
simulation, U" (C2DA), instead of the full history of the macroscale deformation
(i.e. instead of load path U" (0 < C ≤ C2DA)). For each training simulation, we
then search for the nearest macroscale deformation for which a training solution is
available:

B8 = min
9∈{1,2,...,=C }

‖U" (C2DA) − U"8 (C 9)‖2. (4.44)

Subsequently, we rank the distances (i.e. measures of similarity) and use the training
solution of each training simulation that minimizes the distance.

Approximated quantification for cyclic loading
The character of the cyclic loading investigated in the result section is rather re-
stricted. The limitations are that (1) one cycle of loading and unloading is consid-
ered, (2) loading always takes place until an edge of the domain (defined in terms of
the components of U"), and (3) the same number of increments is considered for
the loading part and the unloading part (in both the training and online simulations).

89

Because of these limitations and the preliminary nature of this chapter, Eq. (4.40)
is used to quantify the similarity between the online load path and that of a training
simulation (instead of Eq. (4.41), which was argued to be more suitable). In order
to accelerate the computational efficiency of the :-NN search furthermore, the
numerical integration employed to evaluate the measure of similarity of Eq. (4.40)
lacks any weights:

B8 =

=2DA∑
9=1
‖U" (C 9) − U"8 (C 9)‖23C, (4.45)

where =2DA denotes the number of increments used to reach pseudo-time C2DA . In
case B8 is within the first =1 measures of similarity, the training solution associated
with U"8 (C2DA) is used.

Basis construction
The procedure to construct the basis functions for the current time increment of the
online simulation, Φ (of size =D × =1), based on the measures of similarity and the
:-NN search described above is rather straightforward.

Φ =

[
D̃1 D̃2 ... D̃=1

]
︸ ︷︷ ︸, (4.46)

where D̃8 denotes the solution selected from the training simulation that is the ith

most similar to the online simulation. The underbrace furthermore denotes that
orthonormalisation is performed and the tilde again refers to the fact that the mi-
crostructurally fluctuating part of the training solution. It can furthermore be noted
that orthonormalisation takes place for each time increment, even if the sequence
of the measures of similarities for the training simulations remains identical. The
reason for this is that the solutions that are employed from the training simulations
generally differ (slightly).

Challenges, hypotheses and conditions
The approach as outlined above comes with several hypotheses, which must simul-
taneously hold if the approach is to be both accurate and fast:

• Most of the =1 training solutions that are used as basis functions in current
time increment C2DA will also be used in next time increment C2DA+1. In other
words, most of the columns in Φ2DA are the same as in Φ2DA+1. On top of that,
the basis functions that are replaced, will be replaced by those that are rather

90

similar. The requirement for this is that enough training simulations must be
performed.

• Because only a few training solutions are used (i.e. =1 is a small number) and
because only a few training solutions are replaced, the orthonormalization
of the newly added training solutions with respect to the remaining training
solutions is sufficiently fast. This is a requirement because basis functions
may be replaced often, meaning that the orthonormalization must also be
often performed.

• Instead of requiring a two-step approach to recalibrate the initial guess for
each time increment in an online simulation, only the displacement field will
be adjusted using the minimization problem of Eq. (4.30). It is assumed that
the change of the displacement field is so minor that it induces a negligible
discrepancy in the associated force equilibrium. This is a requirement because
basis functions may be replaced very often, and the minimization problem of
Eq. (4.30) is fast to compute, whereas recalibrating force equilibrium is time
consuming.

• The :-NN search does not take much time. The requirement for this is that
not too many training simulations are performed.

The main challenge of this :-NN adaptive RB method is that the hypotheses have
competing requirements. The shared requirement of the first three hypotheses is
that many training simulations are performed, whereas the requirement of the last
hypothesis is that not too many training simulations are performed.

4.6 Results and discussion
In this section, the results of the above discussed frameworks are presented and
compared with those of the DNS and a conventional projection-based MOR based
on the POD method. The MOR approaches (in table 4.1) employing clustering are
only compared for the monotonic loading of an RVE, because even for this relatively
straightforward case, the results are deemed inaccurate. Cyclic loading is therefore
only investigated for the MOR using the :−NN search.

In the next subsection, one may note that manual clustering would actually provide
better clustering results for monotonic loading than the aforementioned machine
learning approaches. This is however not the case for cyclic loading and because

91
Clustering algorithm Sharing solutions Weighing solutions Mixing solutions
 -Means Eq. (4.33) Eq. (4.35) Eq. (4.39)
DBSCAN Eq. (4.35) Eq. (4.39)

Table 4.1: The MOR approaches employing clustering.

monotonic loading is more straightforward to analyze, clustering for monotonic
loading presents a valuable investigation. One of the reasons that monotonic loading
is more straightforward from a clustering perspective is that the path-dependency
of the deformation can be ignored for monotonic loading, which is impossible
for cyclic loading, i.e. U" (C2DA) is considered for monotonic loading, whereas
U" (0 < C ≤ C2DA) is considered for cyclic loading.

Comparison for monotonic loading
The discretized RVE considered for monotonic loading is presented in Fig. 4.4. It
consists of an elastoplastic matrix material with voids. The mechanical parameters
are set to � = 1, a = 0.3, "0 = 0.01, ℎ = 0.01 and = = 1.05 (see Eq. (4.1)
and Eq. (4.2)). 40 training simulations are performed using the DNS. The load
paths of these training simulations are presented as red dashed lines in Fig. 4.5.
Four verification simulations are considered, with their load paths presented by
the black lines in Fig. 4.5. The domain of the load paths is given by 0.95 ≤
det(U") ≤ 1.25, 0.5 < *"

GG ≤ 1.5, 0.5 < *"
HH ≤ 1.5 and −0.5 < *"

GH ≤ 0.5,
which is indicated by the blue curves in Fig. 4.5. All types of simulations are
performed using 1000 increments. Instead of using all available training solutions
for the identification of the basis functions, only the training solutions of the first
increment and every multitude of 50 increments are used (i.e. 840 training solutions
are included). Furthermore, all types of MOR only employ 10 basis functions.

Fig. 4.6 presents some results for one of the verification simulations with :-means
clustering. The clustering results for different numbers of clusters are presented in
the left column of Fig. 4.6, whilst one of the components of the homogenized 1st

Piola-Kirchhoff stress predicted for the associated clustering result is presented on
the right (with that of :-NN-aided MOR for comparison). The stress-deformation
responses demonstrate that the so-called mixing of the training solutions provides
the best results, because it does not use training solutions of other clusters in the
construction of the basis functions of each cluster. The results also reveal that the so-
called sharing of training solutions between clusters (as formulated in [2]) performs
better than the so-called weighing of the training solutions. In fact, sharing the

92

X

Y

ZFigure 4.4: The discretized RVE with voids.

Figure 4.5: Training load paths for all monotonic loading simulations shown in red.
The black curves present the load path of the verification simulations.

training solutions yields similar or better results than the conventional POD-based
MOR, whereas weighing the training solutions yields similar or worse results than
the conventional POD-based MOR.

Although almost all :-means-assisted POD-basedMOR simulations associated with
Fig. 4.6 involve the switching of the basis functions during the course of the verifi-
cation simulation (with the exception of =2 = 3), the switching itself does not cause
a substantial inaccuracy at the moment that the basis functions are changed. For the
other verification simulation however, the switching of the basis functions compro-

93

mizes the quality of the results substantially, as can be seen in Fig. 4.7. Figs. 4.6 and
4.7 demonstrate that all enhancements considered to facilitate the transition between
clusters do not make :-means-assisted MOR robustly outperform the conventional
POD-based MOR.

On the other hand, the :-NN-assisted projection-based MOR outperforms the con-
ventional POD-based MOR for both verification simulations. The :-NN-assisted
MOR is especially accurate for the second verification simulation (compared to the
POD-based MOR), because the load paths of the training simulations (from which
the :-NN-assisted MOR picks its solutions as basis functions) are substantially
closer to the load path of the second verification simulation than the load path of the
first verification simulation.

The results obtained using DBSCAN are presented in Figs. 4.8 and 4.9 for veri-
fication simulations 1 and 2, respectively (again with those of :-NN-aided MOR
for comparison). Compared to :-means clustering, DBSCAN is better capable to
capture the distinct patterns of the data, because all training solutions of a particular
training simulation at least belong to the same cluster. Thanks to this, no switching
between the clusters occurs for the purely monotonically increasing load paths of the
current subsection, which drastically compromized the responses predicted with the
help of :-means clustering. Nevertheless, when inspecting Figs. 4.8 and 4.9, one
cannot but conclude that DBSCANdoes not consistently improve the results. Indeed
for some cases, and in particular for those of the second verification simulation in
Fig. 4.9, the predicted stresses are better than those predicted by the conventional
POD-based MOR, but for a substantial number of others, the results are actually
worse.

To understand the reason for this, we consider the case of three clusters for the
first verification simulation, i.e. the two top diagrams in Fig. 4.8. The load path of
this first verification is closest to one of the training simulations of the blue cluster
and therefore uses the basis functions of the blue cluster (note that the verification
simulation is not on top of the training simulation, cf. Fig 4.5). The issue here is
that all other load paths of the blue cluster are in the top right area of the domain and
therefore, the basis functions of the blue cluster are more suited for load paths in the
top right area of the domain than the load path of the first verification simulation.

This phenomenon does not always occur. For =2 = 10 and =2 = 15 for the first
verification load path for instance (i.e. the third and fourth rows in Fig. 4.8), the
verification load path is very close to the load paths of a few training simulations

94

Figure 4.6: Monotonic loading: The results for the DNS, conventional POD-based
MOR, :-means clustering (with sharing the training solutions, weighing the training
solutions and mixing the training solutions) for verification simulation 1 using 10
basis functions and different numbers of clusters. Left column: :-means clustering
results together with the load path of verification simulation 1. Right column: One
of the components of the homogenized 1st Piola-Kirchhoff stress tensor as predicted
by the different frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10 and row
4: =2 = 15.

that are all part of the same cluster. For those cases, the DBSCAN-aided POD-based
MOR with the sharing of the training solutions outperforms the conventional POD-
based MOR. However, a robust improvement of the results cannot be guaranteed
with DBSCAN (nor with :-means clustering).

Although a sufficient amount of results are already considered to conclude none
of the clustering approaches systematically improves the results relative to those of
the conventional POD-based MOR, whereas the :-NN-aided MOR outperforms the

95

Figure 4.7: Monotonic loading: The results for the DNS, conventional POD-based
MOR, :-means clustering (with sharing the training solutions, weighing the training
solutions and mixing the training solutions) for verification simulation 2 using 10
basis functions and different numbers of clusters. Left column: :-means clustering
results together with the load path of verification simulation 2. Right column: One
of the components of the homogenized 1st Piola-Kirchhoff stress tensor as predicted
by the different frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10 and row
4: =2 = 15.

conventional MOR, one last verification simulation is considered. The load path
of this last verification simulation is constructed such that one switch of the basis
functions occurs for DBSCAN. The reason for this is that in the higher-dimensional
case of cyclic loading, switching of the basis is highly likely to occur for the
DBSCAN-aided POD-based MOR and we want to investigate whether a temporal
inaccuracy occurs at the moment the switching of the basis takes place (as observed
for :-means-aided MOR).

96

Figure 4.8: Monotonic loading: The results for the DNS, conventional POD-based
MOR, DBSCAN clustering (with sharing the training solutions and weighing the
training solutions) for verification simulation 1 using 10 basis functions and different
numbers of clusters. Left column: DBSCAN clustering results together with the
load path of verification simulation 1. Right column: One of the components
of the homogenized 1st Piola-Kirchhoff stress tensor as predicted by the different
frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10 and row 4: =2 = 15.

The load path that forces a switch of the basis for DBSCAN is presented in Fig. 4.10.
The associated stress response shows that, similarly to the case of :-means clustering,
if a switch occurs, the predicted stress is temporarily highly inaccurate.
:−NN search for cyclic loading
Because all the POD-based MOR approaches aided by clustering are not system-
atically better than the conventional MOR for monotonic loading, they are not
considered for cyclic loading. Instead, only the RB-based MOR aided by :-NN
searching is investigated for cyclic loading.

97

Figure 4.9: Monotonic loading: The results for the DNS, conventional POD-based
MOR, DBSCAN clustering (with sharing the training solutions and weighing the
training solutions) for verification simulation 2 using 10 basis functions and different
numbers of clusters. Left column: DBSCAN clustering results together with the
load path of verification simulation 2. Right column: One of the components
of the homogenized 1st Piola-Kirchhoff stress tensor as predicted by the different
frameworks. Row 1: =2 = 3, row 2: =2 = 5, row 3: =2 = 10 and row 4: =2 = 15.

The discretized RVE considered for cyclic loading is presented in Fig. 4.11. It is
essentially the same as the one considered for monotonic loading, except that the
elastoplastic matrix includes stiff elastic particles instead of voids. The reason for
this change is that our implementation lacks an arc-length solution algorithm, which
would be necessary for cyclic loading with voids. The mechanical parameters of
the matrix are set to � = 1, a = 0.3, "0 = 0.01, ℎ = 0.02 and = = 1.05. The elastic
properties of the stiff elastic particles are set to � = 20 and a = 0.3 and an initial
yield stress of "0 = ∞ prevents the particles from deforming plastically.

98

Figure 4.10: Monotonic loading: The results for the DNS, conventional POD-
based MOR, DBSCAN (with mixing the training solutions), :-means clustering
(with mixing the training solutions) and :-NN search for verification simulation 3
using 10 basis functions with five clusters of training solutions for DBSCAN and
:-means. Top-left: :-means clustering results for =2 = 5 together with the load
path of verification simulation 3. Top-right: DBSCAN clustering results for =2 = 5
with the load path of verification simulation 3. Bottom: One of the components
of the homogenized 1st Piola-Kirchhoff stress tensor as predicted by the different
frameworks.

Because the matrix deforms mostly plastically, and plastic deformation is isochoric,
and because the deformation of the particles is minimal due to their high Young’s
modulus relative to that of the matrix, only isochoric macroscale deformations are
considered in the training and verification simulations: det(U") = 1. The domain
of the load paths of the training and verification simulations is furthermore given
by 0.5 < *"

GG ≤ 1.5, 0.5 < *"
HH ≤ 1.5 and −0.5 < *"

GH ≤ 0.5. However, because

99

X

Y

ZFigure 4.11: The discretized RVE with stiff elastic particles.

only isochoric deformation is considered, macroscale deformation gradient tensor
U" only consists of two independent scalars (e.g. if *"

GG and *"
GH are known, *"

HH

can directly be calculated).

3000 training simulations are performed using the DNS. 1000 increments are used
to subdivide each training simulation (and verification simulation); 500 for the
loading phase and 500 for the unloading phase. Loading always take place until a
boundary of the domain is reached (given by 0.5 < *"

GG ≤ 1.5, 0.5 < *"
HH ≤ 1.5

and −0.5 < *"
GH ≤ 0.5) and unloading always takes place until no macroscale

deformation remains (i.e. until U" = I). The direction of each load path in the
*"
GG -*"

GH-plane is parametrized by a single scalar (\ in Fig. 4.12), which is sampled
from a uniform distribution with bounds 0 and 2c. The curvature of the loading part
is given by a radius, which is sampled from a bimodal uniform distribution between
bounds -2 and -0.5, and 0.5 and 2. This entails that if a negative radius is generated,
the loading part of the path is placed on the opposite side of the direction given by \
in Fig. 4.12. The same sampling is performed for the unloading part, but this is not
presented in Fig. 4.12. Three of such load paths are presented on the left in Fig. 4.13
(although these load paths are for the verification simulations and their presentation
does not distinguish the loading and the unloading phase).

A single component of the homogenized 1st Piola-Kirchhoff stress for the three
load paths on the left in Fig. 4.13 is presented on the right in Fig. 4.13. Both
the conventional POD-based MOR and the :-NN search-aided MOR use 10 basis

100

<latexit sha1_base64="YzkBaHoFFgA9Ezjpdv4zeHlVYLs=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVoL7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4Ape+PLg==</latexit>

✓
<latexit sha1_base64="BG0hmqEYPi4+wZRv+Q+p9girVSw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diK/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGivV73ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDrpmM3A==</latexit>

R

Figure 4.12: Parametrization used for the cyclic load paths.

functions. The results predicted by the :-NN search-aided MOR are virtually
indistinguishable from those of the DNS and clearly outperform the conventional
POD-based MOR. (In fact, they match those of the DNS so accurately that we do
not consider it useful to quantify the difference.)

The offline phase of the :-NN search-aided MOR is faster than that of the con-
ventional POD-based MOR, because the singular value decomposition necessary to
identify the basis functions of the POD-based MOR is avoided. The online phase of
the :-NN search-aidedMOR is slightly slower, because three additional calculations
are needed. First, the :-NN search must be applied at each increment. However,
because this constitutes a search over 3000 distances each increment, it only requires
0.035 second (averaged over the three verification simulations). Second, the basis
functions must be orthonormalized using the Gramm-Schmidt process. However,
because only 10 basis functions are considered, this only requires 0.0005 second
(averaged over the three verification simulations). Third, a new initial guess must be
established if the basis functions are changed. However, because this only requires
the matching of the displacement field (using Eq. (4.21)) and avoids recomputing
force equilibrium, it only requires 0.0025 second (averaged over the three verification
simulations).

101

−0.4 −0.2 0.0 0.2 0.4
−0.50

−0.25

0.00

0.25

0.50

U
M x
y

0.0 0.1 0.2 0.3

−0.01

0.00

0.01

P̄
x
x
(N

/
m

m
2
)

POD

K-NN

DNS

−0.4 −0.2 0.0 0.2 0.4
−0.50

−0.25

0.00

0.25

0.50

U
M x
y

0.00 0.05 0.10 0.15 0.20 0.25

−0.02

0.00

0.02

P̄
x
x
(N

/
m

m
2
)

−0.4 −0.2 0.0 0.2 0.4

UM
xx − 1

−0.50

−0.25

0.00

0.25

0.50

U
M x
y

0.00 0.05 0.10 0.15 0.20√
tr(CM)−

√
3

−0.02

0.00

0.02

P̄
x
x
(N

/
m

m
2
)

Figure 4.13: Cyclic loading: The results for the DNS, conventional POD-based
MOR, and K-NN for three verification simulations using 10 basis functions. Left
column: The load path of each verification simulation. Right column: One of the
components of the homogenized 1st Piola-Kirchhoff stress tensor as predicted by
K-NN framework.

4.7 Conclusion
Projection-based model-order-reduction (MOR) for elastoplastic models require a
large number of basis functions to obtain an acceptable accuracy at the online
prediction stage. Since, each basis functions has its own degrees of freedom that
needs to be computed, a reduced number of basis functions are necessary to speedup
the online computations of projection-basedMOR.Therefore, the goal of this chapter
was to devise aMOR that substantially reduce the number of basis functions required
at the online stage.

102

To this purpose, unsupervisedmachine learning algorithms, :-means andDBSCAN,
were investigated to group the training solutions according to its load parameters.
During the course of online simulation, the group that is closest to the current load
path is chosen, and the basis functions associated to the chosen group are employed.
Therefore, basis functions from different groups are used during the course of an
online simulation. The challenge in incorporating unsupervised learning toMOR for
elastoplastic models is the occurrence of inaccuracies every time the basis changes.
Three techniques were investigated to reduce these inaccuracies by smoothing the
switch between clusters.

The three smoothing techniques investigated were: (i) sharing the the training
solutions between clusters, (ii) weighing the training solutions, where weight is set
to one for each training solution of the considered cluster and decreases linearly with
the distance away from the cluster, and (iii) adaptively mixing the basis functions
between clusters.

The results of unsupervised learning approaches indicate that, the switching of basis
functions affects the quality of online predictions. Also, the techniques considered
to facilitate the transition of basis functions between clusters is not robust and does
not systematically improves the results of online predictions compared to those of
the conventional MOR based on proper-orthogonal-decomposition.

Therefore, a new MOR approach aided by : nearest neighbour searching was pro-
posed. In contrast to the inaccuracy of the clustering-based MOR at the moment
that the basis is switched, the :-NN approach provides a continuous change only
to part of the basis. In this approach, for each load increment, : load paths of the
training simulations that are nearest to the current load path in the online simulation
are identified, and the most suitable solution of each of the : training simulations
are used together as the basis functions for that particular load increment.

For the test cases involvingmonotonic loading, the :-NN-aidedMOR clearly outper-
formed all clustering-assisted MOR approaches and the conventional POD-based
MOR. The results of the :-NN-aided MOR were not perfect for the monotonic
loading cases, because only 40 training simulations were considered. For the cyclic
loading cases however, for which we included 3000 training simulations, the results
of the :-NN-aided MOR were indistinguishable from those of the direct numeri-
cal simulations. With such a great accuracy, the slight deceleration of the online
simulations compared to conventional MOR is a small price to pay.

103

We believe that an interesting extension can be obtained by combining the :-
NN-aided MOR with a recurrent neural network to emulate the basis coefficients.
However, compared to the recurrent neural network of [70], this new recurrent neural
network should not only be able to treat the path-dependency of elastoplasticity, it
should also be able to account for the fact that the basis functions change continuously
- something that our initial investigations have shown to be non-trivial.

Another issue required to make the approach based on :-NN searching more general
than presented here is associated with our test cases. The reason is that we only
considered one cycle loading, where loading always occurred until the border of
the domain, which would never occur in a nested multiscale simulation based on
computational homogenization. To solve this issue, more training simulations are
required and a more involved :-NN search is needed that properly integrates over
the load paths. Both issues are highly likely to decelerate the :-NN search and
in turn, it may be necessary to use a second neural network to emulate the :-NN
search.

104

C h a p t e r 5

CONCLUSIONS AND OUTLOOK

In this thesis, a posteriori projection-basedmodel-order-reductionmethods were de-
veloped specifically for elastoplastic finite element models. A posteriori projection-
based MOR uses precomputed solutions (either orthonormalized directly as in the
method of reduced basis, or in a decomposed form as in the method of proper
orthogonal decomposition) as global basis functions to speed up the simulations of
future computations.

In the case of hyperelastic finite elements, a few global basis functions are sufficient
to obtain excellent results for future computations. On the other hand, hyperelasto-
plastic simulations requires a large number of basis functions to acquire a reasonable
accuracy.

In this regard, the thesis presents an innovative approach in chapter 2 that reduces the
number of global basis functions by incorporating an additional local interpolation
using a coarse finite element discretization. Two approaches were discussed: (i)
The conventional global basis functions interpolate the majority of fluctuations in
the geometry and the local basis functions accounts for deficiencies of global basis
functions, and (ii) The local basis functions interpolate majority of fluctuations and
the global basis functions account for inaccuracies of the local basis functions. Two
local interpolation schemes were investigated.

The results of chapter 2 demonstrate that the local/global interpolation approach of
scheme 1 improves the accuracy of online computations compared to the conven-
tional POD-based MOR. However, the results of the local/global approaches were
not consistent, and require more development to make it usable in a robust manner.

The robustness may be improved by investigating further on the identification of
global basis functions. Currently, either the global basis functions or the local
basis functions interpolates majority of displacement field. One may identify basis
functions in the center of the spectrum. How to achieve this is currently unclear to
the candidate.

Another avenue for improvement may be found in staggered solution schemes. In
the present chapter, a monolithic approach was applied (see e.g. [63]), since we

105

simultaneously solve for the coefficients of the basis functions and for the DoFs of
the local interpolation. Staggered approaches, in which one solves for one set of
variables in one iteration and for the other set of variables in the next iteration, are
completely accepted in fluid-structure simulations (see e.g. [18]) and have shown to
provide stability to phase-field damage simulations [74]. They may therefore also
help the local/global schemes of chapter 2.

Another approach that may improve the robustness of the presented schemes is
increasing the hardening modulus in the stiffness matrix (ℎ in Eq. (2.2)). Such an
’engineering trick’ may be considered somewhat ad-hoc, because there is no theory
to choose the most appropriate value for this increase. On the other hand, for perfect
plasticity in infinitesimal strain settings, this modification is completely accepted to
achieve convergence.

The results of chapter 2 lead to the development of a consistent neural network
accelerated POD-basedMORapproach in chapter 3. The advantage of incorporating
neural network with POD-based MOR facilitates to preserve all the microstructural
information in the quadrature points. The developed method avoids the stiffness
matrix construction and the Newton-Raphson iterative procedure involved in the
conventional POD-based MOR. Therefore, many global basis functions can be used
for the online computations, which is particularly useful for elastoplastic finite
element models.

A recurrent neural networkwas developed to predict the basis coefficients for anRVE
described by finite plasticity, subjected to cyclic and random loading. The results
have shown that the accuracy of predictions of RNN accelerated POD-based MOR
is similar to the conventional POD-based MOR. The RNN acceleration yields speed
ups of factors between 13 and 100 times relative to direct numerical simulations for
cyclic and random loading conditions, respectively.

The RNN in chapter 3 emulates the coefficients of 100 global basis functions. Since
the use of 100 global basis functions yields acceptable accuracies, but not superb
accuracies. To achieve this, one would require even more basis functions, which
would compromize the speed of the MOR simulations. To reduce the number of
basis functions, machine learning is investigated in chapter 4 in order to adaptive
select a limited number of basis functions.

The use of :-means clustering (as investigated in the literature for other types of
simulations than elastoplastic finite element simulations) and DBSCAN (not yet

106

investigated in the literature to the best of the candidate’s knowledge) to group
training simulations and construct a basis for each group shows high inaccuracies
while switching between the basis functions at the online computation stage. There-
fore, different smoothing approaches were investigated to reduce such inaccuracies.
However, the smoothing approaches did not provide a consistent improvement of
the accuracy in the online stage.

Therefore, a method that continuously changes the basis functions was incorpo-
rated. This continuous change was achieved using the k-NN search algorithm. The
algorithm determines the k most suitable for each load increment, which are then
orthonormalized to be used as basis functions for the current increment. Themethod
was investigated for an elastoplastic RVE subjected to large monotonic loading and
asymmetrical cyclic loading conditions. The results in chapter 4 have indicated
that the adaptive basis section using k-NN provides an accurate result even with the
use of substantially reduced number of basis functions compared to the traditional
POD-based MOR.

An interesting extension may be obtained by combining the :-NN-aided MOR with
a recurrent neural network to emulate the basis coefficients. However, compared to
the recurrent neural network of chapter 3, this new recurrent neural network should
not only be able to treat the path-dependency of elastoplasticity, it should also be
able to account for the fact that the basis functions change continuously - something
that our initial investigations have shown to be non-trivial.

Another issue required to make the approach based on :-NN searching more general
than presented here is associated with the considered test cases. The reason is that
only one cycle loading was considered, and loading always occurred until the border
of the domain, which would never occur in a nested multiscale simulation based
on computational homogenization. To solve this issue, more training simulations
are required and a more involved :-NN search is needed that properly integrates
over the load paths. Both issues are highly likely to decelerate the :-NN search and
in turn, it may be necessary to use a second neural network to emulate the :-NN
search. Although the proposed :-NN-aided MOR is only investigated for relatively
simple test cases with clear limitations in terms of their application, its superb
accuracy can make it a promising approach for future development that should focus
on generalizing the computational strategy.

107

A p p e n d i x A

ACTIVATION FUNCTIONS

An activation function (5 in Fig. 3.1) is one of the hyper-parameters, which plays
an important role in restricting the output of any neuron to a certain limit, such that
the input for the next neuron is not magnified to a large value. Another feature of an
activation function is the ability to provide the network with non-linearity. This is a
significant feature because, as discussed below, the use of linear activation functions
makes the response of the entire network linear, thereby limiting the applicability of
neural networks.

In this appendix, commonly used activation functions are discussed. To ease the no-
tation in this appendix, the weighted response of the input of a neuron is abbreviated
by G, whose expressions reads:

G = 1 +
:∑
8=1

F8$8, (A.1)

where $8 denotes the 8th input of the neuron of interest, F8 denotes its associated
weight and 1 denotes the bias of the neuron.

Binary step function is a threshold based activation function that passes the output
of a neuron if the value is higher than certain threshold, or restricts them if the output
value is less than the threshold. It is thus nothingmore than aHeaviside step function:

5��# (G) =


1 for G ≥ 0

0 for G < 0
. (A.2)

Though this function is simple to implement, it can only be used for a binary
classification problem. The reason for this is that the gradient of the binary step
function is zero, making it impossible to update the parameters during the learning
stage of the network.

Linear activation function takes the form where the output is proportional to the
input. The function (with parameter 0) is given by:

108

5!�# (G) = 0G, (A.3)

and its derivative is:
5
′
!�# (G) = 0. (A.4)

Because the gradient of the linear activation function is constant, it effectively
disappears in the weights and biases of the neuron (F8 and 1 in Fig. 3.1). For this
reason, the constant of the linear activation function cannot be identified during the
learning phase, so it is in practise simply ignored (0 = 1).

The problem of the linear activation function is that the combined result of a layer
of neurons is a linear function and hence, a neural network using linear activation
functions cannot emulate non-linear relations between the input and the output. This
motivates the need for non-linear activation functions formost practical applications.

Sigmoid activation function is one of the most widely used non-linear activation
functions in regression models [47]. This activation function takes the form:

5(�� (G) =
1

1 + 4−G . (A.5)

The output of the sigmoid function is in the range between 0 and 1, thereby ensuring
a normalized output of a neuron. The function provides a smooth s-shaped curve,
that is �∞-continuous, and its derivative reads:

5
′

(�� (G) = 5(�� (G) (1 − 5(�� (G)). (A.6)

Practically, the gradient of the sigmoid function is flat for values of G greater
than 2 and less than -2. This means that the update values are often substantially
small, resulting in a problem that the gradient vanishes thereby compromising the
identification of the weights and biases in the learning phase. Also, the output of
the sigmoid function for all neurons are of the same sign, since the function is not
symmetric around zero. This issue is rectified using the hyperbolic tangent function.

Hyperbolic tangent function (tanh) is similar to sigmoid function, except that
output ranges between -1 to 1. Tanh activation function reads:

5)�# (G) =
4G − 4−G
4G + 4−G . (A.7)

and its derivative is given as:

109

5
′

)�# (G) = 1 − 5)�# (G)2. (A.8)

The above mentioned non-linear functions are computationally expensive. This has
motivated the construction of different activation functions.

Rectified linear unit (ReLU) is a non-linear activation function that is computa-
tionally efficient [55]. ReLU activates a neuron only if its input values are positive.
The function is nothing more than the binary step activation function and the linear
activation function multiplied with each other:

5'4!* (G) =

G, G ≥ 0

0, G < 0
. (A.9)

with the following derivatives:

5
′
'4!* (G) =


1, G ≥ 0

0, G < 0
. (A.10)

The problem with ReLU is that, when the input is lower than zero, the gradients
of ReLU is zero. Therefore, the identification of the weights and biases during the
learning phase is compromised. This phenomenon is known as the dying ReLU
problem.

Leaky ReLU activation function is an improved version of ReLU, which over-
comes the dying ReLU problem [50]. Instead of defining 0 for negative input
values, Leaky ReLU multiplies the input with a small scalar. The function reads:

5!' (G) =

G, G ≥ 0

nG, G < 0
. (A.11)

Its derivative reads:

5
′
!' (G) =


1, G ≥ 0

n, G < 0
. (A.12)

110

A p p e n d i x B

RNN UNITS

In this appendix, the two main types of RNN gates are briefly introduced: the
long-short-term-memory unit (LSTM) and the gated-recurrent-unit (GRU).

B.1 Long Short Term Memory
LSTM has a cell state that allows to keep or forget the sequential information.
The processing capability of the cell state to only consider relevant information,
facilitates to carry data from past time steps to future time steps. The control of
information in the cell state is accomplished using gates. Gates effectively decide
which information has to be kept and discarded during training. The working of
LSTM is presented in Fig. B.1 can be summarized in the following steps:

<latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>� <latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>� <latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>�
<latexit sha1_base64="IybAlI8py0UNYzbzg/X6HOY7m10=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m2bp7ibsboQS+he8eFDEq3/Im//GbZqDtj4YeLw3w8y8MOVMG9f9dipr6xubW9Xt2s7u3v5B/fCoo5NMEeqThCeqF2JNOZPUN8xw2ksVxSLktBtO7uZ+94kqzRL5aKYpDQQeSxYxgk0hYRkP6w236RZAq8QrSQNKtIf1r8EoIZmg0hCOte57bmqCHCvDCKez2iDTNMVkgse0b6nEguogL26doTOrjFCUKFvSoEL9PZFjofVUhLZTYBPrZW8u/uf1MxPdBDmTaWaoJItFUcaRSdD8cTRiihLDp5Zgopi9FZEYK0yMjadmQ/CWX14lnYumd9X0Hi4brdsyjiqcwCmcgwfX0IJ7aIMPBGJ4hld4c4Tz4rw7H4vWilPOHMMfOJ8/KuiOUw==</latexit>

tanh

<latexit sha1_base64="C2D3Qx/v8479umz2yk0hfISpiwA=">AAACC3icbVA9TwJBEN3Db/w6tbTZACY2kjsKtTTSWGoiQsIh2VsG2LC3d9mdMyEXehv/io2Fxtj6B+z8Ny4fhYIvmeTlvZndmRcmUhj0vG8nt7S8srq2vpHf3Nre2XX39u9MnGoONR7LWDdCZkAKBTUUKKGRaGBRKKEeDqpjv/4A2ohY3eIwgVbEekp0BWdopbZbCDgoBC1UL6uClNQgQ6BBUKreZ3jij0qjtlv0yt4EdJH4M1IkM1y33a+gE/M0sg9zyYxp+l6CrYxpFFzCKB+kBhLGB6wHTUsVi8C0ssktI3pklQ7txtqWQjpRf09kLDJmGIW2M2LYN/PeWPzPa6bYPW9lQiUpguLTj7qppBjTcTC0IzRwlENLGNfC7kp5n2nGbTomb0Pw509eJHeVsn9a9m8qxYvLWRzr5JAUyDHxyRm5IFfkmtQIJ4/kmbySN+fJeXHenY9pa86ZzRyQP3A+fwAJp5pi</latexit>

Cell state
Ct�1

<latexit sha1_base64="xEcfumrxQd5dVcIIWKI78JpSXOA=">AAACCXicbVC7TgJBFJ3FF+ILtbSZCCZWZJdCLYk0lpjII2GRzA4XmDA7u5m5a0I2tDb+io2Fxtj6B3b+jcOjUPAkNzk5596Ze08QS2HQdb+dzNr6xuZWdju3s7u3f5A/PGqYKNEc6jySkW4FzIAUCuooUEIr1sDCQEIzGFWnfvMBtBGRusNxDJ2QDZToC87QSt089TkoBC3UIK2ClNQgQ6C+X6zepzgpTrr5gltyZ6CrxFuQAlmg1s1/+b2IJ6F9lktmTNtzY+ykTKPgEiY5PzEQMz5iA2hbqlgIppPOLpnQM6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9qbif147wf5VJxUqThAUn3/UTyTFiE5joT2hgaMcW8K4FnZXyodMM26zMTkbgrd88ipplEveRcm7LRcq14s4suSEnJJz4pFLUiE3pEbqhJNH8kxeyZvz5Lw4787HvDXjLGaOyR84nz8Zj5nw</latexit>

Cell state
Ct

<latexit sha1_base64="X4Zwd/pQZhBFG6PB7bwm1aWsGVI=">AAACDXicbVA9T8MwEHX4LOUrwMhi0SKxUCUMwIhg6VgkCkhNqBzn2lp1nMi+IFVR/wALf4WFAYRY2dn4N7glA19POunpvTv77kWZFAY978OZmZ2bX1isLFWXV1bX1t2NzUuT5ppDm6cy1dcRMyCFgjYKlHCdaWBJJOEqGp5N/Ktb0Eak6gJHGYQJ6yvRE5yhlbpuPeCgELRQ/aIp4hgUNcgQaBDUmzcF7vvj+rjr1ryGNwX9S/yS1EiJVtd9D+KU54l9mktmTMf3MgwLplFwCeNqkBvIGB+yPnQsVSwBExbTa8Z01yox7aXalkI6Vb9PFCwxZpREtjNhODC/vYn4n9fJsXccFkJlOYLiXx/1ckkxpZNoaCw0cJQjSxjXwu5K+YBpxm0+pmpD8H+f/JdcHjT8w4Z/flA7OS3jqJBtskP2iE+OyAlpkhZpE07uyAN5Is/OvfPovDivX60zTjmzRX7AefsErOSbRw==</latexit>

Hidden state
Ht�1

<latexit sha1_base64="mytPsKKF0vUlOg1A0+mpDQIlvmw=">AAACC3icbVC7TgMxEPTxJrwClDRWEiSq6C4FUCJoUgaJPKRciHy+TWLF5zvZe0jRKT0Nv0JDAUK0/AAdf4PzKCBhpJVGM7v27gSJFAZd99tZWV1b39jc2s7t7O7tH+QPjxomTjWHOo9lrFsBMyCFgjoKlNBKNLAokNAMhjcTv/kA2ohY3eEogU7E+kr0BGdopW6+4HNQCFqoflYVYQiKGmQI1PdL1fsMx6VxN190y+4UdJl4c1Ikc9S6+S8/jHka2Ye5ZMa0PTfBTsY0Ci5hnPNTAwnjQ9aHtqWKRWA62fSWMT21Skh7sbalkE7V3xMZi4wZRYHtjBgOzKI3Ef/z2in2LjuZUEmKoPjso14qKcZ0EgwNhQaOcmQJ41rYXSkfMM24TcfkbAje4snLpFEpe+dl77ZSvLqex7FFTkiBnBGPXJArUiU1UiecPJJn8krenCfnxXl3PmatK8585pj8gfP5A7simtU=</latexit>

Hidden state
Ht

<latexit sha1_base64="IybAlI8py0UNYzbzg/X6HOY7m10=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m2bp7ibsboQS+he8eFDEq3/Im//GbZqDtj4YeLw3w8y8MOVMG9f9dipr6xubW9Xt2s7u3v5B/fCoo5NMEeqThCeqF2JNOZPUN8xw2ksVxSLktBtO7uZ+94kqzRL5aKYpDQQeSxYxgk0hYRkP6w236RZAq8QrSQNKtIf1r8EoIZmg0hCOte57bmqCHCvDCKez2iDTNMVkgse0b6nEguogL26doTOrjFCUKFvSoEL9PZFjofVUhLZTYBPrZW8u/uf1MxPdBDmTaWaoJItFUcaRSdD8cTRiihLDp5Zgopi9FZEYK0yMjadmQ/CWX14lnYumd9X0Hi4brdsyjiqcwCmcgwfX0IJ7aIMPBGJ4hld4c4Tz4rw7H4vWilPOHMMfOJ8/KuiOUw==</latexit>

tanh

✕

✕

+

✕

<latexit sha1_base64="CbXyg+cOPoNfEGNDc2lBzoM3rRE=">AAACBHicbVC7TsMwFHV4lvIKMHaJaJHKUiUdgLGChY0i0YfUhspxndaq40T2DVIUZWDhV1gYQIiVj2Djb3DbDNByJEtH59xr+xwv4kyBbX8bK6tr6xubha3i9s7u3r55cNhWYSwJbZGQh7LrYUU5E7QFDDjtRpLiwOO0402upn7ngUrFQnEHSUTdAI8E8xnBoKWBWeoTKoBKJkbpTQxRDNVKcp9CVjnNBmbZrtkzWMvEyUkZ5WgOzK/+MCRxoG8kHCvVc+wI3BRLYITTrNiPFY0wmeAR7WkqcECVm85CZNaJVoaWH0p9BFgz9fdGigOlksDTkwGGsVr0puJ/Xi8G/8JNmdDZqCDzh/yYWxBa00asIZOUAE80wUQy/VeLjLHERNeiiroEZzHyMmnXa85ZzbmtlxuXeR0FVELHqIocdI4a6Bo1UQsR9Iie0St6M56MF+Pd+JiPrhj5zhH6A+PzB+UwmD0=</latexit>

Output(yt)

<latexit sha1_base64="AIzIWL6M4LIpNzL2ZmR9Y/lhEQc=">AAACA3icbVC7TsMwFHXKq5RXgA2WiBapLFXSARgrWGArEn1Ibagc96a16jiR7SCqKBILv8LCAEKs/AQbf4PTdoCWI1k6Oude2+d4EaNS2fa3kVtaXlldy68XNja3tnfM3b2mDGNBoEFCFoq2hyUwyqGhqGLQjgTgwGPQ8kaXmd+6ByFpyG/VOAI3wANOfUqw0lLPPOgS4AoE5YPkmkexKpce7hKVlk7Snlm0K/YE1iJxZqSIZqj3zK9uPyRxoC8kDEvZcexIuQkWihIGaaEbS4gwGeEBdDTlOADpJpMMqXWslb7lh0IfrqyJ+nsjwYGU48DTkwFWQznvZeJ/XidW/rmb0CwbcDJ9yI+ZpUIrK8TqUwFEsbEmmAiq/2qRIRaY6FZkQZfgzEdeJM1qxTmtODfVYu1iVkceHaIjVEYOOkM1dIXqqIEIekTP6BW9GU/Gi/FufExHc8ZsZx/9gfH5A+7wl7E=</latexit>

Input(xt)

<latexit sha1_base64="3yIr686tVSGevQfpZBARl2lj9YU=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQi6rLoxmUF+4A2lsl00g6dTMI8hBr6JW5cKOLWT3Hn3zhps9DWAwOHc+7h3jlhypnSnvftrKyurW9slrbK2zu7exV3/6ClEiMJbZKEJ7ITYkU5E7Spmea0k0qK45DTdji+yf32I5WKJeJeT1IaxHgoWMQI1lbqu5WeEQMq83gWTR903616NW8GtEz8glShQKPvfvUGCTExFZpwrFTX91IdZFhqRjidlntG0RSTMR7SrqUCx1QF2ezwKTqxygBFibRPaDRTfycyHCs1iUM7GWM9UoteLv7ndY2OroKMidRoKsh8UWQ40gnKW0ADJinRfGIJJpLZWxEZYYmJtl2VbQn+4peXSeus5l/U/Lvzav26qKMER3AMp+DDJdThFhrQBAIGnuEV3pwn58V5dz7moytOkTmEP3A+fwBv05OZ</latexit>

f t <latexit sha1_base64="utUNBFTXKkDMf0/imrtguFVs3xg=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVRIRdVl047KCfUAby2Ry2w6dTMI8hBr6JW5cKOLWT3Hn3zhps9DWAwOHc+7h3jlhypnSnvftrKyurW9slrbK2zu7exV3/6ClEiMpNGnCE9kJiQLOBDQ10xw6qQQShxza4fgm99uPIBVLxL2epBDEZCjYgFGirdR3Kz0jIpB5PGPTB913q17NmwEvE78gVVSg0Xe/elFCTQxCU06U6vpeqoOMSM0oh2m5ZxSkhI7JELqWChKDCrLZ4VN8YpUIDxJpn9B4pv5OZCRWahKHdjImeqQWvVz8z+saPbgKMiZSo0HQ+aKB4VgnOG8BR0wC1XxiCaGS2VsxHRFJqLZdlW0J/uKXl0nrrOZf1Py782r9uqijhI7QMTpFPrpEdXSLGqiJKDLoGb2iN+fJeXHenY/56IpTZA7RHzifP3Rok5w=</latexit>

it
<latexit sha1_base64="n5h23uhbKvjRypOrjXPnb3TMI7s=">AAACAHicbVDLSsNAFJ3UV62vqgsXboJFcFUSEXVZ7MZlBfuAJpbJ5LYdOpmEmRuhhGz8FTcuFHHrZ7jzb5w+Ftp6YOBwzj3cuSdIBNfoON9WYWV1bX2juFna2t7Z3SvvH7R0nCoGTRaLWHUCqkFwCU3kKKCTKKBRIKAdjOoTv/0ISvNY3uM4AT+iA8n7nFE0Uq985KUyBDWJZx5yEUJWz/MH7JUrTtWZwl4m7pxUyByNXvnLC2OWRiCRCap113US9DOqkDMBeclLNSSUjegAuoZKGoH2s+kBuX1qlNDux8o8ifZU/Z3IaKT1OArMZERxqBe9ifif102xf+1nXCYpgmSzRf1U2BjbkzbskCtgKMaGUKa4+avNhlRRhqazkinBXTx5mbTOq+5l1b27qNRu5nUUyTE5IWfEJVekRm5JgzQJIzl5Jq/kzXqyXqx362M2WrDmmUPyB9bnD8gwlyw=</latexit>

C̃
t

<latexit sha1_base64="gHFB7K/D5CKc9fgx1TqP32ZCkfw=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVRIRdVl047KCfUAby2Ry2w6dTMI8hBr6JW5cKOLWT3Hn3zhps9DWAwOHc+7h3jlhypnSnvftrKyurW9slrbK2zu7exV3/6ClEiMpNGnCE9kJiQLOBDQ10xw6qQQShxza4fgm99uPIBVLxL2epBDEZCjYgFGirdR3Kz0jIpB5PEumD7rvVr2aNwNeJn5BqqhAo+9+9aKEmhiEppwo1fW9VAcZkZpRDtNyzyhICR2TIXQtFSQGFWSzw6f4xCoRHiTSPqHxTP2dyEis1CQO7WRM9Egtern4n9c1enAVZEykRoOg80UDw7FOcN4CjpgEqvnEEkIls7diOiKSUG27KtsS/MUvL5PWWc2/qPl359X6dVFHCR2hY3SKfHSJ6ugWNVATUWTQM3pFb86T8+K8Ox/z0RWnyByiP3A+fwB9kpOi</latexit>

ot

_

_

_

_

_

_

Figure B.1: A detailed LSTM architecture. Red dashed box represents the forget
gate. Green dotted box is the input gate, blue dash dotted is the output gate and the
orange dash dot box shows the cell state. + and × is an element-wise summation
and element-wise multiplication operator respectively.

1. At first, there is a forget gate. This forget gate decides what information has
to be kept in cell state ‘�C−1’. The decision is made by passing the hidden
variables of previous time step ‘�C−1’ and the input of current time step ‘GC’
through a sigmoid activation function (f). The output of forget gate ‘ 5 C’ is

111

between 0 and 1, with a vector size being the number of variables in the cell
state ‘�C−1’. The information is retained for values closer to 1 and discarded
for values closer to 0. The output of a forget state can be expressed as follows:

5 C = f(,
� 5
�C−1 +,

G 5
GC + 1

5
), (B.1)

where,,
� 5

and,
G 5

are the weights of the previous hidden state ‘�C−1’ and
current input ‘GC’ respectively. ‘1

5
’ is the bias term .‘ 5 ’ in the subscript refers

that the weights and bias corresponds to forget gate.

2. Next is an input gate. This gate decides what information to be additionally
stored in the cell state, by creating a new set of values ‘�̃C’. This operation
is performed in two steps. First, the previous hidden variables ‘�C−1’ and the
current input ‘GC’ are passed through a sigmoid activation (f), that decides
which values will be updated. This yields a new input vector ‘8C’ whose values
are between 0 and 1. Again, the same data, ‘�C−1’ and ‘GC’, is passed through
‘tanh’ to create ‘�̃C’.

8C = f(,
�81
�C−1 +,

G81
GC + 1

81
), (B.2)

�̃
C
= tanh(,

�82
�C−1 +,

G82
GC + 1

82
), (B.3)

3. In the third step, new cell state ‘�C’ is updated based on 5 C , 8C and �̃C . To
discard some values of ‘�C−1’, an element-wise multiplication is performed
between 5 C and �C−1. In order to update the cell state, 8C and �̃C are multiplied
element-wise (denoted by �). The update of the cell state for the current time
step is given as:

�C = 5 C � �C−1 + 8C � �̃C , (B.4)

4. Finally, an output gate decides the next hidden state variables ‘�C’ that will
be passed on to the next sequence. In order to obtain that, �C−1 and GC are
passed through a sigmoid function and then the newly obtained cell state �C

is passed through the tanh activation function. The output hidden variables
are computed as:

112

>C = f(,
�>
�C−1 +,

G>
GC + 1

>
), (B.5)

and finally,
�C = >C � tanh(�C). (B.6)

The obtained hidden state variables and cell states are passed on to the next
time step.

B.2 Gated Recurrent Unit
A GRU is a simplified form of LSTM, that enables control over the flow of infor-
mation only through the hidden variables ‘�’. There is no cell state in GRU. It
also uses only two gates: an update gate (IC) and a reset gate (A C) to determine the
amount of information to be passed on and to be retained by the hidden variable.
GRU perform less computation, which makes them faster than LSTM. The working
of a GRU is presented in B.2, and can be summarised as follows:

<latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>� <latexit sha1_base64="N/EBWZoOVLkLENSRb/DG5XWv4dg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWjW4v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnlePKQ==</latexit>�
<latexit sha1_base64="IybAlI8py0UNYzbzg/X6HOY7m10=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m2bp7ibsboQS+he8eFDEq3/Im//GbZqDtj4YeLw3w8y8MOVMG9f9dipr6xubW9Xt2s7u3v5B/fCoo5NMEeqThCeqF2JNOZPUN8xw2ksVxSLktBtO7uZ+94kqzRL5aKYpDQQeSxYxgk0hYRkP6w236RZAq8QrSQNKtIf1r8EoIZmg0hCOte57bmqCHCvDCKez2iDTNMVkgse0b6nEguogL26doTOrjFCUKFvSoEL9PZFjofVUhLZTYBPrZW8u/uf1MxPdBDmTaWaoJItFUcaRSdD8cTRiihLDp5Zgopi9FZEYK0yMjadmQ/CWX14lnYumd9X0Hi4brdsyjiqcwCmcgwfX0IJ7aIMPBGJ4hld4c4Tz4rw7H4vWilPOHMMfOJ8/KuiOUw==</latexit>

tanh

<latexit sha1_base64="X4Zwd/pQZhBFG6PB7bwm1aWsGVI=">AAACDXicbVA9T8MwEHX4LOUrwMhi0SKxUCUMwIhg6VgkCkhNqBzn2lp1nMi+IFVR/wALf4WFAYRY2dn4N7glA19POunpvTv77kWZFAY978OZmZ2bX1isLFWXV1bX1t2NzUuT5ppDm6cy1dcRMyCFgjYKlHCdaWBJJOEqGp5N/Ktb0Eak6gJHGYQJ6yvRE5yhlbpuPeCgELRQ/aIp4hgUNcgQaBDUmzcF7vvj+rjr1ryGNwX9S/yS1EiJVtd9D+KU54l9mktmTMf3MgwLplFwCeNqkBvIGB+yPnQsVSwBExbTa8Z01yox7aXalkI6Vb9PFCwxZpREtjNhODC/vYn4n9fJsXccFkJlOYLiXx/1ckkxpZNoaCw0cJQjSxjXwu5K+YBpxm0+pmpD8H+f/JdcHjT8w4Z/flA7OS3jqJBtskP2iE+OyAlpkhZpE07uyAN5Is/OvfPovDivX60zTjmzRX7AefsErOSbRw==</latexit>

Hidden state
Ht�1

<latexit sha1_base64="mytPsKKF0vUlOg1A0+mpDQIlvmw=">AAACC3icbVC7TgMxEPTxJrwClDRWEiSq6C4FUCJoUgaJPKRciHy+TWLF5zvZe0jRKT0Nv0JDAUK0/AAdf4PzKCBhpJVGM7v27gSJFAZd99tZWV1b39jc2s7t7O7tH+QPjxomTjWHOo9lrFsBMyCFgjoKlNBKNLAokNAMhjcTv/kA2ohY3eEogU7E+kr0BGdopW6+4HNQCFqoflYVYQiKGmQI1PdL1fsMx6VxN190y+4UdJl4c1Ikc9S6+S8/jHka2Ye5ZMa0PTfBTsY0Ci5hnPNTAwnjQ9aHtqWKRWA62fSWMT21Skh7sbalkE7V3xMZi4wZRYHtjBgOzKI3Ef/z2in2LjuZUEmKoPjso14qKcZ0EgwNhQaOcmQJ41rYXSkfMM24TcfkbAje4snLpFEpe+dl77ZSvLqex7FFTkiBnBGPXJArUiU1UiecPJJn8krenCfnxXl3PmatK8585pj8gfP5A7simtU=</latexit>

Hidden state
Ht

✕

<latexit sha1_base64="CbXyg+cOPoNfEGNDc2lBzoM3rRE=">AAACBHicbVC7TsMwFHV4lvIKMHaJaJHKUiUdgLGChY0i0YfUhspxndaq40T2DVIUZWDhV1gYQIiVj2Djb3DbDNByJEtH59xr+xwv4kyBbX8bK6tr6xubha3i9s7u3r55cNhWYSwJbZGQh7LrYUU5E7QFDDjtRpLiwOO0402upn7ngUrFQnEHSUTdAI8E8xnBoKWBWeoTKoBKJkbpTQxRDNVKcp9CVjnNBmbZrtkzWMvEyUkZ5WgOzK/+MCRxoG8kHCvVc+wI3BRLYITTrNiPFY0wmeAR7WkqcECVm85CZNaJVoaWH0p9BFgz9fdGigOlksDTkwGGsVr0puJ/Xi8G/8JNmdDZqCDzh/yYWxBa00asIZOUAE80wUQy/VeLjLHERNeiiroEZzHyMmnXa85ZzbmtlxuXeR0FVELHqIocdI4a6Bo1UQsR9Iie0St6M56MF+Pd+JiPrhj5zhH6A+PzB+UwmD0=</latexit>

Output(yt)

<latexit sha1_base64="AIzIWL6M4LIpNzL2ZmR9Y/lhEQc=">AAACA3icbVC7TsMwFHXKq5RXgA2WiBapLFXSARgrWGArEn1Ibagc96a16jiR7SCqKBILv8LCAEKs/AQbf4PTdoCWI1k6Oude2+d4EaNS2fa3kVtaXlldy68XNja3tnfM3b2mDGNBoEFCFoq2hyUwyqGhqGLQjgTgwGPQ8kaXmd+6ByFpyG/VOAI3wANOfUqw0lLPPOgS4AoE5YPkmkexKpce7hKVlk7Snlm0K/YE1iJxZqSIZqj3zK9uPyRxoC8kDEvZcexIuQkWihIGaaEbS4gwGeEBdDTlOADpJpMMqXWslb7lh0IfrqyJ+nsjwYGU48DTkwFWQznvZeJ/XidW/rmb0CwbcDJ9yI+ZpUIrK8TqUwFEsbEmmAiq/2qRIRaY6FZkQZfgzEdeJM1qxTmtODfVYu1iVkceHaIjVEYOOkM1dIXqqIEIekTP6BW9GU/Gi/FufExHc8ZsZx/9gfH5A+7wl7E=</latexit>

Input(xt)

+

✕
1-

✕

<latexit sha1_base64="7O7jt1bMPcbJaGWxZCgLdH1rIiE=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0VwVRIRdVl047KCfUAby2Ry2w6dTMI8hBr6JW5cKOLWT3Hn3zhps9DWAwOHc+7h3jlhypnSnvftrKyurW9slrbK2zu7exV3/6ClEiMpNGnCE9kJiQLOBDQ10xw6qQQShxza4fgm99uPIBVLxL2epBDEZCjYgFGirdR3Kz0jIpB5PJPTB913q17NmwEvE78gVVSg0Xe/elFCTQxCU06U6vpeqoOMSM0oh2m5ZxSkhI7JELqWChKDCrLZ4VN8YpUIDxJpn9B4pv5OZCRWahKHdjImeqQWvVz8z+saPbgKMiZSo0HQ+aKB4VgnOG8BR0wC1XxiCaGS2VsxHRFJqLZdlW0J/uKXl0nrrOZf1Py782r9uqijhI7QMTpFPrpEdXSLGqiJKDLoGb2iN+fJeXHenY/56IpTZA7RHzifP4Ink6U=</latexit>

rt
<latexit sha1_base64="gZefBUq5Cj5cYdOTAYwP2wfnn+Q=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRbBVUlE1GXRjcsK9gFtLJPJTTt0MgnzENrQL3HjQhG3foo7/8ZJm4W2Hhg4nHMP984JUkalct1vq7S2vrG5Vd6u7Ozu7Vftg8O2TLQg0CIJS0Q3wBIY5dBSVDHopgJwHDDoBOPb3O88gZA04Q9qkoIf4yGnESVYGWlgV/uahyDyeDadPaqBXXPr7hzOKvEKUkMFmgP7qx8mRMfAFWFYyp7npsrPsFCUMJhV+lpCiskYD6FnKMcxSD+bHz5zTo0SOlEizOPKmau/ExmOpZzEgZmMsRrJZS8X//N6WkXXfkZ5qhVwslgUaeaoxMlbcEIqgCg2MQQTQc2tDhlhgYkyXVVMCd7yl1dJ+7zuXda9+4ta46aoo4yO0Qk6Qx66Qg10h5qohQjS6Bm9ojdrar1Y79bHYrRkFZkj9AfW5w+OX5Ot</latexit>

zt
<latexit sha1_base64="k7ZlUXjrWxWmgFLedSGNK0DAoNE=">AAACAHicbVDLSsNAFJ3UV62vqgsXboJFcFUSEXVZdNNlBfuAppbJ5LYdOpmEmRuhhGz8FTcuFHHrZ7jzb5y2WWjrgYHDOfdw5x4/Flyj43xbhZXVtfWN4mZpa3tnd6+8f9DSUaIYNFkkItXxqQbBJTSRo4BOrICGvoC2P76d+u1HUJpH8h4nMfRCOpR8wBlFI/XLR14iA1DTeOohFwGk9Sx7wH654lSdGexl4uakQnI0+uUvL4hYEoJEJqjWXdeJsZdShZwJyEpeoiGmbEyH0DVU0hB0L50dkNmnRgnsQaTMk2jP1N+JlIZaT0LfTIYUR3rRm4r/ed0EB9e9lMs4QZBsvmiQCBsje9qGHXAFDMXEEMoUN3+12YgqytB0VjIluIsnL5PWedW9rLp3F5XaTV5HkRyTE3JGXHJFaqROGqRJGMnIM3klb9aT9WK9Wx/z0YKVZw7JH1ifP8/YlzE=</latexit>

H̃
t

_

_

_

_

Figure B.2: A detailed GRU architecture. Red dashed box is the reset gate, blue
dotted box represents the update gate. 1− is an element-wise subtraction operator.

1. First, there is an update gate that takes the role of both the forget and input
gates of LSTM. An update gate has a sigmoid function to which the hidden
variables of previous time step ‘�C−1’ and the current input ‘GC’ is passed. The
output update vector ‘IC’ is given as:

IC = f(,
�D
�C−1 +,

GD
GC + 1

D
), (B.7)

113

2. Another gate is the reset gate which decides the values that are to be replaced
in the previous hidden layer with a vector of new reset values ‘A C’. The reset
gate applies the sigmoid activation function to the hidden variables of previous
time step ‘�C−1’ and to the current input ‘GC’. The computations of reset gate
can be expressed as follows:

A C = f(,
�A1
�C−1 +,

GA1
GC + 1

A1), (B.8)

3. In the third step, a candidate value ‘�̃C’ is obtained by passing the current
input GC and previous hidden state ‘�C−1’ weighted by the values from reset
gate A C . This computation can be expressed as:

�̃
C
= tanh(,

�A2
(A C � �C−1) +,

GA2
GC + 1

A2), (B.9)

4. Finally, the output of the GRU is obtained by weighing the candidate hidden
variable ‘�̃’ with the output of the update gate and adding the result to the
product of previous hidden state variable ‘�C−1’ weighted by 1 − IC , where IC

is the output of update gate. This operation can be written as:

�C = IC � �C−1 + (1 − IC) � �̃C . (B.10)

114

BIBLIOGRAPHY

[1] Quarteroni A., Manzoni A., and Negri F. Reduced Basis Methods for Partial
Differential Equations. Vol. 92. 2015. doi: https://doi.org/10.1007/
978-3-319-15431-2.

[2] D. Amsallem, M. J. Zahr, and C. Farhat. “Nonlinear model order reduction
based on local reduced-order bases”. In: International Journal for Numerical
Methods in Engineering 92.10 (2012), pp. 891–916. doi: https://doi.
org/10.1002/nme.4371.

[3] J. S. R. Anttonen. “Techniques for reduced order modeling of aeroelastic
structures with deforming grids”. PhD thesis. Air Force Institute of Technol-
ogy, Jan. 2001.

[4] P. Astrid et al. “Missing Point Estimation in Models Described by Proper
Orthogonal Decomposition”. In: IEEE Transactions on Automatic Control
53.10 (2008), pp. 2237–2251. doi: 10.1109/TAC.2008.2006102.

[5] L.A.A. Beex, R.H.J. Peerlings, and M.G.D. Geers. “Central summation in
the quasicontinuum method”. In: Journal of the Mechanics and Physics of
Solids 70 (2014), pp. 242–261. issn: 0022-5096. doi: https://doi.org/
10.1016/j.jmps.2014.05.019.

[6] L.A.A. Beex et al. “Higher-order quasicontinuummethods for elastic and dis-
sipative lattice models: uniaxial deformation and pure bending”. In: GAMM-
Mitteilungen 38.2 (2015), pp. 344–368. doi: https://doi.org/10.1002/
gamm.201510018.

[7] N. C. Bender, H. C. Pedersen, and T. O. Andersen. “Feasibility of Deep
Neural Network Surrogate Models in Fluid Dynamics”. English. In: Model-
ing, Identification and Control (Online) 40.2 (Apr. 2019), pp. 71–87. issn:
0332-7353. doi: 10.4173/mic.2019.2.1.

[8] P. Benner, S. Gugercin, and K. Willcox. “A survey of projection-based model
reduction methods for parametric dynamical systems”. In: SIAM Review 57.4
(2015), pp. 483–531. issn: 00361445.

[9] S. Bhattacharjee and K. Matouš. “A nonlinear manifold-based reduced order
model for multiscale analysis of heterogeneous hyperelastic materials”. In:
Journal of Computational Physics 313 (2016), pp. 635–653. issn: 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2016.01.040.

[10] B. Bohn et al. “Analysis of Car Crash Simulation Data with Nonlinear Ma-
chine LearningMethods”. In:Procedia Computer Science 18 (2013). 2013 In-
ternational Conference on Computational Science, pp. 621–630. issn: 1877-
0509. doi: https://doi.org/10.1016/j.procs.2013.05.226.

115

[11] K. Carlberg et al. “Efficient non-linear model reduction via a least-squares
Petrov-Galerkin projection and compressive tensor approximations”. In: Inter-
national Journal for NumericalMethods in Engineering 86.2 (2011), pp. 155–
181. doi: https://doi.org/10.1002/nme.3050.

[12] S. Chaturantabut and D. C. Sorensen. “Nonlinear Model Reduction via Dis-
creteEmpirical Interpolation”. In: SIAMJournal on ScientificComputing 32.5
(2010), pp. 2737–2764. doi: https://doi.org/10.1137/090766498.

[13] S. Chaturantabut and D.C. Sorensen. “Discrete Empirical Interpolation for
nonlinear model reduction”. In: Proceedings of the 48h IEEE Conference on
Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference. 2009, pp. 4316–4321. doi: 10.1109/CDC.2009.5400045.

[14] L. Chen et al. “Generalized quasicontinuum modeling of metallic lattices
with geometrical and material nonlinearity and variability”. In: Computer
Methods in Applied Mechanics and Engineering 366 (2020), p. 112878. issn:
0045-7825. doi: https://doi.org/10.1016/j.cma.2020.112878.

[15] F. Chinesta, P. Ladeveze, and E. Cueto. “A Short Review on Model Order
Reduction Based on Proper Generalized Decomposition”. In: Archives of
Computational Methods in Engineering 18.4 (2011), p. 395. url: https:
//doi.org/10.1007/s11831-011-9064-7.

[16] K. Cho et al. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. 2014. arXiv: 1406.1078. url: http:
//arxiv.org/abs/1406.1078.

[17] I. Chung, S. Im, and M. Cho. “A neural network constitutive model for
hyperelasticity based on molecular dynamics simulations”. In: International
Journal for Numerical Methods in Engineering 122.1 (2021), pp. 5–24. doi:
https://doi.org/10.1002/nme.6459.

[18] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. “Performance of
a new partitioned procedure versus a monolithic procedure in fluidâstructure
interaction”. In:Computers & Structures 87.11 (2009). FifthMIT Conference
on Computational Fluid and SolidMechanics, pp. 793–801. issn: 0045-7949.
doi: https://doi.org/10.1016/j.compstruc.2008.11.013.

[19] M.Dihlmann,M.Drohmann, andB.Haasdonk. “Model reduction of parametrized
evolution problems using the reduced basis method with adaptive time parti-
tioning”. In: Jan. 2011.

[20] M. Doškář et al. “Microstructure-informed reduced modes synthesized with
wang tiles and the generalized finite element method”. In: arXiv (2020). issn:
23318422. arXiv: 2010.02690.

[21] M. Drohmann, B. Haasdonk, and M. Ohlberger. “Adaptive Reduced Basis
Methods for Nonlinear Convection–Diffusion Equations”. In: Finite Volumes
for Complex Applications VI Problems & Perspectives. Ed. by Jaroslav Fořt

116

et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 369–377.
isbn: 978-3-642-20671-9.

[22] C. Eckart and G. Young. “The approximation of one matrix by another of
lower rank”. In: Psychometrika 1.3 (1936), pp. 211–218. doi: 10.1007/
BF02288367.

[23] M. Ester et al. “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise”. In: Proceedings of 2=3 International
Conference on Knowledge Discovery and. 1996, pp. 226–231.

[24] J. Fauque, I. Ramière, and D. Ryckelynck. “Hybrid hyper-reduced modeling
for contact mechanics problems”. In: International Journal for Numerical
Methods in Engineering 115.1 (2018), pp. 117–139. doi: https://doi.
org/10.1002/nme.5798.

[25] F. Fritzen, M. Fernández, and F. Larsson. “On-the-Fly Adaptivity for Non-
linear Twoscale Simulations Using Artificial Neural Networks and Reduced
Order Modeling”. In: Frontiers in Materials 6 (2019), p. 75. issn: 2296-8016.
doi: 10.3389/fmats.2019.00075.

[26] T. Furukawa andM. Hoffman. “Accurate cyclic plastic analysis using a neural
network material model”. In: Engineering Analysis with Boundary Elements
28 (Mar. 2004), pp. 195–204. doi: 10.1016/S0955-7997(03)00050-X.

[27] M.G.D. Geers, V.G. Kouznetsova, and W.A.M. Brekelmans. “Multi-scale
computational homogenization: Trends and challenges”. In: Journal of Com-
putational and Applied Mathematics 234.7 (2010). Fourth International Con-
ference on Advanced COmputational Methods in ENgineering (ACOMEN
2008), pp. 2175–2182. issn: 0377-0427. doi: https://doi.org/10.1016/
j.cam.2009.08.077.

[28] F. Ghavamian and A. Simone. “Accelerating multiscale finite element sim-
ulations of history-dependent materials using a recurrent neural network”.
In: Computer Methods in Applied Mechanics and Engineering 357 (2019),
p. 112594. issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.
2019.112594.

[29] F. Ghavamian, P. Tiso, and A. Simone. “POD-DEIM model order reduction
for strain-softening viscoplasticity”. In: Computer Methods in Applied Me-
chanics and Engineering 317 (2017), pp. 458–479. issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2016.11.025.

[30] C. Gogu et al. “Dimensionality Reduction Approach for Response Surface
Approximations: Application to Thermal Design”. In: American Institute
of Aeronautics and Astronautics Journal 47.7 (2009), pp. 1700–1708. doi:
https://doi.org/10.2514/1.41414.

117

[31] C. Gogu and J.C. Passieux. “Efficient surrogate construction by combining
response surface methodology and reduced order modeling”. In: Structural
andMultidisciplinaryOptimization 47.6 (2013), pp. 821–837. doi: 10.1007/
s00158-012-0859-4.

[32] M. B. Gorji et al. “On the potential of recurrent neural networks for modeling
path dependent plasticity”. In: Journal of theMechanics and Physics of Solids
143 (2020), p. 103972. issn: 0022-5096. doi: https://doi.org/10.1016/
j.jmps.2020.103972.

[33] H.J.Logarzo, G.Capuano, and J.J. Rimoli. “Smart constitutive laws: Inelastic
homogenization through machine learning”. In: Computer Methods in Ap-
plied Mechanics and Engineering 373 (2021), p. 113482. issn: 0045-7825.
doi: https://doi.org/10.1016/j.cma.2020.113482.

[34] B. Haasdonk, M. Dihlmann, and M. Ohlberger. “A training set and multiple
bases generation approach for parameterized model reduction based on adap-
tive grids in parameter space”. In: Mathematical and Computer Modelling
of Dynamical Systems 17.4 (2011), pp. 423–442. doi: 10.1080/13873954.
2011.547674.

[35] J. S. Hale et al. “A hyper-reduction method using adaptivity to cut the as-
sembly costs of reduced order models”. In: Computer Methods in Applied
Mechanics and Engineering 380 (2021), p. 113723. issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2021.113723.

[36] Y. M. A. Hashash, S. Jung, and J. Ghaboussi. “Numerical implementation
of a neural network based material model in finite element analysis”. In:
International Journal for Numerical Methods in Engineering 59.7 (2004),
pp. 989–1005. doi: https://doi.org/10.1002/nme.905.

[37] T. Hastie, J. Friedman, and R. Tibshirani. “Neural Networks”. In: The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction. New
York, NY: Springer NewYork, 2001, pp. 347–369. isbn: 978-0-387-21606-5.
doi: 10.1007/978-0-387-21606-5_11.

[38] J.A. Hernández et al. “Dimensional hyper-reduction of nonlinear finite el-
ement models via empirical cubature”. In: Computer Methods in Applied
Mechanics and Engineering 313 (2017), pp. 687–722. issn: 0045-7825.

[39] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[40] A. Hürkamp and M. Kaliske. “A model reduction approach for hyperelastic
materials based on Proper Orthogonal Decomposition”. In: Proceedings in
Applied Mathematics and Mechanics 15.1 (2015), pp. 203–204. doi: https:
//doi.org/10.1002/pamm.201510092.

[41] P. Kerfriden, O. Allix, and P. Gosselet. “A three-scale domain decomposition
method for the 3D analysis of debonding in laminates”. In: Computational
Mechanics 44.3 (2009), pp. 343–362. doi: 10.1007/s00466-009-0378-3.

118

[42] P. Kerfriden et al. “A partitioned model order reduction approach to ratio-
nalise computational expenses in nonlinear fracturemechanics”. In:Computer
Methods in Applied Mechanics and Engineering 256 (2013), pp. 169–188.
issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2012.12.004.

[43] P. Kerfriden et al. “Bridging proper orthogonal decomposition methods and
augmented Newton-Krylov algorithms: An adaptive model order reduction
for highly nonlinear mechanical problems”. In:Computer Methods in Applied
Mechanics andEngineering 200.5 (2011), pp. 850–866. issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2010.10.009.

[44] J.F. Kolen and S.C. Kremer. “Gradient flow in recurrent nets: The difficulty
of learning longterm dependencies. A Field Guide to Dynamical Recurrent
Network”. In: IEEE. (2010).

[45] E.D. Koronaki et al. “Classification of states and model order reduction of
large scale Chemical Vapor Deposition processes with solution multiplicity”.
In: Computers Chemical Engineering 121 (2019), pp. 148–157. issn: 0098-
1354. doi: https://doi.org/10.1016/j.compchemeng.2018.08.023.

[46] V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaĳens. “An approach
to micro-macro modeling of heterogeneous materials”. In: Computational
Mechanics 27.1 (2001), pp. 37–48. doi: 10.1007/s004660000212.

[47] B. A. Le, J. Yvonnet, and Q.C. He. “Computational homogenization of non-
linear elastic materials using neural networks”. In: International Journal
for Numerical Methods in Engineering 104.12 (2015), pp. 1061–1084. doi:
https://doi.org/10.1002/nme.4953.

[48] P.A. LeGresley and J.J. Alonso. “Investigation of non-linear projection for
POD based reduced order models for aerodynamics”. In: 39th Aerospace
Sciences Meeting and Exhibit c (2001).

[49] Y. Liu, N. Sukuntee, and S. Chaturantabut. “Parametric Nonlinear Model
Reduction Using -Means Clustering for Miscible Flow Simulation”. In:
Journal of Applied Mathematics 2020 (2020), p. 3904606. doi: 10.1155/
2020/3904606. url: https://doi.org/10.1155/2020/3904606.

[50] Yisi Liu et al. “A modified leaky ReLU scheme (MLRS) for topology opti-
mization withmultiple materials”. In:AppliedMathematics and Computation
352 (2019), pp. 188–204. issn: 0096-3003. doi: https://doi.org/10.
1016/j.amc.2019.01.038.

[51] Z. Liu,M.A.Bessa, andW.K.Liu. “Self-consistent clustering analysis:An effi-
cient multi-scale scheme for inelastic heterogeneous materials”. In:Computer
Methods in Applied Mechanics and Engineering 306 (2016), pp. 319–341.
issn: 0045-7825. doi: https://doi.org/10.1016/j.cma.2016.04.004.

119

[52] M. Meyer and H. G. Matthies. “Efficient model reduction in non-linear
dynamics using the Karhunen-Loève expansion and dual-weighted-residual
methods”. In: Computational Mechanics 31.1-2 SPEC. (2003), pp. 179–191.
issn: 01787675. doi: https://doi.org/10.1007/s00466-002-0404-1.

[53] B. Miled, D. Ryckelynck, and S. Cantournet. “A priori hyper-reduction
method for coupled viscoelasticâviscoplastic composites”. In: Computers &
Structures 119 (2013), pp. 95–103. issn: 0045-7949. doi: https://doi.
org/10.1016/j.compstruc.2012.11.017.

[54] M. Mozaffar et al. “Deep learning predicts path-dependent plasticity”. In:
Proceedings of the National Academy of Sciences 116.52 (2019), pp. 26414–
26420. issn: 0027-8424. doi: 10.1073/pnas.1911815116.

[55] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltz-
mann Machines”. In: ICML. 2010, pp. 807–814. url: https://icml.cc/
Conferences/2010/papers/432.pdf.

[56] S. Niroomandi et al. “Model order reduction for hyperelastic materials”. In:
International Journal for Numerical Methods in Engineering 81.9 (2010),
pp. 1180–1206. doi: https://doi.org/10.1002/nme.2733.

[57] A. Nouy. “A priori model reduction through Proper Generalized Decomposi-
tion for solving time-dependent partial differential equations”. In: Computer
Methods in Applied Mechanics and Engineering 199.23 (2010), pp. 1603–
1626. issn: 0045-7825.

[58] B. Peherstorfer et al. “Localized Discrete Empirical Interpolation Method”.
In: SIAM Journal on Scientific Computing 36.1 (2014), A168–A192. doi:
10.1137/130924408.

[59] C. Prud’homme et al. “Reliable Real-Time Solution of Parametrized Partial
Differential Equations: Reduced-Basis Output Bound Methods ”. In: Journal
of Fluids Engineering 124.1 (Nov. 2001), pp. 70–80. issn: 0098-2202. doi:
10.1115/1.1448332.

[60] A. Quarteroni, G. Rozza, and A. Manzoni. “Certified reduced basis approx-
imation for parametrized partial differential equations and applications”. In:
Journal of Mathematics in Industry 1.1 (2011), p. 3. doi: 10.1186/2190-
5983-1-3.

[61] A. Radermacher and S. Reese. “Model reduction in elastoplasticity: Proper or-
thogonal decomposition combined with adaptive sub-structuring”. In: Com-
put. Mech 54.3 (2014), pp. 677–687. issn: 01787675.

[62] A. Radermacher and S. Reese. “POD-based model reduction with empirical
interpolation applied to nonlinear elasticity”. In: International Journal for
Numerical Methods in Engineering 107.6 (2016), pp. 477–495.

120

[63] Srivathsan Ravi and Andreas Zilian. “Time and frequency domain analysis of
piezoelectric energy harvesters by monolithic finite element modeling”. In:
International Journal for Numerical Methods in Engineering 112.12 (2017),
pp. 1828–1847. doi: https://doi.org/10.1002/nme.5584.

[64] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”.
In: The Annals of Mathematical Statistics 22.3 (1951), pp. 400–407. doi:
10.1214/aoms/1177729586. url: https://doi.org/10.1214/aoms/
1177729586.

[65] I.B.C.M. Rocha, P. Kerfriden, and F.P. van der Meer. “Micromechanics-
based surrogate models for the response of composites: A critical com-
parison between a classical mesoscale constitutive model, hyper-reduction
and neural networks”. In: European Journal of Mechanics - A/Solids 82
(2020), p. 103995. issn: 0997-7538. doi: https://doi.org/10.1016/j.
euromechsol.2020.103995.

[66] D. Ryckelynck. “A priori hyperreduction method: an adaptive approach”. In:
Journal of Computational Physics 202.1 (2005), pp. 346–366. issn: 0021-
9991.

[67] D. Ryckelynck. “Hyper-reduction of mechanical models involving internal
variables”. In: International Journal for Numerical Methods in Engineering
77.1 (2009), pp. 75–89.

[68] Multidimensional Hyper-Reduction of Large Mechanical Models Involving
Internal Variables. Vol. Volume 1: Advanced Computational Mechanics;
Advanced Simulation-Based Engineering Sciences; Virtual and Augmented
Reality; Applied Solid Mechanics and Material Processing; Dynamical Sys-
tems and Control. Engineering Systems Design and Analysis. July 2012,
pp. 99–106. doi: 10.1115/ESDA2012-82971.

[69] S.Jung and J.Ghaboussi. “Characterizing rate-dependent material behaviors
in self-learning simulation”. In: Computer Methods in Applied Mechanics
and Engineering 196.1 (2006), pp. 608–619. issn: 0045-7825. doi: https:
//doi.org/10.1016/j.cma.2006.06.006.

[70] S.Vĳayaraghavan et al. “Neural-network acceleration of projection-based
model-order-reduction for finite plasticity: Application to RVEs”. In: Sub-
mitted to Mechanics Research Communications ().

[71] S. Sahyoun and S. M. Djouadi. “Nonlinear model reduction using Space
Vectors Clustering POD with application to the Burgers’ equation”. In: 2014
American Control Conference. 2014, pp. 1661–1666. doi: 10.1109/ACC.
2014.6859104.

[72] C. Settgast et al. “A hybrid approach to simulate the homogenized irreversible
elastic–plastic deformations and damage of foams by neural networks”. In:
International Journal of Plasticity 126 (2020), p. 102624. issn: 0749-6419.
doi: https://doi.org/10.1016/j.ijplas.2019.11.003.

121

[73] L. Sirovich. “Turbulence and the dynamics of coherent structures. I - Coherent
structures. II - Symmetries and transformations. III - Dynamics and scaling”.
In: Quarterly of Applied Mathematics 45 (Oct. 1987). doi: 10.1090/qam/
910463.

[74] Erlend Storvik et al. “An accelerated staggered scheme for variational phase-
field models of brittle fracture”. In: Computer Methods in Applied Mechanics
and Engineering 381 (2021), p. 113822. issn: 0045-7825. doi: https://
doi.org/10.1016/j.cma.2021.113822.

[75] R. Swischuk et al. “Projection-based model reduction: Formulations for
physics-based machine learning”. In: Computers and Fluids 179 (2019),
pp. 704–717. issn: 00457930. doi: https://doi.org/10.1016/j.
compfluid.2018.07.021.

[76] P. Tiernan, B. Draganescu, and M. Hillery. “Modelling of extrusion force
using the surface response method”. In: International Journal of Advanced
Manufacturing Technology 27.1-2 (2005), pp. 48–52. issn: 02683768.

[77] J. F. Unger and C. Könke. “Coupling of scales in amultiscale simulation using
neural networks”. In: Computers & Structures 86.21 (2008), pp. 1994–2003.
issn: 0045-7949. doi: https://doi.org/10.1016/j.compstruc.2008.
05.004.

[78] Y.Wardi. “A stochastic steepest-descent algorithm”. In: Journal of Optimiza-
tion Theory and Applications 59.2 (1988), pp. 307–323. doi: 10.1007/
BF00938315. url: https://doi.org/10.1007/BF00938315.

[79] K. Washabaugh et al. “Nonlinear Model Reduction for CFD Problems Using
Local Reduced Order Bases”. In: June 2012. doi: 10.2514/6.2012-2686.

[80] P. Weber, J. Geiger, and W. Wagner. “Constrained neural network training
and its application to hyperelastic material modeling”. In: Computational
Mechanics 68.5 (2021), pp. 1179–1204. doi: 10 . 1007 / s00466 - 021 -
02064-8. url: https://doi.org/10.1007/s00466-021-02064-8.

[81] H.Wessels, C.Weißenfels, and P.Wriggers. “The neural particle method - An
updated Lagrangian physics informed neural network for computational fluid
dynamics”. In: Computer Methods in Applied Mechanics and Engineering
368 (2020), p. 113127. issn: 0045-7825. doi: https://doi.org/10.1016/
j.cma.2020.113127.

[82] L. Wu and L. Noels. In: In Preparation ().

[83] L. Wu et al. “A recurrent neural network-accelerated multi-scale model for
elasto-plastic heterogeneous materials subjected to random cyclic and non-
proportional loading paths”. In: Computer Methods in Applied Mechanics
and Engineering 369 (2020), p. 113234. issn: 0045-7825. doi: https://
doi.org/10.1016/j.cma.2020.113234.

	Pre-defence Joint Supervision_Soumianarayanan
	PhD-FSTM-2022-049
	DISSERTATION
	EN SCIENCES DE L’INGÉNIEUR
	AND
	EN SCIENCES DE L’INGÉNIEUR
	Soumianarayanan Vijayaraghavan
	Prof. Andreas Zilian, Chairman
	Dr Ling Wu, Vice-Chairwoman
	Prof. Stéphane P.A. Bordas, Dissertation Supervisor
	Prof. Ludovic Noels, Dissertation Co-Supervisor
	Prof. David Ryckelynck, Member

	Soumianarayanan_Thesis_withoutFrontPage

