
Space sciences from a directional statistical point of view

Guendalina Palmirotta∗1 and Christophe Ley1

1University of Luxembourg, Faculty of Science, Technology and Medicine, Department of
Mathematics, 6, Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg,

e-mails: guendalina.palmirotta@uni.lu and christophe.ley@uni.lu

Abstract

Already back in the 17-18th centuries, important foundations of modern statistical theory were
formulated with the goal to address astronomical problems. This successful interdisciplinary col-
laboration has been revived since the 1990s, giving rise to the research flow called astrostatistics,
which has been particularly active over the past decades. The increasing amount of astronomical
data nowadays has posed new challenges and created the need for more innovative modern statis-
tical theories and models. Directional statistics, a branch of statistics involving observations such
as directions, axes, rotations, with values on (compact) Riemannian manifolds like our celestial
sphere, has proved to be a promising domain to address important space sciences issues such as
space weather, cosmology, or even space surveillance.

In this paper, we will instigate directional statistics by providing a review of their old and recent
developments stimulated by interesting applications in space sciences.
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1 The Big Bang of (directional) astrostatistics

In this golden age of big data, space sciences seems to have found an unlikely hero – statistics or,
using the more modern and broader term (including machine learning and computer science), data
science. However, this interdisciplinary combination is not utterly new, as a look at the history of
astronomy reveals. Indeed, tracing back to ancient Greek, Arabic, and Renaissance astronomers
(such as Hipparchus, al-Biruni, Brahe, Galilei, Hubble and Newton, to name but a few), we come
across the fact that they were already making extensive use of basic statistical concepts such
as the mean and the least squares method for their celestial calculations. As particularly striking
example, in 1809 Gauss [Gau09] deduced the law of errors, nowadays known as the Gaussian/normal
distribution or “bell curve”, as a natural and practical way to model the inevitable errors in
astronomical observations1. Gauss is a shining example of how astronomical questions have led to
major advances in probability and statistics.

It was at the beginning of the 1990s that the connections between the two fields began to sparkle
again and they have since then rapidly grown. This was due to the revolution of modern astronomy,
characterized mainly by the advent of large astronomical surveys, the launch of space-based obser-
vatories like National Aeronautics and Space Administration’s (NASA) Hubble or the European
Space Agency’s (ESA) Giotto, and the dawning of multi-messenger and gravitational-wave astron-
omy. As a result, the astronomical data became too large to handle by classical tools and simple
statistical concepts were no longer sufficient. It was time to adapt, improve, and come up with
new statistical methods to extract scientific knowledge from this data and confirm or even review
astrophysical theories. In addition, with the emergence of cross-disciplinary interactions between as-
tronomers and statisticians, a small but growing research field known as astrostatistics has seen the
light under the impetus of the likes of Babu and Feigelson (see e.g. [FB09, Fei09, FDSIB21, Fei16]
and references therein for a more detailed history and role of statistics in astronomy). Hence a
wide range of statistical methods such as model fitting, hypothesis testing including goodness-of-fit
tests of a probability distribution to a dataset, or modern parameter estimation methods have been
proposed to assist in the analysis of quantitative astronomical data. Compared to the very early
combination of the two fields, characterized mostly by descriptive statistics put to use in astron-
omy, modern statistics provides astronomers and space scientists a pathway for transitioning from
qualitative examination to quantification, in particular quantification of the unavoidable uncer-
tainties associated to any data-driven analysis. For instance, it enables them to assess the quality
of predictions, determine their acceptability, and ascertain whether a chosen model possesses the
required accuracy and precision to fulfil the scientific objectives.

A pre-requisite for determining the most appropriate modern statistical methods for space
sciences and astronomy consists in recognizing that most natural supports for the observed astro-
nomical or space sciences data actually are not linear such as the real line or R2, but are rather
of a different topological type such as the celestial sphere or other compact Riemannian mani-
folds like the unit circle, the torus, and their extensions. For example, a direction observed in the
plane R2, like the direction of a comet, is most naturally represented by an angle θ, typically in
[0, 2π) or [−π, π), measured in a specified direction from a specified origin, or by the unit vector
x = (cos(θ), sin(θ))′ for which it holds that ∥x∥ =

√
x′x = 1. Such data are referred to as direc-

tional data in the literature and they typically consist of (unit) vectors with common origin and
whose length is of no interest. Consequently, their natural supports are the (circumference of the)
unit circle S1 (circular data), unit (hyper-)sphere S2 (spherical data), torus T2 = S1 × S1 (toroidal
data), and cylinder S1 × R (cylindrical data).

The fact that most astronomical or space sciences data lie on such supports implies that classical
statistical techniques and tools cannot be used to analyze directional data. As a simple example,
consider two points lying on the surface of a sphere. Their classical average will be a point lying
inside the sphere, which is obviously no more a point on the sphere. A concept as simple as the

1For the historically inclined reader, we remark that the Gaussian distribution is an illustration of Stigler’s law of
eponymy [Sti80] as its first introduction dates back to de Moivre in 1738.
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average thus needs to be properly defined for such data, and one can imagine that this difficulty
goes crescendo for more and more complex statistical quantities and methods. The need to prop-
erly deal with directional data has given rise since the 1950s to the research flow called directional
statistics which has been particularly active over the past two decades. This popularity is due to
demands from various fields. Besides astronomy and space sciences, such data occur in fields like
meteorology (wind directions), earth and environmental sciences (location of earthquakes on the
Earth’s surface, modeling of wildfires, sea conditions, paleomagnetism), bioinformatics (angle pairs
describing the protein conformation), and social sciences (events occurring on the 24-hour clock or
in calendar measurements). For more ample information, we refer the reader to some of the various
books written on the topic in recent years [MJ00, PNR13, LV17, LV18].

Paper contribution and organization. The purpose of this review is to bring to the space
sciences and in particular astronomy communities some of the concepts and results of the field of
modern directional statistics that have proven useful in the analysis of astronomical data. In some
sense, our work is an updated and more detailed version of the paper [Jup90] by Jupp from 1990. In
our search, we found more than 90 papers that proposed (new) directional statistics methodology or
employed existing directional statistics tools for astronomical applications. As we shall see, many
of the relevant papers have appeared in the statistics literature, implying that several members of
the aforementioned communities likely are not aware of them. We wish to alleviate this situation
by a tailor-made review.

To this end, we begin in Section 2 by recalling the main directional statistics tools used to deal
with astronomy and space sciences data. Section 3 constitutes the heart of this paper, as it yields,
to the best of our knowledge, an as complete as possible survey of papers who analyze astronomy
and space sciences (simulated/real) data via directional statistics. It covers a broad range of topics
including the orbits of planets and comets, craters on celestial objects, space weather, cosmic rays,
our galactic environment, and space safety. Section 4 concludes the paper with final comments.

2 Preliminaries on directional statistics

In order to provide the reader with the necessary technical background to follow the developments
in Section 3, we recall the main directional statistics concepts and tools that have been used to
model astronomy-driven data. We refer to the books [FLE87, MJ00, LV17, LV18] and references
therein, as well as the survey papers [ML18, PGP21] for a primer on directional statistics and their
advancement.

2.1 Distributional models

We start by introducing the most common probability distributions for circular (Section 2.1.1) and
spherical (Section 2.1.2) data.

2.1.1 Circular models

Consider fΘ as the probability density function (pdf), also referred to as density, of a continuous
circular random variable Θ taking values in R such that for almost all θ ∈ R

− fΘ is non-negative, i.e. fΘ(θ) ≥ 0;

− fΘ is 2π-periodic, i.e. fΘ(θ + 2π) = fΘ(θ);

− fΘ integrates to 1 over any interval of length 2π, i.e.
∫ θ+2π

θ
fΘ(ω) dω = 1.

This latter property leads us to define a circular pdf through its values on [0, 2π) or [−π, π). The
circular cumulative distribution function (cdf) is defined as the non-periodic function FΘ(θ) =∫ θ

θ0
fΘ(ω) dω, with θ0 typically being 0 or −π. There are usually six general ways used to construct

circular pdfs: wrapping, projection, perturbation, conditioning, diffusion, and characterizations
such as via maximum likelihood or maximum entropy.

The simplest example of a distribution on the circle is the circular uniform distribution with
density

fΘ(θ) =
1

2π
(2.1)

and cdf FΘ(θ) = θ
2π , θ ∈ [0, 2π). Other classical circular distributions are the cardioid, Wrapped

Cauchy and von Mises, and we will expand on the latter.
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Von Mises distribution. The von Mises (vM) distribution introduced by von Mises (1918)
[vM18] plays a core role among circular distributions and is sometimes referred to as the circular
equivalent of the normal distribution. Its pdf is

fΘ(θ;µ, κ) =
1

2πI0(κ)
exp{κ cos(θ − µ)}, (2.2)

where µ ∈ [0, 2π) is the mean direction, κ ≥ 0 its concentration parameter and I0 is the modified
Bessel function of the first kind and order zero

I0(κ) =
1

2π

∫ 2π

0

exp{κ cos(ϕ− µ)} dϕ. (2.3)

2.1.2 Models for spherical data

Most of the astronomical phenomena like orbits of comets, craters on planets and moons, position
and distribution of stars, cosmic rays, and dark matter are supported by the (hyper-)sphere Sd−1,
d > 2. In the following, we will encounter classical spherical probability models including Fisher-
von-Mises-Langevin, Fisher-Bingham, Kent, and Watson models and their variants.
Suppose that X is a unit random vector on Sd−1. Like for the circular model, the best-known and
simplest model for spherical data is the uniform spherical distribution with pdf 1

ωd
over Sd−1, where

ωd = 2πd/2

Γ( d
2 )

is the surface area of Sd−1 and Γ(z) =
∫∞
0

tz−1 exp(−t) dt is the Gamma function. No

other distribution is invariant under both reflection and rotation.

Fisher-von Mises-Langevin distribution. Arguably the most popular non-uniform directional
pdf is the Fisher-von Mises-Langevin (FvML or sometimes FvM) pdf

fX(x;µ, κ) =
(κ

2

)d/2−1 1

2πd/2Id/2−1(κ)
exp(κxTµ), (2.4)

where x is a point on the unit hyper-sphere Sd−1, µ ∈ Sd−1 the mean direction vector, κ ≥ 0 a
concentration parameter and Iν the modified Bessel function of the first kind and of order ν. The
pdf (2.4) is unimodal about µ and its concentration around the mode is regulated by κ, the limit
κ = 0 yielding the uniform distribution. Observe that we retrieve for d = 2 the vM pdf (2.2), while
d = 3 corresponds to the Fisher (1953) [Fis53] pdf and general d to the Langevin (1905) [Lan05]
pdf, hence the terminology.

Fisher-Bingham distribution and its submodels. Another classical spherical distribution is
the Fisher-Bingham (FB) distribution with pdf in vector form

fX(x;µ, κ,A) =
1

c(κ,A)
exp(κxTµ + xTAx), (2.5)

where A is a symmetric d × d matrix and µ, κ play the same role as in (2.4). The normalizing
constant c(κ,A) is non-trivial to deal with, and we recommend the reader to check [KS18] for an
approximation. An alternative formulation for this density is

fX(x;ν,A) =
1

c(κ,A)
exp(νTx + xTAx),

where ν = κν0 is a vector with ν0 a unit d-vector. Without loss of generality, one can assume that
tr(A) = 0 since xTx = 1. The full FB distribution has eight parameters, thus preferably denoted
as FB8, and contains some special cases:

• Fisher distribution. When A = 0 is the zero matrix, then (2.5) reduces to the FvML pdf
(2.4), also known as the Fisher distribution for d = 3. The Fisher pdf is invariant under
rotations of S2 about the ν0 axis and thus it can be described as “isotropic” bivariate normal
distribution in the tangent plane to S2 at the modal direction.

• Bingham distribution. If κ = 0 (or ν = 0), we obtain the Bingham pdf, which was introduced
by Bingham (1964) [Bin64]. It is a suitable model for axial data, meaning that data are axes
and each direction is considered equivalent to the opposite direction. For d = 3, we consider
A = ΓΛΓT as the spectral decomposition of A, where Λ = diag(λmax, λmid, λmin) contains
the eigenvalues in decreasing order, and the columns of the 3 × 3 orthogonal matrix Γ =
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[γ(max),γ(mid),γ(min)] contain the corresponding eigenvectors. There are two common special
cases, both characterized by a concentration parameter β > 0, the bimodal case (λmax = β >
λmid = λmin = 0) with the mode along the ±γ(max) axis, and the girdle case (λmax = λmid >
λmin = −β) with the mode at all points on the great circle perpendicular to the ±γ(min) axis.

• Kent or Fisher-Bingham-Kent distribution and its special cases. A sub-family of the FB8 is
the “aligned” Fisher-Bingham distribution (FB6) with six parameters. It is obtained when
ν0 equals one of the eigenvectors of A. A special case of FB6 and thus of FB8 is the Kent
or Fisher-Bingham-Kent distribution with 5 parameters, denoted as FB5, proposed by Kent
(1982) [Ken82] under the additional condition that ATµ = 0. It is an oval density with
contours around µ and the matrix A is a shape parameter. It is ideal to simulate and track
the space debris floating uncontrollably around our Earth. According to [KHJ16], there are
two variants, the “balanced” (FB5b) (ν = γ(mid), λmax = β, λmid = 0, λmin = −β, for some
β ≥ 0) and the “extreme” (FB5e) (ν = γ(max), λmax = λmid = 0, λmin = −δ, for some δ ≥ 0).
The FB5b density has a mode in the ν direction provided that κ ≥ 2β, and the contours
of constant probability are oval-shaped with the major axis pointing along the γ(mid) axis
and the minor axis pointing along the γ(min) axis. In addition, the FB5b distribution is
approximately bivariate normal and concentrated near the modal direction ν under higher
concentration. The FB5e distribution can be viewed as a combination of a Fisher and a girdle
Bingham, where the mode of the Fisher lies on the great circle mode of the Bingham. To
describe unimodal data concentrated near a great circle such as space objects orbiting the
Earth, the FB5e is better suited than the FB5b (see Sect. 3.6.2).

(Dimroth-)Watson distribution. Dimroth (1962) [Dim62] and Watson (1965) [Wat65] intro-
duced independently a density that is invariant under reflections and hence suited for modeling
axial data. Their density has the form

fX(x;µ, κ) =
Γ(d

2 )

2πd/2M( 1
2 ,

d
2 , κ)

exp{κ(xTµ)2}, (2.6)

where µ ∈ Sd−1 is the location parameter, κ ∈ R the concentration, and

M(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

−1

et
2zt2a−1(1 − t2)b−a−1 dt

denotes the Kummer function with a, b, z ∈ R. For κ < 0 the Watson density is concentrated
around the great circle like girdle densities, while for κ > 0 it is bipolar with maxima at ±µ. Note
that this distribution is a submodel of the FB exponential family of distributions (2.5).

Rotationally symmetric distributions. The FvML (2.4) and Watson (2.6) distributions share
the common feature that they are rotationally symmetric about their location µ ∈ Sd−1. This
means that their pdfs depend on x only through xTµ and, as a consequence, have contours that
are circular when x ∈ S2.

Definition 1 (Rotational symmetry). The distribution of a random X ∈ Sd−1 is said to be rota-
tionally symmetric about µ if OX is equal in distribution to X for any orthogonal d× d matrix O
satisfying Oµ = µ.

Rotational symmetry leads to densities of the form x 7→ cfa,dfa(xTµ), where cfa,d is a normal-
izing constant and fa : [−1, 1] −→ R+ an absolutely continuous function. Since the distribution of
X only depends on the angle (colatitude angle when d = 3) between X and µ, the function fa is
thus referred to as angular function. The respective angular functions of the FvML and Watson
distribution are t 7→ exp(κt) and t 7→ exp(κt2), t ∈ [−1, 1].

2.2 Hypothesis testing (for uniformity) on hyperspheres

Hypothesis tests for uniformity, symmetry, location, concentration, goodness-of-fit, and other test-
ing scenarios are indispensable in astronomy problems. Such tests provide crucial information
about the direction and distribution of spatial and astronomical observables, e.g. the direction of
cosmic rays, cometary orbits, and the position of stellar objects, craters, sunspots, galaxies, and
satellites. Source detection and sample comparison problems can be formulated as “yes or no”
questions to be addressed with statistical hypotheses testing. In the subsequent sections, we will
mention several times these tests. For general information, we refer the reader to [LV17, GPPV20].
One type of tests however plays a particular role. Assessing the presence of uniformity (or isotropy)
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is one of the first and most natural modeling questions that practitioners like astronomers focus on
when dealing with directional data, hence its importance. It is also one of the oldest problems in
directional statistics. We will therefore provide some background in the rest of this section.

Given an independent and identically distributed (i.i.d.) random sample X1, . . . ,Xn from the
unit random vector X on Sd−1, the problem of testing the presence of uniformity is formalized as
the testing of the null hypothesis

Hunif
0 : P = Unif(Sd−1) against H1 : P ̸= Unif(Sd−1),

where P stands for the probability distribution of X (short X ∼ P ) and Unif(Sd−1) denotes the
uniform distribution on Sd−1. For d = 2, the polar coordinates of S1 yield Xi = (cos(Θi), sin(Θi))

T

with random angles Θi ∈ [0, 2π), i = 1, . . . , n.
We distinguish between parametric and nonparametric tests. Parametric tests nest Hunif

0 within
a parametric distribution Pθ (with θ ∈ Rq (q ≥ 1) a vector of parameters) and aim to perform well
against alternatives within Pθ, but may fail against alternatives outside Pθ. Nonparametric tests
aim for uniform consistency against a wide range of non-uniform alternatives, though they may
not be powerful against specific deviations. Garćıa-Portugués and Verdebout [GPV18] provided an
extensive review of uniformity tests.

Historically, Rayleigh (1880) [Ray80] was the first to study the resultant length of bivariate uniform
unit vectors, proposing the initial uniformity test, which drew significant attention. Classical tests
like Rayleigh, Ajne, Kuiper, and Watson are typical for circular data, with Rayleigh and Ajne tests
generalizable to Sd−1 through the Sobolev class of tests. In the following, in historical order, we
will inspect uniformity tests that were applied for astronomy-driven data:

• The Rayleigh test, proposed in 1919 by Rayleigh [Ray19], was the first test of uniformity
for circular data and Jupp (2001) [Jup01] extended it later to the hypersphere. It is based
on the simple fact that when X ∼ Unif(Sd−1), then E[X] = 0 or, equivalently, ∥E[X]∥2 = 0
for the Euclidean norm ∥ · ∥. This provides a simple way of testing Hunif

0 by using Rayleigh’s
statistic

Rn,d =
d

n

n∑
i,j=1

XT
i Xj = dn∥X̄∥2, (2.7)

with X̄ = n−1
∑n

i=1 Xi. The Rayleigh test rejects Hunif
0 for large values of (2.7). Since the

Xi’s have mean zero and covariance d−1Id with Id the diagonal matrix with only 1s, under
Hunif

0 the multivariate Central Limit Theorem implies that the asymptotic distribution of Rn,d

is χ2
d, a chi-squared distribution with d degrees of freedom. Therefore Rayleigh’s test rejects

Hunif
0 at asymptotic level α whenever Rn,d > χ2

d;1−α. In particular, the Rayleigh test is the
score test or the likelihood ratio test for testing uniformity against FvML distributions (2.4).

• The Kuiper test for circular data is a rotation-invariant version of the classical (one-sample)
Kolmogorov-Smirnov test for uniformity studied by Kuiper (1960) [Kui60] and based on

Vn = D+
n + D−

n , (2.8)

with statistics

D+
n =

√
n sup

θ∈[0,2π)

{Fn(θ) − F (θ)} =
√
n max

1≤i≤n

{ i

n
−Xi

}
D−

n =
√
n sup

θ∈[0,2π)

{F (θ) − Fn(θ)} =
√
n max

1≤i≤n

{
Xi −

i− 1

n

}
,

where F (θ) is the cdf of the uniform distribution (see Sect. 2.1.1), Fn(θ) = n−1
∑n

i=1 1{Θi≤θ}
the empirical cdf (ecdf) by assuming that the origin is set as the angle 0, and Xi = (2π)−1Θi, i =
1, . . . , n. Hence testing uniformity is achieved through the examination of the discrepancy
between the postulated F and the data-driven Fn. The tail probability of Vn, under Hunif

0 , is
given by series expansion

V ∗
n = Vn

(
n1/2 + 0.155 +

0.24

n1/2

)
.

• The Watson test, introduced by Watson (1961) [Wat61], also evaluates the deviation between
Fn and F but here through the quadratic norm associated with Cramér-von Mises type tests.
Similar to the Kuiper test, it is a rotation-invariant test. In fact, in contrast to the classical
Cramér-von Mises (CvM) test, Watson considered the variance of Fn(θ)−F (θ) instead of the
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second moment. The Watson statistics on S1, sometimes referred as the U2 statistics, is given
by

U2
n = n

∫ 2π

0

[
Fn(θ) − F (θ) −

∫ 2π

0

(Fn(θ) − F (θ)) dF (θ)
]2

dF (θ)

=

n∑
i=1

[(
X(i) −

i− 1
2

n

)
−

(
X̄− 1

2

)]2
+

1

12n
. (2.9)

It can be shown that the asymptotic distributions of U2
n and (Vn

π )2 are the same and that
the asymptotic tail probability of U2

n is given by the Kolmogorov distribution function K, i.e.
limn→∞ P[U2

n > u] = 1 −K(
√
uπ).

• Sobolev test types of tests of uniformity on Sd−1 have been proposed by Beran [Ber68, Ber69]
and Giné [Gin75]. The motivation behind this lies in the Sobolev procedures to root on
the eigenfunctions of the Laplace-Beltrami operator ∆ acting on Sd−1. For a given sample
X1, . . . ,Xn on Sd−1, the Sobolev statistics, specified by a sequence of coefficients {vk} for
k ∈ N∗, take the form

Sn({v2k}) =
1

n

n∑
i,j=1

∞∑
k=1

v2khk(Xi,Xj), (2.10)

where

hk(u,v) =

{
2 cos(k cos−1(uTv)), d = 1

(1 + 2k
d )C

(d−1)/2
k (uTv)), d > 1,

and C
(d−1)/2
k is the k-th Gegenbauer polynomial of index (d − 1)/2. Note that particular

choices for {v2k} give different local optimality properties, consistencies, and power against
specific kinds of alternatives. However v2k should decay fast enough to ensure convergence in
(2.10). For example, we obtain the test statistics of

− Rayleigh with vk = δk1, where δkℓ =

{
0, k ̸= ℓ

1, k = ℓ,

− Bingham with vk = δk2,

− Watson with vk = (πk)−1 for k ≥ 1,

− Ajne with vk =

{
0, k even

(πk)−1, k odd,

− Rotham (Rt) with vk = sin(kπt)
2kπt for k ≥ 1.

To test uniformity on compact Riemannian manifolds and on S1, a “data-driven” Sobolev
test is more adapted by using an information criterion to truncate the infinite series in (2.10).
Moreover, the Sobolev tests can be extended to a class of tests based on the projected ecdf
that yields extensions for data on Sd−1 of the Watson tests for circular uniformity and a novel
Anderson-Darling-like (AD) test for uniformity on Sd−1 [GPNECA23].

3 Recent advances in space sciences problems

Equipped with the necessary statistical baggage, we can now delve into the review per se. This
section is split into six subsections, starting from the orbits of planets and comets in Subsection 3.1,
continuing with craters on celestial objects in Subsection 3.2, space weather in Subsection 3.3,
cosmic rays in Subsection 3.4, our galactic environment in Subsection 3.5 going from the different
stars (Subsections 3.5.1-3.5.6 and 3.5.10), dark matter (Subsection 3.5.7) to galaxies dynamics
(Subsection 3.5.8) and exoplanets (Subsection 3.5.9), and ending with space safety in Subsection 3.6
containing the space debris (Subsection 3.6.2) dilemma and other space objects (Subsections 3.6.1-
3.6.3). Each subsection follows the same scheme and is consequently divided into three parts:
“Motivation”, “Database”, and “Statistical tools and data analysis”.

3.1 Orbits of planets and long-period comets

Motivation. It is a well-known fact that the planes defined by the orbits of the planets in the Solar
System are all nearly coincident with the ecliptic, the only partial exception being Pluto which
is no longer considered a true planet according to the decision of the International Astronomical
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Union (IUA). Such an “almost coincidence” even caught Bernoulli’s (in the 1730s) attention, who
wondered if this fact could happen “by chance”. Nowadays the clustering of the planets’ orbits
about the ecliptic is explained by their origin in the protoplanetary disk. In addition, Mardia and
Jupp (2000) [MJ00, p. 209] showed that there is strong evidence against the uniformity hypothesis
of the planets’ orbits.

The study of comet orbits has been more intricate. It is believed that most of the comets are
produced in the Kuiper Belt or the Oort Cloud following an unpredictable mechanism. Hence, their
orbits could be seen as multiple realizations of an experiment whose output is not deterministic.
There are two main classes of comets:

• the short-period comets, also called ecliptic-clustered comets, emerging either in the flattened
Kuiper belt or the scatter disc, with relatively small orbits following the ecliptic plane, and

• the long-period comets, also referred to as nearly isotropic comets, originating directly from
the outer Oort cloud, with very large orbits (larger than 200 years) appearing from every
direction in the sky. The Oort cloud is a widely accepted model posing the existence of a
roughly spherical reservoir of icy planetesimals in the limits of our Solar system that were
ejected from protoplanetary disks by giant planets. It is believed that these icy planetesimals
became long-period comets when randomly captured in heliocentric orbits due to the effect
of several gravitational forces as well as perturbations of passing stars and the galactic tide
(see, e.g. Sects. 5 and 7.2. in [DBKR15] and references therein). This conjectured past of the
Oort cloud explains the very characteristic nearly isotropic distributions of the long-period
comets’ orbits (evidenced, e.g. in [WT99]).

Since the comet orbits are always conical sections, they are either elliptical (with our Sun at one
focus) leading to periodic comets or parabolic or hyperbolic, leading to non-periodic comets. Their
orbit plane is commonly determined by two angles (i,Ω), where the angle i ∈ [0, π] is the inclination
between the normal vector of the orbit and the normal vector of the ecliptic, and Ω ∈ [0, 2π) is the
longitude of the ascending node. The directed normal vector to the orbit plane is given by

v = (sin(i) sin(Ω),− sin(i) cos(Ω), cos(i))T . (3.1)

The sign of the vector reflects if the orbit is prograde (with positive cos(i) in (3.1), i.e. revolves in
the same direction as the Earth about the ecliptic polar axis, so that the directed normal points
to the north of the ecliptic plane) or retrograde (with negative cos(i) in (3.1), i.e. revolves in
the opposite direction, so that the directed normal points to the south of the ecliptic plane). In
particular, the periodic cometary orbit is featured by the perihelion direction u (the direction from
the Sun to the point of closest approach of the comet) and the directional normal v to the orbit
(with direction specified by the sense of rotation). In addition, putting w = u∧v yields a third unit
vector such that the matrix X = (u, v, w) is a rotation matrix, i.e., XTX = I3 and det(X) = 1.
Thus the directional aspects of the orbit of a periodic comet can be represented by a rotation
matrix, according to [Jup95, Sect. 2.1].

There are astronomical reasons for believing that observations of comet orbits are subject to
considerable selection effects. This can be translated into three natural questions of astronomical
interest:

(i) Are the comet orbits uniformly distributed?
Since the comets’ orbits are defined by the corresponding normal vectors, they reduce to a
sample of n ∈ N points in the unit sphere S2. Strictly speaking, the comets’ orbit can be
seen as an observation from the S2-valued random variable v. Testing the null hypothesis
that v is uniformly distributed on S2 from a random sample v1, . . . , vn of this variable can be
performed.

(ii) Are the perihelion directions uniformly distributed?

(iii) Are the orbital planes of comets with a given perihelion direction distributed uniformly about
that axis?

Database. The dataset for long-period cometary orbits can be found in the catalog of Marsden
and Williams (1993) [MW93]. It is composed of 658 single-apparition long-period cometary orbits,
315 of these are prograde and 343 are retrograde. Another different and more updated (since
2007) database for orbits of long-period comets (Chiron-type comet CTc, Encke-type comet ETc,
Halley comet HTC, Jupiter-family comets (JFc, JFC), hyperbolic cometary orbits HYP and parabolic
cometary orbits PAR) is available through the comets object of the spunif R package in [GPVN21].
It is based on the records of NASA’s JPL Small-Body Database Search Engine (https://ssd.
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jpl.nasa.gov/sdbd_query.cgi) and sorted through the JPL’s database ID, which is assigned
chronologically based on the discovery of new comets.

Datasets for planet orbits are provided by different observatories or space missions, for example,
the Planetary Data System (PDS), which archives and distributes digital data from past and
present NASA planetary missions, astronomical observations, and laboratory measurements. The
R package planets in spunif (see [GPVN21]) contains planet orbits data from the JPL Keplerian
Elements for Approximate Positions of the Major Planets.

Concerning the database for solar system small bodies, the JPL Solar System Dynamics Group’s
Small-Body Database Query (Group 2023a: https://ssd.jpl.nasa.gov/tools/sdbd_query.html
and Group 2023b: https://ssd-api.jpl.nasa.gov/doc/sdbd.htm) and MPC Orbit (MPCORB)
database from the Minor Planet Center (MPC) 2022 (https://minorplanetcenter.net/iau/
MPCORB/MPCORB.DAT) contain updated databases of Plutinos.

Statistical tools and data analysis.
Back to the roots - the first tests. To address (i)-(iii), a natural way to proceed consists

of using a uniformity test (Sect. 2.2) on the sphere. Uniformity of the orbits (resp., perihelion
directions) means that the underlying random rotation matrix X (resp., u) has the same distribution
as RX (resp., Ru), for any fixed rotation matrix R. In particular, Mardia (1975) [Mar75] tackled
(ii) by employing the classical Rayleigh test; Watson (1983) [Wat83, pp. 28-32] did the same
but for directed normals; Fisher et al. (1987) [FLE87, p. 161] studied (iii) by a uniformity test
against bipolar alternatives; Jupp and Mardia (1979) [JM79] applied their likelihood ratio test for
uniformity to analyze the joint distribution of the directed normals and the perihelion directions;
and Mardia and Jupp (2000) [MJ00, pp. 283, 288-289] used several classical uniformity tests such
as the Rayleigh (2.7) and Sobolev (2.10) tests to study the joint distribution of both the directed
normals and the perihelion directions. The latter as well as Jupp and Spurr (1983) [JS83] also
tested rotational symmetry of orbital planes about perihelion directions. Furthermore, Hall et al.
(1987) [HWC87] employed a completely different approach by proposing a kernel density estimation
for the directed comet orbit’s normals.

In all these studies, strong statistical evidence against the uniformity assumption for the dis-
tribution of comet orbits has been obtained. Thus the non-uniformity of the orbits comes largely
from the non-uniformity of the perihelion distributions. Such a conclusion is somewhat surprising
as it contradicts the isotropy properties which could be expected a priori. This motivated Jupp et
al. (2003) [JKKW03] to do a careful data analysis (such as QQ-plots) by investigating the intrinsic
distribution of the directed normals, that is, the distribution prior to selection by any observational
biases, and in particular to test it for uniformity. The previous studies by statisticians have not
taken selection effects into account and have tended to reject uniformity. [JKKW03] believed that
the lack of uniformity is largely due to an observational bias that favors the observation of comet
orbits near the ecliptic. Therefore they proposed a new probabilistic model on the celestial sphere
S2 which incorporated an observational window defined by the inequality | sin(i)| ≤ ϵ. The param-
eter ϵ can be estimated by maximum likelihood. Their proposed model shows satisfactory goodness
of fit of the data set at hand.

New approaches. The paper [JKKW03] inspired other statisticians to propose new approaches
to tackle the uniformity assumption of the comet orbits. Cuesta-Albertos et al. (2009) [CACF09,
Sect. 5] presented a new class of nonparametric uniformity tests based on random projection in-
cluding uniformity for spherical (directional) as well as compositional data, sphericality of the
underlying distribution, and homogeneity in two-sample problems on the sphere or the simplex.
Their proposed procedures have a number of benefits: flexibility, computational simplicity, and ease
of application even in high-dimensional cases. They applied their two nonparametric random pro-
jection tests termed RP50 and RP100 (in comparison with uniformity tests by Giné and Rayleigh
(2.7)) to test if the comet orbits are uniformly distributed with NASA’s JPL Small-Body database
by December 2017, consisting of 208 observations. As one can observe in Table 1, [CACF09] found
no statistical evidence against the uniformity hypothesis.

Inspired by the work of [CACF09], Garcia-Portugués et al. (2023) [GPNECA23, Sect. 5.2]
proposed also a projected-based class of uniformity tests on the hypersphere (see Sect. 2.2) but
using the weighted quadratic discrepancy between the empirical cumulative distribution function
of the projected data and the projected uniform distribution. Their proposed class, despite its
different origin, can be related to the well-studied Sobolev class of uniformity tests and allows
deriving new tests for hyperspherical data that neatly extend the circular tests by Watson (2.9)
and Rothman (2.10). In fact, their tests constitute the first instance of an Anderson-Darling-like
test for such data. They applied their new tests on three astronomical investigations including the
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analysis of 208 long-period elliptical-type single apparition comets as in [CACF09] and of 438 comets
as of May 7 2020 by restricting to comets with distinct (i,Ω) up to second digit. In conclusion,
they obtained a noticeable difference between the two datasets, for the first with 208 data (see
Table 1) uniformity is not rejected at significance level 5% (findings similar to those in [CACF09]),
contrarily to the second dataset of 438 comets, where a significant non-uniformity in the orbits
of long-period comets with updated records has been detected. As described in [JKKW03], the
observational bias of long-period comets may explain the leading rejection cause.

Comets Orbits RP50 RP100 Giné Rayleigh CvM AD Rt

Long-periods 208 0.248 0.250 0.060 0.210 0.1011 0.0744 0.1207
842 / / / / 0.0041 0.0023 0.0052

Table 1: p-values of different uniformity tests for the NASA comet data set (208 data) from
[CACF09] and [GPNECA23].

Park (2012) [Par12] proposed a geometric kernel density estimator on the tangent space of S2
that he applied on the tangent vectors corresponding to the observations on normals to the orbital
planes of long-period comets. His numerical study has been done using a very old long-period
comet with a sample size of 240 from [FLE87, pp. 160-161].

Garcia-Portugués et al. (2022) [GPdMMV24, Sect. 5.1] showed that there is a possible manifes-
tation of observational bias, both in long- and short-period comets, by using their nonparametric
tests of independence based on trigonometric moments. For their study, they made use of the
dataset of 455 long-period comets and 842 short-period comets. Similarly as in previous works,
they found no evidence against autocorrelation in long-period comets contrary to short-period
comets.

3.1.1 Pluto’s origin and small solar system bodies

Pluto’s origin. As mentioned at the beginning of this section, the planet Pluto is no longer a
true planet in our Solar System. Since 2006, IAU downgraded the status of Pluto to that of a
dwarf planet, because it did not meet the third of three criteria the IAU uses to define a full-sized
planet, i.e., it has not “cleared its neighboring region of other objects”. However, for 76 years, the
planet Pluto was the beloved ninth planet and was the runt of our Solar system. At that time,
astronomers questioned whether Pluto is a major planet or not, if it would be better classified as
a large asteroid or comet rather than as a planet, or if it was rather an entrapment by the Sun of
an extrasolar object. Due to its highly eccentric orbits, some scientists consider it to be the largest
of the Kuiper Belt objects (also known as Trans-Neptunian Objects). In fact, Pluto rotates in the
opposite direction from most of the other planets and its orbital inclination is also much higher
than that of the other planets. In addition, Pluto does neither fit in the group of Jovian planets,
which are large, gaseous, low-density worlds, nor into the Terrestrial group because it lies far away.
Therefore, at that time, there was (and still is today!) a controversy over Pluto’s status.
In 2002, Patrangenaru and Mardia (2002) [PM02] tested the solar nebula theory for Pluto using
both parametric and non-parametric bootstrap methods. According to the solar nebula theory,
originally proposed by Kant, Laplace, and others, the solar system is presumed to be formed from
a nebula that evolved into a disk and thus the planets are formed from an accretion disk of material
that, over time, condenses into dust, small planetesimals. Hence the planets should have, on aver-
age, coplanar, nearly circular orbits. However, Pluto’s orbit is more eccentric and more tippy. This
led [PM02] to propose a new non-parametric bootstrap approach based on a large sample theory
for extrinsic means of asymptotic distributions on a manifold. They regarded the major planets
as a sample and determined their mean axis of rotation. Similar as for the cometary orbits, they
determined each planetary orbit by the directed unit vector v (3.1). For their analysis, they used
the University of Uppsala data [MJ00, Table 10.2, p. 209] giving measurements of (i,Ω) for the
nine planets. Their parametric and non-parametric analyses provided very strong evidence that
the solar nebula theory does not hold for Pluto. Both approaches showed that Pluto is too strong
an “outlier” within the population of the major planets of the solar system.

Small solar system bodies. Recently, Matheson et al. (2023) [MMK23] applied the FvML distribu-
tion (2.4) to the orbit pole distribution of the observed Plutinos, which are Kuiper Belt objects
having orbital periods very similar to that of Pluto. In fact, small solar system bodies such as
Plutinos have widely dispersed orbital poles, posing challenges to dynamical models of solar system

10



origins and evolution. With the help of a functional form for a model of the distribution function,
it is possible to characterize the orbit pole distribution of dynamical groups of such small bodies.
Moreover, since the orbital pole is a directional variable, its distribution can be more appropriately
modeled with directional statistics. That is exactly what Matheson, Malhotra, and Kean have
done in [MMK23] by using the FvML distribution which naturally accommodates all physical in-
clinations (and no others), whereas Gaussian models must be truncated to the physical inclination
range 0◦−180◦. They obtained an exact value of the Plutinos’ FvML mean poles and concentration
parameters. For their study, they used a current observational sample of Plutinos of the JPL Solar
System Dynamics Group’s Small-Body Database Query and MPCORB.DAT database.

Inspired by [MMK23], Malhotra and Roy (2023) [MR23] used the FvML distribution (2.4) to
model the free inclinations of classical Kuiper belt objects (CKBOs). The CKBOs are known to
have two components of orbital planes: the “cold” component concentrated near the forced plane
and the more widely dispersed “hot” component. Similar to the comet’s orbit, the orientations of
orbital planes of minor planets are directional random variables and their free inclination is the
deviation of the orbit plane from the plane forced by the major planets. To model the CKBOs’
free inclination distribution, [MR23] adopted a linear combination of two FvML functions fFvML

for an inclination i ∈ [0, π] as

f(i;κ1, κ2, ω) = ωfFvML(i;κ1) + (1 − ω)fFvML)(i;κ2),

where ω is a weight factor and fFvML(i;κ) = κ
ϵκ−ϵ−κ exp(κ cos(i)) sin(i) is the functional form of

the FvML distribution with concentration parameter κ (not too small). They found that the cold
and hot components respectively account for 57% and 43% and that the mixture of two FvML
functions is a good fit for the cold CKBOs but not very good for the hot CKBOs.

3.2 Craters on planets and moons

Motivation. In astrogeology, counting the craters on planets or moons is the primary method for
determining remotely the relative age of a planetary surface, plus it also gives valuable insights into
the past geologic processes, resurfacing history, and the planetary subsurface structure, according
to Fassett [Fas16] who gave a review on crater statistics and their applications. In fact, craters are
roughly circular depressions resulting from impact or volcanic activity. Among the main generators
of the non-isotropic impact cratering process are short-period comets, in particular, those in the
outer solar system (see, e.g., [ZSLD03] and references therein). Thus, crater locations and diameters
D provide important information on the history of a planet or moon. To put this in a statistical
context, consider the observed craters on S2 containing the planetocentric coordinates of the crater’s
centers. Then one might test if:

(i) the planets’ and moons’ craters are uniformly distributed, in particular, the distribution of
Venusian craters, and for four Saturnian moons including Rhea;

(ii) there is a form of uniformity for small craters (diameter D between 15 km and 20 km, i.e.,
15 < D < 20), for large craters (D > 15) or all reliable-detected craters (D > 20).

In Table 2, we observe that among the irregularity of uniform crater distributions in the solar
system, the apparent uniform distribution of Venusian and Saturnian moons’ craters, especially
Rhea, is truly remarkable. Venus is the closest planet to Earth and the most Earth-like planet in
the solar system in terms of size and composition. The filtering of small meteoroids by the dense
Venusian atmosphere may be one of the causes explaining the uniform distribution of craters.

Rhea orbits Saturn synchronously, it has a leading hemisphere that always faces forward into
the orbit motion and a trailing hemisphere that faces backward. Hirata (2016) [Hir16] pointed
out that planetocentric impactors weakly favor the centers of the leading and trailing hemispheres,
referred to as apex and antapex, respectively, whereas the cratering on the leading hemisphere is
expected from heliocentric impactors. This may therefore lead to a non-uniform crater distribution
by both populations of impactors. Furthermore, [Hir16] found no apparent apex-antapex asymme-
try in small craters as opposed to larger craters.

Database. The Gazetteer of Planetary Nomenclature (GPN) database (https://planetarynames.
wr.usgs.gov/AdvancedSearch) of the IUA is a publicly available search engine containing the data
of planetary surface feature names, i.e., provides maps of planets and locations of planetary craters.
It is maintained by the Planetary Geomatics Groups of the United States Geological Survey (USGS)
Astrogeology Science Center (https://www.usgs.gov/centers/astrogeology-science-center/
data). Note that the position of craters is recorded in areocentric coordinates so that the areocen-
tric longitudes range from 0◦ to 360◦ and areocentric latitudes range from −90◦ to 90◦.
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In the R package spunif of [GPVN21], the object craters contains the named craters of the
GPN database, and the objects venus, rhea provide a separate dataset of the coordinates of the
Venusian craters (from the USGS Astrogeology Science Cente) and Rhea’s (from [Hir16]) craters,
respectively. According to the database of named craters of the IUA, Venus has the largest number
of observed craters.

Statistical tools and data analysis.
Martian craters. Zhang and Chen (2021) [ZYC21] applied their proposed kernel density esti-

mator together with the directional mean shift algorithm to further estimate the density of craters
and determined crater clusters on the surface of Mars. They made use of Martian crater data
provided by the GPN database. Before applying their tests, they trimmed the data to 1653 craters
by removing the small craters whose diameters are less than 5 kilometers, as their presence may
provide spurious information. Moreover, since the craters with areocentric longitudes greater than
180◦ are on the western hemisphere of Mars, they transformed their longitudes back to the interval
(−180◦, 0◦). Their finding aligns with prior research on the Martian crater distribution, stating
that Mars can be divided into two general classes of terrain [SCW+74]. More precisely, their mode
clustering succeeded in capturing two major crater clusters (or basin of attraction) on Mars, in
which one cluster is densely cratered while the other is lightly cratered.

Crater distributions in the Solar system with a focus on Rhea’s craters. Garcia-
Portugués et al. (2023) [GPNECA23, Sect. 5.3] evaluated the rareness of uniform crater distribu-
tions in the solar system by analyzing the GPN database of May 31 2020 containing 4818 obser-
vations on S2 for 14 bodies after filtration of non-asteroid bodies (the full database contains 5236
craters for 44 bodies). They conducted their three different uniformity tests (CvM, Rt, and AD-like
test, see Sect. 2.2) for this dataset and rejection the hypothesis of uniformity at significance level
5% in all bodies except Venus and four Saturnian moons (see Tab. 2).

Class Name Craters CvM AD Rt

Planets Mars 1127 0 0 1 · 10−8

Venus 881 0.2726 0.2749 0.2806
Mercury 409 0 0 0

Dwarf Ceres 115 0.0133 0.0127 0.0159

Moons Moon 1578 0 1 · 10−8 1 · 10−8

Callisto 141 0 0 3 · 10−8

Ganymede 129 0.0132 0.0087 0.0184
Europa 41 0.0010 0.009 0.0010

Saturn’s Rhea 128 0.2793 0.2954 0.2705
moons Dione 73 0.5195 0.4989 0.5418

Iapetus 58 0.0034 0.0037 0.0032
Enceladus 53 1 · 10−7 2 · 10−8 5 · 10−7

Tethys 50 0.7910 0.8425 0.7199
Mimas 35 0.1701 0.1704 0.1754

Table 2: Asymptotic p-values of the CvM, AD and Rt tests when applied to Hirata’s crater
database [Hir16]. Outcomes from the study of [GPNECA23].

According to [GPNECA23], these few non-rejections are suspected to be driven by a uniformity
bias in the data. Well-separated craters that cover the body are likely more probable to be named
than those that cluster. Thus a detailed crater database (for the moment only available for cer-
tain bodies such as Venus and Rhea) is required to bypass this source limitation. For this reason,
[GPNECA23] investigated in detail the crater distribution of Rhea, the second most cratered body
in Table 2 by performing their three tests on 867 craters with 15 < D < 20, 1373 craters with
D > 20, and 2440 craters with D < 15 using Hirata’s database [Hir16]. In Table 3, their tests
revealed that uniformity is not rejected for small craters (15 < D < 20) at significance level 5%
but is emphatically rejected for large and all reliable-detected craters (D > 20). The non-rejection
of uniformity for small craters may be explained by Rhea’s “crater saturation” [SHLL97] or by the
dominance of planetocentric impactors, as the largest crater generated by the debris ejected from
large crater impact has D ≈ 20 [AZDH05]. The rejection of uniformity for large craters may be
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attributed to the predominantly heliocentric origins of the impactors associated with large craters
[Hir16].

Diameter Craters CvM AD Rt

15 < D < 20 867 0.1176 0.0721 0.1856
D > 20 1373 2 · 10−9 0 3 · 10−9

D < 15 2240 2 · 10−8 0 3 · 10−8

Table 3: Asymptotic p-values of the CvM, AD, and Rt tests when applied to Hirata’s Rhea crater
database [Hir16]. Outcomes from the study of [GPNECA23].

Venusian craters. Garcia-Portugués et al. (2021) [GPNECA21, Sect. 5] tested the uniformity
of 967 Venusian craters by performing the Rayleigh (2.7) and Giné Fn tests, the [CACF09] test
(using k = 50), and their novel projected-based CvM-based test on S2. They found no statistical
evidence to reject the uniform hypothesis at usual significance levels.

Recently, Hallin et al. (2022) [HLV22] applied their new quantile concepts and goodness-of-
fit tests to the Venus craters dataset. Concretely, they divided the data into two groups: 453
craters with D > 15 and 514 craters with D < 15, and then they computed the p-values of
the n uniformity measure transportation-based goodness-of-fit tests. Their results revealed that,
while the null hypothesis of uniformity is essentially not rejected at traditional levels, the p-values
associated with their test are uniformly larger for the large craters than for the small craters. On the
contrary, the other tests (projected CvM, AD and Rt procedures by [CACF09] and [GPNECA21])
have similar p-values for both types.

3.3 Space weather and sunspots

Motivation. Predicting our Sun’s activity is a crucial task in the heliophysics and space weather
community. It permits us to protect our technology on Earth as well as satellites and astronauts in
space which might be impacted by geomagnetic storms when they are heading towards our Earth.
They are initially triggered by the nestling of groups of sunspots when they explode to solar flares
or coronal mass ejections. Over the last decade, some attempts have been made to study these
darker and cooler regions – sunspots – which vary throughout solar cycles on the Sun’s photosphere,
particularly when they are heading to peak levels. In particular, the focus was to:

(i) investigate the significance of (non-)rotationally symmetric patterns of sunspots, and

(ii) detect temporary longitudinal non-uniformity in sunspots.

Database. Sunspots data containing daily positions and areas of sunspots can be found in the
Debrecen Photoheliographic Data (DPD) sunspot catalog (http://fenyi.solarobs.csfk.mta.
hu/DPD/, [BGL16, GBL13] and [GLB17] are good references on how to employ the DPD data
correctly). It contains observations of sunspot locations since 1974 and is a continuation of the
Greenwich Photoheliographic Results catalog, which spanned 1872-1976. Note that the DPD cat-
alog delimits the central position of a group of sunspots through an area-weighted average of the
sunspots within the group. This means that within this setting both the temporal (observations
belong to a single cycle that aggregates the different latitude-appearance regimes) and spatial (clus-
ters of related sunspots are treated as a single observation) dependency of the data is mitigated. To
better accommodate this averaging, Garcia-Portugués et al. (2020) [GPPV20] advised considering
an i.i.d. framework when working with those data. Moreover for R users, [GPPV22] created in their
available R package rotasym the dataset sunspots births, which accounts just for the first-ever
observation (referred to as “birth” henceforth) of a group of sunspots. For example, the 21st solar
cycle (March 1976 – September 1986) includes 6195 observations, the 22nd solar cycle (September
1986 – August 1996) has 4551 observations, and the 23rd solar cycle (August 1996 – December
2008) contains 5373 observations.

Statistical tools and data analysis.
Rotational symmetry and uniformity tests. Motivated by the central role played by

rotationally symmetric distributions (see Sect. 2.1.2) in directional statistics and its presence in
the formation of sunspots that follows a nearly rotationally symmetric pattern [Bab61], Garcia-
Portugués et al. (2020) [GPPV20] considered the problem of testing rotational symmetry on the
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hypersphere where the location of symmetry axis is either specified or unspecified. By developing
new distributional-based tests for rotational symmetry that inspect the circular uniformity of the
longitudes of sunspots with respect to a specified or unspecified location, they investigated a quan-
tification of the significance of non-rotationally symmetric patterns in the emergence of sunspots,
even though the main driving force generating sunspots is of a rotationally symmetric nature (in-
tense magnetic field concentrations at equal latitudes due to the Sun’s differential rotation). In
fact, Babcock (1961) [Bab61, pp. 574, 581] pointed out that sunspots tend to emerge in “preferred
zones of occurrence” associated with longitudes where there has been prior activity. [GPPV20]
analyzed the rotational symmetry about the north pole θ0 = (0, 0, 1)T (or, equivalently, about
the south pole −θ0) of the appeared central position groups of sunspots. They obtained a signif-
icant non-rotationally symmetric emergence pattern during that cycle for both unspecified-θ and
specified-θ. However, due to the non-omnibus nature of the tests employed in their analysis, non-
rotationally symmetric deviations for which the tests are not consistent may have been undetected.
This explains the need for a more complex modeling.

A further investigation of the rotational symmetry of sunspots has been done by [GPNECA23].
They applied the CvM, AD and Rt tests (see Sect. 2.2) to the longitudes about θ0 = (0, 0, 1)T for
the same observed sunspots in cycle 23 as in [GPPV20] but also for the cycle 22. Their outcomes are
coherent with those in [GPPV20], see Table 4, and thus highlight the varying behavior of different
cycles.

Cycle Sunspots CvM AD Rt ϕsc
θ ϕloc

θ ϕhyb
θ

23 5373 0.3959 0.8393 0.3285 0.1656 0.4571 0.2711
22 4551 0.0067 0.0139 0.0091 0.1077 0.0125 0.0103

Table 4: Asymptotic p-values of the CvM, AD, Rt tests from [GPNECA23] and rotational sym-

metry tests ϕsc
θ (s-sc), ϕloc

θ (s-loc), ϕhyp
θ (s-hyp) from [GPPV20].

Another interesting approach is given by Jammalamadaka and Terdik (2019) [JT19, Sect. 8].
They analyzed the longitudinal sunspot activity using their model-free inference for spherical dis-
tributions based on harmonic analysis. More precisely, they estimated the shift α yearly for the
DPD sunspots data set (including 187223 sunspots positions) between 1976-2014 by making use of
the Dimroth-Watson distribution (2.6) for their model. Their plotted estimated shifts α̂ and −α̂
showed a nearly “Butterfly” pattern, which refers to the movement of girds by the years.

Fernandez-de-Marcos and Garcia-Portugués (2023) [FdMGP23, Sect. 4] investigated further
the longitudinal non-uniformity patterns in sunspots births for the 21st-23rd solar cycles within a
rolling window conformed by 10-Carrington rotations (approximately, nine months). Their analysis
consisted of three tests, (1) their projected AD-based uniformity test of sunspot births longitudes,
(2) circular-linear kernel density estimation [GPCGM13] level sets of sunspot births through time
and longitude, and (3) scatter plot of sunspots births with the circular Nadaraya-Watson regression
[MPT12] for northern, southern and both hemispheres. They obtained interesting facts, namely (a)
the flip-flop effect between 180◦ active longitudes is not obvious throughout all the cycles, (b) the
length and quantity of uniformity periods differ between solar cycles, (c) non-uniformity periods
are scarce to claim the existence of active longitudes, and (d) in general, both hemispheres seem
to have different behavioral patterns, both in terms of longitudinal non-uniformities and sunspots
activity level, along solar cycles.

Recently, Jeon and Van Keilegom (2023) [JvK23] proposed novel nonparametric density and
regression estimators to test the rotational symmetry of sunspots by considering the dataset
“sunspots births” in the R package of [GPPV22]. Since it is well known that sunspots area obser-
vation may contain measurement errors [BGL16], they considered the Laplace distribution on the
special orthogonal group SO(3) for the measurement error distribution and estimated the density
of the birth locations of sunspots based on their deconvolution density estimator. They obtained
contour plots of the estimated density based on their proposed method, and of the 95% point-
wise confidence intervals for the true density based on asymptotic normality (see Figs. 1 and 2
in [JvK23]). Moreover, they observed that the true density is likely to have a higher mass as
the latitude approaches zero and that the density levels are horizontal. This can be explained by
considering the sunspots as a consequence of the twisted solar magnetic field caused by the fast
rotating speed.

A toroidal point of view. An interesting exploration of the dependence structure of sunspots
births longitudes for cycle 23 is given by Zoubouloglou et al. (2021) [ZGPM21, Sect. 5.1]. Since the
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Earth rotates around the Sun, the visibility of sunspots is limited by which side the Sun is facing
the Earth and the sunspots can thus be considered as toroidal data. More precisely, [ZGPM21]
considered the series of longitudes and its lagged versions of order one and two

Θi := (θi, θi+1, θi+2)T ∈ T3, i = 1, . . . , 5371,

where θi ∈ [−π, π) are the longitudes of sunspots births. Hence, if there existed significantly
preferred longitudes, a significant deviation from a linear dependence structure in the series of
sunspots longitudes should be expected. To investigate this serial structure, they employed their
new Scaled Torus Principal Component Analysis (ST-PCA), a dimension reduction method for
toroidal data, to show graphically the main driver behind that selection as the output on T3.
The term scaled refers to the construction of a map via multidimensional scaling to minimize the
discrepancy between pairwise geodesic distances in both spaces Sd and Td. Roughly speaking, the
ST-PCA seeks a data-driven map from a torus to a sphere with the same size and radius as the
torus. The analyses were done on spheres by obtaining first the nested sequence of subspheres using
spherical multidimensional scaling, and after finding the best fits of data, it can be inverted back
to the torus. It turns out that the apparent linearity of the innovations in the series of sunspots
births longitudes points towards the non-existence of (at least) major preferred longitudes during
the 23rd solar cycle. This is coherent with the non-rejection of rotational symmetry reported in
[GPPV20] and [GPNECA23].

3.4 Electromagnetic radiation: the cosmic rays

Motivation. Since the unexpected discovery in 1912 from the Austrian physicist Victor Hess that our
Earth was receiving cosmic radiation from our Universe, cosmic ray physicists have been interested
in the problem of discovering the sources of cosmic rays, now known to be the nuclei of hydrogen
and the centers of heavier elements. Hence nowadays observed cosmic rays are seen as ordinary
particles (electrons, protons, and nuclei), propagating in empty space, and deflected by various
galactic magnetic fields through which they will have passed.

Since then a number of experiments have been carried out in a number of fieldsm providing a
boosting amount of cosmic ray data. In the beginning, the data was far from the level needed to
produce precise estimates of parameters and conclusive tests. This changed completely in the last
couple of years by improving the size and precision of existing observations by several orders of
magnitude. Let us name some important experiments:

• Cosmic microwave background (CMB) is the cooled leftover radiation, the first and
thus oldest light that could ever travel freely throughout our Universe from the time when the
cosmos began, what is universally known as the Big Bang (see for instance [Dod15] and [Bal07]
for a more detailed description). Hence, this radiation provides an image of our Universe as
it was approximately 13.7 billion years ago. Although the existence of CMB radiation dates
back to 1965 in a celebrated experiment by Penzias and Wilson, it was only in the current
century with the help of several ballon-borne experiments, ground-based observatories, and in
particular of sophisticated satellite missions such as COBE (NASA satellite mission in 1992),
WMAP (NASA satellite mission in 2003), or Planck (ESA satellite mission in 2009), that
one could manage to produce high-resolution low-noise full-sky maps of the Last Scattering
Surface. These photons, now observed in microwave frequencies and in every direction on the
sky, constitute the CMB.

• Ultrahigh-energy cosmic rays (UHECRs) are particles of unknown origin that arrive at
the Earth from apparently random directions of the sky. When these particles interact with
atoms of the upper atmosphere, they generate a huge cascade of billions of secondary particles.
Observing these secondary particles (with appropriate detectors on the ground) allows us to
measure the direction of arrival as well as the energy of the original cosmic ray (see [KO11] and
[B+19] for a recent review and open questions on the astrophysics of UHECRs). The Pierre
Auger Observatory (PAO) is one of the huge international collaborations that investigate
UHECRs.

• Gamma ray (or γ-ray). Gamma-ray photons are quanta of light in the highest energy range
and are usually generated from accelerated charged particles, such as electrons or protons,
boosted by extreme celestial objects such as supermassive black holes, pulsars, active galactic
nuclei (AGN) or supernova remnants. They provided the basis for a large number of astro-
nomical discoveries. In particular, the γ-rays emitting sources improve our understanding of
high-energy astrophysical phenomena, and might even resolve the mystery of the fundamental
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nature of dark matter [MBM23]. Gamma rays sources have been probed by satellite missions
such as Fermi-LAT and AGILE, as well as from several observatories on the ground.

Gamma-ray bursts (GRBs) are emissions of gamma rays linked with extremely energetic
explosions that have been recorded for distant galaxies. Bursts vary in duration from ten mil-
liseconds to several minutes. GRBs may originate from different processes, e.g., a supernova
event such as the birth of a neutron star, a quark star, or a black hole, as well as of the death
of a massive star. GRBs have been classified mostly as “long” for the ones having a duration
of greater than two seconds and “short” otherwise. The former class is of greater interest
since almost all of its members could be linked to a galaxy with rapid star formation or the
deaths of massive stars.

Database. Old catalogues of several hundred high energy (at least 1019 eV) cosmic rays exist
which give the direction of their arrival from space and the associated estimate of their energy.
The data have been recorded at four arrays over a number of years: Haverah Park, UK (1◦38′

W, 53◦58′ N) with 224 showers [RW80]; Volcano Ranch, USA (106◦47′ W, 35◦10′ N) with 44
showers [Lin80]; SUGAR, near Narrabri, NSW, Australia (149◦36′ E, 30◦32′ S) with 423 showers
[WUP+86a, WUP+86b]; and Yakutsk, Russia (129◦ E, 62◦N) with 233 showers [EEK+80].

Fisher et al. (1987) [FLE87, data set B3] have digitized the arrival directions of 148 low mu
showers of cosmic rays (Bolivian Air Shower Joint Experiment) from [T+65]. This cosmic ray data
set has been used by [PV17] and [LSV14] for their study.

A more updated catalog is provided by the PAO (https://www.auger.org/collaboration/)
which has a huge public catalog of UHECRs [AAA+10]. For example, [FDKP13, LPN14] and
[KKPN13] considered 69 arrival directions of cosmic rays with energy above 55 EeV which were
detected by the PAO between 1 January 2004 and 31 December 2009. In addition, the Pierre Auger
Collaboration [AAA+08, AAA+09, AAA+10] also performed a catalog-free test for anisotropy with
no reference to any catalog, using the TwoPC procedure.

The dataset on GRBs in celestial coordinates is available on http://swift.gsfc.nasa.gov/

docs/swift/archive/grb_table. This data has been recorded by the Burst Alert Telescope
(BAT), which is one of the three instruments on the Swift MIDEX spacecraft by NASA, launched
into orbit on 20 November 2004.

The Fermi Large Area Telescope (LAT) Collaboration (https://glast.sites.stanford.edu/)
provides a γ-ray database of over 1 billion photons in the energy range from about 20 MeV to more
than 300 GeV collected in over a decade of operations. The dataset typically consists of an event
list that gives the direction in the sky of each detected photon together with additional information
like its energy content and the so-called event type which expresses the quality of the measurement.
The recorded data by the LAT can be represented in polar coordinates or in Galactic coordinates
on the unit sphere. This dataset is particularly used for the search of yet undetected γ-ray sources
as done in [MBM23].

Concerning CMB data, LAMBDA (Legacy Archive for Microwave Background Data Analy-
sis) (https://lambda.gsfc.nasa.gov/), which is part of NASA’s High Energy Astrophysics Sci-
ence Archive Research Center (HEASARC), provides free public CMB data. The same holds
for the ESA satellite mission Planck (https://www.cosmos.esa.int/web/planck and https:

//pla.esac.esa.int/#home).
For radio survey catalogs, NRAO VLA Sky Survey (NVSS) (https://heasarc.gsfc.nasa.

gov/W3Browse/all/nvss.html), Parkes-MIT-NRAO (PMN) Surveys (https://www.parkes.atnf.
csiro.au/observing/databases/pmn/pmn.html) and the Green Bank 1987 (897GB) survey (https:
//www.parkes.atnf.csiro.au/observing/databases/aitoff.html) contain a database of ∼ 40000
sources brighter than 50 mJy at 4.85 GHz, over about 70 percent of the sky, and represent the
largest and least biased sample of X-ray and radio-loud AGN available at present.

Other relevant cosmic rays data are Cosmic Neutrinos investigated by IceCube (https://
icecube.wisc.edu/), Gravitational Waves data by the LIGO-Virgo Collaboration (https://www.
ligo.org/), Radio sources data by huge collaborations such as the Square Kilometre Array Obser-
vatory (SKAO) (https://www.skao.int/), Weak gravitational lensing data found in [B+09] and
[K+11b], and Large-scale structure of the Universe as part of the upcoming mission Euclid, surveys
can be found in [Cra09, Sect. 4].

Statistical tools and data analysis.
A conditional and experimental approach. Mardia and Edwards (1982) [ME82] observed

that in the analysis of astrophysical data (e.g., the arrival of cosmic rays and asteroids), when the
monitoring station is on the surface of the Earth, the field of vision is often an off-center cap on the
sphere. The coordinate system usually employed is to form the celestial sphere, which arises from

16

https://www.auger.org/collaboration/
http://swift.gsfc.nasa.gov/docs/swift/archive/grb_table
http://swift.gsfc.nasa.gov/docs/swift/archive/grb_table
https://glast.sites.stanford.edu/
https://lambda.gsfc.nasa.gov/
https://www.cosmos.esa.int/web/planck
https://pla.esac.esa.int/#home
https://pla.esac.esa.int/#home
https://heasarc.gsfc.nasa.gov/W3Browse/all/nvss.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/nvss.html
https://www.parkes.atnf.csiro.au/observing/databases/pmn/pmn.html
https://www.parkes.atnf.csiro.au/observing/databases/pmn/pmn.html
https://www.parkes.atnf.csiro.au/observing/databases/aitoff.html
https://www.parkes.atnf.csiro.au/observing/databases/aitoff.html
https://icecube.wisc.edu/
https://icecube.wisc.edu/
https://www.ligo.org/
https://www.ligo.org/
https://www.skao.int/


the ancient interpretation of the universe with the Earth at the center. However, it may happen
that the observer does not sit at this center and records the directions from another point. For
instance, in determining the arrival directions of high-energy cosmic rays, the cosmic radiation is
not observed directly. Standard directional data techniques are not applicable since measurements
are not possible over the whole sphere at the same instant, but are confined to the off-center cap.
It is further complicated by the rotation of the Earth causing rotation of this cap about the Earth’s
axis along a line of constant latitude. This has led to assume that the data arise from a rotationally
symmetric distribution.
Therefore [ME82] proposed the use of weighted distributions assuming uniform rotation of an off-
center cap along a line of constant colatitude and tested whether the resulting distribution shows
concentration along the galactic plane or perpendicular to it. They applied their conditional model
[ME82, Eq. (3.2)] to the data set of the arrival directions of UHECRs provided by Pollock [ME82,
Fig. 3 and Table 1.-2.] and obtained a likelihood conditional equation that numerically yields two
distinct sets of maximum likelihood estimators. One of them corresponds to a girdle distribution,
while the other is bipolar, which is almost perpendicular to the first one. They did not reject
their null hypothesis of a “weighted” uniform distribution, meaning that the original longitudes are
uniformly distributed.

An alternative approach for modeling the arrival directions of cosmic rays has been proposed by
Boulerice and Ducharme (1994) [BD94]. They suggest to generate families of models for directional
data that can arise from the physical context of an experiment. This means that experimental con-
ditions can prevent the coincidence described above from happening. By applying their modified
Directional Decentered Uniform model (MDCU) [BD94, Eq. (6.1)], they tested whether the cosmic
rays data from [T+65] stem from a uniform distribution over a given subset of the sphere. They
did not reject the hypothesis at the 5% level, which agrees with the empirical finding of [T+65] and
[ME82].

Classical uniformity tests. Marchant (1990) [Mar90] investigated the arrival directions of
cosmic rays recorded at four different latitudes on the Earth’s surface [RW80, Lin80, WUP+86a,
WUP+86b, EEK+80]. By using two classical uniformity tests on the circle (Kuiper’s (2.8) and
Rayleigh’s (2.7) test), he tested if there is some evidence of uniformity of these observations in
right ascension. In his analysis, he found out that Kuiper’s test is more robust to such kind of data
than Rayleigh’s test and that the results, for both tests, indicated that the data are consistent with
the hypothesis that the cosmic rays arrive uniformly from all directions. By examining the data
more closely, Marchant is convinced that there may be a tendency for the highest energy rays to
arrive more frequently from the direction of the center of the local supercluster and there is possibly
evidence of anisotropy in the northern hemisphere. However, more data and further analysis are
needed to verify or reject both hypotheses. More precisely, he suggested constructing a regression
model in which the parameters of a circular distribution (e.g., vM distribution (2.2)) are functions
of declination and energy, and some knowledge of any intergalactic magnetic fields which would
affect cosmic ray nuclei on their long journey to Earth would also be an asset.

Uniformity tests for noisy and weak data. Astrophysicists have at their disposal directional
data which are measurements of the incoming directions of the UHECRs on Earth. However, their
trajectories are deflected by galactic and intergalactic fields. As this deflection is inevitable in the
measurements, it is essential yet challenging to take into account this uncertainty in statistical
modeling. Mathematically, these noisy directional observations can be regarded as

Zi = ϵiXi, i = 1, . . . , n, (3.2)

where the ϵi’s are i.i.d. random variables of SO(3), the rotation group in R3, and the Xi’s are
randomly sampled from a distribution over S2. The rotational Laplace distribution (ordinary
smooth noise) or Gaussian distribution (supersmooth noise) are typical choices of noises. Suppose
that Xi and ϵi are independent and that the distributions of Zi,Xi and ϵi are absolutely continuous
with respect to the uniform measure on S2 and the Haar measure on SO(3), respectively. Lacour
and Pham Ngoc (2014) [LPN14] as well as Kim et al. (2015) [KKPN13] considered the problem of
testing uniformity expressed as

Hunif
0 : f = f0 = Unif(S2) against H1 : f ∈ H(F , δ,M)

in a setup in which the noise density fϵ of the ϵ’s is assumed to be known, f stands for the density
of Xi, and the alternative consists in the set of densities H(F , δ,M) = {f ∈ F | ∥f −f0∥L2 ≥ Mδ},
which is a Hilbert space, where M is a constant, δ is referred to as the separation rate, and F can
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be considered as a Sobolev class on S2 with a known smoothness s. In [LPN14, KKPN13], this set
F is explicitly defined and consists of Sobolev densities satisfying some norm-inequality. As Hilbert
space, one can consider the space of square-integrable functions L2(S2) with its associated inner
product. Observe that the model (3.2) is the spherical convolution model, since for fϵ ∈ L2(SO(3))
and f ∈ L2(S2), we have

fZ(ω) = fϵ ∗ f(ω) =

∫
SO(3)

fϵ(u)f(u−1ω) du,

where fZ denotes the density of Zi and ∗ the convolution product. By using the Fourier analysis
on SO(3) to deal with the noise and on S2 for the unknown density, [LPN14, KKPN13] provided a
non-parametric minimax adaptive testing procedure on f from the noisy observations Zi.

Another issue is that the signal of the incoming directions of cosmic rays is weak. Traditional
tests, like the Rayleigh test (2.7), reject the null hypothesis of uniformity for this kind of spher-
ical data that looks uniformly distributed. More precisely, the Rayleigh test rejects the null at
asymptotic level 5%, while visual inspection of the left panel of Fig. 4 in [PV17] suggests that
concentration is quite moderate, implying that inference on the modal location θ is likely delicate.
To tackle this challenge, Paindaveine and Verdebout (2017) [PV17] considered the problem un-
der asymptotic scenarios for which the signal strength λn goes to zero at an arbitrary rate ηn as
n → ∞. This is equivalent to allowing the underlying distribution Pn to converge to the uniform
distribution P0 = Unif(Sd−1) at an arbitrary rate. In this context, it can be considered as a location
testing problem for the null hypothesis

H0 : µ = µ0 against H1 : µ ̸= µ0

in the vicinity of the uniform distribution, also known as (asymptotic) score test problem with µ0 ∈
Sd−1 fixed and spherical mean µ = µ(P ). Performing inference on µ is a semiparametric problem
whose difficulty depends on the underlying distribution P . If P is much concentrated about µ, then
it is in principle easy to, for example, identify small confidence zones for µ. On the contrary, if P is
close to the uniform distribution P0 over the unit sphere, then performing inference on µ is much
more delicate and the corresponding confidence zones will be very broad. The latter corresponds
to the situation of cosmic rays data. Under this setting, the known asymptotic distributions of
certain statistics of interest may fail, even if n is large, to provide satisfactory approximations of
the corresponding fixed-n distribution. To cope with this difficulty, [PV17] revisited, in an original
and challenging perspective, the location testing problem. To fully characterize how challenging
the problem is as a function of ηn, they adopted a Le Cam, convergence-of-statistical-experiments,
point of view and showed that the resulting limiting experiments crucially depend on ηn. In the
light of their study, the classical Watson score test based on

Wn =
n(d− 1)X̄T (Id − µ0µ

T
0 )X̄

1 − 1
n

∑n
i=1(XT

i µ0)2
,

where X̄ = 1
n

∑n
i=1 Xi, unlike the Wald test based on the spherical mean, is shown to be robust

to asymptotic scenarios, adaptively rate-consistent and essentially adaptively Le Cam optimal. In
conclusion, the Watson score test remains an extremely competitive test in semi-parametric rota-
tionally symmetric models when one has to deal with distributions that are close to uniformity as
the case, for instance, for the cosmic rays data set.

Quantile-based goodness-of-fit test. Ley et al. (2014) [LSV14] envisaged a study of primary
cosmic rays in certain energy regions by proposing a new concept of quantiles for directional data
and the angular Mahalanobis depth. The notion of quantile of a probability distribution is vastly
popular in the statistics world to make a visual inspection of the (univariate) data. In recent
years, the success of univariate quantiles has stimulated several researchers to try to extend this
fundamental one-dimensional concept to higher dimensions. Depth functions, such as the half-
space, the simplicial depth, the Mahalanobis depth or the zonoid depth, to cite but these, also
enjoy a strong popularity among statisticians. Their main appeal is the fact that they provide a
center-outward ordering for a given (typically multivariate in Rd) dataset by affecting each point
x ∈ Rd with a value, the depth of x, determining its centrality within the data cloud. Thus
depth-based procedures are applied to location estimation, regression, classification (e.g., via DD-
plots), trimming, testing procedures (e.g., testing for distinct notions of symmetry), functional data
analysis, and several other problems. [LSV14] developed the notion of Mahalanobis depth based
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on a new (the first proper) concept of quantiles for spherical data, as well as a quantile-based
goodness-of-test to tackle the problem

H0 : P = P0 against H1 : P ̸= P0

for some P0 in the class F of probability laws on Sd−1 with bounded density and which admits a
unique median direction θθθ ∈ Sd−1. They applied their goodness-of-test to analyze the cosmic rays
data set and found that the FvML distribution (2.4) with concentration 0.7 provides the best fit
to the data.

A spherical needlets approach. In the last few years, a rather extensive literature has
been developed on the construction of wavelets systems on the sphere and its new generation,
the so-called spherical needlets that possess several attractive properties. Some of these attempts
have been explicitly motivated by applications in cosmology, in particular, theoretical predictions
involving CMB (e.g., [MPB+07, BKMP09, CM09], but also partially [MP11] and references therein),
where quantities such as the angular power spectra or the bispectra play an important role. In
fact, the statistical procedures for the estimation of angular power spectra and bispectra are based
upon spherical harmonic transforms and manipulations of the random coefficients. However, the
evaluation of these random coefficients requires that the spherical random field is fully observed,
which is not the case in practice. More precisely, in the context of CMB data analysis, the presence
of foreground emissions from our Milky Way and other astrophysical sources prevents the exact
evaluation of spherical harmonic transforms on approximately 20% of the entire sphere. This means
that these random coefficients derived from such incomplete maps lose many of their standard
properties and thus are no longer uncorrelated.

To address these difficulties, a promising approach is to consider spherical needlets. Their
construction is based on two main ideas, the discretization of the sphere by an exact quadrature
formula (i.e., discretize the sphere into cubature points and cubature weights) and the Littlewood-
Paley decomposition. They possess peculiar asymptotic properties and their random needlets
coefficients enjoy a capital uncorrelation property in the sense that, for any fixed angular distance,
random needlets coefficients are asymptotically uncorrelated as the frequency parameters grow
larger and larger [BKMP09]. This makes it possible for instance to test for cross-correlation among
CMB and Large Scale Structure data (see Chap. 10 in [MP11] and the references therein).

Faÿ et al. (2013) [FDKP13] focused on the important question of the isotropy of the UHECRs on
the unit sphere. More precisely, they proposed two methods using the decomposition of directional
data onto a frame of spherical needlets.

Finally, Duque and Marinucci (2021) [DM23] have given a survey of recent developments in
spherical needlets with a view to applications in Cosmology. In their last section, they discuss
more recent and challenging issues such as the analysis of polarization data, which can be viewed
as realizations of random fields taking values in spin fiber bundles.

Analysis of γ-rays and other radio sources. Protheroe (1985) [Pro85] proposed a new
statistic for the analysis of circular data. The statistic is designed specifically for situations where
one requires a test of uniformity which is powerful against alternatives in which a small fraction of
the observations are grouped in a small range of directions, or phases. In particular, it is sensitive
to (i) the distance between pairs of points on the circle, (ii) the grouping of several points in the
same region, and (iii) the sensitivity to a very small distance between individual pairs of points
should not be so great that an “accidentally” close pair dominates. It has been used in a search
for ultra-high energy γ-ray from neutron star binary X-ray sources. The Rayleigh test (2.7) and
tests using Kuiper’s (2.8) and Watson’s (2.9) statistics have very similar powers for broad pulses
but Protheroe’s new statistic (Eq. (2) in [Pro85]) is considerably more powerful than the others for
narrow pulses.

Uesu et al. (2015) [USS15] proposed an asymmetric multivariate Möbius distribution on the
unit hyper-disc, which has support in the interior of the circle, sphere, or more generally, hyper-
sphere. They applied their distribution to study GRBs (for 247 observations from 17 December
2004 - 16 January 2012) and obtained a (first) statistical modeling of GRBs based on probability
distributions that can lead to further insights into the formation of clusters within galaxies, as well
as to the discovery, i.e., classification, of possibly the origin of a new galaxy or of a stars-forming
region as hypothesized or postulated by astrophysics.

Crawford (2009) [Cra09] described a method for detecting a velocity dipole anisotropy in the
sky distribution of sources in large-scale radio surveys. This detection can be used to constrain
the magnitude and direction of our local motion with respect to an isotropically distributed ex-
tragalactic radio source population. He used their three one-dimensional Gaussian distributions in
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Cartesian coordinates to determine the probability distribution of the magnitude of the final radial
displacement. In his analysis, he considered the feasibility of detecting this dipole with statistical
significance in existing and proposed future large-scale surveys. Note that his study corresponds
to the most optimistic detection case possible. He found out that existing large-scale radio survey
catalogs such as 87GB/PMN or NVSS do not have a sufficient number of sources to detect the
expected velocity dipole with statistical significance.

Montin et al. (2023) [MBM23] advocated the use of a nonparametric approach, also known as
modal clustering on the unit sphere, to detect the source of γ-ray photons, which are usually gen-
erated from accelerated charged particles (e.g., electrons or protons), boosted by extreme celestial
objects like supermassive black holes or pulsars. More precisely, since the distance to the emitting
source of γ-rays is not given, the sources will be identified using a von Mises-Fisher kernel estimate
of the photon count density on the unit sphere via an adjustment of the mean-shift algorithm to ac-
count for the directional nature of data. Thus, using directional statistics tools, [MBM23] proposed
an automatic way to skim off sound candidate sources from the γ-ray emitting diffuse background
and to quantify their significance. As explained in their paper, this approach entails a number
of desirable benefits: (i) it allows by-passing the difficulties on the border of any 2-dimensional
projection of the photon directions, and (ii) it guarantees high flexibility and adaptability. In order
to calibrate their algorithm, they analyzed a 5-year observation period of the simulated Fermi-LAT
γ-ray photons database.

3.5 Galactic environment and stars

From our blue planet (on a clear night and void of light pollution), we can catch a glimpse of the
bright lights of the galactic city on the night sky. Our window into the universe, this milky white
band of stars (estimated about 100 thousand million stars), dust, and gas is where our galaxy, the
Milky Way, gets its name from. It is a barred spiral galaxy (our Earth is located in one of its spiral
arms, the Orion Arm) and includes our Solar system (containing the Sun, 8 planets, and a vast
collection of rocks, ice, and dust). 27 000 lightyears from our Earth, at the core of our galaxy, lies
the glutton of a supermassive black hole – Sagittarius A* (about 4 million times the mass of our
Sun) – which we captured for the very first time in 2022 with help of the Event Horizon Telescope
(EHT). Outside our Solar System are other planets, which we refer to as exoplanets or extrasolar
planets (according to NASA, 5470 confirmed exoplanets in 4069 planetary systems have been dis-
covered so far) and which orbit around other stars than our Sun; there are also other spiral, even
elliptical and irregular, galaxies (estimated at roughly 200 billion) distributed not uniformly, but
rather tending to congregate in groups or clusters, throughout our Universe. This naturally spurs
the investigation of the distribution of the galaxies, exoplanets, and stars through our Universe by
means of directional statistics tools, more precisely the rotation of the galaxies, the position and
orientation of the stars in the celestial sphere, or the dispersions in the visibility phase of the black
hole Sagittarius A* on a circle, to cite but these.

A possible large-scale asymmetry of the Universe. In 1983, Kendall and Young [KY84]
verified Birch’s hypothesis [Bir82] that there is a statistical asymmetry of our Universe, which
could indicate that the universe is rotating. For this, they proposed an “indirectional” statistical
approach since the position angle of an axis of plane symmetry is only defined up to multiples of π,
rather than 2π. The elongation and the polarization of double radio source, that Birch examined,
have both this character. More precisely, the discrepancy angle is the acute angle embraced by
these two indirections in the tangent plane to the celestial sphere, and the unit vector locating the
line of sight to the object is a direction in the ordinary sense. Their proposed test showed that the
reported effect is strongly supported by the observation. Moreover, their tests estimated the pole
of the asymmetry and the angular error.

3.5.1 Stars positions

The location on our Earth’s surface that arises as the intersection with the imaginary line that
joints the center of our Earth with a given star is referred to as the position of the star in the
celestial sphere S2. In short, we are dealing with spherical data. According to Garcia-Portugués
(2013) [GP13], for many years histograms that were adapted to the spherical case were the usual
statistical tools to describe this kind of data. Nowadays more advanced and adapted statistical
tools can be used to manipulate a star database as has been done by [GP13, BL15], and [Sei13].
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Data of stars locations. The Bright Star Catalog, distributed from the Astronomical Data Center,
consists of the locations of stars of a certain magnitude.

The Hipparcos mission carried out by the ESA in 1989-1993 contains a massive enumeration
of near stars [P+97]. An improved version of the original dataset is available from [VL07] which
contains a corrected collection of the position of the stars on the celestial sphere as well as other
star variables.

For the study of [BCDM22], they considered the available database HYG (Hipparcos-Yale-
Gliese) (https://www.astronexus.com/hyg; the HYG 2.0 database contains around 11500 obser-
vations), the data introduced by [AL14], and the much bigger database GAIA [DDD20] (including
1.3 billion parallaxes (second release)), all three consisting of star-distance data from Earth.

Statistical tools and data analysis. Garcia-Portugués (2013) [GP13] illustrated his new bandwidth
selectors for kernel density estimation with real spherical star observations (117955 star positions
from the dataset of [VL07]) from the Hipparcos catalog. Such density estimators are a clear step be-
yond the abovementioned histograms. [GP13] estimated the spherical density by using the optimal
smoothing of the bandwidth selector based on asymptotic and exact error expressions for the ker-
nel density estimator combined with mixtures of vM distributions (2.2). For such a large dataset,
[GP13] has shown that his technique is faster (256.01 seconds running time for the bandwidth
selector, 247.34 seconds for the mixtures fitting, and 8.67 seconds for bandwidth optimization)
than usual cross-validation techniques that demand an enormous amount of computing time and
memory resources. [GP13] observed that the higher concentrations of stars are located around two
spots, Orion’s arm (left) and the Gould’s Belt (right) of our Milky Way galaxy.

Budavári and Loredo (2015) [BL15] investigated an old astronomical problem of source iden-
tification in separate observations. In fact, stars and galaxies look different through the eyes of
different instruments, and their independent measurements have to be carefully combined to pro-
vide a complete, sound picture of a multicolor and eventful universe. The association of an object’s
independent detections form multiple sources is a difficult scientific, computational as well as sta-
tistical problem. According to [BL15] the aim is to find records in survey databases with directions
that match within the direction uncertainties by using cross-matching, cross-identification, and
directional, positional, or spatio-temporal coincidence assessment. [BL15] surveyed recent devel-
opments (most of them based on directional statistics) and highlighted important open areas for
future research in their paper (e.g., in Sect. 3.4 of [BL15]). They showed that a closed-form Bayes
factor for directional data can be applied to stars with unknown motion [BL15, Sect. 3.3]. It turns
out that stars pose a significant challenge for cross-identification methods due to their movement
through space at different speeds to alter their apparent positions measurably with time.

Sei (2013) [Sei13] analyzed the Bright Star Catalog (5th Revised Ed.) data of the locations of
188 stars of magnitude than or equal to 3.0 by using a new quadratic model on the sphere defined
in terms of cost-convex functions to estimate the parameters. He compared the quadratic model
and the null model (uniform distribution) by using Akaike’s Information Criterion.

Barabesi et al. (2022) [BCDM22] described the statement that a random sample of n observa-
tions is made of realizations of an absolutely continuous random variable X which is distributed
according to Benford’s law as Benford hypothesis. In fact, Benford’s law was discovered by the as-
tronomer Simon Newcomb in 1881 and independently later by the physicist Frank Benford. Since
then it has become a much-studied probability distribution for significant digits and it has been
applied in many real-world situations. Given a random sample (X1, . . . , Xn) of n observations from
X, the most straightforward translation of the Benford hypothesis into a null hypothesis to be
tested is then

H0 : s(X)
L
= U,

where s(X) refers to the (base-10) log-significant function defined as s(x) = ⟨log10 |x|⟩ with as-
sumption that s(0) = 0, and U is a uniform random variable on [0, 1). Statistical assessment of the
Benford hypothesis is important in many fields. For instance, in astrophysics, it has been recently
shown that the Benford hypothesis has been used to provide empirical evidence that the distribu-
tions of the first digits of many physical quantities of celestial bodies are in good agreement with
Benford’s law (see Sect. 6 of [BCDM22] and references therein). In fact, by considering distances
from Earth to stars, [HF16] explained theoretically (using astrophysical arguments and the mathe-
matical properties of Benford’s law) that empirical observation of such an argument may be viewed
as new independent evidence of the validity of Hubble’s law. Although according to [BCDM22],
most of the applied astrophysical literature either relies on diagnostic checks of the data or performs
a statistical evaluation of first-digit compliance, an accurate assessment of the Benford hypothesis
would then be required. Therefore, [BCDM22] provided a principled framework for the statistical
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evaluation of the Benford hypothesis by first studying the probabilistic structure of many stan-
dard univariate models when they are framed in the space of the significant. Establishing thus the
closeness of a particular model to the Benford hypothesis through a suitable Kolmogorov distance.

3.5.2 Pulsars

Although the name pulsar blends “pulse” and “star”, a pulsar is not a pulsating star but is (from
a pulsating radio source) a highly magnetized rotating neutron star that emits beams of electro-
magnetic radiation (analogous to a lighthouse) out of its magnetic poles. The radiation can only
be observed when the beam of emission is pointing towards the distant observer every time a beam
sweeps past them. For instance, its radiation and photons can be detected by either low-Earth-orbit
or ground-based telescopes. The effect described before is known as the lighthouse effect and this
gives rise to the pulsed nature that ultimately is responsible for the name of these stars – pulsars
[Sch14].

A simplified pulsar model can be portrayed such that the magnetic field consists of open and
closed field lines, with the outermost closed field lines touching the light cylinder and defining the
polar cap region in the surface of the pulsar. The electromagnetic radiation from pulsars is observed
in the form of two conical beams directed along the magnetic axis, believed to be due to the pulsar’s
spin and the magnetic axis being misaligned. [LK05] and [LGS06] have written excellent reference
books about pulsars, and in Schutte’s doctoral thesis [Sch14] one can find a good overview of the
statistical developments of pulsars.

With the launch of several telescopes and satellites, it is possible to detect pulsating radio
sources (e.g., by the Mullard Radio Astronomy Observatory), spot the Vela2 and Crab3 pulsar by
historical evolution of supernovae and supernova remnants, identify pulsar wind nebulae from the
γ-rays data, observe γ-ray pulsars (e.g., with the Energetic Gamma Ray Experiment Telescope),
define important characteristics of pulsars such as its pulse (Crab pulsar) and off-pulse window
(nebula), pulsar timing, etc. This gives rise to even more questions about the source, formation,
and evolution of pulsars in our Universe. According to [Sch14] certain analyses used to be per-
formed on histogram-type light curves with the so-called “eye-ball” technique or visual inspection
of the data in order to identify the off-peak phase interval for example. However, some authors
have recently shown that directional statistics can be used to investigate pulsars data and obtained
interesting outcomes.

Pulsars data. The launch of NASA’s Fermi Gamma-ray Space Telescope (formerly GLAST) in
2008 with its Large Area Telescope (LAT) on board contributed to the gathering of excellent data
to study the high energy behaviour of many pulsars in great detail such as the Crab and Vela
pulsars. It provides a database of γ-ray pulsars, which gives the possibility to study the properties
of the off-pulsed emission of each pulsar, estimate light curves of pulsars to perform subsequent
analyses on these curves in order to understand the pulsar magnetosphere and generate times of
arrival of the photons, attempt to detect the potential emission associated with its pulsar wind
nebulae, and much more (see [Sch14] and references therein). A pulsar timing package Tempo2 is
also available on the Fermi Science Support Center website (https://fermi.gsfc.nasa.gov/ssc/
data/access/lat/ephems) which fits the time of arrivals to a timing model. The Fermi pulsar
database has been used by [Sch14] and [SS16] for their studies.

The National Radio Astronomy Observatory (https://public.nrao.edu/radio-astronomy/
pulsars/), which is a facility of the National Science Foundation operated under a cooperative
agreement by Associated Universities, Inc., provides polarization observations data of single pulses
from radio pulsars. These data were used for the analysis of [McK09] and [McK10].

Statistical tools and data analysis. Pulsar radio emission is renowned for its complicated polarization
behavior, which has motivated McKinnon (2009) [McK09] to study polarization patterns in pulsar
radio emission by presenting a generalized empirical model of pulsar polarization to accommodate a
wide variety of polarization fluctuation geometries. When polarization observations of single pulses
from radio pulsars are displayed in a two-dimensional projection of the Poincaré sphere, a variety
of intriguing polarization patterns are created. Although in many pulsars, two clusters of data
points that reside at antipodal points on S2 are formed by fluctuations in polarization amplitude
that are parallel to the unit vectors, in other pulsars, the formation of the patterns resembling

2The Vela pulsar is the brightest non-transient source of γ-rays in the sky and due its brightness it is traditionally
the first target object for any new γ-ray observatory.

3The Crab pulsar is associated with the supernovae explosion.
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annuli and bow ties is more complex and largely unexplored. McKinnon’s model [McK09] showed
that these patterns arise from polarization fluctuations that are perpendicular to the mode vectors
and that the modulation index of the polarization amplitude is an indicator of polarization pattern
complexity.

One year later, McKinnon (2010) [McK10] presented a simple model for the polarization of
pulsar radio emission used to derive the three-dimensional statistics of radio polarimetry. His
model is based on the fact that the observed polarization is due to the incoherent superposition of
two, highly polarized, orthogonal modes. Orthogonal modes are thought to be the natural modes
of radio wave propagation in the pulsar magnetosphere and their intensities become statistically
independent when the generalized Faraday rotation in the magnetosphere causes the difference in
their phases to be large. The directional statistics derived from its model follow the Fisher family
of distributions (2.5) as well as the Bingham-Mardia distribution with density

fX(θ;κ, ρ) =
1

c(κ, ρ)

sin(θ)

2π
exp{κ(cos(θ − ρ)2)}, θ ∈ [−π, π),

with rotational symmetry about the z-axis as mean direction and where κ and ρ > 0 are two shape
parameters, and c(κ, ρ) is the normalizing constant.

Lombard and Maxwell (2012) [LM12] proposed a non-parametric sequential cumulative sum,
short cusum, procedure based on the Rayleigh test (2.7) to detect deviations from a uniform distri-
bution on the circle and applied it to some data consisting of arrival times of cosmic rays from the
vicinity of a pulsar. The objective is to detect periods of sustained high-energy radiation. Following
a standard procedure in astrophysics, the data are wrapped around a circle of circumference equal
to the period of the pulsar. If no high-energy radiation is present, the wrapped data should be more
or less uniformly distributed on the circumference of the circle, while a non-uniform distribution
should manifest itself during periods of high-energy radiation. The idea behind their method is to
approximate the distribution of the partial sum of a sequence of standard normal random variables
by the distribution of the partial sums of a sequence of transformations of the Rayleigh statistic
(2.7), leading to a standard normal cusum procedure that can be applied to the transformed data.
By applying their method to real pulsar data, the Rayleigh test based on (2.7) assigned a p-value of
0.96 when applied to the first 192 observations and a p-value of 0.05 when applied to observations
193 through 303. This suggests that the data from 193 onwards are non-uniform and that the
data of the first 192 observations confirm that the signals from the lower cusum are indeed a false
positive (when the offset is 0, see [LM12, Eq. (7)]). Moreover, for these pulsar data, they obtained
a kernel density estimate

f̂(θ) =
1

nI0(ρ)

304∑
j=193

exp(ρ cos(θ − θj)),

where θ ∈ (π/2, 5π/2], n ∈ N is the number of samples SIZE and ρ the concentration parameter.
This kernel density estimate has been constructed using a kernel vM density (2.2) with concentration
parameter ρ = 3.5 and its apparent bimodality suggests that the pulsar in question may be a binary
object, that is, two bodies in relatively close proximity rotating about a common axis. [LM12] also
observed that the appropriate decision constant, determined by simulations, is somewhat smaller
than the value suggested by the normal approximation theory and that the multiple cusum (where
the cusum procedures is directly applied to two sequences of partial sums of cosines and sines of the
observed data) also signals at n = 303. For pulsar data that are rotated through an angle of π/4,
i.e., there is no signal at all , their non-parametric cusum is unaffected by any such rotation. Hence
their cusum procedure is rotation invariant in the sense that the outcome of the analysis should not
depend upon which point on the circle is chosen as the origin of angular measurement. However,
as pointed out by [LM12], a limitation of their proposed procedure, shared with the fixed sample
Rayleigh test (2.7), is that it is not useful when the alternative to uniformity is a distribution that
produces a zero expected resultant length.

Later, Lombard et al. (2020) [LHP20] developed a non-parametric rotation invariant circular
cusum for detecting changes in the mean direction and concentration of a circular distribution for
pulsar data. Their methods were designed for situations in which the initial mean direction and
concentration are unspecified. Hence the objective is to detect a change from the initial values,
whatever the latter may be. They applied their concentration cusums to observation 191 through
1250 pulsar data and obtained a uniform distribution in the segment [523, 1250] and non-uniformity
in the segment [191, 522].

Schutte and Swanepoel (2014) [Sch14, SS16] developed a non-parametric sequential estimation
technique, which they referred to as SOPIE (Sequential Off-Pulse Interval Estimation), for the
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off-pulse interval(s) of a source function originating from a pulsar. Their estimation technique
SOPIE is available on R [Sch22]. In astrophysics, in order to attempt to detect potential emissions
from the associated pulsar wind nebula, it is important to study the properties of the off-pulse
emissions by identifying the off-pulse interval of each pulsar accurately. In the literature, the
common identification technique is based on the visual inspection of the histogram estimate of the
pulsar light curve. The “eye-ball” (visual) technique and Bayesian Block method are the most used
ones. SOPIE is a new statistical procedure to estimate the off-pulse interval in the presence of noise.
It is based on a sequential application of p-values obtained from goodness-of-fit tests for uniformity
such as the Kolmogorov-Smirnov, CvM, AD and Rayleigh tests (see Sect. 2.2). They applied their
model to two real-life pulsar datasets, the PSR J1709-4429 pulsar (energy > 0.1 GeV, containing
n = 21153 photon arrival times) and the well-known Crab pulsar PSR J0534+220 (energy > 0.1
GeV, n = 21145), and obtained comparability estimated interval(s) compared to the “eye-ball”
(visual) technique and Bayesian Block method. In [Sch14], the SOPIE model was applied to other
pulsars datasets, namely PSR J0835-4510 (Vela), PSR J2021+3651, PSR J1057-5226, and PSR
J0034-0534 [Sch14, Sect. 5].

3.5.3 Binary stars

Binary stars or binary star systems consist of a pair of stars that orbit about their common center
of mass. So far only 65 thousand binaries are known and it is thought that at least 50% of stars
are binaries. Our Sun might once have had a binary companion star [SL20]. There exist different
classes of binary stars, the important one is the visual binaries in which the two stars can be
distinguished from one another when seen through an optical telescope. According to [Jup95], the
directional aspects of the observations on visual binary stars are its position on the celestial sphere
and the direction z of the axis about which the two stars rotate (with a sign specified by the sense
of rotation). One may consequently address the following questions:

(i) Are the directions z uniformly distributed on the celestial sphere? (see [Gil88] and [Jup95])

(ii) What is the preferred orbital direction for binary stars? (see [Gil88])

(iii) Do current theories of binary star formation predict alignment of orbital poles for all binaries
resulting from the same event of star formation? (see [ABJ+15])

(iv) Assuming that the answer to (iii) is positive: Is this coherence in the pole orientation of young
binary systems preserved by the Galactic kinematics in a volume-limited sample (the solar
neighborhood) consisting of much older systems? (see [ABJ+15])

Database. There is an old dataset by [WH83] of orbits of visual binary stars. More precisely, the
orbits included several categories of binary stars and all orbits have a reliability index of 4 or better.
The first category contains all stars for which the ascending node has been determined from radial
velocity (amounts to 61 pairs). Since a pole to a fully characterized orbit is defined uniquely by
using a right-hand rule, the dataset consists of unit vectors. This dataset has been used for the
study of [Gil88] and [Jup95] (the latter used a suitable data set of 170 orbits of grade 1 or 2).

A more updated database of a visual or an astronomic orbit is available in the 6th Catalog
of Orbit of Visual Binary Stars (COVBS) (http://ad.usno.navy.mil/wds/orb6.html) at USNO
(2001) [HMW01] and of HIPPARCOS parallax (2007) [PLK+97, VL07]. Note that [ABJ+15] (see
their Table 1 and Table 2) selected 95 systems in the master sample based on these two datasets.
In addition, they made use also of other catalogs such as the Simbad database at the Centre de
Données Astronomiques de Strasbourg [G+00] for the spectral type, the 9th Catalogue of Spectro-
scopic Binary Orbits (http://sb9.astro.ulb.ac.be/intro.html) [Pou00], the CORAVEL spec-
tro velocimeter [BMP79] and the HERMES spectrograph installed on the Mercator telescope [R+11]
for the radial-velocity measurements. For more information see [ABJ+15, Sect. 3].

As pointed out by [ABJ+15], [R+10, Table 11] collected orbits for visual binaries with HIPPAR-
COS parallaxes larger than 40 mas and with primary spectral type F6-K3, and [K+12] compiled
an exhaustive list of stars nearer than 8 ps from the Sun.

Statistical tools and data analysis. Gillett (1988) [Gil88] gave a statistical demonstration (a more
rigorous analysis than [Ber83]) that the orbital planes of visual binary stars are randomly oriented.
For this, he used directional statistics. More precisely, Giné’s nonparametric test statistics (see
Sect. 2.2) yielded that the axes to the orbits of 102 visual binary stars, for which the ambiguity of
inclination can be resolved to ±180◦, are randomly distributed at > 95% confidence and that their
distribution is also random against the alternative of Bingham distribution (see special case under
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the Eq. (2.5)). Moreover, by using Beran’s test (see Sect. 2.2) and the alternatives of a Bingham
and a Fisher distribution (2.5), binaries for which the true ascending node can be determined are
also randomly oriented.

Jupp (1995) [Jup95, Sect. 3] studied if the directions of the axis about which the two stars
rotate (with a sign specified by the sense of rotation) are uniformly distributed on the celestial
sphere. He observed that testing the hypothesis of uniformity is complicated by (i) the mirror-
image ambiguity of many visual stars binaries, i.e., for these binaries, it is not possible to distinguish
between the direction z and its reflection (2uuT − I3)z in the line of sight along its position u; and
(ii) possible selection effects, with orbits having z close to ±u being more likely to be observed than
other orbits. Therefore since z is subject to mirror-image ambiguity, the Fisher distribution (2.5)
cannot be used directly. However, according to [Jup95], it is appropriate to consider the conditional
distribution given u of the observable parts Uz and ±(I3 − U)z of z, where U = uuT denotes the
orthogonal projection onto the line of sight. In fact, the distribution of observable u is influenced
by the positions of observatories on the Earth’s surface, and both Uz and ±(I3 − U)z depend on
u. In order to allow for possible selection effects, [Jup95] considered the Watson distribution (2.6)
with β as a parameter measuring the strength of the selection effect, i.e. for β = 0 there is no
selection, for β > 0 we tend to observe those z which are parallel to ±u, and for β < 0 we tend
to observe those z which are normal to u. Combining the conditional Fisher distribution (2.5) and
the Watson densities (2.6) yields a model that can be regarded as a directional regression model in
the spirit of that used by [KY84] to analyze a problem about a possible large-scale asymmetry of
the Universe (for further details, see the introduction of Sect. 3.5). [Jup95] obtained no evidence of
non-uniformity, which is in agreement with the analysis of [Ber83] and [Gil88] when restricted to
orbits not subject to mirror-image ambiguity. Concerning possible selection effects, he concluded
that there is a higher probability of selection for orbits with z parallel to ±u, this means with orbits
having inclination nearer to 0◦ or 180◦ are more likely to be selected. The latter agrees with the
results obtained informally by [PL67]. Moreover, [Jup95] found out that the Watson model fits the
data well by means of the Kolmogorov-Smirnov test, which is not significant at the 5% level.

Agati et al. (2015) [ABJ+15] tested if the orbital poles of binary stars in the solar neighbourhood
are isotropically distributed on the celestial sphere by using spherical statistics, more precisely the
Rayleigh and Beran tests. The problem is plagued by ambiguity on the position of the ascending
node, which led them to first analyze the binary stars data and filter among the 95 systems with
an orbit in the 6th Catalogue of Orbits of Visual Binaries 51 systems thanks to the radial-velocity
data (obtained from the CORAVEL database). After ordering the binary systems by increasing
distance from the Sun, the false-alarm probability of rejecting the null hypothesis of isotropy while
it is true was computed for subsamples of increasing size, from n = 1 up to the full sample of 51
systems. By using a jack-knife approach to remove one system at a time from the full sample,
Rayleigh’s and Beran’s tests delivered a false-alarm probability between 1.5% and 0.1% (depending
on which system is removed from the sample). This means that no uncertain conclusion shall be
taken. [ABJ+15] fostered to do further studies on this problem, especially in the Gaia era.

3.5.4 Supernovae

A supernova is the set of phenomena resulting from the implosion of a star at the end of its life, in
particular a gigantic explosion that is accompanied by a brief but fantastically large increase in its
luminosity. Seen from Earth, a supernova therefore often appears as a new star, whereas in reality,
it corresponds to the disappearance of a star. Observing a galactic supernova is very difficult, but
locating one in the sky by the neutrinos alone is more reasonable. One of the main reasons is that
the MeV-neutrino burst precedes the optical explosion by several hours so that an early warning can
be issued to the astronomical community and hence they can specify the direction to look for the
explosion. Therefore the optical signal from a supernova, if observed, can give the most accurate
determination of its position in the sky. These observations are detected by optical telescopes, or by
ground-by-air Cherenkov telescopes (permitting to measure multi-GeV to TeV photons associated
with the accelerated protons in the shock after the supernova environment becomes transparent
to high energy photons), or a suitable x- or γ-ray satellite (like ESA’s INTEGRAL (International
Gamma-Ray Astrophysics Laboratory) satellite that could resolve the supernova with an angular
resolution of 12 ar-minutes, that means that the supernova would be visible in these wavebands
starting from the optical explosion). However, it is not always possible that the supernova is seen
in the entire electromagnetic spectrum (e.g., due to not suitable x- or γ-ray satellite operating,
the air Cherenkov telescopes are blinded by daylight, or the satellites and telescopes simply do not
look in the right direction at the right time). Therefore the best way to locate a supernova by
its core-collapse neutrinos is through the directionality of elastic scattering in a water Cherenkov
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detector such as Super-Kamiokande [BV99, AS02]. This naturally calls to use directional statistics
tools to extract information from these “directional data”.

Database. The data for the supernova SN1987A in the Large Magellanic Cloud [H+88] can be
found in the Kamiokande-II experiment group (https://www-sk.icrr.u-tokyo.ac.jp/en/sk/
about/detector/).

There are some catalogs and databases where supernovae datasets can be found: the Lyon-
Meudon Extragalactic Database (http://www-obs.univ-lyon1.fr/hypercat/), the NASA/IPAC
Extragalactic Database (http://nedwww.ipac.caltech.edu), the Sloan Digital Sky Survey (http:
//www.sdss.org/), the IAU Central Bureau for Astronomical Telegrams (http://cfa-www.harvard.
edu/iau/cbat.html), the CfA List of Supernovae (http://cfa-www.harvard.edu/cfa/ps/lists/
Supernovae.html), the Asiago Supernova Catalogue (https://heasarc.gsfc.nasa.gov/W3Browse/
all/asiagosn.html), the Sternberg Astronomical Institute Supernova Catalogue (http://www.
sai.msu.su/sn/sncat/), and the Astronomy Section Rochester Academy of Science (https:
//www.rochesterastronomy.org/supernova.html).

Concerning the detection of high energy neutrinos, the IceCube at the South Pole [K+03] or
nothern projects like the Gigation Water Detector at Baikal [D+01] and Nemo in the Mediterranean
[C+02] provided such data.

Statistical tools and data analysis. Konishi et al. (1993) [KKC+93] tested if there is a possible
spherical distribution of the electrons from neutrinos emitted from the supernova SN 1987A, which
is in the large magellanic cloud. Many investigators have claimed, using various statistical methods
on the basis of the polar angle, that the IMB data seem to have a nonisotropic distribution, whereas
the Kamiokande data show an isotropic distribution. However, they do not seem to have succeeded
in testing spherical distributions using both the polar and azimuthal angles. In most of the cases,
they only consider the polar angle while keeping the azimuthal angle uniform. [KKC+93] used a
test for the mean direction of the spherical data and concluded that both angular distributions
observed by the IMB and Kamiokande groups do not contradict the assumption that all events are
due to a neutrinos capture process in accordance with the standard model of a supernova explosion.

Another holy grail of low-energy neutrino astronomy is the observation of a galactic supernova.
An important question is how well can one locate the galactic supernova in the sky by the neutrinos
alone. Tomàs et al. (2003) [TSR+03] studied this question by analyzing the performance of different
methods for extracting the galactic supernova direction and identified a simple approach that is
nearly optimal, yet independent of the exact galactic supernova neutrino spectra. They used
a two-dimensional Gaussian distribution on a sphere as a toy model to extract information from
directional data in order to explore some parameter-free methods that only use the data and exploit
the symmetries inherent in the physical situation.

3.5.5 Interstellar medium

The interstellar medium (ISM) contains primordial leftovers from the formation of galaxies, detritus
from stars, and the raw ingredients for future planets and stars. Studying ISM is primordial to
better understand the structure of the galaxy and the life cycle of stars. Astronomers discovered
that magnetic fields are a major agent in the ISM of spiral, barred, irregular, and dwarf galaxies
(see, e.g., [Cru12] and [HH12]). Recently in astrophysics, a particular interest has been given to
examining the relationship between the orientations of the magnetic field projected in the plane of
the sky and the morphology of the structures in the total column density of the ISM. This can be
translated by the interest of characterizing the relative orientations between two sets of overlapping
directional data, meaning to determine whether or not the two sets of directions are preferentially
parallel or perpendicular to each other. This leads to the need for robust statistical modeling of
orientation effects.

For instance, in 2012, the ESA’s space satellite Herschel viewed and collected important data
of the Vela-C molecular cloud, which is a giant molecular cloud and one of four subregions of the
Vela Molecular Ridge – a vast star-forming complex in the plane of our Milky Way galaxy. In this
cloud, stars are being born and it is considered to be a rare example of a nearby and massive cloud
in the early evolutionary stage [BNN+04, N+09, S+17]. Coming back to our problem, studying the
overlap of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol)
and the columns density maps density in the regions of the Vela C cloud is of great interest.

Database. For the Vela C molecular cloud data set, the BLASTPol provided, during its flight
in 2012, the linearly polarized emission (stokes I, Q, and U) observations [G+14] and the ESA’s

26

https://www-sk.icrr.u-tokyo.ac.jp/en/sk/about/detector/
https://www-sk.icrr.u-tokyo.ac.jp/en/sk/about/detector/
http://www-obs.univ-lyon1.fr/hypercat/
http://nedwww.ipac.caltech.edu
http://www.sdss.org/
http://www.sdss.org/
http://cfa-www.harvard.edu/iau/cbat.html
http://cfa-www.harvard.edu/iau/cbat.html
http://cfa-www.harvard.edu/cfa/ps/lists/Supernovae.html
http://cfa-www.harvard.edu/cfa/ps/lists/Supernovae.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/asiagosn.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/asiagosn.html
http://www.sai.msu.su/sn/sncat/
http://www.sai.msu.su/sn/sncat/
https://www.rochesterastronomy.org/supernova.html
https://www.rochesterastronomy.org/supernova.html


Herschel satellite dust-continuum observations its total column density maps [P+10].
Other public column density maps of molecular clouds are available in Soler’s GitHub (http:

//github.com/solerjuan/magnetar) (see also [Sol19] and references therein).

Statistical tools and data analysis. Motivated by the astrophysical problem of characterizing the
relative alignment of the magnetic field projected on the plane of the sky and the orientations
of structures in the ISM, Jow et al. (2018) [JHS+18] presented a robust and efficient method
based on the projected Rayleigh statistics for determining whether two pseudo-vector fields tend to
align, either preferentially perpendicular or preferentially parallel. The projected Rayleigh statistic
(PRS) is a modification of the classical Rayleigh statistic (2.7) and thus is a test for non-uniform
and unimodal clustering of the angle distribution. For a set of n relative orientation vectors θi, the
weighted PRS is defined as

V :=
2∑n

i=1 wi

[
n∑

i=1

cos(2(θi − θ0))

]2
, (3.3)

where the wi correspond to the statistical weights assigned to each angle θi. [JHS+18] compared
the efficiency of the PRS against histogram binning methods such as the histogram of relative
orientations (HRO) method by [SHM+13, S+17] which has been used for characterizing the relative
orientations of gas column density structures with the magnetic field projected in the plane of the
sky. The HRO method is a technique for analyzing the relative orientations of interstellar magnetic
fields and emission morphologies in molecular clouds. It is an obvious way to investigate the
underlying distribution of a sample of angles by plotting a histogram of that sample. For this
study, [JHS+18] examined the data for the Vela C molecular cloud from Herschel submillimetre
observations and the magnetic field from observations by the BLASTPol. They found out that
(i) the PRS is statistically more powerful than and loses sensitivity slower than the HRO as the
distribution of angles approaches uniformity, (ii) the sensitivity of the PRS also improves faster
with larger sample sizes as the HRO, (iii) for various subregions of the Vela C molecular complex,
the PRS reports a higher statistical significance for the correlations. [JHS+18] showed that their
method has the potential for a broad range of applications in astronomy.

By taking into consideration the outcomes of [JHS+18], Soler (2019) [Sol19] presented an update
of their HRO method by making use of PRS for circular data. They studied the relative orientation
between the magnetic field projected on the plane of sky B⊥ inferred from the polarization thermal
emission of Galactic dust (observed by Planck) and the distribution of gas column density NH

(derived from the observations by Herschel). In (3.3), if |V | is small, there is no evidence that
NH and B⊥ are oriented towards the reference angles 0 or 90◦, while for |V | relatively large,
there must be some concentration around the reference angles. By testing their improved HRO to
dark (molecular) stars clouds and nebulae such as Taurus, Ophiuchus, Lupus, Chamaeleon-Musca,
Corona Australis, Aquila Rift, Perseus, IC5146, Cepheus, and Orion, they found that (i) the mean
relative orientation between NH and B⊥ towards these regions increases progressively from 0◦,
where the NH structures lie mostly parallel or perpendicular to B⊥, (ii) the slopes of the NH

pdf tail are steepest in the regions where NH and B⊥ are close to perpendicular, (iii) no evident
correlation exists between the star formation rates, estimated from the counts of young stellar
objects, and the relative orientation between NH and B⊥ in these regions.

3.5.6 Star Sgr A*

The EHT imaged for the first time black holes at event horizon scales such as the Sagittarius A*
(Sgr A*) which was one of its primary observing targets. Sgr A* is a spinning black hole inside
our Milky Way’s heart. In addition, closure phases along different baseline triangles carry a large
amount of information regarding the structures of the images of black holes in interferometric ob-
servations with EHT. From a directional statistics point of view, closure phases are an example of
circular statistics, as they can be described as points on the unit circle characterized by an angle.

Database. General relativistic magnetohydrodynamic (GRMHD) simulations have successfully re-
covered observational parameters of black holes such as the Sgr A* and M87. Medeiros et al. (2017)
[MCÖ+17] as well as Roelofs et al. (2017) [RJS+17] used these GRMHD simulations (e.g., b0-high
from [Shi13]) as basis for their study and adapted them for Sgr A*.

Statistical tools and data analysis. [MCÖ+17] computed the dispersions in the visibility phase of
Sgr A* by taking into account the fact that angles are directional quantities. More precisely, they
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used five different GRMHD models (denoted by Model A-E), which permitted them to simulate the
Sgr A*, to (i) present the structure of the complex visibilities (where the average visibility phases
are shown in contours and the visibility amplitudes in color maps), and (ii) explore the structure
of the variability in the visibility phases (where the dispersion in visibility phase is shown in color
and the average visibility phase in white contours for comparison) of the black hole [MCÖ+17,
Fig. 3-4]. They obtained these averages by finding the phases and amplitudes of each snapshot and
subsequently averaging them. Since the angles are directional (periodic) quantities, they made use
of circular statistics to compute (i) the mean of the unit vectors that correspond to the distribution
of angles, and (ii) the dispersion of a distribution of angles.

[RJS+17] did a similar study as [MCÖ+17] by quantifying intrinsic closure-phase variability
in a measured closure-phase track containing variations from image and observational variability.
The constructed metric is based on circular statistics and represents the fraction of variability in a
given closure-phase track that is not due to thermal noise. In fact, closure phases are an example
of circular data. This brought [RJS+17] to employ classical circular techniques [MJ00] to estimate
the spread on a circular data set.

3.5.7 Dark matter: WIMP direct detection

It turns out that roughly 95% of our Universe is made of a mysterious, invisible substance that no
one has ever seen. From this 95%, 68% is dark energy, since we know how it affects the universe’s
expansion, the other 27% makes up the dark matter. The remaining 5% of the universe is made of
normal matter that has been observed with our instruments. Detecting dark matter is very difficult
since it does not appear to interact with electromagnetic fields, i.e., it does not absorb, reflect, or
emit electromagnetic radiation. That is also why it is referred to as “dark” matter.

Weakly Interacting Massive Particles (WIMPs) are hypothetical particles that are one of the
proposed candidates for dark matter. Via the elastic scattering of WIMPs on detector nuclei it is
possible to directly detect non-baryonic dark matter. In fact, these direct detection experiments
are designed to measure the collision of WIMPS with nuclei in the laboratory. In addition, they
are presently reaching the sensitivity required to detect neutralinos, which are the lightest super-
symmetric particles and an excellent WIMP candidate. In the search for WIMP with a directional
detector, one can consider three simple hypotheses to test:

(i) Is the recoil direction distribution uniform? In case of rejection, we would detect a WIMP
signal.

(ii) Is the recoil distribution rotationally symmetric about the direction of solar motion? In case
of rejection, we would detect the flattening of the Milky Way halo.

(iii) Does the mean direction deviate from the direction of solar motion due to a tidal stream?

Investigating these questions can be done for a range of observationally motivated halo models
(taking into account the detector response) by using directional statistical tests.

Database. Data from direct detection experiments can be found in [MG05b, MGS05] and [OG14].
For instance, the data in [OG14] consists of 304 signal events in the halo-only case and 316 in the
halo+stream case. O’Hara and Green (2014) [OG14] have binned the data on a sphere using a
HEALPix [GHB+05] equal angular area discretization.

Statistical tools and data analysis. Morgan and Green (2005) [MG05b] investigated the detection of
a WIMP signal from possible backgrounds due to, for instance, neutrons from cosmic-ray induced
muons or natural radioactivity by using a variety of (non-parametric) spherical statistical tests.
In fact, WIMPs are hypothetical, new elementary particles that have been postulated to solve the
cosmological problem of dark matter in space. Due to the very small expected event rates, it is
crucial to distinguish a putative WIMP signal from an isotropic background when the uncertainty
in the reconstruction of the nuclear recoil direction is included in the calculation of the expected
signal. These recoil directions constitute vectors, or, if the senses are unknown, undirected lines or
axes, and so can equivalently be represented as points on a sphere. [MG05b] studied the number
of events required (i) to reject isotropy and hence detect a WIMP signal by using the modified
Rayleigh, modified Bingham, Beran, and Giné statistics (see Sect. 2.2), (ii) to reject rotational
symmetry (see Definition 1) and detect flattening of the Milky Way halo (which can be modeled
as an isotropic sphere with a certain distribution) for a range of observationally motivated halo
models, taking into account the detector response, by considering the modified Kuiper statistics,
and (iii) to detect a deviation in the mean direction from the direction of solar motion due to a tidal
stream. The advantage of these spherical tests, unlike likelihood analysis, is that they do not require
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any assumptions about the form of the local WIMP velocity distribution (even if the properties
such as the shape, velocity anisotropy, and density profile of the Milky Way halo at the solar
radius were accurately determined there would likely be a wide range of local velocity distributions
consistent with these properties). Furthermore, [MG05b] also proposed a WIMP search strategy
with a directional detector that can be divided into three regimes: (1) the simple search phase
(aiming to detect a non-zero signal, i.e. an anomalous recoil signal above what is expected from
backgrounds), (2) the confirmation stage (at this point the experiment would collect more data
and aim to confirm the recoil signal as Galactic in origin by searching for the expected anisotropy
in the recoil directions; in statistical terms one might ask if the distribution of observed recoil
directions is isotropic), and (3) the exploitation phase (extraction of information about the form
of the recoil anisotropy and hence the location WIMP velocity distribution, flattening of the halo
or the presence of a tidal stream). At the end of their analysis, they found out that if the senses
(the signs) of the recoils are known then between 10 and 30 events, depending on the read-out
plane, will be sufficient to distinguish a WIMP signal from an isotropic background for all of the
considered halo models, with the uncertainties in reconstructing the recoil direction only mildly
increasing the required number of events. On the contrary, if the senses are unknown then these
numbers are increased by roughly an order of magnitude.

Morgan et al. (2005) [MGS05] is a continuation of [MG05b]. They repeated the same analysis
as in [MG05b] but for a detector with a less complex 2-d read-out by using non-parametric circular
statistics. More precisely, the recoil directions projected onto the read-out plane constitute 2-
d vectors, or, if the senses are not known, undirected lines or axes, and so can equivalently be
represented as points on a circle, parametrized by their angle relative to some fixed point/direction.
For their analysis, they applied the Rayleigh (2.7), Kuiper (2.8), and Watson (2.9) statistics to test
isotropy, the Wilcoxon signed-rank statistic to test reflective symmetry, and the Watson mean
direction test. They observed that the potential for detecting a WIMP signal (via its anisotropy)
with a 2-d read-out detector is similar to that for a detector with a full 3-d read-out, provided that
the reduced angle distribution is utilized and that the sense of the recoils can be measured.

Some time later, O’Hara and Green (2014) [OG14] presented non-parametric directional statis-
tics tests based on the modified Kuiper test and a profile likelihood test to determine the number
of events required to distinguish a WIMP signal from isotropic backgrounds and thus detect a
dark matter stream. In particular, they tested if there is the presence of a distribution without a
stream against when a stream is present in the data. They considered the direction of the nuclear
recoils, which consist of 304 signal events in the halo-only case and 316 in the halo+stream case,
and binned them on a sphere using a HEALPix equal angular discretization. As a concrete exam-
ple, they performed their tests by using Bayesian parameter estimation on data containing recoils
from a Sagittarius-like tidal stream with varying density fractions and noted that the observed
distributions of the test statistics become further separated from the null distributions when the
density fraction increases. They showed that (i) the detectability of a stream is highly dependent
on its speed and position in relation to the lab velocity and (ii) if a moderately high-density WIMP
stream is present in the Solar neighbourhood then there are good prospects for its detection using
directional dark matter detectors.

3.5.8 Galaxies dynamics and clustering

One of the pillars of cosmology is that our Universe is isotropic, meaning the same in all directions.
However, some discoveries showed that there may be cracks in that pillar. For instance, since 1980,
possible signatures of a comic anisotropy began to appear. At that time, in 1982, Birch [Bir82] found
an apparent anisotropy in the relation between the polarization vectors of the magnetic field of the
radiation received from galaxies and their respective position angles. Birch reinforced the hypothesis
from Gamow that the whole universe is rotating as a possible explanation for the galaxies’ rotation.
Later other scientists obtained similar results to Birch’s and found further evidence of anisotropy
in observations of supernovae, fine structure of quasars, and the CMB dipole, quadrupole and
octopole to name a few (for more information see, e.g., [MPC17] and references therein). All this
potential evidence motivates the search of new observational anisotropy signatures, analyses of the
consequences and to conquer the galaxy dynamics in general (in the sense of distribution, rotations,
clusters, etc.). For instance, it is of high interest to

(i) look for anisotropies in galaxies’ distributions, more precisely in the distributions of their
position angles. The position angles distribution will not be uniform if there is a cosmic
anistropy related to a cosmic relation.

(ii) check if there is any anisotropy in the propagation of radio polarizations from cosmologically
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distant galaxies.

(ii) extract rotation measures from spectral polarization data in order to provide useful informa-
tion about the magnetic fields in our Galaxy and in the host galaxy.

(iv) study the scale and dispersion of galactic alignments by modeling the random tidal torques
of spiral rotating galaxies. The angular moment is conserved as quantity (so long as only
gravitational forces act) and its distribution amongst the galaxies should give interesting
information about their origin and history.

(v) test if there is any statistically significant alignment observed between the brightest galaxy
and its parent cluster or with some other relevant position angle (such as that of the first
brightest galaxy or with the line of separations joining the two). Detection of alignment may
offer support for either the pancake scenario of galaxy formation or the tidal interaction of
member galaxies with the cluster’s potential in the hierarchical scenario.

Database. Coutts (1996) [Cou96] already remarked in 1995 that the size of the samples of spiral
galaxies has varied from 20 [HS82] to 30760 [MD79], and the total number of galaxies examined in
published studies is now in excess of millions.

For the brightest binary galaxies, the data is obtained from Palomar Observatory Sky Survey
(POSS) (https://skyserver.sdss.org/dr5/en/proj/advanced/skysurveys/poss.asp) prints
on original Kodak paper (e.g., [Str88]). There are two different measurements: the red prints
(POSS E) corresponding to binary components and cluster galaxies which appear brightest on
them, and blue prints (POSS O) representing pairs whose members appear close together or nearly
overlapping on E prints. Among the POSS O prints, intrinsically red (early-type) galaxy images
appear smaller and thus render them more easily resolvable for position-angle determination. In
the study of [TCF92], a sample of 55 clusters of galaxies obtained by machine scans of this Palo-
mar 48-inch Oschin Schmidt plates (a telescope at Mount Palomar in southern California carried
out in the 1905’s the first POSS) were used as angular data. In [Str88, Str90] one can find the
position-angle data of 405 Abell clusters (Table I in [Str88]) and of 68 clusters of the Rood-Sastry
B type (Table I in [Str90]). These data consist of position-angles of the major axis of each member
of the brightest binary members, the separation vector joining their centers, and the long axis of
the galaxy distribution of the parent cluster.

On NASA’s HEASARC portal, the user can find the Morphological catalog (https://heasarc.
gsfc.nasa.gov/W3Browse/galaxy-catalog/mcg.html) and the ABELL database (https://heasarc.
gsfc.nasa.gov/W3Browse/all/abell.html). The Morphological catalog is a database of 30642
galaxies (of magnitude 15 or brighter) assembled in the 1960s-1970s, from inspection of the plates
of the POSS, carried out in the 1950s. The ABELL database contains information from catalogs
of clusters of galaxies. Each cluster of galaxies has at least 30 members within the magnitude M3
(which is the third brightest cluster member (BCM)) to M3+2 and each with a nominal redshift
less than 0.2.

The publicly available HyperLEDA catalog (https://leda.univ-lyon1.fr/intro.html) con-
tains a database and a collection of tools to study the physics of galaxies and cosmology. For
instance, it provides a series of bright galaxy catalogs (RC1, RC2, RC3). For the study of [MPC17],
the HyperLEDA catalog [P+03] with 833844 galaxies was used for their simulations.

For the polarization database, the catalog of [TI80] contains position angles of polarization and
was used in the study of [SJ01]. For the study of [JR99], they collected different galaxies databases
from [CFJ90], [ER79, ER80] (which are available on the NASA-ADC archives), [SNKB] containing
polarization angles, [Bie84, Bie84], and [Bir82].

The Nearby Galaxies catalog from [Tul88] provides a collection of observational data on galaxies
(with systemic velocities less than 3000 km/s) from Tully and Fisher [FT81] and Shapley-Ames
samples.

Concerning the dataset for atomic hydrogen emission, there are publicly available observations
of the emission by atomic hydrogen at 21 cm wavelength in the HI 4π (HI4PI) survey [B+16].
This survey is based on data from the Effelberg-Bonn Hi survey [K+11a] and the Galactic All-Sky
Survey [MG+05a, K+05]. This data has been used for the study of [S+22].

Statistical tools and data analysis. Struble (1988) [Str88] analyzed the position-angle data of the
brightest binary galaxies for 405 Abell clusters (obtained from POSS prints). He examined the
alignment of the second brightest galaxy with a parent cluster for the specific case of the components
of the brightest binary galaxies in Abell clusters. In particular, he applied the Rayleigh test (2.7)
to test the uniformity of axial directions for the position-angle of the major axis of the first (ϕ1)
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and second (ϕ2) brightest component. In fact, the orientation of each component of a binary
galaxy, the separation vector, and the long axis of the parent cluster are unrelated to Earth’s
rotation axis, so the distributions of position-angles on the sky are useful in detecting systematic
errors in measurements. The Rayleigh test (2.7) showed that the ϕ1 distribution deviated from
uniformity at the 1% significance level and the ϕ2 distribution at the 2% significance level. This
led [Str88] to expect that these two position-angles show some correlation. [Str88] evaluated the
statistical significance of circular correlation coefficients. In contrast to the results for isolated
field binaries, he found significant correlations between position-angles of both components of the
binary and their line of separation. These strong alignments were attributed to both radial and
circumferential orientations of the major axis of the fainter component with respect to the brighter
present among the binaries. Compared to previous studies, the position-angles of the brightest
component showed a weaker alignment with the long axis of the galaxy distribution of the parent
cluster, but the position-angles of the second brightest component showed no correlations with the
cluster position-angle.

Later in 1990, Strublle [Str90] did a similar statistical study as in [Str88] by considering a sample
of 68 clusters of the Rood-Sastry B type (like Coma, containing two luminous galaxies brighter than
the remaining members). He found that (i) the major axis of the brightest galaxy is aligned not
only with the long axis of the parent cluster (as found in the previous studies), but also with the
position-angle of the line of separations between the first and second brightest galaxy, and that (ii)
the second brightest galaxy is aligned with the long axis of the parent cluster and weakly aligned
with the first.

Tucker (1988) [TP88] investigated the alignment of clusters with brightest member galaxies,
i.e., if the major axis of a BCM galaxy tends to be aligned with the major axis of the parent
cluster. In their study, they used the Kuiper test (2.8) for angular data to test nonuniformity in
the distribution of φCG, the acute angle made by the galaxy and cluster. For their dataset of 32
BCM galaxies in Abell clusters, they found that (i) the alignment of BCM galaxies with clusters
is not significant, (ii) there is no significant trend of φCG with isophote size, and (iii) significant
isophote rotation in individual galaxies is uncommon.

Trèvese et al. (1992) [TCF92] studied the orientation of clusters of each galaxy, and the direction
of the line joining each galaxy with the cluster center or with the brightest galaxy, as well as
all possible relative angles between these directions. For this, they did a statistical analysis by
applying various statistical tests for angular data of a sample of 55 clusters of galaxies obtained by
machine scans of Palomar 48-inch Schmidt plates, as part of a program that has been undertaken
to analyze in a uniform manner the properties of a larger sample of galaxy clusters. Among the
various statistical tests, they applied the Rayleigh test (2.7) (i) to detect possible deviations from
uniformity of the distributions of the position angle of the cluster θC , the position angle of the first-
ranked galaxy θ1, the position angle of the second-ranked galaxy θ2, and the position angle of the
separation vector between the first and the second-ranked galaxy θR, and (ii) to the distribution of
a subsample of galaxies in each cluster defined by 10-20 brightest galaxies within 3 core radii from
the cluster center, and having ellipticity ϵ ≥ 0.2. Furthermore, they computed (iii) the correlation
between all the different pairs formed with the angles θC , θ1, θ2, and θR by using the statistical
parameters appropriate for circular data

Cab = Cov(θa, θb)(Va, Vb)
−1/2, a, b,= C,R, 1, 2,

where Va = E[1 − cos(θa − θa)] is the sample variance of θa and Cov(θa, θb) = E[2 sin( 1
2 (θa −

θa) sin(1
2 (θb − θb)] is the covariance of θa and θb. They obtained that for (i) none of the four

distributions showed significant deviations from uniformity, indicating that the data acquisition and
reduction procedures do not introduce important biases, and (ii) there is no preferred orientation
for 48 cases, for the five clusters (A2088, A2093, A2100, A2122, and A2124) belonging to the
same plate, there is a significantly preferred orientation but due to guiding problems during the
exposure (as shown by the alignment of the stellar images), and for the two remaining clusters
(A376 and A505) there is a preferred orientation with 92% and 95% significant confidence levels,
respectively. Hence for (ii), they concluded that there is, in general, no effect present, except in
some peculiar cases. For (iii), they found a correlation of θ1 with θC (significant at the 99.8% level)
and a correlation of θR with θC (significant at the 99.9% level).

In order to determine a possible alignment of the galaxy, one of the most favored theories for
the origin of angular momentum is the tidal torque theory of Peebles (1969) [Pee69]. Coutts (1896)
[Cou96] used circular statistics to model random tidal torques exerted by galaxies for a dataset
of 1000 clusters of various sizes. More precisely he used the Dimroth-Watson distribution (2.6) to
model the dispersion of a cluster of galaxies initially aligned in the plane of the shock produced
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by a pancake collapse. He showed that the Dimroth-Watson distribution is a good model for the
results of numerous random small rotations on a sphere in a way analogous to that in which the
Gaussian is the result of numerous small movements on the line. Hence, he concluded that an
initial alignment is not generally dispersed by subsequent torques.

Jain and Ralston (1999) [JR99] tested a new and independent data set of 361 points under
the null proposal of statistical independence of linear polarization alignments relative to galaxy
axes versus their angular positions. The null hypothesis was tested via maximum likelihood (ML)
analysis of best fits among numerous independent types of factors distributions. More precisely
they used Jupp and Mardia’s invariant correlation test statistics for this study. They found that
the null proposal is not supported at the level of less than 5% to less than 0.1%.

Sarala and Jain (2001) [SJ01] proposed a new method for the extraction of rotation measures
from spectral polarization data. The polarizations of radio waves from cosmologically distant
sources undergo Faraday rotation upon propagation through galactic magnetic fields. This effect
provides very useful information about the magnetic fields in our Galaxy as well as in the host galaxy
[ZRS83, Val97]. Their method is based on the maximum likelihood analysis of the Mac-Donald-
Bunimovitch (MB) and vM distribution (2.2) of the polarization angle. The MB distribution has
the pdf

fMB(θ) :=
1 − ξ2

π(1 − µ2)3/2

[
µ sin−1(µ) +

π

2
µ + (1 − µ2)1/2

]
,

where µ = ξ cos(2θ − 2θ) and 0 ≤ ξ ≤ 1, θ ∈ [0, 2π) are respectively concentration and location
parameters. It turns out that their method is statistically more efficient as well as computationally
more convenient than the standard χ2 procedure if the number of data points is very large.

Menezes et al. (2017) [MPC17] studied the distribution of position angles around 1 million galax-
ies belonging to the HyperLEDA catalog by applying diverse statistical methods to this directional
data sample. Each direction in the sample can be represented by a unit vector that forms an angle
with a reference direction. By using classical circular statistical tools, they tested (i) the (local)
medium alignment (this test consisted in determining the value of a parameter that quantifies how
near the uniformity a directional data sample is) and (ii) the directional alignment. They even
proposed a statistical test SD designed for sets of directional data that measures the level of angles
concentration for objects relatively near in space. It is defined as the sum of all the dispersion of a
set of directional angular data θ1, θ2, . . . , θn around a given angle (also known as circular average
standard deviation) D divided by the total number n of galaxy data

SD =
1

n

n∑
j=1

Dj .

They showed that SD tends to be smaller in distributions of directional data with some alignment,
as compared to those where the angles are randomly distributed. This means that the value of SD

can be used as an indicator of the presence of an alignment in the distribution. In conclusion, they
obtained that, with a high probability, these galaxies do not seem to be randomly positioned in
the sky (anisotropy appeared in the form of a non-homogeneous position angle distribution in the
celestial sphere, as well as in the presence of local alignments), and that there are strong alignments
in the directions [120◦, 180◦], [±30◦,±75◦], and [210◦, 270◦]. However, this could be due to the size
of the used catalogue or that possible alignments in different redshifts may be hidden by the effect
of superposition of data in the celestial sphere. Nevertheless, this shows evidence of a possible
existence of a cosmological anisotropy in the Universe or an observational bias due to diverse local
effects, so further studies are needed to favor the existence of a global anisotropy.

Soler et al. (2022) [S+22] used circular statistics to identify the filamentary structures in the
neutral atomic hydrogen (Hi) emission toward the Galactic plane and quantified their orientations.
More precisely, they applied the projected modified Rayleigh statistic proposed by Durand and
Greenwood (1958) [DG58] and given by

V =

∑
ij wij cos(2θij)√∑

ij wij/2
, (3.4)

for specific directions of interest θ = 0◦ and 90◦ such that V > 0 or V < 0 correspond to preferential
orientations parallel or perpendicular to the Galactic plane, respectively, to determine whether the
distribution of angles is not uniform and peaked at a particular angle. Here the indices i and j
run over the pixel locations in the two spatial dimensions for a given velocity channel and wij

is the statistical weight of each angle θij . They found that the orientation of the Hi filaments
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with respect to the Galactic plane changes progressively with Galactocentric distance, from mostly
perpendicular or having no preferred orientation in the inner Galaxy to mostly parallel. This
means that the regions of the Milky Way’s disk display Hi filamentary structures predominantly
parallel to the Galactic plane and that for regions at lower Galactocentric radii, the Hi filamentary
structures are mostly perpendicular or do not have a preferred orientation with respect to the
Galactic plane. The observations indicate that the Hi filamentary structures provide insight into
the dynamical processes shaping the Galactic disk, leading to interpret their results as the imprint
of the supernova feedback in the inner Galaxy and Galactic rotation and shear in the outer Milky
Way.

Recently, Godlowski and Mryzyglód (2023) [GM23] have proposed a new method to analyze
the orientation of galaxies by taking into account the information about the morphological types
of galaxies. Studies have shown that to obtain correct analysis results it is preferable to consider
galaxies as oblate spheroids, with the real axis ratio depending on the morphological type, which is
unfortunately not contained in most of the astronomical data available today (e.g., the Tully Nearby
Galaxies catalog). For the development of their new method of investigation, they employed the
classical directional test statistics such as the Kolmogorov-Smirnov, CvM and Watson tests (see
Sect. 2.2). Their method shows that in small groups and clusters of galaxies, such as Tully clusters,
there is no galaxy alignment. Moreover, the authors believe that their method allows the study
of catalogs of galaxy clusters in the absence of knowledge of the morphological types of member
galaxies.

3.5.9 Exoplanets

In 1995, Mayor and Queloz [MQ95] detected the first exoplanet around a Sun-like star, and since
then astronomers have found more than 1000 exoplanets. More precisely, as of 27 June 2024,
we count 5678 confirmed exoplanets in a total of 4231 planetary systems with 952 systems being
composed of more than one exoplanet. This has opened a recent page in astronomy, which could
eventually answer questions regarding the formation and evolution of planetary systems, including
our Solar system. With cluster analysis, it is possible to gain insight into the information provided
by exoplanets data. For instance, it permits to find clusters of a data set with the most similarity
in the same cluster and the most dissimilarity between different clusters, thus leading to a possible
better understanding of the formation and evolution of planetary systems.

Database. The Extrasolar Planets Catalog compiled by [SDL+11] provides data on exoplanets as
well as [FLE87, Appendix B20]. A more updated exoplanets dataset can also be downloaded from
The Extrasolar Planets Encyclopedia (http://exoplanet.eu/catalog/), which contains for each
registered exoplanet several relevant astronomical variables such as projected mass, orbital period,
semimature axis, orbital eccentricity, stellar metallicity, and stellar mass.

Statistical tools and data analysis. Many authors [JIY03, PR02, ZM02] have indicated that there is a
possible correlation between the planetary mass and the orbit period in the study on the exoplanets.
This motivated Hung et al. (2015) [HCCY15] to propose a simple and intuitive clustering algorithm
for spherical data based on an intuitive concept and examine where groups for exoplanets on these
two important features are. Their algorithm is based on the d-dimensional FvML distribution
(2.4). By considering the data of 731 exoplanets from the Extrasolar Planets Catalog (data as of
December 14 2012, where incomplete data are excluded), where each of them has the values of
projected mass and orbital period, [HCCY15]’s clustering results suggest two main implications,
namely that there are three major clusters which might associate with the disc, ongoing tidal and
tidal interactions, and that stellar metallicity does not play a key role in exoplanet migration.

Yang et al. (2016) [YCCH16] presented a similarity-based clustering method for spherical data
based on a mixture of Fisher distributions (2.5) that identify characteristics without initialization.
They applied their unsupervised clustering algorithm on data from the Extrasolar Planets Catalog
of May 2005 with 782 exoplanets as well as on data from [FLE87] and obtained similar clustering
results as [HCCY15]. Later [YCCH17] proposed a learning-based EM algorithm with FvML distri-
bution (2.4) to cluster spherical exoplanet data in extrasolar planets (Extrasolar Planets Catalog
of December 2012 with 731 exoplanets and December 2015 with 870 exoplanets). The obtained
clustering results allow an interpretation of exoplanet migration.

Recently, Saavedra-Nieves and Fernández-Péerez (2023) [SNFP23] have extended the directional
density-based clustering methodology for the unit hypersphere by solving the computational prob-
lems associated to high dimensional spaces and applied it to analyze an exoplanets dataset. For
their study, they considered the exoplanets dataset from The Extrasolar Planets Encyclopedia and
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checked, in the same spirit as [HCCY15], where exoplanet groups on the two features, orbital pe-
riod P and projected mass Mp, are located, and checked the existence of correlation within the
astronomical variables Mp, P , semimature axis a, orbital eccentricity e, stellar metallicity [Fe/H],
and stellar mass Ms. More precisely, they employed their density-based clustering algorithm to (i)
the data (ln(Mp), ln(P )) on S1 and (ii) the dataset (Mp, a, e, [Fe/H],Ms) on S4. They obtained
interesting results for different cases of exoplanets and cluster cores, which are more or less similar
to the results obtained by [HCCY15].

3.5.10 Hot stars

In astronomy, hot stars are not well represented in the Kepler sampler of planet-hosting stars, and
hot Jupiters (which are in close proximity to their stars and have high surface-atmosphere temper-
atures) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but
that have very short orbital periods. While it has been known that hot stars with hot Jupiter tend
to have high obliquities, less is known about the degree of spin-orbit alignment for hot stars with
other kinds of planets.

Database. The California Kepler Survey (CKS) [P+17, J+17] provides data for the planet host with
precise determinations of the effective temperature, surface gravity, iron metallicity, and projected
rotation velocity. The data include the main-sequence stars late-G and late-F, which have been
used for the study of [LWP+21].

Statistical tools and data analysis. Louden et al. (2021) [LWP+21] reassessed the obliquities of the
hot Kepler stars with transiting planets smaller than Neptune. By employing model-independent
tests (such as the two-dimensional Kolmogorov-Smirnov test for differences between the projected
rotation velocities distributions of the two samples, planet hosts and the control stars) and the
simple FvML distribution model (2.4) (to characterize the obliquity distribution of the planet
hosts), [LWP+21] described possible implications for theories of obliquity or inclination excitation.
They found that (i) planet hosts have systematically higher values of rotation velocities distributions
than the control stars, but not by a large enough amount to be compatible with perfect spin-orbit
alignment, and (ii) there is evidence that the hottest stars have a broader obliquity distribution.
Based on these results, they conclude that obliquity excitation for early-G and late-F stars appears
to be a general outcome of stars and planet formation instead of being exclusively linked to hot
Jupiter formation.

3.6 Tracking satellite orbit phases and space objects

Since the launch of the first Earth’s artificial satellite Sputnik 1 in 1957 more than a thousand
satellites have been launched and there is no end in sight. Many are still there, and we face an
ever-increasing risk of collision as we launch more. In fact, humanity has created a bit of a mess
around our Earth along with bits of debris from the rockets we have launched over the years, too.
This mess is referred to as space debris or space junk, and includes any noncontrollable defunct
human-made object (such as rocket bodies, solar pannels, unused thermal blankets of astronaut)
or even pieces and debris which no longer serve a useful function.

Aside from these floating space debris, there are other flying space objects that might be dan-
gerous for us, for example, asteroids. For instance, the Chicxulub asteroid - the most legendary
space rock in the world − impacted our Earth 66 million years ago causing a mass extinction event
that saw most non-flying dinosaurs and many other species wiped out. Fortunately, the impacts
from such large asteroids are immensely rare, however small and medium-sized rocks are far more
common in our Solar System and these can still do serious damage by creating explosive airbursts,
with resulting shockwaves that may shatter glass, damage buildings and injure anyone who happens
to be nearby.

Therefore, tracking space objects or “near-Earth objects” (NEOs) (the term refers to any natural
object, like an asteroid, whose orbit brings it close to Earth) is important to protect our Earth and
ourselves, e.g. by developing statistical models that permit us to estimate the distribution of space
objects orbiting around our Earth. This can be split into two major challenges:

• the ability to accurately associate space object detections with unique space objects;

• the ability to accurately predict where any space object will be as a function of time.
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3.6.1 Asteroids

Asteroids are rocky and airless remnants left over from the early formation of our Solar system about
4.6 billion years ago. They are a belt of several thousand minor planets orbiting around our Sun
in orbits between the planets Mars and Jupiter. According to NASA (https://solarsystem.nasa.
gov/asteroids-comets-and-meteors/asteroids/in-depth/#many_shapes_and_sizes_otp), nowa-
days 1.282.499 asteroids are known. Many asteroids have an axis around which they are observed
to spin. [Jup95] mentioned that a hypothesis of astronomical interest is that the directed spin axes
z are uniformly distributed. However, for numerous asteroids the sense of spin is unknown, so that
we cannot distinguish between z and −z. This means that the classical directional distributions
on S2 such as the Fisher distribution (2.5) or the Watson distribution (2.6) cannot be employed,
since only the axis ±z is observed instead of the direction z.

Database. The catalog of Magnusson (1988) [Mag88] is a suitable data set that contains 54 as-
teroids with known spin axis. A more updated database of asteroids is available on NASA’s JPL
Solar System Dynamics Small-Body Database Lookup (https://ssd.jpl.nasa.gov/tools/sbdb_
lookup.html#/), Asteroid Data Sets from Planetary Science Institute (https://sbn.psi.edu/
pds/archive/asteroids.html), Astertank - Asteroid Database and Mining Rankings (https:
//www.asterank.com/), Minor Planet Physical Properties Catalogue – Asteroid Database (https:
//mp3c.oca.eu/,) and ESA’s Near-Earth Objects Coordination Centre (https://neo.ssa.esa.
int/), to name only a few.

In the R package spunif [GPVN21], we can select in the craters the target type of celestial
body “Asteroid”, which contains the asteroids database of IUA. Note that these updated databases
have not been used in the listed survey papers.

Statistical tools and data analysis. Jupp (1995) [Jup95] proposed to replace the Fisher distribution
(2.5) for z (prior to selection) by a Bingham distribution (see special cases under Eq. (2.5)) to test
the uniform distribution of the directed spin axes ±z of an asteroid. More precisely, consider the
standard model for axial data with probability density function

g0(z;A) = exp{zTAz − c(A)}, (3.5)

where the parameter A is a symmetric 3 × 3 matrix with trace 0 (since zTz = 1) and c(A) is
the logarithm of the normalizing constant. Then, if z has the Bingham distribution (3.5), the
conditional density of the observable parts (±Uz,±(I3 − U)z) of ±z due to the mirror-image
ambiguity (where U = uTu is the orthogonal projection onto the line of sight) for given u is

gM (z;A|u) = exp{tr(A[UzTzU + (I2 −U)zzT (I3 −U)]) − c(A,u)}.

Now if this model is combined with the selection of the Watson distribution fW (z;u, κ) (2.6) (here
zT = x,u = µ and κ is the parameter measuring the strength of the selection effect), [Jup95]
obtained as the conditional probability density function for a given u of the observable parts
(±Uz,±(I3 −U)z) of the selected axes ±z

g(z;A, κ|u) = gM (z;A|u)fW (z;u, κ). (3.6)

Note that A = 0 corresponds to uniformity (prior to selection) of ±z. For an asteroid database of
54 asteroids (where for each asteroid [Jup95] made an arbitrary choice for the determination of its
spin axis ±z), [Jup95] obtained the score test wA = 4.59 (A = 0 in (3.6)) and wκ = 0.6 (κ = 0 in
(2.6)). He concluded that the uniform distribution may be fitted to this data set.
Note that Jupp had already published a paper about directional statistics in astronomy in 1990
[Jup90], this work [Jup95] is an updated version.

3.6.2 Space debris and its orbital uncertainty propagation

Satellites in orbit underpin our modern lives, however, due to the aforementioned increasing amount
of satellites in our space, we are faced with space debris. Based on a report published by ESA
(https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers) on June
18, 2024, more than 130 million space debris (most of them of size less than 1 mm) are orbiting
our Earth and only around 34.000 objects are traceable due to the size limitation. The biggest
danger of space debris is posed to our spacecraft, astronauts, and satellite operations. Due to the
high population and large relative velocities of space debris, it is extremely difficult to track them
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accurately using for example optical observations and to associate them with past observations.
Hence a main challenge is to represent the uncertainty in predicted location, orbit, and velocity
of space debris and space objects in general, especially for tracking and association purposes. On
top of that, in orbital uncertainty propagation and orbital space object tracking one needs to deal
with the nonlinearity of the system equation when expressed in Cartesian coordinates. According
to [BKH+17] there are two basic strategies to deal with nonlinearity:

(i) transform the coordinate system to remove the nonlinearity, or

(ii) develop sophisticated methods or use a higher order polynomial to accommodate it.

Database. For the moment, it is difficult to obtain a real dataset of space debris. However, the North
American Aerospace Defense Command (NORAD) started compiling a database of all known de-
bris. The Department of Defense maintains a highly accurate satellite catalog on objects in Earth’s
orbit that are larger than a softball. Moreover, ESA’s developed softwares (like DRAMA (Debris
Risk Assessment and Mitigation Analysis), MASTER (Meteoroid and Space Debris Terrestrial En-
vironment Reference), and DISCOS (Database and Information System Characterising Objects in
Space)) serve to generate a simulated space debris database.

Statistical tools and data analysis.
Orbit determination by the Gauss-vM cylindrical distribution. Horwood and Poore

(2012) [HP12] proposed a new class of multivariate probability density functions on the (n + 1)-
dimensional cylindrical manifold Rn × S1, that they named Gauss von Mises (Gauss-vM) distri-
bution. According to them, this distribution determines the orbit of satellites and provides a
more statistically rigorous treatment of uncertainty in the space surveillance tracking environment.
In several papers [HP12, HP14, HASP14], the same authors (plus some coauthors) have demon-
strated the usefulness of their Gauss-vM distribution to characterize the uncertainty in a space
object’s orbital state. Their Gauss-vM distribution has nice properties, it reduces to the normal
N (x;µ,Σ) for a suitable limit, and it is related to the Mardia-Sutton density from [MS78] (see
[HP14], Sect. 5). However, they mentioned that their Gauss-vM distribution is preferred for space
surveillance problems since the parameter set provides more control over the magnitude of the
higher-order cumulants and the bending of the banana- or boomerang-shaped level sets. Moreover,
from their analysis, it is demonstrated that uncertainty propagation with their Gauss-vM distribu-
tion can be achieved at the same cost as the traditional unscented Kalman filter and that it can
maintain “uncertainty realism” for up to eight times as long.

Space debris. Kent et al. (2016) [KHJ16] proposed a special directional distribution to track
space debris. Their new distribution is a special case of the Fisher-Bingham distribution on the
unit sphere, which they called the “extreme” 5-parameter Fisher-Bingham distribution (FB5e),
sometimes also referred to as the Fisher-Bingham-Kent (FBK) distribution (see special cases under
Eq. (2.5)). The adjective “extreme” is used to contrast it with another 5-parameter subfamily,
the “balanced” or Kent distribution FB5b. It turns out that the FB5e is more appropriate in
the semi-concentrated setting. In particular, in contrast to the FB5b, the FB5e density is better
to describe data that lie very near a great circle (i.e., where the mode lies on the equator and
the data are tightly clustered near the equator), but whose projection onto the great circle has a
unimodal distribution. The range of the data along the equator roughly fills a semicircle, and this
pattern cannot be created with the FB5b distribution. Since space debris data is not available, they
demonstrated the potential usefulness of their new distribution along with two realistic space debris
problems. The aim was to map the uncertainty in an object’s trajectory down to the surface of a
sphere and model point clouds concentrated near a great circle on S2.They showed that their FB5e
distribution is promising but an extended analysis is required with more realistic orbital models.

In 2017, Kent et al. [KBHJ17] showed that it is possible to describe succinctly the angular part
of the position vector at later times of a space object by using their FB5e distribution (see special
cases under Eq. (2.5)). In fact, it was already observed in [KHJ16] that the propagated distribution
of a space object under noisy initial conditions tends to follow a banana-shaped distribution in
Euclidean coordinates. The projection of this distribution onto S2 is well-approximated under a
variety of conditions by their FB5e. They showed that by simplifying the initial noise to a small set
of sigma points, it is possible to gain qualitative insight into the way in which the five parameters
of the FB5e distribution vary with time. Thus their FB5e can also be applied for Space Situational
Awareness (SSA) applications.

In the same year, Bhattacharjee et al. (2017) [BKH+17] stressed that the FB5e on S2 can
be used to approximate the propagated uncertainty and that the 2-dimensional representation
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of their distribution is typically approximately bivariate normal. Moreover, they demonstrated
the usefulness of their distribution in various data association and manoeuver analysis problems
and discussed about a newly defined coordinate system, which they referred to as the “Adapted
STructural (AST) coordinate system” to represent the orbital structure, normal direction, and
location of an object along its orbit. The purpose behind this AST coordinate system is to preserve
normality and show the usefulness and efficiency of such a system in debris tracking problems.
Note that other works of the same authors have been published [KBFH19, KBFH20], in particular
Bhattacharjee’s Ph.D. thesis [Bha20], where they developed more in detail their AST coordinate
system and gave various uses for suitable examples.

In 2018, Kent et al. [KBH+18] investigated how to fit the FB5e model using the EM algorithm
and discussed a variety of SSA applications. In fact, although their FB5e distribution is a suitable
model to describe the angular position of a propagated space object when the initial position and
velocity are known up to small errors, in settings where the initial conditions are less constrained,
e.g. when the manoeuvering capabilities of the object are uncertain, it is better to fit a mixture
of FB5e distributions. They showed that the FB5e distribution on S2 provided a powerful and
tractable model to summarize uncertainty and, moreover, it is straightforward to implement the
classic methods of discriminant analysis for this classification problem. Hence in supervised learn-
ing, the mixture models can be used to allocate observations to one of a set of known classes or
populations. Regarding the unsupervised learning setting, they proposed an EM algorithm, where
under high concentration their FB5e reduces to the bivariate normal distribution, and much of
the methodology reduces to the corresponding methodology for Gaussian mixture models. In con-
trast to Gaussian mixture models, the FB5e distribution remains tractable even when the normal
approximation is too crude (in the case of a “semi-concentrated” behavior on the sphere).

3.6.3 GNSS phase observations

Global Navigation Satellite System (GNSS) refers to a constellation of Earth-orbiting satellites
(Europe’s Galileo, USA’s NAVSTAR Global Positioning System (GPS), Russia’s Global’naya Nav-
igatsionnaya Sputnikovaya Sistema (GLONASS), and China’s BeiDou Navigation Satellite System)
that broadcast their locations in space and time, of networks of ground control stations, and of
receivers that calculate ground positions by trilateration. They are used in all forms of transporta-
tion (e.g., space stations, aviation, maritime) and also to control computer networks, air traffic,
power grids, and more. Besides GNSS, the use of a reflected GNSS signal for Earth observation,
referred to as GNSS reflectometry (GNSS-R), has become popular, too, and is used for research
applications in altimetry, oceanography and soil moisture monitoring, to name but a few.

The GNSS carrier phase measurements form the basis of high-precision satellite positioning,
as they measure the apparent distance between the satellite and the receiver. However, there are
phase biases due to effects at a satellite and a receiver and thus these biases have to be carefully
modeled and substracted from GNSS measurements. One approach to do this is using circular
statistics. In addition, according to [KRS+17] the GNSS-R phase delay observations are angular
and affected by a noise assumed to follow the vM distributions (2.2).

Database. GPS data is collected from 45 stations of the global International GNSS Service (IGS)
tracking network. The global distribution of the stations provides almost full coverage of GPS
satellites orbits without large tracking gaps. Depending on the study, the upper limit for the root-
mean-square of the L1 and L2 multipath observables (MP1 and MP2) is usually set to 0.5m in
order to mitigate the multipath effect, and a 2-month time span is chosen to assess a day-to-day
behavior of the satellite-satellite single-difference wide lane (SSWL) phases biases (this was the
case for [Kes04]’s study).

Concerning [CGH07]’s study, they used the GPS observation data collected in 2005 from four
short baselines (2-3 km), which are measured in two two-hour observation periods with a 20-second
sampling rate. They computed the baseline length using observations above 10◦. In total, they
considered 7198 L1 double difference phase observables with 0.0097 cycles.

One can also work with synthetic data corresponding to a realistic GPS constellation scenario,
which was the case for [KRS+17]’s study. In particular, Kucwaj et al. (2017) [KRS+17] made use
of the observed GPS signals collected in June 2016 which were reflected on an artificial basin in
Calais, France (see [KRS+17, Table 2 and Table 3]).

Statistical tools and data analysis. Keshin (2004) [Kes04] investigated the problem of single-receiver
real-time carrier phase ambiguity resolution by using circular statistics. More precisely, he con-
sidered the simplified situation where one needs to deal with satellite-satellite single difference
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ambiguities instead of undifferenced phase ambiguities which are fraction phase biases due to ef-
fects at a satellite and a receiver (the initialization constants, the clock errors). Hence, in this
way, any receiver-based effects and the need of SSWL biases calibration are completely canceled.
Keshin’s idea is to analyze SSWL biases using goodness-of-fit tests performed for the basic circu-
lar distributions (see Sect. 2.1.1). For this study, he considered a 2-month GPS data set from 45
stations of the global IGS tracking network from November to December 2003. It turns out that
from his results, the vM (2.2) and Wrapped Normal (obtained by wrapping the classical normal
distribution around the circle) distributions are most likely to be a reasonable model for the SSWL
phase biases and can be used as a base model in further investigations related to statistical analysis
of the SSWL phase biases. Moreover, the vM model makes it possible to establish strong criteria
for detecting outliers and to investigate the impact of systematic effects on the SSWL phases biases.

Cai et al. (2007) [CGH07] also observed that the vM distribution (2.2) on the circle is more
suitable than the Gauss-Laplace normal distribution to investigate the distribution of the GPS
carrier phase observable as well as double difference GPS phase observations. From the GPS
observation data collected in 2005, they showed that the statistical properties of the vM distribution
and their related hypothesis tests improve the theoretical background and application reality of
GPS geodesy and navigation and can play an essential role for the forthcoming Galileo, Europe’s
civilian-managed GNSS.

Kucwaj et al. (2017) [KRS+17] recognized as well the usefulness of the vM distribution (2.2)
to derive a linear-circular regression estimator for application to ground-based GNSS-R altimetry.
Their approach is to assume that the GNSS-R phase delay observations are processed as angles,
defined in the circular domain, and the measurement noise follows a vM distribution. The aim
of their linear-circular regression estimator is to estimate the phase delay slope in the maximum
likelihood sense. By testing on various scenarios, meaning experimentation on synthetic and real
data (collected in 2016 over the city of Calais), they showed that the proposed estimator is able to
fuse phase observations obtained from several satellite signals and allows the sea-surface height to
be estimated from datasets with large data gaps.

4 Conclusion

In this paper we have provided a broad and, to the best of our knowledge, as complete as possi-
ble review of the importance of directional statistics for space sciences and astronomy problems.
We hope to have showcased how suitable the field of directional statistics is for this type of data
and problems, and hereby generate further research in this direction. Historically, the domains of
astronomy and statistics have mutually benefited each other, and future interdisciplinary collabora-
tions involving directional statistics appear very promising to us. On the one hand space scientists
and astronomers will be able to analyze their data with tailor-made cutting-edge tools, and on the
other hand statisticians will be able to develop new methodological approaches and test them on
incredibly rich and challenging data.
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P. Allison, J. Alvarez-Muñiz, M. Ambrosio, et al., Correlation of the highest-energy
cosmic rays with the positions of nearby active galactic nuclei., APh 29 (2008),
188–204.

[AAA+09] J. Abraham, P. Abreu, M. Aglietta, C. Aguirre, E.J. Ahn, D. Allard, I. Allekotte,
J. Allen, P. Allison, J. Alvarez-Muniz, et al., Upper limit on the cosmic-ray photon
fraction at eev energies from the Pierre Auger observatory., APh 31 (2009), 399–
406.

[AAA+10] P. Abreu, M. Aglietta, E.J. Ahn, D. Allard, I. Allekotte, J. Allen, J. Castillo,
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