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ABSTRACT

The cornerstone of secure electronic voting protocols lies in the principle of individual verifiability. This

thesis delves into the intricate task of harmonizing this principle with two other crucial aspects: ballot

privacy and coercion resistance.

In the realm of electronic voting, individual verifiability serves as a critical safeguard. It empowers

each voter with the ability to confirm that their vote has been accurately recorded and counted in the

final tally. This thesis explores the intricate balance between this pivotal aspect of electronic voting and

the equally important facets of ballot privacy and coercion-resistance.

Ballot privacy, or the assurance that a voter’s choice remains confidential, is a fundamental right in

democratic processes. It ensures that voters can express their political preferences without fear of retri-

bution or discrimination. On the other hand, coercion-resistance refers to the system’s resilience against

attempts to influence or manipulate a voter’s choice.

Furthermore, this thesis also ventures into an empirical analysis of the effectiveness of individual

voter checks in ensuring a correct election outcome. It considers a scenario where an adversary possesses

additional knowledge about the individual voters and can strategically decide which voters to target. The

study aims to estimate the degree to which these checks can still guarantee the accuracy of the election

results under such circumstances.

In essence, this thesis embarks on a comprehensive exploration of the dynamics between individual

verifiability, ballot privacy, and coercion-resistance in secure electronic voting protocols. It also seeks to

quantify the effectiveness of individual voter checks in maintaining the integrity of election outcomes,

particularly when faced with a knowledgeable adversary.

The first contribution of this thesis is revisiting the seminal coercion-resistant e-voting protocol by

Juels, Catalano, and Jakobsson (JCJ) [78], examining its usability and practicality. It discusses the cre-

dential handling system proposed by Neumann et al. [92], which uses a smart card to unlock or fake

credentials via a PIN code.

The thesis identifies several security concerns with the JCJ protocol, including an attack on coercion-

resistance due to information leakage from the removal of duplicate ballots. It also addresses the issues

of PIN errors and the single point of failure associated with the smart card.

To mitigate these vulnerabilities, we propose hardware-flexible protocols that allow credentials to be

stored by ordinary means while still being PIN-based and providing PIN error resilience. One of these

protocols features a linear tally complexity, ensuring efficiency and scalability for large-scale electronic

voting systems.
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The second contribution of this thesis pertains to the exploration and validation of the ballot privacy

definition proposed by Cortier et. al. [41], particularly in the context of an adversarial presence.

Our exploration involves both the Selene and the MiniVoting abstract scheme [21]. We apply Cortier’s

definition of ballot privacy to this scheme, investigating how it holds up under this framework. To ensure

the validity of our findings, we employ the use of tools for machine-checked proof. This method provides

a rigorous and reliable means of verifying our results, ensuring that our conclusions are both accurate

and trustworthy.

The final contribution of this thesis is a detailed examination and analysis of the Estonian election re-

sults. This analysis is conducted in several phases, each contributing to a comprehensive understanding

of the election process.

The first phase involves a comprehensive marginal analysis of the Estonian election results. We com-

pute upper bounds for several margins, providing a detailed statistical overview of the election outcome.

This analysis allows us to identify key trends and patterns in the voting data, laying the groundwork for

the subsequent phase of our research.

We then train multiple binary classifiers to predict whether a voter is likely to verify their vote. This

predictive modeling enables an adversary to gain insights into voter behavior and the factors that may

influence their decision to verify their vote. With the insights gained from the previous phases, an adver-

sarial classification algorithm for verifying voters are trained. The likelihood of such an adversary is cal-

culated using various machine learning models, providing a more robust assessment of potential threats

to the election process.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, we will provide a brief overview of the research topic and its significance, as

well as a summary of the main research questions and objectives of the thesis. We will also provide a brief

overview of the methods and data used in the thesis, as well as the structure of the rest of the thesis.

1.1 Motivation

The growing prevalence of electronic voting systems, or e-voting, heralds a new era of convenience where

individuals can cast their votes remotely or via personal devices. Yet, this modern voting method also

unveils a host of new concerns linked to the security and integrity of the voting process. To uphold pub-

lic faith in the democratic process, it is critical to guarantee the precision and impartiality of e-voting

systems.

A salient concern in the realm of e-voting is the necessity for individual verifiability, which provides

each voter with the capacity to confirm the accurate recording and counting of their vote. This aspect be-

comes particularly crucial when voters are casting their votes remotely or through non-physical posses-

sion of devices, thus enabling them to validate that their vote has been accurately registered and remains

free from interference.

In this thesis, formal verification is leveraged to substantiate that a minivoting abstract voting scheme

adheres to a certain ballot privacy criterion. In addition, machine learning methodologies are deployed

to scrutinize an attacker’s ability to manipulate election results utilizing real-world data.

1.2 Aim

The aim of this thesis is to investigate ways to improve individual verifiability while preserving privacy or

even coercion-resistance voting systems. To achieve this goal, we will pursue three main research paths.
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1.2.1 Enhancing voter experience

We tackle the problem that has been previously acknowledged but not adequately resolved by Neumann

et al [92]. This issue relates to the frequent occurrence of PIN typos, which can inadvertently invalidate a

cast vote without the voter being aware of it. To address this, we devise innovative protocols that incorpo-

rate mechanisms to detect and rectify PIN errors, thereby safeguarding the voter’s intention and ensuring

their vote is accurately recorded.

1.2.2 Providing machine-checked proof for privacy

We aim to strengthen the assurance of privacy in the MiniVoting abstract scheme by exploring and validat-

ing the ballot privacy definition proposed by Veronique Cortier [41]. We specifically focus on evaluating

the resilience of the scheme against adversarial presence, ensuring that the privacy guarantees hold up

even in the face of potential attacks.

1.2.3 Using data analysis and machine learning

In our third research path, we embark on a journey to enhance the security and transparency of voting

systems by harnessing the power of data analysis and machine learning techniques. Our primary objec-

tive is to develop a robust machine learning classifier capable of predicting whether a voter is likely to

verify their vote or not. By pursuing this research direction, we aim to make significant contributions

toward the advancement of secure and transparent voting systems that prioritize individual verifiability.

1.3 Thesis structure

The structure of this thesis is as follows:

Chapter 1: Introduction In this introductory chapter, we will provide a brief overview of the research

topic and its significance, as well as a summary of the main research questions and objectives of the thesis.

We will also provide a brief overview of the methods and data used in the thesis.

Chapter 2: Introduction to Cryptographic E-Voting This chapter consists of a comprehensive litera-

ture review aimed at examining prior research on the subject matter. The chapter provides a foundation

for the subsequent research by highlighting areas requiring further investigation and structuring the re-

search questions to be addressed in the rest of the thesis. The literature review ensures that the thesis

builds upon existing knowledge and contributes to filling the identified gaps, leading to a well-informed

and relevant research approach.

Chapter 3: Introduction to Formal Verification via the Hoare Logic This chapter provides an overview

of the formal verification backgrounds, including Hoare Logic and Formal Verification. It introduces a

small programming language, covering assignments, sequences, conditionals, and WHILE-commands,

and summarizes their syntax. The chapter also discusses Hoare’s notation and the axioms and rules

of Hoare Logic, such as the assignment axiom, precondition strengthening, and postcondition weaken-

ing. This chapter establishes a foundation for the rest of the thesis, equipping readers with the necessary

knowledge and tools to engage with the formal verification techniques discussed in subsequent chapters.

Chapter 4: Introduction to Machine-Learning This chapter introduces the essential materials and

methodologies that lay the groundwork for our exploration of specific machine learning paradigms. While

the subsequent sections provide a thorough overview of the tools, frameworks, and principles employed

in this thesis for precise modeling, analysis, and implementation of complex machine learning systems,
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readers interested in more detailed definitions and discussions about machine learning concepts are re-

ferred to [57].

Chapter 5: Practical and Usable Coercion-Resistant Remote E-Voting In this chapter, we examine

the usability and security of the coercion-resistant e-voting protocol developed by Juels, Catalano, and

Jakobsson (JCJ) [78]. Previous work by Neumann et al. [92] attempted to make this protocol more prac-

tical by using a smart card with a PIN code to handle cryptographic credentials, but we identify several

vulnerabilities and problems with this approach, including an attack on coercion-resistance due to infor-

mation leakage and the risk of invalidated votes due to PIN typos. We propose alternative protocols that

address these issues and are hardware-flexible, allowing credentials to be stored using ordinary means,

while still providing PIN-based protection and error resilience.

Chapter 6: Machine-Checked Proofs of Privacy Against Malicious Boards In this chapter, we use

MiniVoting [21], a specific electronic voting scheme, as a case study to present a machine-checked proof

of privacy. Our proof shows that MiniVoting meets a specific privacy definition, which is an essential step

in improving the security and transparency of electronic voting systems. These systems play a crucial

role in ensuring the integrity of democratic processes. Additionally, our work extends beyond MiniVoting

to include the Selene electronic voting scheme. We offer a machine-checked proof of privacy for Selene,

which is a remote electronic voting scheme known for its appealing combination of security properties

and usability. Our formal verification of Selene’s computational privacy is a novel contribution, as no

prior work had formally verified it.

Chapter 7: Analysis of Estonian Election Margin In this chapter, we conducted a study of the Esto-

nian election results, examining several measures of competitiveness for two elections in 2015 and 2019.

Specifically, we calculated various metrics to assess the competitiveness of the elections and analyzed

the results to understand trends and patterns. Our analysis provides valuable insights into the electoral

landscape in Estonia and can inform future research and policy decisions.

Chapter 8: Identifying Voter Characteristics through ML-Assisted Models In this chapter, we will

explore the use of ML-assisted models to identify voter characteristics and their potential impact on vot-

ing behavior. Through a combination of empirical analysis and theoretical modeling, we aim to gain a

deeper understanding of this important topic and contribute to the development of more effective and

transparent voting systems.

1.4 Contributions

This thesis is a culmination of original research papers, some of which are already published, submitted,

or in preparation for submission. In this section, I outline my specific contributions to each of these

papers, as well as the roles of my co-authors. The list of contributions is organized according to the

following structure:

Contribution I: Revisiting Practical and Usable Coercion-Resistant Remote E-Voting

• Co-authors: Thomas Haines , Kristian Gjøsteen, Peter B. Rønne , Peter Y. A. Ryan, Najmeh Soroush

• Publication status: Published in Electronic Voting. E-Vote-ID 2020, Springer, Cham, 25 September

Journal/Conference name, DOI: 10.1007/978-3-030-60347-2_4 (Used in the thesis)
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• Contribution: In this paper, my co-authors and I critically analyzed the JCJ coercion-resistant e-

voting protocol and identified several attacks and security problems with existing implementa-

tions. We further highlighted the practical issues associated with handling cryptographic creden-

tials and presented several alternative protocols to repair these problems. My specific contributions

include the development of hardware-flexible solutions that allow for storing credentials by ordi-

nary means, ensuring PIN error resilience, and creating one protocol with linear tally complexity to

ensure efficiency with a large number of voters. We aimed to make e-voting more practical, secure,

and user-friendly while preserving essential properties such as coercion resistance.

Contribution II: Machine-Checked Proofs of Privacy Against Malicious Boards for Se-

lene & Co

• Co-authors: Constantin Cătălin Drăgan, François Dupressoir, Kristian Gjøsteen, Thomas Haines,

Peter Y. A. Ryan, Peter B. Rønne, Morten Rotvold Solberg

• Publication status: Published in 2022 IEEE 35th Computer Security Foundations Symposium (CSF),

DOI: 10.1109/CSF54842.2022.00021 (Used in the thesis)

• Contribution: In this work, we tackle the complex challenge of privacy in electronic voting schemes.

Recognizing the intricate nature of ensuring privacy in such systems, we define a new ballot privacy

notion that is applicable to a broader class of voting schemes. This novel definition advances the

field by considering the fact that verification in many voting systems occurs or must occur after the

tally has been published, contrary to previous definitions. Through a comprehensive case study, we

provided a machine-checked proof of privacy for Selene, a remote electronic voting scheme known

for its balance of security and usability. Prior to our research, the computational privacy of Selene

had not been formally verified. My specific contribution is that I proved that MiniVoting satisfies

the original definition of ballot privacy for malicious ballot boxes.

Contribution III: “Just for the sake of transparency”: Exploring Voter Mental Models

Of Verifiability

• Co-authors: Marie-Laure Zollinger, Peter Y. A. Ryan, Karola Marky

• Publication status: Published in Sixth International Joint Conference, E-Vote-ID 2021, DOI: 10.1007/978-

3-030-86942-7_11 (Not used in the thesis)

• Contribution: This paper delves into the human aspect of the Selene voting protocol, an electronic

voting scheme that offers plaintext vote verification while maintaining privacy. Through interviews

with 24 participants, we explored their mental models of Selene, categorizing them into four dis-

tinct levels: 1) understanding of the technology, 2) interpretation of the verification phase, 3) con-

cerns related to security, and 4) perception of unnecessary steps within the process. Our analysis

uncovers various misconceptions and provides unique insights into how voters perceive and inter-

act with Internet voting technologies. The findings have led us to propose specific recommenda-

tions for the future implementation of Selene and for the design of Internet voting systems at large.

Our research contributes to the field by bridging the gap between the technical complexities of ver-

ifiable voting schemes and the users’ perceptions, aiding in the development of more intuitive and

trustworthy electronic voting systems.
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Contribution IV: Machine-Checked Proofs of Privacy Against Malicious Boards for Se-

lene & Co (Journal Edition)

• Co-authors: Constantin Cătălin Drăgan, François Dupressoir, Kristian Gjøsteen, Thomas Haines,

Peter Y. A. Ryan, Peter B. Rønne, Morten Rotvold Solberg

• Publication status: Accepted. (Used in the thesis)

• Contribution: This paper is an extended and revised version of a paper presented at CSF’22(Second

Contribution).

Contribution V: Voter Verification and Adversarial Threats in Election with Machine

Learning Models

• Co-authors: Peter B. Rønne, Jan Willemson, Peter. Y. A. Ryan

• Publication status: In preparation

• Contribution: In this research, we conducted a rigorous marginal analysis of the Riigikogu elec-

tion in Estonia, a task vital to understanding the robustness of electoral systems. Recognizing the

intricate nature of the candidate selection process, we segmented our analysis into various stages,

allowing for a nuanced examination of the election margin, which signifies the number of votes

needed to shift the outcome. Subsequently, we trained several binary classifiers to predict the like-

lihood of voter verification and constructed an adversarial model with the ability to modify the nec-

essary quantity of votes to alter the election result. We evaluated the probability of such adversarial

activities using a range of machine learning models. Our work aims to enhance the security and

transparency of elections by analyzing margins, assessing vulnerabilities, and providing insights

that can guide improvements in electoral processes and systems.





CHAPTER 2

INTRODUCTION TO CRYPTOGRAPHIC

E-VOTING

In this chapter, we will recall the motivation and different security and cryptographic aspects of secure

electronic voting. This will lay a necessary foundation for the rest of the thesis.

2.1 Cryptographic Primitives Backgrounds

Cryptography is the study of techniques for secure communication in the presence of adversarial par-

ties. These techniques are based on mathematical algorithms and protocols that are designed to provide

various levels of security, such as confidentiality, integrity, authentication, and non-repudiation.

Cryptography is an essential component of modern computer security systems and is used in a wide

range of applications, such as secure communication, secure data storage, digital signatures, and access

control. There are two main categories of cryptographic algorithms: symmetric and asymmetric.

Symmetric algorithms use the same key for both encryption and decryption. They are fast and effi-

cient but require that both the sender and the recipient have a copy of the same key, which must be kept

secret. Examples of symmetric algorithms include AES, DES, and Blowfish.

In the context of e-voting, it is important to note that we mostly use asymmetric crypto. Asymmetric

algorithms, such as RSA, ECC, and ElGamal, employ different keys for encryption and decryption. The

encryption key is made public, allowing anyone to encrypt data, while the decryption key is kept private.

Although asymmetric algorithms are slower and more complex compared to symmetric algorithms, they

eliminate the need for exchanging a secret key. Therefore, when it comes to e-voting, the utilization of

asymmetric cryptography is prevalent.

Cryptography is a constantly evolving field, and new algorithms and protocols are being developed all

the time. It is crucial to thoroughly evaluate the security of any cryptographic algorithm or protocol before

implementing it in a real-world application. Furthermore, it is worth noting that there is a long history of

security failures in cryptography. However, advancements have been made in terms of formal verification

methods, such as the symbolic model. In this thesis, we will employ a combination of paper-based and
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machine-checked proofs within the computational model to ensure the robustness and reliability of our

cryptographic approach. For more details on this, please refer to section ?????

2.1.1 Interactive Zero Knowledge Proofs

Zero-knowledge proofs are a cryptographic concept that allows one party (the prover) to prove to another

party (the verifier) that they know a certain piece of information, without revealing what that information

is. This is achieved through the use of interactive protocols, in which the prover and verifier engage in a

series of exchanges. The prover’s goal is to convince the verifier that they have the necessary information,

while the verifier’s goal is to determine whether the prover is telling the truth.

The concept of zero-knowledge proofs was first introduced by Shafi Goldwasser, Silvio Micali, and

Charles Rackoff in a paper published in 1985 [58]. The key idea is to use a series of interactions between

the prover and the verifier to convince the verifier that the prover has the necessary information, without

actually revealing that information. This is achieved through the use of special protocols and mathemat-

ical techniques that ensure that the information remains hidden even during interactions.

The concept of zero-knowledge proofs has been extensively studied and applied in a variety of set-

tings, including cryptography, computer science, and mathematics. It has been used to design secure

protocols for a wide range of applications, including digital signatures, password authentication, and se-

cure multiparty computation.

Three properties are necessary for this kind of proof:

• Completeness: If the assertion is true, the prover can convince the verifier of its truth with high

probability.

• Soundness: If the assertion is false, the verifier will not be convinced of its truth, even if the prover

tries to cheat.

• Zero-knowledge: In the course of the interaction, the verifier learns nothing about the assertion

except whether it is true or false. This means that even if the verifier is convinced of the truth of the

assertion, they will not be able to extract any additional information about the claim.

In general, a protocol is said to have “zero knowledge” if, regardless of the result of the verifier fol-

lowing the protocol, it could have generated the same outcome without engaging with the prover. This

means that the verifier does not learn any additional information about the claim being proved beyond

what was already known before the protocol was executed.

Interactive zero-knowledge proofs are used at several stages in voting protocols. For example, author-

ities may use them to demonstrate their honesty to each other in order to proceed with the protocol.

2.1.2 Non-Interactive Zero-Knowledge Proofs

In the realm of cryptographic systems, particularly in the context of secure digital voting, the utilization

of non-interactive zero-knowledge proofs (NIZKPs) is of paramount importance. NIZKPs are a subclass

of zero-knowledge proofs that allow a prover, say P , to demonstrate to a verifier, say V , that they know a

secret value x, without revealing any information about x other than the fact that they know it. Formally,

given a relation R, a NIZKP system enables P to convince V that there exists a witness w such that (x, w) ∈
R, without any interaction between P and V after the proof is generated.

In the context of voting systems, these proofs are utilized to ensure the integrity and transparency

of the voting process. Given a set of ciphertext votes committed to a bulletin board, any individual can

verify that the tally is correctly determined by using the proof. Let c1,c2, ...,cn denote the set of ciphertext
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votes and let T denote the tally. A NIZKP can be used to prove that T is a correct aggregation of the votes,

i.e., there exists a set of plaintext votes m1,m2, ...,mn such that Enc(mi ) = ci for all i , and T = ∑n
i=1 mi ,

without revealing any information about individual mi ’s.

By guaranteeing both the correctness of the tally and the privacy of individual votes, NIZKPs enhance

trust in the voting process, ensuring the reliability and accuracy of digital voting systems.

They may also be used between authorities and voters, such as when people want to be convinced of

the validity of the tally (universal verifiability) or when a voter wants to be convinced of the correctness of

their vote’s encryption (individual verifiability).

2.1.3 Secret Sharing

Secret sharing [112, 110, 72] is a method in cryptography where a secret is divided into parts, giving each

participant its own unique part. To reconstruct the original secret, a minimum number of parts is re-

quired. In the threshold scheme of secret sharing, this minimum number is less than the total number of

parts. Otherwise, all participants are needed to reconstruct the original secret.

The concept of secret sharing was introduced by Adi Shamir in 1979 in a method now known as

Shamir’s Secret Sharing. It is a form of the threshold scheme and is based on polynomial interpolation.

Let’s consider a secret S that we want to share among n participants in such a way that any k of them

can reconstruct the secret, but k − 1 or fewer of them have no information about S. The procedure in

Shamir’s Secret Sharing scheme is as follows:

1. Choose a prime number p such that p > max(n,S).

2. Choose k −1 random coefficients a1, a2, . . . , ak−1 from Zp .

3. Define a polynomial f (x) = S +a1x +a2x2 + . . .+ak−1xk−1.

4. For each participant i (1 ≤ i ≤ n), compute f (i ) and give him the pair (i , f (i )).

Now, if any group of k participants pool their pairs, they can reconstruct the polynomial f (x) using

polynomial interpolation, and hence retrieve the secret S = f (0).

The basis of the scheme is that any k points on a polynomial of degree k −1 uniquely define the poly-

nomial. Therefore, the polynomial (and hence the secret) can be reconstructed given k points. However,

k −1 points give absolutely no information about the polynomial, making the secret safe if fewer than k

participants combine their shares.

Shamir’s Secret Sharing is a highly sophisticated and potent scheme, offering an ideal balance be-

tween the confidentiality of the information and the capability to reassemble it when needed. However,

a critical point of consideration is its lack of participant authentication measures; anyone possessing

k shares can reconstruct the secret. This aspect necessitates the integration of supplementary security

measures in real-world applications to verify participant identities.

One such commonly employed measure is threshold decryption, particularly in voting systems. In

threshold decryption, a minimum number of participants (threshold) is required to decrypt a message.

This adds an extra layer of security by ensuring that no single participant can access the information

without the necessary threshold of consensual participants. Thus, while Shamir’s Secret Sharing forms

the backbone of data security, its effective application often necessitates additional layers of security such

as threshold decryption to ensure participant authenticity and data integrity.
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2.1.4 Public Key Encryption Scheme

In the conventional paradigm of secure communication, commonly referred to as symmetric key encryp-

tion, the involved parties, Alice and Bob, utilize a shared secret key for both the encryption and decryption

processes. Consequently, they must exchange this secret key in advance and safeguard its confidential-

ity throughout their desired period of secure communication. In their influential paper [94], Diffie and

Hellman introduced the concept of a public-key encryption scheme, which distinguishes itself from sym-

metric encryption schemes by employing two distinct keys for encryption and decryption operations.

Within a public-key encryption scheme, the encryption key is represented by the public key, enabling

anyone possessing knowledge of this key to encrypt a message. On the other hand, the private key func-

tions as the decryption key, granting exclusive access to the original message solely to the owner of the

private key. Remarkably, an adversary attempting to decipher ciphertexts encrypted with the public key

finds it futile to utilize the encryption key. Consequently, the public key can be published or broadcasted

without concern for eavesdropping, facilitating secure communication without necessitating a private

channel for key distribution [80].

Definition 1. A public-key encryption scheme is a tuple of three probabilistic polynomial-time algorithms

Πpke(Kgen,Enc,Dec) applied to three sets, the keyspace K , the message space M, and the ciphertext space C ,

such that:

• K gen(1ℓ) → (PK ,SK ): The key generation algorithm takes the security parameter, ℓ, as an input and

returns a pair of keys (PK ,SK ) from the keyspace K . We refer to the first component, PK , as a public

key, which defines a message space, M, and the second SK as private (or secret key). It requires that

both keys have a length polynomial in terms of the security parameter.

• Enc(PK ,m) → c: The encryption algorithm is a probabilistic polynomial-time algorithm that takes

as input a message m ∈ M and the public key and returns a ciphertext c ∈C .

• Dec(SK ,c) → M∪{⊥}: The decryption algorithm is a deterministic algorithm that takes the ciphertext

c and the secret key SK as inputs and returns the message m′ from the message space or ⊥ as denoting

failure.

Security Requirements. A public-key encryption scheme must possess the following properties:

• Correctness: The output of the decryption algorithm should be the original message, except with

negligible probability over the randomness of the key generation and encryption algorithms:

• Security: When considering security within a public-key encryption scheme, it is necessary to ad-

dress the “security guarantee” and the “adversarial model,” which define the adversary’s capabili-

ties. By doing so, precise definitions for different flavors of security notions can be established, such

as adaptive versus non-adaptive attacks, and chosen-plaintext versus chosen-ciphertext attacks.

The basic notion of security for a Public Key Encryption (PKE) is semantic security, which states that

no probabilistic polynomial-time (PPT) adversary, given two messages m0 and m1, and a ciphertext ct,

can guess whether ct is the encryption of m0 or m1 better than a random guess.

Semantic security is the fundamental security concept in a public-key system, asserting that an ad-

versary, who selects messages m0 and m1, and receives the ciphertext ct, cannot differentiate whether ct

corresponds to the encryption of m0 or m1. Hence, taking into account the adversary’s power, we define

the following security notions [9]:
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IND-CPA-Adaptive adversary

Challenger Adversary

(pk,sk) ← Kgen(1ℓ)
pk−−−−−→

(m0,m1) ←A (1ℓ, pk)
(m0,m1)←−−−−−−−−−−

β
$←− {0,1}

ct ← Enc(pk,mβ)
ct−−−−−→

β∗
←−−−−−−−−−

FIGURE 2.1: Experiments for CPA security

IND-CCA-Adaptive adversary

Challenger: Adversary:

(pk,sk) ← Kgen(1ℓ)
pk−−−−−→

A (ct)⇌DDec(.)

(m0,m1) ←A (1ℓ,pk)
(m0,m1)←−−−−−−−−−−

β
$←− {0,1}

ct ← Enc(pk,mβ)
ct−−−−−→

A (ct )⇌Dec(.)

β∗
←−−−−−−−−−

FIGURE 2.2: Experiments for CCA security

• IND-CPA Security against an adaptive adversary: An adaptive adversary selects messages m0 and

m1 after receiving the public key of the encryption scheme. A public-key encryption scheme is in-

distinguishable against chosen plaintext attacks (IND-CPA for short) if the advantage of any proba-

bilistic polynomial-time (PPT) adversary in Expcpa-nA
A

(1ℓ) (as shown in Figure 2.1) is negligible with

respect to the security parameter.

• IND-CCA Security against an adaptive adversary ensures a high level of security in which the ad-

versary has access to a decryption oracle. It means that the adversary can query some string ct to

the decryption oracle and receive some message m such that Dec(ct ) = m or ⊥. An adaptive adver-

sary can query after determining the message m0 and m1, whereas non-adaptive adversaries can

only have access to the decryption oracle before selecting the messages. A public-key encryption

scheme is indistinguishable against chosen plaintext attacks (IND-CPA for short) if the advantage

of any PPT adversary in the experiment in Figure 2.2 would be negligible in terms of the security

parameter.

The ElGamal encryption system, named after its inventor Taher ElGamal, is one such public key

encryption scheme. It is based on the Diffie-Hellman key exchange protocol and is considered secure

against passive adversaries if the computational Diffie-Hellman problem is unsolvable.

The ElGamal system involves three steps:
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1. Key Generation: A large prime number p and a generator g of the multiplicative group of integers

modulo p are chosen. The private key x is a randomly chosen integer from {1, ..., p − 2}, and the

public key y is computed as y = g x mod p. The public key (p, g , y) is then published.

2. Encryption: To encrypt a message m into a ciphertext c, an ephemeral key k is randomly chosen

from {1, ..., p − 2}. The ciphertext c is then a pair (c1,c2), where c1 = g k mod p and c2 = m ∗ yk

mod p.

3. Decryption: To decrypt a ciphertext (c1,c2), the recipient uses their private key x to compute s = cx
1

mod p, then computes m = c2/s mod p.

The security of the ElGamal encryption system relies on the difficulty of the discrete logarithm prob-

lem. If an adversary can solve this problem efficiently, they could compute the private key from the public

key and decrypt any message.

For a more detailed description of the ElGamal encryption system, please see [49].

2.1.5 Homomorphic Encryption

Homomorphic encryption is a cryptographic scheme that allows computations to be performed on en-

crypted data without decrypting it. In other words, it enables performing mathematical operations di-

rectly on encrypted data, producing an encrypted result that, when decrypted, corresponds to the de-

sired result of the operations. This property makes homomorphic encryption a powerful tool for privacy-

preserving computation.

Let’s consider a simplified representation of a homomorphic encryption scheme using the Paillier

cryptosystem which is additively homomorphic.. In this scheme [99] , the public key consists of a mod-

ulus N and a public encryption key g , while the private key consists of a secret factorization of N into

its prime factors. Given a plaintext message m, the encryption process involves randomly selecting a

non-zero integer r and computing the ciphertext c as follows:

c = g m · r N mod N 2

To perform computations on encrypted data, we can use the properties of the Paillier cryptosystem.

One important property is the homomorphic addition property, which states that multiplying two ci-

phertexts together corresponds to adding their respective plaintexts modulo N . Mathematically, given

ciphertexts c1 and c2 representing plaintexts m1 and m2, respectively, the multiplication of ciphertexts c1

and c2 yields a new ciphertext c3 representing the sum of m1 and m2:

c3 = c1 · c2 mod N 2

Similarly, we have the homomorphic scalar multiplication property, which allows multiplying a ci-

phertext c by a plaintext m without decrypting the ciphertext. This operation results in a new ciphertext

c ′ representing the product of the plaintext m and the original plaintext represented by c:

c ′ = cm mod N 2

These properties enable performing computations on encrypted data without revealing the plain-

texts, ensuring privacy while obtaining valid results. In summary, homomorphic encryption allows com-

putations to be performed on encrypted data by leveraging mathematical properties of the encryption

scheme. This capability enables secure and private data processing in scenarios where sensitive informa-

tion needs to be kept confidential while still allowing useful computations to be carried out.
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As another example, we can mention the Boneh-Goh-Nissim (BGN) cryptosystem which is a pairing-

based cryptosystem that supports the evaluation of quadratic multivariate polynomials on encrypted

data. The BGN cryptosystem is semantically secure under the Decisional Composite Residuosity Assump-

tion (DCRA).

The BGN cryptosystem is defined over a bilinear group of composite order. Let N = pq be a composite

number where p and q are two large primes. Let G1, G2, and GT be groups of order N , and let e : G1×G1 →
GT be a bilinear map. The BGN cryptosystem is defined as follows:

1. Key Generation: Choose a random generator g ∈ G1 and a random element h = g s ∈ G1 for some

random s ∈Z∗
N . The public key is (g ,h) and the private key is s.

2. Encryption: To encrypt a message m ∈ ZN , choose a random r ∈ Z∗
N and compute the ciphertext

c = g mhr ∈G1.

3. Decryption: To decrypt a ciphertext c ∈G1, compute m = logg (c/hs ) mod N .

The BGN cryptosystem supports the homomorphic evaluation of quadratic polynomials. Given the

encryptions of m1,m2 ∈ZN , one can compute an encryption of m1m2 mod N as e(c1,c2) ∈GT . For more

details, you can refer to the original paper [25].

2.1.6 Re-Encryption

Re-encryption is the process of generating a new encrypted version of a message from an existing en-

crypted version, without the need to decrypt the original message. This property is a direct result of the

homomorphic property, and it can be useful for electronic voting schemes that need to ensure the privacy

of individual votes e.g. for mix-nets, see next subsection.

For notation let, Er (m) represent the encryption of a plain-text message m using a secret key r , and

D(c) to represent the decryption of an encrypted message c. The re-encryption algorithm is defined as

REr (c) = c
⊗

Er (1), where 1 is the plain-text identity element of the group of plain-texts. This means

that, if c is an encrypted message and m is the corresponding plain-text message, then REr (c) is a new

encrypted version of m that can be decrypted to obtain the same plain-text message m. Importantly, this

new ciphertext is indistinguishable from fresh encryption of the same plaintext, a property that can be

incredibly useful. This property can be useful for ensuring the privacy of individual votes in an electronic

voting system because it allows a voter to prove that they have cast a vote without revealing the actual

vote.

2.1.7 Mix-net

A mix-net is a type of network protocol that is often used in electronic voting systems to protect the

anonymity of voters. This system was initially proposed by David Chaum [34] in 1981 to ensure the

privacy of communications over public networks. Subsequently works including [1, 3, 26, 32, 60] have

used Mix-net or its variant in their constructs. Mix-nets work by routing data, such as ballots, through

a network of authorities, known as mix-servers, which shuffle the data before forwarding it to the next

authority. This process, known as mixing, conceals the order of the data, which protects the anonymity

of the voters who cast the ballots.

There are several different types of mix-nets, each with its own specific structure and features. Some

mix-net protocols use zero-knowledge proofs, re-encryption, or secret sharing to protect the anonymity

of the data being shuffled.



14 Chapter 2. Introduction to Cryptographic E-Voting

In most mix-net protocols, the setup and operation of the mix-net follow a similar pattern. First, the

mix servers are chosen and their public keys are made available. Before the election, ballots are generated

using the mix-servers’ public keys. During the election, voters cast their ballots, which are encrypted and

sent through the mix-net. As the ballots pass through the mix-servers, they are decrypted using the mix-

servers’ secret keys and re-encrypted in a different order. This shuffling process protects the anonymity

of the voters. Finally, the ballots are tallied, normally by verifiable decryption, i.e. decryption with zero-

knowledge proofs of correct decryption (see above section), and the results of the election are determined.

2.2 Introduction to E-Voting Backgrounds

We are exploring the history and evolution of voting methods and providing an overview of the compo-

nents of electronic voting systems that will be discussed in more detail in the following chapters.

2.2.1 Contemporary Voting Systems

The paper-based election method is one of the most widely used voting mechanisms for consulting peo-

ple on key choices. In this method, voters arrive at a polling station on election day and are authenticated

before receiving a ballot. They then cast their vote in a transparent ballot box in front of a representative

of the election authority and sign a register to confirm their vote. After the voting phase is complete, the

authority publicly opens the ballot box, counts the ballots, and publishes the election results.

While this method has been effective in many cases, it is still vulnerable to scams and other forms of

fraud. However, many people believe that a paper-based election system has certain qualities that make

it trustworthy, such as the anonymity of the vote. Despite its limitations, this method continues to be

used in many elections around the world.

The standard procedure for paper-based elections can be time-consuming, particularly the process of

counting and tallying the ballots. This can delay the publication and implementation of election results.

In order to speed up this process and maintain certain requirements such as voter privacy, electronic

voting systems have been developed. These systems allow for a more rapid count of the ballots, with

results often available within an hour of the end of voting. This can greatly reduce the time it takes to

determine the winner of an election and make decisions based on the results.

Since the 1980s, electronic voting systems have been the subject of extensive research. As a result, a

large number of protocols for electronic voting have been developed. However, as the number of pro-

tocols has increased, so have the security requirements that these protocols must meet. As a result,

researchers continue to explore new and existing cryptographic techniques in order to develop secure

electronic voting algorithms. This is an ongoing area of study, as the security of electronic voting systems

is of critical importance in ensuring the integrity of the electoral process.

2.2.2 Fundamental Knowledge

We will provide an overview of the key characteristics that electronic voting systems should possess. There

is some disagreement among researchers and writers about the specific requirements for these systems,

but the majority agree on the need for secrecy and authenticity in electronic voting protocols. These

characteristics are similar to those of paper-based elections, and are essential for ensuring the integrity

of the electoral process. Some of the key features that electronic voting systems should strive to achieve

include:
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• Correctness: The system should be able to accurately determine the outcomes of an election and

provide verifiable results.

• Privacy: The system should protect the privacy of voters by concealing their identities and ensuring

that their choices cannot be traced back to them.

• Receipt-freeness: The system should not provide any evidence or confirmation of a voter’s choices,

in order to prevent vote-selling and coercion.

• Robustness: The system should be able to withstand various forms of attack or manipulation, in-

cluding errant behavior.

• Verifiability: The system should be trustworthy and transparent, allowing interested parties to ver-

ify its operation and the accuracy of the results.

• Democracy: The system should ensure that only registered voters are able to cast their ballots, and

that each individual is only able to vote once.

• Fairness: The system should not provide any information about the election to voters during the

voting phase, in order to prevent them from being influenced by partial or incomplete information.

2.2.3 Security Properties

Developing a viable voting protocol is a challenging task, as there are many security requirements that

must be met in order to ensure the reliability and integrity of the system. However, it is difficult to de-

sign a protocol that meets all of these requirements simultaneously, as some of them may be conflicting

or inconsistent. For example, as discussed in [35], it is generally impossible to achieve both universal

verifiability of the tally and unconditional privacy of the votes unless all registered voters participate in

the election. The design of electronic voting systems must carefully balance the various security require-

ments in order to provide a reliable and trustworthy system. This can be a difficult task, but it is essential

for ensuring the integrity of the electoral process and maintaining the trust of voters.

For example, it is demonstrated that it is impossible to achieve

• Universal verifiability of the tally means that any interested party can verify the accuracy of the

election results, while unconditional privacy of the votes means that the identity of the voter is pro-

tected and cannot be traced back without any trust or computational. It is impossible to achieve

both of these properties concurrently unless all registered voters participate in the election. This is

because if some voters do not participate, their lack of participation could potentially reveal infor-

mation about their vote, compromising the privacy of the voting process(See [35]).

• Universal verifiability of the tally means that any interested party can verify the accuracy of the

election results, while receipt-freeness means that the system does not provide any confirmation

or evidence of a voter’s choices. It is difficult to achieve both of these properties unless the voting

procedure includes interactions between multiple voters and possibly the voting authority. This is

because receipt-freeness requires that the system does not provide any confirmation of a voter’s

choices, which makes it challenging to verify the accuracy of the tally without additional interac-

tions.

To begin, we will provide a an informal definition for each security property. This will allow us to

understand the various interpretations of these properties and how they are applied in different contexts.
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2.2.3.1 Privacy

The concept of privacy in elections refers to the ability of voters to cast their votes without fear of retali-

ation or coercion. In this context, the principle of secrecy of the ballot is crucial for ensuring that voters

can exercise their right to vote freely and without fear.

2.2.3.2 Receipt-freeness

Intuitively, an election protocol is considered receipt-free when a voter , referred to as A, is unable to pro-

vide conclusive evidence to a potential coercer or vote-buyer, denoted as C, regarding the specific manner

in which she cast her vote. In this context, we assume that A is willing to collaborate E.g. getting money

from C. Maybe also define that the interaction is after voting. The concept of receipt-freeness ensures

that such collaboration would be futile because C would be unable to acquire any proof concerning A’s

voting choices [46].

Receipt-freeness bears resemblance to the notion of privacy, which asserts that an unauthorized in-

dividual cannot obtain information regarding A’s voting behavior. However, receipt-freeness goes a step

further by incorporating an additional assumption: A’s willingness to cooperate with an intruder, denoted

as C, by sharing her secret key and other confidential information generated throughout the election pro-

tocol. Consequently, receipt-freeness implies the guarantee of privacy, in that A’s voting choices remain

undisclosed even when she voluntarily engages with C during the voting process.

2.2.3.3 Coercion-Resistence

The interpretation of coercion-resistance in scholarly works is shaped by the complexities of assessing an

attacker’s abilities and the permissible degree of coercion. Historically, the concept of coercion-resistance

was largely associated with receipt-freeness, as demonstrated by numerous definitions [15, 95, 76, 45].

Nevertheless, receipt-freeness does not cover all possible coercive attacks. As a result, it’s crucial to em-

brace a broader understanding of coercion-resistance that includes all potential coercive actions that

could influence an election’s outcome. Given the lack of a universally accepted definition for coercion

and coercion-resistance [64], we’ve opted to employ a comprehensive definition of coercion-resistance

that covers a broad spectrum of attacks.

This viewpoint is inspired by Juels et al. [78], who suggested that a voting system is deemed coercion-

resistant if it’s virtually impossible for an attacker to verify whether a voter has complied with a coercer’s

demand. They further elaborated that a coercion-resistant voting system should effectively combat three

coercion tactics:

• Compelling the voter to refrain from participating in elections.

• Pressuring the voter to submit an invalid vote.

• Manipulating the voter’s credentials to cast a legitimate vote on their behalf.

In a remote environment where the adversary can persistently observe the voter from registration

to the conclusion of voting, achieving coercion-resistance is extremely challenging. However, it’s unlikely

that intrusive attacks of this kind can be effectively scaled. Therefore, a more pragmatic approach involves

examining coercion within election-related subprocesses.

Benaloh [13] divides coercion into three temporal phases: before voter registration, between regis-

tration and voting, and post-voting. It’s important to recognize that these phases impose varying con-

straints on the adversary. For example, averting coercion when the voter can be coerced before regis-

tration is difficult, as the coercer might obtain valid voting credentials. If coercion is attempted post-

registration but pre-voting, the success of the coercion attack hinges on the attacker’s abilities and the
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anti-coercion mechanisms incorporated in the voting system. However, if coercion is attempted post-

voting, a coercion-resistant voting system should protect both the attacker and the voter from being able

to confirm the voting choice, thereby preserving the vote’s privacy. Therefore, the key characteristic of

coercion-resistance is the assumptions that limit the adversary’s abilities.

2.2.3.4 Verifiability

In general, verifiability in the context of voting refers to the ability of participants or third parties to verify

that an election has been conducted properly and that the results accurately reflect the votes cast. There

are two main types of verifiability: universal (or public) verifiability, which allows anyone to verify the

authenticity of individual votes and the final tally, and individual verifiability, which allows each eligible

voter to verify that their vote was properly counted. Ensuring that a voting system has these qualities can

help to ensure the integrity of the election and provide confidence in the results.

Different authors have proposed slightly different definitions of verifiability in the context of voting.

For example, FOO [55] defines verifiability as the ability to ensure that nobody can alter the outcome of an

election. Weber [125] defines universal verifiability as the ability of anyone to verify that the voting pro-

cedure has processed and counted all legitimate votes, and defines individual verifiability as the ability

of each voter to confirm that their own vote was accurately included in the final result. These definitions

all emphasize the importance of being able to verify the integrity and accuracy of the voting process. Tu-

instra and Benaloh [16] define verifiability in terms of the ability of voters to be satisfied that the election

results truly reflect the sum of all votes cast. They propose that an election system is considered to be

verifiable if a specifically designated output shared by all participants who follow proper procedures pro-

duces a common correct tally with a probability of at least 1− m
2N for a given security parameter N . This

definition emphasizes the importance of ensuring that the election results accurately reflect the votes

cast, and that voters can have confidence in the integrity of the election. Lee, Boyd, and others [85] de-

fine verifiability in terms of the ability to ensure that all legitimate votes have been included in the final

result. They propose that in order to achieve this, all essential communications must be made public and

the correctness of all procedures (including voting, mixing, and tallying) must be independently verified.

This definition emphasizes the importance of transparency and independent verification in ensuring the

integrity of the election and the accuracy of the results.

Radwin [44] defines individual verifiability in terms of a voter’s ability to confirm that their vote was

correctly received by the voting authority. This enables the voter to have confidence that their vote was

counted properly and provides them with documentation that can be used to file a complaint if their vote

is miscounted. Radwin also discusses the importance of universal verifiability, which allows any voter or

third party to verify that an election was conducted correctly at a later date. This enables easy auditing of

the election and is considered desirable as long as the cost is not too high. This definition emphasizes the

importance of both individual and universal verifiability in ensuring the integrity of the voting process.

Cohen and Fischer [39, 12] define verifiability in terms of the confidence with which a voting scheme

can be verified. They propose that a method is considered confidently verifiable if the check function

meets certain criteria for random runs using a security parameter N . Specifically, if the government is

honest, there should be a good chance that the check will be valid and the government will disclose an

accurate count. Regardless of the government’s integrity, the joint probability that the check will provide

accurate results and the government will disclose an accurate tally (or release any tally at all) should be

low. Verifiability is defined as the ability of a scheme to be verified with confidence δ, where δ is a function

of the security parameter N and is defined as δ= 1
p(N ) for some non-constant polynomial p with a positive

leading coefficient. This definition emphasizes the importance of having a high level of confidence in the
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verifiability of a voting scheme, and the need to ensure that the check function meets certain criteria for

random runs.

Rjaskova [104] defines individual verifiability in terms of each qualified voter’s right to check that their

vote was properly tallied. She also discusses universal verifiability, which allows any participant or passive

spectator to verify that the election is fair and that the final tally announced is the true total of votes cast.

This definition emphasizes the importance of both individual and universal verifiability in ensuring the

integrity of the voting process and the accuracy of the election results.
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CHAPTER 3

INTRODUCTION TO FORMAL

VERIFICATION VIA THE HOARE LOGIC

The chapter covers some background on formal verification, including Hoare Logic and introduces a

small programming language. It includes an examination of assignments, sequences, conditionals, and

WHILE-commands, as well as a summary of their syntax. The chapter also discusses Hoare’s notation and

the axioms and rules of Hoare Logic, including the assignment axiom, precondition strengthening, and

postcondition weakening. This information provides a foundation for Chapter 6 where we use EASYCRYPT

proof assistant to show MiniVoting scheme satisfy some privacy definition.

3.1 Hoare Logic and Formal Verification

Hoare logic, also known as Floyd–Hoare logic or Hoare rules, is a formal system that contains a set of

logical rules for reasoning rigorously about the correctness of computer programs. It was proposed in

1969 by the British computer scientist [73] and logician Tony Hoare, and subsequently refined by Hoare

and other researchers. The original ideas were seeded by the work of Robert W. Floyd, who had published

a similar system

The central feature of Hoare logic is the Hoare triple. A triple describes how the execution of a piece

of code changes the state of the computation. A Hoare triple is of the form {P } C {Q} where P and Q

are assertions and C is a command. P is named the precondition and Q the postcondition: when the

precondition is met, executing the command establishes the postcondition. Assertions are formulae in

predicate logic.

Hoare logic provides axioms and inference rules for all the constructs of a simple imperative program-

ming language. In addition to the rules for the simple language in Hoare’s original paper, rules for other

language constructs have been developed since then by Hoare and many other researchers. There are

rules for concurrency, procedures, jumps, and pointers.

Formal proof techniques, such as induction or program transformation, can be used for this purpose.

Hoare logic is a significant tool in program verification, providing a systematic method to prove program
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correctness, and enabling the detection and rectification of errors prior to program deployment. It is also

a powerful tool for specifying and verifying the behavior of complex systems, including distributed and

concurrent programs.

Example: Let’s consider a simple program that increments a variable x by 1. The precondition P is

x = n (where n is a natural number), the postcondition Q is x = n + 1, and the program P is “x = x +

1”. According to Hoare logic, the Hoare triple {P } P {Q} is true, which means if x = n holds before the

execution of “x = x + 1”, then x = n +1 will hold after the execution.

3.1.1 A little programming language

In this context, a program is a set of instructions that are executed by a computer in order to perform a

specific task. These instructions can include assignments, which assign a value to a variable; conditionals,

which execute a specific block of code based on the truth value of a given condition; and other types of

statements such as loops and function calls.

The phrases “program” and “command” are often used interchangeably, with the term “program” typ-

ically reserved for a set of commands that together form an algorithm. The term “statement” refers to

conditions on program variables that appear in correctness requirements. However, there is a potential

for ambiguity, as some authors may use this term to refer to individual commands. The syntax of a pro-

gramming language refers to the rules for constructing and formatting valid instructions in the language.

The semantics of a programming language, on the other hand, refers to the meaning of these instructions

and how they are executed by the computer.

It is important to introduce these concepts to provide a foundation for explaining Hoare logic, which

is a formal system used to reason about the correctness of programs. By understanding the fundamen-

tal components and terminology of programs, we can delve into the application of Hoare logic and its

significance in ensuring program correctness.

The following notations are used to represent the different elements of a program:

• The notations V , V1, . . . ,Vn represent arbitrary variables.

• E , E1, . . . ,En represent arbitrary expressions (or terms). These are symbols, such as X+1 or
p

2, that

represent values (often numerals).

• S, S1, . . . ,Sn represent arbitrary assertions. These are conditions that are either true or false, such as

X < Y and X2 = 1.

• C , C1, . . . ,Cn represent the arbitrary instructions in a programming language. These may include

assignments, conditionals, loops, and other types of statements. The specific syntax and semantics

of these instructions will depend on the particular programming language being used.

3.1.2 Assignments

An assignment statement in a programming language is a command that allows you to modify the value

of a variable. The syntax of an assignment statement is represented by the formula V := E , where V

represents a variable and E represents an expression. The semantics of the assignment statement indicate

that it changes the state of the program by assigning the value of the expression E to the variable V .

For example, the assignment statement X := X+1 increases the value of the variable X by one. This

statement is interpreted as follows: the current value of the variable X is retrieved, the value of X+ 1 is

calculated, and then the value of X+1 is assigned back to the variable X.
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It’s worth noting that the scope of a variable refers to the part of the program where the variable is vis-

ible and can be accessed. A global variable is visible and can be accessed throughout the entire program,

while a local variable is only visible and accessible within a specific block of code, such as a function or

loop.

3.1.3 Sequences

The syntax and semantics described above correspond to a sequence of instructions in a programming

language. The syntax of a sequence of instructions is given by the formula C1; · · · ;Cn , where C1, . . . ,Cn rep-

resent individual instructions. The semantics of a sequence of instructions indicate that the instructions

C1, . . . ,Cn are performed in the given order.

In the example given, the sequence of instructions R:=X; X:=Y; Y:=R uses the temporary variable R to

reverse the values of the variables X and Y. This sequence of instructions is interpreted as follows: the

value of X is assigned to R, the value of Y is assigned to X, and then the value of R is assigned to Y. As a

result, the values of X and Y are swapped, and the value of R is changed to the previous value of X.

3.1.4 Conditionals

The syntax and semantics described above correspond to an if-then-else statement in a programming

language. The syntax of an if-then-else statement is given by the formula IF S THEN C1 ELSE C2, where

S represents an assertion (a condition that is either true or false) and C1 and C2 represent instructions.

The semantics of an if-then-else statement indicate that if the assertion S is true in the current state, the

instruction C1 is performed. If S evaluates to false, the instruction C2 is performed instead.

In the example given, the if-then-else statement IF X < Y THEN MAX := Y ELSE MAX := X assigns

the maximum of the values of X and Y to the variable MAX. This if-then-else statement is interpreted as

follows: if the value of X is less than the value of Y, the value of Y is assigned to MAX; otherwise, the value

of X is assigned to MAX.

3.1.5 WHILE-commands

A while loop in a programming language is a control flow statement that allows you to repeatedly execute

a block of code as long as a certain condition is true. The syntax of a while loop is given by the formula

WHILE S DO C, where S represents an assertion (a condition that is either true or false) and C represents

an instruction. The semantics of a while loop indicate that if the assertion S is true in the current state,

the instruction C is performed, and then the while loop is repeated. If S evaluates to false, the while loop

ends and the instruction C is not performed.

For example, the while loop WHILE ¬(X = 0) DO X := X−2 decreases the value of X by 2 repeatedly

until the value of X becomes zero. This while loop is interpreted as follows: if the value of X is not equal

to zero, the value of X is decreased by 2 and the while loop is repeated; otherwise, the while loop ends.

Therefore, if the value of X is an even, non-negative integer, this while loop will terminate (with X having

the value 0). In every other state, the while loop will continue to run indefinitely. It’s important to ensure

that the assertion S will eventually evaluate to false, otherwise the while loop will run forever (resulting in

an infinite loop).
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3.1.6 Summary of syntax

The Backus-Naur Form (BNF), named after its creators John Backus and Peter Naur [79], is a widely used

notation for formal description of syntax in computer languages. First introduced in the report for AL-

GOL 60 programming language in 1960, BNF provides a grammatical framework that can represent the

structure of any string generated by a context-free language.

BNF uses a series of rules, which are definitions of a syntax notation. Each rule is expressed as a se-

quence of terminal symbols (concrete symbols present in the language) and non-terminal symbols (ab-

stract symbols that represent sets of strings). A BNF grammar is a set of derivation rules, consisting of

a sequence of these symbols, often separated by a “:=” to denote that the sequence on the left can be

replaced by the sequence on the right.

Here is a simple example of a BNF grammar for a small subset of English:

<sentence> := <subject> <verb> <object>

<subject> := I | You | Bob | Alice

<verb> := love | hate

<object> := hamburgers | programming

In this example, <sentence>, <subject>, <verb>, and <object> are non-terminal symbols

that represent different sets of strings in the language. “I”, “You”, “Bob”, “Alice”, “love”, “hate”, “hamburg-

ers”, and “programming” are terminal symbols.

This BNF notation summarizes the syntax of a small programming language that includes assignment

statements, sequences of commands, if-then-else statements, and while loops. The notation consists of

four rules, each of which defines a different type of command in the language:

• The first rule <variable>:=<term> defines an assignment statement, which has the form <variable>:=<term>,

where <variable> represents a variable and <term> represents an expression.

• The second rule <command>; . . . ; <command> defines a sequence of commands, which can be

written as <command>; . . . ; <command>, where ; separates each individual command.

• The third rule IF <statement> THEN <command> ELSE <command> defines an if-then-else state-

ment, which has the form IF <statement> THEN <command> ELSE <command>, where <state-

ment> represents an assertion and <command> represents an instruction.

• The fourth rule WHILE <statement> DO <command> defines a while loop, which has the form

WHILE <statement> DO <command>, where <statement> represents an assertion and <command>

represents an instruction.

3.1.7 Hoare’s notation

Hoare introduced the notation {P }C {Q}, known as a Hoare triple, for specifying the behavior of a pro-

gram in an influential paper [73]. In this notation, C represents a program written in the programming

language for which specifications are being made, and P and Q are conditioned on the variables used in

the program. A Hoare triple {P }C {Q} is considered true if, when C is executed in a state fulfilling P , the

execution of C concludes in a state satisfying Q.

To illustrate the use of Hoare triples, consider the following example: X > 0 Y := X Y > 0. In this case, P

is the condition that X is greater than 0, Q is the condition that Y is greater than 0, and C is the assignment

instruction Y := X (i.e., “Y becomes X ”). The Hoare triple is true because if X is greater than 0, then Y will

also be greater than 0 after the assignment instruction is executed.
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Hoare triples provide a formal method for specifying the behavior of a program and can be used to

prove the correctness of a program. This is particularly useful in ensuring the reliability of programs used

in safety-critical systems. Additionally, Hoare triples allow for abstract reasoning about the behavior of a

program, which can aid in the development of complex software and in identifying and correcting errors

in program design.

A partial correctness specification only requires that the postcondition Q holds if the program C termi-

nates, while a total correctness specification requires both that the program C terminates if it is launched

from a state fulfilling P , and that the postcondition Q holds after termination. Total correctness specifica-

tions are stronger than partial correctness specifications, as they require not only that the postcondition

is satisfied, but also that the program terminates in the expected way.

To give an example, consider a program C that is intended to sort a list of numbers. A partial correct-

ness specification for this program might be {P }C {Q}, where P is the precondition that the input list is

a finite, non-empty list of numbers, and Q is the postcondition that the output list is a permutation of

the input list and is sorted in non-decreasing order. This specification only requires that the output list is

sorted if the program terminates, but does not guarantee that the program will terminate if it is launched

from a state fulfilling P .

On the other hand, a total correctness specification for the same program might be [P ]C [Q], where

P and Q have the same meaning as in the partial correctness specification. This specification requires

not only that the output list is sorted, but also that the program terminates if it is launched from a state

fulfilling P . This stronger requirement can be useful, for example, if the program is intended to be used in

a real-time system where it is important that the program always terminates. Total correctness requires

both that the program terminates if it is launched from a state fulfilling the precondition, and that the

postcondition holds after termination. Partial correctness only requires that the postcondition holds if

the program terminates.

It is important to note that total correctness does not imply partial correctness. For example, a pro-

gram that always terminates but produces an incorrect result would be considered to have total correct-

ness (if the precondition does not hold), but not partial correctness. On the other hand, a program that

satisfies the postcondition only under certain conditions but may or may not terminate would be consid-

ered to have partial correctness, but not total correctness.

3.1.8 Axioms and rules of Hoare logic

In summary, the formal proof is a logical argument that demonstrates the truth of a statement, called

a theorem, by showing that it can be derived from a set of axioms and rules of inference. The process

of constructing a formal proof involves writing a series of statements, each of which is either an axiom

or follows logically from previous statements using an inference rule. If a theorem has been formally

proved, we write ⊢ S to indicate that it has proof. In some cases, it may be necessary to simply claim that

a theorem can be proved without providing complete formal proof. This may be because the proof is too

complex or involves too many steps to be written out in full, or because the proof relies on assumptions or

claims that are taken to be true without being formally proved. In such cases, it is important to be explicit

about any assumptions that are being made and to provide as much detail as possible about the proof.

However, in order to maintain the highest level of rigor, it is ultimately necessary to provide a complete

formal proof of any theorem that is claimed to be true. In Hoare logic, the axioms are templates that can

be filled in with specific information to create assertions about the behavior of programs. The inference

rules of Hoare logic allow us to deduce new assertions from previously proven assertions using logical

reasoning. The notation ⊢S1,⊢S2,...,⊢Sn
⊢S is used to express an inference rule, which states that if we can prove

the statements ⊢ S1, . . . ,⊢ Sn , then we can conclude that ⊢ S is also true. The statements ⊢ S1, . . . ,⊢ Sn are
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called the hypotheses of the rule, and can be either Hoare logic theorems or mathematical theorems, or a

combination of both.

For example, the sequencing rule is an inference rule in Hoare logic that allows us to deduce an as-

sertion about a sequence of two statements from assertions about the individual statements. The se-

quencing rule is often expressed in the form {P }S1{Q} {Q}S2{R}
{P }S1;S2{R} , which states that if we can prove that the

precondition P implies the postcondition Q for the first statement S1, and that the precondition Q implies

the postcondition R for the second statement S2, then we can conclude that the precondition P implies

the postcondition R for the sequence of statements S1;S2.

3.1.9 The assignment axiom

In Hoare logic, the assignment axiom is an axiom scheme that specifies the partial correctness of an as-

signment statement of the form “x := E”, where x is variable and E is an expression. The assignment axiom

has the following form:

{P [E/x]}x := E {P }

This axiom states that if we can prove that the precondition P holds after replacing every occurrence

of the variable x with the expression E, then we can conclude that the precondition P holds before and

after the assignment statement “x := E” is executed. In other words, the assignment axiom states that if

the expression E is evaluated and assigned to the variable x, the resulting assignment will not change the

truth of the precondition P. This means that the assignment statement preserves any properties of the

program that are stated in the precondition. For example, consider the following assignment statement:

x := x +1

Suppose we want to prove that the precondition P holds before and after this assignment is executed. We

can use the assignment axiom as follows:

{P [(x +1)/x]}x := x +1{P }

If we can prove that the precondition P holds after replacing every occurrence of x with the expression

x +1, then we can conclude that the precondition P holds before and after the assignment is executed.

The assignment axiom is a useful tool for demonstrating the partial correctness of assignment state-

ments in Hoare logic. It allows us to reason about the effects of assignment statements on the program’s

behavior without having to consider the specific details of the expressions being assigned.

3.1.10 Precondition strengthening

In the context of Hoare logic, a program doesn’t “satisfy” a precondition per se. Instead, a precondition is

a condition that should be satisfied (i.e., hold true) before the execution of a program or a specific part of

the program (e.g., a function or a block of code). A program is said to “meet” a precondition if the state of

the system (the values of variables, the state of memory, etc.), when the program starts execution, satisfies

the precondition.

Once a precondition is met, the program promises to deliver a certain result or bring the system into

a certain state, which is expressed as a postcondition. The relationship between preconditions, the pro-

gram, and postconditions is often expressed in the form of a Hoare triple: {P} C {Q}, where P is the pre-

condition, C is the command (or program), and Q is the postcondition.
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Here’s a simple example of a function that increments a number:

{x = n} increment(x) {x = n +1} (3.1)

In the above Hoare triple, the precondition is “x = n”, which means that before the execution of the

“increment(x)” function, the variable “x” should be equal to “n”. The postcondition is “x = n + 1”, which

means that after the execution of “increment(x)”, the variable “x” should be equal to “n + 1”. If the pre-

condition is met before the function executes, and if the function is correct, then the postcondition will

be true after the function executes.

The precondition strengthening rule is a rule that allows you to strengthen the precondition of a pro-

gram or a program block. This rule states that if a program or program block satisfies its original pre-

condition, then it also satisfies a stronger precondition. The precondition strengthening rule can then be

stated as follows:

If {P }C {Q} and P ′ implies P, then {P ′}C {Q}. One way to understand the precondition strengthening rule

is to think of the precondition as a set of conditions that must be satisfied before a program or program

block can be executed. The stronger precondition P ′ is a larger set of conditions that includes the original

precondition P as a subset. The precondition strengthening rule is useful in program verification, as

it allows you to make the preconditions of a program or program block stronger without changing the

program or program block itself. This can be useful in situations where you want to make sure that a

program or program block is only executed under certain conditions, or where you want to make sure

that certain conditions are satisfied before a program or program block is executed.

3.1.11 Postcondition weakening

The postcondition weakening rule states that if a program C satisfies a stronger postcondition Q ′, and Q ′

implies Q, then C also satisfies the weaker postcondition Q. In other words, if we can prove that C satisfies

a stronger postcondition, we can also prove that it satisfies a weaker postcondition. The postcondition

weakening rule is often used in conjunction with the precondition strengthening rule, which allows the

programmer to strengthen the precondition of a program while preserving its correctness. Together, these

rules allow the programmer to modify the precondition and postcondition of a program in order to make

it easier to verify. It is important to note that the postcondition weakening rule should be used with

caution, as it can potentially weaken the correctness of a program. It is always important to ensure that

the weakened postcondition is still satisfied by the program being verified.

3.1.12 Specification conjunction and disjunction

The specification conjunction and disjunction rule allow the combining of multiple partial correctness

statements into a single statement using conjunction (and) or disjunction (or). The specification conjunc-

tion rule states that if a program C satisfies two partial correctness statements {P1}C {Q1} and {P2}C {Q2},

then C also satisfies the conjunction of these statements, {P1andP2} C {Q1andQ2}. In other words, if a

program satisfies two partial correctness statements, it also satisfies the conjunction of these statements.

The specification disjunction rule states that if a program C satisfies either of two partial correctness

statements {P1} C {Q} or {P2} C {Q}, then C also satisfies the disjunction of these statements, {P1or P2} C

{Q}. In other words, if a program satisfies either of two partial correctness statements, it also satisfies the

disjunction of these statements.
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These rules can be useful in situations where we want to specify multiple conditions under which a

program is correct, or where they want to specify multiple possible outcomes of a program. For example,

consider the following program:

int max(int x, int y) {

if (x > y) {

return x;

} else {

return y;

}

}

We might want to specify two partial correctness statements for this program: one for the case where

x > y , and one for the case where y >= x. Using the specification conjunction and disjunction rule, we

could combine these statements into a single statement as follows:

{(x > y) or (y >= x)} max(x, y) {return value == max(x, y)}

This single statement specifies that the program max is correct for all possible input values of x and

y , and that it returns the maximum of x and y . In general, the specification conjunction and disjunction

rule can be useful for specifying complex conditions and outcomes in a program.

3.1.13 The sequencing rule

In Hoare logic, the sequencing rule (also known as the composition rule) states that if we have two pro-

gram statements, P and Q, and if the execution of statement P establishes a certain precondition, R, and

the execution of statement Q establishes a certain postcondition, S, then the execution of the sequence

P ;Q establishes the precondition R and the postcondition S. The sequencing rule can be written formally

as follows:

{R}P {S} , {S}Q{T }

{R}P ;Q{T }

Here, the curly braces denote the precondition and postcondition, respectively. The symbol “;” repre-

sents the sequencing of two statements, P and Q.

The sequencing rule is a fundamental rule in Hoare logic, as it allows us to reason about the correct-

ness of programs by composing smaller, simpler program statements. It is often used in conjunction with

other rules, such as the assignment rule, the conditional rule, and the loop rule, to prove the correctness

of more complex programs.

3.1.14 The conditional rule

The conditional rule states that if we have a program statement of the form “if (B)P else Q,” and if the

execution of statement P establishes a certain postcondition, S, when the Boolean condition B is true,

and the execution of statement Q establishes a certain postcondition, T , when the Boolean condition B

is false, then the execution of the entire conditional statement establishes the postcondition S when B is

true, and the postcondition T when B is false.

{B} P {S} if B is true {B} Q {T} if B is false
{B} if (B) P else Q {S if B else T}
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The symbol “if B is true” and “if B is false” are used to separate the two cases of the conditional state-

ment (when B is true and when B is false).

The conditional rule is a fundamental rule in Hoare logic, as it allows us to reason about the correct-

ness of programs that contain conditional statements. It is often used in conjunction with other rules,

such as the assignment rule and the sequencing rule, to prove the correctness of more complex programs.

3.1.15 The WHILE-rule

the WHILE-rule (also known as the loop rule) is a rule that is used to reason about the correctness of

programs that contain while loops. A while loop is a programming construct that allows a program to

repeatedly execute a block of statements as long as a particular condition (called the loop invariant) is

true. The WHILE-rule can be written formally as follows:

{I} P {I} I ∧ B ⇒ {I} Q {I}
{I} while (B) { P; Q } {I ∧ !B}

The symbol ∧ represents the logical “and” operator, and the symbol “!” represents the logical “not” oper-

ator. The symbols “{I }” and “{I∧!B}” denote the loop invariant, which is a condition that must be satisfied

at the beginning and end of each iteration of the loop, respectively.

The WHILE-rule states that if the loop invariant I is satisfied at the beginning of the loop, if the exe-

cution of statement P preserves the loop invariant (that is, it establishes the loop invariant as its postcon-

dition), and if the execution of statement Q preserves the loop invariant and the Boolean condition B is

true, then the execution of the entire while loop will preserve the loop invariant and terminate when the

Boolean condition B becomes false.

The WHILE-rule is a fundamental rule in Hoare logic, as it allows us to reason about the correctness of

programs that contain while loops. It is often used in conjunction with other rules, such as the assignment

rule and the sequencing rule, to prove the correctness of more complex programs.

3.2 EASYCRYPT Backgrounds

EASYCRYPT is a proof assistant for cryptographic algorithms and imperative programs. It is a formal

demonstration tool that helps users create and validate proofs. It doesn’t create a proof independently,

but instead assists in its formation and enables machine-checked verification that each step logically fol-

lows from the last one. EASYCRYPT offers a language to write definitions, programs, and theorems, and an

environment to develop machine-checked proofs [6, 38].

Formal verification, a technique used to prove that a piece of code correctly implements a specifica-

tion, is one of the primary applications of EASYCRYPT. Formal verification and formal methods have been

around since the 1950s, and today they are employed in various ways: from automating the checking of

security proofs to automating checks for functional correctness and the absence of side-channels attacks.

Code verified using such formal verification has been deployed in popular products like Mozilla Firefox

and Google Chrome [38].

EASYCRYPT operates based on a detailed process. Given a description of an algorithm in a natural

language, the goal is to produce two proofs: one that shows that the algorithm has the desired secu-

rity properties and another that verifies the correct implementation of the algorithm. This is achieved

in four steps: turning the algorithm and its security goals into a formal specification, using formal anal-

ysis to prove that the algorithm attains the specified properties, using formal verification to prove that

the implementation correctly implements the algorithm, and using formal verification to prove that the

implementation has additional properties like memory safety, efficiency, etc. [38].
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EASYCRYPT was originally designed for mechanizing the generation of proofs of game-based security

of cryptographic schemes and protocols. However, it has been extended to mechanize proofs of the secu-

rity of cryptographic protocols within the universally composable (UC) security framework. This makes

it possible to mechanize and formally verify the entire sequence of steps needed for proving simulation-

based security in a modular way. These steps include specifying a protocol and the desired ideal func-

tionality, constructing a simulator and demonstrating its validity via reduction to hard computational

problems, and invoking the universal composition operation, and demonstrating that it indeed preserves

security [30].

3.2.1 Foundations

EASYCRYPT is a proof assistant that uses the objective-directed proof methodology, which is a technique

for constructing formal proofs in a logical system. The objective-directed proof methodology involves

breaking down the proposition that needs to be proven into smaller, more manageable subproblems,

and then using tactics to solve these subproblems until the original proposition has been proven. The

objective-directed proof methodology is often used in the Coq proof assistant, which is a popular tool for

constructing and verifying formal proofs in computer science. EASYCRYPT is an extension of Coq that is

specifically designed for proving the security of cryptographic systems. In the objective-directed proof

methodology, the user inputs a proposition that they want to prove, along with a name for future ref-

erence, using the command “lemma”. The EASYCRYPT system then presents the formula as a goal to be

proven, possibly providing a context of local facts that may be used to prove the goal. The user then inputs

a command to break down the goal into smaller subgoals, ideally down to axioms or formulas that are al-

ready known to be true. The EASYCRYPT system then produces a list of subgoals that need to be proven,

and the process is repeated until there are no more subgoals remaining. Once all of the subgoals have

been proven, the proof is complete, and the user can save the lemma using the command “qed”. Before

defining a lemma to prove, the user may describe the structures he will work with, axioms he assumes, or

import libraries containing such definitions. EASYCRYPT includes a typed expression language based on

polymorphic typed lambda calculus for this purpose. In EASYCRYPT, types are non-empty collections of

values, whereas operators are typed functions on these collections. EASYCRYPT’s internal kernel contains

built-in types such as bool, int, real, and unit (the type occupied by tt or ()). Formalization of lists, arrays,

sets, finite sets, maps, finite maps, distributions, etc., are included in the standard libraries. EASYCRYPT’s

theory system enables the user to reorganize related types, predicates, operators, modules, axioms, and

lemmas. EASYCRYPT enables users to describe and specify their data-types and operators, such as induc-

tive data-types and operators defined by pattern matching. Types and operators without definitions are

considered abstract and may be seen as context parameters. Also, a powerful feature known as theory

cloning allows for the instantiation and specialization of theories, which can be abstracted over types,

operators, predicates, and proofs.

3.2.2 Probability Distributions

A sub-distribution is a function that assigns probabilities to events in a set. In the case of a discrete sub-

distribution, the set is a discrete set of possible outcomes, and the probabilities are assigned to each

individual outcome. The type “t distr” represents the type of real discrete sub-distributions, and “D(t )”

represents the set of all sub-distributions on a type “t”. The mass function “ f ” is a non-negative function

that assigns probabilities to the outcomes in the set “t”, and is defined over a discrete support. The mass

function must also satisfy the condition that the sum of the probabilities assigned to all of the outcomes

in the set “t” is less than or equal to 1.
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3.2.3 Modules in EASYCRYPT

In EASYCRYPT, programs are defined as modules, which are stateful “objects” that consist of global vari-

ables and processes. Global variables are accessible outside of the module and determine the module’s

internal state at all times, while processes are collections of local variable declarations and a series of

instructions. The language used to define these programs is called pWhile, and is a straightforward im-

perative probabilistic programming language. EASYCRYPT’s module system also supports higher-order

modules, which enables a cryptographer to design a game by specifying an opponent and a cryptosys-

tem as parameters. Before creating a game that accepts modules as parameters, the user must declare

a module type for each type of parameter. The semantics of an instruction sequence “c” in EASYCRYPT

is defined as a function that maps program memories to sub-distributions on program memories. This

function, denoted “[[c]]”, takes a program memory “&m” as input and produces a sub-distribution on

program memories as output. If one of the potential executions of “c” does not terminate, the resulting

sub-distribution will have a total probability of less than 1. The probability of an event occurring in a

program “c” with an initial memory “&m” is defined as the total of the masses of all memories in the

distribution “[[c]]〈m〉” that satisfy the event’s boolean expression “ψ”. This probability can be expressed

using the notation “Pr[c,m :ψ]”, or equivalently as “Pr[c@&m :ψ]”.

Adversary as a module, Quantification over all adversaries In EASYCRYPT, adversaries are modeled

as abstract modules of a specified module type. The module type specifies the procedure type, but the

code of the abstract module is unknown. This allows the user to argue about the behavior of an adversary

without knowing its exact implementation. EASYCRYPT provides three different classes of probabilistic

program facts, known as judgments, that allow the user to make assertions about the behavior of proba-

bilistic programs. These judgments are:

HL (Hoare Logic) with probabilistic programs: This judgment allows the user to prove properties of

probabilistic programs using traditional Hoare Logic techniques.

pHL (probabilistic Hoare Logic): This judgment enables the user to prove properties about the like-

lihood of a procedure’s execution yielding a post-condition that holds.

pRHL (probabilistic Relational Hoare Logic): This judgment allows the user to bind a pair of pro-

cesses and prove properties about their interactions.

3.2.3.1 Hoare Logic(HL)

In Hoare Logic (See 3.1 ), a Hoare judgment is a statement about the behavior of a (probabilistic) pro-

gram. It consists of a program “c”, and two predicates “φ” and “ψ”. The Hoare judgment “[c : φ⇒ ψ]”

asserts that for all memories “&m” that meet the precondition “φ”, all memories in the support of the

subdistribution “[[c]]〈m〉” will satisfy the postcondition “ψ”. If the program “c” is deterministic, then the

subdistribution “[[c]]〈m〉” will support no more than one element. This means that the program will have

a unique behavior, and the Hoare judgment can be used to prove the properties about this behavior.

3.2.3.2 Probabilistic Hoare Logic(pHL)

Probabilistic Hoare Logic is an extension of traditional Hoare Logic that allows the user to reason about

the likelihood of a program satisfying a postcondition. A probabilistic Hoare judgment is a quintuplet

“[c :φ⇒ψ]⋄p” that consists of a program “c”, two predicates “φ” and “ψ”, a relation on reals “⋄” (which

can be either “≤”, “=”, or “≥”), and a real “p”. The probabilistic Hoare judgment “[c : φ⇒ψ]⋄ p” asserts

that, for all memories “&m”, if “φ〈m〉” holds, then the probability of “c” satisfying the postcondition “ψ”

when run with initial memory “m” will be related to “p” according to the relation “⋄”. In other words, the

probability of “c” satisfying “ψ” will be either less than, equal to, or greater than “p”, depending on the
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value of “⋄”. Probabilistic Hoare Logic is a useful tool for reasoning about the likelihood of a program sat-

isfying a given postcondition and is particularly useful in the context of probabilistic programs where the

behavior of the program is not deterministic. It allows the user to make assertions about the probability

of a program satisfying a postcondition, rather than just the existence of a single execution that satisfies

the postcondition.

3.2.3.3 Probabilistic Relational Hoare Logic

The Probabilistic Relational Hoare Logic (pRHL) is an extension of Hoare Logic designed to facilitate rea-

soning about the interactions between two programs. A pRHL judgment takes the form of a quadruplet

“[C1 ∼C2 :Φ⇒Ψ]” comprising two programs, C1 and C2, and two relations,Φ andΨ. The preconditionΦ

and postcondition Ψ are expressed as first-order formulas constructed using relational expressions that

represent relations on the program memory. These expressions may incorporate program variables dis-

tinguished by the labels “< 1 >” or “< 2 >” to differentiate between the two programs, as well as logical

variables that are only present when quantified.

Given an initial pair of memories, denoted as m1 and m2, satisfying the precondition Φ, the distribu-

tions “[[C1]] < m1 >” and “[[C2]] < m2 >” resulting from the execution of C1 and C2, respectively, must

conform to the lifting operator L applied to the postcondition Ψ. The lifting operator L transforms a

binary relation on states into a binary relation on sub-distributions over states [77].
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CHAPTER 4

INTRODUCTION TO

MACHINE-LEARNING

This chapter introduces the essential materials and methodologies that lay the groundwork for our ex-

ploration of specific machine learning paradigms. While the subsequent sections provide a thorough

overview of the tools, frameworks, and principles employed in this thesis for precise modeling, analysis,

and implementation of complex machine learning systems, readers interested in more detailed defini-

tions and discussions about machine learning concepts are referred to [57].

4.1 Assessing Data Balance in Datasets

Imbalanced datasets are datasets in which one class is significantly more prevalent than the other classes.

This can cause problems when training machine learning models, as the models may be biased towards

the majority class and have difficulty accurately predicting the minority class. One common problem

with imbalanced datasets is that the accuracy of the model is not a reliable evaluation metric, as the

model can achieve high accuracy by simply predicting the majority class all the time. This is known as the

“accuracy paradox.” To address this issue, other evaluation metrics such as precision, recall, and the F1

score should be used, as these metrics take into account the balance of the classes in the dataset. Another

common problem with imbalanced datasets is that the model may be biased towards the majority class,

as it has more data points to learn from. This can lead to poor performance in the minority class, which is

known as the “class imbalance problem.” To address this issue, various techniques such as oversampling,

undersampling, and class weighting can be used to balance the classes in the dataset. Overall, imbalanced

datasets can be challenging to work with, but there are various techniques that can be used to address the

problems they can cause when training machine learning models. It is important to carefully evaluate the

performance of the model using appropriate evaluation metrics and to consider techniques to balance

the classes in the dataset.
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4.1.1 Oversampling

Oversampling is a technique used in machine learning to balance the class distribution in a dataset. It is

commonly used when the dataset is imbalanced, meaning that one class is significantly larger than the

other. This can be a problem because an imbalanced dataset can lead to a model that is biased toward

the larger class, leading to poor performance in the smaller class. One way to address this issue is to

use oversampling, which involves creating additional synthetic samples of the smaller class in order to

balance the dataset. Simple random oversampling involves simply replicating the samples of the smaller

class at random until the class distribution is balanced. This can be effective in some cases, but it can

also lead to overfitting since it does not consider the underlying structure of the data. Oversampling is

important because it can help to improve the performance of machine learning models on imbalanced

datasets. By balancing the class distribution, it can help to reduce bias and improve the model’s ability

to accurately classify samples from the smaller class. We can then use the oversampled data to train a

machine-learning model. The model will be trained on a balanced dataset, which can help to improve its

performance. In summary, oversampling is a technique used to balance the class distribution in a dataset.

4.1.2 Undersampling

One way to address the issue of the imbalanced dataset is to use undersampling, which involves reducing

the number of samples in the larger class in order to balance the dataset. Simple random undersampling

involves randomly selecting a smaller number of samples from the larger class until the class distribution

is balanced. This can be effective in some cases, but it can also lead to the loss of valuable information

since it does not consider the underlying structure of the data. Undersampling is important because it

can help to improve the performance of machine learning models on imbalanced datasets. Balancing the

class distribution can help to reduce bias and improve the model’s ability to accurately classify samples

from the smaller class. We can then use the undersampled data to train a machine-learning model. The

model will be trained on a balanced dataset, which can help to improve its performance. In summary,

undersampling is a technique used to balance the class distribution in a dataset. It can help to improve

the performance of machine learning models on imbalanced datasets and reduce bias towards the larger

class.

4.1.3 Limitation

Both oversampling and undersampling can be effective techniques for addressing the class imbalance

problem, but they also have their limitations. Oversampling can increase the risk of overfitting, as it in-

creases the complexity of the model. Undersampling can reduce the amount of data available for the

model to learn from, which can lead to a decrease in performance. Another approach is to use a different

evaluation metric, such as precision, recall, or the F1 score, which takes into account the class distribution

in the dataset. These metrics can be more appropriate for imbalanced datasets, as they place more em-

phasis on the performance of the classifier on the minority class. Additionally, it is important to choose an

appropriate classification algorithm for the imbalanced dataset. Some algorithms, such as decision trees

and support vector machines, are more sensitive to class imbalance than others, such as k-nearest neigh-

bors and naive Bayes. Choosing an appropriate algorithm can help to improve the performance of the

classifier on the minority class. In summary, imbalanced datasets can be a challenge when training a bi-

nary classifier, as the classifier may be biased towards the larger class. Techniques such as oversampling,

undersampling, and using different evaluation metrics can help to address this issue, as can choosing an

appropriate classification algorithm.
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4.2 Feature Engineering

Feature engineering is the process of selecting and constructing relevant features for a machine learning

model. It is a crucial step in the modeling process, as the quality and relevance of the features can greatly

affect the performance of the model. There are two main approaches to feature engineering: feature

selection and feature extraction. Feature selection involves selecting a subset of the available features to

use in the model, while feature extraction involves creating new features from the available data.

4.2.1 Feature Selection

Feature selection is the process of selecting a subset of relevant features for use in model construction.

It is an important step in the data preprocessing phase because it helps to improve the performance and

interpretability of the resulting model. There are several benefits to performing feature selection. First, it

reduces the complexity of the model, which can improve the model’s performance on unseen data. Sec-

ond, it can reduce the amount of time and resources required to train the model. Third, it can improve

the interpretability of the model by reducing the number of features that need to be considered when

interpreting the model’s predictions. There are several different techniques for performing feature selec-

tion. One popular method is called mutual information gain, which measures the mutual dependence

between each feature and the target variable. Features with high mutual information gain are likely to be

more relevant to the target variable and should be included in the model. Other techniques for feature

selection include forward and backward selection, which involves iteratively adding or removing features

from the model based on their performance. In summary, feature selection is an important step in the

data preprocessing phase that can improve the performance and interpretability of the resulting model.

By selecting only the most relevant features, it is possible to build more accurate and interpretable models

with less complexity and computational cost.

4.2.1.1 Using Pearson Correlation

Pearson correlation is a measure of the linear relationship between two variables. It is used to determine

how closely two variables are related and to predict one variable based on the other. The Pearson cor-

relation coefficient, also known as the Pearson r, is a statistical measure that ranges from -1 to 1, where

-1 indicates a strong negative relationship, 0 indicates no relationship, and 1 indicates a strong positive

relationship. To calculate the Pearson correlation between two variables, you need to find the covariance

between the two variables and divide it by the product of the standard deviations of each variable. This

will give you the Pearson correlation coefficient, which you can interpret to understand the strength and

direction of the relationship between the two variables. For example, if you have data on the heights and

weights of a group of people, you can use Pearson correlation to determine whether there is a relationship

between height and weight. If the Pearson correlation coefficient is close to 1, it indicates a strong positive

relationship between height and weight, meaning that as height increases, weight also tends to increase.

On the other hand, if the coefficient is close to -1, it indicates a strong negative relationship, meaning

that as height increases, weight tends to decrease. In addition to its use in predicting one variable based

on the other, Pearson correlation is also used in a variety of other applications, such as determining the

strength of a linear relationship between two variables in a regression analysis or comparing the results of

different experiments to determine whether there is a significant difference between them. Overall, the

Pearson correlation is a widely used and powerful tool for understanding the relationship between two

variables.
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4.2.1.2 Chi-square test

The chi-square test is a statistical method used to ascertain if a significant difference exists between ex-

pected and observed frequencies in one or more categories. This test is essential for hypothesis testing,

either to evaluate how well a model fits the observed data or to test the independence of two variables

within a contingency table. The chi-square statistic is derived by summing up the squared differences

between observed and expected frequencies for each category and dividing by the expected frequency.

The chi-square statistic is then compared to a critical value derived from the chi-square distribution, de-

pendent on the degrees of freedom and the desired significance level. If the chi-square statistic exceeds

the critical value, the null hypothesis is rejected, indicating that observed and expected frequencies sig-

nificantly differ. While the chi-square test is versatile and widely used in various fields like psychology,

sociology, and biology, it has assumptions like random sampling and sufficiently large expected frequen-

cies that must be accounted for before applying the test.

Suppose you are conducting a study to assess the relationship between age groups and beverage pref-

erences among customers in a café. A random sample of 100 customers is surveyed, and the data is

displayed in Table 1.

TABLE 4.1: Table 1: Observed frequencies of beverage preference by age group

Coffee Tea Total
Youth 30 20 50
Adult 35 15 50
Total 65 35 100

The first step in conducting a chi-square test is to calculate the expected frequencies for each cell

in Table 1. This involves multiplying the row total by the column total for each cell and dividing by the

total number of observations. For instance, the expected frequency for Youth who prefer Coffee would be

(50*65)/100=32.5(50*65)/100=32.5. The expected frequencies are presented in Table 2.

TABLE 4.2: Table 2: Expected frequencies of beverage preference by age group

Coffee Tea Total
Youth 32.5 17.5 50
Adult 32.5 17.5 50
Total 65 35 100

Subsequently, you would compute the chi-square statistic by summing the squared differences be-

tween observed and expected frequencies for each cell and dividing by the corresponding expected fre-

quency. In this example, the calculated chi-square statistic would be 0.92. This value is then compared

to the critical value from the chi-square distribution with one degree of freedom at a 0.05 level of sig-

nificance. If the chi-square statistic surpasses this critical value, the null hypothesis is rejected, and a

significant relationship between age group and beverage preference is established. In this case, however,

the chi-square value suggests that no significant relationship exists between the two variables.

4.2.1.3 Mutual Information Gain

Mutual information gain is a measure of the information shared between two random variables X and Y .

It quantifies the degree of dependence between the variables and is commonly used in machine learning

for feature selection.

The mutual information gain I (X ;Y ) between two variables X and Y is calculated as the difference

between the entropy H(X ) and H(Y ) of each variable alone and the joint entropy H(X ,Y ) of the two

variables together:
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I (X ;Y ) = H(X )+H(Y )−H(X ,Y )

Here, entropy H(X ) is a measure of uncertainty and is defined for a discrete random variable X as:

H(X ) =− ∑
x∈X

p(x) log2 p(x)

The mutual information gain essentially quantifies the reduction in uncertainty for one variable given

the knowledge of the other.

For example, consider a more realistic dataset with three variables for eye color E : blue (B), green (G),

brown (Br), and two variables for hair color H : blonde (Bl), black (Blk).

Let the probabilities for eye colors be P (B) = 0.4, P (G) = 0.1, P (Br ) = 0.5, and for hair colors, let

P (Bl ) = 0.7 and P (Bl k) = 0.3.

The entropy for eye color E would then be calculated as:

H(E) =−(0.4log2 0.4+0.1log2 0.1+0.5log2 0.5) ≈ 1.36

Similarly, the entropy for hair color H would be:

H(H) =−(0.7log2 0.7+0.3log2 0.3) ≈ 0.88

Assuming the joint probabilities as P (B ,Bl ) = 0.28, P (B ,Bl k) = 0.12, P (G ,Bl ) = 0.07, P (G ,Bl k) = 0.03,

P (Br,Bl ) = 0.35, and P (Br,Bl k) = 0.15, the joint entropy H(E , H) would be:

H(E , H) =−(0.28log2 0.28+0.12log2 0.12+0.07log2 0.07+0.03log2 0.03+0.35log2 0.35+0.15log2 0.15) ≈ 2.45

Therefore, the mutual information gain I (E ; H) would be 1.36+0.88−2.45 =−0.21, indicating a small

but negative relationship between eye color and hair color.

4.2.2 Feature Extraction

Feature extraction is the process of transforming raw data into a set of features that can be easily and

reliably used in machine learning and other data analysis tasks. It is an important step in the data prepro-

cessing phase because it helps to improve the performance and interpretability of the resulting model.

There are several benefits to performing feature extraction. First, it can improve the performance of the

model by transforming the raw data into a more useful representation. For example, if the raw data con-

sists of images, feature extraction can be used to extract the edges, corners, and other important features

from the images, which can be used as inputs to a machine-learning model. Second, it can reduce the

amount of time and resources required to train the model by reducing the dimensionality of the data.

Third, it can improve the interpretability of the model by providing a more intuitive representation of

the data. There are several different techniques for performing feature extraction. One popular method is

called principal component analysis (PCA), which is used to reduce the dimensionality of the data by pro-

jecting it onto a lower-dimensional space. Other techniques for feature extraction include independent

component analysis (ICA) and non-negative matrix factorization (NMF), which are used to decompose

the data into a set of underlying factors.
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4.2.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical procedure that is used to analyze the interrelationships

among a large number of variables and to explain these variables in terms of a smaller number of under-

lying factors. The aim of PCA is to reduce the dimensionality of a data set, i.e. to simplify it by extracting

the most important information from the data and expressing it in a smaller number of variables. PCA is

a widely used technique in the fields of statistics and machine learning, and it has several important ap-

plications. For example, PCA can be used to reduce the number of variables in a data set for the purposes

of data visualization, data compression, and feature extraction. In these cases, PCA can help to make the

data more manageable and easier to analyze. Another important application of PCA is in the field of pre-

dictive modeling. In this case, PCA can be used to identify the underlying factors that are most important

for predicting the outcome of a particular event. By reducing the dimensionality of the data, PCA can help

to improve the performance of predictive models, and it can also help to identify potential relationships

between different variables that might not be obvious from the raw data. The importance of PCA lies in

its ability to extract the most important information from a data set and to express it in a smaller number

of variables. This can make the data easier to understand and analyze, and it can also help to improve the

performance of predictive models. Additionally, PCA can be used to identify relationships between differ-

ent variables in a data set, which can provide valuable insights for further analysis. One simple example

of PCA in Python is to use the technique to reduce the number of variables in a data set. For instance,

suppose we have a data set with 100 variables, but we want to reduce it to just 10 variables. This can make

the data easier to analyze and can also improve the performance of predictive models.

4.2.2.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a statistical technique used to identify and separate underly-

ing sources of variation in a data set. ICA is based on the assumption that the observed data is a linear

combination of underlying independent sources, and the goal of ICA is to estimate these independent

sources and separate them from the observed data. ICA has several important properties that make it a

useful tool for data analysis and signal processing. First, ICA is a non-parametric method, which means

that it does not make any assumptions about the underlying distribution of the data. This makes ICA a

flexible and versatile technique that can be applied to a wide range of data sets. Second, ICA is an unsu-

pervised learning method, which means that it does not require any prior knowledge or labeling of the

data. This makes ICA particularly useful for exploring and discovering hidden patterns in data sets that

have not been previously studied. Third, ICA is a blind source separation method, which means that it

can separate independent sources of variation in the data even when these sources are mixed together or

when their statistical properties are unknown. This property of ICA makes it a powerful tool for analyzing

complex and noisy data sets. Overall, ICA is a valuable tool for data analysis and signal processing, and it

has many important applications in fields such as neuroscience, engineering, and finance. By estimating

and separating independent sources of variation in data, ICA can help to uncover hidden patterns and

relationships, and it can provide valuable insights for further analysis.

4.3 Machine-Learning Classifiers

This section of the thesis will concentrate on using the previously created datasets to train a machine

learning model that functions as an ML classifier. Subsequently, we will assess the model’s generated
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reports and its overall performance. The evaluation process will encompass measuring the model’s ac-

curacy, precision, recall, and other critical performance metrics, which will assist us in gauging its effi-

cacy. To enhance the performance of our machine learning model, we will also include a hyperparameter

tuning step in the aforementioned process. Hyperparameter tuning involves optimizing the model’s hy-

perparameters, which are the adjustable settings that determine its behavior and performance. We will

utilize various techniques and tools to explore the optimal values of the hyperparameters, including grid

search. By adjusting the hyperparameters and evaluating the model’s performance, we can find the best

possible configuration for our ML classifier. After performing hyperparameter tuning, we will retrain the

model with the new hyperparameter settings and assess its performance using the same evaluation met-

rics. This step will allow us to fine-tune the model and achieve the best possible results. In the following,

we aim to provide a concise but informative explanation of the different machine-learning classifica-

tion algorithms that we utilized in our thesis. We recognize the significance of selecting the appropriate

algorithm to achieve the best possible results, and thus we will offer an overview of the key characteris-

tics and applications of each algorithm. We employed a range of algorithms such as logistic regression,

decision trees, k-nearest neighbors, support vector machines, and neural networks, to name a few. We

will describe the underlying principles, benefits, and drawbacks of each algorithm, as well as how they

compare and contrast with one another.

4.3.1 Logistic Regression

Logistic regression is a widely used supervised machine-learning technique for classification tasks. It is a

statistical model that is used to predict the probability of an outcome being one of two possible classes,

typically referred to as 0 and 1. For example, it can be used to predict whether a patient has a certain

disease (class 1) or not (class 0), or whether an email is spam (class 1) or not (class 0). The basic idea be-

hind logistic regression is to find the best linear boundary that separates the classes in the feature space.

This boundary is called the decision boundary. Logistic regression uses an iterative process to learn the

coefficients (weights) of the features in the training data, which can then be used to make predictions on

unseen data. One key advantage of logistic regression is that it can be easily implemented and trained,

even on large datasets. It is also a robust model that can handle a variety of features and is not sensitive

to the scaling of the features. However, it can only model binary classification tasks and may not perform

well on datasets with non-linear patterns or multiple classes. Upon training our machine learning model

with various datasets and conducting hyperparameter tuning to optimize its performance, we have ob-

tained a comprehensive report on the logistic regression classifier. This report provides valuable insights

into the efficacy of the algorithm and its performance on our specific data. Our report includes various

evaluation metrics, including accuracy, precision, recall, and F1 score, to assess the model’s effective-

ness in accurately predicting the outcomes. We also examine the confusion matrix to analyze the model’s

ability to correctly classify instances.

4.3.2 Decision Trees

Decision tree classifiers are a type of supervised machine learning algorithm that can be used for both

classification and regression tasks. They are called “decision trees” because they build a tree-like model

of decisions based on the features of the data. Each internal node in the tree represents a feature, and

the branches represent the decision based on that feature. The leaves of the tree represent the final clas-

sification or prediction. Decision trees are a popular choice for machine learning because they are easy

to understand and interpret, and they can handle both continuous and categorical data. They are also
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relatively efficient and fast to train, making them a good choice for large datasets. One key aspect of de-

cision tree classifiers is the ability to handle missing values in the data. When training a decision tree,

the algorithm can handle missing values by simply treating them as another possible feature value, and it

will create branches in the tree to account for them. This is a useful property, as real-world datasets often

have missing or incomplete data. One potential issue is that they can be prone to overfitting, especially if

the tree is allowed to grow too deep. Overfitting occurs when the model is too closely tied to the training

data, and as a result, it may not generalize well to unseen data. To address this issue, it is often necessary

to prune the tree or use other techniques to prevent overfitting.

4.3.3 Random Forest

Random forest classifiers are a type of ensemble machine-learning algorithm that can be used for both

classification and regression tasks. They are called “random forests” because they are made up of a large

number of decision trees, each trained on a different subset of the data, and the predictions of the indi-

vidual trees are combined to make the final prediction. The basic idea behind random forests is to build

a large number of decision trees, each trained on a different subset of the data, and then average the pre-

dictions of the individual trees to make the final prediction. This process helps to reduce the variance of

the model, and as a result, random forests are often more accurate than individual decision trees. There

are several algorithms that can be used to build random forests, including Breiman’s original algorithm

and the randomForest package in R. These algorithms differ in the way the decision trees are trained and

the features are selected, but they all follow a similar overall process. To train a random forest classifier,

the algorithm first selects a random subset of the data and a random subset of the features to use at each

node of the decision tree. It then builds the decision tree using these subsets of the data and features.

This process is repeated multiple times, and the resulting decision trees are combined to form a random

forest. One key advantage of random forest classifiers is their ability to handle a large number of features

and handle missing values in the data. They are also relatively fast to train and are resistant to overfit-

ting, which makes them a good choice for large and complex datasets. Despite their many advantages,

random forest classifiers are not without their limitations. One potential issue is that they can be difficult

to interpret, as the individual decision trees are combined to make the final prediction. This can make it

challenging to understand how the model is making its predictions and identify any potential biases.

4.3.4 Naive Bayes

Naive Bayes classifiers are a type of supervised machine learning algorithm that can be used for both

classification and regression tasks. They are called “naive” because they make the assumption that all of

the features in the data are independent of each other, which is often not the case in real-world datasets.

Despite this assumption, naive Bayes classifiers are often surprisingly effective and are widely used in a

variety of applications.

The basic idea behind naive Bayes classifiers is to use Bayes’ theorem to estimate the probability of an

event based on the probabilities of related events. In the case of a classification task, the event is the class

label (e.g. spam or not spam), and their related events are the features of the data (e.g. certain words or

phrases in an email). The algorithm uses the training data to estimate the probabilities of each class and

the probabilities of each feature given a particular class, and it combines these probabilities using Bayes’

theorem to make the final prediction.

There are several algorithms that can be used to build naive Bayes classifiers, including the Gaussian

naive Bayes, Bernoulli naive Bayes, and multinomial naive Bayes algorithms. These algorithms differ in

the way they handle the features and make the predictions, but they all follow a similar overall process.
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One key advantage of naive Bayes classifiers is their simplicity and efficiency. They are fast to train and

relatively easy to implement, making them a good choice for large datasets. They are also robust to ir-

relevant features and are not sensitive to the scaling of the data, which can be a problem for some other

machine-learning algorithms. Despite their many advantages, naive Bayes classifiers are not without

their limitations. One potential issue is that they rely on the assumption that all of the features are in-

dependent, which is often not the case in real-world datasets. This can lead to less accurate predictions,

especially if there are strong dependencies between the features. This algorithm takes in a training dataset

D = {(x1, y1), (x2, y2), . . . , (xn , yn)} and a test data point x, and it returns a predicted class ŷ . It first calcu-

lates the prior probabilities P (yi ) for each class yi in the training data and then calculates the likelihoods

P (x j |yi ) for each feature x j given each class yi . Finally, it uses Bayes’ theorem to calculate the posterior

probability P (yi |x) for each class yi given the test data x, and it returns the class with the highest posterior

probability as the predicted class ŷ .

4.3.5 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a type of supervised machine learning algorithm that can be used for both

classification and regression tasks. It is based on the idea of using the information from the closest neigh-

bors to make a prediction. In the case of a classification task, the algorithm assigns the class label of the

majority of the nearest neighbors to the test data point. In the case of a regression task, the algorithm

takes the average of the values of the nearest neighbors to make the prediction. One key advantage of

KNN is its simplicity and flexibility. It is easy to implement and does not require any training, as it simply

uses the information from the nearest neighbors to make the prediction. KNN is also relatively robust

to noise and can handle missing values in the data. To determine the number of nearest neighbors to

consider, the algorithm uses a parameter called k, which is typically chosen through cross-validation. A

larger value of k will smooth the decision boundary and reduce the variance of the model, but it may also

increase the bias. A smaller value of k will make the model more sensitive to the local structure of the

data and may increase the variance, but it may also decrease the bias. Despite their many advantages,

KNN classifiers are not without their limitations. One potential issue is that they can be computationally

intensive to make predictions, especially on large datasets, as the algorithm must consider the informa-

tion from all of the data points in the dataset. KNN is also sensitive to the scale of the features, and it is

generally recommended to scale the features before training the model.
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Contributions





CHAPTER 5

PRACTICAL AND USABLE

COERCION-RESISTANT REMOTE

E-VOTING

In this chapter, we delve into the practical and usable aspects of coercion-resistant remote e-voting sys-

tems, with a primary focus on the JCJ protocol [78, 37]. We begin by providing an introduction to the

JCJ protocol and its main structure, including the functions and the coercion-resistant election proto-

col framework. Subsequently, we discuss the usability aspects of e-voting schemes and evaluate their

effectiveness. In order to demonstrate the importance of designing secure e-voting systems, we present

an overview of the NV12 scheme [91], highlighting the attacks and security vulnerabilities identified in

previous works. We then provide detailed information about the protocol, including electronic voting

protocols based on the Paillier [99] and BGN [25] encryption schemes respectively. Lastly, we discuss the

concept of PIN space covering as an essential component in the process of achieving coercion-resistance

in the PIN-based system we design here. The chapter concludes with a summary of the findings and a

brief outlook on potential future research directions in the field of coercion-resistant remote e-voting.

5.1 Introduction

The absence of a voting booth in remote electronic voting makes it highly vulnerable to coercion-attacks,

which is a major concern. In a seminal paper by Juels, Catalano, and Jakobsson [78], they provided a for-

mal definition of coercion-resistance and developed a protocol (JCJ) that meets this security requirement.

The JCJ protocol relies on a coercion-free setup phase, wherein the voter receives a credential, essentially

a cryptographic key. To cast a valid ballot, the voter must accurately enter this key along with their vote.

In the event of coercion, the voter has the option to provide the coercer with a fake random credential

and even vote alongside the coercer using this false credential. However, during the tallying process, the

corresponding vote associated with the fake credential will be disregarded.
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However, the tally process of weeding out the ballots with fake credentials and duplicates suffers from

a quadratic complexity problem in the number of voters and cast ballots. Several papers are devoted to

reducing the tally complexity in JCJ, see e.g. [107, 62, 118]; however, each with its drawbacks. Moreover,

JCJ and similar constructions- we consider them under the term JCJ-type-protocols, however also suffer

from usability deficits, see also [90].

Moreover, the handling and storing of long credentials is a notorious usability problem, getting even

harder with a coercer present. The usability was analyzed by Neumann et. al. [92], which led to a protocol

using smart cards for handling voter’s credentials. The stored credential is combined with a PIN code to

produce the full credential, compared with the credential stored by the authorities on the bulletin board.

In [51], we revisit this protocol and present several attacks on coercion-resistance and verifiability, but

also possible repairs.

Whereas the smart card provides a solution to the usability problem, it also comes with strong trust

assumptions and problems such as:

• Their security model assumes that the smart card generally needs to be trusted. A malicious card

could e.g. use the wrong credential invalidating the cast ballot without detection, and we cannot let

the voter check if the ballot is correct without introducing coercion threats.

• The coercer can take the smart card away from the voter to force abstention.

• It is more expensive, less flexible, and harder to update than a pure software solution.

• One of the attacks we found is that a coercer can use the smart card to cast ballots. This not only en-

dangers coerced voter’s real vote, but due to a leak of information in the weeding phase, the coercer

can also detect, with non-negligible probability, whether the coerced voter has cast an independent

ballot against his instructions.

We will present protocols that repair or at least diminish the attack probability of, the last point’s

attack probability by constructing new duplicate removal methods in JCJ. Furthermore, the protocols

constructed in this chapter are hardware-independent: they could use a smart card or be implemented

using a combination of a digitally stored cryptographic length key and a PIN only known by the voter. The

long credential could be stored in several places – or hidden via steganography.

At ballot casting time, the software will take as input the digital key and the password to form the

credential submitted with the vote. Depending on the level of coercion, the coerced voter can either fake

the long credential or, for stronger levels of coercion, the voter can reveal the digitally stored credential to

the coercer but fake the PIN. Due to our improved tally, the coercer will not know if he got fake credentials

or PINs.

Another major problem with the original construction, already discussed as an open problem in [92],

is the high chance of users making a PIN typo error which will invalidate the vote and remain undetected.

Note that naively giving feedback on the correctness of the PIN is not possible for coercion-resistance

as it would allow the coercer to check whether he got a fake PIN or not. Instead, we will define a set of

allowed PIN errors (e.g. chosen by the election administrator), and we will consider a ballot as valid both

if it has a correct PIN or an allowed PIN error, but invalid for other PINs. We construct protocols that at the

tally time secretly check whether a given PIN is in the set of allowed PINs and will sort out invalid ballots.

The protocols can accommodate general PIN error policies, however, Wiseman et. al. [126] studied usual

errors in PIN entries. Two frequent errors are transposition errors (i.e. entering “2134“ instead of “1234”)

and wrong digit number errors (i.e. entering “1235“ instead of “1234”). However, correcting for both of

these errors is however problematic, as we will see since the set of independent PINs becomes small.
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5.2 Usability aspects of E-Voting Schemes

The importance of usability in voting systems is often overlooked in addition to the critical issues of ac-

curacy and security. To ensure the integrity of elections, it is essential that voters are able to cast their

ballots as intended. Incidents of unintentional undervotes, overvotes, or votes for incorrect candidates

can significantly impact the outcome of elections, as demonstrated in the 2000 Florida election upset.

According to [124], the butterfly ballot used in Palm Beach County, Florida resulted in over 2000 votes be-

ing cast for Pat Buchanan rather than Al Gore, ultimately leading to George W. Bush’s victory. Therefore,

it is important that voting systems prioritize usability to ensure that voters are able to cast their ballots

accurately and efficiently. Poor ballot design, confusing instructions, and other usability issues can lead

to mistakes, mistrust in the election’s results, and long lines at the polls. By addressing usability issues,

we can improve the overall experience of voting for both voters and election officials. On the other hand,

a positive voting experience can encourage individuals to participate in future elections. Good usabil-

ity in voting systems can enhance voters’ confidence in the election’s outcome and make the process of

voting a more enjoyable experience. This can lead to increased voter turnout and ultimately strengthen

the democratic process. In conclusion, usability is a critical aspect of voting systems that should not be

overlooked. Ensuring that voting systems are easy to understand and use is essential for maintaining the

integrity of elections, encouraging voter participation, and fostering trust in the democratic process. By

considering usability in the design and implementation of voting systems, we can create systems that are

not only secure and accurate but also user-friendly and accessible to all voters.

Based on ISO 9421-11, In order for a voting system to be considered usable, it must allow users to com-

plete their task of casting a vote effectively, efficiently, and with satisfaction. This means that the system

must be easy to understand and navigate, allow voters to cast their votes without errors or confusion, and

provide a positive experience for the user. Usability is crucial for voting systems because it ensures that

all eligible voters are able to cast their ballots and have confidence in the election process. Poor usability

can lead to confusion, frustration, and ultimately lower voter participation. It is therefore important for

voting systems to be designed with usability in mind, in order to ensure that elections are fair, accurate,

and representative of the will of the people. For instance, authors in [90] found bad usability in JCJ since

the voter need to handle long crypto-size credential and be able to fake them.

5.3 Overview of the NV12 Scheme

The NV12 scheme [92] is an improvement on the proposed scheme by Shirazi et al in their work [114].

The NV12 scheme addresses some of the abstract assumptions and credential management abstractions

of the JCJ/Civitas system through the use of smart cards, as proposed by Mendes in [116] and Neumann

and Volkamer in [28]. In the NV12 scheme, several entities are involved: A supervisor who is in charge of

running the election and declaring election authorities; the voter who intends to cast her vote; the voter’s

smart card that serves as a trusted device between the voter and the JCJ / Civitas system; a registrar who

administrates the electoral register; a supervised registration authority and a set of registration tellers that

provide the voter with her credential; a set of tabulation tellers that are in charge of the tallying process;

a set of ballot boxes to which voters cast their votes; and a bulletin board that is used to publish infor-

mation. This part of the work summarizes the NV12 approach and includes a modification to address

side-channel threats. NV12 generally follows JCJ but with some tweaks for usability. The main idea is to

store JCJ credentials on a smartcard, but adding a PIN such that using a wrong PIN will result in a fake

credential.
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Setup Phase. In the NV12 scheme, the administrator organizes the election and makes information

about the ballot layout available. The registrar releases the electoral register along with the public keys of

the voters. The tabulation tellers construct the election key pair in a distributed manner and broadcast

the accompanying public key pkEK . After that, each registration teller creates random private credential

shares for all eligible voters. They then encrypt these private credential shares using the public election

key, resulting in public credential shares, which they publish along with the voter’s record in the pub-

lished electoral register. In more technical terms, the registration teller i publishes Si = {σRTi }r
pkEK

for a

particular voter, where σRTi is the voter’s credential share.

Registration Phase. The NV12 scheme has a different registration process compared to the original

JCJ/Civitas plan. It involves an offline phase, during which a voter visits a supervised registration author-

ity (SRA) in person. The SRA ensures that the voter is not being coerced and asks them to insert their

smart device (a smart card) into the reader. The voter is then asked to create a personal identification

number (PIN) for their smart card. After the voter creates their PIN, the supervised registration author-

ity saves the voter’s private credential share σv
SR A from the secure group on their smart card. Along with

the private credential share, the authority generates a designated verifier re-encryption proof (DVRP) that

convinces the voter’s smart card that the public credential share published on the bulletin board during

the setup phase is a re-encryption of the voter’s private credential share. The smart card then calculates

the coefficient cp that will be used to transfer the PIN (p) to the shared private credential (σv
SR A), using

the equation cp = σv
SR A
p . These calculations are performed in a finite field of prime order, with the selected

order being n-times (n ≥ 1) as large as the order of the set containing the private credential. The smart

card stores the calculated coefficient during this phase. The voter then exits the supervised registration

authority, completing the offline registration process. During the online phase of the voting process, the

voter begins by connecting to the election website and completing the registration process. As part of this

process, the voter is asked to select their preferred registration agents from a list of available options. This

selection is then sent to the voter’s smart card, which prompts the voter to confirm the selection through

their smart card reader. Once this confirmation has been received, the smart card is preloaded with the

IDs of the selected, trusted registration agents (denoted as TRT for the voter v). The smart card then es-

tablishes secure connections with these trusted registration agents via the voter’s computer and obtains

private credential shares σv
RTi

, as well as encrypted versions of these shares (denoted as S′
i = {σRTi }r ′

pkEK
).

The card also receives DVRPs (digital verifiable random proofs) from each individual agent, which serve

to confirm that the S′
i and Si contain the same message. After obtaining all of the necessary private cre-

dential shares and validating the DVRPs, the voter’s smart card computes and saves the voter’s credential

factor. This information is then used to securely cast the voter’s ballot during the voting process. Also,

note that the encryption versions on the bulletin board are added homomorphically under encryption.

c f actor = cp × ∏
i∈T RT (v)

σRTi

Voting Phase. After completing the registration process, the voter can begin the voting process by

accessing the election website and viewing the available options. The voter makes their selection using

the provided JavaScript interface. Once the voter has made their selection, it is sent to their smart card for

encryption. To ensure the integrity of the process, the voter has the option to audit the JavaScript using

a “cut-and-choose” method, such as the Benaloh challenge (as described in NV12 [14]). This allows the

voter to verify that their selection was conveyed correctly. Once the voter has confirmed the validity of

their selection, they are prompted to enter their voting PIN into the smart card reader to finalize their

vote. The smart card then multiplies this PIN by the credential factor generated during the registration

process (which was saved on the card). This computation is performed within a finite field of prime order,
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as previously mentioned. If the voter correctly enters their PIN, the card generates a true credential that

is associated with the voter’s vote. If the voter enters an incorrect PIN, a randomly generated (invalid)

credential is used instead. The resulting credential is as follows:

c = PIN× c f actor

This process helps to ensure the security of the voting process by allowing the voter to enter their PIN

correctly while protecting against side-channel attacks. Specifically, the voter’s smart card generates a

ballot with the following structure:

〈{c}pkEK , {vote}pkEK ,σ,φ〉

Notations {c}pkEK and {vote}pkEK refer to private credentials, which are both encrypted using a public

election key. The term σ is a well-formedness proof that indicates that the encrypted vote {vote}pkEK

includes a valid choice, while φ is a zero-knowledge proof demonstrating that the submitter knows both

c and vote in order to prevent replay attacks. The voter’s smart card uses these elements to compute and

output the hash value

hash(〈{c}pkEK , {vote}pkEK ,σ,φ〉)

on the smart card reader. It is important to note that, while the use of a smart card for this process may

provide a more realistic implementation in comparison to JCJ/Civitas systems, the NV12 method does

not provide any proof of integrity once the voter has entered their PIN. This is a practical issue that must

be addressed, as humans are known to make mistakes such as mistyping or forgetting their PINs and

passwords (as noted in [54]) and this is what we will improve on below. After computing the hash value,

the smart card anonymously distributes the prepared ballot to all available ballot boxes. Each ballot box

computes the hash value of the received ballot and posts it on a bulletin board upon receipt.

Tallying Phase. During the counting phase, all tabulation tellers collect the ballots from all ballot

boxes, as well as the public credentials that have been posted on the bulletin board. They then verify

the zero-knowledge proofs, eliminate any duplicate votes (which may be the result of vote altering), and

identify any illegitimate votes (which may be the result of forged credentials). Finally, the encrypted cre-

dentials of the remaining ballots are discarded and the corresponding encrypted votes are decrypted in a

distributed manner (See [78]). Each step of the tabulation process can be independently verified using a

series of zero-knowledge proofs. This helps to ensure the accuracy and integrity of the vote count.

5.3.1 Attacks

In [51] we demonstrate many attacks and issues with the protocol’s security, most notably a coercion-

resistance attack caused by information leakage caused by the removal of duplicate votes. Moreover,

they discuss how to repair these issues. These shortcomings include the Benaloh challenge problem,

Brute force attack, Leaky duplicate removal, Fake election identifier, and Smart card removal. Finally, to

motivate our protocol in this section, we describe these attacks that our protocol will repair.

In this part we are presenting the attacks that we found in [51]. In order to ensure the security and

integrity of an electronic voting system, it is essential to identify potential vulnerabilities and implement

appropriate measures to protect against potential attacks. In the following, we will examine some of the

potential attacks that may be encountered in this voting scheme and discuss ways to safeguard against

them.
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Benaloh challenge problem: The described attack focuses on exploiting a potential weakness in the

NV12 voting scheme with regard to the Benaloh challenge, which is designed to provide individual verifi-

ability. The problem lies in the fact that the hash of the encrypted vote, committed to by the smart card

and reader, is not checked for the cast ballot. Instead, what is checked is the hash of the entire ballot,

which includes the encryption of the credential and zero-knowledge proofs (ZKPs).

Let’s expand on this attack strategy:

The smart card, in this scenario, acts dishonestly. During the initial stages of the voting process, it be-

haves properly, encrypting all votes as expected. This creates the illusion of integrity and honesty because

the Benaloh challenge at this stage will be passed. The smart card reader’s screen will display the correct

hash of the encrypted vote, and the voter will be under the impression that their vote has been correctly

recorded.

However, once the Personal Identification Number (PIN) is entered to cast the ballot, the smart card

switches its strategy. It encrypts a different vote choice—potentially one that wasn’t chosen by the voter—and

includes this in the ballot.

The crucial part of this attack is that it goes undetected even in an honest verification environment.

This is because the verification process doesn’t check the hash of the individual encrypted vote, but rather

checks the hash of the entire ballot, which includes the new dishonestly encrypted vote, the credential,

and the ZKPs. If the dishonest smart card maintains the integrity of the rest of the ballot, the hash check

will pass, and the altered vote will be accepted as part of a valid ballot. This effectively violates the trust

assumption, undermining the individual verifiability of the voting process.

Repair: In order to properly verify the integrity of the vote, it is necessary to hash of the vote encryp-

tion committed in the Benaloh challenge and compare both the hash of the vote encryption and the hash

of the entire ballot to values computed from the ballot received by the ballot box. This can be a usability

issue, as it requires the voter to verify two different hashes, which may not be straightforward. For exam-

ple, an adversary may precompute hashes that are difficult for the voter to identify, such as matching on

the leading component.

Another option is to commit to the entire ballot in the Benaloh challenge process, but this would

require the voter to input their PIN for each challenge. Given that it is common for legitimate voters to

rarely perform verification checks in electronic voting systems, requiring a PIN for each challenge may

further compromise the security of the Benaloh challenge. Additionally, a voter is typically only able to

challenge once, so an adversary could potentially cheat after the first challenge.

Attack using brute force: Coercion-resistance and verifiability may be compromised if an adversary is

able to gain access to the voter’s smart card, either by requesting access directly or by stealthily accessing

the card. In these cases, the adversary could potentially guess the voter’s PIN and cast a vote on their

behalf. Due to the anonymity of the voting process, the voter would not be aware of this attack and would

not be able to detect it. Unfortunately, it is not possible to simply increase the size of the PIN space to

protect against this type of attack, as there is a limit to the voter’s ability to remember and accurately

input a longer PIN. This means that it is important to find other ways to protect against such attacks, such

as implementing additional security measures or implementing a system that allows the voter to verify

that their vote was cast as intended. The probability of an adversary successfully guessing the voter’s PIN

is not be negligible, especially if the adversary is able to vote multiple times. Additionally, even if the voter

is using a properly designed smart card reader, it is possible for an adversary to create a malicious reader

that could be used to automate the ballot-casting process and increase the probability of a successful

attack. This type of attack is not practical, however, as it would take a significant amount of time to fill the

PIN space through brute force guessing. For example, according to [52], the process of voting typically

takes around 13 seconds, including network delay. While the theoretical value for voting with current
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smart cards is likely to be lower, it would still take a significant amount of time to fill the PIN space through

brute-force guessing. It is also worth noting that the success of this type of attack depends on the vote

update policy in place and the timing of the vote. An adversary may be able to optimize their strategy by

casting their vote last, for example.

Repair:One way to combat the risk of brute force attacks is to add a short pause or delay between each

voting attempt. This delay can slow down an attacker trying to guess the voter’s PIN, as it would take a lot

longer to try all possible combinations.

However, we have to be careful about the length of this delay. If it’s too long, someone who’s trying

to force a voter to abstain might notice it. On the other hand, if it’s too short, it may not slow down a

brute-force attack enough to make a difference.

So, it’s a bit of a balancing act to find just the right amount of delay. It has to be long enough to slow

down an attacker, but not so long that it would be noticed by someone trying to force a voter to abstain or

make voting inconvenient for the legitimate voter. We need to experiment with different lengths of delays

and test their effectiveness to find the optimal solution.

Leaky duplicate removal: This is an attack on coercion-resistance but can also be an attack on ver-

ifiability. In the simplest form, the coercer uses the smart card to cast a vote with some trial PIN. The

coercer wants to determine if this trial PIN is correct. According to the protocol, the voter will cast her

true vote using the correct PIN at some secret point during the voting phase. However, in the tally phase,

credentials are weeded using plaintext equivalence tests (PETs) of the encrypted credentials directly on

the submitted ballots. If the coercer now sees an equivalence with his submitted trial ballot, he can guess

that it was the voter casting the other ballot, probably with the correct PIN. Thus he has determined the

correct PIN and that the voter defied his instructions in one go. To boost the attack he can simply try

several PINs. In standard JCJ, such an attack would not work since the submitted trial credential would

have the same probability of being identical to the coerced voter’s credential as for it to be identical to any

other voter’s credential. Furthermore, the probability would be negligible.

A local adversary getting access to the smart card could also follow this strategy to try to know the PIN

and cast valid votes. The voter might actually detect this if the voter checks the weeding on the bulletin

board and sees a duplicate of his own vote (note this was also mentioned in [105]), but the voter is not

instructed to do this in the protocol. Thus the PIN is not protecting against unauthorized use of the smart

card.

It is actually surprisingly hard to make a tally protocol that does not leak information to prevent this

attack. The original JCJ protocol relies on guessing the real full credential can only happen with a negligi-

ble chance. A first repair could be to mix the ballots before weeding but after verifying the Zero-knowledge

proofs. This makes it difficult to implement certain policies, like the last valid vote counts; however, it fits

nicely with the policy that a random selection from the valid votes counts. Unfortunately, this does not

prevent the attack. The coercer could mark his ballot by casting it a certain number of times which is likely

to be unique. He then checks if he sees this number of duplicates or one more. Even if mix between each

duplicate removal, which would be horrible from an efficiency perspective, we do not get a leak-free tally.

The distribution of time until a PET reveals a duplicate will depend on whether the PIN was correct or

not. Especially the coercer could cast a lot of votes with the same trial PIN, which would make detecting

this more visible. There are other methods to limit the information leak in the tally which we will present

below.

The protocol we will present in this chapter does not leak information about the number of duplicates

per voter and has linear tally complexity (compared to the quadratic in JCJ) but has an obfuscated form

of participation privacy.



50 Chapter 5. Practical and Usable Coercion-Resistant Remote E-Voting

Repair: It can be challenging to design a tally protocol that does not leak information and is able to

protect against this type of attack. The original JCJ methodology relies on the assumption that it is unlikely

that an adversary will be able to guess the true complete credential. One potential measure that could be

implemented to address this issue is to mix the ballots prior to weeding, but after confirming the zero-

knowledge proofs (ZKPs). This would make it more difficult for an adversary to determine which ballots

are equivalent and deduce the voter’s actual vote. However, this approach has the potential to complicate

the implementation of certain rules, such as the last legitimate vote count. Despite these efforts, it is still

possible for an adversary to attempt this type of attack and potentially deduce the voter’s actual vote. To

further protect against this type of attack, the coercer may mark their ballot by casting it a specific number

of times, which is likely to be unique. They can then check to see if there are any other duplicate ballots

and thus learn if the trial PIN was correct. While mixing the ballots between each duplicate removal may

help to complicate the process, it is not a foolproof solution and may not be sufficient to prevent informa-

tion leakage in the tally. One potential issue with this approach is that the time interval between plaintext

equivalency tests (PETs) revealing a duplicate may vary depending on whether the PIN was accurate or

not. If the coercer uses the same trial PIN to cast a large number of votes, it may be easier to identify

this and deduce the voter’s actual vote. There may be other techniques that can be implemented to limit

information leakage in the tally. We are presenting one based on multi-party computation below, but

where voter participation is only obfuscated. It may also be possible to develop a technique that does

not disclose the number of duplicates per voter, has a linear tally complexity (as opposed to the quadratic

complexity in JCJ), and provides an obfuscated form of participation privacy. These methods could help

to further strengthen the security of the voting system and protect against attacks.

Fake election identifier: This attack targets the verifiability of the voting system by attempting to

present the voter with an incorrect election identifier. As stated in the original JCJ article, zero-knowledge

proofs must have a unique election identifier to prevent ballots from being copied between elections. If

an incorrect identifier is used, the proofs will not be validated. However, before voting, the voter’s smart

card must be updated with the correct election identifier. If an adversary is able to manipulate the voter’s

computer and present them with the wrong credential, it could potentially compromise the integrity of

the voting process.

Repair: To protect against this type of attack, it is important to ensure that the correct election iden-

tifier is properly transmitted to the voter’s smart card and that the voter is able to verify its accuracy. This

may involve implementing additional security measures, such as encryption or authentication, to protect

against tampering or manipulation. One potential solution to this issue is for the voter to manually enter

the election identifier to ensure its accuracy. However, this approach may be prone to mistakes, as the

voter may accidentally input the wrong identifier. An alternative approach is for the voter to verify that

the submitted ballot contains a zero-knowledge proof (ZKP) that certifies the ballot’s authenticity in rela-

tion to the genuine election identity. This can be done when the hash of the entire ballot is verified, but it

may require the voter to wait a little longer in order to complete the process. By implementing this addi-

tional verification step, it may be possible to increase the security of the voting system and protect against

attacks that seek to compromise the integrity of the voting process. It is important to carefully consider

the trade-offs between security and usability when implementing these types of measures to ensure that

they do not unduly burden the voter or undermine the voting process.

Removing the smart card: An obvious forced abstention attack is when the coercer simply demands

to hold the smart card during the election period. This problem seems quite inherent to the smart card

approach. We could let the voter hold several smart cards. However, holding several cards would be

physical evidence that a voter with a local coercer probably would not want to risk. Furthermore, the

number of cards allowed per voter could necessarily not be bounded. If each voter were allowed to hold
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e.g. 5 cards, the coercer would simply ask for five cards. If this is troublesome it seems better to leave the

smart card only approach and allow the voter to also hold the credential as a piece of data as in standard

JCJ. This can more easily be hidden (steganography could be an option here) even though theoretically

this also has problems [113]. Our protocols below can be implemented with or without smart cards.

Additionally to the above attacks, some problems with the protocol do not fall under the category of

attacks. The main usability and verifiability problem with the protocol is that PIN entry is error-prone,

as was already stressed in the papers by Neumann et al. An obvious solution is to have a PIN check, e.g.

a checksum check. However, this would mean that only certain PINs are valid PINs, and for a voter to

present a fake PIN to a coercer, she would first have to prepare a valid fake PIN, which is less usable.

An option with higher usability is to have a policy of allowing PIN errors and accepting full credentials

corresponding to the PIN being entered with allowed errors. This is the approach we will essentially follow

in this paper; however, our solutions will also work for checksum checks.

If JCJ had a method of verifying the cast votes, we would also be able to detect such PIN errors. Such

a verification mechanism was suggested in [74] using the Selene approach. However, this check can only

be made after vote casting has ended; thus too late to update a PIN typo.

Another problem is the assumption that the smart card is trustworthy. This does not seem like a valid

assumption, at least for important elections. The smart card could simply use the wrong credential in a

ballot, invalidating the vote. Further, this cannot be detected since the smart card is the only credential

holder. At least the PIN encryption could be Benaloh tested, but not the credential. Furthermore, the

smart card reader is also trusted. However, this might not be reasonable in practice. As an example, if the

middleware on the reader allows the voter’s computer or the network to display messages on the screen,

e.g. to say it is waiting for a connection, then it could e.g. try to display fake hash values. A corrupted

smart card could also easily break privacy by using encryption as a subliminal channel for vote choice.

The smart card can also be seen as a single point of failure in light of this. We will thus focus on hardware-

independent protocols.

Repair: The utilization of smart cards in the voting process introduces challenges in safeguarding

against coercion and other forms of interference. Allowing voters to possess multiple smart cards could

potentially address this issue; however, practical difficulties arise, such as secure storage and manage-

ment of multiple cards. Alternatively, it may be necessary to abandon the reliance on smart cards al-

together and enable voters to possess their credentials as digital data, similar to the conventional JCJ

method. This approach offers greater flexibility in countering coercion, as the credentials can be more

easily concealed using techniques like steganography [113]. Nonetheless, this alternative approach brings

its own set of challenges, such as ensuring the security and integrity of the credentials to prevent tamper-

ing or unauthorized access.

5.3.2 Security Vulnerabilities

There are several vulnerabilities in the protocol that are not considered attacks. One of the main issues

with the protocol is that it is prone to errors when it comes to inputting the PIN. Neumann et al. have

noted this issue in their articles. One solution to this problem is to include a PIN check, such as a check-

sum, to ensure that only certain PINs are valid. This would make it more difficult for a voter to give a fake

PIN to a coercer, as they would have to create a valid fake PIN first. A more user-friendly solution is to

implement a policy that allows for PIN errors and accepts complete credentials that match the allowed

PIN errors. This is the approach we will take in this chapter, though our solutions will also be applicable

to checksum checks.

If JCJ had a mechanism for verifying cast votes, we could also identify such PIN issues. Iovino et al.

proposed a method for doing this using the Selene approach in their article [74]. However, this check can
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only be performed after voting has ended, so it is too late to correct a PIN error. Another major concern

with the protocol is the reliability of the smart card. In large elections, it may not be reasonable to assume

that the smart card will always function properly. The smart card may accidentally include the wrong

credential in the ballot, rendering the vote invalid. This is difficult to detect because the smart card is the

only entity with access to the credential.

While the encryption of the PIN can be checked using the Benaloh challenge, the credential itself

cannot be checked in this way. Additionally, the trustworthiness of the smart card reader is assumed.

However, this may not be sufficient in practice. For example, if the reader’s middleware allows the voter’s

computer or network to display messages on the screen, such as indicating that it is waiting for a con-

nection, the voter’s computer or network may attempt to display fraudulent hash values. Additionally, a

compromised smart card may compromise privacy by using the encryption option as a covert channel

for transmitting the vote selection. As a result, the smart card may be seen as a single point of failure.

Therefore, we will focus on hardware-independent protocols.

5.4 Pin-based JCJ Protocol

To overcome the unsatisfying state-of-affairs described before in [51] we propose a practical and usable

e-voting scheme, PIN-JCJ that satisfies verifiability, and coercion-resistance properties.

Compared to the previous electronic voting technique, our protocol has two significant innovations.

First, it is a hardware-independent protocol, as we replace the smart card with the voter’s supporting

device, which can be easily duplicated. Second, we construct it in such a way that some human error is

tolerated.

5.4.1 The intuition behind the PIN

In a nutshell, in our voting scenario, the voter has two keys: a long key (a.k.a. long credential) which

is stored on her supporting device (smart card or another device), and a short key, namely PIN, which

should be memorized by the voter. Our goal is to design a voting protocol that tolerates some level of

human error. In other words, the validity of a ballot and the result of the decryption algorithm tolerate

human errors, such as typos (fat finger errors) regarding the PIN. The naive solution to do this is for each

PIN, “a” we generate an ErrorLista , and in the tally phase, to verify the legitimacy of the ballot, check

whether the input PIN is in the set of error lists or not.

pin = a : ErrorLista = {a1 = a, a2, . . . , ak } ,
∣∣a∣∣= ∣∣ai

∣∣ (5.1)

This method has several significant privacy and efficiency issues, and to overcome these drawbacks, we

propose the following new approach:

Our approach is based on polynomial evaluation, which allows us to determine whether or not a PIN

is legitimate efficiently. This is accomplished by generating a list of approved PINs based on the user’s

PIN a and the election policy. From now on, we refer to this list as an Error List. We emphasize that to

have a constant degree polynomial for all voters, the error list must have the same number of PINs, which

might contain duplicates. From this, we generate the pin-Polynomial, as follows, which has all ErrorLista

members as its root:

pin-polynomial: polypin(x) =
k∏

i=1
(x −ai ) =

k∑
i=0

pi xi (5.2)
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In order to check the validity of the PIN typed by the voter, it is then sufficient to check whether the

polynomial value on this pin is equal to zero or not.

It is obvious that this polynomial must be kept secret at all times to prevent the coercer from recov-

ering the PIN by factorizing it. As a result, we must operate with encrypted polynomials, which brings

us to our next challenge: polynomial evaluation under this encryption. Namely, given the polynomial

encryption as its encrypted coefficient,

polypin(x) =
k∑

i=0
pi xi ⇒Enc(polypin)(x) =

k∑
i=0

cpi xi ,

as well as a ciphertext CTpin = Enc(â) that is the encryption of the entered PIN, we need to compute

Enc(polypin(â)).

Therefore in the next step, we have to find a way to prove (publicly) that the individual voter’s polyno-

mial is correctly evaluated without endangering the coercion-resistance.

Further, while solving this problem, we will also focus on efficient protocols to obtain a practical JCJ

scheme with (almost) linear tally time in the number of voters. To obtain this we need to sacrifice perfect

privacy. We only have participation privacy in the first scheme by obfuscation inspired by [61]. Here

ballots are submitted with an ID, and homomorphic Paillier encryption can then be used to evaluate the

polynomial. However, everybody, e.g. an independent authority, can cast votes labeled with ID, which

will later be discarded as invalid. Thus the actual participation of the voter is obfuscated, and the voter

can deny having participated in the election. Optionally, we could also follow the JCJ alternative method

in [61] to achieve perfect privacy; however, the cost will be that the voters twice have to defy the coercer

and interact with the voting system. In the second scheme using BGN encryption, the information leak

from duplicate removal will not be negligible but bounded, and this scheme does not satisfy linear tally

efficiency.

The next section will present the protocol description by introducing the cryptographic building blocks

and their algorithm. Also, for simplicity, we describe the protocol with a single trusted party, but it is pos-

sible to run this protocol distributively. We will also not specify all parts of the distributed registration

phase and the Benaloh challenges; this can be implemented as in the NV12 scheme with some obvious

modifications and the repairs presented in [51].

5.5 Protocol Description; Participants, Primitives and Framework

We now present the PIN-JCJ e-voting protocol on the conceptual level. In sections 5.6 and 5.7, we will

then instantiate our protocol by introducing concrete cryptographic primitives to demonstrate the effi-

ciency and usability of the protocol.

5.5.1 Protocol Participants

The PIN-JCJ protocol is run among the following participants: Election authority in charge of running

elections and declaring elections. Election trustees are in charge of the tallying process, and they are the

only parties in possession of the election secret keys. nv voters, each having their own voting supporting

device,vsd. A set of supervised registrars administrate the electoral register and provide the voters with

their credentials. A set of mix-servers (mix-net) and an append-only bulletin board BB.

We also presume that all parties communicate with one another via authenticated channels. An au-

thenticated channel from each voter to the bulletin board allows the voter to post data on the bulletin
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board, for example, cast her ballot, or file a complaint. To describe the PIN-JCJ protocol, we will first go

through the cryptographic primitives that are employed in the scheme. We separate two sets of primi-

tives for instantiation: those that use standard public encryption schemes and those that use the public

functional encryption scheme.

5.5.2 Cryptographic Primitives

We use the following cryptographic primitives:

• An IND-CPA-secure public-key encryption scheme: Πpke = (Kgen,Enc,Dec). Our protocol re-

quires performing a polynomial evaluation on encrypted data; namely, the underlying public-key

cryptosystem must support re-encryption. To this end, we consider three approaches: A public-

key encryption scheme that allows multiplication on the ciphertext or a homomorphic public-key

encryption scheme, or a functional encryption scheme. We detail the instantiation of the protocol

with these two cryptosystems in sections 5.6 and 5.7. However, for the time being, we are only con-

sidering a public-key cryptosystem with IND-CPA-secure property as the protocol’s security and

privacy are dependent upon it.

Additional Note. As mentioned above, the underlying public-key cryptosystem needs to have an

extra algorithm, as a re-encryption algorithm. On the other hand, for security analysis, we require

the cryptosystem to be non-malleable, which contradicts the re-encryption requirement. We em-

ploy a public-key cryptosystem with a re-encryption algorithm to address this issue, w, but we re-

quire that each ciphertext contain a zero-knowledge proof of knowledge. We refer to [21] for more

detail on the CCA-secure cryptosystem for e-voting protocol.

• Non-interactive zero-knowledge proof: For the protocol’s verifiability, we use a non-interactive

zero-knowledge proof system to prove the correctness and plaintext knowledge for all encrypted

data, such as “Proof of Plaintext Knowledge” and “Proof of Decryption Validity.” We may utilize

either a zero-knowledge proof system or a witness-indistinguishable proof system for this aim. For-

mally we will use the following proofs in our protocol:

1. A proof of correct key generation, i.e., a non-interactive zero-knowledge proof (NIZKP) πKgen
for proving the correctness of a public key pk w.r.t.Πpke. The underlying relation RKeyGen is

(
x = pk, w = (random,sk)

) ∈RKeyGen⇔ (pk,sk) =Kgen(random). (5.3)

2. The proof of correct encryption πEnc, i.e., a NIZK proof of knowledge for proving the correct-

ness of a ciphertext ct w.r.t. election key pk, voter public key pkv.

3. A proof of shuffle, πShuffle with respect to the cryptosystemΠpke, i.e., NIZK proof of knowledge

for the following relation Rshuffle:

(
x = ((cti )n

i=1, (ct′i )n
i=1), w = ((ri )n

i=1,σ)
) ∈Rshuffle

⇕(
σ : [n] → [n] bijective

)∧ (∀i ∈ [n] : ct′i =ReEnc(pk,ctσ(i );ri )
)
.

(5.4)

In other words, the public statement of proof of shuffle consists of two ciphertext vectors

(cti )n
i=1 and (ct′i )n

i=1 of the same size, and if the prover’s output is valid, then this implies that

the prover knows random coins (ri )n
i=1 and a permutation σ over [n] such that ct′i is a re-

encryption of ctσ(i ) (using randomness ri ).



5.5. Protocol Description; Participants, Primitives and Framework 55

4. A proof of correct decryption πDec with respect to Πpke, i.e., a NIZK for the following relation

Rdec:

(
x = (pk,m,ct), w = sk

) ∈ Rdec

⇕(
m =Dec(sk,ct)

)∧ (pk,sk) ←Πpke.Kgen.

(5.5)

For all the above relations we can use either a zero-knowledge proof system or a witness-

indistinguishable proof system for this purpose.

• EUF-CMA-secure signature scheme: The EUF-CMA-secure signature scheme, or Existential Un-

forgeability under Chosen Message Attacks, is a crucial security property for digital signature schemes.

Mathematically, a signature scheme (Gen,Sign,Verify) is said to be EUF-CMA secure if for all proba-

bilistic polynomial-time adversaries A, the probability Pr[Forge(A, (Gen,Sign,Verify))] is negligible.

Here, Forge denotes a successful forgery event, which is defined as follows:

A forges a signature if after a learning phase, where A has access to a signing oracle that signs any

message of A’s choice, A can output a pair (m,σ) such that Verify(pk,m,σ) = 1 and m was not

queried to the signing oracle during the learning phase.

We assume that every message encrypted by a protocol participant contains some election param-

eters such as the election identifier, and to avoid the heavy notation, we use the following conven-

tion: Signing some message m implies that the signature is computed on the tuple (m;pp) where

the second components are public election parameters including an election identifier.

5.5.3 Protocol Framework

A protocol run consists of the following phases:

• Setup Phase. This procedure is carried out in the same manner as a standard e-voting protocol.

The election authority sets up the election, establishes all the policies, such as the re-voting policy

and the type of error that the protocol will tolerate, and publishes details about the ballot design

and other procedures. For example, the re-vote policy specifies whether voters can cast only one

ballot or many ballots. Furthermore, which ballot will be counted as the voter vote in the tally phase

in the latter case?

Then the election trustees distributively generate the election key through distributed threshold

secret sharing and publish the public part of it on the bulletin board, together with proof of data

correctness.

• Registration Phase. During this phase, the voter, v, personally consults a so-called supervised reg-

istrar (SR). This authority verifies that the voter is not being coerced directly and then generates

a unique credential. This credential is then split into two parts: the long credential and the short

credential, also referred to as the PIN.

Following that, the supervised registration authority develops the PIN’s error list(as in 5.1) accord-

ing to the election policy and determines the pin polynomial (as defined in 5.2). Finally, the voter’s

long credential and encryption of the pin-polynomial are transmitted to (stored on) the voter’s sup-

porting device. Notably, the PIN is not stored in the voting device or on the bulletin board, and it

is necessary to be memorized by the voter. Along with the voter credential, the registrar provides

proof that satisfies only voter, v, that all associated data was generated correctly, whether published

on the bulletin board or stored on the voter’s device.
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• Voting Phase. In this phase, the voter device asks the voter to enter her PIN, â, and her preferred

choice, vote. Then it generates the ballot of the form:

ballot= (CTcrd,CTvote,πballot) :

CTcrd =Enc(voterCredential) = (CT1,CT2),

CTvote =Enc(vote)

(5.6)

together with some election’s public parameters, such as the election identifier. In the ballot form,

CT1 and CT2 denote the encryption of the voter long credential and the pin she entered, with re-

spect to the election public key, respectively. Moreover, πballot denotes the proof of the ciphertexts’

well-formedness, which consists of proof of plaintext knowledge of both the credential and vote.

In the next step, the voter can choose to either audit her ballot her vsd and conduct the Benaloh

Challenge [11] procedure to ensure that her ballot has the correct vote and pin or to submit it.

Device Auditing: If the voter wishes to audit option, the smart card commits to encryption

of the ballot by displaying H
(
ballot; {random}

)
. The voter notes down this hash, and if the en-

cryption is challenged, the smart card releases all the randomness numbers {random} to the

voter’s computer. The voter can verify the hash indeed was consistent with the vote choice via

a third device. This challenging procedure can be reiterated.

Ballot Casting: When voters get sufficient confidence in the honesty of their device, they sign

the ballot 5.6 and submit it via an authentic anonymous channel to the bulletin board.

• Tally phase. This includes several steps. First, any exact duplicate ballots and ballots with incorrect

proofs or signatures are removed. The teller should then detect duplicate ballots from a single voter,

weeding the duplicates while ensuring the remaining ballot matches the valid pin (if existing). The

weeding step is done according to the re-vote policy of the election. For example, suppose the re-

vote policy specifies that each voter’s last (according to the timeline) valid ballot must be counted in

the tally phase. In that case, this step must ensure that the last valid ballot remains on the bulletin

board and the rest are removed.

The several mix-net servers carry out the following phase: each mix-net receives a list of ballots

as input, re-encrypts each ballot, and then performs a secret permutation on the re-encrypted list

to produce the new list. Finally, the decryption trustees process the output of the last mix-net to

compute the election outcome. We emphasize that the in-charge parties must provide proof of

correctness in all of the preceding procedures.

• Public verification phase. In this phase, every participant, including the voters or external ob-

servers can verify the correctness of the previous phases, particularly the correctness of all NIZKPs

published during the setup, registration, voting, and tallying phases.

In sections 5.6 and 5.7, we propose two instantiations of our protocol. The main difference in these

instantiations is how we perform the tally phase.

This the next section we provide two instantiations of the generic PIN-JCJ protocol with concrete

cryptographic primitives. While all three institutions adhere to the protocol framework 5.5.3, we empha-

size that they differ in some steps, particularly the tally phase.
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We will explain only the basic building blocks and their algorithm and suppress some details about

ballot integrity and non-malleability from the zero-knowledge proofs, e.g. the inclusion of election iden-

tifiers and the correct form of the Fiat-Shamir transformations. Also, for simplicity, we describe the pro-

tocol with a single election trustee, but it is possible to run this protocol distributively. Finally, we also

will not specify all parts of the distributed registration phase and the Benaloh challenges, this can; be

implemented as in the NV12 scheme with some obvious modifications and with the repairs mentioned

in [51].

Before proceeding, we will establish some specific notations for this chapter. First, we refer to the

ct[m] as the cipher-text containing the message m, i.e. ct = Enc(m), and by ballot[crd,vote], we mean a

ballot that contains both the crd’s and the vote’s encryption.

5.6 Instantiation with Paillier cryptosystem

The first instantiation relies on the standard threshold variant Paillier public-key cryptosystem[93] whose

security is based on the hardness of the decisional composite residuosity assumption.

The main reason for choosing Paillier [99] instead of exponential ElGamal [65] (as in the original JCJ

protocol) is that its plaintext-homomorphic property allows us to evaluate the polynomial without de-

crypting the coefficients of the polynomials. Further, it allows an efficient multi-party computation pro-

tocol to compare and (hence sort) ciphertexts by plaintext values without decryption [87]. Furthermore,

this algorithm is linear in the bit length, i.e. logarithmic in the security parameter, and can be made pub-

lic verifiable [84]. Using this technique allows us to empower this instantiation to secure and efficient the

weeding process but at the cost of all ballots submitted with a voter identifier. Thus, obfuscating votes [61,

83] must also to be cast to achieve participation privacy.

We also use the secure multi-party computation protocol MPCmi n to compare and (hence sort) ci-

phertexts by plaintext values without decryption introduced by Lipmaa and Toft [87] which secretly eval-

uates the equality of two secret integers. In addition, the MPC protocol that is used in tally-hiding e-voting

protocol such as Ordinos [84]. We refer to [84] for the public verifiable multi-party computation details.

Additional Note. We consider the protocol in the context of a single trusted party, namely a single election

trustee running the key generation algorithm, rather than distributing trust among a group of election

trustees; however, it can be implemented in a distributed fashion, as was already mentioned above, using

the methods introduced in [93, 67]. Furthermore, we emphasize that in the Paillier cryptosystem, proof

of the correct key generation, πKgen, is actually the bi-primary test of the modulus n. Numerous meth-

ods for bi-primary testing have been proposed in single- and multi-party settings, including the method

introduced by Boneh and Franklin in [24]. Additionally, Vitto [123] introduces a protocol for efficiently

generating certificates of semi-primality, which enables us to generate distributively semi-primes with

unknown factorization.

For the proof of knowledge of the vote and the well-formedness of the ballot, we use a non-interactive

version of the sigma protocol for Paillier encryption scheme. Finally, we can use any EUF-CMA-secure

signature scheme.

The detail of the protocol is as follows:

• Set Up Phase: The election authority runs the key generation algorithm of Paillier encryption scheme,

ΠPai.Kgen to generate the pair of keys and publish them on the bulletin board along with the elec-

tion parameter:

kelection = (PK,SK);PK= (
n = pq,G, g ,ppelection

)
,SK= (p, q)
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• Registration Phase: At the beginning of this phase, an empty list of voter’s credentials,VoterCredentialList

is initiated. Then for voter vid the registrar does the following steps:

1. Pick a random number, crd
$←− Zn . according to the uniform distribution such that crd ∉

VoterCredentialList. For the sake of privacy, we can store a hash value of the credential in

this list rather than the credential. Append the new credential crd to the VoterCredentialList

and store it on the voter’s device. We refer to crd as the voter’s long credential.

2. Pick randomly a number a
$←− PinSpace and declare it to the voter vid. We refer to a as a voter’s

short credential or voter’s pin.

3. A registrar, based on the error-tolerance policy of the election, computes the set ErrorLista as

in (5.1)

polyid,a =
k∏

i=1
(x −crd−ai ) =

k∑
i=0

pi xi (5.7)

We refer to the set ErrorLista as the error list for pin = a and polyid,a the pin-polynomial for

voter id. If the voter’s id is clear from the context we will omit the index id.

4. Encrypt the polynomial with respect to the election public key. We stress that by encryption of

the polynomial, we mean the encryption of its coefficients, throughout this chapter. Namely,

we consider the encryption as a vector with lent k +1.

Enc(poly(id,a)) = C⃗P= (cp0, . . . ,cpk ) : cpi =Enc(pi ) for i = 0, . . .k. (5.8)

5. Provide a proof πpoly for the following relation:

Rpoly=
{

(x, w), x = (
id, a,crd,ErrorLista , C⃗P= (cpi )i∈[k]

)
w = (

(randomi )i∈[k]
)

:

cpi =Enc(PK, pi ;randomi ) = g pi · randomi
n ,

polyid,a =
k∑

i=0
pi xi =

k∏
i=0

(x −crd−ai ),

i = 1, . . . ,k : ai ∈ErrorList
}

(5.9)

The registrant presents πpoly the voter as proof of the polynomial’s validity (well-formedness

and correctness). This proof is done in a designated way.

6. Store (crd,CP) on voter device.

7. Publish vid :
(
CP= (cp0, . . . ,cpk ),Enc(crd)

)
on bulletin board.

• Casting Ballot: In this step, every voter vi decides to abstain from the election or vote for some

candidate. In the latter scenario, the voter indicates her choice after entering her PIN, â to her vsd

device. Then the vsd encrypts the vote, the voter credential, and the entered â, under the pub-

lic key of the election (Paillier public key) using random coins random j , resulting in the following
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ciphertexts: CP∗ = (cp∗0 , . . . ,cp∗k ),ct[vote] and ct[crd].

i ∈ [k] : cp∗i = cp(â+crd)i

i · random∗
i

n = (g pi · randomn
i )(â+crd)i · random∗

i
n

= (g pi ·(â+crd)i · (random(â+crd)i

i · random∗
i

)n

=Enc(PK, pi · (â +crd)i )

ct[vote] =Enc(PK,vote;random) = g vote · randomn ,

ct[crd] =Enc(PK,crd) = g crd · random′n

(5.10)

As previously stated, the voter’s vsd contains the voter’s long credential (plain) but not the polyno-

mial. In fact, it only has the encryption of the polynomial. However, because of the homomorphic

property of the Paillier encryption scheme, the vsd is capable of performing a blind multiplication

of the polynomial coefficient with the (crd+ â).

In the next step, vsd provides a proof, πballot, (also proof of knowledge), ensures that everything was

generated honestly, for relation Rballotpaillier.

Rballotpaillier =
{

(x, w), x = (
ct[vote],ct[crd], C⃗P= (cpi )i∈[k], C⃗P

∗ = (cp∗i )i∈[k]
)

w = (
vote,randomvote, â,crd,randomcrd, {random∗

i }i∈[k]
)

:

ct[vote] = g vote · randomn ,vote ∈ cList,
ct[crd] = g crd · random′n ,

i = 1, . . . ,k : cp∗i = cp(crd+â)i · random∗
i

n
}

(5.11)

This proof can be implemented efficiently using Sigma protocols and relies on the DDH assumption

and it can be made non-interactive using the strong Fiat-Shamir heuristic.

At the end of this phase, the voter signs her ballot on the following form:

ballotvid = (ct[crd],ct[vote], C⃗P∗ = (cp∗1 , . . . ,cp∗k ),πballot) (5.12)

and submits it to the bulletin board. Note that the hash should contain all parts of the ballot.

Re-Vote Policy In this instantiation, each voter is permitted to submit multiple ballots, and in the

tally phase, one of the valid ballots is randomly picked and counted.

Additional Note. We stress that we do not describe some steps in detail here, such as the “Benaloh

challenge” to audit the voter’s supporting device. Furthermore, in this instantiation, we use the

obfuscate method introduced in [62, 83] to protect the voter against the coercer who compels a

voter not to vote (abstain from voting) i.e. a separate (distributed) authority will submit dummy

ballots on behalf of all voters. Since this authority does not know the long credential all of these

dummy ballots will be invalid but will obfuscate whether a specific voter did vote or not.

• Tally Phase: Using the Paillier encryption scheme allows us to efficiently sort the ciphertexts based

on plaintext values without decrypting them using MPC among the Tally Tellers (see [87] for details).

Additionally, this algorithm can be implemented in a multi-party computation, to strengthen the

elections. In our protocol, we take advantage of this multi-party computation to sort the encryption

of polynomial evaluation.
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We refer by MPCmin the algorithm that takes as input the ciphertexts:

ct1 =Enc(m1),ct2 =Enc(m2), . . . ,ctt =Enc(mq ),

and outputs the index i∗ such that

cti∗ =Enc(mi∗ ) : mi∗ = min{m1, . . . ,mt }.

We use this algorithm in the Tally phase.

1. Ballot Validity check: We remove exact ballot duplicates and all ballots with invalid proof and

the signature in the first step. In the next step, we need to remove extra ballots for each voter,

making sure a valid ballot is kept if existing.

2. Weeding: Since each voter will be associated with possibly more than one ballot, we need to

weed them in a way that at least one of the ballots associated with the valid credential and pin

will remain - if existing.

Assume the voter vid casts q ballots, each includes choices voteid,i :

vid : ballotid,1 :
(
C⃗P

∗
1 ,ct[voteid,1]

)
, . . . ,ballotid,q

(
C⃗P

∗
q ,ct[voteid,q ]

)

each contains C⃗P
∗
t =

(
cp∗(t ,1), . . . ,cp∗(t ,k)

)
and the pin ât .

We homomorphically combine the public ciphertext cp0 with the submitted encryptions to

obtain an encrypted polynomial evaluation for each ballot:

For t = 1, . . . q :

cp0 ·
k∏

j=1
cp∗t , j = g p0 · randomn

0 ·
k∏

i=0
g pi ·(ât+crd)i · randomn

i

= g
∑k

i=0 pi (crd+ât )i · random
=Enc(PK,polyid,a(crd+ ât ))

(5.13)

Note that the above ciphertext would be the encryption of zero if the ballot has a valid creden-

tial and pin.

Enc(PK,0) ⇐⇒ ât ∈ErrorLista

We now verifiably mix the pairs:

ctt [polyid,a(ât +crd)],ct[voteid,t ]

and run the MPCmin protocol:

MPCmin

(
ctσ( j )[polyid,a(âσ j +crd)]

)
j∈[q]

7→ ct[polyid,a(âm +crd)] (5.14)

which securely outputs the minimum value:

∀t = 1, . . . , q : polyid,a(crd+ âm) ≤ polyid(crd+ ât ),
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We keep this ciphertext and the corresponding encrypted vote and discard the rest. Note that

MPCmin selects a valid ballots having polyid,a(âm +crd) = 0 if it exists.1

3. Ballot anonymization: We observe that at this stage, there is only one ballot left on the bulletin

board for each voter, which is composed of two components:

vid : ˜ballotid,m = (c̃tid, c̃t′id) :

c̃tid = ctid[poly] =Enc(polyid,a(âm +crd)),

c̃t′id = ctid[voteid,m].

In fact, ballotid,m is the output of the MPCmi n protocol. To avoid the heavy notation, we will

no longer use the index m and we refer to ballotid,m by ballotid.

Two steps must be completed in order to anonymize the ballots:

Step 1. Raise the first component to the power r1 and re-encrypt the second component:

c̃tid 7→ ctid = c̃tr1
id =Enc

(
polyid,a(âm +crd)r1

)
(5.15)

and provide a proof πrandomization for the relation Rrandomization:

Rrandomization=
{

(x, w), x = ( ˜ballot,ballot), w = r1 :

˜ballot= (c̃t,ct′),ballot= (ct,ct′),

ct= c̃tr1}
(5.16)

We multiplicatively randomize the polynomial evaluation to avoid coercion side channels

but still be able to determine if a ballot was valid by checking if the value is zero. At the

end of this step, we obtain the following list, which includes a single ballot for each voter:

L1 =
[(
ctid = ct[polyid,a(âid+crdid)],ct′id = ct[voteid]

)]
id∈idSet

Step 2. In this step first, we delete the voter identifier. Then we insert the list L1 into a

verifiable parallel mix-net to apply the re-encryption and permutation procedure on the

list L1. It is required that each mix-net provides proof of shuffle, πShuffle, for the relation,

Rshuffle (5.4). At the end of this step we obtain (L2,πShuffle) where:

L2 =
[

(ctσ(id)[polyσ(id),a(âσ(id) +crdσ(id))
random],ct′[voteσ(id)])

]
id∈idSet

4. Final PIN-Credential Check: In this step, first we decrypt the first component of each ballot:

ctid[polyσ(id),a(âσ(id) +crdσ(id))
random]

to retrieve the polynomial evaluation. All ballots with non-zero polynomial evaluation will be

discarded.

5. Vote Extraction: Decrypt the remaining vote ciphertexts and provide proof of decryption 5.5.

1This will give a random correct vote. The “Last valid vote counts” policy can be implemented by adding the received order to
the plaintext.
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6. Result computation: Obtain the election result by applying the fres over all plaintext votes.

Error tolerance property in this instantiation results from the correctness of the encryption scheme and

the MPCmi n . First, consider the following computation:

5.8 : cpi = g pi · rn
i

5.10 : cp∗i = cp(â+crd)i

i · r∗i n

}
⇒ cp∗i = g (â+crd)i pi · r′i n

⇒ ct[polyid,a(ât +crd)] := cp0 ·
k∏

i=1
cp∗i

= g
∑n

i=0(â+crd)i pi · rn

= gPolyid(crd+â) · rn

Due to the definition of pin-polynomial (5.2):

ct[polyid,a(ât +crd)] =Enc(0) if and only if crd+ât ∈ErrorLista +crdregistered

which with the overwhelming probability implies that â ∈ ErrorLista . Additionally, the correctness prop-

erty of the multi-party computation protocolMPCmin in (5.14) guarantees that the ballot with a minimum

value of polyid,a(ât +crd) remains in the weeding step.

Note that polyid,a has a range in non-negative integers. Therefore if there is any ballot with valid cre-

dentials and PIN, the output of MPCmin will be a valid ballot, namely ct[polyid,a(ât +crd)] =Enc(0).

Additional Note. The main advantage of this instantiation is sorting the ciphertexts without decrypting

them (using MPCmin protocol). Because this approach does not reveal whether any ballot has a valid PIN

or not, thus sidestepping the attack on the standard duplicate removal.

5.7 Instantiation with BGN cryptosystem

The second instantiation is based on composite order groups introduced by [25] and the Groth-Sahai

NIWI-proof system [63] with security based on the Subgroup decision assumption.

The main point of using those primitives in this instantiation is, BGN is a homomorphic encryption

scheme that supports a single multiplication which is what we need and also it can be efficiently im-

plemented in a bilinear group. Having a bilinear map allows us to do the polynomial evaluation in an

efficient and secure way and also have the efficient NIWI-proof system.

Definition 2. BGN Cryptosystem works as follows. Its Key-Generation algorithm, Kgen outputs a pair of

keys:
(
pk= (n,G,GT ,e, g ,h = g ′q ),sk= (p, q)

)
where G= 〈g 〉 and GT are two groups of order n and the secret

key consists of two primes p, q such that n = pq. e : G×G→ GT is bilinear (∀a,b ∈ Z, g ∈ G : e(g a , g b) =
e(g , g )ab), non-degenerate (G = 〈g 〉 ⇒ e(g , g ) ̸= 1GT ) and commutable map. A ciphertext on message m ∈
[T ], for T < q has the form CT = g mhrandom ∈ G for some random number random. Decryption: raise the

ciphertext to power p and compute the discrete log.

The detailed protocol is as follows:

• Set Up Phase:



5.7. Instantiation with BGN cryptosystem 63

1. The election authority runs the key generation algorithm of BGN encryption scheme,ΠBGN.Kgen

to generate the pair of keys:

(skBGN = p, q,pkBGN = (n,G,GT ,e, g ,h)

2. Then chooses a random group element f
$←− G. Note that G = 〈g 〉 is a cyclic group so there

exists a unique integer z such that f = g z .

3. Set the election key as:

PKelection = (n,G,GT ,e, g ,h) , SKelection = (p, f )

4. Publish the public key on the bulletin board along with the election parameter.

• Registration Phase: The registrar performs the following steps to generate the credential for the

voter, vid

1. Generate credential and PIN: crd, a as in the Paillier instantiation.

2. Generate the list of errors and the pin-polynomial. Note that in this instantiation the polyno-

mial polyid,a only contains the polynomial, not the long credential:

ErrorLista = {a1 = a, a2, . . . , ak }

polyid,a =
k∏

i=1
(x −ai ) =

k∑
i=0

pi xi

3. Run the encryption algorithm,Πbgn.Enc to obtain the following ciphertexts:

∀i ∈ [k] : cpi =Enc(pi ) = g pi hrandomi ,

cp0 = g p0 · f crdhrandom

=Enc(p0 +crd× z).

Note that, technically cp0 is the encryption of p0 +crd× z. Although z is not a known value to

any party, the registrar can compute cp0 without knowing its exact value.

4. Generates the proof of validity of the polynomial polyid,a and
(
cpi

)
i=0,...k , similar to the Paillier

instantiation.

5. Store (
CP= (cp0,cp1, . . . ,cpk ),CRD= g crd)

in the user device.

6. Publish vid :
(
Enc(crd) = g crd ·hrandom,CP

)
on bulletin board.

• Casting ballot: During this phase, the voter can perform an audit on her device to ensure its ac-

curacy. This process is similar to the Paillier instantiation, therefore we skip the details and only

describe the ballot creation step.

Voter, vid, indicates her choice after entering her PIN, â to her vsd device. Then the vsd encrypts

the vote, the voter credential, and the entered â, under the public key of the election(See 3) using

random coins random j , resulting in the following ciphertexts:
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1. Compute:

CTvote =Enc(vote),CTcrd =Enc(crd) =CRD ·hrandom

2. Encrypt the PIN:

For i = 1, . . . ,k : cai =Enc(âi ).

3. Re-randomize the polynomial coefficients:

For i : 0,1, . . . ,k : cp∗i = cpi ·hrandom∗
i

4. Set

CA = (ca1, . . . ,cak ),

CP∗ = (cp∗0 , . . . ,cp∗k )

and provide a proof (proof of knowledge), πballot for the following relation, including a joint

proof of plaintext-knowledge for all the other ciphertexts in the ballot and include the rest of

the ballot in the hash for non-malleability. This proof can be generated using the Groth-Sahai

technique.

Rbal lotbgn =
{

(x, w) :

x = (
ppelection,CTvote,CTcrd,CA

)
,

w = (
vote,randomvote,CRD,rcrd, â, {ri }i∈[k]

)
:

CTvote = g vote ·hrandomvote ,

vote ∈List of candidats,

CTcrd =CRD ·hrcrd ,

{cai = g (â)i ·hri }i∈[k]}

(5.17)

5. At the end of this phase, the voter signs her ballot of the following form:

ballot= (CTvote,CTCRD,CA,CP∗,πballot)

and submits it to the bulletin board.

Re-Vote Policy In this instantiation, each voter is permitted to submit multiple ballots, and in the

tally phase, unlike to Paillier instantiation, it is possible to consider the last valid ballot cast by the

voter.

1. Ballot Validity check: In the first step, we remove exact ballot duplicates and then we check

the validity of the proofs and the signatures. In case of any failure, the ballot will be discarded.

In the next step, we need to remove extra ballots for each voter, making sure a valid ballot is

kept if existing.

2. Polynomial evaluation: Compute the encrypted polynomial evaluation as follows:

EncT (t ) = e(CTcrd, f )−1 ·e(cp∗0 , g ) ·e(cp∗1 ,C A1) · · ·e(cp∗k ,C Ak )

=EncT (e(gpolyid,a,g (âid), g ))
(5.18)
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We refer to this value by EncT (t ) with t being the polynomial evaluation which can be seen as

encryption in the target space (group GT ).

3. Mixing: Now verifiably mix the tuples (CTcrd,CTvote,EncT (t )).

4. For each ballot we create EncT (crd+ t ):

e(CTcrd, g ) ·EncT (t ) =EncT (e(g crd, g )) ·Enc(e(gpolyid,a (â), g ))

=EncT (e(g crd+polyid,a (â), g ))

Now, we need to remove ballots having the same value e(g crd+polyid,a (â), g ), which basically

means the same credential and same â. This can be done by running a PET or using some

hash function. At the end of this step, we have a list of ballots of the following form:

(
EncT (e(g crd+polyid,a (â), g )),CTvote

)
(5.19)

Additional Note. If we have a small number of voters, it is possible (efficient) to do this via

PETs. Further, we can mix between each duplicate removal. For a larger number, we suggest

splitting the board in two, removing duplicates separately, then mixing and doing duplicate

removal again. This will decrease the information from the distribution of confirmed dupli-

cates to a coercer carrying out the leaky duplicate removal attack. Additionally, for the sake of

privacy, we can replace the first component in (5.19) with Hhk(e(g crd+polyid,a (â), g )(â)) where

Hk is a keyed-hash function with secret key hk.

5. We now need to select eligible valid votes. We mix the above list and the list of registered en-

crypted credentials. To this end, compare crd+poly(id,a)(â) to the list of registered credentials.

Any ballot that has a match with a registered credential would be a ballot with a valid creden-

tial where its polynomial evaluation is equal to zero with overwhelming probability. There is

only a negligible chance that invalid crd and invalid PIN generate an invalid full credential.

Next, we do a further PET against the short credentials. This will reveal malicious authori-

ties creating valid polynomials on their own. If this is positive too, we decrypt the vote and

continue to the next registered credential.

Error tolerance property: The following computation shows the correctness of equation 5.18, in other

words, it shows how to evaluate the polynomial on the input value â:

e(CTcrd, f )−1 ·e(cp∗0 , g ) ·e(cp∗1 ,C A1) · · ·e(cp∗k ,C Ak ) =
e(CRD ·hr, f )−1 ·e(g p0 ( f )crdhr0 , g ) ·e(g p1 hr1 , gαi hγi ) · . . .e(g pk hrk , gαk hγk ) =
e(CRD, f )−1 ·e(h, f )−re(g p0 f crdhr0 , g ) ·e(g p1 hr1 , g ai

hγi ) · . . .e(g pk hrk , g ak
hγk ) =

e(CRD, f )−1e( f ,hr)e( f ,CRD)e(g p0 hr0 , g ) ·e(g p1 hr1 , g ai
hγi ) · . . .e(g pk hrk , g ak

hγk ) =

e(hr, f )(
k∏

i=0
e(g pi , gαi )) · (

k∏
i=0

e(g pi ,hγi )) · (
k∏

i=0
e(gαi ,hri ))(

k∏
i=0

e(hγi ,hri ))

e(g , g
∑k

i=0 piαi )) ·e(g ,hr) = e(g , gpolya (â)) ·e(g ,hr)

As a result, if we raise the above term to the power p, the result is 1 if and only if polyid,a(â) = 0. Also,

due to the secret f and zero-knowledge proof, πballot, malicious voters cannot construct a fake polyno-

mial resulting in zero evaluation.
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Additional Note. The main advantage of this instantiation is that voters can vote anonymously; thus,

unlike the first instantiation, no identity obfuscation is required. Additionally, by utilizing Groth-Sahai

proof techniques, the implementation becomes more efficient. Particularly in an election with many

candidates and voters, compared to the Sigma protocol, the proof of membership will be more effective.

Moreover, we can implement the mix-net components using the Groth-Bayer mix-net servers [7].

5.8 PIN Space Covering

People are prone to errors in many aspects of life, including when entering numbers. The effects of these

errors can be disastrous. Designing better systems may help to prevent these errors however, in order to

do this we need to understand far more about the types of errors being made, and their causes.

Reason [102] defines two types of errors: slips (or lapses) and mistakes. Mistakes occur when a person

has incorrect or absent knowledge of the task they are aiming to complete. Slips occur when a person has

the knowledge needed to perform a task but for some reason takes the wrong actions in completing the

task — this may be during the execution stage or during planning. Errors due to mistakes are remedied

by providing training to people in order to complete their knowledge about the task and how to perform

it. Slip errors however are more difficult to avoid — they occur even when we are very skilled at a task.

Before we can handle to prevent these slip errors from occurring, we must first understand the errors

being made.

They presented a corpus of real-life errors, specifically number entry errors, gathered in experimental

conditions and a method for classifying and organizing the errors collected in order to facilitate further

research into causes and solutions. Unfortunately, there are very few documented examples of number

entry errors and thus many of the studies conducted so far rely upon modeled, not real-world data. Au-

thors in [126] studied different types of errors. They provide a list of common errors e.g. “Digit wrong”,

“Anagram”, “Skipped”, “Digit Missing”, etc.

In our voting system, we ensure that the voter’s credentials are verified even if they make a mistake

when entering their PIN. This could be a transposition error or a single incorrect digit, for example. From

a security perspective, it is interesting to consider how much this reduces the entropy of the PINs. We

are going to determine the minimum number of PINs an attacker would need to try in order to cover the

entire PIN space. This defines the security against a brute force attack conducted by an attacker who has

a legitimate credential, such as a smart card.

We will not solve this exactly but will provide some upper and lower bounds. Additionally, as indicated

by PIN frequency studies, users are often poor at selecting random PINs. As a result, we recommend that

the PIN be generated randomly and not chosen by the voter. We start by considering the scenario in

which we allow for PIN swaps and a single-digit error. Let’s refer to the PIN as p1p2 · · ·pk . We begin by

calculating the number of PINs covered by a PIN attempt.

Let us begin with the example when k equals two. The term [p1p2] refers to the range of numbers

covered by this PIN. Clearly, [p1p2] = {p1p2, p2p1, p1∗,∗p2}, where ∗ ∈ {01,2, . . . ,9}. After deleting the

repeated occurrences, |[p1p2]| = 20 in the case p1 ̸= p2, and 19 in the case p1 = p2. Indeed, given 2r

different digits p1, . . . , p2r , it is possible to verify that the r 2-digit numbers p1p2, p3p4, . . . , p2r−1p2r will

cover a total of 20r −2
(r

2

)
PINs.

Additionally, the formula may be used to get an upper limit on the number of PINs covered by r , from

which we see that, indicating that the attacker needs at least eight PINs to cover the whole PIN space for

all 2-digit numbers. Given that the attacker’s goal is to cover the PIN space with the fewest available tries,

a suitable technique seems to be to augment the basis with PINs with different digits. If no new PIN with

different digits is available, we will add a PIN that increases the size of the existing basis the most, and so
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on until the PIN space is covered. We built an algorithm in Python that is based on this concept, but uses

random sampling to identify the next most efficient element. We found that 9 PIN attempts are enough

for the situation of a two-digit PIN, which is near the theoretical lowest limit.

We now move on to the situation of three-digit PINs. The maximum size of any PIN p1p2p3 is 30

(when we allow swapping and wrong digit errors). As a result, 34 is a lower constraint on the base size of

PIN space in this situation. Assume that no mistakes other than swappings will be accepted. There, the

base size is 55, as determined by the Python code2. For k ≥ 3, the upper limit on the cover of a single PIN

is k (including itself), implying a lower bound of 10k

k . The results in Table 5.1 show the range of possible

theoretical bounds for PIN lengths of 2 to 5. For PIN lengths 2, 3, and 4, the code was run 1000 times to

obtain these results. For a PIN length of 5, the code was only run once.

These results give us an idea of the potential range of theoretical bounds for different PIN lengths.

PIN Length 2 3 4 5
S+W Lower Bound 8 34 250 2000
S+W Upper Bound 9 78 713 6490
S Upper Bound 55 465 4131

TABLE 5.1: S+W means the system accepts swapping errors and wrong digit errors,
whereas S means a system that just tolerates swapping errors.

5.9 Conclusions and Outlook

In summary, we have presented an e-voting scheme that is resistant to coercion attacks and typo errors

in PINs that is usable by using smart cards to store credentials and PINs to unlock these. The scheme

uses partially homomorphic Paillier encryption and distributed plaintext equivalency tests to ensure the

privacy and security of the voting process. The scheme also includes mechanisms to detect and prevent

malicious authorities from generating fake polynomial evaluations. Future work may focus on improving

the efficiency of mistake correction and incorporating biometric data into the scheme.

Incorporating the tally system from Ordinos [84] into our Paillier-based system is a logical next step, as

both protocols are based on the Paillier encryption system. The Ordinos system only reveals the winner

or candidate rankings in the election, which can help to resist coercion in cases where candidates are

expected to receive few or no votes. Another possibility for both protocols is the use of risk-limiting tallies

[75], which offer voters plausible deniability. It may also be worth exploring the space of possible PINs in

more detail, and it is likely that more precise findings could be discovered.

Intriguingly, the likelihood of a single-digit error occurring in a k-digit Personal Identification Number

(PIN) has a mathematical relationship with Rook polynomials on a k-dimensional chessboard. This rela-

tionship is derived from the concept of Rook polynomials, which are used in combinatorics to count the

number of ways a certain number of non-attacking rooks can be placed on a chessboard. In the context

of PINs, each digit can be thought of as a rook on a k-dimensional chessboard, where k is the number of

digits in the PIN. A one-digit error in the PIN is analogous to a possible place in the chessboard which is

under attack by the rook. On that problem, we are trying to put minimum rooks in the chessboard such

that all places are under attack. This mathematical model provides a unique perspective on the proba-

bility of PIN errors and can be used to develop more effective error detection and correction strategies

[5].

2Here the code for this analysis https://github.com/ehsanestaji/JCJ-Pin

https://github.com/ehsanestaji/JCJ-Pin
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In addition to this mathematical perspective, there are several socio-technical research issues that

need to be addressed. These issues are particularly relevant in the context of secure voting systems, where

voters are required to enter their PINs without receiving any feedback on the correctness of their input.

The first issue pertains to the types of errors voters are likely to make when entering their PINs in a

voting environment. Understanding these error patterns can help in designing more user-friendly voting

systems and in developing effective error correction strategies. For instance, are voters more likely to

transpose digits, forget digits, or enter extra digits? Are certain digits more prone to errors than others?

These are some of the questions that need to be explored.

The second issue is related to the development of an optimal PIN strategy that can correct the max-

imum number of PIN errors while maintaining a high level of entropy in the PIN space. High entropy is

desirable as it makes the PINs harder to guess, thereby enhancing the security of the voting system. This

requires a careful balance between user-friendliness (which may necessitate simpler PINs) and security

(which requires more complex PINs).

The third issue is about the education of voters in the management, forging, and concealment of

secret keys, especially in scenarios where smart cards are not utilized. Even when smart cards are used,

voters still need to be educated on how to handle and protect their secret keys. This involves not only

technical education but also awareness about the potential threats and the importance of maintaining

the secrecy of their keys. The effectiveness of such education programs is a crucial factor in the overall

security of the voting system.



CHAPTER 6

MACHINE-CHECKED PROOFS OF

PRIVACY AGAINST DELAY-USE

MALICIOUS BOARDS

This chapter offers a detailed analysis of concepts related to ballot privacy, including privacy modeling,

established definitions, key terminology, and core properties. It also traces the historical evolution of

ballot privacy, highlighting important elements such as the BPRIV definition, strong consistency, strong

correctness, and re-voting strategies.

Additionally, this chapter introduces Labeled MiniVoting and voting friendliness and discusses the

game-based security approach against a dishonest ballot box using the mechanism of mb−BPRIV.

We further explore the mb−BPRIV model, where a tally is taken only if the adversary’s board passes

the validity test and all voters are satisfied after completing a specific verification procedure. This precon-

dition requires the verification process to be completed before the tally, thereby rendering mb−BPRIV

incompatible with voting systems such as Selene. In Selene, the tally is done prior to verification to miti-

gate coercion risks. This incompatibility underscores the need for a new privacy definition that can han-

dle potentially ballot box (tally is honest) and also support voting protocols where the verification is done

post-tally computation.

In response to this need, we introduce a new definition of ballot privacy against a potentially dishon-

est ballot box, termed as delay-use malicious ballot box ballot privacy (du–mb–BPRIV). This definition

extends the applicability of voting systems to those that permit verification after tallying and those that

necessitate a secret key during the verification stage. While sharing similarities withmb−BPRIV, our def-

inition diverges in allowing the adversary to view the tally only after the validity of his board is confirmed,

and subsequently, the results of the verification phase are disclosed.

Two sections 6.3 and 6.5 are closely related to sections III and V in [47]. The remaining parts give more

explanations than presented in [47] especially on the proof of Theorem 1 of the Mini-Voting scheme in
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Section 6.4. 1

6.1 Ballot Privacy Evolution

The privacy of votes has been a longstanding concern in democratic elections, especially as universal suf-

frage has been implemented in various countries. With the introduction of electronic technologies into

the voting process, there are new challenges and concerns related to preserving the privacy of ballots.

Cryptographic voting protocols seek to address these issues by developing security models and construct-

ing schemes to fulfill these models. These protocols aim to provide ballot secrecy in electronic voting.

Cryptographic voting schemes can generally be classified into two categories: purely electronic schemes,

in which voters cast ballots from the privacy of their own computers (e.g., Helios [3, 4] or Civitas [37]), and

hybrid schemes, in which paper ballots and computers are used to facilitate the tally (e.g., ThreeBallot

[103], Prêt-à-Voter [109], and Scantegrity [33]).

In the typical practice of electronic voting, votes are usually encrypted using a public key, while the

decryption key, necessary for revealing the votes and calculating the final tally, is shared among several

trustees. The implication of this method is that a minimum number of trustees are required for decoding

the votes. A significant design consideration is to withhold the decryption key from the ballot box or,

more accurately, the server assigned the task of collecting all the votes. This strategy is implemented with

the intention of safeguarding voter privacy, assuring that no information about the votes can be accessed

by the server, even when its trustworthiness is questionable.

Current definitions of ballot privacy, such as those found in [17, 22, 36], posit a scenario where control

over the votes of honest parties is in the hands of the adversary, but the resulting ballots remain beyond

their influence. Once posted on the bulletin board, these ballots are immune to modification or removal

prior to tallying. This means that the existing security notions can only guarantee the security of such

schemes under the assumption of an honest bulletin board, despite these schemes being intended to

withstand a deceitful voting server.

This mismatch between the desired security objectives and the existing security definitions has been

recently confirmed in the case of Helios [3] by Roenne [106]. As it has been explained in [41], it was re-

vealed that voter privacy can be compromised by a dishonest bulletin board if the option for voters to

revote is available. Furthermore, it seems to be non-trivial to prevent such a scenario, even when addi-

tional checks are implemented by voters and independent auditors, such as the prohibition of duplicate

ballots, commonly referred to as ’weeding.’ In order to detect such an attack, impractical preventive mea-

sures would need to be adopted, such as requiring each voter to meticulously keep a record of every one

of their ballots, including those that were unsuccessful in reaching the ballot box.

To address this issue, a new approach is proposed by Cortier et al. [41]. We will begin by providing an

overview of the historical contexts surrounding ballot privacy definitions. Subsequently, we will delve into

the novel definition of ballot privacy specifically tailored for the dishonest ballot box scenario, considering

the presence of an adversary.

In [40], an attempt was made to model privacy against a dishonest board, assuming that all honest

voters adhere to the specified protocol verifications. However, this assumption proved unrealistic as it is

more plausible in a real-world scenario that only a fraction of honest voters perform the required tests

while others cease their participation after casting their votes.

1The EASYCRYPT proof of Theorem 1 was mainly written by me whereas the EASYCRYPT proof of Theorem 2 was mainly done by
Morten Solberg.
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Exp
bpriv,β
A ,V

(λ)

1 : (pk, sk) ←Setup(1k)

2 : d ←A O (pk);

3 : return d

Oboard

1 : return Publish(BBβ)

OvoteLR(i d , v0, v1)

1 : Let b0 = Vote(i d , v0) and b1 = Vote(i d , v1)

2 : if Valid(BBβ,bβ) =⊥ then

3 : return ⊤
4 : else BB0 ←BB0∥b0 and BB1 ←BB1∥b1

Ocast(i d ,b)

1 : if Valid(BBβ,bβ) =⊥ then

2 : return ⊤
3 : else BB0 ←BB0∥b and BB1 ←BB1∥b

Otally() for β= 0

1 : (r,Π) ←Tally(BB0,sk)

2 : return (r,Π)

Otally() for β= 1

1 : (r,Π) ←Tally(BB0, sk)

2 : Π′ ←Sim(BB1,r )

3 : return (r,Π′)

FIGURE 6.1: In the experiments Exp
bpriv,β
A ,V

(λ) defined above for β = 0,1 adversary A has

access to the set of oracles O = {Ocast,Oboard,OvoteLR,Otally}. The adversary is allowed
to query Otally only once. For β= 1 the experiment also depends on Sim.

The first game-based definition concerning a malicious board was proposed by Bernhard and Smyth

[20]. An extension of Benaloh’s methodology [17] was used in their definition. Here, the adversary pro-

vides a board and vote tallying occurs only if the subtally of ballots from honest voters does not devi-

ate in the “left” and “right” worlds. This somehow corresponds to one possible instance of our recovery

algorithm in mb-BPRIV, where the attacker may remove any honest vote and add an arbitrary number of

votes, independently of whether honest voters do check their ballot and independently of the number of

dishonest voters.

Recent security studies on encryption schemes, where ballots can be partially altered, were carried

out by Bursuc, Dragan, and Kremer [29]. A variant of BPRIV (A precise definition will be provided in the

subsequent parts of this section.) was proposed that considers such situations. For cases with a malicious

board, equated to instances where ballots can be fully manipulated, they defined vote privacy in [29]

as an instance of mb−BPRIV where arbitrary tampering of honest ballots is permitted by the recovery

algorithm. However, this approach would label all schemes as insecure, making the [29] model appear

unfit for a comprehensive discussion on malicious boards.

Instead, their work focuses on a subset of schemes where security is guaranteed by the portion of the

ballot securely delivered to the (honest) board, despite tampering attempts on other parts of the ballot by

an adversary.

6.1.1 Original BPRIV notion

We consider a finite set I = H∪D of voter identities, partitioned into the sets H and D of honest and

dishonest voters. H is further partitioned into sets Hcheck and H
check

, meant to contain the identities of

voters who verify their vote (resp. do not verify).

Basically, we will relate two notions of vote privacy, showing that one implies the other. Having fixed

the sets of honest and corrupted voters beforehand will then let us know that this implication holds when

considering the same number of adversary-controlled voters for both notions, which would not be the

case if the voters were dynamically corrupted. With dynamic corruption, one might need to resort to

complexity-leveraging arguments with a corresponding loss in the estimate of the adversarial advantage.
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An additional mild assumption is made regarding the format of the ballots: they are assumed to be

pairs of bitstrings.

Definition 3. (Bulletin board) A bulletin board BB is a list of pairs of bitstrings that we call ballots. For a

ballot (p,b), we call the bitstring p a public credential, and the bitstring b is a ciphertext. BB[ j ] denotes the

jth element of BB.

We will also call an extended bulletin board a board where elements are associated with an identity,

i.e. a list of elements of the form (i d , (p,b)).

While the exact nature of the ballots, i.e. public credentials and ciphertexts, depends on the protocol

considered, we intuitively intend the public credential to link to the identity of the voter who casts the

ballot, and the ciphertext to contain the vote expressed by the ballot.

We call counting functions the functions which calculate the result of an election. To be more general,

we no longer assume a partial tallying property. In addition, we will no longer explicitly encode the revote

policy in the games defining properties (e.g. having ballots cast by oracles replace previous ballots, to

encode that the last vote counts).

Instead, the revote policy will be encoded in the counting function. That is, we now consider count-

ing functions that 1. take the identities of voters into account, 2. apply to lists rather than multisets of

votes. This way, any revote policy can be expressed by a counting function. We will express our results

generically (for an arbitrary unspecified counting function ρ), so that they are independent of the choice

of a particular revote policy.

Definition 4. (Counting function) . A counting function ρ is a mapping that takes as input a sequence S of

pairs (i d , v), where i d ∈ I and v is a vote, and returns a value (bitstring) intended to represent the result

of tallying the votes in S. It may use the ids contained in S to apply a revote policy. We assume a special

value ⊥, intended to represent an invalid identity and vote ( e.g. obtained by decrypting a ballot that was

incorrectly generated), that should not be counted. Formally, we require that counting functions ignore this

value, i.e. that for all l , l0, ρ(l ||⊥||l0) = ρ(l ||l0).

The original concept of BPRIV represents an honest ballot box, whereas the new variation considers a

malicious one. To differentiate these two concepts, we refer to the original as hb−BPRIV security, denot-

ing an “honest ballot box”, while the concept introduced in the following section is labeled asmb−BPRIV,

indicative of a “malicious ballot box”.

hb−BPRIV: In the hb−BPRIV scenario, the adversary interacts with the execution of the voting pro-

tocol and observes either the real ballots or fake ones containing fraudulent votes, subject to a secret bit,

β. With the aid of oracles, the adversary is able to select the values of the real and fake votes and cast any

ballot they can craft, ostensibly on behalf of a corrupted voter. Eventually, regardless of the value of β,

the adversary is presented with the result of the real ballot tally. They are then tasked with guessing β,

with the privacy stipulation preventing them from doing so accurately. Essentially, this understanding of

ballot privacy suggests that all honest voters’ ballots might contain fraudulent votes during the election

process, and the adversary wouldn’t be able to detect this, hence avoiding any information leakage about

the votes.

Nonetheless, a challenge arises: many protocols have a Tally algorithm that not only unveils the result

but also related data, such as zero-knowledge proofs meant to validate that the result aligns correctly with

the tally on the bulletin board. As previously explained, the adversary invariably observes the result of the

real ballot tally. Consequently, presenting the adversary with a legitimate tally proof would enable them

to differentiate between the two situations. In fact, if the adversary witnesses fake ballots, the result they



6.1. Ballot Privacy Evolution 73

Exp
hb−BPRIV,β
A ,V

(λ)

1 : BB0,BB1 ←;
2 : (pk,sk) ←Setup(1λ)

3 : for i d in I do

4 : c ←Register(1λ, i d),

5 : U[i d ] ← c,PU[i d ] ←Pub(c)

6 : for i d in D do

7 : CU[i d ] ←U[i d ]

8 : A OvoteLR(pk,CU,PU)

9 : d ←A OtallyBB0,BB1 ()

10 : return d .

OtallyBB0,BB1
for β= 0

1 : (r,Π) ←Tally(BB0,sk)

2 : return (r,Π)

OvoteLR(i d , v0, v1) for i d ∈H
1 : (p0,b0) ←Vote(pk, i d ,U[i d ], v0)

2 : (p1,b1) ←Vote(pk, i d ,U[i d ], v1)

3 : if Valid(i d , (pβ,bβ),BBβ,pk) =⊥ then return ⊥
4 : else

5 : BB0 ←BB0∥(p0,b0)

6 : BB1 ←BB1∥(p1,b1)

7 : return (pβ,bβ).

OtallyBB0,BB1
for β= 1

1 : (r,Π) ←Tally(BB0,sk)

2 : Π′ ←Sim(BB1,r )

3 : return (r,Π′)

FIGURE 6.2: The hb-BPRIV game.

observe wouldn’t align with the bulletin board’s tally that they witness, which would become apparent if

the adversary had access to the authentic proofs of correct tallying. To mitigate this issue, the authors in

[22] mandate that the challenger in the hb−BPRIV game should be capable of simulating these proofs.

Essentially, there should exist an algorithm Sim(BB, r ) that intuitively yields a simulated proof that r is

the accurate result for BB. This algorithm is employed to create a fake proof to show to the adversary

when they come across fake ballots. It’s crucial to note that the Sim algorithm is not explicitly assumed

to generate a convincing fake proof, however, should it fail to do so, the hb−BPRIV property would likely

be unsatisfiable. Moreover, the Sim algorithm only accesses public data visible to the adversary and does

not have access to the election’s private key, ensuring it cannot leak such confidential information to the

adversary. Generally we can, the challenger can implement such a simulator for zero-knowledge proofs

by manipulating the random oracle within the random oracle model. In this context, we gloss over these

specifics and merely insist on the existence of the Sim algorithm, regardless of how it’s implemented.

Formally, the hb−BPRIV property can be defined as:

Definition 5. (hb−BPRIV [22]) Assume V to be a voting scheme. Consider the game Exphb−BPRIV,β
A ,V

de-

fined in Figure 6.2, hb−BPRIV is fulfilled by V if, for any polynomial adversary A ,

|P(ExpA ,V
hb−BPRIV,0

(λ) = 1)−P(ExpA ,V
hb−BPRIV,1

(λ) = 1)|

is negligible in λ.

In the study [22], the authors elaborate on two additional attributes, strong consistency, and strong

correctness, of voting systems. While these attributes are important to truly ensure vote privacy alongside

hb−BPRIV, they do not directly contribute to the discussion in our context.

Their inclusion would further establish that alongside mb−BPRIV, they can prove an ideal function-

ality, rendering mb−BPRIV a noteworthy and sufficiently robust definition. However, it’s important to

note that such proof hasn’t been established for du–mb–BPRIV. This presents an important avenue for

future work.
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The following part in which the voting scheme is defined leads to the next part where a new definition

for ballot privacy for malicious ballot boxes by Cortier et al. [41], denoted as mb−BPRIV, is introduced.

Definition 6. (Voting scheme) states that a voting scheme is an assembly of seven algorithms:

V = (Setup,Register,Pub,Vote,ValidBoard,Tally,Verify)

.

• A pair of election keys (pk,sk) is computed by Setup(1λ), given a security parameter λ.

• A private credential c for voter id is generated by Register(1λ, id), and the correspondence (id,c) is

stored in a list, U, for modeling purposes.

• The public credential, pub associated with a credential c is returned by Pub(c).

• A ballot (p,b) for user id with private credential c, containing vote v, is constructed byVote(pk, id,c, v)

using the public election key pk. A state is also returned to the voter, modeling what a voter should

record, such as her ballot. This state can be viewed as any information a voter would need to record,

for example, to verify if the ballot has been cast.

• The validity of the board BB is checked by ValidBoard(BB,pk).

• The result of the election, and potentially proofs of good tallying, are computed by Tally(BB,sk) using

the board BB and the secret election key sk.

• The checks that a voter id, with local state, should perform on a boardBB to ensure her vote is counted

are represented by Verify(id, st ate,BB).

Let us now delve into the new ballot privacy definition given by Cortier et al. [41] and denoted as

mb−BPRIV.

6.2 mb-BPRIV

Cortier et al. in [41] adapts definitions of ballot privacy and strong consistency property for taking into

account the case of malicious ballot boxes.

6.2.1 Ballot Privacy In The Presence of Adversary: mb−BPRIV

Similar to hb−BPRIV, the adversary possesses partial information regarding the votes of honest users.

For each such user, the adversary selects a left-or-right challenge consisting of two votes, v0 and v1. The

game calculates the corresponding ballots for these votes, but it only reveals to the adversary the ballot

corresponding to vβ, whereβ is a hidden bit that the adversary needs to determine. The game keeps track

of both BB0 and BB1, which represent the ordered lists of ballots computed in response to the adversary’s

queries. Essentially, the adversary only sees BBβ.

The adversary proceeds to create a public bulletin board BB by utilizing the honest votes as well as

arbitrary additional votes created by itself. This scenario models the adversary’s control over the ballot

box, which differentiates it from hb−BPRIV. In this case, the adversary has the freedom to manipulate
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the contents of the ballot box in any manner by submitting any sequence of ballots it can construct, rather

than being limited to adding only its own ballots.

The verification steps of the protocol are now incorporated. Prior to the tallying phase, the steps are

performed by voters in Hcheck to ensure that the board BB provided by the adversary accurately repre-

sents their votes. If any of these verifications fail, the election is terminated, and no tally is computed. The

significance of this step lies in the fact that the ballot box is under the control of the adversary, who has

the potential to manipulate its content, including the removal of ballots. These verifications guarantee

that if the adversary desires to view the result, caution must be exercised to avoid upsetting the voters

in Hcheck. If no verification steps are desired, Hcheck can be set as an empty set. Assuming all voters in

Hcheck are satisfied with BB, the game proceeds to the tallying phase.

The defining aspect of the game lies in how it computes the tally returned to the adversary. In the “real”

world, where the adversary observes BB0, the game simply tallies BB, akin to hb−BPRIV. However, the

case of the “fake” world, where the adversary sees BB1, is considerably more intricate. In hb−BPRIV, the

intuition was that the adversary should still receive the tally from the “real” board. Nevertheless, there is

no longer a real and fake board distinction, as was the case in hb−BPRIV. The only available board is the

one generated by the adversary.

As a result, the focus of this fundamental idea lies in determining how the votes on BB1 were manip-

ulated by the adversary to create the board that undergoes tallying. The primary objective is to efficiently

establish the honest ballots that were cast, along with their corresponding positions on the bulletin board,

and identify the removed ones. Once this transformation is determined, it is applied to BB0 by the game,

enabling the tallying process on the resulting board, and subsequently returning the outcome to the ad-

versary. From a technical standpoint, the transformation that describes how the adversary constructs BB

from BB1 is represented as a selection function, and the recovery of this transformation is formalized as

a recovery algorithm.

Definition 7 (Selection function). For m,n ≥ 1, a selection function for m,n is any mapping

π : �1,n�→ �1,m�∪ ({0,1}∗× {0,1}∗)

Intuitively, π represents the steps that an opponent would take to create a bulletin board BB with n

ballots from a board BB1 with m ballots. For i ∈ �1,n�, π(i ) shows how to construct BB[i ]:

• π(i ) = j ∈ �1,m� means this element is the j th from BB1;

• π(i ) = (p,b) means that this element is (p,b).

In more formal language:

Definition 8 (Applying a selection function to a board). Consider a function called π for m,n ≥ 1. The

function π is associated with a mapping that takes an extended board BB0 with a length of m and maps it

to a board π(BB0) with a length of n. This is done in such a way that for any j between 1 and n,

π(BB0)[ j ] =


(p,b) if π( j ) = i and BB0[i ] = (id, (p,b))

(p,b) if π( j ) = (p,b)
(6.1)
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The “recovery” algorithm, which is designed to discover the selection function employed by a poten-

tial adversary, requires two boards and several other data elements. This is because this information con-

tains the intrinsic connection between voter identities and public credentials. However, it is important to

elaborate on the broader context and intuition underlying the function of this recovery algorithm.

• In a scenario where a board is compromised, or malicious, privacy is no longer a guarantee. For in-

stance, a manipulative voter could eliminate all votes except their own. Consequently, the identity

of this voter could be learned from the tally. This exemplifies a situation where privacy could be

breached in reality.

• Therefore, it’s essential to consider and define specific manipulations that the adversary is permit-

ted to enact. While these manipulations could potentially breach privacy in real-world situations,

they are a necessary evil - for example, the deletion of votes.

• Our aim is to define privacy, accounting for these ’allowed’ attacks. In other words, we want to

ascertain if any undesirable outcomes occur, beyond the attacks we have already accepted as part

of the system.

• In defining this privacy, the recovery function plays a crucial role. It is designed to detect permitted

manipulations and generate a board where these do not result in attacks. Nevertheless, other ma-

nipulations, which are not a part of the allowed set, can still lead to attacks. The recovery function,

therefore, ensures that the only breaches of privacy are the ones we’ve already accepted as a given

risk, and mitigates any other potential breaches that could arise from unauthorized manipulations.

Definition 9 (Recovery algorithm). An algorithm that is capable of recovery is referred to as a recovery

algorithm. This algorithm is able to, given a board BB, an extended board BB1, and some additional data

d, return a selection function for |BB1|, n for some n.

Ballot privacy for a certain scheme V is formalized in this definition in a situation where the ballot box

is controlled by the adversary A . It’s acknowledged that a fixed set of voter identities I , divided into two

sets H and D of honest and dishonest voters, is considered. A fixed subset Hcheck of H is also presumed,

whose users perform the checks the scheme anticipates to be executed before tallying.

The execution as shown in Figure 6.3 begins with the generation of the public key for the election and

its related secret key (for tallying) (as before). Subsequently, several voters from an arbitrary set I are

registered. It’s assumed that the registration algorithm/protocol is performed for each user id in I , and

only the secret credential c and its associated public credential Pub(c) are recorded. Arrays U and PU

are used to record these, while array CU is used to record the secret credentials for some arbitrary set of

dishonest users D.

The public data pk, PU, and the corrupt credentials CU are given as input to the adversary. Access to

a left-right voting oracle is also provided. Upon input of an identity id and two potential votes v0 and v1,

two ballots are calculated by the oracle for id. The first ballot is recorded in list BB0 and the second in list

BB1. It’s important to note that a stateful voting algorithm is modeled, which is considered a necessary

feature for considering voters who perform additional actions after voting. The resulting state is stored in

arrays V0 and V1 for each user.

The voting phase is represented by this stage, where the ballots are submitted by the users. A bulletin

boardBB is prepared by the adversary, which is intended for tallying. If the bulletin board fails the validity

test, tallying does not take place, and the adversary must make a guess at this point.

Control over the users who check via the oracle Overify is given to the adversary. Arbitrary identities

can be submitted by it to the oracle. The set of users who have checked is recorded in the variableChecked,
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Exp
mb−BPRIV,Recover,β
A ,V

(λ)

1 : V0,V1,Checked,Happy←;
2 : (pk,sk) ←Setup(1λ)

3 : for id in I do

4 : c ←Register(1λ, id),

5 : U[id] ← c,PU[id] ←Pub(c)

6 : BB←A OvoteLR(pk,CU,PU)

7 : if Hcheck ̸⊆V0,V1 then return ⊥
8 : if Valid(BB,pk) =⊥ then

9 : d ←A (); return d

10 : A OverifyBB ()

11 : if Hcheck ̸⊆Checked then return ⊥
12 : if Hcheck ̸⊆Happy then return d ←A ();

13 : if Hcheck ⊆Happy then d ←A OBB,BB0,BB1 ()

14 : return d .

OverifyBB(id) for id ∈Hcheck

1 : Checked←Checked∪ {id}

2 : if Verify(id,Vβ[id],BB) =⊤ then

3 : Happy←Happy∪ {id}

OvoteLR(id, v0, v1)

1 : if id ̸∈H then return ⊥
2 : else

3 : (p0,b0,state0) ←Vote(pk, id,U[id], pc, v0)

4 : (p1,b1,state1) ←Vote(pk, id,U[id], pc, v1)

5 : V0[id] ← state0,V1[id] ← state1

6 : BB0 ←BB0∥(id, (p0,b0))

7 : BB1 ←BB1∥(id, (p1,b1))

8 : return (pβ,bβ).

OtallyBB,BB0,BB1
for β= 0

1 : (r,Π) ←Tally(BB,pd,sd)

2 : return (r,Π)

OtallyBB,BB0,BB1
for β= 1

1 : π←RecoverU(BB1,BB)

2 : BB′ ←π(BB0)

3 : (r,Π) ←Tally(BB′,sk)

4 : Π′ ←SimProof(BB,r )

5 : return (r,Π′)

FIGURE 6.3: The mb-BPRIV game.

and the set of users for whom the check was successful is recorded in the variable Happy. The game is

stopped without allowing A to make a guess if Checked does not contain Hcheck.

If the voters who should check do check successfully, the tally of the election is shown to the adversary.

However, if some voters are not satisfied with their verifications, the election is called off, which means

the adversary must make a guess without seeing the tally.

The way the experiment calculates the tally is an important part of this definition. In the real execu-

tion (i.e., β = 0), the tally is executed on BB. In the fake execution (i.e., β = 1), the Recover algorithm is

employed first by the tally to determine how the votes it has seen (i.e., BB1) have been tampered with

by the adversary to produce the board it asks to be tallied. The influence of the choice of the Recover

algorithm on the security level guaranteed by this definition will be explained later. Then, the transfor-

mation obtained this way is applied to BB0 by the game. The resulting board is tallied, and the result,

along with a simulated proof (as in hb−BPRIV), is returned to the adversary.

Definition 10. ( mb−BPRIV with respect to a recovery algorithm [41]). Let V represent a voting scheme,

and let Recover be a recovery algorithm. The game Exp
mb−BPRIV,Recover,β
A ,V

, as depicted in Figure 6.3, is

considered. V is said to satisfy mb−BPRIV with respect to Recover if, for any polynomial adversary A , the

difference between the following probabilities is negligible in λ.

∣∣∣P(Expmb−BPRIV,Recover,0
A ,V

(λ) = 1)−P(Expmb−BPRIV,Recover,1
A ,V

(λ) = 1)
∣∣∣
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6.3 Delay-Use Malicious Ballot Privacy: du−mb−BPRIV

In the mb−BPRIV, a tally is taken if and only if the adversary’s board passes the validity test and all

voters are satisfied after carrying out a specific verification procedure. This precondition necessitates that

the verification process be completed before the tally, rendering mb−BPRIV incompatible with voting

systems such as Selene [108]. In Selene, the tally is taken before the verification to mitigate coercion risks.

Consequently, there is a need for a new privacy definition that can cope with potentially dishonest voting

servers (and by extension, the ballot box), and also supports voting protocols where the verification is

done after the tally has been computed.

In this section, we introduce a new definition of ballot privacy against a potentially dishonest ballot

box, which we label as delay-use malicious ballot boxBBballot privacy (du–mb–BPRIV)(See [47]). Funda-

mentally, this definition expands the range of voting systems to include those that allow verification after

tallying and those that require a secret key during the verification step. This new definition bears similar-

ities to mb−BPRIV, with the most difference being that in our definition, the adversary is only allowed to

view the tally after the validity of his board is confirmed, and subsequently, the outcome of the verification

phase is revealed. Figure 6.4 provides a detailed account of the security game for du–mb–BPRIV.

The security experiment begins with the generation of some public and secret data pd and sd (which

typically includes the public and secret keys used to encrypt and decrypt the votes). Then, a number of

voters in a set I are registered. In the registration phase, public and secret credentials pc and sc are

generated for each voter, and stored in finite maps PU and U, respectively. Furthermore, we store the

secret credentials of a set D of dishonest voters in a finite map CU.

The adversary is now given pd,PU and CU as input. In addition, he gets access to a vote oracle, that on

input (id, v0, v1) computes two ballots for this user. The first ballot is stored in a list BB0 and the second

ballot is stored in a listBB1. The vote oracle also records a state, containing any information the voter later

needs to verify that her vote was correctly cast and counted; we split the state into two components. The

first component (statepre) covers information checked which is generated before tallying and the second

component (statepost) covers information generated after tallying; this is necessary due to recovery which

ensures that information after tallying (including the tally) always acts as if β= 0. The adversary may also

call on a publish oracle, allowing him to see, essentially, BBβ for a secret bit β.

Using this information, the adversary creates a public bulletin board BB. If the board is invalid, we

output a random bit. If the board is valid, we allow the adversary to make an initial guess at the secret

bit β, based on the information he has seen so far. This guess is stored in a variable d∗, possibly to be

returned by the experiment at a later point.

The adversary now gets access to the tally and is allowed to add some extra information to the bulletin

board, namely a result r∗ and a proof Π∗ that this result corresponds to the votes. If this result and proof

fail to pass verification, we output a random bit.

Otherwise, the adversary gets to make a guess d , given access to a verification oracle Overify. The

verification oracle records the users who have verified in a set called Checked, and the users who are

happy with the verification are recorded in the set Happy. If anyone who we expect should verify actually

does not verify, we output a random bit. If a voter is unhappy with the verification process, we output the

initial guess d∗ the adversary made before seeing the tally. Otherwise, the experiment outputs the guess

d that the adversary made after calling the verify oracle.

When given access to the tally oracle, the adversary can call this oracle only once, and the behavior of

the tally oracle depends on whether we are in the left world (β= 0) or in the right world (β= 1). If we are

in the left world, the tally is performed directly on the board BB created by the adversary. The adversary

then gets to see a real result and proof of the correct tally. In the right world, however, we first run the

recovery algorithm to detect how the adversary has tampered with the ballots in BB1, to create BB. We
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Exp
du–mb–BPRIV,Recover,β
A ,V ,Sim

(λ)

1 : Checked,Happy←;
2 : V,PU,U,CU← empty

3 : (pd,sd) ←Setup(λ)

4 : for id in I do

5 : (pc, sc) ←Register(id),

6 : U[id] ← sc,PU[id] ← pc

7 : if id ∈D then CU[id] ←U[id]

8 : BB←A OvoteLR(pd,CU,PU,Hcheck)

9 : if Hcheck ̸⊆V then d ←$ {0,1}; return d

10 : if ValidBoard(BB,pk) =⊥ then

11 : d ←$ {0,1}; return d

12 : d∗ ←A ();

13 : (r∗,Π∗) ←A OtallyBB,BB0 ,BB1 ()

14 : if VerifyTally((pd, pbb,r∗),Π∗) =⊥ then

15 : d ←$ {0,1}; return d

16 : d ←A Overify()

17 : if Hcheck ̸⊆Checked then

18 : d ←$ {0,1}; return d

19 : if Hcheck ̸⊆Happy then return d∗

20 : return d

Oboard

1 : return Publish(BBβ)

OvoteLR(id, v0, v1)

1 : if id ∈H then

2 : (pc,b0,statepre,0,statepost,0) ←Vote(pd, pc, v0)

3 : (pc,b1,statepre,1,statepost,1) ←Vote(pd, pc, v1)

4 : V[id] ←V[id]∥(statepre,β,statepost,0, v0)

5 : BB0 ←BB0∥(id, (pc,b0))

6 : BB1 ←BB1∥(id, (pc,b1))

OtallyBB,BB0,BB1
for β= 0

1 : (r,Π) ←Tally(BB,pd,sd)

2 : return (r,Π)

OtallyBB,BB0,BB1
for β= 1

1 : BB′ ←Recover(BB,BB0,BB1)

2 : (r,Π) ←Tally(BB′,pd,sd)

3 : Π′ ←Sim(pd,Publish(BB),r )

4 : return (r,Π′)

Overify for id ∈Hcheck

1 : Checked←Checked∪ {id}

2 : if VerifyVote(id,statepre,statepost,BB, pc, sc) =⊤ then

3 : Happy←Happy∪ {id}

4 : return Happy

FIGURE 6.4: The new security notion for ballot privacy against a dishonest ballot box.

then change the ballots on BB0 accordingly, yielding a new board BB′, which we tally. The adversary then

gets to see the result r corresponding to BB′ and a simulated proof Π′ of correct tally, with respect to r

and the adversarial board BB.

Definition 11. Let V be a voting system, and let Recover be a recovery algorithm. We say that V satisfies

du–mb–BPRIV with respect to Recover if there exists an efficient simulator Sim, such that for any efficient

adversary A ,

Adv
du–mb–bpriv
A ,V ,Sim

(λ) =
∣∣∣Pr

[
Expdu–mb–BPRIV,Recover,0

A ,V ,Sim
(λ) = 1

]
−Pr

[
Expdu–mb–BPRIV,Recover,1

A ,V ,Sim
(λ) = 1

]∣∣∣,
is negligible in the security parameter λ, where Expdu–mb–BPRIV,Recover,β

A ,V ,Sim
is the game defined in Figure. 6.4.

6.3.1 Recovery function

Themb–BPRIV definition is well-defined for many recovery functions, but three are suggested in the body

of [41]. All three recovery functions when used with mb–BPRIV are only satisfied by schemes that fulfill

strong constraints on their verification procedure, and two of them presume that voters are authenticated.
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We introduce a simple new recovery function (Fig. 6.5) which we call Recoverdel,reorder
′

U
which is es-

sentially identical to Recoverdel,reorder
U

and Recover
del,reorder,change
U

in [41], but does not require ballot au-

thentication and without explicit constraints on the verification procedure. mb−BPRIVwith the recovery

functions originally suggested implies the satisfying scheme is equivalent to some ideal functionalities.

Future versions of du–mb–BPRIV may wish to prove similar results in which a different recovery function

is likely necessary.

Recoverdel,reorder’
U (BB1,BB)

1 : L ← [ ]

2 : for (pc,c) ∈BB :

3 : if ∃ j , id :BB1[ j ] = (id, (pc,c)) :

4 : L ← L ∥ j (if several such j exist, pick the first one)

5 : else :

6 : L ← L ∥ (pc,c)

7 : return (λi . L[i ])

FIGURE 6.5: The Recoverdel,reorder
′

U
algorithm.

6.3.2 Comparison of du–mb–BPRIV to mb–BPRIV

In this section, we briefly analyze the differences between themb−BPRIV definition and our new du–mb–BPRIV

definition. As mentioned above, the main difference is that the verification oracle is first available after

the tally oracle has been called. This accommodates schemes where the verification first happens after

tally and allows a secret key to be used for the verification process, however, it naturally also applies to

schemes with early verification. We have changed some parts of the definition to adapt to the delayed use

of the verification, but also to make it optimized and precise enough for EASYCRYPT.

The main differences are:

• We only have one voter map V but the state stored depends on secret bit β, see line 4 in the defi-

nition of OvoteLR in Figure 6.1. However, the state is split into a part relevant before tallying and

a post-tally part (only relating to β = 0 which is the board used for tallying). This is necessary for

the state handling in EASYCRYPT oracles and was not necessary for mb−BPRIV since the stateful

verification happened before tallying.

• If the adversary does not output a valid board, the experiment outputs a random guess bit, whereas

mb−BPRIV allows the adversary to output a guess but without tally access. In both cases, this

corresponds to real life, where a board will not be tallied if it is not valid. Outputting a random bit

makes our proofs in EASYCRYPT slightly easier, and it is actually equivalent to mb−BPRIV unless

the ValidBoard algorithm always outputs ⊥.

• In our definition the experiment also outputs a random guess bit if the verification of the tally fails

via the algorithm VerifyTally. Again, this corresponds to not allowing any adversarial advantage

when the tally fails publicly. This case was not explicitly considered in mb−BPRIV but is natural in

our case where the verification step will not proceed on an invalid tally output.

• In du–mb–BPRIV the verification status of the honest voters contained in Happy is directly output

to the adversary. In mb−BPRIV this is not defined precisely. In both definitions, the appearance

of failed verifications inside the set of checking honest voters Hcheck will in any case imply that the
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guess bit has to be determined without knowing the tally result. This is to punish the adversary for

creating a board with verifications failing which would cause complaints in real-life protocols.

Consider a voting scheme where the verification step does not depend on a secret key and can be done

before the tally. For such schemes, both privacy definitions can be applied to the scheme. We claim that

under reasonable conditions our definition is stronger. Further, for voting schemes where the outcome

of the individual verifications can be computed by the adversary using the data from the bulletin board,

as e.g. happens in Helios, we have the equivalence of the two definitions. We now sketch why this is the

case.

We show that du–mb–BPRIV privacy implies mb−BPRIV assuming that ValidBoard does not con-

stantly output ⊥ and that VerifyTally never fails on an honestly computed tally. Finally, we also assume

that the verification status Happy is not output to the adversary in mb−BPRIV or that the verification

status can be computed using public data, as e.g. happens in Helios. To prove the implication we as-

sume that we have an attack algorithm for mb−BPRIV. We use the vote choices from the mb−BPRIV

algorithm. If the attack algorithm outputs an invalid board, we change the board that is being output to

a valid board which we have assumed exists. Since the tally also does not fail we are allowed to output a

guess and we use the one from the attack algorithm and will win with the same advantage since in this

case no verification will be done in mb−BPRIV. If the attack algorithm outputs a valid board, we use

the same board in the du–mb–BPRIV experiment. In du–mb–BPRIV line 12 the adversary has to output

a guess bit d∗ which will be used if verification fails for the honest verifier set Hcheck. Here we use what

will be output from the mb−BPRIV attack algorithm in case of failed verifications, which by assumption

either does not depend on Happy, which we do not yet have access to at this stage in the du–mb–BPRIV

experiment, or it can be computed from the public data on the board. In the experiment du–mb–BPRIV

line 13 we now get the tally before verification (and the tally verifies by assumption) but we ignore this at

first and choose the same verifying voters as in the attack algorithm. At this point, the two experiments

will be equivalent. If the verification fails we are forced to go back to d∗ but this was from the attack

algorithm and will be equivalently successful. If no verification fails in Hcheck then we output the guess

from the attack algorithm using the tally result we got earlier as input. The advantage will be the same as

for the mb−BPRIV attack algorithm. This was the important implication direction since it demonstrates

that our definition is not too weak, i.e. if an early verification scheme is declared du–mb–BPRIV then it

is also mb−BPRIV private which in turn has ideal functionality implications under assumptions such as

strong consistency [41].

Considering whethermb−BPRIV privacy implies du–mb–BPRIV, the main problem is that the choice

of verifying voters in du–mb–BPRIV could depend on the tally output. However, for voting schemes where

the outcome of the honest voters’ individual verification can be computed by the adversary, we can prove

the implication. We thus assume we have an attack algorithm for du–mb–BPRIV with a non-negligible ad-

vantage. In the experimentmb−BPRIV we use the votes and output the board from this attack algorithm.

If the board is not valid, we simply output a random bit in the experiment mb−BPRIV, which is equiv-

alent to what happens in du–mb–BPRIV. If the board is valid, the next step in mb−BPRIV is to use the

verification oracle. Here we simply let all the required honest voters Hcheck perform verifications. These

will also all have to verify in the attack against du–mb–BPRIV to get an advantage since the experiment

will otherwise output a random bit. If a verification fails we will use the output d∗ in the attack algorithm

which was computed without tally access. If none of the verifications fail, we will get tally access in the

experiment mb−BPRIV. If more voters were chosen to verify in the attack algorithm we can compute the

outcomes by assumption. If we encounter a failure in the verification here, we again output d∗, otherwise

the output from the attack algorithm. The experiments will be equivalent at this point.
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Setup(λ)

1 : (pd,sd) ← kgen(λ)

2 : return (pd,sd)

Register(id)

1 : pc ←$Flabel(id)

2 : return (pc,⊥)

Vote(id, pc, v,pd)

1 : c ← enc(pk, pc, v)

2 : return (pc,c)

Tally(BB,sd)

1 : dbb =;
2 : for (pc,c) ∈BB do

3 : dbb ← dbb ∪ {(pc,dec(sk, pc,c))}

4 : r ← ρ(dbb)

5 : pbb ←Publish(BB)

6 : Π←P((pd, pbb,r ), (sk,BB))

7 : return (r,Π)

VerifyTally((pd, pbb,r ),Π)

1 : return V((pd, pbb,r ),Π)

ValidBoard(BB,pd)

1 : e1 = e2 = true

2 : for (pc,c) in BB

3 : e1 ← e1 ∧¬(∃pc ′, pc ′ ̸= pc ∧ (pc ′,c) ∈BB)

4 : e2 ← e2 ∧ValidInd(pc,c,pd)

5 : return (e1 ∧e2)

VerifyVote(id, pc,c,BB)

1 : return (pc,c) ∈BB

FIGURE 6.6: Algorithms defining the Labeled-MiniVoting scheme for the labeled PKE E=
(kgen,enc,dec), and the proof system Σ= (P,V).

6.4 Labeled-MiniVoting

As we delve into the section on Labeled-MiniVoting, we need to discuss several concepts that contribute

to a fuller understanding of this topic. It is essential to grasp these procedures before we venture into

Labeled Public Key Encryption (LPKE), which extends the traditional notion of Public Key Encryption

by adding an additional, non-malleable data known as a label. Furthermore, we will also delve into

the specifics of ’indistinguishability under chosen ciphertext attack with one parallel decryption query’

(IND–1–CCA), an important security notion for labeled PKE.

In addition, we will dissect the concept of Proof Systems, a pair of efficient algorithms used in Selene

to ascertain that various operations are executed correctly. The proof system involves a prover and a

verifier and forms a cornerstone of the cryptographic procedures in the Labeled-MiniVoting scheme.

All these will allow us to form an understanding of the Labeled-MiniVoting scheme before we move to

the formal definitions.

6.4.1 Labeled Public Key Encryption

A labeled public key encryption scheme (LPKE) extends the notion of a “regular” PKE by adding some

additional, non-malleable data called a label [115]. One important property for a labeled PKE is that de-

crypting a ciphertext using a different label than the one used for encryption, should not reveal anything

about the original plaintext. Formally, a labeled PKE is defined similarly to how we define a PKE in Section

2.1.4, but a label ℓ is given as additional input in the encryption and decryption algorithms.

The security of the schemes we analyze relies on a security notion for labeled public key encryption

called indistinguishability under chosen ciphertext attack with one parallel decryption query (IND–1–CCA)

[10]. Informally, this notion captures that any efficient adversary is unable to distinguish between encryp-

tions of two messages of the same length when given access to a batch decryption oracle that can be called

once.

A similar security notion, namely poly–IND–1–CCA, allows the adversary to make up to n challenge

queries, for some polynomially bounded integer n. This notion is formalized in Figure 6.7, where an ad-

versary B is given access to an encryption oracle Oenc and a decryption oracle Odec. The adversary can

make n challenge queries to Oenc, who encrypts one of two plaintexts, depending on the bitβ. The adver-

sary can query Odec at most once, and the oracle then decrypts a list of ciphertexts. For any ciphertexts

created by the encryption oracle, the decryption oracle returns ⊥.
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Exp
poly–ind1cca,β
B,E ,n

(λ)

1 : encL ← [ ]

2 : (pk,sk) ← kgen(λ)

3 : β′ ←BOenc,Odec (pk)

4 : return β′

Oenc(ℓ,m0,m1)

1 : c ←⊥
2 : if |encL| < n then

3 : c ← enc(pk,ℓ,mβ)

4 : encL← encL+ [(c,ℓ)]

5 : return c

Odec(cL)

1 : mL ← [ ]

2 : for (c,ℓ) ∈ cL do

3 : if (c,ℓ) ∉ encL then

4 : mL ← mL+ [dec(sk,ℓ,c)]

5 : else mL ← mL+ [⊥]

6 : return mL

FIGURE 6.7: Security experiment for poly–IND–1–CCA [43]

The advantage of a poly–IND–1–CCA adversary B against a labeled public key encryption scheme E

is defined as

Adv
poly–ind1cca
B,E,n

(λ) =∣∣∣Pr
[
Exp

poly–ind1cca,0
B,E,n

(λ) = 1
]
−Pr

[
Exp

poly–ind1cca,1
B,E,n

(λ) = 1
]∣∣∣ ,

and we say that the labeled PKE E is n-challenge poly–IND–1–CCA-secure if the advantage defined above

is negligible in λ for all efficient adversaries B.

As noted in [43], if n = 1, poly–IND–1–CCA security is essentially reduced to IND–1–CCA security.

Indeed, it is possible to prove, through a hybrid argument, that a labeled PKE is IND–1–CCA secure if and

only if it is poly–IND–1–CCA secure. This fact was also verified in EASYCRYPT [43], and we were able to

reuse this framework in our formalization of the ballot privacy of Selene.

6.4.2 Proof Systems

We now describe proof systems that are used in Selene to ensure that various operations are performed

correctly. We say that a binary relation R is a subset R ⊆ X ×W , where X is a set of statements and W is a

set of witnesses. A proof system for the relation R is a pair of efficient algorithms (P,V), where P is called

the prover and V is called the verifier. The prover and verifier work on a common input x ∈ X , and the

prover has some additional input w ∈W . In a non-interactive proof system, P uses his input to compute a

proofΠ. He sends the proof to V, who, on input (x,Π) produces a verification output in {0,1}.

• A proof system is said to be complete if the prover can produce a valid proof whenever the statement

is true. More formally, for any (x, w) ∈ R, if Π is a proof output by P(x, w), then V(x,Π) outputs 1

with probability 1.

• A proof system is sound if a prover is unable to convince a verifier that a false statement is true.

• A proof system is zero-knowledge if the proof leaks no information beyond the fact that the relation

holds. More formally, we demand the existence of an efficient algorithm Sim, called the simulator,

that produces valid-looking proofs for a statement x ∈ X without access to the witness w . Formally,

we consider a zero-knowledge adversary B in the following experiments:
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Expzk,0
B,P,R

(λ)

1 : (x, w,state) ←B(λ)

2 : Π←⊥
3 : if (R(x, w)) then

4 : Π←P(x, w)

5 : β′ ←B(state,Π)

6 : return β′

Expzk,1
B,Sim,R

(λ)

1 : (x, w,state) ←B(λ)

2 : Π←⊥
3 : if (R(x, w)) then

4 : Π←Sim(x)

5 : β′ ←B(state,Π)

6 : return β′

FIGURE 6.8: Games for zero-knowledge adversary

The advantage of the zero-knowledge adversary B over the proof system (P,V) and simulator Sim is

defined as (See Figure 6.8)

Advzk
B,P,Sim,R (λ) =∣∣∣Pr
[
Expzk,0

B,P,R
(λ) = 1

]
−Pr

[
Expzk,1

B,Sim,R
(λ) = 1

]∣∣∣ ,

and we say that a proof system is zero-knowledge if, for any adversary B, there exists a simulator Sim

such that the advantage defined above is negligible.

6.4.3 Voting-Friendly Relation

In the voting systems, proof systems are used to compute and validate proofs of the correct tally. In our

analysis and EASYCRYPT formalization, we keep the relation R abstract, and thus, we need to ensure that

the relation is compatible with the result of the election. For this, we adopt the notion of voting-friendly

relations, as defined by Cortier et al. [43] and generalize it a bit, so that it also accommodates schemes

like Selene. Very informally, a relationship is voting friendly if for any adversarially chosen bulletin board,

it is possible to find a corresponding tally such that the pair (bulletin board and tally) are in the language.

The relation being compatible with the result of the election means that if V is a voting system, (pd,sd)

is public and secret data generated by the Setup algorithm, the result r of the election corresponds to the

tally of the votes obtained by decrypting the ciphertexts in the ballot box BB, and if pbb is the public part

of BB, then the relation R((pk, pbb,r ), (sk,BB)) holds. In other words, it is possible to prove that r is the

correct result. More formally, a voting-friendly relation is defined as follows:

Definition 12. This definition introduces the concept of a voting-friendly relation with regard to a labeled

public-key encryption scheme E and a proof system
∑

R for some relation R. Given the abstract algorithms

ρ and Publish, the definition specifies an experiment as in Figure 6.9. We say that R is a voting-friendly

relation with respect to ρ and Publish, if, for any efficient adversary B, this experiment returns 1 with

negligible probability. In the above experiment, the algorithm Dec∗ decrypts the ballot box BB line by line

using the secret data sd, and returns a list [(a1, v1), . . . , (an , vn)] of votes vi and some additional information

ai , e.g. voter identities as in MiniVoting or tracking numbers as in Selene.

The pivotal point of this definition lies in the interaction between the efficient adversary B and the

voting-friendly relation. The adversary B takes on the role of creating the ballot box BB. Without the

assumption of a voting-friendly relation, we could not consistently tally the votes and output valid proof.

This emphasizes the significance of the voting-friendly relation.
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ExpvfrB,E ,
∑

R ,ρ,Publish(λ)

1 : (pk,sk) ←KGen(1λ)

2 : BB←B(1λ,pk)

3 : dbb ←Dec∗(sk,BB)

4 : r ← ρ(dbb)

5 : pbb ←Publish(BB)

6 : return ¬R((pk, pbb,r ), (sk,BB))

FIGURE 6.9: Voting-Friendly Experiment.

6.4.4 Formal Definition

The initial concept of the MiniVoting scheme, proposed by Bernhard et al. [21], serves as a general repre-

sentation of various constructions found in the existing literature. This scheme relies on two fundamental

components: public key encryption and a zero-knowledge proof system. In this scheme, a ballot is rep-

resented as (id,c), where id represents the voter’s identity and c denotes a ciphertext that encrypts the

voter’s choice or votes v in a straightforward manner.

Cortier et al. [43] further refined this model, introducing the Labeled-MiniVoting scheme. This devel-

opment extended the class of encapsulated voting schemes by incorporating public information related

to voters, known as labels. These labels established a strong connection between a voter’s identity and

their ciphertext in a specific election by employing labeled public key encryption.

Labels could signify general election information, such as in Helios, or details relating to a voter’s

public identity, like pseudonyms or public verification keys, as in Belenios. In the Labeled-MiniVoting

scheme, the ballot takes the form (id,ℓ,c), where id stands for the voter’s identity, and (ℓ,c) represents the

label-ciphertext pair generated by the labeled public key encryption scheme.

A defining characteristic of the MiniVoting scheme family is the enforcement of unique label-ciphertext

pairs. This is achieved via a process called ’weeding’ [42], conducted by the ValidBoard algorithm, to

counter trivial privacy attacks where an adversary could replicate ciphertexts (and their labels) and mon-

itor the alterations in the election outcome.

A fine-tuned version of Labeled-MiniVoting could be fined in Figure 6.6. Note that we treat the public

credential pc as the label and consider the following ballot format (pc,c). The removal of i d doesn’t

have a significant impact, as we use the operation Flabel to model the link between identity and public

credential:

pc ← Flabel(i d).

Common implementations for this operator vary based on the voter’s identity assumptions and the

level of separation desired in the public credential. In this context, we treat the voter’s identity as either

a pseudonym or a public encryption key, thereby setting Flabel as the identity function Flabel(x) = x,

a strategy similarly employed by Selene. Alternate strategies might regard the real voter’s identity (e.g.

email, name) as input and develop a pseudonym or a public credential, particularly if signatures are in-

volved. Regardless of the method, an injectivity assumption must be made about Flabel, which is auto-

matically met by the identity function.

Labeled-minivoting is further parameterized by three other classic operators:

ValidInd(pc,c,pd) : {0,1} This operator validates whether the label-ciphertext pair (pc,c) is correctly formed.

ρ((pci , vi )i∈I ) (where I is the set of voters) This function delivers the election result in a predetermined

format, such as a lexicographic order for mixnet tally or a specific value for the homomorphic tally.
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The process first involves selecting which votes to retain using Policy, followed by calculating the

outcome from the votes preserved by Policy using Count.

• In the context of both Labeled-MiniVoting and Selene, Policy is set to “last vote counts” for an

individual voter.

• For Labeled-MiniVoting, Count remains abstract, whereas it is specifically defined for Selene.

Publish(BB) : {0,1}∗ This function serves as an abstract representation of the public bulletin board, which

most of the time mirrors the ballot box.

Definition 13. Assuming E as a poly–IND–1–CCA secure labeled PKE and Σ = (P,V) as a zero-knowledge

proof system. Given the operators Flabel,ValidInd,ρ,Publish previously defined, we formulate the Labeled-

MiniVoting scheme as

MiniVoting(E,Σ,Flabel,ValidInd,ρ,Publish) =(
Setup,Register,Vote,ValidBoard,

Tally,VerifyVote,VerifyTally,Publish
)

This single-pass voting scheme’s algorithms are described in Figure 6.6, and we offer an informal explana-

tion below:

Setup(λ) : (pd,sd). On receiving the security parameter λ, it generates the output (pd,sd) from the en-

cryption scheme’s key creation algorithm.

Register(id) : (pc, sc). It appliesFlabel to id to create the public credential pc, and it does not contemplate

a secret credential, i.e., sc ←⊥.

Vote(id, pc, v,pd) : (pc,c). It encrypts a vote v with the public credential pc acting as the label and deliv-

ers the ciphertext along with the voter’s public credential. For simplicity, the secret credential sc is

omitted from the input as it is not used.

ValidBoard(BB,pd) : {0,1}. Returns true if all ballots (pc,c) are well-structured, according toValidInd, and

each ciphertext is consistently used with the same public credential (abiding by the weeding prop-

erty); otherwise, it returns false.

Tally(BB,sd) : (r,Π). It calculates the election result r by applying the counting function ρ to the list of

(pc, v⊥), where v⊥ is the decrypted version of (pc,c) from the ballot box. It also offers a proof of

correct decryptionΠ by using the P algorithm of the proof system Σ.

VerifyVote(id, pc,c,BB) : {0,1}. It confirms if the most recent ballot (pc,c) is present in the ballot box BB.

The voter may have a state with all cast ballots, but verification is done in relation to the last vote

cast.

Verifytally((pd, pbb,r ),Π) : {0,1}}. It triggers the V algorithm of the proof system to ensure the tally proof

aligns with the provided statement.

Publish(BB) : It executes the Publish operator on the ballot box BB.

6.4.5 mb−BPRIV for MiniVoting

We have also transposed the original mb−BPRIV definition [41] into EASYCRYPT and demonstrated that

Theorem 1 is still applicable in context with this privacy definition. The approach to proving follows a

similar strategy, but the proofs required modifications due to the discrepancies between the definitions,
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lemma mb_bpriv &m :
BP.setidents{m} = BP.setH{m} `|` BP.setD{m} =>
(** The mb-BPRIV advantage of some adversary A upper bounded by the sum of: **)

`|Pr[OMB_BPRIV_L(MV(E,P,Ve,C),A,HRO.ERO,G).main() @ &m : res]
- Pr[OMB_BPRIV_R(MV(E,P,Ve,C),A,HRO.ERO,G,S,Recover').main() @ &m : res]|
(** - the advantages of BVFR(G) and BVFR(S) in breaking the Voting Friendly Relation; **)
<= Pr[VFR(E, BVFR(MV(E,P,Ve,C), A), R(E), HRO.ERO, G).main() @ &m : res]
+ Pr[VFR(E, BVFR(MV(E,P,Ve,C), A), R(E), HRO.ERO, S).main() @ &m : res]
(** - the ZK advantage of adversary BZK against the underlying NIZK; and **)
+ `|Pr[ZK_L(R(E,HRO.ERO), P, BZK(E,P,C,Ve,A,HRO.ERO), G).main() @ &m : res]

- Pr[ZK_R(R(E,HRO.ERO), S, BZK(E,P,C,Ve,A,HRO.ERO) ).main() @ &m : res]|
(** - the IND1-CCA advantage of adversary BCCA against the ballot-encryption scheme **)
+ `|Pr[Ind1CCA(E,BCCA(MV(E,P,Ve,C),A,S),HRO.ERO,Left).main() @ &m : res]

- Pr[Ind1CCA(E,BCCA(MV(E,P,Ve,C),A,S),HRO.ERO,Right).main() @ &m : res]|

FIGURE 6.10: EASYCRYPT lemma establishing that MiniVoting satisfies mb−BPRIV.
HRO.ERO and G are independent random oracles. S is the ZK simulator.

particularly when the verification occurs. This marks the first machine-verified proof of mb−BPRIV. The

relevant EASYCRYPT lemma mb_bpriv is located in the MiniVotingSecurity_omb.ec file.

Theorem 1. Let V =MiniVoting(E,Σ,Flabel,ValidInd,ρ,Publish) be defined as in Definition 13. Then, for

any mb−BPRIV adversary A , there exists a simulator Sim and three adversaries B,C and D , such that

Adv
mb−bpriv
A ,V ,Sim

(λ) ≤ 2 ·Pr
[
ExpvfrD ,V ,Σ(λ) = 1

]
+Advzk

B,P,Sim,R (λ)+Adv
poly–ind1cca
C ,E,n

(λ).

Theorem 1 corresponds to lemma mb_bpriv in MiniVotingSecurity_omb.ec.

Figure 6.10 displays the EASYCRYPT formulation of Theorem 1. P and Ve denote the NIZK’s prover and

verifier, C denotes the ValidInd algorithm, CP denotes the commitment protocol. A is the adversary. The

zero-knowledge simulator S and the random oracles for tracker encryption (HRO.ERO) and for the NIZK

proof system (G) are defined concretely in the code.

The VFR, zero knowledge and poly–IND–1–CCA security experiments are denoted by VFRS, ZK_L,

ZK_R and Ind1CCA, respectively, while the respective reductions are denoted by BVFR, BZK and BCCA.

These are also given concrete definitions. Also note that the Ind1CCA module is parameterized by a left-

or-right module, representing the case where β= 0 and the case where β= 1, respectively.

The mb−BPRIV security experiment is parameterized by a recovery algorithm, and we use the con-

crete recovery algorithm described in Section 6.3.1.

We now sketch the proof of Theorem 1. The EASYCRYPT formalization of the full proof is found in the

file MiniVotingSecurity_omb.ec. Unless explicitly stated, all the modules and lemmas we refer to in

the following are also found in this file.

In our EASYCRYPT formalization, we split the security experiment Expmb−BPRIV,Recover,β
A ,V ,Sim

into two dif-

ferent games, one for β = 0 and one for β = 1. The difference between the two games is, as described

earlier, what the tally algorithm does. These games are modeled in the modules OMB_BPRIV_L and

OMB_BPRIV_R, respectively, which are found in the file VotingSecurity_mb.ec.

The proof is established through the creation of a sequence of hybrid games. The complete collection

of games, along with brief descriptions, can be found in Figures 6.11 and 6.12.
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• G0L': Refactoring the main procedure by extracting certain steps for reuse.

• G0L'': Refactor the ’valid’ statement to be outside the nested ’if’ block.

• G0L: Move the ’tally’ calculation to occur before the ’if’ statements.

• G1L: Simulate the verification of the correct ’tally’ value within the current context (left world).

• G2L: Stop decrypting legitimately generated ciphertexts and instead select the correct vote from the
’vmap’ mapping.

FIGURE 6.11: Left Side Games

• G0R': Refactoring the main procedure by extracting certain steps for reuse.

• G0R: Reorganizing code by separating the ’tally’ and ’valid’ checks from the ’if-else’ statements.

• G1R: Modifying code to stop decrypting honest ciphertexts and use plain votes from ’vmap’ instead.
Ballots added by adversaries will still be decrypted as usual.

• G2R: Updating code to halt the recovery process.

• G3R: Adjusting G2R to utilize a single board instead of BP.bb0 and BP.bb1, similar to the structure of
G2L. b1 will be added to the board, but the tally will use v0 from ’vmap’ instead of the original value.

FIGURE 6.12: Right Side Games

Starting out from the left-side security experiment, the first step is to replace the tally proof produced

by the prover in the proof system, with a simulated proof produced by the simulator Sim. This change

is modeled in the game G1L. Provided that the proof system is zero-knowledge, the adversary cannot

distinguish between the original game and the game where we simulated the proof, except with negligible

probability.

We then define a new game, G2L, where we stop decrypting honestly created ciphertexts, and instead

use the ciphertexts stored in V (as described in Section 6.3). Ciphertexts submitted by the adversary are

decrypted as usual. We also remove one of the bulletin boards from the vote oracle, so that only the

left-side votes are stored. We prove that G1L and G2L are equivalent. The equivalence follows from the

correctness property of the encryption scheme used to encrypt the votes and the fact that the adversary

only gets to see BB0 in the left side security experiment.

Starting out from the right side security experiment OMB_BPRIV_R, we first stop decrypting honest

ciphertexts and prove that the resulting game G1R is equivalent to OMB_BPRIV_R. The intuition is the

same as for the equivalence between G1L and G2L.

We then define a game G2R where we stop performing recovery on the adversarially created ballot

box and simply perform the tally on the ballot box the adversary outputs. We prove that G1R and G2R are

equivalent. Intuitively, this holds because the honest votes no longer come from the adversary’s board,

but from V, and the ballots submitted by the adversary are present both on the adversary’s board BB and

on the recovered board, by definition of our recovery algorithm.

In the final game, G3R, we remove one of the bulletin boards in the vote oracle. This is similar to what

we did in G2L, but now only the right-side votes are stored. We prove that G2R and G3R are equivalent.

This also shows that the final game on the right side, G3R, is completely equivalent to OMB_BPRIV_R.

Finally, we show that the probability of distinguishing between the games G2L and G3R is equivalent

to the probability of winning the IND–1–CCA game.
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Setup(1λ) for set I of voters

1 : trL,tpTr,Πc ← [ ]

2 : pTr,pPk,pCo,pOp← empty

3 : (vpk,vsk) ← kgenv(1λ)

4 : (tpk,tsk) ← kgent(1λ)

5 : for i ≤ |I | do

6 : tri ←$Gr oup

7 : tpTr← tpTr∥enct(tpk,tri )

8 : (pTr,Πt ) ←ReencryptionShuffle(tpTr)

9 : for i ≤ |I | do

10 : id ←I [i ]

11 : (upk,usk) ← gen(1λ)

12 : pPk.[id] ← upk

13 : for i ≤ |I | do

14 : id ←I [i ]

15 : t ←$ F i el d

16 : et1 ←$enct(tpk,pPk[id]t )

17 : et2 ←$enct(tpk, g t )

18 : pCo[id] ← dect(tsk,et1 ·pTr.[id])

19 : Πc ←Pco ((pCo,pPk,pTr,tpk),tsk))

20 : pd← (vpk,tpk,tpTr,pTr,pPk,pCo,Πt ,Πc )

21 : sd← (pOp,vsk,tsk)

22 : return (pd,sd)

Register(id,pd,sd)

1 : d ← pOp.[id]

2 : upk ← pPk.[id]

3 : ct ← pCo.[id]

4 : return ((id,upk,ct ),d)

Vote(pd, id, pc, sc, v)

1 : ev ← encv(vpk, id, v)

2 : b ← (pc,ev)

3 : return b

ValidBoard(BB,pd)

1 : for ((id,upk,ct ),ev) in BB :

2 : e1 ←¬(∃id′, id′ ̸= id

3 : ∧ ((id′,upk,ct ),ev) ∈BB)

4 : e2 ←ValidInd((id,upk,ev),vpk)

5 : e3 ← (PU.[id] = (id,upk,ct ))

6 : return (e1 ∧e2 ∧e3)

VerifyTally((pk, pbb,r ),Π)

1 : return V((pk, pbb,r ),Π)

Tally(BB,pd,sd)

1 : r L = [ ]

2 : for i in 1..|BB| do

3 : (vpk,tpk,PTr) ← pd

4 : (trL,π,vsk,tsk) ← sd

5 : ((id,upk,ct ),ev)) ←BB[i ]

6 : v ← decv(vsk, id,ev))

7 : tr← dect(tsk,PTr.[id])

8 : r L[i ] ← (v,tr)

9 : r ←Multiset(r L)

10 : pbb ←Publish(BB)

11 : Π←P((pd, pbb,r ), (sd,BB))

12 : return (r,Π)

VerifyVote(id, v,r, pc, sc)

1 : (id,upk,ct ) ← pc

2 : (usk,d) ← sc

3 : tr← open(upk,ct ,d)

4 : return (v,tr) ∈ r

Publish(BB)

1 : return BB

FIGURE 6.13: Algorithms defining the [Ev,Et,C,Σ,ValidInd] voting scheme, given an
IND–1–CCA secure labeled PKE scheme Ev = (kgenv,encv,decv), an IND–CPA secure
homomorphic encryption scheme Et = (kgent,enct,dect), zero-knowledge proof systems
Σt a = (Pt a ,Vt a ), Σt sh = (Pt sh ,Vt sh ) and Σco = (Pco ,Vco ) for the tally proof, the tracker
shuffle proof and the proof that commitments are correctly formed, respectively, a com-

mitment scheme CP= (gen,commit,open), and the abstract operator ValidInd.

6.5 Selene

For completeness, we here also present the results from [47] that Selene satisfies du-mb-BPRIV.

In this section, the focus is on formalizing Selene’s ballot privacy properties. Verifiable shuffles and

the ElGamal + PoK construction are abstracted away, and an abstract IND–1–CCA-secure labeled PKE is

used instead [19, 18]. The verifiable shuffle is replaced with a parametric Multiset distribution for the

tally phase. The formalization of proofs for interactive protocols remains a complex task, and the focus

on this challenge is considered orthogonal. In the EASYCRYPT formalization, the encryption of votes is

abstracted, with an abstract labeled PKE that is assumed to be IND–1–CCA secure. The ElGamal with

proof of knowledge construction used in Selene has been proven to be IND–1–CCA secure, though this

remains out of the reach of machine-checking. Since privacy is emphasized, the signatures that Selene

includes on-cast ballots are also removed, as they cannot compromise privacy. Additional proofs are

made available at https://github.com/mortensol/du-mb-bpriv.

Since the focus of this paper is on privacy, the signatures Selene includes on-cast ballots are removed,

as they cannot compromise privacy. These simplifications yield the following model for Selene2.

Definition 14. Let Ev be a poly–IND–1–CCA secure labeled PKE, let Et be an IND–CPA secure PKE, let

ΣR = (P,V) be a proof system for a relation R and let CP= (gen,commit,open) be a commitment protocol.

2An EASYCRYPT proof for Selene with signatures is available at https://github.com/mortensol/du-mb-bpriv.

https://github.com/mortensol/du-mb-bpriv
https://github.com/mortensol/du-mb-bpriv
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lemma du_mb_bpriv &m : BP.setidents{m} = BP.setH{m} `|` BP.setD{m} =>
(** The du-mb-BPRIV advantage of some adversary A upper bounded by the sum of: **)
`| Pr[DU_MB_BPRIV_L(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G).main() @ &m: res]
- Pr[DU_MB_BPRIV_R(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G,S,Recover').main() @ &m: res]|

(** - the advantages of BVFR(G) and BVFR(S) in breaking the Voting Friendly Relation; **)
<= Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,G).main() @ &m: res]
+ Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,S).main() @ &m: res]
(** - the ZK advantage of adversary BZK against the underlying NIZK; and **)
+ `| Pr[ZK_L(R(Et,Ev,HRO.ERO),P,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO),G).main() @ &m: res]

- Pr[ZK_R(R(Et,Ev,HRO.ERO),S,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO)).main() @ &m: res]|
(** - the IND1-CCA advantage of adversary BCCA against the ballot-encryption scheme **)
+ `| Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Left).main() @ &m: res]

- Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Right).main() @ &m: res]|

FIGURE 6.14: EASYCRYPT lemma establishing that Selene satisfies du–mb–BPRIV.
HRO.ERO and G are independent random oracles. S is the ZK simulator.

We define

(Ev,Et,ΣR ,CP,ValidInd)

as the voting system built upon the algorithms given in Figure 6.13, which we informally describe below.

Setup : Takes as input a security parameter λ and returns a key pair (vpk,vsk) used to encrypt and de-

crypt votes, a key pair (tpk,tsk) used to encrypt and decrypt trackers, a list tpTr of encrypted track-

ers, finite maps pTr, pPk, pCo and pOp from voter identities to encrypted trackers, public commit-

ment keys, tracker commitments, and openings, respectively, as well as a proof Πt of the correct

shuffle of the trackers and a proofΠc that the tracker commitments are correctly formed. The pub-

lic data is

pd= (vpk,tpk,tpTr,pTr,pPk,pCo,Πt ,Πc )

and the secret data is

sd= (pOp,vsk,tsk).

Register : Takes as input a voter identity and a pair (pd,sd) of public and secret data, and returns the

voter’s public commitment key, the commitment to her tracker and an opening to the commitment.

Publish : Outputs the public part of the ballot box.

Vote : Encrypts a vote v and outputs the ciphertext together with the voter’s public credential.

VerifyTally : Run the V algorithm of the proof-system to check if the tally proof is valid.

ValidBoard : For each element in the ballot box BB, we perform three checks: every ballot contains a

unique voter identity, every ballot is well-formed, and every public credential corresponds to the

correct identity.

Tally : Decrypts every encrypted vote in the ballot box BB and the tracker for each voter. Returns the

multiset of all vote/tracker pairs (v, tr ).

VerifyVote : To verify, a voter opens her tracker commitment and checks if her vote v and tracker tr is in

the list of vote/tracker pairs returned by Tally.

Morten in the following theorem proved that Selene satisfies du–mb–BPRIV.

Theorem 2. Let V = (Ev,Et,ΣR ,CP,ValidInd), where ValidInd(pc,vpk) =⊤ for c ← encv(vpk, id, v) and any

public encryption key vpk, identity id, public credential pc and vote v. For any du–mb–BPRIV adversary
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A , there exists a simulator Sim and four adversaries B,C ,DS and DG , such that

Adv
du–mb–bpriv
A ,V ,Sim

(λ) ≤ Pr
[
ExpvfrDG ,V ,ΣR

(λ) = 1
]

+Pr
[
ExpvfrDS ,V ,ΣR

(λ) = 1
]

+Advzk
B,P,Sim,R (λ)+Adv

poly–ind1cca
C ,Ev ,n

(λ).

Theorem 2 corresponds to lemma du_mb_bpriv in SeleneBpriv.ec. Figure 6.14 displays the EASY-

CRYPT formulation of Theorem 2. The lemma itself is inside a section which quantifies over all core com-

ponents: Et and Ev denote the encryption schemes used for the trackers and the votes, respectively, P

and Ve denote the NIZK’s prover and verifier, C denotes the ValidInd algorithm, CP denotes the commit-

ment protocol. A is the adversary. The zero-knowledge simulator S and the random oracles for tracker

encryption (HRO.ERO) and for the NIZK proof system (G) are defined concretely in the code, but not fully

displayed in this paper. The VFR, zero knowledge and poly–IND–1–CCA security experiments are denoted

by VFRS, ZK_L, ZK_R and Ind1CCA, respectively, while the respective reductions are denoted by BVFR, BZK

and BCCA. These are also given concrete definitions. Also note that the Ind1CCAmodule is parameterized

by a left-or-right module, representing the case where β = 0 and the case where β = 1, respectively. The

du–mb–BPRIV security experiment is parameterized by a recovery algorithm, and we use the concrete

recovery algorithm described in Section 6.3.1.

We now sketch the proof of Theorem 2. The EASYCRYPT formalization of the full proof is found in the

file SeleneBpriv.ec. Unless explicitly stated, all the modules and lemmas we refer to in the following

are also found in this file.

6.6 Concluding Remarks and Future Work

In this work, we presented a refined version of the mb−BPRIV privacy definition which we call delay-use

malicious-ballot box ballot privacy (du–mb–BPRIV). Our new definition allows the modeling of schemes

(such as Selene) where verification occurs after tallying. The security claim is also more explicit. We for-

malized our new definition in the interactive theorem prover EASYCRYPT and showed that labeled MiniV-

oting, Belenios, and Selene all satisfy the definition. We also proved that MiniVoting and Belenios sat-

isfy the original mb−BPRIV privacy definition. Furthermore, we have discussed the relation between

du–mb–BPRIV and individual verifiability (and the corresponding relation for mb−BPRIV) and proved

that a voting system satisfying du–mb–BPRIV and a property called strong consistency, also satisfies a

form of individual verifiability which depends on the choice of recovery function.

While we have encoded Selene correctly in what we firmly believe is the most appropriate privacy def-

inition in literature, our work highlights certain defiances in privacy definitions that future work should

address. The defiances are fairly deep and addressing them is far out of the scope of this work. We will,

however, briefly mention two principal defiances of mb−BPRIV and related definitions. First, the defini-

tion, while handling a malicious bulletin board, assumes an honest setup. Secondly, du–mb–BPRIV and

related definitions are highly calibrated to schemes where the auxiliary data produced by the tally to be

used in verification are zero-knowledge proofs. In particular, schemes like Selene which output trackers

to use for verification are difficult to express in these definitions.

Further, the BPRIV style of the definition implies certain restrictions. As an example, the adversary

can only see the result and verification from the left side board which constrains the attacker model. In

particular, this means that we cannot detect privacy attacks relying on inducing candidate-specific errors

for an observed voter while giving the adversary access to whether the corresponding voter verification
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fails or not, see e.g. [82] for such a style of attack. Of course, such attacks can be ruled out by considering

recovery functions preventing any changes to honestly cast votes as in [41], but it is not the case in general.

An important line of future research is thus to find alternative definitions capturing both more general

and more transparent attacker models, e.g. by decreasing the generality of the definition or to consider

simulation-based security.



CHAPTER 7

ANALYSIS OF ESTONIAN ELECTION

MARGIN

A cornerstone in the study of electoral auditing is understanding the election margin. This key concept

delineates the volume of votes necessary to effect an outcome shift, serving as a barometer of the robust-

ness and competitiveness of an election. It functions as a critical control measure for determining the

reliability of electoral results, offering insights into the extent of potential vote manipulation or irregular-

ities.

The focus of this chapter is an in-depth marginal analysis of the Riigikogu election in Estonia. This

case study is particularly interesting due to the unique characteristics of the Estonian electoral process,

which includes a complex candidate selection process that is unlike more familiar models found in other

parliamentary systems.

In order to account for this complexity, we have segmented our analysis into various stages. Each

stage of the candidate selection process is treated as a discrete event, which allows us to identify the

critical points at which the election margin can significantly influence the overall outcome.

In the following sections, we will provide a comprehensive overview of our methodological approach,

present the results of our marginal analysis, and discuss the implications of our findings for the design

and auditing of future elections. Through this rigorous and granular analysis, we aim to contribute to

a more nuanced understanding of the relationship between election margins and electoral outcomes,

particularly in the context of the Riigikogu elections.

7.1 Introduction

The margin of victory [127] is an important measure of the strength of an election result. It is the smallest

number of votes that, if changed, would alter the outcome of the election given a specific voting rule and

collection of votes. Therefore, a big margin of victory is seen as a more decisive and resilient result than a

narrow margin of victory.
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The margin of victory is an important factor in the effectiveness of post-election audits. In the United

States, these audits are commonly used to detect errors in electronic voting systems caused by software

or hardware issues with voting machines [94]. When voters use these machines, their votes may not be

counted correctly due to bugs, programming mistakes, or other machine output errors.

The margin of victory has been tailored to work effectively with a diverse range of voting rules[127], not

just elections employing the plurality rule where each voter casts a vote for a single choice, and the option

with the highest number of votes is deemed the winner. In such cases, the margin of victory is straight-

forward to compute, calculated by halving the difference between the highest and second-highest scores.

Nevertheless, there’s a continued emphasis on broadening this research to further adapt and enhance

auditing procedures for a multitude of voting rules.

Estonia, a digitally advanced nation, stands as an intriguing case study for our research due to its

unique electoral system and sophisticated integration of technology into governance. The country’s pi-

oneering use of electronic voting, or i-Voting, along with the meticulously crafted structure of its parlia-

mentary elections, provides a rich canvas for exploring the dynamics of digital democracy. Additionally,

the fact that 101 candidates are elected to serve in the Riigikogu through free and proportional elections,

held every four years on the first Sunday of March, adds further complexity and dimension to our in-

vestigation. This multi-layered electoral system, which includes personal, district, and compensation

mandates, allows us to examine the democratic process through multiple lenses. It is these qualities that

render Estonia a compelling subject for our research.

Electronic voting (i-Voting or internet voting) is one of the 14 available methods in Estonia1.

7.2 Ascertaining the Election Results

In order to estimate the margins in the Estonian National Elections, we first need to understand and

implement the election counting function in order to reproduce true and assess counterfactual, election

tally results.

In the Riigikogu elections, both political parties and independent candidates are eligible to partici-

pate. Each political party has the privilege to nominate candidates across the twelve electoral districts.

Moreover, parties also compile a national list, which is essentially a ranking of all their nominated candi-

dates across these districts.

The process of determining the election results commences at the district level. Here, personal and

district mandates are allocated based on the votes received. Following this, the remaining compensation

mandates are distributed at the national level. In total, there are 101 mandates to be allocated across the

twelve districts.

7.2.1 Allocation of Personal Mandates within an Electoral District

The process of distributing personal mandates within an electoral district begins by dividing the total

number of voters in the district by the number of mandates available (which is predetermined before the

election). This calculation yields what is referred to as the ’simple quota’ for the district.

SimpleQuota = #Voters

#Mandates

1For more information you can see https://www.riigikogu.ee/en/introduction-and-history/
riigikogu-tasks-organisation-work/elections-riigikogu/

https://www.riigikogu.ee/en/introduction-and-history/riigikogu-tasks-organisation-work/elections-riigikogu/
https://www.riigikogu.ee/en/introduction-and-history/riigikogu-tasks-organisation-work/elections-riigikogu/
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To illustrate, let’s consider a district where 10,000 voters have cast their votes and there are 5 mandates to

be allocated. The simple quota for this district would be 10,000 / 5 = 2,000 votes. Therefore, any candidate

who garners at least 2,000 votes is elected, that is, they receive a personal mandate.

The criterion for election is straightforward: any candidate (whether affiliated with a party or running

independently) who secures votes equal to or more than the simple quota is elected. There are no addi-

tional prerequisites for election.

7.2.2 Allocation of District Mandates within an Electoral District

The distribution of district mandates is restricted to parties that have garnered at least 5% of the valid

votes at the national level, a criterion known as the electoral threshold.

The process of distribution involves summing up the votes cast for the candidates of a party at the

district level and comparing this total to the simple quota. The party is entitled to as many mandates as

the number of times the total votes exceed the simple quota. However, from this number, the already

allocated personal mandates, if any, are deducted. These mandates are referred to as district mandates.

#DistrictMandatesForParty = TotalVotesForParty

SimpleQuota

For instance, if the simple quota is 2000 votes and a party has received 5000 votes, the party is entitled

to 2.5, or effectively 2, district mandates (5000 / 2000 = 2.5). However, if the party has already secured one

personal mandate, it is entitled to only one additional district mandate.

In the 2003 Riigikogu elections, an additional requirement was introduced to the Election Act to in-

crease the share of district mandates. Accordingly, if a party receives votes amounting to at least 75% of

the simple quota, or if the remaining votes for a party exceed 75% of the simple quota after the distribu-

tion of district mandates, the party is awarded one district mandate.

For example, if the quota of Electoral District A is 2000 votes and a party receives 1800 votes (which

is 90% of the quota), the party is awarded one district mandate. Similarly, in Electoral District B, if the

quota is 2000 votes and a party receives 3500 votes, the party is awarded one district mandate. If, after

this mandate is accorded, the party still has 1500 votes left (which is 75% of the district quota), the party

is awarded one more mandate, making it 2 mandates in total.

The candidates are elected based on their ranking in the district list of the party, which is determined

by the number of votes they receive. However, to be elected under the district mandate, a candidate must

receive at least 10% of the simple quota.

For instance, if the simple quota is 2000 votes, a candidate must receive at least 200 votes to be elected

under the district mandate.

7.2.3 National Distribution of Compensation Mandates

Following the allocation of mandates at the district level, the remaining undistributed mandates are di-

vided nationally using the modified d’Hondt distribution method. Named after the Belgian mathemati-

cian Victor d’Hondt, this method allows for a proportional distribution of mandates among the lists, en-

abling even parties with fewer votes to secure a mandate.

The d’Hondt distribution series typically runs as 1, 2, 3, 4, etc. However, in Estonia, a slightly modified

series is used, where the numbers from 2 onwards are raised to the power of 0.9. This results in a series of

values such as 1,000, 1,866, 2,688, 3,482, etc. This modification slightly favors parties with a higher vote

count.
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Only parties that have received at least 5% of the valid votes at the national level are eligible to partic-

ipate in the distribution of compensation mandates.

The distribution process involves calculating comparative figures for each party. The number of com-

parative figures corresponds to the number of candidates on the party list. These figures are obtained by

dividing the number of votes for a party by each element of the distribution series.

Subsequently, the comparative figures of the parties are compared. A mandate is awarded to the party

with the highest comparative figure, the next mandate goes to the party with the second highest compar-

ative figure, and so on, until all undistributed mandates are allocated.

For instance, consider the distribution of 3 mandates between two parties, A and B, using the classic

d’Hondt distribution series for simplicity:

Party A has received 3000 votes, resulting in comparative figures of 3000/1=3000, 3000/2=1500, 3000/3=1000,

etc.

Party B has received 2700 votes, resulting in comparative figures of 2700/1=2700, 2700/2=1350, 2700/3=900,

etc.

The three mandates are thus allocated as follows:

• 1st mandate - Party A (Comparative figure: 3000)

• 2nd mandate - Party B (Comparative figure: 2700)

• 3rd mandate - Party A (Comparative figure: 1500)

If a party has already secured a personal or a district mandate, the calculation of comparative figures

for that party starts from the corresponding element in the series.

For example, if Party A has already secured one district mandate, the calculation of comparative

figures for Party A starts from the second element of the series:

Party A’s comparative figures are now 3000/2=1500, 3000/3=1000, 3000/4=750, etc.

The three mandates are now allocated as follows:

• 1st mandate - Party B (Comparative figure: 2700)

• 2nd mandate - Party A (Comparative figure: 1500)

• 3rd mandate - Party B (Comparative figure: 1350)

The compensation mandates are allocated according to the party’s national list of candidates. A com-

pensation mandate is awarded to the candidate who is higher on the list and has received votes amount-

ing to at least 5% of the simple quota of the district. Candidates who have already secured a personal or a

district mandate are bypassed during this distribution.

For example, if the simple quota is 2000 votes, a candidate must receive at least 5% of this quota, i.e.,

100 votes, to be elected under the compensation mandate.

We utilized open data provided in a machine-readable XML format [121] to analyze the election re-

sults. The data, available for free download, is subject to the Creative Commons Attribution License (CC

BY 4.0). The tally function, which accepts an XML file of the election and returns the 101 elected can-

didates, has been implemented using Python [50]. Additionally, we have developed several functions to

validate our results, ensuring they accurately reproduce the outcomes of the election.
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7.3 Margin Analysis

In this section, we analyze the margins in the Estonian elections. Such an analysis is not only relevant for

our work, but precise margins are important for Risk-Limiting Audits. Further, the margins are related to

Election Competitiveness.

This latter concept has been extensively studied and is found to be intricately linked to various aspects

of electoral dynamics [66, 31, 89]. One approach to quantify this competitiveness is by assessing the sus-

ceptibility of election outcomes to vote alterations. In this context, the focus is not on favoring a specific

candidate or party but on understanding the overall impact of vote changes on the election results. This

approach provides a measure of the election’s competitiveness, which can serve as an incentive for voter

turnout in subsequent elections, given the potential influence of each vote on the election outcome [23].

When we discuss altering the outcome of an election, we could have different concepts in mind. For

this paper, we are specifically referring to a modification in the final list of candidates, which we concep-

tualize as a set, rather than a list. In other words, our primary focus is on the identity of the candidates

who emerge as winners, not on how they are ranked or the type of political mandates they receive. Any

shifts in the order of candidates or transformations in the nature of their mandates are not viewed as

alterations to the election results in this context.

For example, if the voting process or some other factor were to result in a rearrangement of candidates

without impacting who actually wins the election, we would not deem this as a change in the election out-

come. Similarly, if the type of mandate given to the elected candidates changes, this too is not considered

a change in the election results, as long as the winning candidates remain the same.

In a more differentiated approach to altering election results, we consider specific strategies and ob-

jectives. This leads to different types of margins based on the constraints of our objectives. We have

explored several objectives, each corresponding to a unique capability of vote alteration. These include

margindel, marginadd, margincoalition+del, and margincoalition+add.

The margindel represents the minimum number of votes that need to be deleted from a candidate to

remove them from the election outcome. The marginadd denotes the minimum number of votes that need

to be added to a candidate for them to be included in the election result. The margincoalition+del signifies

the minimum number of votes that need to be deleted to break a coalition. Similarly, the margincoalition+add

denotes the minimum number of votes that need to be added to form a new coalition. A coalition, in the

context of parliamentary politics, refers to an alliance of two or more political parties that come together

to form a majority in a legislative assembly, such as the Riigikogu in Estonia. This majority, typically con-

trolling at least 51 mandates, allows the coalition to pass legislation and make executive decisions. In

our study, we utilize the script we developed to explore various scenarios pertaining to different types of

margins. Our objective is to establish some bounds for these margins. The results of these explorations

are presented in Table 7.1.

The distribution of seats within a coalition is a critical factor that determines the power dynamics and

stability of the government. Each party’s seat count directly influences its bargaining power and role in

shaping the coalition’s policies. Parties with a higher number of seats typically have a stronger say in key

governmental roles, including the Prime Minister, cabinet positions, and committee chairs.

In the context of our study, it’s important to clarify the distinction between the types of attacks asso-

ciated with these margins. When an adversary aims to add a vote, they would need to compromise the

voter’s vote-casting application to alter the vote in favor of the desired candidate. This is a more complex

operation, requiring a level of intrusion into the voter’s device.

Conversely, for vote deletion, the adversary’s task is somewhat simpler. If they can ascertain that

a particular voter intends to vote for a specific candidate, they can simply block the transmission of the



98 Chapter 7. Analysis of Estonian Election Margin

ballot. This doesn’t necessitate tampering with the vote-casting application itself but could simply involve

interfering with the communication process.

These differences in attack strategies underscore the varying levels of complexity and risk associated

with different types of vote manipulation. Understanding these nuances is crucial for developing robust

defenses against potential election interference. Each of these margins provides a distinct perspective on

the sensitivity of election results and offers valuable insights into potential vulnerabilities in the voting

process.

Our analysis encompassed the election results from the year 2019. After calculating various margins

using a Python script [50], we present the results in Table 7.1 2

The significant difference in the margins for the addition and deletion methods can be attributed to

the inherent complexity and multi-stage nature of the election process.

In the context of the election process, the allocation of seats is not a straightforward procedure. It

involves multiple rounds of computation and seat allocation, where the outcome of each stage can sig-

nificantly influence the subsequent stages. This iterative nature of the process adds a layer of complexity

to the election results, making them highly sensitive to even minor changes in vote counts.

When we consider the addition method, we are essentially increasing the vote count for a candidate.

This increase can potentially tip the balance in a close race, leading to a change in the allocation of seats

in the current round and, by extension, in the subsequent rounds. This cascading effect can result in a

significant alteration in the final election results, even if the initial increase in vote count was relatively

small.

On the other hand, the deletion method involves decreasing the vote count for a candidate. While

this can also lead to changes in seat allocation, the effect is not necessarily the same as that of the addi-

tion method. This is because the deletion of votes can potentially move a candidate below the threshold

required for a seat, which can have a different impact on the overall seat allocation compared to adding

votes.

Furthermore, during the seat allocation process, there are instances where we deal with floating num-

bers and only their integer parts are considered. The impact of adding or deleting votes can therefore

depend on the decimal distance to the closest integer part.3.

TABLE 7.1: Computed Results for Different Margins

Margin Type Computed Value What is Removed What is Added
margindel 9 Kalev KALLO Erki SAVISAAR
marginadd 3 Anneli OTT Jaan MÄNNIK
margincoalition+del 1500 REF + EKRE —
margincoalition+add 1898 — SDE+KESK+IE

Another objective of our study is to identify the minimal number of modifications required to change

the election results in a way that triggers a shift in the number of seats allocated to a party. This adjustment

substantially increases the significance of the margin. In our study, we performed an upper-bound exam-

ination on the recalculated margin. The marginal analysis indicated that if Urmas REITELMANN received

more than 1041 votes, the Eesti Reformierakond party would lose one seat, while the Eesti Konservatiivne

Rahvaerakond party would gain an additional seat. Similarly, for the deletion scenario, a change in the

distribution of seats would require a margin of 1282 votes. It is crucial to underscore, however, that these

figures may not precisely correspond to the actual margins.

2When we remove 9 votes from Kalev KALLO, he is removed from the final list and instead Erki SAVISAAR will be added(note that
Erki SAVISAAR will be selected without any change on his vote).

3Especially in terms of the d’Hondt method errors in rounding errors can easily impact the election result [111]
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We have also calculated an upper bound for the margin of the parties’ coalition. The alliance between

parties Eesti Reformierakond and Eesti Konservatiivne Rahvaerakond emerges as the most precarious one

in our analysis. The coalition holds a slim advantage, with just three seats more than the threshold. This

minimal edge indicates that the loss of merely three seats would be sufficient to destabilize this partner-

ship. Consequently, under the scenario of Personal Mandates being leveraged to change the seat alloca-

tion, 1500 votes would be necessary to shatter this coalition. We also investigated a scenario involving the

formation of a coalition between parties Sotsiaaldemokraatlik Erakond, Eesti Keskerakond, and Isamaa

Erakond. Our findings suggest that the addition of 1898 votes in total to these parties would result in them

gaining three additional seats. This increase would provide the coalition with a majority of the seats in

the parliament.

Remark 1. The strategy for computing the number of required vote alterations to form or break a coalition

can vary significantly depending on the specific objectives and constraints of the adversary. One approach

could be to focus solely on one candidate, altering their votes to either boost their chances or undermine

their position. This strategy could be effective if the adversary’s objective is to influence the outcome for a

specific candidate. However, it may also draw more attention and increase the risk of detection, especially

if the number of altered votes is large.

Alternatively, the adversary (the adversarial scenario will be discussed in detail in the next chapter)

could opt for a more distributed approach, simultaneously altering the votes for several candidates. This

strategy could be more subtle and potentially harder to detect, as the alterations are spread across multiple

candidates. However, it may also be more complex to execute, as it requires a more sophisticated under-

standing of the interplay between different candidates and their voters.

In either case, the adversary would need to carefully consider the trade-offs between risk and reward.

A strategy that alters a large number of votes for a single candidate may have a higher impact but also a

higher risk of detection. On the other hand, a strategy that subtly alters votes for multiple candidates may

be less risky but also less impactful.

Ultimately, the choice of strategy would depend on the adversary’s specific objectives, their risk toler-

ance, and their understanding of the election dynamics. This highlights the importance of robust election

security measures that can detect and prevent a wide range of potential attack strategies. Finally we stress

that an adversary attacking an election cannot know the margins beforehand but only can estimate these

based on earlier elections and poll data and hence needs to include a buffer resulting in a higher number of

necessary ballots to compromise.





CHAPTER 8

IDENTIFYING VOTER

CHARACTERISTICS THROUGH

ML-ASSISTED MODELS

Chapter 7 of the thesis focuses on identifying voter characteristics through ML-assisted models. The

chapter starts with an introduction, followed by a detailed description of the process of data set cre-

ation, data exploration, and data balancing techniques. Feature engineering techniques are then dis-

cussed, including feature selection and extraction. The chapter also covers the evaluation of different

classification models, such as logistic regression, decision trees, random forest, naive Bayes, support vec-

tor machines, gradient boosting algorithms, k-nearest neighbors, and simple and random classifiers. An

ensemble method and association rules are discussed, and an adversarial viewpoint is presented. The

chapter concludes with the results and discussions.

8.1 Introduction

Estonia, a pioneer in Internet voting, conducted its first feasibility studies in the early 2000s and imple-

mented the first legally binding country-wide Internet voting in 2005. This voting method has been used

in all 8 elections up until 2015, with over 30% votes cast over the Internet in the 2014 European Parliament

and 2015 Parliamentary elections [122] and more than 50% in 2023 [98]. The basic protocol, in effect until

2011, mirrored double envelope postal voting, using server encryption and a national eID signing device

[68].

However, potential attacks were observed, including proof-of-concept malware that could alter or

block votes without detection. To defend against this, an individual verification mechanism was devel-

oped for the 2013 elections. This mechanism uses an independent mobile device that downloads the vote

cryptogram from the server and lets the voter check the contained vote using the randomness from vote
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casting which in turn is obtained for the vote-casting computer using a QR code. This allows voters to

verify their votes [70] and detect malware.

The implementation of the verification method has not been perfect, as discussed in [119], and has

problems with vote updates [100](Note that the implementation of the Estonian i-Voting system is re-

ferred to as the IVXV system. The source code for this system is open and readily accessible1).

8.1.1 The Effectiveness of Individual Verification

In the Estonian elections, the actual rate of verification has been around 4% [2, 117]. This low rate is not

a peculiarity of the Estonian but is a common problem in e-voting [97, 96]. It has been argued that even

low verification rates are sufficient to provide security guarantees against malware that randomly infects

voters [70]. However, it is a natural question, and the main research question in this paper, whether an

attacker can predict which voters are verifying, and hence sidestep detection.

The main obstacle to answering this question is what information the attacker has access to and how

to reproduce this. It is our thesis that the best approach here is to use the rich data provided by the log

files collected during the real electronic elections in Estonia, which were studied in other contexts in [117].

The log files contain data about features in 8.1.

This is data a strong adversary can get his hands on, especially if compromising voter’s computers

covertly, or even the actual log file. For a deeper understanding of the log analysis software, data storing

process, and web front-end see [69] which explains this in great detail.

However, the identification of voters who are more likely to verify their votes is a complex task. Nu-

merous factors such as age, education level, political affiliation, and personal beliefs can influence the

probability of verification, see also [117].

Artificial intelligence (AI) and machine learning algorithms can be utilized to detect patterns for ver-

ifying voters. By analyzing vast amounts of data, we can discern trends among voters who verify. The

insights derived from this analysis can inform predictions about voters likely to verify their votes. This in

turn aids in enhancing outreach and voter education efforts, leading to improved accuracy and integrity

in the electoral process.

We do remark that an actual attacker might have access to even more information that makes the

classification of verifying voters even more precise. Especially, for ethical reasons, as mentioned above, we

do not have access to the actual vote choice of the voters which might be correlated with the verification

rate. Likewise, other factors are quite likely to help an attacker, especially if the attacker can access social

media-related data for the voter.

The act of recognizing voters who verify their votes in an election is of the utmost importance, for

reasons too numerous to mention. Chief among them is the role verification plays in upholding the cred-

ibility and precision of the electoral process. The act of allowing voters to confirm the accuracy of their

recorded votes guarantees the accountability of every vote and the reflection of the people’s will in the

election outcome.

Verification also serves to cultivate trust in the electoral process, as voters are more likely to have faith

in the results when they see that their votes are being accurately counted and their voices heard. This

renewed trust helps promote electoral participation since voters are more likely to partake in the process

when they know their votes will be accurately tallied. Verification also contributes to the identification

and prevention of potential electoral fraud or errors, providing an opportunity to rectify these issues be-

fore they significantly impact the election outcome. Ultimately, this reinforces the fairness, transparency,

and reflection of the people’s will in the electoral process.

1The GitHub repo link is https://github.com/vvk-ehk/ivxv

https://github.com/vvk-ehk/ivxv
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Identifying the specific voters more likely to verify their votes is challenging as several factors such as

age, education level, political affiliation, and personal beliefs influence the likelihood. Studies reveal that

younger voters tend to verify their votes more than older voters, while highly educated voters are more

likely to do so as well. Furthermore, voters with a high level of engagement in the political process and

a keen interest in the election outcome are also more inclined to verify their votes. To establish patterns

among verified voters, artificial intelligence (AI) and machine learning algorithms can scrutinize copious

amounts of data, including demographic data and voting patterns such as in-person, mail, and early

voting.

By analyzing this data, the AI model can identify trends and patterns among verified voters, such as

younger voters or highly educated voters. These findings can then be utilized to make predictions about

which voters are likely to verify their votes in future elections, allowing for improved outreach and voter

education efforts, thereby improving the accuracy and integrity of the electoral process.

8.2 The Process of Data Set Creation

8.2.1 Introduction and Background

The RK2011 elections were a watershed moment in Estonian i-voting. The proportion of votes cast over

the Internet reached a critical high of 24.3 percent. This led to the expansion of the i-voting protocol and

initiatives for in-depth analysis to detect system malfunctions, attacks, and study voter behavior.

8.2.2 Mechanisms of i-Voting in Estonia

The primary mechanism for Internet voting in Estonia is based on a double-envelope postal voting sys-

tem, modified to include encryption and digital signatures. Voters can authenticate using smart card-

based eID tools or SIM card-based Mobile-ID. They then use the official i-voting client application to cast

their vote.

8.2.3 Vote Validation and Resubmission

Validation of votes using mobile devices has been feasible since the 2013 elections. During the advanced

voting period, voters have the option to re-submit their votes.

8.2.4 Analysis Software Overview

The analysis software consists of a log processing engine, a database engine, and a web front-end. These

components are essential for database updating, information storage, and presenting results to election

officials.

8.2.5 Log Processing Details

The log processing engine is a Python program that matches log entries to a list of predefined patterns

using regular expressions. Unmatched log entries are recorded as incidents requiring manual review by

an election official.
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8.2.6 Database Infrastructure

MySQL is used for data storage, with tables for voting sessions, vote verifications, and incidents. The

incidents are linked to responses from election officials.

8.2.7 Healthiness of the System

System Monitoring The health of the i-voting system is continuously monitored through VFS and VSS.

These components collect key metrics such as system load, memory usage, and free disk space on a

minute-to-minute basis. A web interface displays this information and triggers an alarm if the most re-

cent data record exceeds a one-minute threshold. Additionally, a watchdog monitors the responsiveness

of the Estonian National Certificate Authority’s (NCA) OCSP server.

Log Processor and Incident Management An incident management interface provides an overview of

incidents logged by the processor. Each issue can be traced back to a specific voting session and the corre-

sponding log entry. Upon review by an election official, the status of an incident is updated to “handled.”

Investigation Features The web front-end equips investigators with useful background information

about each incident. Features are included that enable linking of any i-voting session to another ses-

sion sharing common parameters such as personal code, IP address, or phone number. This assists in

identifying if a particular IP address or voter is involved in multiple incidents.

Geographical Information The MaxMind GeoLite City database is utilized for adding geographic con-

text to the IP addresses. All relevant entries in Apache log files are extracted and displayed in the IP view

section.

Voting Session Details Finally, the voting session view pulls all log entries related to a particular voting

session from the database. This view enables a more in-depth analysis and assists in ascertaining the

validity of each voting session.

8.3 Data Exploration

Data exploration serves as a pivotal phase in our data analysis project. Its primary objective is to deepen

our understanding of the dataset at hand. This encompasses the scrutiny of relationships between vari-

ables, data distribution, as well as identifying any discernible patterns or trends.

Through meticulous exploration, we set the stage for hypothesis formation and insight generation.

These insights inform the types of factors that could be influencing the phenomena under study. This

step is indispensable for the entire data analysis process as it shapes the methodology for our subsequent

analysis.

In pursuit of these goals, we will deploy a variety of visualization techniques coupled with statistical

methods. These tools aid in unearthing insights and providing a multifaceted understanding of the data.

As we navigate through this exploratory phase, we will continually document our findings. This prac-

tice contributes to the reliability and meaningfulness of the end results, thus enriching the overall analyt-

ical framework.
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8.3.1 Structure Of Data Set

To better comprehend the overall structure of the data set, we will examine it from multiple dimensions.

These dimensions include the number of observations and variables, the data types of these variables,

and the presence or absence of missing or incomplete data. Such an understanding is critical to inform

our analysis techniques and ensure reliable results.

The dataset consists of 12 features and 158,076 observations. The data types for these features vary

and include datetime64, object, and int64. It is noteworthy that the dataset does not contain any null

values, thus enhancing its reliability.

In terms of memory usage, each column ranges from 1 to 11 bytes, summing up to a total memory

usage of 73 MegaBytes for the entire dataset. This is relatively moderate, making the dataset manageable

for most computational setups.

As for the features, they are diverse and include a variety of data types. For example, ’aeg’ is a datetime

column that represents a timestamp. ’Autentimisvahend’ is an object column that denotes an authenti-

cation tool, while ’cert-issuer’ represents the issuer of a certificate. ’Isikukood’ is an integer-based column

for personal identification codes. Additional columns represent gender (’sugu’), age (’vanus’), operating

systems (’os’ and ’v-os’), and Internet Protocol addresses (’ip’ and ’geoip’). ’Haaletamise_aeg’ is another

datetime column that signifies the time of voting, and ’target’ is an integer column serving as the target

variable.

Overall, the dataset is fairly straightforward, featuring a mix of numerical and categorical variables.

While the memory usage is moderate and generally feasible for most applications, optimizations might

be required for specific scenarios. This could involve data type conversions, feature reductions, or using

memory-efficient techniques such as memory mapping.

Column Type
aeg datetime64[ns]
autentimisvahend object
cert-issuer object
isikukood int64
sugu object
vanus int64
os object
ip object
geoip object
haaletamise_aeg datetime64[ns]
target int64
v-os object

TABLE 8.1: List of features in log files

8.4 Adversary Model

In our study, we categorize adversaries based on their knowledge level and the tools at their disposal, and

we label them appropriately:

1. No-Knowledge Adversary (Type A): This adversary has no specific knowledge or data about the

election. They operate primarily on guesswork. We further subdivide this category into two distinct mod-

els:
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- Uniform Random Model (No-Knowledge Adversary A1): This model represents a Naive Adversary

who guesses uniformly. They operate under the assumption that every voter has an equal chance of veri-

fying their vote, essentially treating the verification process as a coin flip with a 50% chance of verification.

- Verification Rate-Informed Random Model (No-Knowledge Adversary A2): This model represents

a slightly more informed Naive Adversary. While they still guess randomly, their guesses are informed by

the overall verification rate of the election. They adjust their guessing strategy based on this rate, which

may slightly increase their chances of correctly guessing who will verify their vote.

2. Scholar Adversary (Type B): This adversary has a basic understanding of the election process and

verification rates. In particular, we assume they have the knowledge of the academic paper [117] con-

taining a log file analysis of Estonian electronic elections. This gives insights into correlations between

verification rates and various factors such as gender, age, and voter operating system [117].

For the second adversary type (Scholar Adversary), we introduce three specific models based on the

following features identified in [117] as being strongly correlated to verifying voters: “Age”, “Sex”, “Voter’s

Operating System”, “Certificate Issuer” of the voter, and “Authentication Tool” of the voter. These models

use different logical operators to make predictions.

- Scholar Adversary Logical OR Model (Type B1): In this model, the Scholar Adversary predicts that

a voter will verify their vote if any one of the five features (Age, Sex, Voter’s Operating System, Certificate-

Issuer, or Authentication Tool) is true hence indicating a higher likelihood of verification.

- Scholar Adversary Logical AND Model (Type B2): In this model, the Scholar Adversary predicts

that a voter will verify their vote only if all five features (Age, Sex, Voter’s Operating System, Certificate-

Issuer, and Authentication Tool) are true hence indicating a high likelihood of verification. It is a more

risk-adverse model compared to the Logical OR Model.

3. Machine Learning Adversary (Type C): This adversary has full access to the data equivalent to

what is available in the log files and plans to train machine learning classifiers using the following types

of algorithms: Naive Bayes, Logistic Regression, K-Nearest Neighborhood, Decision Tree, and Random

Forest. For a comprehensive understanding of the machine learning concepts and techniques used in

this research, the reader is referred to [57].

The adversary employs a variety of techniques, including imbalanced recovery methods, feature se-

lection methods, feature extraction methods, and other parameters, to train a total of 3960 models specif-

ically for type C. Additionally, we have 20 models tailored for other types of adversaries, namely types A

and B. Therefore, in total, we have 3980 models encompassing various types of adversaries.

The Type C adversaries represent the most informed and potentially dangerous adversaries due to

their sophisticated use of machine learning techniques. These adversaries are expected to be highly adap-

tive and capable of exploiting patterns and trends within the data to predict voters’ behavior accurately.

However, it’s important to note that their strength is also their weakness. The complexity of machine

learning models requires them to undergo extensive training and testing phases before they can be de-

ployed for an attack. This process can be time-consuming and resource-intensive, potentially slowing

down their operations and providing opportunities for detection and countermeasures.“

8.5 Attack Model

In our attack model, we consider an adversary who has a fixed model and a fixed margin number, denoted

as m. This margin number represents the number of vote alterations the adversary aims to achieve. The

adversary’s goal is to alter m votes, but they can tolerate a certain number of alerts, denoted as a. The

number of allowed alerts depends on the adversary’s risk appetite and models that not all verifying votes
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def Attack(classifier = clf, margin = m, alert = a, V = [X,y]):
# Where X the database of voters information
# from the log file without verification statue
# y the column vector of verification states of voters
actual = y #voter's label for verification
predicted = clf.predict(X)
success = 0
alert = 0
i = 0
while i < len(actual):

if (predicted[i] == 0) and (actual[i] == 0):
success += 1

if (predicted[i] == 0) and (actual[i] == 1):
alert += 1

if success >= Nmargin and alert <= A:
return 1

if alert > A:
return 0

i += 1
return 0

FIGURE 8.1: In the context of our attack game algorithm, if the Attack function returns 1,
it signifies that the adversary has successfully managed to alter m votes while triggering
fewer than a alerts. Conversely, any other return value indicates that the adversary has

failed to meet these conditions and, therefore, has not succeeded in the game.

will actually detect an altered vote or report it. And even if reported, the alert might not lead to an inves-

tigation, the malware will not be detected or has been removed beforehand without a trace. It can even

happen that an adversary might not even care about a few confirmed malware samples since this will just

cast some doubt on the election, but not a general halt of the election.

The adversary selects a voter and, according to the type of adversary above, checks if this voter is

classified as a verifying voter. If the voter is classified as verifying, the adversary skips them to prevent

detection and selects another voter. This process continues until the adversary finds a voter classified

as a non-verifying voter. If the adversary knows that the voter is going to vote in favor of their objective,

they do not change the vote. However, if the voter is going to vote against the adversary’s objective, they

change the vote.

In our abstract modeling, we have the opportunity to check our model with real true values. This is

not the case in real-world scenarios, but we can use the data from our abstract model to provide a base-

line estimation for real-world experiments. After each attack, if the attack was successful, we increment

a variable, success. If the attack was not successful, we increment a variable, alert. The adversary is de-

termined as successful if they reach the number of successes equal to the margin m before running out

of available voters to attack and provided that the number of alerts is less than or equal to a. The more

formal view of the attack model is given in Fig 8.1.

Predicting a voter’s choice is a complex task that depends on various factors. Several scientific ap-

proaches and methodologies have been explored to gain insights into voter behavior. These include

opinion polls and surveys [71, 8], election forecasting models [53, 81], social media analysis [27], psy-

chological profiling [59, 56], machine learning and data mining [120, 101], neuroscience and behavioral

economics [86], and big data analytics [88]. These methods provide valuable insights into voting behavior

and can be used by the adversary to predict voter choices.

The concept of ’margin value’ is critical in this context. An adversary must select a margin value that

is likely to exceed the actual required margin, as the exact margin is not known beforehand. Our analysis
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is further complicated by the fact that we do not know the actual vote choices of the voters in our log

file data. Therefore, we cannot determine whether a voter has already voted for a candidate preferred by

the adversary. Instead, we consider an attack successful if the voter is categorized as non-verifying and

does not verify their vote. Consequently, the margin must be increased based on the expected number of

voters who are already voting in line with the adversary’s preference.

8.6 Evaluating Classifiers

In order to evaluate the different classifiers, it is not enough to simply check if an adversary (or classifier)

would be successful or not, as this provides no information regarding the quality of the classifier. For

instance, a poorly performing classifier might accidentally be successful or vice versa. Instead, we create

a model that allows us to quantitatively measure a probability, giving the attack probability which allows

us to compare adversarial models (classifiers).

In the subsequent phase of our study, following the establishment of the attack model, we focus on

calculating the probability of an adversary’s success. Formally, we aim to compute the following expres-

sion:

Pr[Attack(classifier = clf,margin = m,alert = a,V = [X,y]) = 1]

To achieve this, we adopt a two-pronged approach. Firstly, we derive an analytical formula that en-

capsulates the variables and conditions of our model. This formula serves as a theoretical framework for

understanding the success probability of an adversary under given conditions and allows fast evaluation

of the classifiers.

Secondly, we employ a Monte Carlo experiment to estimate this probability empirically. This simulation-

based approach allows us to account for the inherent randomness and variability in the real-world voting

process, thereby providing a more robust and practical estimate of the success probability.

We then cross-validate these two approaches to ensure their consistency and mutual support. This

dual validation strengthens the reliability of our findings and provides a comprehensive understanding

of the adversary’s success probability. This function serves a dual purpose in our study. Firstly, it enables

us to evaluate the performance of different types of adversary attacks. By comparing the success proba-

bilities across different adversary types, we can gain insights into their relative strengths and weaknesses.

Secondly, this function is instrumental in the hyperparameter tuning of our machine learning classi-

fier. By using the success probability as a score function, we can systematically evaluate different param-

eter combinations and optimize our classifier for maximum performance.

To derive a quantitative measure, we propose randomizing the order of voters, while retaining all data,

including voting time and other relevant parameters, followed by a rerun of the attack. By repeating this

process a significant number of times, we can estimate the attack probability. For Type C adversaries, we

suggest a separation into training, validation, and attacking sets. The adversary could apply this method-

ology to the validation set to identify the most effective algorithm for the planned attack. However, the

validation set might not be the same size as the actual set deployed for the attack, thus the attack proba-

bility derived from the validation set might not be directly applicable to the actual attack scenario.

Nonetheless, the validation set might not be the same size as the actual set deployed for the attack,

thus the attack probability derived from the validation set might not be directly applicable to the actual

attack scenario. Furthermore, performing iterations and classifications multiple times to obtain a reliable
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estimate of the probability might be time-consuming. In light of this, we introduce a method to approxi-

mate the attack probability grounded in the classification of the validation set. For comparative purposes,

the attack set could comprise the entire set of remaining voters post-training.

Suppose a classifier has been validated on a set comprised of Nv voters, of which Nver are verifying.

We obtain an evaluation matrix of the classification, denoted as Ni j , where i , j = 0,1. In this context, ‘0’

represents non-verifying, and ‘1’ signifies verifying voters. i pertains to the actual behavior of the voters,

while j corresponds to the classification. Thus, N00 and N11 correspond to non-verifying and verifying

voters respectively, which have been accurately classified. Conversely, N10 corresponds to false negatives,

i.e., voters who verify but were erroneously classified as non-verifiers. These individuals would trigger an

alarm when attacked due to the incorrect classification. On the other hand, N01 represents false negatives

that are classified as verifiers but do not actually verify. While these pose less of a problem in that they do

not raise the alarm, they nevertheless reduce the effectiveness of the attack. Note that N11 +N10 = Nver

and N01 +N00 = Nv −Nver.

Now we want to estimate the probability patt of the attack being successful against N voters where

each has a probability pver of verifying. Note that this is only a good estimation if pver is close to the verifi-

cation rate in the original set which is close to Nver/Nv. We could have used a fixed number of verifiers out

of the N voters, however, this makes the probability formula more complicated and thus unnecessarily

slower to compute, and in real life, we would anyway need to estimate the verification rate and distribu-

tion. We number the voter in order of how they are attacked as Vi , i = 1, . . . , N . Let VEi be the stochastic

variable for whether Vi is verifying which is then Bernoulli distributed with probability pver (and we as-

sume they are independent). Further, we denote by C a stochastic variable giving the classification of

Vi . Again we will assume these are independent, and we will assume that their conditional probabilities

given VE are Bernoulli distributed with

Pr(C= b|VE= 1) = N1b
Nver

:= p1b

Pr(C= b|VE= 0) = N0b
Nv−Nver

:= p0b

and correspondingly for C= 0.

We can then compute the attack probability as the adversary manages to change Nmar votes without

raising more than A alarms. We assume that the adversary considers voter V1,V2, . . . and for each decides

to attack if Ci = 0 i.e. the classifier reports that the voter will not verify. The attacker stops immediately if

Nmar votes have been changed. Also, the attacker loses if less than Nmar votes have been changed when

applying the attack to all N voters.2

patt =Pr

(
∃ j ≤ N .

(
j∑

i=1
¬Ci ∧¬VE= Nmar

)∧(
j∑

i=1
¬Ci ∧VEi ≤A

))

If we consider A= 0 then we simply split into non-intersecting event sets according to j denoting how

long the attack had to run to be successful. Note, that if the overall attack is successful, we know that the

last voter was attacked successfully, however, since we assume each voter is independent and identically

distributed we get a binomial factor from choosing the Nmar−1 remaining successful vote changes out of

the j −1 first voters

patt = (p00(1−pver))Nmar
∑N

j=Nmar

( j−1
Nmar−1

)
(p01(1−pver)+p11pver) j−Nmar

2For those raising an alarm, we cannot count the vote to modified as they might be revoting. We here make the mild assumption
that the adversary knows this and thus continues the attack to reach Nmar.
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and with the estimates of the probabilities above we get

patt =
(

N00
Nv

)Nmar ∑N
j=Nmar

( j−1
Nmar−1

)
( N01+N11

Nv
) j−Nmar .

Likewise for A ≥ 0 we split into non-intersecting event sets according to the attack length j and the

actual number of alarms a ≤ A

patt = (p00(1−pver))Nmar
N∑

j=Nmar

(
j −1

Nmar −1

)

×
min(A, j−Nmar)∑

a=0

(
j −Nmar

a

)
(pverp10)a(p01(1−pver)+p11pver) j−Nmar−a

Again with the estimates of the probabilities:

patt = ( N00
Nv

)Nmar
∑N

j=Nmar

( j−1
Nmar−1

)∑min(A, j−Nmar)
a=0

( j−Nmar
a

)
( N10

Nv
)a( N01+N11

Nv
) j−Nmar−a

8.6.1 Monte Carlo Experiment for Success Probability Estimation

Monte Carlo experiments are a class of computational algorithms that rely on repeated random sampling

to obtain numerical results. The underlying principle is to use randomness to solve problems that might

be deterministic in principle. In the context of our study, we employ a Monte Carlo experiment to estimate

the probability of a successful attack by an adversary.

The Monte Carlo experiment for our study is conducted as follows:

1. Random Sampling: A multitude of random permutations are generated from the voter list, provid-

ing a diverse range of potential voter orderings for the simulation.

2. Attack Simulation: Each unique voter ordering is subjected to a simulated attack by the adver-

sary, utilizing the attack model previously defined. The result of each attack, whether successful or

unsuccessful, is meticulously recorded for subsequent analysis.

3. Probability Estimation: Upon the completion of a substantial number of simulations, the ratio of

successful attacks is computed. This ratio serves as an empirical estimate of the adversary’s proba-

bility of successfully executing an attack.

This Monte Carlo experiment provides a practical and robust method for estimating the success prob-

ability of an adversary. By accounting for the inherent randomness and variability in the voting process,

it offers a more direct estimate than a purely analytical approach.

Furthermore, by repeating the experiment with different adversary types and attack strategies, we can

gain valuable insights into their relative effectiveness.

We have implemented the Monte Carlo experiment in a Jupyter notebook, which is available in the

GitHub repository associated with this project [50]. The notebook illustrates how the results of the Monte

Carlo experiment converge to the values predicted by our analytical formula after 10,000 iterations. This

convergence provides empirical validation of our analytical approach and reinforces the robustness of

our methodology. We refer the reader to this notebook for a detailed walkthrough of the Monte Carlo

experiment and its results.
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8.7 Attack Simulations

We can now perform the attack simulations for all three categories of adversaries, each with its unique

models and varying parameters. The total number of models under consideration amounts to 3980, each

representing a distinct attack strategy.

The models can be broadly classified into three types. Type A and Type B models are designed to

be straightforward and efficient, requiring no training phase. They are capable of receiving data inputs

directly and making predictions accordingly. These models are particularly useful for scenarios where

rapid response is required, and there is limited time or resources for extensive training.

On the other hand, Type C models are more complex and resource-intensive. They necessitate a com-

prehensive training phase to fit them with preprocessed data. While this process may require additional

time and computational power, the payoff is a more nuanced and potentially more effective attack strat-

egy.

It’s important to note that the training and validation phases inherent to Type C models consume

some portion of data on their training and validating phases, leaving fewer voters for the actual attack.

This is a significant consideration as it means that the number of attacked voters N is larger for Type A

and B models than for Type C models. This point warrants further discussion as it impacts the overall

effectiveness and applicability of the different adversary types.

To evaluate the effectiveness of each model, we instantiated them for four different margins: 10, 20,

50, and 100. The margin represents the number of vote alterations the adversary aims to achieve. Fur-

thermore, we assessed the success chance of each model for varying numbers of alerts, ranging from 0 to

10. The alert number represents the maximum number of alerts the adversary is willing to trigger without

jeopardizing their operation.

Another crucial parameter is the verification rate, which represents the proportion of voters who verify

their votes. This rate can significantly impact the success of the attack, as a higher verification rate makes

it more challenging for the adversary to manipulate votes undetected.

The number of voters is also a significant factor, as it determines the size of the pool from which the

adversary can attempt to manipulate votes. A larger number of voters may provide more opportunities

for vote manipulation but also increases the complexity of the attack.

The results of these simulations are meticulously recorded and stored in a Google Sheets document

[48] for readability. This comprehensive dataset enables us to compare the effectiveness of different mod-

els and identify the most promising strategies for successful election interference.

8.8 Performance Analysis of Attack Models

In this section, we delve into the performance evaluation of the various models employed in our study.

The objective is to discern which attack strategies are more effective in predicting voter behavior and

consequently, more successful in manipulating election outcomes. This analysis is crucial as it not only

provides insights into the strengths and weaknesses of different adversary types but also informs strate-

gies for improving election security. Note that we limit our comparison of models based on different

margins.

We emphasize that our comparison of models is limited to those operating under the same margin.

This is because the margin, which represents the number of votes an adversary aims to alter, significantly

influences the difficulty of the task and the potential effectiveness of the adversary. Therefore, compar-

ing models across different margins could lead to misleading conclusions. By maintaining a consistent

margin in our comparisons, we ensure a fair and meaningful evaluation of the model’s performance.
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The chart depicted in Figure 8.2 illustrates the probability of a successful attack by different adversary

models across varying margins. The margins represent the number of vote alterations the adversary aims

to achieve, and the probabilities are calculated for a scenario where no alerts are triggered (Alerts: 0). The

chart is parameterized by the model type, including Type A1, A2, B1, B2, and C, allowing for a comparative

analysis of their performance.
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FIGURE 8.2: Probability of Successful Attack by Margin

The chart in Figure 8.3 represents a similar analysis as the previous figure, but with specific consider-

ation for scenarios where 5 alerts are allowed. This means that the adversary thinks that he can trigger up

to 5 alerts without jeopardizing their operation.

The choice of adversary strategy is highly contingent on the specific margin of votes they aim to alter

and the number of voters available for the attack. It’s important to note that Type A and Type B adversaries

can attack all voters as they do not require a training phase, unlike Type C adversaries. This distinction

should be taken into account when comparing the effectiveness of different adversary types.

Type C adversaries, equipped with machine learning classifiers trained on log files, consistently out-

perform other types across all margins. Their ability to leverage detailed voter data to make informed

predictions about voter behavior gives them a distinct advantage in scenarios ranging from precision tar-

geting to large-scale vote alteration.

Specifically, for smaller margins, the superiority of Type C is evident, and as the margin increases,

the gap between Type C and other types widens even further. For example, for a margin of 10, the best

Type C model, Random Forest, has a higher success chance compared to the best Type B models, and this

advantage grows substantially with larger margins.

Unlike Type B adversaries, who rely on knowledge from scholarly papers and log file analysis but lack

access to current log files, Type C adversaries utilize real-time data, allowing for more accurate predic-

tions. This makes Type C not only suitable for precise attacks but also highly effective in scenarios where
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FIGURE 8.3: Probability of Successful Attack With 5 Allowed Alarms by Margin

the objective is to alter a larger number of votes.

It’s important to clarify that Type B adversaries do not require a training phase. Instead, they create a

pivot table of verification rates against different available features based on scholarly papers and research

from previous elections. They identify the top k important features that have a strong correlation with

verification. Then, they define different variations of these types for their attack strategy.

In conclusion, the choice of adversary model is a strategic decision that depends on the specific ob-

jectives and constraints of the adversary. Understanding these dynamics can provide valuable insights for

improving election security and developing countermeasures against potential attacks (For more detail

about this comparison you can check [50]).

As a future direction, we propose exploring the use of probability outputs from our classifiers. All five

types of classifiers, in addition to classifying, also output a probability measure for their predictions. We

could define tweaked versions of models by changing the default threshold from 0.5 to higher values to

observe the impact on the success rate of the adversaries. This approach could potentially enhance the

performance of our models and provide a more nuanced understanding of the adversary’s capabilities.

The charts depicted in Figures 8.5, 8.6, and 8.7 provide a comprehensive visual representation of

the success chance of an adversary across different types of models for various election margins. These

figures specifically pinpoint the first possible alert number that is required to reach specific success prob-

abilities of 0.1, 0.5, and 0.9. Each chart represents one of these thresholds, detailing a layered analysis

of potential adversarial activity. We, e.g., see that a type C strategy allowing one alarm and changing 100

votes has a 50% chance of success.
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FIGURE 8.4: Probability for Each Alert Number for Different Margins

8.8.1 Descriptive Analysis of Type C Model

The Type C models in our study result from a multi-layered preprocessing pipeline, which includes steps

such as imbalanced recovery, feature extraction, feature selection, and the determination of the number

of features and components. Each of these steps plays a crucial role in shaping the final model and its

performance. In this section, we aim to dissect the impact of each of these steps on the success rate of the

adversary.

For each specified margin, we select all models trained with that particular margin in mind. These

models are then sorted based on their respective attack scores. From this sorted list, we identify the top

50 models.

Figure 8.4 provides a visual representation of the impact of the number of allowed alarms on the ad-

versary’s success probability. Each line in the figure corresponds to one of the top-performing models,

illustrating how the success probability of each model changes as the number of allowed alarms increases.

From the figure, it is evident that the success probability of the adversary generally increases with the

number of allowed alarms. This is because a higher number of allowed alarms gives the adversary more

leeway to alter votes without triggering suspicion. However, the rate of increase varies between models,

reflecting the different strategies and capabilities of the adversaries.

Figure 8.8 depicts the distribution of classifier types among the top-performing models. This visual-

ization serves as an exploratory step to identify which classifiers are better suited for our adversarial tasks.

It is important to note that each classifier comes with a set of hyperparameters that require careful tun-

ing. Merely selecting a specific classifier does not guarantee superior performance; the hyperparameters

must be meticulously adjusted to optimize the model’s effectiveness.

Also figure 8.9 presents the distribution of feature selection techniques among the top-performing

models. This analysis is crucial in identifying which feature selection methods are more effective for our
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FIGURE 8.5: Margin-Alert Success Rate Of Adversary For 0.1. In this chart, types C and B1
align, as do types B2 and A2.

adversarial tasks. The three feature selection methods under consideration are ’ChiSquare’, ’Pearson’, and

’MutualInformationGain’. As depicted in the figure, ’ChiSquare’ is the most frequently used method in

the top models, indicating its relative success in this context.

The comprehensive reports covering various aspects of model performances have been implemented

in a Jupyter Notebook file [50].

In our study, we evaluated the performance of our models across two distinct phases: the validation

phase and the attack phase. Our objective was to assess the consistency of model performance across

these two phases. We found that the degree of consistency between the validation and attack phase rank-

ings varied depending on the margin size. For smaller margins, the top-performing models in the valida-

tion phase were largely consistent with those in the attack phase. However, as the margin size increased,

the degree of consistency between the two phases diminished.

Several factors could contribute to this observed discrepancy:

• Overfitting: Models may perform exceptionally well on the validation set if they have overfitted

to the specific characteristics of that set. However, these models may not perform as well when

applied to the attack phase, which contains different data.

• Randomness: Many machine learning algorithms incorporate a degree of randomnesses, such as

random weight initialization or random data splits for training and validation. Consequently, even

identical models with the same hyperparameters can yield slightly different results across multiple

runs.

• Data Characteristics: The validation and attack sets may exhibit different characteristics. For in-

stance, they may contain different types of voters or display different voter behaviors. If a model is
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FIGURE 8.6: Margin-Alert Success Rate Of Adversary For 0.5. For this chart, we observe
three types A1, A2, and B2 share the same value.

particularly adept at predicting certain types of voters or behaviors, it may perform better on one

set than the other.

• Model Complexity: More complex models may perform better on the validation set as they can

capture more intricate patterns in the data. However, these complex patterns may not generalize

well to the attack set, leading to lower performance.

We conducted an analysis to investigate the relationship between the number of attacked voters (N)

and the success probability of the adversary. Our findings, as illustrated in Figure 8.10, confirm that the

success probability of the adversary is indeed monotonically increasing with respect to N. This holds true

across different parameters and is consistent for varying numbers of alerts.

This observation is crucial as it validates our approach of selecting the best algorithm based on its

performance with a given N. It assures us that the chosen algorithm will continue to yield the best re-

sults even when N is increased. This is because, as the number of attacked voters increases, the success

probability of the adversary also increases, given that other parameters are fixed.

This monotonic relationship underscores the importance of voter verification in securing the election

process. However, it’s important to note that when the total number of voters increases, as in a large-scale

national election, even a fixed verification rate could leave a substantial number of voters available for

the adversary to attack. This could potentially increase the adversary’s success probability. Therefore,

it’s crucial to not only maintain but also strive to increase the verification rate, especially in large-scale

elections. This highlights the need for strategies to encourage voter verification as a means of enhancing

election security, particularly in large-scale electoral contexts.
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8.9 Lessons Learned

Understanding the behavior of verifying voters is of paramount importance in ensuring the integrity and

transparency of an election. Profiling these voters allows us to identify patterns and trends that could

be indicative of potential vulnerabilities in the election process. It provides insights into the factors that

influence a voter’s decision to verify their vote, which can be instrumental in developing strategies to

encourage more voters to verify their votes, thereby enhancing the robustness of the election.

Our study presents three types of adversaries, each with their unique strategies and capabilities. While

these adversaries were designed with the objective of manipulating election outcomes, the classifiers they

employ can be repurposed for more benign objectives. For instance, these classifiers can be used to pre-

dict which voters are likely to verify their votes. This information can be used to target voter education

campaigns, focusing on those voters who are less likely to verify their votes. By educating these voters

about the importance of vote verification, we can potentially increase the overall rate of vote verification,

thereby making the election more resistant to manipulation.

Our initial descriptive analysis examined the correlation between the verification rate and other fea-

tures. We found that certain features, such as the operating system used by the voter to cast their votes,

were more common among voters who verified their votes.

Subsequently, we conducted several layers of feature engineering on our dataset, without directly con-

sidering the correlations with verification. Interestingly, we observed that the top models were created

based on features that coincided with those identified in our initial correlation analysis.

The research findings presented in this chapter offer a compelling insight into the capabilities and

effectiveness of different adversary types in manipulating election outcomes. Among the three types of
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FIGURE 8.8: Distribution of Different Classifier On Top Models

adversaries examined, Type C emerges as a particularly potent threat, consistently outperforming Types

A and B across various scenarios.

What sets Type C apart is its utilization of machine-learning models that are trained on log files. These

models are capable of discerning intricate patterns and insights within the data, enabling the adversary

to make highly informed predictions about voter behavior. This ability to learn from the data not only

enhances the success rate of Type C but also makes it resilient to challenges that diminish the efficiency

of other types.

As the number of vote alterations increases, representing larger-scale attacks, Types A and B experi-

ence a significant decline in their effectiveness. In contrast, Type C maintains its superiority, demonstrat-

ing impressive adaptability to varying attack scales. For instance, when attempting to alter 100 votes with

just one alert, the success probability of Type C exceeds 0.5, a testament to its robust performance.

In a more complex scenario, where the adversary aims to change the coalition by altering around

2000 votes, the superiority of Type C becomes even more pronounced. With a permissible threshold of

40 alerts, the Random Forest model under Type C exhibits a remarkable 82 percent success rate. This is

a significant achievement, especially when contrasted with other types, most of which have no chance

of success in this context. The only exception is Type B2, which still lags considerably behind with a 26

percent chance. This also underscores the importance of taking alerts seriously and investigating them.

This specific example underscores the robustness and adaptability of Type C, particularly when em-

ploying sophisticated machine-learning models like Random Forest. It demonstrates that Type C is not

only effective in scenarios requiring precision but also in large-scale vote alteration scenarios where the

stakes are high, such as changing a coalition.

For a more detailed discussion of these findings, including a comprehensive analysis of the models

and features, please refer to the final report of our study [48].
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FIGURE 8.9: Feature Selection Distribution of Top Models for Different Margins

8.10 Future Work

Our study opens up several avenues for future research and improvement. Here are some potential direc-

tions that could be explored:

1. Application of Deep Learning: The use of deep learning could be explored in the context of our

scoring metric. Training these networks according to our scoring metric could potentially enhance

the accuracy and efficiency of the attack models. Deep learning has the added advantage of per-

forming feature selection and extraction under the hood, providing a more nuanced understanding

of the election dynamics and the potential impact of vote alterations.

2. Candidate Scoring: One possible enhancement could be to introduce a scoring metric for each

candidate after the election results are published. This score could reflect the difficulty of chang-

ing the candidate’s status from elected to non-elected, or vice versa. Such a metric could provide

valuable insights into the robustness of the election results and help identify potential vulnerabili-

ties. It could also serve as a useful tool for election authorities in assessing the effectiveness of their

security measures and in devising strategies to enhance election integrity.

3. Differentiating Candidates Based on Seat Types: Another potential improvement could be to dif-

ferentiate between election candidates based on their seat types. In the current system, seats are

allocated in three different layers: Personal, District, and Compensation, which we can refer to

as P-type, D-type, and C-types, respectively. Differentiating candidates based on these seat types

could provide a more nuanced understanding of the election dynamics and the potential impact of

vote alterations. It could also help devise more targeted and effective strategies for preventing and

detecting election manipulation.
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FIGURE 8.10: Success probability of the adversary as a function of the number of attacked
voters (N), parameterized by the number of alerts. Each line represents a different number

of alerts, ranging from 0 to 10.

These proposed enhancements, along with the findings from our study, could contribute to the ongo-

ing efforts to ensure the integrity and transparency of elections. They highlight the importance of contin-

uous research and innovation in the field of election security, particularly in the face of evolving threats

and challenges.
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Part III

Conclusion
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CHAPTER 9

CONCLUSIONS AND FURTHER WORK

In this concluding chapter, we synthesize the key findings and insights from our multifaceted research

journey, which is segmented into three distinct contributions. The first contribution explores the com-

plex landscape of attacks and repairs on the NV12 scheme, with an emphasis on protocols resilient to

human errors and the integration of biometric data. The second contribution refines existing privacy

definitions, introducing a novel concept of delay-use malicious-ballot box ballot privacy (du–mb–BPRIV),

and highlights the challenges and opportunities in privacy definitions. The third contribution delves into

the critical aspect of understanding voter behavior, particularly in the context of vote verification, and

outlines future directions for enhancing election security.

9.1 Revisiting Practical and Usable Coercion-Resistant Remote E-Voting

In our first contribution, we have embarked on a comprehensive exploration of attacks and repairs on the

NV12 scheme, with a particular focus on protocols that are resilient to human errors, such as PIN typos.

This work has revealed intriguing possibilities for enhancing security through the integration of biometric

data. Specifically, we have posited that the digitally stored key could be augmented or even supplanted

by a key derived from biometric information. This opens up an exciting avenue for future research, where

the challenge lies in making the error correction so proficient that it can accommodate noisy biometric

data without the need for fuzzy extraction.

Furthermore, we have presented a Paillier-based system, and it has become evident that the natu-

ral progression would be to incorporate an MPC-based tally system like that from Ordinos [84]. This

integration is particularly appealing as it is also founded on Paillier encryption. Ordinos, with their abil-

ity to reveal only the winner or the ranking of candidates in an election, can significantly contribute to

coercion-resistance, especially in scenarios where certain candidates are anticipated to receive minimal

or no votes. Additionally, the risk-limiting tally method described in [75] presents itself as a viable option

for both protocols, offering plausible deniability for the voter.

Our analysis of the PIN space has unearthed intriguing connections and may be of broader interest.

More precise results are yet to be discovered, but the relationship between one-digit error in k-digit PINs
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and Rook-polynomials [5] on a k-dimensional chessboard is a fascinating observation that warrants fur-

ther investigation.

The socio-technical dimensions of our contribution have also raised compelling questions that extend

beyond the technical realm. These include:

1. Understanding the nature of PIN errors made by voters in a voting setting where no feedback on

PIN correctness is provided.

2. Determining the optimal PIN policy that strikes a balance between correcting as many PIN typos

as possible and maintaining the entropy of the PIN space at a sufficiently high level.

3. Investigating the efficacy of voter training in handling, faking, and concealing secret keys, especially

in scenarios where a smart card is not used or is used in conjunction with key storage.

Lastly, a critical aspect that remains to be addressed is the provision of a robust proof of security for

our protocols. This constitutes a vital component of our future work, as it will solidify the theoretical

foundations of our contributions and provide a more comprehensive understanding of the underlying

security mechanisms.

In conclusion, our first contribution has not only advanced the field by presenting novel attacks, re-

pairs, and protocols but has also laid the groundwork for future research in areas ranging from biometric

integration to voter behavior analysis. The intersection of technology, mathematics, and human factors

presents a rich tapestry of opportunities for continued exploration and innovation.

9.2 Machine-Checked Proofs of Privacy Against Malicious Boards for

Selene & Co

In our second contribution, we have presented a refined version of the mb−BPRIV privacy definition,

introducing a new concept we term delay-use malicious-ballot box ballot privacy du–mb–BPRIV. This

innovative definition facilitates the modeling of schemes such as Selene, where verification takes place

subsequent to tallying. Moreover, the security claim associated with this definition is more explicit, pro-

viding a clearer understanding of the underlying principles.

We have taken the significant step of formalizing our new definition within the interactive theorem

prover EasyCrypt, demonstrating that labeled MiniVoting, Belenios, and Selene all conform to this defini-

tion. Additionally, we have established that MiniVoting and Belenios are in compliance with the original

mb−BPRIV privacy definition.

While our encoding of Selene aligns with what we firmly believe to be the most suitable privacy defi-

nition in existing literature, our work has illuminated certain defiances in privacy definitions that future

research must address. These defiances are profound and extend beyond the scope of this work. However,

we will briefly touch upon two principal defiances of mb−BPRIV and related definitions:

1. The definition, although adept at handling a malicious bulletin board, operates under the assump-

tion of an honest setup.

2. The du–mb–BPRIV and related definitions are finely tuned to schemes where the auxiliary data gen-

erated by the tally for verification purposes are zero-knowledge proofs. This makes it challenging

to express schemes like Selene, which utilizes trackers for verification.

Furthermore, the BPRIV style of definition imposes certain limitations. For instance, the adversary’s

view is restricted to the result and verification from the left side board, constraining the attacker model.
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This means that privacy attacks that rely on inducing candidate-specific errors for an observed voter—while

granting the adversary access to whether the corresponding voter verification fails or not (see e.g., [82] for

such a style of attack)—cannot be detected. While such attacks can be negated by considering recovery

functions that prevent alterations to honestly cast votes as in [41], this is not universally applicable.

An essential trajectory for future research, therefore, lies in the discovery of alternative definitions

that encapsulate both more general and more transparent attacker models. This may involve reducing

the generality of the definition or considering simulation-based security.

In conclusion, our second contribution has not only refined existing privacy definitions but also paved

the way for future explorations into more nuanced and comprehensive privacy models. By identifying

and addressing the limitations and challenges inherent in current definitions, we have opened up new

horizons for research, setting the stage for the development of more robust and adaptable privacy frame-

works. The implications of this work extend beyond the immediate context, offering valuable insights

and directions for the broader field of privacy and security.

9.3 Evaluating Security Guarantees from Individual Verification in Es-

tonian E-Voting

In our third contribution, we have delved into the critical aspect of understanding voter behavior, par-

ticularly in the context of vote verification. This understanding is vital in safeguarding the integrity and

transparency of elections. By profiling voters, we have been able to discern patterns and trends that may

signal potential vulnerabilities in the election process. Our insights into the factors that influence a voter’s

decision to verify their vote have laid the groundwork for strategies to motivate more voters to engage in

verification, thereby fortifying the election process.

Our study has introduced three distinct types of adversaries, each equipped with unique strategies

and capabilities. While initially conceived for manipulating election outcomes, the classifiers employed

by these adversaries can be adapted for more benign purposes, such as predicting voter verification be-

havior. This predictive capability can be harnessed to target voter education campaigns, focusing on

those less likely to verify their votes, with the potential to enhance overall vote verification rates.

Through a series of analyses, we have identified correlations between verification rates and specific

features, such as the voter’s operating system. Subsequent feature engineering has further corroborated

these findings, leading to the creation of top models that align with our initial correlation analysis.

Our study has opened up a plethora of avenues for future research and enhancement, including:

1. Application of Deep Learning: Exploring deep learning in the context of our scoring metric could

lead to more accurate and efficient attack models. The inherent feature selection and extraction

capabilities of deep learning offer a more nuanced understanding of election dynamics and the

potential ramifications of vote alterations.

2. Candidate Scoring: Introducing a scoring metric for candidates post-election could provide valu-

able insights into the robustness of election results and uncover potential vulnerabilities. This met-

ric could be instrumental for election authorities in evaluating and bolstering their security mea-

sures.

3. Differentiating Candidates Based on Seat Types: Differentiating candidates by seat types (P-type,

D-type, and C-types) could offer a more refined understanding of election dynamics and the po-

tential impact of vote alterations. This differentiation could aid in crafting more targeted strategies

to thwart election manipulation.
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Our third contribution has not only shed light on the complexities of voter behavior and verification

but has also provided actionable insights and tools to enhance election security. The proposed enhance-

ments and findings underscore the necessity of ongoing research and innovation in election security,

especially in an era marked by ever-evolving threats and challenges.

The lessons learned from this study, coupled with the future directions outlined, contribute to a

broader effort to ensure the integrity and transparency of elections. By continually pushing the bound-

aries of understanding and technology, we can build more resilient and trustworthy democratic pro-

cesses, reinforcing the very foundations of our society.
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Part IV

Appendix





APPENDIX A: REMOTE DATA ANALYSIS

AND COLLABORATION

In the final chapter of the thesis, we focus on the process of analyzing real data obtained from Estonian

log files. These log files contain sensitive information, and due to privacy concerns and legal restrictions,

it is prohibited to transfer them outside Estonia through email or any other file-sharing methods. Conse-

quently, to effectively work with the data, the following steps were undertaken:

1. Visit to Estonia: To access the data securely and in compliance with the relevant regulations, I

arranged a visit to the Estonian facility where the log files were stored. This trip facilitated a hands-

on approach to working with the data and provided an opportunity to gain insights into the specific

requirements of the Estonian context.

2. In-person data analysis: During my visit, I conducted a preliminary analysis of the log files to un-

derstand the nature of the data and identify potential patterns or trends. This exploration also

allowed me to establish the necessary groundwork for developing the main structure of the scripts

required for further analysis.

3. Script development: Based on the initial findings from the in-person data analysis, I developed a

series of scripts tailored to the specific characteristics of the Estonian log files. These scripts were

designed to automate the processing and analysis of the data, enabling more efficient and accurate

results.

4. Remote collaboration with Prof. Willemson: After returning from Estonia, I shared the developed

scripts with Prof. Willemson, who then ran the codes on the Estonian log files within the confines

of the secure facility. This approach ensured that the sensitive data remained within the legally

permitted environment while still enabling me to obtain the necessary output for my thesis.

5. Output analysis: Prof. Willemson provided me with the output generated by the scripts, which

I then used to conduct further analysis and draw conclusions relevant to the research objectives.

This process involved a thorough examination of the results, as well as a comparison with previous

research and established methodologies.

Throughout this process, several concerns and challenges were addressed:

• Data privacy and legal compliance: By working directly with the data in Estonia and collaborating

with Prof. Willemson, we ensured that sensitive information remained within the legally prescribed

environment, thus adhering to data privacy regulations.
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• Remote collaboration challenges: The nature of the project necessitated remote collaboration,

which posed challenges in terms of communication, data synchronization, and output sharing. To

overcome these challenges, we established a clear communication protocol and utilized secure,

approved channels for sharing code and output.

• Code adaptability and scalability: The scripts developed for this project were designed to be adapt-

able to the unique characteristics of the Estonian log files, as well as scalable to accommodate po-

tential increases in data volume or complexity in the future.

By addressing these concerns and implementing the outlined process, we were able to effectively an-

alyze the Estonian log files and generate valuable insights for the thesis while adhering to data privacy

and legal requirements.
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APPENDIX B: MODEL’S PERFORMANCE

REPORTS

The appendix section of this thesis includes several tables that provide detailed information about the

performance of different classifiers used in the research. These tables are essential for understanding

the model performance and the parameters used for each classifier. Each table is dedicated to a specific

model and shows the performance metrics, such as accuracy, recall, and F1 score. The tables also indicate

how the imbalanced dataset issue was addressed, the feature selection method used, and the extraction

method applied to the dataset. These tables serve as a comprehensive reference for readers who wish to

gain a deeper understanding of the classifiers used in the research.

For those interested in acquiring exhaustive details about all models, these can be found in an accom-

panying Google Doc file1.

1Google Doc Spreadsheet

https://docs.google.com/spreadsheets/d/17IKFvzEDOWvagpqc45TeOzpBGfqZKyvdcTxhPOrSj4s/edit?usp=sharing
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