SAST-VNE: A Flexible Framework for Network
Slicing in 6G Integrated Satellite-Terrestrial
Networks

Mario Minardi, Student Member, IEEE, Youssouf Drif, Member, IEEE, Thang X. Vu, Senior Member, IEEE,
and Symeon Chatzinotas, Fellow, IEEE

Abstract—Network slicing (NS) is one of the key techniques
to manage logical and functionally separated networks on a
common infrastructure, in a dynamic manner. As the complexity
of virtualizing a full infrastructure required unprecedented effort,
the initial idea of combining satellite and terrestrial networks
has not been fully implemented in 5G yet. 6G networks are
expected to further bring NS to a substrate network that is more
heterogeneous, due to the full integration between terrestrial and
satellite networks. NS describes the process of accommodating
virtual networks, typically composed of nodes and links with
the respective requirements, into the main infrastructure. This is
an NP-Hard problem, typically also known as Virtual Network
Embedding (VNE). Existing VNE solutions are designed per
use-case and lack flexibility, adaptation and traffic-awareness,
especially in such dynamic satellite environment.

In this work, we investigate the VNE implementation to
integrated satellite-terrestrial networks and propose a novel flex-
ible framework, named Slice-Aware VNE for Satellite-Terrestrial
(SAST-VNE), which (1) operates based on traffic prioritization,
(2) jointly optimizes the load-balancing and the migration cost
when network congestion occurs, and (3) provides a near-
optimal solution. We compare SAST-VNE to existing well-known
near-optimal VNE algorithms such as VINEYard and CEVNE
and the shortest-path SN-VNE solution for satellite networks.
The simulations showed that SAST-VNE reduces the migration
costs between 10% and 40% during satellite handovers while
maintaining the network load under control. Furthermore, when
congestion occurs, SAST-VNE proved to be flexible in matching
the priority of the slice, i.e., tolerated latency, with the time
complexity and optimality of the solution.

Index Terms—Network Slicing, Virtual Network Embedding,
Integrated Satellite-Terrestrial.

I. INTRODUCTION

HE constant growth of traffic demand in the last decade

has been shown to continue to grow even for 6G networks
[1]. The advent of novel technologies which aim at exploiting
the network capacity and accommodating an ever-growing
number of traffic has become unavoidable. Among these, the
network slicing (NS) paradigm [2] has proved to play a crucial
role, already in 5G networks, given its flexible assignment of

This work is supported by Fond National de 1la Recherche
Luxembourg (FNR) via, Industrial Partnership Block Grant (IPBG),
ref. FNR/IPBG19/14016225/INSTRUCT, and the ASWELL Project, ref.
FNR/C19/ 1S/13718904/ASWELL/Chatzinotas

M. Minardi, Y. Drif, T. X. Vu and S. Chatzinotas are with the Interdisci-
plinary Centre for Security, Reliability and Trust (SnT), University of Lux-
embourg, Luxembourg, Luxembourg (email: {mario.minardi, youssouf.drif,
thang.vu, symeon.chatzinotas} @uni.lu).

C. Politis is with SES Techcom, Betzdorf, Luxembourg (email: chris-
tos.politis @ses.com).

infrastructure resources to logically isolated virtual networks,
also known as slices. In fact, 6G networks are expected to be
highly heterogeneous, due to the enormous number of different
use cases, both from resource demand and from the nature
of the substrate network, advertised to be a fully integrated
satellite-terrestrial network.

The high hetereogenity, introduced by the multi-layer struc-
ture of the satellite networks and the difference in terms of
stability of the links and on-board resources, considerably
increased the complexity of managing traffic demands for
such dynamic network. In this context, technologies such as
Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) are used in combination with a full-
stack orchestrator to support NS operation [3], [4]. NS is
based on the concept of developing and virtualizing a layered
substrate network where each slice is seen as an isolated
subset of node and link resources (e.g., processing, storage
and communication).

Despite the well-known broad separation of use cases pro-
vided by the International Telecommunication Union (ITU)
and the Fifth Generation Public Private Partnership (5G-PPP),
6G networks are expected to define with greater granularity the
differentiation of use cases, based on demands and application
[5], [6]. The more specific the differentiation of the use cases,
the greater the need for the infrastructure to be flexible. In
fact, network virtualization became relevant because it allows
the service provider to exploit the dynamic nature of traffic,
increase the network usage and allocate more traffic demands.
The process of accommodating a set of nodes and links
(including the respective resources), known as Virtual Network
Request (VNR), is named Virtual Network Embedding (VNE)
[7]. The application of VNE has been investigated for more
than a decade and with the advent of 6G networks, this
complex optimization algorithm has become difficult to solve.
As this work focuses on network slicing, throughout the
contribution, we use the term “slice” to refer to the generic
VNR.

This paper investigates the application of VNE as the
main NS enabler for an integrated satellite-terrestrial network
managed by a SDN controller with joint load-balancing and
minimization of the resources to be migrated during the
satellite handover or network congestions. The paper presents
a flexible framework that adapts the time complexity and
the optimality of the solution to be found, depending on the
latency constraints.

II. RELATED WORKS

The VNE is a well-known NP-Hard problem [8] in the
literature with numerous contributions in the past decade.
Originally, authors in [9] studied a near-optimal formulation
for VNE with a static infrastructure. With a procedure of
building an augmented graph with candidate nodes, they man-
age to provide a coordinated node and link mapping. Authors
in [10], propose a similar approach with the difference that
they reduce the maximum utilization of each link to 94.5 %.
Although these are near-optimal solutions, some critical points
can be highlighted, which need to be modified when applied
to future transport networks. For example, candidate nodes
are discovered only on the basis of geographical distance.
However, it is relevant to take into account scenario-dependent
values of the link between the candidate and virtual node, such
as the Signal-to-Noise Ratio (SNR). Furthermore, the authors
consider resources and networks as fixed over a period of time
and do not include migrations of the mappings. Providing a
framework that constantly monitors, and eventually changes
the current mapping of the slices, is relevant to be investigated
while studying a VNE algorithm because the dynamic nature
of future transport networks brings to unavoidable handovers
and a minimization of reconfiguration costs is essential for
infrastructure operators. Recently developed VNE solutions
for dynamic contexts are proposed in [11]-[13]. Authors in
[11] investigate the embedding of Virtual Network Function
(VNF) for satellite networks. However, the mapping of nodes
and links of VNFs is uncoordinated which typically reduces
the quality of the embedding. In [12], authors propose SN-
VNE for a satellite network with low complexity, which
makes it favorable to compute during handovers in a reactive
way, at the expense of the load-balancing performance. In
[13], authors formulated the VNE for an integrated satellite-
terrestrial network with the objective of minimizing the mi-
grations during handovers. In this case, authors simplified
the problem to a single End-to-End (E2E) VNRs, instead of
considering an entire slice. The previous mentioned works
deal with the optimization of the problem without associating
real constraints or applications to the slices. Few works in
literature consider 6G use cases which are expected to coexist
over the same substrate network. Authors in [14] study the
VNE applied to 6G use cases but they only focus on the link
mapping, taking the node mapping as already pre-defined.

Furthermore, authors in [15] deal with the problem of
E2E network slicing for NTN (Non-Terrestrial)-Terrestrial
networks. However, there is no study of the response to
real-time situations, such as congestion, with minimization
of reconfigurations during handovers. As already proposed
in works such as [14], [16], [17], the application of VNE
for a satellite-terrestrial integrated network is feasible thanks
to novel technologies, such as SDN, which simplify the
networking and make it flexible and reactive to changes.
In [16], authors exploit the idea of creating a framework
for network slicing in integrated satellite-terrestrial networks,
with the focus on respecting the QoS requirements, such as
bandwidth and E2E delay, of different slices. Our solution
intends to improve the framework proposed in [16], with the

generalization of the slices to multiple links, instead of a single
E2E connection, and minimization of the re-configuration cost
while handovers are required. The embedding of slices is often
accompanied by a SDN implementation, such as in [17], where
the authors implement a SDN application that manages the
embedding of slices in the satellite-5G network. However,
there is no optimization involved. Our aim is to present an
SDN-oriented framework that can be easily interfaced with an
SDN-based platform, such as the one proposed in [14].

To the best of our knowledge, no VNE framework has been
presented before to support NS for 6G use cases in an inte-
grated satellite-terrestrial network, with a joint optimization
function of load-balacing and migration cost minimization
focused on real-time network events in either a reactive or
proactive manner.

III. MOTIVATIONS

In the previous section, we described the current literature
review of VNE and discussed its application for NS in satellite-
terrestrial networks. The NP-hardness of VNE has brought
trade-offs between complexity and performance. The main
motivations of our work are summarized as follows:

e The use of a single VNE solution cannot efficiently
handle future dynamic transport networks. In fact, there is
a need for a flexible framework that gives higher priority
to performance, i.e., higher computing time, when there
is no strict latency constraint. On the contrary, a simpler
VNE solution to provide a less optimal embedding when
the application is critical.

« Some proposed works in the literature showed how to
coordinate the node and link mapping by building an
augmented substrate graph. However, candidate nodes are
typically chosen only based on a pure 2D geographical
distance, which does not reflect the nature of some
communications.

e Instead of randomly generating VNRs in terms of re-
sources’ demand, it is relevant to test VNE algorithms
with real-traffic requirements, where each slice can reflect
a proposed use-case for the next generation of transport
networks.

o The majority of the near-optimal solutions, due to their
complexity, do not provide any minimization of migra-
tion’s cost when a slice need to be moved because of
lack of available substrate resources or due to handovers.
This is relevant in future networks where their dynamic
exploitation can require frequent migrations.

As we listed the main motivations of our work, in the
following we highlight the respective contributions as follows:

o We provide a flexible framework to support the VNE
application for integrated satellite-terrestrial networks.
We propose SAST-VNE, a new formulation for VNE that
provides a joint objective function with load-balancing
and minimization of migration cost. SAST-VNE provides
a coordinated node and link mapping with a common
approach of building an augmented substrate graph;

« We propose a novel way of looking for candidate nodes
in the node mapping strategy. While generally this is done

via geographical location, we include additional features
to improve the quality of the embedding such as the SNR.
Furthermore, we run the candidate search on a 3D space
instead of 2D;

o« We apply SAST-VNE to the NS concept, where each
VNR is seen as a real network slice with requirements
coming from 6G use cases. A priority is assigned to
each class of slice based on their time constraints. SAST-
VNE manages the satellite handover for all classes in
a proactive manner, minimizing the migrated nodes and
links;

o We simulate a constant monitoring of the network with
real-time analysis on whether a slice, or even only a
smaller portion of it, is problematic, i.e., does not respect
the QoS. Our framework minimizes the migration cost,
i.e., number of migrated nodes and links, when the
latency constraint of the slice allows it. For critical slices,
a heuristic solution is found to minimize outage during
migration.

This paper is organized as follows. Section IV formulates
the problem. Section V presents the algorithm SAST-VNE and
its relaxed version. Section VI describes some initial simu-
lations and Section VII presents the performance evaluation.
Finally, Section VIII concludes the paper.

IV. NETWORK MODEL AND PROBLEM DESCRIPTION
A. Substrate Network

We model the substrate network as a directed weighted
graph G5 = (Ng, E'), where Ny is the set of substrate nodes
and E! the set of substrate edges at time t. Each substrate
node ny; € Ng is associated with the available node-related
resources (CPU, storage and memory) Ry (n;), the location
loc(ng) on a three-dimensional space. Given u and v a pair
of substrate nodes in Ng, the link e, is associated with the
residual capacity Rg(eyq)-

B. Slice Request

As described for the substrate graph, we model each slice
request as an oriented subgraph GV = (NV, EV). We assign
the term “virtual” to the nodes and links of each slice G".
Each virtual node n” has a location loc(n”) and a demanded
node-related resources ¢, (n"). Each virtual link 4 is assigned
with the demanded datarate b and a priority p is assigned to
each slice.

C. Problem Formulation

In this section, we include the objective function and the
constraints of our problem. The objective function (1) jointly
optimizes the load-balancing (capacity for links and available
resources for nodes) and the differences between consecutive
mappings, i.e., it reduces the cost of slice migrations. It is
composed of four main terms. The first one computes the
sum of the percentage of used capacity for each substrate link
ewv- The second one, similarly, is the sum of the consumption
(in percentage) of the resources for each substrate node. The
last two terms compute the differences in the node and link

mapping between the current solution and the newly computed
one.
We formulate the objective function as:

Fi o IElt 2 Rg(euw) +ezfe““
wv PuueEt
s Ly S e
|NS| weNg RN(w) Te wENS/ \Ns
ey
)
=+ ’yt Z |Ft—1 Ft‘ 4+ Z |Xt—1 _ th
[eun€EE! |N | eun B!
where (a, 3,7, 8) € R% are the weights for the link mapping,

node mapping, difference between consecutive link and node
mappings, respectively. In addition, we define Ft~1, F*® as the
link mapping matrices at time slot ¢ — 1 and ¢, respectively.
Similarly, we define the node mapping matrices X*~! and
X*. It is important to underline that only F* and X* contain
the variables f and x because the mapping in the previous
time slot £ — 1 has already been defined. We summarize the
optimization variables in Table I. In the following, we present
the constraints of SAST-VNE.

Table I: Variables in eq. (1) - (12)
Variable | Explanation
fi eR flow variable to indicate if the virtual link ¢
€uv + is embedded in ey, € E!
Tey, €{0,1} node mapping variable

To facilitate reading, we highlighted the variables in bold.

Ry (w) > XmwCy(m),Vm € Ny \ Ng,Yw € Ng, (2)

SO+ £ < Rplew)Xe,,, Vi,V(ew) € B (3)

[

D faw— D

f) u = 0, VZ',VU S Nsl \ {S'Ladi}v (4)

wENS/ wENg
> — Y £ =b(e), Vi, (5)
wENS/ wENg
DI T N bes), Vi, 6)
'weNS/ wENg
> Xmw=1, ¥me Ng \Ns, (7)
weQ(m)
> Xmw <1, Vw € Ng, ®)
mENS/\NS
Xew, = Xeyus V(€uwn) € E, ©)

and then the variable constraints:

fi >0, Vi, Yu,v € Ny, (10)

Xe,, €1{0,1}, Vi, Yu,v € Ny, (11)

Constraint (2) makes sure that among the candidate sub-
strate nodes, only the ones with enough available resources
are selected. Equation (3), for every virtual link, selects the
substrate link with enough capacity. Then, for each virtual
link 7, the flow’s conservation law is enforced by constraints
(4)-(6). Constraint (7) sets the maximum number of selected
substrate nodes, among the candidates, equal to 1 while
constraint (8) ensures that each substrate node is not selected
by more than one virtual node. In constraint (9), for each
substrate link, the = variable is set to 1 as long as there is a
flow in any direction on that link. Finally, constraint (10) sets
the positivity of the flow variable and constraint (11) forces
the integrity of the node variable x.

D. Linear Programming relaxation and rounding technique

As the problem formulated in the previous section is a
Mixed Integer Programming (MIP) which is known to be
computationally complex, we provide a relaxed version of the
problem. Accordingly, we relax the constraint (11) so that it
becomes as follows:

0<Xe,, <1, Vi, Vu,v € Ng. (12)

V. SAST-VNE FRAMEWORK

The results of the optimization problem (1) in Section IV
provide the optimal coordinated node and link mappings to
meet the demands. The logic behind the coordinated node and
link mapping is as follows. For each virtual node, the cluster is
defined with the candidate substrate nodes to host it. For each
candidate node, a fractional value of z.,, is obtained. For each
metalink (from candidate to virtual node), the flow variable is
computed, normalized to be in [0, 1] and multiplied by z.,, .
Finally, we select the substrate node based on the highest
value of the obtained products, while the other candidates are
discarded. This process is repeated for each virtual node. Once
the node mapping is defined, the link mapping is computed
sequentially by solving the Multi-Commodity Flow (MCF)
algorithm for each link. In this section, we present the structure
of our proposed SAST-VNE framework, see Algorithm 1, and
we analyze the complexity of (1).

A. Description

The pseudo-code of algorithm 1 is described in the follow-
ing. There is an initial step where the algorithm requires to set
parameters, such as the substrate network features (capacity for
the links, time description of network behavior, node-related
resources). Then the slice generation mechanism is initiated.
Once the substrate network and slices are randomly generated,
the simulation with a time-slotted strategy runs. For each time
slot, some operations are performed. Initially, the KPIs of
any mapped slice(s) are checked. If one or more KPIs are

not respected or the slice will undergo satellite handover in
the following time slot, the slice is considered problematic
and will be inserted into a queue to be analyzed. In case
of any new arrived slice(s), the embedding according to D-
VINE is computed. Lastly, for any problematic slice, our
VNE algorithm runs. In case it succeeds, part or the full
slice will be moved toward the new embedding. For this last
cycle, to be more precise, depending on the priority of the
slice and on its situation (handover or KPI failure), different
versions of the VNE are run. In fact, if a high priority slice
is impacted by congestion, each affected link is re-mapped
with shortest-path algorithm, given the source and destination
of the affected link(s), to speed up the embedding process
and provide connectivity in low time. On the contrary, lower
priority slices are mapped using our proposed algorithm, which
minimizes the migration cost.

B. Complexity Analysis

To check the complexity of SAST-VNE, it is enough to
analyze the solution of the complex algorithms, i.e., equation
(1), VINEYard and shortest-path. As the equation 1 is a
more complex version of VINEYard and the shortest-path,
due to the introduction of two main elements in the objective
function, it is the element that dominates the time complexity.
The time complexity of (1) is the sum of the complexity
of the first two main elements, which can be described as
O((|ES'|(1 + |Ev|))®®), plus the complexity of the third
element which is similar to the objective proposed in [13],
restricted to the first 2 time slots, i.e., O(g>("~1), with g the
maximum degree of the substrate graph and h the path length,
plus the complexity of the last element which is comparable
to the number of permutations of | Ny | elements among the
set of [Ng| elements, i.e., O(‘NleSl)

s|=INv]|

VI. SYSTEM MODEL

In this section, we initially present the simulation setup and,
then, we provide several performance evaluations to initially
set some problem parameters such as the criteria to define and
compute the augmented substrate graph (i.e., the expanded
substrate graph with the candidate nodes) and the weights
involved in the objective function. Therefore, some trade-offs
are discussed.

A. Simulation setup

The substrate network is simulated via STK [18] and is an
integrated satellite-terrestrial network, as in [14], composed
of 32 LEO satellites from Iridium constellation and one GEO
satellite (SES-6) (see Figure 1). We assign a location to each
substrate node according to the geographical position on a 3D
space of dimensions 300x100x300. For the sake of simplicity,
we consider the LEO satellites, when in Line-of-Sight (LoS),
in a fixed location inside the 3D space. Specifically, we locate
the LEO satellite on the plane xyz with z = 100, while we
locate the GEO satellite at z = 300. One could argue that
these values do not reflect the reality as the LEO satellites
orbit at around 800 km while the GEO at 36000 km. However,

Algorithm 1: SAST-VNE

Initialization

Substrate network G, EY, c(eyy) and d(eyy,)
veuv € Eg’

Slices’ generation process: arrival, graph Gy and
node/link requirements);

for t € [to, tsim] do

save current status of substrate network;

for any mapped slice(s) do

for any virtual link do
‘ check KPIs;

end

save current utilization;

if KPI(s) not respected then
| add to problematic slice

end

if handover in the next slot then
| add to problematic slice

end
for any arrived slice(s) do
sort based on priority;
solve VINEYard;
if successful then
‘ update current network resources;

else
| add to failed slice(s)

end
or any failed/problematic slice(s) do
sort based on priority;
if high priority then

‘ solve shortest-path for affected links;
else

| solve (1) s.t. (2)-(10), (12);
end
if successful then

‘ update current network resources;
end

Yy

end

end

as in our work we build the augmented graph based on the
geographical distance, see equation (13), which is controlled
in value by the parameter .S, with the smallest difference in
altitudes between terrestrial, LEO and GEO nodes, we avoid to
consider very low values of S. The terrestrial components are
the GEO gateways [19], LEO gateways and users and GEO
users, which are clearly located at z = 0. As this work is
intended to be an extended version of [14], we consider the
same type of traffic differentiation as described in Table II.
However, unlike the previous work, we consider an entire slice,
i.e., a set of interconnected nodes and links, instead of a single
E2E connection. Each substrate node is initiated with available
resources € [25,45] while each link with available capacity =
400 for terrestrial links, 1000 for LEO links and 10000 for

GEO. We intentionally assign less capacity to the terrestrial
links to make sure the system chooses the satellite links with
more likelihood so that our algorithm can be tested in a more
dynamic environment.

Table II: Slices description

Slice priority ‘ Application

High - 1 emergency services, collision avoidance scenarios
Medium - 2 infotainment, IFC, earth observation
Low -3 autonomous boat driving, device manufacturer updates

Each slice is randomly generated as a graph NV, with
the number of nodes as a random number in the interval
[2, 5]. Then, we set the probability of every pair of nodes
to be connected, equal to 0.5. If the randomization process
produces a graph with nodes that are not connected, the slice
is discarded as we intentionally aim at connected graphs. Each
node in EV is located in a random position in the xyz plane
(with z randomly € [0,20] to simulate traffic demands from
terrestrial users or plane), and it demands for random resources
€ [2,6]. Each link in £V demands a datarate € [50, 150].

B. Creation of augmented graph

As already proposed in [9], when embedding a slice, an
augmented graph (Figure 2) is suggested. It is built starting
from the initial substrate graph which is expanded with metan-
odes, i.e., the nodes to be embedded and metalinks as the link
between metanodes and the candidate subtrate nodes to host
the metanodes.

The selection of the candidate nodes plays a key role
in the complexity of the problem because the larger the
selection of the candidates, the higher the number of links
and, consecutively, the higher the complexity. As shown in
[9], and reported here in Section V-B, the complexity of the
relaxed version is linearly dependent on the number of links
in the augmented substrate graph. Authors in [9] select the
candidate nodes based on the geographical location on a 2D
space. As anticipated in section III, our work brings several
novelties in the definition of the candidate nodes. Firstly, we
build a 3D structure, as the nature of integrated terrestrial-
satellite networks foresees. Furthermore, we assign to each
link between a generic metanode A and a substrate node B,
a signal-to-noise ratio coefficient S € [0, 1] that multiplies the
euclidean distance d(A, B) as explained in (13).

d(A,B) =S -\/(za—2p)%+ (ya —yp)?> + (24 — z)%

(13)

The parameter S is used to modify the distance between the
candidate node and the virtual one based on the current SNR.
This is used to make the scenario more realistic. For instance,
a terrestrial node which is physically closer to the virtual node
on ground, eventually can have a worse link quality, e.g.,
due to terrestrial obstacles, compared to the satellite link. We
randomized the value of S € [1,4] for the terrestrial nodes,
while we select a more constant interval for the LEO links at
S €[0.5,1]. We fix S = 0.2 for the GEO link as we assume
it to be stable. With these premises, this subsection aims to

6

Figure 1: Combined GEO-LEO network

@ substrate node — - metalinks

@ Virtual node/metanode —— Substrate links

(j 3D - Cluster

38 -

Average Computing Time [s]
3 3 8
T
|
1
|
Average Link Load

24 1 _ 0.005

22 I I I I I I I 0
30 35 40 45 50 55 60 65 70

Maximum distance D

Figure 3: Time complexity and Load-Balancing vs minimum
distance

fix a priori a reasonable value of the maximum distance D
between the metanode and the substrate nodes at which the
substrate node can be considered a candidate one. It is worth
noting that this selection is driven by the trade-off between
the time complexity and performance, as shown in Figure 3,
and it is strictly linked to the chosen substrate topology.

In fact, as shown in Figure 3, the higher the maximum
distance D, the higher the average time complexity. In this
case, when D > 60, the complexity grows exponentially. On
the other hand, the higher D, the more the candidate nodes,

3 I I I I I .

o
log(m)

Figure 4: Average node migration and substrate node load vs
cost factor

and thus, the easier the load-balancing. In fact, the average link
load decreases as D increases. This preliminary analysis sets
the maximum distance to be considered for candidate substrate
nodes to 50. We also note that, when the substrate network is
dense, the reduction of D does not automatically correspond to
a reasonable decrease of complexity. As explained in Section
V-B, because the complexity is exponentially linked to the
number of links of the augmented substrate graph, in a dense
network, even with small D, the number of connected nodes
can be very high. For this reason, we introduce a feature
in SAST-VNE that limits the maximum number of candidate
nodes when building the augmented substrate graph.

C. Weight parameters definition in objective function

In this subsection, we study the impact of the weight
parameters introduced in (1) to properly set their initial values.
Even in this case, a trade-off is highlighted. The weights «
and [are assigned to the link and the node load balance,
respectively. While v and ¢ are for the link and node mapping
differences between previous and new mappings, respectively.
To properly select the values for the four weights, we initially
check the order of magnitude of each of the four terms of (1).
Intuitevely, all the terms are percentages as they are divided
by the number of nodes or links. In this simulation, we fix the
parameters as follows:

95— -0.08

o)

90~

85—

80

70

Average different links per handover (%
Average substrate link load

65~

60 L L L L L 0.018
-15 -10 5 0 5 10 15

log(m)

Figure 5: Average link migration and average substrate link
vs cost factor

a=p0=1 (14)

y=09=m. (15)

We test the SAST-VNE with different orders of magnitude
for m. The aim is to find the suitable value to have a
fair trade-off between load-balancing and low migration cost.
We consider separately the cost of node migration and link
migration. The average node migration is computed as the
number of nodes that are migrated everytime there is a change
in a slice. Then it is averaged over all slices. Similarly, the
average link migration is computed. In Figure 4 we compare
the average node migrations and the average network load vs.
the cost factor m. Some comments can be highlighted. First,
as expected, the overall trend of the performance measuring
differences after a congestion, on average, decreases when
the cost factor is increased, i.e., the weight in the objective
function (1). The opposite happens for the average load of the
substrate nodes, computed as the average among the nodes
of their CPU capacity utilization during the simulation. It can
also be noticed that the average substrate node load remains
more or less constant. This is probably due to the fact that
the congestion is created only in the links, and therefore, the
chance that the nodes remain unchanged but different links are
chosen is higher.

Similar considerations can be highlighted when comparing
the average migration and load of the link, as shown in Figure
5. In this case, the pattern of both curves is closer to the
expected one (cross shape) because we simulate the congestion
over the links. Precisely, we randomly select 30 % of the links
where the current mapped slices are accommodated, and set
their capacity to 85 % of usage to almost always force the
mapping over different substrate links.

To avoid having a too unbalanced solution, from these
simulations, it looks clear that values of the cost factor close
to unity can be taken. Clearly, a further trade-off may also
be analyzed in case more priority should be given to node
migrations rather than link migrations. In other words, this
would mean considering v # . As this would increase the
computational cost, but, nevertheless, without bringing any
relevant additional information, we can skip it in this work.

VII. SIMULATION RESULTS

In the previous section we introduced the simulation setup
and described some preliminary evaluations to start our SAST-
VNE algorithm. In this section, we aim to compare the
performance of SAST-VNE to the following well-known VNE
baselines:

« CEVNE [10];

o VINEYard [9];

o SN-VNE [12].

The first two baselines run a joint optimization of the
node and link mapping, as summarized in Table III, with
the construction of the augmented substrate graph. SN-VNE,
instead, is a satellite-based VNE algorithm, which deals with
the dynamic nature of the substrate network in an heuristic
manner, using a shortest-path based approach.

A. Acceptance probability - Network usage

In this section, our objective is to compare (1) the average
acceptance probability per slice over the duration of the
simulation and (2) the average link load. The acceptance
probability is computed every time slot as the number of
mapped slices over the arrived ones. The average load on the
link is computed as the average capacity consumption of each
substrate link, i.e., defined in percentage. For this performance,
we do not differentiate the class of the slices. Intuitively, the
better the load-balancing, the higher the probability of a slice
being accepted. It is worth mentioning that this is the most
tricky and challenging performance to evaluate SAST-VNE
with, because it is not implemented to further reduce the load-
balancing provided by the baselines and CEVNE, which is
already near optimal (due to relaxation), but to minimize the
average node and link migrations of each slice to be migrated.

We run two simulations with different level of traffic, i.e.,
in case of low and high load. Figures 6a and 6b depict
the results for low load. The aim is to show that when
the load is low, our algorithm does not worsen the near-
optimal solution provided by CEVNE and VINEYard. Figure
6a shows the acceptance probability vs. time. SAST-VNE
matches VINEYard and CEVNE while SN-VNE, as a heuristic
solution, decreases the acceptance probability very quickly. As
the network load is low, the near-optimal solutions manage to
map all the incoming slices, so the acceptance probability is
fixed to 1. On the other hand, the more time passes, the higher
the load on the network as the number of mapped slices, which
consume resources, increases. Even in this case, Figure 6b
shows that SAST-VNE does not deviate too much from the
near-optimal solutions.

Similarly, we analyze the comparison under high load
conditions (see Figure 7). Even in this case, we see that SAST-
VNE behaves similarly to CEVNE and in both figures. SN-
VNE has a “wave” behavior in Figure 7a because with the
higher number of arrived slices, the probability that there is
one which can be embedded is higher with respect to the low
load scenario. This is also reflected in the average link load
(Figure 7b). It is worth to underline that we do not assume that
slices expire, hence, network resources are consuming with the
time to avoid the comparison to be influenced by that.

Table III: Baselines’ features comparison

Algorithm | Substrate network | Node/Link mapping | QoS Policy | Optimization
CEVNE [10] static graph coordinated best-effort load-balancing and congestion-aware
VINEYard [9] static graph coordinated best-effort load-balancing
SN-VNE [12] satellite network uncoordinated sequential best-effort shortest path
SAST-VNE integrated terrestrial-satellite coordinated priority-based | joint load-balancing and migration minimization
1r 0006 ¢C-0- ¢ ¢C-
——SAST-VNE
oor ——CEVNE
ol VINEYard
—SN-VNE

Acceptance probability

Time [Time slots]

(a) Acceptance probability vs time

——SAST-VNE

——CEVNE
VINEYard

—SN-VNE

Average network link load [%)]

0 5 10 15 20 25 30
Time [Time slots]

(b) Average link load over time

Figure 6: Acceptance probability and average load vs time in low load conditions

08

=

)

© 07

Q

<}

S

@© 06

o

c

]

Sosp

3

< 0el. |T®"SAST-VNE
——CEVNE

sl VINEYard

—SN-VNE

02 I I I I I |
0 5 10 15 20 25 30

Time [Time slots]

(a) Acceptance probability vs time

—e—SAST-VNE

——CEVNE
VINEYard

—SN-VNE

3

Average network link load [%]

[5 10 15 20 25 30
Time [Time slots]

(b) Average link load over time

Figure 7: Acceptance probability and average load vs time in high load conditions

B. Handover procedures

This section focuses on the analysis of the number of
migrations during handovers, due to loss of LoS within a
satellite communication, which require parts or the full slice to
be migrated towards different areas of the substrate network.
It is worth mentioning that handovers are procedures usually
known a priori because the trajectories of satellites, and
consequently their link connectivity, are pre-established. This
is the reason why a relatively high time complexity should not
be immediately categorized as a drawback, considering that the
computation can be done in a proactive manner. In addition,
handovers are unavoidable for Non-Geostationary (NGSO)

links but the migration cost should be considered, especially
in those cases where only part of the slice is affected.

In fact, in this section, we compare SAST-VNE with the
baseline algorithms. We compare the average number of differ-
ences in terms of node and link mapping between consecutive
time slots when a handover occurred. It is worth underlining
that this metric plays a key role because, for any handover
(link or node), there is a cost. To simplify the analysis, we do
not consider the specific cost, so we focus only on the pure
percentage of differences, which is directly proportional to the
cost. To measure the efficiency of an algorithm in minimizing
node and link handovers, we look at the percentage of nodes
and links that are different between consecutive handovers.

Table IV: Average Node migrations during handovers

Slice’s class | SAST-VNE | VINEYard | CEVNE | SN-VNE

1 30.2 68.75 65.4 100
2 29.72 72.50 55.36 100
3 15.56 76.1 55.83 99.6

Table V: Average Link migrations during handovers

Slice’s class ‘ SAST-VNE ‘ VINEYard ‘ CEVNE ‘ SN-VNE

1 75 100 94.8 100
2 76.67 90.83 95.24 100
3 89.17 92.86 96.67 100

Then we average over the mapped slices. Clearly, we do not
count the slices that are not subjected to handover procedures,
as they will affect the average. For this comparison, we
subdivide the results per class of slices. We run this simulation
with low load to avoid that eventual failures would reduce
the number of slices, i.e., samples, from any algorithm and,
consequently, would negatively impact the final comparison.

Table IV compares the average migration of the nodes.
It can be seen that the percentage of node variations in
SAST-VNE is considerably lower with respect to the other
algorithms. SN-VNE is a shortest-path based algorithm, so
the likelihood that all nodes are different is considerably high.
CEVNE and VINEYard perform roughly similarly. This is due
to the fact that their only difference is that CEVNE only
uses 95% of the available capacity at each link. However,
considering that the traffic load is low for this simulation, the
probability that a link cannot accommodate the slice anymore
is very low. Thus, the overall difference of performance
between CEVNE and VINEYard is very limited. Following
the same approach, we analyze and compare the average link
differences, as shown in Table V. Clearly, the trend matches
the previous discussion related to nodes, as they are strictly
related. However, for the link comparison, higher values can
be observed since, on average, the number of links impacted
during handovers is higher than the number of nodes.

C. Congestion intensity

In this section, we simulate a congestion over some links
of the substrate network. To be more precise, for the sake
of simplicity, we only simulate sudden congestion on some
substrate links. Eventually, congestion can also occur on
substrate nodes, such as over-utilization of computatibility or
storage resources, but this is outside the scope of this article.
A random algorithm selects a set of links and it reduces their
available capacity for a period of time. To avoid simulating
congestion in links that are not accommodating links, we
select a random number of slices and simulate congestion to
a randomly selected number 6 of links which accommodate
them. Congestion is simulated as 85% of their capacity being
used. As previously mentioned, a relatively high number
is selected to make sure that the congestion triggers re-
computation of the embedding for that slice. We use 6 = 30%
because higher values are likely to create unavailable paths,
especially for the mapped slices over satellite links. First, it is

40 -

High priority
35 —&—Medium priority
—8—Low priority

Average computing time [s]

I I
VINEYard CEVNE

0
SAST-VNE SN-VNE

Figure 8: Average computing time for different priority

worth mentioning that the more congested links, the higher the
probability that more slices are impacted. At the same time,
among the impacted slices, some high priority slices may not
afford outage time. In general, as we assume that congestions
are not easily predictable, a reactive approach is required.
Thus, the time complexity of finding a new embedding and
the delay or service outage play a relevant role.

With these premises, we introduce the most important
novelty developed in our framework. SAST-VNE is flexible
in managing congestion depending on the priority of the
impacted slice. In fact, if the slice has the highest priority, we
assume that the outage must be as smallest as possible, thus, an
heuristic VNE algorithm is implemented to minimize as more
as possible the embedding time, at the expense of the load-
balancing performance. On the other hand, if the impacted
slice does not have strict latency requirements, SAST-VNE
solves the joint optimization in (1), s.t. (2)-(10), (12). In
this simulation, we compare the average embedding time and
migration cost when a congestion occurs. Even in this analysis
we assume low load of traffic to avoid that failures, due to
lack of capacity, will impact the comparison between SAST-
VNE and the baselines. In Figure 8, we compare the average
embedding time for the 4 algorithms. Each line represents
the average embedding time among the slices with the same
priority. For the high priority slices, the difference of SAST-
VNE, compared to CEVNE and VINEYard, can be appreci-
ated. In fact, SAST-VNE is more comparable, for high priority
slices, to the SN-VNE, as they are both shortest-path based
approaches. Differently works for the medium and low priority
slices, where we assume low latency constraints are not
applicable. In this case, our framework SAST-VNE prioritizes
the reduction of cost migration over time complexity. For this
reason, SAST-VNE has the highest time complexity compared
to the other three baselines. The time complexity of SAST-
VNE is always higher than CEVNE and VINEYard due to
the added element of the objective function that seeks the
minimum migration cost that, as explained in Section V-B,
is not a negligible factor. On average, it showed an additional
5—10s.

In Figure 9, on the other hand, we compare the average
link difference for each class of slices and for each algorithm.
Since we showed in section VII-B that there is a correlation

High priority
~&—Medium priority
—&—Low priority

Average different links per migrations (%)

30 I I |
SAST-VNE VINEYard CEVNE SN-VNE

Figure 9: Average link migrations for different priority

between the average node and link differences, for the sake of
simplicity, in this section we only consider the average link
differences. It can be noted that, even in this case, for the high
priority slices, SAST-VNE behaves similarly to the heuristic
SN-VNE. In fact, both provide ~ 10 — 15% higher migrated
links than the other two. Similarly to the previous discussion,
for the medium and low priority slices, SAST-VNE improves
the three baselines between 8 and 50%.

VIII. CONCLUSION

In this paper, we proposed a novel flexible framework,
named SAST-VNE, to implement VNE for network slicing
in a dynamic scenario, such as the Beyond 5G integrated
satellite-terrestrial network, with a flexible approach. Unlike
traditional VNE approaches, which use a fixed mapping
scheme for any VNR or slice, we provide a full framework
that runs different types of VNE algorithms depending on
the latency requirements of the slice being mapped. A joint
objective function is provided to maintain load balance while
minimizing migration cost. First, as 6G networks will also
include NGSO links, SAST-VNE is programmed to handle
procedures such as handovers, due to the satellite movement,
in a proactive way, as the satellite movements are known.
According to some 6G use cases, we simulate slices with
three different priority classes. We show that SAST-VNE,
compared to baselines, reduces the migration cost, both for
links and nodes, during satellite handovers while minimizing
the difference between the previous and current embedding.
In addition, we compared the acceptance probability during
both low and high load conditions and SAST-VNE proved to
match the near-optimal solutions provided by VINEYard and
CEVNE. Furthermore, we tested SAST-VNE while randomly
generating congestion over some network links. SAST-VNE
proved to improve the migration cost for the non-critical slices
compared to the baselines. On the contrary, a low-complexity
solution is provided for the high priority slice which drastically
reduces the computing time and provides an almost immediate
solution.

REFERENCES
[1] M. Asad, A. Basit, S. Qaisar, and M. Ali, “Beyond

5G: Hybrid End-to-End Quality of Service Provisioning
in Heterogeneous IoT Networks,” IEEE Access, vol. 8,

(2]

(3]

(4]
(5]

(6]

(7]

(8]

[9]

[11]

[12]

pp- 192320-192338, 2020. por: 10.1109/ACCESS.
2020.3032704.

H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Agh-
vami, and V. C. M. Leung, “Network Slicing Based
5G and Future Mobile Networks: Mobility, Resource
Management, and Challenges,” IEEE Communications
Magazine, vol. 55, no. 8, pp. 138-145, 2017.

X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Ma-
rina, “Network Slicing in 5G: Survey and Challenges,”
IEEE Communications Magazine, vol. 55, no. 5, pp. 94—
100, 2017. pot: 10.1109/MCOM.2017.1600951.

O. Foundation, “Applying SDN Architecture to 5G
Slicing,” 2016.

M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and
K. Ghoumid, “A Comprehensive Survey on the E2E
5G Network Slicing Model,” IEEE Transactions on
Network and Service Management, vol. 18, no. 1,
pp. 49-62, 2021. por: 10.1109/TNSM.2020.3044626.
S. Wijethilaka and M. Liyanage, “Survey on Network
Slicing for Internet of Things Realization in 5G Net-
works,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 957-994, 2021. por: 10.1109/
COMST.2021.3067807.

A. Fischer, J. F. Botero, M. T. Beck, et al., “Virtual Net-
work Embedding: A Survey,” IEEE Communications
Surveys Tutorials, vol. 15, no. 4, pp. 1888-1906, 2013.
M. Rost and S. Schmid, “On the Hardness and
Inapproximability of Virtual Network Embeddings,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2,
pp- 791-803, 2020. pot: 10.1109/TNET.2020.2975646.
M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNE-
Yard: Virtual Network Embedding Algorithms With Co-
ordinated Node and Link Mapping,” IEEE/ACM Trans-
actions on Networking, vol. 20, no. 1, pp. 206-219,
2012. port: 10.1109/TNET.2011.2159308.

M. Pham, D. B. Hoang, and Z. Chaczko, “Congestion-
Aware and Energy-Aware Virtual Network Embedding,”
IEEE/ACM Transactions on Networking, vol. 28, no. 1,
pp. 210223, 2020. por: 10.1109/TNET.2019.2958367.
I. Maity, T. X. Vu, S. Chatzinotas, and M. Minardi, “D-
VINE: Dynamic Virtual Network Embedding in Non-
Terrestrial Networks,” in 2022 IEEE Wireless Commu-
nications and Networking Conference (WCNC), 2022,
pp. 166-171. por: 10. 1109 / WCNC51071 . 2022 .
9771560.

J. Liu, X. He, T. Chen, et al., “SN-VNE: A Virtual
Network Embedding Algorithm for Satellite Networks,”
in 2019 IEEE/CIC International Conference on Com-
munications Workshops in China (ICCC Workshops),
2019, pp. 1-6. por: 10. 1109 / ICCChinaW . 2019 .
8849950.

M. Minardi, T. X. Vu, L. Lei, C. Politis, and S.
Chatzinotas, “Virtual Network Embedding for NGSO
Systems: Algorithmic Solution and SDN-Testbed Val-
idation,” IEEE Transactions on Network and Service
Management, pp. 1-1, 2022. DOT: 10.1109/TNSM.2022.
3225748.

[14]

[15]

[16]

[17]

[18]
[19]

M. Minardi, Y. Drif, T. Vu, I. Maity, C. Politis, and
S. Chatzinotas, “SDN-based Testbed for Emerging Use
Cases in Beyond 5G NTN-Terrestrial Networks,” in
2nd International Workshop on Autonomous Network
Management in 5G and Beyond Systems, 2023.

Y. Drif, E. Lavinal, E. Chaput, et al., “Slice Aware Non
Terrestrial Networks,” in 2021 IEEE 46th Conference
on Local Computer Networks (LCN), 2021, pp. 24-31.
DOI: 10.1109/LCN52139.2021.9524938.

T. Ahmed, A. Alleg, R. Ferrus, and R. Riggio,
“On-Demand Network Slicing using SDN/NFV-enabled
Satellite Ground Segment Systems,” in 2018 4th IEEE
Conference on Network Softwarization and Workshops
(NetSoft), 2018, pp. 242-246. pOI: 10.1109/NETSOFT.
2018.8460139.

S. Hendaoui and C. N. Zangarz, “Leveraging SDN slic-
ing isolation for improved adaptive satellite-5G down-
link scheduler,” in 2021 International Symposium on
Networks, Computers and Communications (ISNCC),
2021, pp. 1-5. por: 10.1109/ISNCC52172.2021 .
9615755.

[Online]. Available: https://www.agi.com/products/stk.

[Online]. Available: https://www.ses.com/our-coverage/
teleport-map.

