
Pub/sub Dissemination on the XRP Ledger
Flaviene Scheidt de Cristo∗, Wazen M. Shbair∗, Lucian Trestioreanu∗ and Radu State∗

∗ University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg
Email:{flaviene.scheidt, wazen.shbair, lucian.trestioreanu, radu.state}@uni.lu

Abstract—The XRP Ledger is one of the oldest and most well-
established blockchains, using a particular type of consensus
mechanism that differs from the typical Proof of Work and
Proof of Stake. The underlying p2p network uses flooding to
disseminate certain types of messages during the consensus
rounds, leading to performance and scalability issues. In this
work, we propose the use of publisher/subscriber dissemination
on the XRPL using GossipSub to diminish the message overhead.
We use Flexi-pipe, a tool that allows the integration between the
XRPL validator and GossipSub, to evaluate the improvements
brought.

Index Terms—blockchain, unstructured p2p, gossipsub, XRPL

I. INTRODUCTION

The XRP Ledger (XRPL) is the fourth most valuable
blockchain in market capitalization1, being one of the first to
propose a novel consensus algorithm that largely differs from
Bitcoin’s Proof-of-Work (PoW). Instead, the XRPL relies upon
a quorum-based Byzantine Fault-tolerant agreement protocol
known as the XRP Ledger Consensus Protocol (XRP LCP) [1].
The XRP LCP is based on subnetworks that are collectively
trusted to not collude to defraud, fork, or stall the ledger.
Contrary to PoW and Proof-of-Stake (PoS), it does not rely
on computational power or staking to select validators per
round but uses the votes of trusted groups of validators to
reach consensus.

While voting may seem like a slower strategy, in reality,
it gives the XRPL an advantage regarding transaction speed.
On average, the XRPL publishes a new ledger version every 3
seconds handling 18 transactions per second (TPS) [2], with a
reported capacity of 1.5k TPS [3]. Whereas Bitcoin generates
new blocks every 10 minutes with a maximum throughput of
7 TPS [4]. As for Ethereum, after the migration to PoS, the
average block time is 12 seconds with 11 TPS [5], being the
maximum throughput reported between 15 and 45 TPS [6].

In more detail, the XRP LCP employs Unique Nodes Lists
(UNLs) to form the subnetworks that confabulate to reach
consensus. Each UNL is trusted collectively to not collude
to harm the ledger, meaning that no validator is trusted
individually. Every node proclaims its trust in a UNL and
listens to the positions of the peers in the list to cast their
own votes.

The efficiency of the consensus process leans heavily on
the performance of the communication between nodes. In most
Blockchains, poor network performance may facilitate double-
spend attacks [7] and even lead to forks. The XRPL, however,

1As of 24/January/2023 on the coin ranking by market capital available at
https://cryptoslate.com/coins/, excluding stablecoins and non-native tokens.

has mechanisms for fork prevention [8] and disagreements
may stall the progress, thus violating the liveness of the ledger
[1]. To ensure that all messages are delivered and no node
gets eclipsed, the XRPL employs flooding to broadcast the
votes and the final ledger position of each validator. The trade-
off of flooding is that the message overhead created by the
replication harms the performance of the network, causing
latency and scalability issues [9].

In this work we propose the use of a publisher/subscriber
(pub/sub) system to disseminate messages on the XRPL,
taking advantage of the subnetworks system used in the
consensus process. We integrate the XRPL with GossipSub
[10], a state-of-the-art framework for pub/sub dissemination
on blockchains. Using a tool called Flexi-pipe we identify
the bottlenecks in message overhead created by the use of
flooding in the consensus process and analyze the impact of
using GossipSub to diminish or eliminate these bottlenecks.

II. BACKGROUND

Several works analyze and discuss the characteristics of
the XRP LCP. Schwartz et al. [8] present the first official
whitepaper describing the XRP LCP algorithm and also intro-
ducing the concept of Unique Node Lists (UNL). The XRPL
Foundation, however, recommends Chase and McBrough [1]
as the current official whitepaper, presenting a more thoughtful
analysis of safety and liveness, inferring that at least 90%
of agreement between the validators is needed to ensure
network safety. Additionally, the authors also suggest that
the underlying message dissemination pattern may have the
potential to leverage some safety concerns. McBrough also
proposes later Cobalt [11], a novel atomic broadcast algorithm.
Different from our work, Cobalt requires changes in the
consensus fabric, while our proposal changes solely the way
messages are broadcasted during two specific states of the
consensus process.

Subsequent works from Mauri et al. [12] and Amores-Sesar
et al. [13] walk in the direction of more formal descriptions
and bring new cases that may cause the network to break
or to cease making forward progress, thus violating safety
and liveness. Christodolou [14] tackles the UNL overlapping
problem using an empirical approach, showing that the min-
imum UNL overlap can be relaxed when there are less than
20% of malicious nodes present. This work suggests space
for optimizations on the minimum UNL overlap, suggesting
also the necessity of a malicious node estimator. Ripple+ [15]
jumps into this gap and brings a mechanism for selecting
UNLs based on a structure of core and leaf nodes.

It is important to note that these works mainly address the
problem of ensuring liveness and safety while keeping the
conceptual trust structure intact. In this work, we focus on
mitigating the message overhead caused by the use of flooding
without compromising the safety and the liveness of the ledger.
Our work also focuses on proposing a dissemination strategy
that better suits the way the XRP LCP works, without altering
the consensus fabric.

A. XRPL Consensus Protocol

XRP LCP uses voting to reach consensus; Every node in
the network that self-proclaims itself as a validator has the
right to cast votes. The XRP LCP works upon the idea of
subjective validators instead of relying on established models
for Byzantine Agreement and Byzantine fault-tolerance [13],
meaning that each participant takes into account the position
of its trusted peers to cast its votes.

To better understand the proper functioning of the XRP LCP
we need to take into account the following concepts:

• rippled: Official C++ implementation of the XRPL val-
idator2.

• UNL: Static list containing the validators a node trusts
collectively not to collude.

• Ledger: The record of all the transactions on the network
[8]. Formally, for the XRP LCP, the ledger also represents
the shared distributed state [16].

• Node: A participant in the network. A machine running
the rippled code as a server.
– Validator: A node that casts votes.

• Message: Any message sent or received by a node.
– Transaction: Any message that may cause a change

in the shared-state.
– Proposal: A proposal is a set of transactions that a

given node proposes to apply to the open ledger.
– Validation: The final set of transactions a node reaches

after multiple consensus rounds.
• Position: The current proposal of a given node.

– Vote: The position of a node on a given transaction.
– Dispute: A transaction that is present in a node’s

position but not in the position of one or more of its
peers - or vice versa.

The XRP LCP works as a synchronous state machine.
Transactions, however, are sent and received asynchronously
and stored in a buffer until a new consensus round begins.
Figure 1 shows a simplified view of each phase, with its
internal states and transitions considering only the states
related to the voting and ledger creation, abstracting all the
states related to the syncing and ledger closing times since
those are out of the scope of this paper.

The open phase is a period in which the new open ledger
is created and the first position is generated. The node keeps
adding transactions received during this time to a buffer. As
soon as the time reaches half of the time spent on the previous

2Available at https://github.com/XRPLF/rippled

Yay Votes >=
Threshold

Open Close
Locally

TimeOpen =
(TimePrevious/2)+1
&& Buffer not empty

Proposal
Transmission
& Reception

New
Proposal

∃ Dispute
&& Threshold < 80%

EstablishDuration <
PreviousDuration

AddChange
Threshold

Close ledger/
Broadcast
Validation

Threshold = 80%

Execute

Open

Establish

Accept

EstablishDuration >=
PreviousDuration

Fig. 1. State Machine of the XRP LCP, demonstrating the internal states of
each phase with the respective transitions and its triggers.

consensus round, the ledger is closed locally and a proposal
is formed.

The protocol now enters the establish phase with a new
component: the threshold. Given a dispute, the threshold is
the minimum number of positions in which the disputed
transaction must be present, so the node will cast a “yay” vote.
The threshold changes during each establish round, starting at
50% and going up until it reaches 80%.

During the establish phase, the proposal formed previously
is transmitted to the entire network via flooding. At the same
time, the node receives proposals from its peers; if there is
any dispute and the threshold is lower than 80%, the validator
starts to update its position by creating a new proposal. First,
the threshold is recalculated based on the time left and then
the voting starts: For each transaction on the disputed set, the
node will consider the position of each one of its peers.

With the new proposal formed, the ledger is closed locally,
returning to the open phase; if the threshold reaches 80% or
there is no dispute, the accept phase starts by transforming the
proposal into a validation and transmitting it to the network via
flooding. The nodes must now agree upon which validation to
apply. Considering a given node, if 80% of its peers have the
same final position, the node applies the transactions contained
in the validation to the ledger; if there is less than 80%,
it means that the node lost sync and must start the syncing
process again.

B. The XRPL Network

Now that we conceptualized how the XRP LCP works, we
can present the current structure of the XRPL mainnet. In this
work, we focus on a level of abstraction called trust overlay.
This overlay comprises the trust relations between nodes.

The UNLs dictate the topology of the trust overlay. As
discussed previously, the XRPL network requires a minimum
overlap between every two UNLs. In the production mainnet,
the XRP Ledger Foundation recommends the use of one
of three UNLs curated by Ripple Labs, Coil, or the XRP
Ledger Foundation (XRPLF). It is important to note that
this recommendation comes to keep the liveness and safety
properties in the network, and not to enforce centralization.

As of February 2023, those 3 UNLs contained the same
34 validators. Considering that all the validators trust the
same UNL, the center of the XRPL comprises a complete
graph of 34 nodes using flooding to disseminate proposals
and validations.

III. PROBLEM DEFINITION

The state machine presented in Figure 1 highlights the two
states in which messages are propagated by flooding: Proposal
Transmission & Reception and Close ledger & Broadcast
Validation, being both of them represented by dashed lines.
The idea is that transactions are spread via gossiping [17],
having no need for a strong assurance of delivery since later
they will be grouped into proposals. The use of flooding
to disseminate proposals works as a reconciliation phase,
guaranteeing that all nodes will see all the transactions at least
once.

The problem is that not all nodes are actively considering
the positions of all validators in the network, but all of them
are receiving proposals and validations repeatedly from these
nodes. A validator only considers the position of the nodes
present on their UNL, but flooding dictates that a node must
always send messages to all of their peers, those peers will also
relay the messages through all of their connections, causing
exponential growth on the number of messages with the
growth of connections between nodes. In a highly connected
network such as the XRPL network, the excessive traffic
caused by the message overhead leads to higher latency and
higher bandwidth usage of individual nodes.

Tsipenyuk et al. [9] first introduced this problem by present-
ing how the number of proposals and validations represents
72% of all messages. The proposed solution - called Squelch-
ing - focuses on diminishing the number of vertices in the
dissemination graph. Each node selects a subset from which
it chooses to listen from regarding a particular validator and
tells the other nodes to ”squelch” the connection for a given
amount of time. This method was evaluated by the authors
using a simulated graph structure showing a reduction of 76%
in the total amount of messages in the network.

To further emphasize the problem, we present in Figure 2
the frequency of the reception of replicated validations on a
single node. For this analysis, we used the tool presented in
Section VI in a testnet of 24 nodes fully connected. This
structure mimics the way the trust overlay of the XRPL
Network is structured.

The x-axis presents every possible number of replicas a node
may receive for a single message. Since the node analyzed has
23 connections, the minimum number for a replica is 1 and

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Replicas

0

2000

4000

6000

Nu
m

be
r o

f M
es

sa
ge

s

Distribution of Replicated Messages

Fig. 2. Frequency of duplicated messages on a testnet with 24 nodes fully
connected

the maximum is 23, considering that the node has 23 peers.
The y-axis presents the number of single messages received,
meaning around 6000 messages were received 23 times, as
indicated by the red arrow.

What we take from this experiment is that flooding is a
highly reliable method for disseminating messages, but causes
a distribution of the number of replicas far from the ideal.
There needs to be a tradeoff between the delivery assurance
and the number of replicas to guarantee the scalability of
the network. In the next Section, we present the state-of-
the-art for message dissemination on Blockchains, giving
strong assurance of delivery while maintaining a low message
overhead.

IV. GOSSIPSUB

Flooding is a straightforward manner of disseminating mes-
sages reliably on unstructured p2p networks, such as used
on blockchains, being a robust but not particularly scalable
method, since messages are sent redundantly, increasing la-
tency. A solution proposed uses pub/sub systems. At a high
level, those systems are composed of, as the name suggests,
publishers and subscribers, being the first role played by nodes
that declare interest in a given topic and the second, nodes
that publish messages on these topics. On pub/sub systems
messages are also called events, and the declaration of interest
on a topic, a subscription [18].

Pub/sub systems are, however, complicated to be imple-
mented on unstructured p2p networks. The most notable
work on this matter is GossipSub, originally proposed to be
incorporated into FileCoin and Ethereum [19], and although
both of these could be considered structured because of the
employment of Distributed Hash Tables (DHTs), in reality,
they behave as unstructured p2p networks, using DHTs solely
as a peer discovery mechanism [20]. GossipSub is a gossip-
based pub/sub protocol for message dissemination in p2p
overlays [10] and is distributed as an extensible component
inside libp2p [21].

Gossipsub has two main characteristics that make it highly
suitable for the XRPL, as they guarantee fast and lighter
dissemination while being attack-resistant.

1) Mesh Construction: The mesh construction employs
eager push, keeping the delivery fan-out low to balance
the bandwidth usage. But it also keeps strong assurance
of delivery by employing lazy-pull. For the two models to

work properly, the protocol specifies the creation of two
meshes; the first one, used for eager push, is a logic full-
message network specified as a local mesh. Each node
has its local mesh, formed by bidirectional links to nodes
subscribed to the same topic. The second is the global
mesh, where nodes exchange meta-data solely with nodes
inside and outside their local mesh using gossiping [22].

2) Scoring Function: GossipSub employs a scoring func-
tion to help identify byzantine behavior. The scoring is
local, meaning that every node keeps an internal score
of its peers and makes routing and relaying decisions
based on this scores [10]. The scoring function, however,
is beyond the scope of this work.

More extensive analysis of the attack-resilience can be
found in [10], and a performance benchmark in [23] and [24].
In the next section, we discuss how we mapped the XCP
mechanism into GossipSub, explaining our design choices.

V. PROPOSAL

GossipSub is the state-of-the-art for efficient message dis-
semination on blockchains. Besides being used by Filecoin, it
has also been deployed on Ethereum in September of 2022
[25]. Both systems employ the framework similarly; Filecoin
uses two topics: one to propagate messages, and another to
propagate blocks. Ethereum structures the topics in a more
sophisticated manner, with five global topics, two primary and
three secondaries [26]. The first is a beacon that broadcasts
newly signed blocks to the entire network, while the second
propagates aggregated attestations to subscribed validators.
The three secondary topics propagate respectively voluntary
exit, proposer slashing, and attester slashing.

The employment of UNLs in the XRP LCP allows for some
interesting forms to use pub/sub for disseminating messages.
We present three setups based on how the network is structured
in production and how it has been conceptualized. We propose
the creation of an pub/sub overlay based on the existing
trust overlay. And so we can keep the XRP LCP algorithm
as it is, changing solely the abstract layer that creates trust
relationships between nodes.
(a) First, we use GossipSub similarly to Filecoin and

Ethereum, keeping the XRPL overlay characteristics. The
idea is to have two topics according to the message types
that need to be broadcasted to the entire network; The first
topic refers to proposals and the second one to valida-
tions. Creating a parallel view with Ethereum, validations
work similarly as a signed block, while proposals can
work as aggregated attestations. This approach keeps
the trust overlay as it is, with a fully connected core
of validators, while reducing the amount of duplicated
messages and thus making the structure more scalable.

(b) The XRP LCP, however, has some characteristics that
allow for more sophisticated topic arrangements. In par-
ticular, the way nodes select sets of validators to trust
works naturally as a pub/sub system. Meaning that we
can understand a UNL as a list of topics to which a
node listens. Each validator is then abstracted directly

as a topic, replicating the structure of the trust overlay.
In this configuration, called 1 topic per validator (1-
topic/validator), there is not much sense in keeping a
fully connected mesh of validators, for it would create
a similar structure as seen in the 2-topics approach.

(c) The previous approach may cause some issues since the
XRP LCP has a condition to keep liveness related to
the minimum required UNLs overlap. Considering that
all nodes on the network may choose their own UNL,
but not all can agree to a minimum of 60% of common
nodes. In this condition, the ledger would not be able
to make any progress, as proved in the previous works
discussed. We can reach another solution that will keep
the liveness of the network while also maintaining the
pub/sub characteristics of the XRP LCP. This solution
is called 1 topic per UNL (1-topic/UNL) and involves
having several pre-defined UNLs that nodes can choose
from and structuring the pub/sub overlay to abstract each
UNL as a topic.

VI. METHODOLOGY

As part of our research, we aim to isolate message types that
create bottlenecks on the network to investigate dissemination
techniques that might mitigate those bottlenecks. To evaluate
the performance of GossipSub, we created a tool - Fexi-Pipe -
that allows us to plug different broadcasting mechanisms into
the validator code.

A. Architecture

The idea behind Flexi-Pipe is to create an overlay where
only targeted message types transit to identify dissemination
patterns and evaluate different solutions. Meaning that, from
the point-of-view of the implementation, we have two layers:
the rippled overlay and the gossipsub overlay, conceptually
they represent the trust overlay and the pub/sub overlay. The
rippled overlay is the existing layer in which the validator
exchanges messages with its peers and the entire network. In
contrast, the gossipsub overlay is the novelty we add.

The communication between both layers works by employ-
ing remote procedure calls (RPCs). Figure 3 demonstrates the
schematics used to implement the Plug&Play Broadcast. Each
big rectangle represents a node, inside of them we have the
two layers: rippled and GossipSub.

ServerClient
gRPC

Server Client

rippled overlay
gRPC

Other Messages

Validations
libp2p

GossipSub

ServerClient
gRPC

Server Client

gRPC

libp2p
GossipSub

GossipSub Overlay

Fig. 3. Diagram of the communication between two nodes using GossipSub
plugged through gRPC to disseminate validations.

The bottom layer is the rippled code version 1.7, written in
C++, and comprises the rippled overlay. We changed the code
to include a gRPC node containing a client and a server. We
also deactivated the node’s ability to send and relay messages
of a certain type - in this work, validations - but kept all
the other functions intact. So all other types of messages still
transit at this level, also adding a new logging feature to the
rippled code3. The goal of this feature is to provide meanings
for better analyzing - and debugging - the integration of the
two overlays.

The gossipsub overlay4 is the top layer containing the
broadcast mechanism connected to the validator. This layer
contains a component controlling the creation and maintenance
of the overlay - and the subscription to topics. Inside this
component, we have another gRPC node with a server and a
client. Upon receiving validations, the GossipSub nodes push
them to rippled to be processed.

As shown in Figure 3, we used GossipSub as a module
inside libp2p5. The reason is that GossipSub acts as a router
for messages using pub/sub and does not have the means
to create and maintain an overlay. It is possible to use
GossipSub directly inside the validators without the overhead
of maintaining a second overlay. This work, however, aims to
evaluate how GossipSub can mitigate the message overhead
and does not intend to change the rippled code for a production
environment.

The libp2p and GossipSub components used are the ref-
erence implementations, written in go without modifications.
Those were the implementations chosen for they are better
documented and reported as the most stable [27].

VII. EVALUATION

A. Experimental setup

The experimental setup for this work encompasses a cluster
of 24 virtual machines with 31.25GiB of RAM, 64GB of
disk, and 4 sockets with 2 cores each, running Ubuntu 20.04.4
LTS. We used two versions of rippled, one changed to only
write logs for analytics - which we call vanilla - and another
modified to work with Flexi-pipe. Both versions were based
on the official 1.7 release.

We separated the experiments into two categories, according
to the proposal described in Section V. First, we considered the
1-topic approach using a fully connected structure for the trust
overlay. We compared the results against vanilla rippled with
the same structure and also against vanilla with squelching
enabled, using the default configuration.

The second category compares the 1-topic/validator and
1-topic/UNL against vanilla and squelching. In this setup,
1-topic/validator, vanilla, and squelching use the same trust
overlay structure, with the first replicating this structure into
its pub/sub overlay. The trust overlay is a randomly generated
graph with a median degree of 16 and a maximum degree
of 18, so every node listens to at least 60% of the network.

3Modified code available at https://github.com/FlavScheidt/sntrippled
4Available at https://github.com/FlavScheidt/gossipGoSnt
5https://github.com/libp2p/go-libp2p

We built this structure in this form to keep the liveness
property. We kept the same characteristics for the 1-topic/UNL
experiments, generating 8 UNLs randomly, each list containing
at least 16 nodes.

B. Experiments and Results

In this work, we focused on minimizing the overhead
generated by the message dissemination strategy used on the
XRPL. To evaluate our proposal, we analyzed the number of
duplicated validations received by one particular node.

0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Replicas

0

2000

4000

6000

Nu
m

be
r o

f M
es

sa
ge

s

Distribution of Replicated Messages
GS 1 topic
Vanilla
Squelching

Fig. 4. Comparison of the frequency of replicated messages on vanilla rippled
in a fully connected structure and GossipSub using a 2-topics setup

Figures 4 and 5 present the amount of replicated messages
received by a node during 30 minutes of synchronized execu-
tion. This amount of time was chosen to give the nodes enough
time to run at least 600 consensus rounds. Both graphs should
be read similarly to the one presented in Figure 2.

2 4 6 8 10 12 14 16 18
Number of Replicas

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f M
es

sa
ge

s

Distribution of Replicated Messages
GS 1 topic/validator
GS 1 topic/UNL
Vanilla
Squelching

Fig. 5. Comparison of the frequency of replicated messages on vanilla
rippled in a 16-degree structure and GossipSub using a 1-topic/validator and
1-topic/UNL setups

In both setups, vanilla presents a behavior that is suboptimal
because of its conservative approach - especially on the
fully connected structure of Figure 4. Vanilla with squelching
enabled shows a better tendency, accumulating most of the
distribution around 5 to 6 replicas, which is expected, con-
sidering that each node always keeps 5 connections for each
node on the UNL at each squelching round. The behavior is
better than pure vanilla, but is still suboptimal when compared
to the results obtained with GossipSub.

The 1-topic approach suggests a tendency closer to the
optimal, but the curve still has a more even distribution than
the one presented by the 1-topic/validator setup in Figure 5,
being this the curve that gets closer to the optimal. The 1-
topic/UNL has a similar tendency, demonstrating a smaller
number of total messages compared to its counterpart. This

is a consequence not of the setup itself, but of how Flexi-
pipe works. This limitation would not exist, being GossipSub
implemented directly inside of the validator.

We conclude that the use of GossipSub to disseminate
validations on the XRPL network would be beneficial for the
general performance. The overhead caused by flooding de-
creased, while the ledger kept progressing successfully. From
the experiments, 1-topic/validator was the most beneficial
setup. 1-topic/UNL also had good results, but a limitation in
the tool harmed the evaluation. The scenario that simulates
more closely the actual structure of the XRPL network pre-
sented a good improvement, showing that GossipSub may be
a good alternative for improving the performance.

VIII. CONCLUSION & FUTURE WORK

Our work conceptualized the XRP LCP. We presented and
analyzed the state machine and pointed to the bottlenecks
caused by the use of flooding. Notably, the points identified
can be a cause of scalability issues by disseminating too many
replicated messages.

Further, we introduced Flexi-Pipe, a tool for analyzing
the message dissemination pattern of targeted message types.
Flexi-Pipe also allowed us to plug a different dissemination
technique into an XRPL testnet. Following the natural pub/sub
characteristics of the XCP, we plugged GossipSub into the
validator using our tool. The GossipSub framework is state-of-
the-art for message dissemination in unstructured blockchains.
The results presented by the experiments show that we cor-
rectly identified the bottlenecks and that GossipSub mitigated
the message overhead in the network, thus improving the
scalability of the XCP.

This work, however, makes no safety considerations, and
further analysis of threats in the proposed scenarios is neces-
sary. Considerations about UNL overlapping in more complex
scenarios are also of importance for the continuity of this
work. Being that the second scenario proposed is straightfor-
wardly a pub/sub network, presenting the best results regarding
message replication.

ACKNOWLEDGMENT

We thankfully acknowledge the support from the RIPPLE
University Blockchain Research Initiative (UBRI) for our
research.

REFERENCES

[1] B. Chase and E. MacBrough, “Analysis of the xrp ledger consensus
protocol,” 2018. [Online]. Available: https://arxiv.org/abs/1802.07242

[2] “Xrpl charts,” accessed: 2023-01-26. [Online]. Available: https:
//livenet.xrpl.org/

[3] “Xrp: Utility for the new global economy,” accessed: 2023-01-26.
[Online]. Available: https://ripple.com/xrp/

[4] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer et al., “On scaling decen-
tralized blockchains: (a position paper),” in Financial Cryptography and
Data Security: FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers 20. Springer, 2016, pp. 106–125.

[5] “Ethereum average block time chart,” accessed: 2023-01-26. [Online].
Available: https://etherscan.io/chart/blocktime

[6] “The ethereum vision: Understanding the ethereum vision,” accessed:
2023-01-26. [Online]. Available: https://ethereum.org/en/upgrades/
vision/

[7] W. Hao, J. Zeng, X. Dai, J. Xiao, Q. S. Hua, H. Chen, K. C. Li, and
H. Jin, “Towards a trust-enhanced blockchain p2p topology for enabling
fast and reliable broadcast,” IEEE Transactions on Network and Service
Management, vol. 17, pp. 904–917, 6 2020.

[8] D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus
algorithm,” 2014. [Online]. Available: https://ripple.com/files/ripple\
consensus\ whitepaper.pdf

[9] G. Tsipenyuk and N. D. Bougalis, “Message routing
optimizations, pt. 1: Proposal & validation relaying,” Mar 2021,
accessed: 2023-01-26. [Online]. Available: https://xrpl.org/blog/2021/
message-routing-optimizations-pt-1-proposal-validation-relaying.html

[10] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“Gossipsub: Attack-resilient message propagation in the filecoin
and ETH2.0 networks,” CoRR, vol. abs/2007.02754, 2020. [Online].
Available: https://arxiv.org/abs/2007.02754

[11] E. MacBrough, “Cobalt: Bft governance in open networks,” 2 2018.
[Online]. Available: http://arxiv.org/abs/1802.07240

[12] L. Mauri, S. Cimato, and E. Damiani, “A formal approach for the
analysis of the xrp ledger consensus protocol.” SciTePress, 2020, pp.
52–63.

[13] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security analysis of ripple
consensus,” 2020. [Online]. Available: https://arxiv.org/abs/2011.14816

[14] K. Christodoulou, E. Iosif, A. Inglezakis, and M. Themistocleous,
“Consensus crash testing: Exploring ripple’s decentralization degree in
adversarial environments,” Future Internet, 2020. [Online]. Available:
www.mdpi.com/journal/futureinternet

[15] C. Ma, Y. Zhang, B. Fang, H. Zhang, Y. Jin, and D. Zhou, “Ripple+: An
improved scheme of ripple consensus protocol in deployability, liveness
and timing assumption,” CMES - Computer Modeling in Engineering
and Sciences, vol. 130, pp. 463–481, 2022.

[16] M. Ellery and I. Ashimine, “Consensus and validation,” accessed:
2021-10-14. [Online]. Available: https://github.com/ripple/rippled/blob/
develop/docs/consensus.md

[17] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, 1987, pp. 1–
12.

[18] R. Baldoni, L. Querzoni, and A. Virgillito, Distributed Event Routing in
Publish/Subscribe Communication Systems: a Survey. Springer Berlin
Heidelberg, 2009.

[19] D. Vyzovitis and Y. Psaras, “Gossipsub: A secure pubsub
protocol for unstructured, decentralised p2p overlays,”
2019. [Online]. Available: https://research.protocol.ai/blog/2019/
a-new-lab-for-resilient-networks-research/PL-TechRep-gossipsub-v0.
1-Dec30.pdf

[20] J.-P. Eisenbarth, T. Cholez, and O. Perrin, “Ethereum’s peer-to-peer
network monitoring and sybil attack prevention,” Journal of Network
and Systems Management, vol. 30, no. 4, p. 65, 2022.

[21] “gossipsub v1.0: An extensible baseline pubsub protocol,” accessed:
2022-03-01. [Online]. Available: https://github.com/libp2p/specs/blob/
master/pubsub/gossipsub/gossipsub-v1.0.md

[22] A. de la Rocha, “Playing with gossipsub,” accessed:
2022-02-01. [Online]. Available: https://adlrocha.substack.com/p/
adlrocha-playing-with-gossipsub

[23] TrentonVanEpps, “Testing gossipsub with genesis,” accessed:
2022-02-01. [Online]. Available: https://medium.com/whiteblock/
testing-gossipsub-with-genesis-6f89e845b7c1

[24] “Eth2 - libp2p gossipsub testing,” accessed: 2022-03-01. [Online].
Available: https://github.com/whiteblock/gossipsub-testing

[25] “The ethereum upgrades,” accessed: 2023-01-26. [Online]. Available:
https://ethereum.org/en/upgrades/

[26] “Ethereum 2.0 networking specification,” accessed: 2022-07-19.
[Online]. Available: https://github.com/goerli/eth2.0-specs/blob/dev/
specs/phase0/p2p-interface.md

[27] “libp2p implementations,” accessed: 2022-03-01. [Online]. Available:
https://libp2p.io/implementations/

