
PhD-FSTM-2023-096
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 15/09/2023 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

HAOYE TIAN
Born on 11th September 1993 in Henan (China)

LEARNING CODE CHANGE SEMANTICS FOR PATCH
CORRECTNESS ASSESSMENT IN PROGRAM REPAIR

Dissertation Defence Committee

Dr. Tegawendé F. Bissyandé, Dissertation Supervisor
Associate Professor, University of Luxembourg

Dr. Jacques Klein, Chairman
Full Professor, University of Luxembourg

Dr. Maxime Cordy, Vice Chairman
Research Scientist, University of Luxembourg

Dr. Claire Le Goues
Associate Professor, Carnegie Mellon University

Dr. David Lo
Full Professor, Singapore Management University

Abstract

The growing complexity of modern software systems and the demand for acceler-
ated development cycles have made software defects more prevalent and challenging
to repair, necessitating effective and efficient solutions. Automated Program Repair
(APR) has been proposed as a potential approach to address these issues by automat-
ically identifying and repairing software defects, leveraging techniques from artificial
intelligence, data mining, symbolic execution, and formal methods. The practical
adoption of APR techniques however faces a significant challenge due to patch over-
fitting. In the absence of perfect program specifications and test oracle, APR tools
frequently depend on incomplete test suites or weak constraints as approximations for
assessing patch correctness, which may lead to the generation of patches that simply
overfit to the weak oracle but do not generalize in practical production. Indeed,
these overfitting patches do not implement the intended behavior that developers
expect, highlighting the need for enhanced solutions in the field of APR.

State-of-the-art APR techniques currently produce patches that are manually
evaluated as overfitting, and these overfitting patches often worsen the original
program, leading to negative effects such as introducing security vulnerabilities and
removing useful features. This obstructs the development of APR techniques that
rely on feedback from correctly generated patches, and the expense of developers’
manual debugging has shifted to evaluating patch correctness. Automated assessment
of patch correctness has the potential to reduce patch validation costs and accelerate
the identification of practically correct patches, making it easier for developers to
adopt APR techniques. While the proposed approaches have been demonstrated
to be effective in the literature, several challenges remain unexplored and warrant
further investigation.

This thesis begins with an empirical analysis of a prevalent hypothesis concerning
patch correctness, leading to the establishment of a patch correctness prediction
framework based on representation learning. Second, we propose to validate correct
patches by proposing a novel heuristic on the relationship between patches and their
associated failing test cases. Lastly, we present a novel perspective to assess patch
correctness with natural language processing. Our contributions to the research field
through this thesis are as follows: 1) assessing the feasibility of utilizing advancements
in deep representation learning to generate patch embeddings suitable for reasoning
about correctness. Consequently, we establish Leopard, a supervised learning-
based patch correctness prediction framework. 2) comparing code embeddings
and engineered features for patch correctness prediction, and investigating their
combination in Panther (an upgraded version of Leopard) for more accurate
classification. Additionally, we use the SHAP explainability model to reveal the
essential aspects of patch correctness by interpreting underlying causes of prediction
performance across features and classifiers. 3) presenting and validating a key

hypothesis: when different programs fail to pass similar test cases, it is likely that
these programs require similar code changes. Based on this heuristic, we propose
BATS, an approach predicting patch correctness by statically comparing generated
patches against previous correct patches failing on similar tests. 4) proposing a novel
perspective to patch correctness assessment: a correct patch implements changes
that answer to the issue caused by the buggy behavior. By leveraging bug reports to
offer an explicit description of the bug, we build Quatrain, a supervised learning
approach that utilizes a deep NLP model to predict the relevance between a bug
report and a patch description.

i

ii

Plato is dear to me, but dearer still is truth.

Aristotle

iii

iv

Acknowledgements

I would like to convey my deepest gratitude to those who have generously shared
their invaluable knowledge, guidance, and experiences during my PhD journey. Their
support was pivotal, without which the completion of my dissertation would not
have been feasible. I am truly honored to have embarked on this scholarly journey
alongside them.

First, I am incredibly grateful to Prof. Tegawendé F. Bissyandé, my supervisor,
who has given me the remarkable opportunity to pursue my doctoral degree across
continents. Throughout my PhD journey, he consistently provided invaluable support
and guidance, not only in my research but also in matters pertaining to life and
career. As an educator, his selflessness and discipline continue to inspire me, leaving
an indelible mark on my personal growth.

Second, I am equally grateful to my daily adviser, Prof. Jacques Klein, who is
open to giving valuable advice and discussion for my research. I am particularly
grateful to Dr. Kui Liu, whose regular mentorship has empowered me to conduct
research and write technical papers. I extend profound thanks to Prof. Shing-Chi
Cheung, who graciously welcomed me to the Hong Kong University of Science and
Technology for an enriching academic visit, offering precious advice and another
picture of research. Their dedicated guidance has transformed my PhD journey into
a fruitful and fulfilling experience, and I am genuinely grateful for the friendships we
have cultivated over the years.

Third, I would like to extend my thanks to all my co-authors including Prof. Li
Li, Prof. Xin Xia, Dr. Andrew Habib, Pingfan Kong, Weiguo Pian, Xunzhu Tang,
Abdoul Kader Kaboré, etc., for their helpful discussions and collaborations.

I want to thank the members of my Ph.D. defence committee, including chairman
Prof. Jacques Klein, vice-chairman Dr. Maxime Cordy, Prof. Claire Le Goues, Prof.
David Lo, and my supervisor Prof. Tegawendé F. Bissyandé. It is my great honor
to have them on my defence committee, and I appreciate very much their efforts to
review my dissertation and evaluate my Ph.D. work.

With great pleasure, I express my thanks to all members of TruX and friends that
I have made in the Grand Duchy of Luxembourg for the memorable moments. In
particular, I would like to thank my girlfriend, Ziyun Zhou, for her love and support.

Finally, I can never overemphasize the importance of the support and love from
my parents. Their belief in the power of education has been instrumental in shaping
my character and accomplishments today.

Haoye Tian
University of Luxembourg

August 2023

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Limitations and Challenges . 4

1.2.1 Limitations of Existing Approaches 4
1.2.2 Challenges in Capturing Correct Patch Behavior 4

1.3 Contributions . 6
1.4 Roadmap . 9

2 Background and Related Work 11
2.1 Automated Program Repair . 12

2.1.1 Heuristic-Based Repair . 12
2.1.2 Constraint-Based Repair . 13
2.1.3 Learning-Based Repair . 13

2.2 Patch Overfitting . 15
2.2.1 Empirical Studies of Patch Overfitting 17
2.2.2 Addressing Before Patch Generation 20
2.2.3 Addressing After Patch Generation 24

3 Learning Representation of Code Changes for Patch Correctness 29
3.1 Overview . 31
3.2 Background . 33

3.2.1 Patch Plausibility and Correctness 33
3.2.2 Distributed Representation Learning 33

3.3 Study Design . 35
3.3.1 Research Questions . 35
3.3.2 Datasets . 35
3.3.3 Model input pre-processing 35
3.3.4 Embedding models . 36

3.4 Experiments and Results . 39
3.4.1 RQ-1: Similarity Measurements for Buggy and Patched Code

using Embeddings . 39
3.4.2 RQ-2: Filtering of Incorrect Patches based on Similarity Thresh-

olds . 42
3.4.3 RQ-3: Classification of Correct Patches with supervised learning 44

3.5 Discussions . 49
3.5.1 Experimental Insights . 49
3.5.2 Threats to validity . 50

3.6 Related Work . 51
3.7 Conclusion . 53

vii

4 Combining Learned Embeddings with Engineered Features for Ac-
curate Prediction of Correct Patches 55
4.1 Overview . 56
4.2 Background . 57

4.2.1 Engineered Features . 57
4.2.2 SHAP - SHapley Additive exPlanations 57

4.3 Methodology . 58
4.4 Experiments and Results . 60

4.4.1 RQ-1: Classification of Correct Patches with Supervised Learning 60
4.4.2 RQ-2: Combining Learned Embeddings and Engineered Fea-

tures for more Accurate Classification of Correct Patches . . . 65
4.4.3 RQ-3: Explanation of Improvements of Combination 67

4.5 Experimental Insights . 72
4.6 Conclusion . 73

5 Predicting Patch Correctness Based on the Similarity of Failing
Test Cases 75
5.1 Overview . 77
5.2 Approach . 80

5.2.1 Pre-processing Test Cases and Patches 80
5.2.2 Embedding Test Cases and Patches 81
5.2.3 Finding Similar Test Cases . 81
5.2.4 Mapping Historical Failing Test Cases to their Patches 82
5.2.5 Predicting Patch Correctness 82
5.2.6 An Example . 82

5.3 Study Design . 85
5.3.1 Research Questions . 85
5.3.2 Datasets . 85
5.3.3 Cluster Analysis Metrics . 86
5.3.4 Performance Metrics . 87

5.4 Experiments and Results . 89
5.4.1 RQ-1: Cluster of Similar Test Cases and Patches 89
5.4.2 RQ-2: Identifying Correct Patches with BATS 93
5.4.3 RQ-3: Competitive/Complementary to the State-of-the-art . . 95

5.5 Ablation Study . 100
5.5.1 Bug types of failing test cases clusters 100
5.5.2 Asymmetry of the hypothesis 100

5.6 Threats to Validity . 101
5.7 Related Work . 102
5.8 Conclusion . 103

6 Correlating Descriptions of Bug and Code Changes for Evaluating
Patch Correctness 105
6.1 Overview . 107
6.2 Related Work and Hypothesis . 109

6.2.1 Related work . 109
6.2.2 Hypothesis Validation . 109

6.3 Approach . 111
6.3.1 Extraction of Bug Reports . 112

viii

6.3.2 Generation of Patch Description 112
6.3.3 Construction of Training Examples 112
6.3.4 Embedding of Bug Reports and Patches 113
6.3.5 Training of the Neural QA-Model 113
6.3.6 Classifying a Pair of Bug Report and Patch 115

6.4 Study Design . 116
6.4.1 Research Questions . 116
6.4.2 Datasets . 116
6.4.3 Metrics . 117

6.5 Experiments and Results . 118
6.5.1 RQ-1: Effectiveness of Quatrain 118
6.5.2 RQ-2: The Impact of Input Quality on Quatrain 119
6.5.3 RQ-3: Comparison against the State-of-the-art 122

6.6 Discussion . 125
6.6.1 Experimental Insights . 125
6.6.2 Case Study . 125
6.6.3 Threats to Validity . 126

6.7 Conclusion . 127

7 Conclusion 129

8 Future Work 131
8.1 Learning to Represent Patches . 132
8.2 Capturing the Semantics of the Bug 132
8.3 Integrating Patch Correctness Assessment with Heuristic-based APR 132
8.4 Overfitting in LLMs-based Repair . 133

ix

x

List of Figures

1.1 Roadmap of this dissertation. 9

2.1 The pipeline of generate-and-validate program repair. 12
2.2 The classification of the overfitting patch [1]. 16

3.1 Example of a patch for the Defects4J bug Chart-1. 36
3.2 Buggy code fragment associated to patch in Fig. 3.1. 37
3.3 Patched code fragment associated to patch in Fig. 3.1. 37
3.4 Producing code fragment learned embeddings with BERT, Doc2Vec

and code2vec. 37
3.5 Extracting code fragment learned embeddings from CC2Vec pre-

trained model. 38
3.6 Distributions of similarity scores between correctly-patched code frag-

ments and buggy ones. 39
3.7 Zoomed views of the distributions of similarity scores between correct

and buggy code fragments. 40
3.8 Comparison of similarity score distributions for code fragments in

incorrect and correct patches. 41
3.9 Feature engineering for correctness classification. 45
3.10 Performance of ML patch correctness predictor using BERT/Logistic

Regression: Test set from [2]. 46
3.11 Close cosine similarity scores with small-sized inputs for BERT em-

bedding model. 49

4.1 Overview of Panther. 58
4.2 Comparison on the number of (in)patches correctly identified by Leop-

ard (with the BERT embeddings + the XGBoost learner) against
PATCH-SIM. 63

4.3 Comparison on the number of (in)patches correctly identified by the
XGBoost classifier with the BERT embeddings and the engineered
features. 64

4.4 Combination options of features for patch classification in Panther. 66
4.5 Comparison on the number of patches identified with the combined

feature vs. the simple feature. 67
4.6 Top-10 Contributing Features (based on SHAP values) for the Classifier

built by combining learned embeddings and engineered features. . . . 68
4.7 Top-10 contributing features (based on SHAP values) for the Classifier

built only by the engineered features. 69
4.8 Feature Interaction. 70
4.9 SHAP Analysis on Patches. 70

xi

5.1 Overview of BATS. 80
5.2 A correct patch generated by APR SOFix for the Defects4J bug

Chart-26. 82
5.3 An incorrect patch generated by APR KaliA for the Defects4J bug

Chart-26. 83
5.4 A correct developer-written patch for the Defects4J bug Chart-4. . . . 83
5.5 A correct developer-written patch for the Defects4J bug Chart-25. . . 84
5.6 The ranked patches generated by APR tools for Chart-26. The nu-

merical value next to each tool name indicates patch id since a tool
can generate more than one patch. 84

5.7 Distribution of the number of collected patches per project in the
Defects4j dataset. 86

5.8 Similarity coefficient of test cases and patches at each cluster. 90
5.9 Distribution on the similarities between each failing test case of each

bug and its closest similar test case. 91
5.10 Distributions on the similarities of pairwise patches (similar patch

selected with Scenario H vs. Scenario N from all projects, i.e., the
search space for searching similar cases is all projects in the dataset). 92

5.11 Distributions on the similarities of pairwise patches (similar patch
selected with Scenario H vs. Scenario N from other projects, i.e.,
the search space for searching similar cases does not include the buggy
project itself). 92

5.12 Distributions on the similarities of pairwise patches (similar patch
selected with Scenario H vs. Scenario N from other projects, i.e.,
the search space for searching similar cases does not include the buggy
project itself, by setting the threshold at 0.6). 93

5.13 Performance evolution of BATS with varying threshold of the test-case
similarity. 95

5.14 A typical failing test case specification (Chart-26). 101
5.15 String-based format for test specification (Closure-49). 101

6.1 The bug report of Closure-96 from Defects4J and the corresponding
commit message of the developer’s patch. 108

6.2 Distributions of Euclidean distances between bug and patch descrip-
tions. 110

6.3 Overview of the approach. 111
6.4 Architecture of the neural QA model. 114
6.5 Distribution of Patches in Train and Test Data. 118
6.6 Impact of length of patch description to prediction. 120
6.7 The distribution of probability of patch correctness on original and

random bug report. 121
6.8 Impact of distance between generated patch description to ground

truth on prediction performance . 122
6.9 A correct generated patch for Defects4J Lang-7. 125

xii

List of Tables

3.1 Datasets of Java patches used in our experiments. 36
3.2 Datasets used for assessing the similarity between buggy code and

correctly-patched code. 39
3.3 Scenarios for similarity distributions comparison. 41
3.4 Statistics on the distributions of similarity scores for correct patches

of Bears+Bugs.jar+Defects4J. 42
3.5 Statistics on the distributions of similarity scores for correct patches

of QuixBugs. 42
3.6 Filtering incorrect patches by generalizing thresholds inferred from

Section 3.4.1.Results. 43
3.7 Dataset for evaluating ML-based predictors of patch correctness. . . . 44
3.8 Evaluation of representation models on three ML classifiers. 45
3.9 Comparison of incorrect patch identification between PATCH-SIM

(uses dynamic information) and BERT+ LR (uses embeddings stati-
cally inferred from patches). 46

3.10 Confusion matrix of ML predictions based on BERT embedddings
with different thresholds. 47

3.11 Confusion matrix of ODS predictions with different thresholds. 47

4.1 Dataset for evaluating ML-based predictors of patch correctness. . . . 61
4.2 Evaluation of learned embeddings on six ML classifiers in Leopard. . 62
4.3 Comparing evaluation of Leopard (BERT embedding + ML classi-

fiers) against PATCH-SIM. 63
4.4 Evaluation of engineered feature on six ML classifiers. 64
4.5 Comparing results of classifying correct patches with combined feature

against the single feature. 66

5.1 Statistics on the dataset of developer-written and APR-generated
patches. 86

5.2 Statistics on the performance of clustering of test cases and patches
with 30, 40 and 50 clusters. 90

5.3 Baseline’s performance on identifying (in)correct patches. 94
5.4 BATS’s performance on identifying (in)correct patches. 94
5.5 BATS’s performance on ranking correct patches. 94
5.6 Comparison with a state of the art supervised classifier [3]. 96
5.7 Comparison with a state of the art dynamic-based patch assessment [2] 97
5.8 Supplementing a supervised classifier with BATS. 98
5.9 Complementing PATCH-SIM with BATS. 99

6.1 Datasets of labeled patches. 117

xiii

6.2 Confusion matrix of Quatrain prediction. 119
6.3 Quatrain vs a DL-based patch classifier [3]. 123
6.4 Quatrain vs BATS [4]. 124
6.5 Quatrain vs (execution-based) PATCH-SIM [2]. 124

xiv

1 Introduction

In this chapter, we first introduce the problem of patch overfitting in automated
program repair. Then, we describe the limitations and challenges researchers face
when addressing patch overfitting. Finally, we present the contributions and the
roadmap of this dissertation.

Contents
1.1 Motivation . 2
1.2 Limitations and Challenges 4

1.2.1 Limitations of Existing Approaches 4
1.2.2 Challenges in Capturing Correct Patch Behavior 4

1.3 Contributions . 6
1.4 Roadmap . 9

Chapter 1. Introduction

1.1 Motivation
The rapid expansion of software systems across various industries and aspects

of everyday life has underscored the importance of ensuring the reliability and
maintainability of these systems. However, the complexity of modern software,
combined with the mounting pressure for accelerated development cycles, has rendered
software defects not only inevitable but also more numerous and harder to repair,
presenting a serious threat to the prospects of software companies and developers [5, 6].
A notable example is that a software bug in Knight Capital Group’s trading algorithm
caused unintended trades, leading to a $440 million loss in 45 minutes, which
ultimately resulted in the company’s acquisition in 2012 [7]. Meanwhile, manual
debugging becomes increasingly expensive as it grows more labor-intensive and
time-consuming [8]. Consequently, the demand for effective and efficient solutions
to address these challenges has grown substantially. Automated Program Repair
(APR) [9, 10, 11] has emerged as a potential approach to tackle this problem by
automatically identifying and repairing software defects, reducing the burden on
developers and elaborating the debugging process, ultimately contributing to the
development of more reliable, trustworthy, and robust software systems.

APR has achieved new milestones by generating valid patches for various defects,
leveraging cutting-edge techniques from artificial intelligence [12, 13, 14, 15], data
mining [16, 17, 18, 19], symbolic execution [20, 21, 22], and formal methods [23, 24].
While the techniques are effective, their adoption by industry faces a crucial challenge
with respect to their practicality: patch overfitting problem [25, 26]. In practice,
due to the absence of the ideal program oracle or specifications, existing APR tools
typically rely on crafted test suites or constraints as a cost-effective approximation
for evaluating patch correctness. As a result, they tend to produce patches that
overfit to weak oracle (e.g., test suites), failing to generalize to independent real-world
applications. In other words, the patched program, although passing test cases, are
still incorrect. In essence, these generated patches do not implement the intended
behavior that developers expect from the program. Such an inaccurate patch is
usually referred to as an overfitting patch, while a patch that passes all test cases in
the test suite is known as a plausible patch [27, 25].

Currently, most, if not all, plausible patches produced by state-of-the-art APR
techniques are verified manually as overfitting [28, 29, 30]. More importantly,
Smith et al. [26] discovered that these overfitting patches frequently worsen the
patched program compared to the unpatched versions due to their negative effects,
such as introducing security vulnerabilities and removing useful features. The over-
whelming majority of overfitting patches obstruct the development of APR techniques
that rely on feedback from correctly generated patches. From the perspective of
developers, the expense of manual debugging has not disappeared; instead, it has
shifted towards evaluating patch correctness. Furthermore, a recent survey [31]
revealed that a mere 22% of them are willing to review up to 10 automatically
generated patches before abandoning the adoption of the technique.

Automated assessment of patch correctness [32, 33, 27] holds the promise of
reducing patch validation costs by automatically identifying correct patches among
all plausible patches. In production, patch correctness assessment enhances the
effectiveness and efficiency of APR techniques by boosting the identification and gen-
eration of practically correct patches. In application, prioritizing correct patches from

2

1.1. Motivation

numerous plausible yet incorrect patches eases developers’ efforts and strengthens
their trust in adopting APR techniques. While patch correctness assessment methods
have shown effectiveness, there are still challenges that need further investigation.

In this dissertation, we propose to devise novel patch correctness assessment
techniques for two purposes: 1) to explore static approaches that efficiently address
patch overfitting; and 2) to identify the behavior of a correct patch that is relevant
to the bug targeted.

3

Chapter 1. Introduction

1.2 Limitations and Challenges
In this section, we describe the limitations of existing approaches that tackle

patch overfitting, with an emphasis on their efficiency. Subsequently, we present the
crucial challenge in assessing patch correctness: identifying the behavior of correct
patches.

1.2.1 Limitations of Existing Approaches
Numerous existing approaches in the literature [27, 34, 35, 2, 1, 36] have advocated

for dynamic approaches to mitigate patch overfitting by utilizing dynamic information
generated during program execution. Among them, one hypothesis is that augmenting
weak oracle can help reduce the generation of overfitting patches. Following up on
the intuition, researchers have suggested enhancing the quality and quantity of test
cases to filter out incorrect patches in advance [34, 35, 1, 37]. However, they have
the test oracle problem, that is we do not always have an accurate specification
of what the output should be. Alternatively, heuristic-based methods have been
explored to differentiate between the execution paths of test cases influenced by
correct and overfitting patches (runtime analysis) [2]. Despite the promising results
demonstrated, dynamic approaches require more computational resources and time-
consuming execution, as they need to adapt to new data and changes at runtime.
This, therefore, hinders their application for efficiently validating a large number of
plausible patches. To sum it up, dynamic approaches are practically infeasible.

Static approaches have garnered significant interest from researchers, as they do
not typically depend on dynamic execution, resulting in a faster patch validation
process [38, 27, 39, 40]. Utilizing manually crafted anti-patterns, researchers have sug-
gested filtering out overfitting patches that implement prohibited modifications [40].
Additionally, advancements in artificial intelligence have led researchers to explore
the identification and classification of correct patches using machine/deep learning
models trained on statically extracted features (e.g., ASE differencing or P4J) of
code or patches [41, 27]. Although these methods circumvent the time expense
associated with program execution, they still entail manual effort in extracting
knowledge (patterns and features) relevant to patch correctness. Furthermore, this
manual knowledge may not be scalable across various scenarios, especially if it is
derived solely from specific domains or datasets. In summary, existing approaches for
addressing patch overfitting tend to be high-cost and this violates the original purpose
of APR: automation and efficiency. To mitigate the limitations, in this dissertation,
we propose heuristic-based static (un)supervised approaches that automatically learn
to identify patch correctness by capitalizing on advances in machine/deep learning
learners and pre-trained large-scale language models (LLM).

1.2.2 Challenges in Capturing Correct Patch Behavior
How to capture the semantics (a.k.a intention) of a patch remains a significant

challenge in patch correctness assessment. In the existing literature, hypotheses
regarding patch correctness typically focus on the change to the original code caused
by the patch. A widespread assumption is that bug fixes generally result in minimal
changes [42, 43, 44, 45, 46, 18]. Based on this assumption, researchers have explored
measurements of syntactic change in patches, such as AST node distance [41, 46] and
invariants difference [47, 48], to prioritize smaller patches, which are more likely to be
correct. Furthermore, researchers attempted to capture the behavior of code changes

4

1.2. Limitations and Challenges

by either extracting historical patterns [40, 49] that (in)correct patches (violate)
adhere to or by observing differences in dynamic test executions [2] between the
original and patched programs. Nevertheless, the extracted code change semantics
remain limited in practice, and the deep representation of the patch itself has not
been fully exploited. For instance, devising anti-patterns [40, 49] to represent all the
behavior of the overfitting patches is impossible for developers in real-world scenarios.
More importantly, few of the previous studies directly or explicitly investigate the
correct behavior of the patches that is relevant to the bug it aims to address. As
previously stated, the cause of patch overfitting is the failure of patches to implement
the intended correct behavior. Therefore, capturing correct patch behavior in relation
to the bug is necessarily crucial for patch correctness assessment in program repair.
As a matter of fact, correct patch behavior is practically implicit and difficult to
discern.

In general, while the challenges present difficulties, they also open doors to
opportunities. Seizing the opportunities, we proposed four research focuses, which
are static supervised or unsupervised learning approaches to assess patch correctness.
We employ LLMs in this dissertation to capture the behavior of the patches (code
change semantics) and assess their correctness by heuristically correlating the behavior
with the bug (which can be represented as failing test cases and bug reports).

5

Chapter 1. Introduction

1.3 Contributions
In this chapter, we provide a summary of the contributions of this dissertation as

follows:
• LEOPARD: Evaluating representation learning of code changes for

predicting patch correctness in program repair. Embeddings, through
representation learning, have been effectively employed in numerous prediction
tasks within software engineering research. However, the existing literature lacks
comprehensive experimental results for patch correctness prediction, leaving
room for further exploration. We study the benefit of learning code representa-
tions in order to learn deep features that may encode the properties of patch
correctness. Our empirical work mainly investigates different representation
learning approaches for code changes to derive embeddings that are amenable
to similarity computations. We report on findings based on embeddings pro-
duced by pre-trained and re-trained neural networks. Experimental results
demonstrate the potential of embeddings to empower learning algorithms in
reasoning about patch correctness: a machine learning predictor with BERT
transformer-based embeddings associated with logistic regression yielded an
AUC value of about 0.8 in the prediction of patch correctness on a dedupli-
cated dataset of 1000 labeled patches. Our investigations show that learned
representations can lead to reasonable performance when comparing against
the state-of-the-art approach which relies on dynamic information.
This work has led to a research paper published to the 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2020).

• PANTHER: Combining learned embeddings with engineered features
for accurate prediction of correct patches. The literature demonstrates
the potential of learned embeddings for patch correctness reasoning. How-
ever, it is unclear which feature type—learned embeddings or engineered
features—performs better in predicting correct patches and whether their com-
bination can enhance performance. By combining deep learned embeddings
and engineered features, we propose Panther (the upgraded version of Leop-
ard implemented in this work), which outperforms Leopard with higher
scores in terms of AUC, +Recall and -Recall, and can accurately identify more
(in)correct patches that cannot be predicted by the classifiers only with learned
embeddings or engineered features. Additionally, we use an explainable ML
technique, SHAP, to empirically interpret how the learned embeddings and
engineered features are contributed to the patch correctness prediction.
This work has led to a research paper published to the ACM Transactions on
Software Engineering and Methodology in 2023 (TOSEM 2023).

• BATS: An unsupervised learning-based approach to predict patch
correctness by checking patch Behaviour Against failing Test Speci-
fication. APR systems struggle to address the problem of patch overfitting,
given the incompleteness of available test suites. Our intuition is that we can
triage correct patches by checking whether each generated patch implements
code changes (i.e., behaviour) that are relevant to the bug it addresses. Such
a bug is commonly specified by a failing test case. Towards predicting patch
correctness in APR, we propose a novel yet simple hypothesis on how the

6

1.3. Contributions

link between the patch behaviour and failing test specifications can be drawn:
similar failing test cases should require similar patches. We then propose
BATS, an unsupervised learning-based approach to predict patch correctness
by checking patch Behaviour Against failing Test Specification. BATS exploits
deep representation learning models for code and patches: for a given failing test
case, the yielded embedding is used to compute similarity metrics in the search
for historical similar test cases to identify the associated applied patches, which
are then used as a proxy for assessing the correctness of the APR-generated
patches. Experimentally, we first validate our hypothesis by assessing whether
ground-truth developer patches cluster together in the same way that their
associated failing test cases are clustered. Then, after collecting a large dataset
of 1,278 plausible patches (written by developers or generated by 32 APR tools),
we use BATS to predict correct patches: BATS achieves AUC between 0.557
to 0.718 and recall between 0.562 and 0.854 in identifying correct patches. Our
approach outperforms state-of-the-art techniques for identifying correct patches
without the need for large labeled patch datasets; as is the case with machine
learning-based approaches. While BATS is constrained by the availability
of similar test cases, we show that it can still be complementary to existing
approaches: when combined with a recent approach that relies on supervised
learning, BATS improves the overall recall in detecting correct patches. We
finally show that BATS is complementary to the state-of-the-art PATCH-SIM
dynamic approach for identifying correct patches generated by APR tools.
This work has led to a research paper published to the ACM Transactions on
Software Engineering and Methodology in 2022 (TOSEM 2022).

• QUATRAIN: Correlating Descriptions of Bug and Code Changes
for Evaluating Patch Correctness. State-of-the-art approaches generally
validate patch correctness by reasoning the code changes and the test suites.
However, the bug targeted by the generated patch is rarely explicitly explored,
despite patches being designed to address specific buggy behaviors. We propose
a novel perspective to the problem of patch correctness assessment: a correct
patch implements changes that “answer” to a problem posed by buggy behavior.
Concretely, we turn the patch correctness assessment into a Question Answer-
ing problem. To tackle this problem, our intuition is that natural language
processing can provide the necessary representations and models for assessing
the semantic correlation between a bug (question) and a patch (answer). Specif-
ically, we consider as inputs the bug reports as well as the natural language
description of the generated patches. Our approach, Quatrain, first considers
state-of-the-art commit message generation models to produce the relevant
inputs associated to each generated patch. Then we leverage a neural network
architecture to learn the semantic correlation between bug reports and commit
messages. Experiments on a large dataset of 9 135 patches generated for three
bug datasets (Defects4j, Bugs.jar and Bears) show that Quatrain achieves
an AUC of 0.886 on predicting patch correctness, and recalling 93% correct
patches while filtering out 62% incorrect patches. Our experimental results
further demonstrate the influence of inputs quality on prediction performance.
We further perform experiments to highlight that the model indeed learns
the relationship between bug reports and code change descriptions for the

7

Chapter 1. Introduction

prediction. Finally, we compare against prior work and discuss the benefits of
our approach.
This work has led to a research paper published to the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2022).

8

1.4. Roadmap

1.4 Roadmap
The roadmap of this dissertation is illustrated in Figure 1.1. Chapter 2 introduces

the background of automated program repair, patch overfitting, and related work,
followed by a summary of literature addressing patch overfitting. Chapter 3 presents
an empirical study evaluating representation learning of code changes and proposes
a patch correctness prediction framework. Building upon this study, Chapter 4
develops an upgraded version of the framework (Panther) by combining learned and
engineered features of the patch, as well as offering an analysis of the explanations
behind the predictions. Chapter 5 introduces a novel hypothesis and approach,
BATS, which assesses patch correctness by identifying correct patch behavior based
on similarities between failing test cases and patches. In Chapter 6, we propose
a novel perspective on the problem of patch correctness assessment and present
Quatrain, an approach that evaluates patch correctness by learning the semantic
correlation between the bug report and the commit message of the patch. Chapter 7
concludes the dissertation, and Chapter 8 discusses future work.

Chapter 2: Background and Related Work
Automated Program Repair Patch Overfitting

Chatper 3
LEOPARD

Chapter 5
BATS

Chatper 4
PANTHER

Chapter 6
QUATRAIN

Chatper 7: Conclusion

Chatper 8: Further Work

Figure 1.1: Roadmap of this dissertation.

9

Chapter 1. Introduction

10

2 Background and Related Work

This chapter introduces the necessary concepts and related works for understanding
the objective, techniques, contributions and key concerns of the research studies that
we have conducted in this dissertation. Specifically, we present some technical details
and analysis of automated program repair and patch overfitting, respectively.

Contents
2.1 Automated Program Repair 12

2.1.1 Heuristic-Based Repair . 12
2.1.2 Constraint-Based Repair 13
2.1.3 Learning-Based Repair . 13

2.2 Patch Overfitting . 15
2.2.1 Empirical Studies of Patch Overfitting 17
2.2.2 Addressing Before Patch Generation 20
2.2.3 Addressing After Patch Generation 24

Chapter 2. Background and Related Work

2.1 Automated Program Repair
Automated Program Repair (APR) is an emerging domain in software engineering,

focusing on the automated detection and rectification of bugs or errors in software
programs. Utilizing advanced approaches, including heuristics, machine learning,
and LLMs, APR aims to enhance software development, maintenance, and quality
assurance processes while minimizing the resources required for manual debugging.
The generate-and-validate APR methodology generally comprises three stages: fault
localization, patch generation, and patch validation, as illustrated in Figure 2.1 and
detailed in the subsequent definitions. We present an overview of representative
APR tools, organized according to three prevalent categories: heuristic-based repair,
constraint-based repair, and learning-based repair [10].

}
 int index =
this.plot.getIndexOf(this);
 CategoryDataset
dataset =
this.plot.getDataset(index);
 if (dataset != null) {
 return result;
 }
 int seriesCount =
dataset.getRowCount();

}
 int index =
this.plot.getIndexOf(this);
 CategoryDataset
dataset =
this.plot.getDataset(index);
 if (dataset != null) {
 return result;
 }
 int seriesCount =
dataset.getRowCount();

}
 int index =
this.plot.getIndexOf(this);
 CategoryDataset
dataset =
this.plot.getDataset(index);
 if (dataset != null) {
 if (dataset == null) {
 return result;
 }
 int seriesCount =
dataset.getRowCount();

}
 int index =
this.plot.getIndexOf(this);
 CategoryDataset
dataset =
this.plot.getDataset(index);
 if (dataset == null) {
 return result;
 }
 int seriesCount =
dataset.getRowCount();

Buggy Program and
Test Oracle

Fault Localization Patch Generation Patch Validation

Figure 2.1: The pipeline of generate-and-validate program repair.

Definition 2.1.1 (Buggy Program) A buggy program is represented by the pair
(P , O), where P represents a program that fails to satisfy explicit or implicit oracle
O.

Definition 2.1.2 (Fault Localization) Given a buggy program (P , O), fault local-
ization is the systematic process of identifying the specific fault location(s) L within
the (P , O).

Definition 2.1.3 (Patch Generation) Given a buggy program (P , O) with identi-
fied fault location(s) L that fails to meet oracle O, patch generation involves creating
a candidate patch CP that transforms the buggy program P into a new program P ′.

Definition 2.1.4 (Patch Validation) For a buggy program (P , O) and its associ-
ated candidate patch (CP), patch validation is the process of assessing whether the
patch (CP) is able to transform the original program (P) into a new program (P ′)
that successfully complies with the explicit oracle (O).

2.1.1 Heuristic-Based Repair
Heuristic-based repair [50, 36, 51, 25, 52, 53, 16, 54, 38, 41] constitute a collection

of notable APR approaches that employ heuristics or predefined rules to guide
the search for potential bug fixes in software programs. This method leverages
search-based algorithms, genetic programming, and evolutionary algorithms for an
iterative exploration of the program modification space. It is commonly described as
a generate-and-validate process, where potential patches for suspicious bug locations
are generated and then validated against predefined oracles, such as test suites, to
evaluate their effectiveness in resolving the identified bugs. Genetic Programming
(GP) techniques, including GenProg [51], utilize evolutionary algorithms to evolve
a population of candidate patches over time. Search-based repair approaches, such
as RSRepair [52], SPR [53], and HDRepair [16], incorporate meta-heuristic search

12

2.1. Automated Program Repair

algorithms to traverse the patch search space. Template-based repair methods,
exemplified by tools like TBar [50] and PAR [54], generate candidate patches by
drawing upon predefined templates originating from common bug-fixing patterns.
Heuristic-based repair excels in efficiently exploring vast solution spaces and producing
diverse patches; however, it may not offer formal guarantees on patch correctness.
This limitation can potentially lead to overfitting patches and computationally
intensive search processes.

2.1.2 Constraint-Based Repair
In contrast to heuristic-based repair, constraint-based repair [55, 56, 57, 58, 59,

20, 60] represents another category of popular APR approaches that utilize formal
methods to model and address the program repair problem as a constraint satisfaction
or optimization problem. Upon identifying the faulty code, this method transforms
the extracted specifications and faulty code into a set of constraints representing
the desired program behavior, employing techniques such as symbolic execution,
abstract interpretation, and model checking. Subsequently, it leverages constraint
solvers like Satisfiability Modulo Theories (SMT) or constraint logic programming
to synthesize a patch that satisfies these constraints for the faulty code. Lastly, it
verifies the generated patch’s effectiveness by executing the test oracle. For example,
SemFix [20] and KLEE [60] use symbolic execution, a technique that analyzes
programs by substituting input values with symbolic expressions, to encompass all
possible values. This procedure generates constraints on these expressions, which
are then solved by a constraint solver to determine concrete input values that
satisfy the constraints. Concolic repair is a program analysis technique combining
concrete execution (running a program with specific input values) and symbolic
execution (replacing input values with symbolic expressions) to explore various paths
within a program. By integrating both techniques, concolic repair approaches like
CPR [56] can generate path constraints and uncover feasible inputs to cover multiple
execution paths, assisting in identifying and resolving software bugs. Constraint-based
repair, emphasizing system consistency, efficiently addresses constraint violations
and enhances the program’s reliability and robustness. However, this approach
may be limited by the scalability and complexity of constraint solvers, potentially
reducing its scalability to larger and more intricate programs. Furthermore, similar
to search-based APR tools, constraint-based methods may also suffer from patch
overfitting due to their reliance on weak test cases for correctness evaluation.

2.1.3 Learning-Based Repair
Recent advancement in APR is Learning-based repair [61, 62, 63, 15, 14, 12, 38, 64,

65], which leverages machine learning techniques such as deep learning, reinforcement
learning, and probabilistic modeling to identify patterns and generate patches based
on existing code or previous repair instances. This approach aims to capitalize on
the wealth of knowledge available in extensive code repositories to train models that
effectively synthesize bug-fixing patches with minimal human intervention. In deep
learning-based repair, tools like DeepFix [12] and RewardRepair [15] employ neural
machine translation (NMT) with sequence-to-sequence neural networks based on
encoder-decoder architectures to automatically learn the likelihood of correctness
for candidate patches and rank them accordingly, facilitating the discovery of the
correct patch. A significant breakthrough in learning-based repair is the use of

13

Chapter 2. Background and Related Work

LLMs. Codex [66, 62] (the model behind Github Copilot [67]), a state-of-the-art
language model developed by OpenAI, has demonstrated considerable potential in
the field of automated program repair. Built on the GPT-3 architecture, Codex
has been fine-tuned on a diverse range of programming languages and codebases,
allowing it to generate higher-quality bug fixes. ChatGPT [61, 68, 69, 70], a recently
introduced LLM, has garnered significant interest due to its reported exceptional
capabilities in automatically repairing software. It utilizes advanced supervised
instruction fine-tuning techniques and RLHF to adapt more effectively to specific
tasks or domains, substantially outperforming previous LLMs. The exhibited results
suggest that LLM-driven software engineering, such as LLM-based program repair,
holds a promising future. While learning-based repair can adapt to new domains
and contexts, as it depends on learning from past examples rather than predefined
heuristics or extracted constraints, it may be susceptible to overfitting issues. This
is because predictions are made based on the training dataset, which lacks new and
unseen knowledge, relying on historical memory rather than formal logical reasoning.

14

2.2. Patch Overfitting

2.2 Patch Overfitting
APR methodologies present an opportunity for developers to streamline debugging

through the generation of patches, which enable a flawed program to satisfy a given
oracle, such as a test suite. These patches are referred to as plausible patches. In
practice, through manual inspection, the test-passing patches are divided into two
categories: correct and overfitting. The correct patches implement the expected
behavior and effectively address the defects in realistic scenarios, while the overfitting
patches do not. We, in this dissertation, focus on the challenge of patch overfitting.
Patch overfitting in APR occurs when the generated patch repairs the given bug
in the context of the specific oracle but may not be a correct or general fix for the
underlying problem in the code. This problem leads to a diminished rate of defect
repair in real-world software applications. It is to be noted that the concept of patch
overfitting, also known as test overfitting, has been presented in the literature from
various perspectives. However, these differing interpretations of the causes of patch
overfitting may confuse associated readers, especially those new to the field. To
alleviate this, we classify patch overfitting into three categories based on its causes,
as follows:

• patch overfits to weak oracle. During the validation process, patches are
produced to satisfy the test oracle, which sets the correctness criteria. However,
given the oracle’s inherent weakness and inability to cover all potential facets
of the bug, the patches, though compliant with the current oracle, may still be
incorrect. It indicates that the incorrect patches fail to generalize. As a result,
APR tools tend to generate patches that overfit to the test oracle (e.g., test
suites) [26].

• patch overfits to incomplete specifications. In the generation process, the
APR execution is guided by program specifications, which may use test suites,
constraints, or static analyzers. These specifications typically depict the desired
program behaviors that the APR tools strive to satisfy with. Unfortunately,
only part of the required behaviors is explicitly specified. Therefore, the APR-
generated patches are prone to overfit to incomplete specifications [71, 11].

• patch overfits to training corpus. Recently, learning-based techniques (e.g.,
LLMs based repair) have progressively become central to APR approaches. We
thus propose a new perspective to introduce patch overfitting in the learning-
based APR techniques. In the terminology of machine learning, “overfitting”
typically denotes a model’s propensity to fit too closely to the training data,
consequently failing to generalize its performance to unseen or novel data. This
issue similarly pervades learning-based APR tools. These tools commonly rely
on a substantial training corpus—comprising codes or patches—to construct
sequence-to-sequence models for generating code to address faulty programs.
However, the synthesised patches may overfit to the patterns within the training
corpus, thereby failing to effectively repair new and unseen bugs.

In the preceding discussion, we present the causes of patch overfitting. Concur-
rently, existing literature [1] proposed the classification of overfitting patches based
on their impact on the original program. This classification operates under the
assumption of input space (I) of a program (P) in the context of object-oriented
programs. An input point consists of one or more objects interacting through method
calls. In typical repair scenarios, a bug only impacts a portion of the input domain,

15

Chapter 2. Background and Related Work

Figure 2.2: The classification of the overfitting patch [1].
termed the “buggy input domain” (Ibug). The remaining input domain, where
program behaviors are correct, is labeled as Icorrect. By definition, an automatic
program repair technique generates a patch that alters the behaviors of some input
domain (Ipatch). Patches can correctly or incorrectly change the original buggy
behaviors within Ibug, denoted as Ipatch1 and Ipatch=, respectively. Modifications to
the behaviors of input points within Icorrect can result in correct behaviors becoming
incorrect, denoted as Ipatch0. The total affected input domain (Ipatch) is the union of
Ipatch=, Ipatch1, and Ipatch0.

For a specified faulty program, an ideal patch should rectify all input points
within Ibug, while concurrently ensuring that no input points within Icorrect are
compromised. Nevertheless, due to the reasons discussed above, the patches that
are produced are often imperfect and typically exhibit overfitting. As per their
interaction with the input domains Ibug and Icorrect, two types of overfitting problems
have been discussed in the literature [1, 72].

Incomplete Fixing: The generated patch only repairs some, but not all, input
points within Ibug. In other words, Ipatch1 is a proper subset of Ibug (Ipatch1 ⊂ Ibug).

Regression Introduction: The generated patch broke some input points within
Icorrect. In other words, Ipatch0 is not an empty set (Ipatch0 ̸= ∅).

Building on these two distinct types of overfitting problems, three different cate-
gories of overfitting patches have been defined. Note that we assume the overfitting
patches have passed all inner test oracle.

A-Overfitting Patch: This type of overfitting patch exhibits the issue of
incomplete fixing, signified by Ipatch1 ⊂ Ibug ∧ Ipatch0 = ∅. This kind of overfitting
patch can be considered a “partial patch”.

B-Overfitting Patch: This type of overfitting patch is specifically characterized
by the regression overfitting issue (Ipatch1 = Ibug ∧ Ipatch0 ≠ ∅). It’s crucial to note
that this type of overfitting patch is capable of correctly rectifying all input points
within the buggy input domain (Ibug), yet simultaneously, it breaks certain previously
correct behaviors of the program.

AB-Overfitting Patch: This type of overfitting patch simultaneously exhibits

16

2.2. Patch Overfitting

both incomplete fixing and regression introduction problems (Ipatch1 ⊂ Ibug ∧ Ipatch0 ≠
∅). This particular type of overfitting patch rectifies some, but not all, input points
within the buggy input domain, Ibug, while also introducing certain regressions.

Figure 2.2 illustrates the three distinct types of overfitting patches.
By understanding the causes of patch overfitting and the different types of over-

fitting patches generated, the APR community can strategize and devise approaches
to effectively tackle the patch overfitting problem.

2.2.1 Empirical Studies of Patch Overfitting
The patch overfitting problem has held the attention of the APR community since

the analysis of patch plausibility and correctness was conducted [25]. Subsequent
research has taken diverse perspectives in conducting numerous empirical studies
on this problem. In this section, we review these works with the intention of both
enhancing understanding of the problem and providing inspiration for future research
endeavors.

Severity of patch overfitting. Initial researchers recognized the problem of
patch overfitting and consequently carried out empirical studies to assess the severity
of this issue [25, 26, 73]. Qi et al.[25] observed that the majority of patches produced
by GenProg[74], RSRepair [52], and AE [75] systems are semantically equivalent to a
single modification—eliminating functionality while still producing accurate outputs
for the inputs presented in the test suites. However, the patches are still incorrect as
they obviously break the untested functionality (i.e., regression introduction). The
quality of generated patches also drew the interest of Smith et al. [26]. They employed
independent test cases to evaluate plausible patches that had already passed all
training test cases used during the repair process. The insights revealed that patches
tend to overfit the training test suite, often breaking undertested functionality and
thereby resulting in incorrect outcomes. Their analysis of the correlation between
training suite coverage and patch overfitting demonstrated that test suites with higher
coverage tend to produce higher quality patches—i.e., less overfitting. This insight
serves as a stepping stone for future research on augmenting test cases to mitigate
patch overfitting [34, 35, 1, 37]. Furthermore, in order to assess whether a patch
could make the program worse, they compared the test passing rate before and after
patching the program. Their results indicated that TrpAutoRepair [76] patches are
more prone to break original undertested functionality, while GenProg [74] patches
exhibited lesser overfitting. In addition, the patches perform no worse than novice
developers who also overfit to training test cases.

Patch overfitting in different APR techniques. Inspired by prior works,
researchers started exploring the prevalence of patch overfitting in specific APR
techniques [77, 78, 79, 80]. Long et al.[77] offered a systematic analysis of the crucial
characteristics of patch search spaces examined by two APR systems—SPR [53] and
Prophet [38]. This kind of system applies transformations to suspicious statements to
generate patches. Concentrating on the density of correct and plausible patches, they
discovered that the explored search spaces often contained hundreds to thousands
of times more overfitting patches than correct ones. Additionally, larger search
spaces result in fewer correct patches, attributing this to the increased presence of
plausible patches that obstructed the identification of correct patches. Consequently,
exploiting information beyond the test suite to filter out plausible but overfitting
patches can potentially facilitate the isolation of correct patches. This insight

17

Chapter 2. Background and Related Work

prompted subsequent researchers to successfully harness relevant information sources,
such as bug reports [81, 82] and open-source code repositories [38, 41], to mitigate
patch overfitting. While previous studies have explored patch overfitting in heuristic-
based APR tools, semantic-based APR represents a different methodological branch.
This technique synthesizes program repair that complies with constraints extracted
from symbolic execution and test suites. Le et al. [78] examined semantic-based
APR techniques, systematically verifying, characterizing, and comprehending the
characteristics of overfitting within these under the IntroClass [83] and Codeflaws [84]
benchmarks. Following this, recent methods [56] are devised to tackle the unique
overfitting issues in these techniques. Dynamic APR approaches (i.e., require dynamic
execution of the program) typically achieve a high repair rate. Nilizadeh et al. [79]
endeavored to evaluate patch overfitting within dynamic APR. To validate patch
correctness, they proposed the use of formal methods (specification and verification)
as an independent standard. The experimental evaluation confirmed the existence of
overfitting within dynamic APR tools, despite the fact that around 59% of patched
programs were correct.

Difference between overfitting and correct patches. To better guide APR
approaches towards generating correct patches, researchers proposed examining the
differences between overfitting patches and correct ones [85, 48, 48, 86]. Wang et
al. [85] carried out an empirical study on APR-generated and developer-written
patches. From a statistical standpoint, they discovered that 25% of the correct patches
(primarily Same Location Different Modification (SLDM) and Different Location
Different Modification (DLDM)) produced by APR are syntactically different from
those written by developers, whereas the majority were identical. This finding implies
that future APR approaches might not necessarily need to generate patches that
are syntactically identical, but instead can concentrate on producing semantically
identical ones. Yang et al. [48] investigated the different runtime behaviors triggered
by correct patches and plausible yet overfitting patches. One intuitive assumption
about patch correctness is that a correct patch may have a greater impact on program
behavior when executed by failing test cases, and a lesser impact when executed
by passing ones. Overfitting patches, conversely, exhibit the opposite effect. Based
on this assumption, they proposed using Daikon [87] to infer program invariants
that represent runtime behavior, thereby quantifying the change in runtime behavior
between the buggy program and the correctly (or incorrectly) patched program.
Experimental results performed on the Defect4J benchmark [88] revealed that out
of 73 correct patches, 72 influenced the invariants generated from failing test cases,
and 43 also impacted the invariants generated from passing test cases. Finally, they
verified the presence of a difference in the invariants affected by correct and overfitting
patches, substantiating the feasibility of using program invariants to distinguish
between correct and overfitting patches. Bennett et al.[86] endeavored to analyze
several features contributing to the inaccuracies in plausible patches by comparing
them to developer-written patches. First, they examined patch size, building upon
the existing idea of assessing defect complexity based on the number of change actions
needed for a correct patch [30]. Their analysis suggested that APR tools struggle
with handling multiple actions simultaneously. In other words, patches that only
modify a single line are more prone to overfitting. This finding indicates a need for
the APR community to improve its ability to generate multi-line patches. Secondly,
they evaluated the impact of repair actions and discovered that overfitting patches

18

2.2. Patch Overfitting

more frequently occur in defects requiring the addition of a method call or a variable.
This insight provides direction for future APR tools to prioritize the synthesis of new
code, particularly concerning method calls and variables. Finally, they investigated
repair patterns. Defects necessitating the addition or removal of a try/catch block
or loop exhibited a strong correlation with overfitting patches. In conclusion, their
research scrutinized the characteristics of overfitting patches in relation to unfixed
defects, thereby shedding light on the limitations currently present in APR tools.

Benchmarks and metrics. Contrary to the previously mentioned studies, some
researchers have examined patch overfitting through the lens of benchmarks and
metrics, such as test suites [89, 90, 91, 29, 92, 71, 86, 93]. Defects4J [88], a large
dataset for software engineering, offers 835 reproducible bugs from a diverse array
of real-world, open-source Java projects, along with supporting infrastructure for
multiple research tasks, including program repair. To examine overfitting across
different programming languages or program repair techniques, Martinez et al.[90]
carried out a large-scale manual assessment on the 84 patches generated for Java
projects in the Defects4J dataset, contrasting them with the C projects in Qi et
al. [25]. Their findings are consistent with earlier work [25, 26], confirming that
most generated patches tend to overfit to incomplete test data. They validated the
prevalence of overfitting for Nopol [57] and discovered that they could not validate
the accuracy of 12 patches due to the absence of expert domain knowledge. These
results underscore the necessity for efficient patch correctness assessment techniques.
Meanwhile, Jiang et al. [91] manually analyzed Defects4J defects to provide a
human-centric explanation of failed overfitting patches. They successfully generated
plausible but overfitting patches for 6 out of 9 defects that could not be fixed. Upon
further inspection, they discovered that the test suites lacked sufficient information
to fully elucidate all aspects of the defects, resulting in incomplete and overfitting
patches. Their analysis also illuminated the potential for test case augmentation to
improve patch accuracy. Additionally, they investigated patch generation strategies,
suggesting that the strategy of returning expected output with a return statement
heavily relies on the developer’s experience to circumvent overfitting. Overall, despite
the problem of patch overfitting, existing test suites aided developers in resolving a
significant portion of defects on Defects4J, with 82% being successfully addressed.

QuixBugs [92], a widely-used benchmark, consists of 40 one-line defects equipped
with both failing and passing test cases. In an extensive study conducted by Ye et
al. [94], the repair status of bugs within QuixBugs was closely examined. It was
revealed that out of 40, 24 buggy programs had not been repaired by any of the ten
repair tools investigated by the authors. Further examination pointed to the fact that
the overfitting patches that were generated either failed to implement the mutation
of the operator or lacked the essential components necessary for the repair process.
Moreover, when considering patches, 53% (180 out of 338) of the unique (deduplicated)
patches created for QuixBugs were overfitting, thereby negatively impacting the
efficiency of APR tools and eroding the trust of engineers. Finally, they evaluated
the effectiveness of several automatic patch assessment techniques on QuixBugs. Test
generation-based approaches, RGTEvosuite [27] and RGTInputSampling [95], achieved
accuracies of 98% and 80%, respectively. However, the invariant detection-based
approach, GTInvariants [48], underperformed with an accuracy of 58%.

Zemin et al.[89] assessed the suitability of test cases as proxy acceptance metrics
for automated program repair. They investigated the performance of APR tools like

19

Chapter 2. Background and Related Work

Nopol [57], GenProg [74], Angelix [58], and AutoFix [96] in conjunction with various
sizes of test suites. Their experimental findings suggested that larger test case sizes
help reduce overfitting patches for Nopol, a synthesis-based technique, but not for
other tools. Liu et al. [29] proposed the creation of bias-limited metrics to evaluate
the performance of APR systems from different perspectives. This was prompted by
the shift away from plausible patches as the primary metrics due to the prohibitive
cost of assessing correct patches. They calculated the number of invalid patches that
must be verified before finding a plausible patch, which could serve as a platform-
independent and reliable metric for comparing the effectiveness of state-of-the-art
approaches. Additionally, by evaluating the applicability of state-of-the-art solutions,
they noted the risk of current APR systems or generated patches overfitting to used
benchmarks. This insight encourages researchers to enhance the ability of APR tools
to generate more generalized patches.

2.2.2 Addressing Before Patch Generation

Fault Localization
Fault localization (FL), the first step in APR, aims to identify potential locations

of faults in code space for further repair. While it is often treated as a separate process
from patch generation, the correctness of generated patches is heavily dependent
on the FL [97, 98, 91, 99, 100, 101, 102]. Therefore, researchers began to attempt
to investigate the early stage (FL) of the APR pipeline to prevent the subsequent
emergence of overfitting patches. Since our topic is related to patch overfitting, we
only present the works that aim to address patch overfitting by explicitly correlating
FL and patch correctness instead of the ones that only focus on improving FL itself.
I. Heuristic focused.
Based on heuristic, researchers propose integrating FL techniques to facilitate the
generation of high-quality patches [103, 104]. Mechtaev et al. [103] presented a novel
approach that aims to find simpler patches than state of the art APR tools as well
as minimize the impact on the original program structure. The motivation of their
work is that simple patches are often preferred by researchers and are more likely
to be accepted [105, 106]. The existing APR tools are prone to produce complex
patches as their fault localization was an independent process that is conducted
before patch generation, and thus does not include the computation of the simplicity
of repairs. To obtain simple patches, the authors, for the first time, integrated fault
localization and patch generation into one process, making the selection decision
of fault location considering the simplicity of repair patches. The experimental
results showed that DirectFix, a tool implemented by authors, generated simpler
patches than SemFix [20], causing substantially less frequent program regression
errors (i.e., patch overfitting). Xu et al. [104] hypothesized that candidate patches,
which successfully pass part of the test suites that the original program with bugs
failed, are likely to be closer to the correct solution. They thus proposed retrospective
fault localization, which reuses instead of just discarding, the candidate patches
that fail on validation to enhance the quality of patches when integrating with APR
techniques.
II. Precision focused.
Other researchers attempted to improve the accuracy of FL for enhancing the
generation of correct fixes [107, 108, 109, 50, 99, 110]. For instance, based on the

20

2.2. Patch Overfitting

rich state-based abstraction of the program’s behavior, JAID [108, 109] improves
the accuracy of fault localization and the generation of state-modifying patches.
Correspondingly, JAID generates accurate patches based on the semantic analysis
that determines how to alter the object state to prevent failure. Koyuncu et al. [107]
explored bug report information-driven program repair built on Information Retrieval
(IR)-based fault localization. Experimental analysis from the Defects4J dataset
indicates that fault localization based on IR tends to produce fewer overfitted
patches compared to Spectrum-based fault localization methods when suggesting
code modifications. Their proposed APR system, iFixR, is capable of generating and
prioritizing more correct patch recommendations for a diverse range of user-reported
bugs. Afzal et al. [99] developed a semi-automated program repair tool SOSRepair⊕,
which is provided with manually-specified candidate fault locations. Compared with
SOSRepair using spectrum-based fault localization, the results show that SOSRepair⊕

produced twice as many high-quality patches (16 versus 9) that pass all held-out tests.
Motwani et al. [110] built a novel FL technique SBIR that combines a spectrum-based
(SBFL) technique and Blues, an unsupervised FL strategy at the statement level,
which utilizes bug reports and tests. SBIR has demonstrated its ability to rank buggy
statements as more suspicious than those that are not faulty, thereby significantly
minimizing repair failures attributed to localization inaccuracies and improving patch
quality for FL-sensitive APR tools. Xu et al. [102] employed value-flow analysis to
rank suspicious buggy statements for their repair operation. By accurately selecting
a repair location and implementing the correct operation, they identified potential
Null Pointer Exceptions (NPEs) that were not triggered by the provided test suite,
resulting in the generation of correct patches.

While current approaches have made strides in utilizing FL techniques to mitigate
patch overfitting, they come with their own sets of challenges. Heuristic-based
methods, though designed for the simplicity of the patch, can produce patches
that are misleadingly elegant yet incorrect—demonstrating that simplicity is not
synonymous with accuracy. Conversely, methods focused on precision often incur high
computational costs and are still susceptible to generating a multitude of overfitting
patches, despite accurate FL. This leaves users with the tough task of distinguishing
between correct and incorrect patches. Moreover, these approaches generally fail to
capture the semantics of the underlying fault, a crucial element for aligning with
the behavior of a genuinely correct patch. As a result, merely fine-tuning FL is
insufficient for capturing the semantic nuances of correct patches in the context of
patch overfitting. Our research aims to directly tackle this issue by focusing on
efficiently evaluating patch correctness through a nuanced understanding of their
semantic behavior, particularly in relation to a bug.

Patch Generation
Researchers employ diverse techniques to construct methodologies for auto-

generating patches for programs with bugs. However, initial APR tools, owing
to their disregard for the weakness of the test oracle, tend to generate overfitting
patches [25]. As the APR community has recognized the significance of patch
overfitting, efforts have been directed towards optimizing patch generation tools.
The objective is to enhance the quality of the patches produced, thus avoiding the
direct generation of overfitting patches.
I. Heuristic based.

21

Chapter 2. Background and Related Work

By enhancing the search optimization process for specifications or codes, researchers
address overfitting in heuristic-based APR [111, 103, 112, 41, 113, 16, 114]. As
previously discussed, there exists the risk of patches overfitting to incomplete specifi-
cations. Some research suggests driving APR through historical open-source codes.
Ke et al. [111] argued that human-written code often embodies a subtle understanding
of correctness that may not be wholly represented by partial test suites. Therefore,
reusing such code has a higher probability of yielding patches that coincide with the
desired functionality (i.e., unwritten specification). They proposed the construction
of input-output profiles to guide a code semantic search for larger blocks of human-
written code, such as entire method bodies, which are more likely to satisfy the
unwritten specification of correct program behavior compared to randomly generated
smaller fixes. Likewise, Le et al. [16] extracted fixing patches in revision control
systems of previous software to inform the construction of candidate patches. Besides,
the fixed history is used to help assess the quality and fitness of the patches in the
selection phase. On the other hand, van Tonder et al. [112] observed that prior
strategies often overfit to the available dynamic specifications of desired behavior,
such as test suites. Consequently, they introduced FootPatch, a static approach that
takes into account the logical encoding and semantic implications of searching for the
existing program fragments via a repair query to satisfy repair specifications. They
argued that their approach, which places an explicit emphasis on editing semantic
effects, prevents patch overfitting.

Certain studies focus on devising methods to give priority to correct fixing
ingredients within a pool of plausible ones. For instance, to pursue high-quality
patches, Le et al. [41] formulated a two-phase approach. Firstly, they utilize dynamic
symbolic execution on the provided test cases to automatically derive examples that
act as a specification of the correct behavior. Secondly, they employ a domain-
specific language (DSL) to systematically tailor and restrict the solution search space.
An enumeration-based method is then used for efficiently traversing this space to
synthesize solutions with broad scalability. Finally, they proposed a patch quality
ranking strategy based on syntactic and semantic distance.

Navigating the fine granularity search space, which has a higher likelihood of
containing correct fixing components, also brings with it the challenge of a more
complex search process. To address this, Wen et al. [46] developed a context-
aware prioritization method for mutation operators to constrict the search space.
Furthermore, they enhanced the efficiency of the search process by prioritizing more
likely correct patches using three novel models trained on context information of
AST nodes. Their evaluations illustrate that their approach is capable of generating
plausible patches for 25 bugs of the Defects4J benchmark, with 21 of them being
correct, thereby achieving a high precision rate of 84%.
II. Constraint based.
By refining the constraints employed to guide the synthesis of patches, researchers
address overfitting in constraint-based APR [44, 115, 116, 1, 117]. Directly returning
the test oracle of the failed test in a repair can be regarded as overfitting because a test
oracle is usually designed for a specific test input instead of generalized other inputs
outside. Xiong et al. [44] revisited the repair operation by synthesizing the precise
conditions (i.e., specifications) at the buggy location. The precise conditions enable
ACS, a Java program repair tool developed by them, to generate precise patches, that
have a relatively high probability of being correct. Mechtaev et al. [115] investigated

22

2.2. Patch Overfitting

the potential to infer missing specifications of intended behaviors from correct
reference implementations. A reference program can be regarded as an alternate
implementation of the same functionality and is commonly available for software
such as web servers, libraries, and database management systems. Specifically, given
a reference program and an input condition, they deduce a symbolic summary of
the path conditions and symbolic output states, which are subsequently used as
a specification. Leveraging these inferred specifications, their proposed method,
SemGraft, generated a larger quantity of repairs equivalent to developer patches.
This suggests that their approach provides additional correctness assurances on the
generated patches and is able to scale effectively to real-world programs, including
those such as GNU Coreutils [118] and Busybox [119].

Several tools, like SemFix [20] and Nopol [57], rely on constraints extracted
from human-written test suites, which can often be incomplete. To address this,
Yu et al. [1] proposed the enhancement of these test suites using EvoSuite to establish
more robust associated constraints. On the other hand, Shariffdeen et al. [56] rely
on user-provided specifications, e.g., a constraint on some specific behavior. They
employed concolic path execution to concurrently explore both the input space and
the patch space. Meanwhile, they reduced the pool of patch candidates by excluding
any patches that failed to meet user-provided specifications. Additionally, they
deprioritized patches that significantly altered the behavior of the original program.
Gao et al. [117] extracted constraints from the symbolic execution of the partial path
of the program to repair security vulnerabilities. The constraints are generalizable
and can provide additional guarantees in generating crash-free patches.
III. Learning based.
By utilising or optimizing machine learning models, researchers address overfitting
in learning-based APR [38, 15]. Prophet [38] conducted the first attempt to develop
an APR system using machine learning methodologies that harness the properties of
correct codes. The approach taken by this system involves the use of transformation
schemas, staged program repair, and condition synthesis [53] in order to produce a
search space filled with partially instantiated candidate patches carrying key variables.
Then, Prophet employs a machine learning model, trained on program value features,
to attribute and rank probabilities to patches in descending order of their correctness
score. The results demonstrate that out of 19 defects successfully repaired by Prophet
and other state-of-the-art systems, Prophet managed to rank the correct patch first
in the list of candidate patches for 15 of them, whereas the other systems achieved
this for only 11. Previous NMT-based program repair studies have solely optimized a
loss function that is purely syntactic, focusing only on characters and tokens, without
integrating any program-specific semantics during the optimization of neural network
weights. Ye et al. [15] proposed RewardRepair to avoid overfitting in NMT-based
program repair. This method involves optimizing a loss function, incorporating the
execution information from new test cases, generated based on the ground truth
patched program. They introduced a regression discriminator which delineates
behavior beyond the range of developer-written tests, thus rewarding the network to
adjust weights for the production of non-overfitting patches.

Despite advances in APR methods to minimize patch overfitting, each strategy
has its drawbacks. Heuristic-based approaches excel in generating simpler patches but
may compromise on correctness and generalizability. Constraint-based methods often
necessitate exhaustive specifications or depend on potentially incomplete test suites,

23

Chapter 2. Background and Related Work

risking overfitting. Learning-based models, such as machine learning and neural
networks, might produce patches that are syntactically correct but semantically
flawed due to their limitations in understanding code semantics. Extending search
constraints can reduce overfitting but also limits the discovery of truly correct
solutions, creating a trade-off between avoiding overfitting and finding a reliable,
generalizable patch. In contrast, our research maintains an unrestricted patch space,
using statistical techniques to efficiently identify correct patches post-generation.
Additionally, we introduce hypotheses to capture the semantic relationship between
correct patches and the underlying bugs.

2.2.3 Addressing After Patch Generation

Patch Validation
Once the patches have been produced, they undergo a validation process against

a test oracle to evaluate their correctness. While not perfect, test oracle can reveal
potential defects or vulnerabilities in patched programs by acting as approximations
of the program’s intended behavior [26]. Researchers proposed enhancing the test
oracle to uncover defects in the patched program with the goal of filtering out
overfitting patches in advance.
I. Reference based.

The human-written patch, which encodes the correct program behavior, is re-
garded as an oracle. Some research proposed to generate new test cases through the
oracle [35, 27, 78, 1]. Xin et al. [35] introduced DiffTGen, a methodology developed
to identify test-suite-overfitted patches. The approach begins by formulating new
test inputs, highlighting semantic variances between the original buggy program
and the human-written corrected version. These semantic differences guide the
subsequent testing of the patched program, and yield additional test cases. Finally,
the incorporated test cases not only enhance its robustness but also prevent the
future generation of similarly overfitting patches. An evaluation of DiffTGen was
conducted on 89 patches produced by four APR tools for Java, 79 of which were
suspected to be overfitting and incorrect. The results showed that DiffTGen success-
fully identified 39 (49.4%) overfitting patches, generating the associated test cases.
By implementing Random Testing based on Ground Truth (RGT), Ye et al. [27]
generated additional test cases to distinguish program behavior between ground
truth patches and program repair patches, with the goal of filtering out overfitting
patches. This strategy led to a 190% performance improvement for DiffTGen on
the same benchmark. However, these approaches assume the presence of a reference
patch (expected behaivor), which is often not accessible in real-world scenarios.
II. Non-Reference based.

To scale to realistic applications, researchers have proposed approaches that
operate without such a reference [34, 36, 37, 2, 120, 121]. To that end, Yang et al. [34]
suggested creating new test cases by implementing a fuzz strategy on the inputs
of existing test cases. Furthermore, they supplemented the weak test oracle with
crash and memory-safety oracles to improve the validity checking of the generated
patches, e.g., whether they contained a memory-related bug. Similarly, Gao et al. [36]
introduced crash-freedom as a new oracle to eliminate crashing plausible patches.
Their goal was to narrow down the realm of correct patches by distinguishing crash-
free ones from the entire plausible patch set. More specifically, they prioritized new

24

2.2. Patch Overfitting

tests generated by a grey-box fuzzing strategy that covered functionalities differing
across plausible patch candidates. Such a test suite is more likely to distinguish
between crash-free and crashing patches. However, these methods do not tackle
the issue associated with the absence of expected behavior in the programs being
tested. Smith et al. [37] put forward a method for learning an automatic oracle
that can predict labels for newly generated test cases, drawing on program inputs
and actual outputs. This strategy leverages these generated labeled test cases to
enrich the original test suite, aiming to efficiently eliminate overfitting patches.
Gissurarson et al. [121] introduced properties in addition to unit tests to address
patch overfitting. Although the number of programs that can be patched has not
increased, the solutions were found to be less overfit.

While patch validation strategies help mitigate overfitting risks, they have inherent
limitations. Reference-based approaches assume the presence of a human-generated
patch as an oracle, an assumption often impractical in real-world contexts. On the
other hand, non-reference-based methods are more scalable but rely on heuristics
such as fuzzing or crash-freedom, potentially overlooking domain-specific issues and
nuanced bug semantics. Our research uses artificial intelligence heuristically to
capture the essential semantics of a correct patch, bypassing the need for a strong
test oracle.

Patch Correctness
Although test oracle ensures a certain level of quality for patches generated during

patch validation, the correctness of these patches remains subject to further scrutiny.
Upon the large number of plausible patches [28] and developers’ willingness to
review a few of them [31], researchers proposed various approaches for automatically
assessing patch correctness. Technically, utilizing diverse sources of information
related to patch correctness, they aim to heuristically prioritize or identify the correct
patches while filtering out overfitting ones. By automating the evaluation of patch
correctness, the research is aimed at reducing the human burden involved in reviewing
plausible patches generated by patch generation tools.
I. Patch focused.
Given that the patch is the subject of patch correctness assessment, lots of approaches-
mostly static-have been proposed to exploit patch-focused information [40, 116, 41,
44, 46, 47, 122, 123, 123, 48, 124, 47, 124, 125, 126, 49, 27, 127, 128]. To guarantee
the correctness of the generated patches, researchers adopted author annotation,
i.e., manually evaluate whether a patch is semantically equivalent to the developer-
written patch [129, 17, 130, 131, 132]. Although this method is effective, it places a
substantial demand on human effort when a large number of plausible patches need
to be validated. Moreover, it requires the availability of a developer-written patch, a
pre-condition that possibly is not feasible in real-world bug-fixing scenarios.

Tan et al. [40] proposed the construction of a set of anti-patterns, with the
premise that patches infringing these rules should be classified as incorrect. More
specifically, they undertook a manual analysis of both APR-generated and human-
written patches, from which they deduced a number of prohibited transformations.
Utilizing these transformations, the authors devised related anti-patterns that, when
incorporated into the search-based APR process, serve to eliminate overfitting patches.
There is a widely-used hypothesis that small code change (patch) is more likely
to be correct [42, 43, 45, 18]. Based on the hypothesis, a large number of studies

25

Chapter 2. Background and Related Work

investigated the similarity between buggy and patched codes to prioritize or identify
correct patches [116, 41, 44, 46, 47, 123, 123, 48, 124]. Le et al. [41] and Wen et al. [46]
integrated a patch prioritization component into their repair tools to select more
correct patches by comparing the code changes in different measurements such as
AST differencing, Cosine similarity, etc. Cashin et al. [47] clustered semantically
similar patches by distinguishing the patch differences through formal invariants,
reducing the number of patches to be reviewed by developers. Ghanbari et al. [124]
employed a quantitative method to examine the syntactic and semantic similarity
between a patched program and its original version based on the production and
test codes. Their proposed technique, Shibboleth, initially determines token-level
syntactic similarity by constructing vectors based on the frequency of tokens across
all patched methods, which is then measured by comparing the cosine similarity.
Shibboleth [124] leverages dynamic execution to calculate the cosine similarity of
what is referred to as the Statement-Count Spectra for the program both pre/post-
patching. This combined approach allows for a comprehensive and nuanced analysis
of program modifications.

Machine learning and pre-trained language models have been employed to learn
and extract information from codes or patches, thereby enabling the reasoning of
patch correctness [125, 126, 49, 27]. Csuvik et al. [125] use representation learning
embedding models Doc2vec and Bert to encode patch codes to filter out the patches
that make larger changes. Following up on it, Lin et al. [126] also utilized the
power of representation learning techniques. Instead of encoding the code tokens
of the patch, they proposed to capture more contextual and structural information
by leveraging the AST path of the buggy statements, patched statements and
unchanged context. There have been other works that investigated the naturalness
difference between buggy code and correct code [133, 38]. Inspired by these studies,
Kang et al. [49] suggested the use of language models to evaluate the naturalness of a
patch, thereby reasoning about its correctness. Experimental results have shown that
the prioritization of patch naturalness by language models often surpasses the default
prioritization strategies employed by five APR tools. Ye et al. [27] developed ODS,
a static supervised learning based system to classify correct and overfitting patches.
ODS leverages diverse syntactic code features such as code description, repair pattern,
and contextual information. These features are extracted from a large-scale labeled
patch dataset, with their characteristics captured at the granularity of the AST.

While APR tools aim to generate patches aligning with the developer’s goals, the
incompleteness of the associated specifications often inhibits these generated patches
from achieving their intention. Phung et al. [127] conducted an analysis extracting
the method names from faulty code snippets, which they interpreted as indicative
of the original developer’s intention. Following this, they employed Code2Vec to
extract the semantic meaning - essentially, the actual behavior - embedded within
the patch code. In the final step, they computed a similarity score between the
extracted intended and actual behaviors, using this metric to identify patches with
low similarity scores as likely incorrect solutions. Unlike the previous approaches,
Gao et al. [39] propose a human-in-the-loop patch evaluation scenario in which
developers review question-answer sets to select the correct patches. Their approach
involves automatically translating patch semantics into what and how questions,
which respectively represent the desired program behaviors and the necessary program
modifications to achieve these behaviors. Developers then pose what questions to

26

2.2. Patch Overfitting

choose answers from a range of Angelic values [134], and how questions to select the
patches. This interactive method of patch generation and recommendation simplifies
the process for developers, enabling them to identify the correct patch without
the need for detailed comprehension and analysis of the semantic changes across a
multitude of plausible patches.
II. Bug focused.
Bug, being the target addressed by a generated patch, is intrinsically tied to the
patch’s correctness. Numerous studies have delved into bug-focused information to
discern the correctness of associated patches [2, 135, 136, 137, 124, 138, 139, 140, 141].
Compared with the aforementioned approaches, most of these bug-focused approaches
tend to be dynamic as they execute passing or failing test suites to observe the
behavior of the program. Xiong et al. [2] proposed to monitor the change in the
execution traces of tests before and after the application of a patch. Their core
intuition was that a correct patch would lead to substantial behavioral differences
in failing test cases, while the behavior of passing test cases retain similar to the
previous state. Acting on this presumption, they devised PATCH-SIM - a dynamic,
test-based approach to identify overfitting patches by calculating the distance between
the test executions on the original program and the patched program, eliminating
the necessity for oracles. Martinez et al. [137] proposed a test-based clustering
approach xTestCluster, which groups together patches that yield identical outputs
when applied to the same failing test cases. The underlying argument is that patches
demonstrating identical behavior for a given bug are semantically equivalent. As
such, only one patch from each cluster needs to be reviewed by developers, optimising
the patch verification process and saving valuable time and resources.

High-quality test suites are usually unavailable in practice, and the generated
patches are prone to overfit to weak test suites. Yan et al. [136] proposed an approach
that does not depend on user-provided test inputs. Instead, their method utilizes
micro-execution to generate five distinct types of data: micro-trace code sequences,
micro-trace value sequences, instruction position sequences, opcode/operand position
sequences, and architecture sequences. This collected data serves as an approximation
of the program’s behavior, enabling the calculation of functional semantic similarity
at the binary level. Finally, by embedding the gathered micro-execution features
of the patches, they developed classifiers trained to determine the correctness of
the patches. ROSE [138] retorts to the execution of an error-related routine on the
current call stack and everything it calls, which are considered efficient for duplicating
the buggy problem. Lee et al. [139] aim at validating Java null pointer exceptions
(NPEs) patches when no tests are provided. Their approach first involves learning a
null-handling model to predict and generalize the patterns developers use to fix issues.
Using this predictive model, they proceed to obtain results from symbolic execution,
which interprets NPE-triggering expressions in the buggy program, represented as
the repair specification. Finally, the patched program’s behavior is validated against
the inferred specifications.

Despite notable advancements, existing techniques for patch correctness assess-
ment have significant limitations. Dynamic methods, which often rely on test
augmentation or runtime analysis, face two main issues. First, they struggle with
the "test oracle problem," as accurate specifications for the expected output are
frequently unavailable. Second, runtime analysis can be resource-intensive, requiring
multiple executions of test cases. Consequently, these dynamic approaches are often

27

Chapter 2. Background and Related Work

impractical for real-world use. On the static analysis front, whether pattern-based
or learning-based, manual effort is indispensable for tasks like feature extraction,
limiting the approaches’ generalizability. Furthermore, two overarching challenges
must be addressed to effectively assess patch correctness. The first challenge is the
efficient representation of the patch’s behavior. Existing methods based on syntax
or semantics offer limited insights into the behavior of the code change. The second
challenge revolves around the relationship between the bug and the patch. Current
state-of-the-art techniques usually focus on the code changes and occasionally the
test cases, but rarely examine the correspondence between the patch’s behavior
and the original bug. Our research seeks to assess patch correctness by specifically
targeting the semantic behavior of correct patches in relation to the associated bug,
thereby overcoming these two challenges.

28

3 Learning Representation of Code
Changes for Patch Correctness

In this chapter, we study the benefit of learning code representations in order to learn
deep features that may encode the properties of patch correctness. Our empirical work
mainly investigates different representation learning approaches for code changes
to derive embeddings that are amenable to similarity computations. We report on
findings based on embeddings produced by pre-trained and re-trained neural networks.
Experimental results demonstrate the potential of embeddings to empower learning
algorithms in reasoning about patch correctness.

This chapter is based on the work published in the following research paper:

• Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques
Klein, and Tegawendé F. Bissyandé. Evaluating representation learning of code
changes for predicting patch correctness in program repair. In Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 981-992. 2020.

Contents
3.1 Overview . 31
3.2 Background . 33

3.2.1 Patch Plausibility and Correctness 33
3.2.2 Distributed Representation Learning 33

3.3 Study Design . 35
3.3.1 Research Questions . 35
3.3.2 Datasets . 35
3.3.3 Model input pre-processing 35
3.3.4 Embedding models . 36

3.4 Experiments and Results 39
3.4.1 RQ-1: Similarity Measurements for Buggy and Patched

Code using Embeddings 39
3.4.2 RQ-2: Filtering of Incorrect Patches based on Similarity

Thresholds . 42
3.4.3 RQ-3: Classification of Correct Patches with supervised

learning . 44

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

3.5 Discussions . 49
3.5.1 Experimental Insights . 49
3.5.2 Threats to validity . 50

3.6 Related Work . 51
3.7 Conclusion . 53

30

3.1. Overview

3.1 Overview
Automation in software engineering has recently reached new heights with the

promising results recorded in the research direction of automated program repair
(APR) [142, 9]. While a few techniques try to model program semantics and synthesize
execution constraints towards producing quality patches, they often fail to scale to
large programs. Instead, the large majority of research contributions [143] explore
search-based approaches where patch candidates are generated and then validated
against an oracle.

In the absence of strong program specifications, test suites represent affordable
approximations that are widely used as the oracle in APR. In their seminal approach
to test-based APR, Weimer et al. [144] considered that a patch is acceptable as soon
as it makes the program pass all test cases in the test suite. Since then, a number of
studies [25, 26] have explored the overfitting problem in patch validation: a given
patch is synthesized to pass a test suite and yet is incorrect with respect to the
intended program specification. Since limited test suites only weakly approximate
program specifications, a patched program can indeed satisfy the requirements
encoded in the test cases, and present a behavior outside of those tests that are
significantly different from the behavior initially expected by the developer.

Overfitting patches constitute a key challenge in generate-and-validate APR
approaches. Recent evaluation campaigns [145, 50, 132, 146, 46, 147, 107, 100, 19, 33]
on APR systems are stressing on the importance of estimating the correctness ratio
among the valid patches that can be found. To improve this ratio, researchers are
investigating several research directions. We categorize them in three main axes that
focus on actions before, during or after patch generation:
• test-suite augmentation: Yang et al. [34] proposed to generate better test cases to

enhance the validation of patches, while Xin and Reiss [35] opted for increasing
test inputs.

• curation of repair operators: approaches such as CapGen [46] successfully demon-
strated that carefully-designed (e.g., fine-grained fix ingredients) repair operators
can lead to more correct patches.

• post-processing of generated patches: Long and Rinard [38] studied some heuristics
to discard patches that are likely overfitting.
Our work is related to the latter thrust. So far, the state-of-the-art works

targeting the identification of patch correctness are mainly implemented based on
computing the similarity of test case execution traces [2]. Ye et al. [148] followed up
by presenting preliminary results suggesting that statically-extracted code features
at the syntax level could be used to predict overfitting patches. While such an
approach is appealing, the feature engineering effort can be huge when researchers
target generalizable approaches. To cope with this problem, Csuvik et al. [125]
have proposed a preliminary small-scale study on the use of embeddings: leveraging
pre-trained natural language sentence embedding models, they claim to have been
able to filter out 45% incorrect patches generated for 40 bugs from the QuixBugs
dataset [149].

This paper. Embeddings have been successfully applied to various prediction
tasks in software engineering research [150, 151, 13, 152]. For patch correctness
prediction, the literature does not yet provide extensive experimental results to guide
future research. Our work fills this gap. We investigate in this paper the feasibility

31

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

of leveraging advances in deep representation learning to produce embeddings that
are amenable to reasoning about correctness.
❶ We investigate different representation learning models adapted to natural language

tokens and source code tokens that are more specialized to code changes. Our
study considers both pre-trained models and the retraining of models.

❷ We empirically investigate whether, with learned representations, the hypothesis
of minimal changes incurred by correct patches remains valid: experiments are
performed to check the statistical difference between similarity scores yielded by
correct patches and those yielded by incorrect patches.

❸ We run exploratory experiments assessing the possibility to select cutoff similarity
scores between learned representations of buggy code and patched code fragments
for heuristically filtering out incorrect patches.

❹ Finally, we investigate the discriminative power of deep learned features in a
classification training pipeline aimed at learning to predict patch correctness.

32

3.2. Background

3.2 Background
Our work deals with various concepts and techniques from the fields of program

repair and machine learning. We present the relevant details in this section to facilitate
readers’ understanding of our study design and the scope of our experiments.

3.2.1 Patch Plausibility and Correctness
Defining patch correctness is a non-trivial challenge in automated program

repair. Until the release of empirical investigations by Smith et al. [26], actual
correctness (w.r.t. program behavior intended by developers) was seldom used as
a performance criterion of patch generation systems. Instead, experimental results
were focused on the number of patches that make the program pass all test cases.
Such patches are actually only plausible. Qi et al. [25] demonstrated in their study
that an overwhelming majority of plausible patches generated by GenProg [153],
RSRepair [52] and AE [75]) are overfitting the test suite while actually being incorrect.
To improve the probability of program repair systems to generate correct patches,
researchers have mainly invested in strengthening the validation oracle (i.e., the test
suites). Opad [34], DiffTGen [35], UnsatGuided [1], PATCH-SIM/TEST-SIM [2]
generate new test inputs that trigger behavior cases which are not addressed by
APR-generated patches.

More recent works [148, 125] are starting to investigate static features and
heuristics (or machine learning) to build predictive models of patch correctness.
Ye et al. [148] presented the ODS approach which relates to our study since it
investigated machine learning with static features extracted from Java program
patches. Their approach however builds on carefully hand-crafted features, which
may not generalize to other programming languages or even to varied datasets. The
study of Csuvik et al. [125] is also closely related to ours since it explores BERT
embeddings to define similarity thresholds. Their work however remains preliminary
(it does not investigate the discriminative power of features) and has been performed
at a very small scale (single pre-trained model on 40 one-line bugs from simple
programs).

3.2.2 Distributed Representation Learning
Learning distributed representations have been widely used to advance several

machine learning-based software engineering tasks [154, 155, 156, 157, 158]. In
particular, embedding techniques such as Word2Vec [159], Doc2Vec [159] and
BERT [155] have been successfully applied to different semantics-related tasks such as
code clone detection [160], vulnerability detection [161], code recommendation [162],
and commit message generation [163].

By building on the hypothesis of code naturalness [164, 165], a number of software
engineering research works have also leveraged the aforementioned approaches for
learning distributed representations of code [166, 13]. Alon et al. [167] have then
proposed code2vec, an embedding technique that explores AST paths to take into
account structural information in code. More recently, Hoang et al. [163] have
proposed CC2Vec, which further specializes to code changes. Our work explores
different techniques across the spectrum of distributed representation learning. We
therefore consider four variants from the seemingly-least specialized to code (i.e.,
Doc2Vec) to the state of the art for code change representation (i.e., CC2Vec).

Doc2Vec [159] is an unsupervised framework mostly used to learn continuous

33

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

distributed vector representations of sentences, paragraphs and documents, regardless
of their lengths. It works on the intuition, inspired by the method of learning word
vectors [168], that the document representation should be good enough to predict the
words in the document. Doc2Vec has been applied in various software engineering
tasks. For example, Wei and Li [160] leveraged Doc2Vec to exploit deep lexical
and syntactical features for software functional clone detection. Ndichu et al. [161]
employed Doc2Vec to learn code structure representation at AST level to predict
JavaScript-based attacks.

BERT [155] is a language representation model that has been introduced by
an AI language team in Google. BERT is devoted to pre-train deep bidirectional
representations from unlabelled texts. Then a pre-trained BERT model can be
fine-tuned to accomplish various natural language processing tasks such as question
answering or language inference. Zhou et al. [162] employed a BERT pre-trained
model to extract deep semantic features from code name information of programs
in order to perform code recommendation. Yu et al. [169] even leveraged BERT on
binary code to identify similar binaries.

code2vec [167] is an attention-based neural code embedding model developed to
represent code fragments as continuous distributed vectors, by training on AST paths
and code tokens. Its embeddings have notably been used to predict the semantic
properties of code fragments [167], in order, for instance, to predict method names.
Compton et al. [170] recently leveraged code2vec to embed Java classes and learn
code structures for the task of variable naming obfuscation.

CC2Vec [163] is a specialized hierarchical attention neural network model which
learns vector representations of code changes (i.e., patches) guided by the associated
commit messages (which is used as a semantic representation of the patch). As the
authors demonstrated in their large empirical evaluation, CC2Vec presents promising
performance on commit message generation, bug fixing patch identification, and
just-in-time defect prediction.

34

3.3. Study Design

3.3 Study Design
First, we overview the research questions that we investigate. Then we present

the datasets that are leveraged to answer these research questions. Finally, we discuss
the actual training of (or use of pre-trained) models for embedding the code changes.

3.3.1 Research Questions
RQ1: Do different representation learning models yield comparable distributions

of similarity values between buggy code and patched code? A widespread
hypothesis in program repair is that bug fixing generally induce minimal
changes [43, 44, 45, 132, 145, 50, 46, 144, 171, 18, 42]. We propose to investigate
whether embeddings can be a reliable means for assessing the extent of changes
through computation of cosine similarity between vector representations.

RQ2: To what extent similarity distributions can be generalized for inferring a
cutoff value to filter out incorrect patches? Following up on RQ1, We propose in
this research question to experiment ranking patches based on cosine similarity
of their vector representations, and rely on naively-defined similarity thresholds
to decide on filtering of incorrect patches.

RQ3: Can we learn to predict patch correctness by training classifiers with code
embeddings input? We investigate whether deep learned features are indeed
relevant for building machine learning predictors for patch correctness.

3.3.2 Datasets
We collect patch datasets by building on previous efforts in the community. An ini-

tial dataset of correct patches is collected by using five literature benchmarks, namely
Bugs.jar [172], Bears [173], Defects4J [88], QuixBugs [92] and ManySStuBs4J [174].
These are developer patches as committed in open source project repositories.

We also consider patches generated by APR tools integrated into the RepairThe-
mAll framework. We use all patch samples released by Durieux et al. [28]. This
only includes sample patches that make the programs pass all test cases. They are
thus plausible. However, no validation information on correctness was given. In
this work, we proceed to manually validate the generated patches, among which
we identified 900 correct patches. The correctness validation follows the criteria
defined by Liu et al. [175], which involves comparing the APR-generated patch to
the developer-provided patch found in the benchmark.

In a recent study on the efficiency of program repair, Liu et al. [175] released a
labeled dataset of patches generated by 16 APR systems for the Defects4J bugs. We
consider this dataset as well as the labeled dataset that was used to evaluate the
PATCH-SIM [2] approach.

Overall, Table 3.1 summarizes the data sets that we used for our experiments.
Each experiment in Section 3.4 has specific requirements on the data (e.g., large
patch sets for training models, labeled datasets for benchmarking classifiers, etc.).
For each experiment, we will recall which sub-dataset has been leveraged and why.

3.3.3 Model input pre-processing
Samples in our datasets are patches such as the one presented in Figure 3.1

extracted from the Defects4J dataset. Our investigations with representation learning
however require input data about the buggy and patched code. A straightforward

35

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

Table 3.1: Datasets of Java patches used in our experiments.
Subjects contains incorrect patches contains correct patches labelled dataset # Patches
Bears [173] No Yes - 251
Bugs.jar [172] No Yes - 1,158
Defects4J [88]† No Yes - 864
ManySStubBs4J [174] No Yes - 34,051
QuixBugs [92] No Yes - 40

RepairThemAll [28] Yes Yes No‡ 64,293
Liu et al. [175] Yes Yes Yes 1,245
Xiong et al. [2] Yes Yes Yes 139

Total 102,041
†The latest version 2.0.0 of Defects4J is considered in this study.
‡The patches are not labeled in [28]. We support the labeling effort in this study by comparing the generated
patches against the developers’ patches. The 2,918 patches for IntroClassJava in [28] are also excluded from
our study since IntroClassJava is a lab-built Java benchmark transformed from the C program bugs in small
student-written programming assignments from IntroClass [83].

approach to derive those inputs would be to consider the code files before and after
the patch. Unfortunately, depending on the size of the code file, the differences could
be too minimal to be captured by any similarity measurement. To that end, we
propose to focus on the code fragment that appears in the patch. Thus, to represent
the buggy code fragment (cf. Figure 3.2), we keep all removed lines (i.e., starting
with ‘-’) as well as the patch context lines (i.e., those not starting with either ‘-’,
‘+’ or ‘@’). Similarly, the patched code fragment (cf. Figure 3.3) is represented by
added lines (i.e., starting with ‘+’) as well as the same context lines. Since tool
support for the representation learning techniques BERT, Doc2Vec, and CC2Vec
require each input sample to be on a single line, we flatten multi-line code fragments
into a single line.

--- source/org/jfree/chart/renderer/category/
AbstractCategoryItemRenderer.java

+++ source/org/jfree/chart/renderer/category/
AbstractCategoryItemRenderer.java

@@ -1795,6 +1795,6 @@ public abstract class
AbstractCategoryItemRenderer

int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);

- if (dataset != null) {
+ if (dataset == null) {

return result;
}

Figure 3.1: Example of a patch for the Defects4J bug Chart-1.
In contrast to BERT, Doc2Vec, and CC2Vec, which can take as input some syntax-

incomplete code fragments, code2vec requires the fragment to be fully parsable in
order to extract information on Abstract Syntax Tree paths. Since patch datasets
include only text-based diffs, code context is generally truncated and is likely not
parsable. However, as just explained, we opt to consider only the removed/added
lines to build the buggy and patched code input data. By doing so, we substantially
improved the success rate of the JavaExtractor tool used to build the tokens in the
code2vec pipeline.

3.3.4 Embedding models
When representation learning algorithms are applied to some training data, they

produce embedding models that have learned to map a set of code tokens in the
vocabulary of the training data to vectors of numerical values. These vectors are

36

3.3. Study Design

1: a/source/org/jfree/chart/renderer/category/
AbstractCategoryItemRenderer.java

2: int index = this.plot.getIndexOf(this);
3: CategoryDataset dataset = this.plot.getDataset(index)

;
4: if (dataset != null) {
5: return result;
6: }

Figure 3.2: Buggy code fragment associated to patch in Fig. 3.1.
1: b/source/org/jfree/chart/renderer/category/

AbstractCategoryItemRenderer.java
2: int index = this.plot.getIndexOf(this);
3: CategoryDataset dataset = this.plot.getDataset(index)

;
4: if (dataset == null) {
5: return result;
6: }

Figure 3.3: Patched code fragment associated to patch in Fig. 3.1.

patch

Code representation

buggy code

patched code

buggy code
vector

patched code
vector

Bert, Doc2Vec or Code2Vec
embedding model

Preprocessing

Figure 3.4: Producing code fragment learned embeddings with BERT, Doc2Vec
and code2vec.
also referred to as embeddings. Figure 3.4 illustrates the process of embedding buggy
code and patched code for the purpose of our experiments.

The embedding models used in this work are obtained from different sources and
training scenarios.
• BERT. In the first scenario, we consider an embedding model that initially targets

natural language data, both in terms of the learning algorithm and in terms of
training data. The network structure of BERT, however, is deep, meaning that it
requires large datasets for training the embedding model. As it is now custom in
the literature, we instead leverage a pre-trained 24-layer BERT model, which was
trained on a Wikipedia corpus.

• Doc2Vec. In the second scenario, we consider an embedding model that is trained
on code data but using a representation learning technique that was developed
for text data. To that end, we have trained the Doc2Vec model with code data of
36,364 patches from the 5 repair benchmarks (cf. Table 3.1).

• code2vec. In the third scenario, we consider an embedding model that primarily
targets code, both in terms of the learning algorithm and in terms of training
data. We use in this case a pre-trained model of code2vec, which was trained by
the authors using ~14 million code examples from Java projects.

37

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

• CC2Vec. Finally, in the fourth scenario, we consider an embedding model that
was built in representation learning experiments for code changes. However,
the pre-trained model that we leveraged from the work of Hoang et al. [163] is
embedding each patch into a single vector. We investigate the layers and identify
the middle CNN-3D layer as the sweet spot to extract embeddings for buggy code
and patched code fragments. Figure 3.5 illustrates the process.

Trained	CC2vec	model

patch

3D	CNN	
layer	

Lookup	em
bedding

Fully	connected
layer

Output	
layer

buggy	code	
vector

patched	code	
vector

CC2Vec	code	representation

Figure 3.5: Extracting code fragment learned embeddings from CC2Vec pre-trained
model.

38

3.4. Experiments and Results

3.4 Experiments and Results
We present the experiments that we designed to answer the research questions

of our study. For each experiment, we state the objective, overview the execution
details before presenting the results.

3.4.1 RQ-1: Similarity Measurements for Buggy and Patched
Code using Embeddings

[Objective]: We investigate the capability of different learned embeddings to
capture the (dis)similarity between buggy code fragments and the (in)correctly-
patched ones. The experiments are performed towards providing answers for two
sub-questions:

• RQ-1.1 Is correctly-patched code actually similar to buggy code based on learned
embeddings?

• RQ-1.2 To what extent is buggy code more similar to correctly-patched code
than to incorrectly-patched code?

[Experimental Design for RQ-1.1]: Using the four embedding models consid-
ered in our study (cf. Section 3.3.4), we produce the learned embeddings for buggy
and patched code fragments associated to 36k patches from five repair benchmarks
shown in Table 3.2. In this case, the patched code fragment is the correctly-patched
code fragment since it comes from labeled benchmark data (generally representing
human-written patches). Given those learned embeddings (i.e., deep learned rep-
resentation vectors of code), we compute the cosine similarity between the vectors
representing the buggy and correctly-patched code fragments.

Table 3.2: Datasets used for assessing the similarity between buggy code and
correctly-patched code.

Bears Bugs.jar Defects4J ManySStuBs4J QuixBugs Total
Patches 251 1,158 864 34,051 40 36,3641

[Experimental Results for RQ-1.1]: Figure 3.6 presents the boxplots of the
similarity distributions with different embedding models and for samples in different
datasets. Doc2Vec and code2vec models appear to yield similarity values that are
lower than BERT and CC2Vec models.

Model

BERT

CC2Vec

code2Vec

Doc2Vec

0

20

40

60

80

100

Defects4JBugs.jarBears QuixBugsManySS

Si
m

ila
rit

y
(%

)

Figure 3.6: Distributions of similarity scores between correctly-patched code
fragments and buggy ones.

Figure 3.7 zooms in the boxplot region for each embedding model experiment to
overview the differences across different benchmark data. We obverse that, when
embedding the patches with BERT, the similarity distribution for the patches in

39

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

Defects4J dataset is similar to Bugs.jar and Bears dataset, but is different from
the dataset ManySStBs4J and QuixBugs. The Mann-Whitney-Wilcoxon (MWW)
tests [176, 177] confirm that the similarity of median scores for Defects4J, Bugs.jar and
Bears is indeed statistically significant. MWW tests further confirms the statistical
significance of the difference between Defects4J and ManySStBs4J/QuixBugs scores.

●●
●
●

●●●
●●●●●●●
●●●●
●●●●
●●●●

●●
●●
●●
●●●●●
●●●●
●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●

●

●

●●

70

80

90

100

D4JBjBears QBMSS

Si
m

ila
rit

y
(%

)

(d) Doc2Vec.

●
●

●

●

●

●

●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●
●●

●

●

40

60

80

100

D4JBjBears QBMSS

Si
m

ila
rit

y
(%

)

●
●●●
●
●●
●●●
●●●●●●

●

●●●
●
●
●
●●●
●●●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●

●●
●

●●
●●●●
●
●●
●
●●●
●●●●●●
●●●
●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●

●●
●
●●●●
●●●●●
●●
●●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●●

●

●
●●

9999999999

100100100100100100

D4JBjBears QBMSS

Si
m

ila
rit

y
(%

)

●●
●
●●●

●

●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●
●

●●●● ●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●●
●●
●●
●●
●●●
●●

●
●●

●

99

100

D4JBjBears QBMSS

Si
m

ila
rit

y
(%

)

(a) BERT. (b) CC2Vec. (c) code2vec.

Figure 3.7: Zoomed views of the distributions of similarity scores between correct
and buggy code fragments.

Defects4J, Bugs.jar and Bears include diverse human-written patches for a
large spectrum of bugs from real-world open-source Java projects. In contrast,
ManySStuBs4J only contains patches for single statement bugs. Quixbugs dataset is
further limited by its size and the fact that the patches are built by simply mutating
the code of small Java implementation of 40 algorithms (e.g., quicksort, levenshtein,
etc.).

While CC2Vec and Doc2Vec exhibit roughly similar performance patterns with
BERT (although at different scales), the experimental results with code2vec present
different patterns across datasets. Note that, due to parsing failures of code2vec, we
eventually considered only 118 Bears patches, 123 Bugs.jar patches, 46 Defects4J
patches, 20,840 ManySStuBs4J patches and 8 QuixBugs. The change of dataset size
could explain the difference with the other embedding models.

✍ RQ-1.1 ▶ learned embeddings of buggy and correctly-patched code fragments
exhibit high cosine similarity scores. Median scores are similar for patches that
are collected with similar heuristics (e.g., in-the-wild patches vs single-line patches
vs debugging example patches). The pre-trained BERT natural language model
captures more similarity variations than the CC2Vec model, which is specialized
for code changes.◀

[Experimental Design for RQ-1.2]: To compare the similarity scores of
correctly-patched code fragment vs incorrectly-patched code fragment to the buggy
one, we consider combining datasets with correct patches and datasets with incorrect
patches. Note that, all patches in our experiments are plausible since we are focused
on correctness: plausibility is straightforward to decide based on test suites. Correct
patches are provided in benchmarks. However, all the benchmarks in our study
do not contain incorrect patches. Therefore, we rely on the dataset released by
Liu et al. [175]: 674 plausible but incorrect patches generated by 16 repair tools for
184 Defects4J bugs are considered from this dataset. Those 674 incorrect patches
are selected within a larger set of incorrect patches by adding the constraint that
the incorrect patch should be changed the same code location as the developer-

1Due to parsing failures, code2vec learned embeddings are available for 21,135 patches.

40

3.4. Experiments and Results

Table 3.3: Scenarios for similarity distributions comparison.
Scenario Incorrect patches Correct patches
Imbalanced-all2 674 incorrect patches

by 16 APR tools [175]
for 184 Defects4J bugs.

36,364 correct patches from 5 benchmarks in Table 3.2.
Imbalanced-Defects4J 864 correct patches from Defects4J.
Balanced-Defects4J 184 correct patches for the 184 Defects4J bugs.

provided patch in the benchmark: such incorrect patch cases may indeed be the
most challenging to identify with heuristics.

We consider three scenarios to select correct patches for the comparison of the
similarity scores. (1) Imbalanced-all, a quick intuition is that we compare the 674
incorrect patches against all correct patches from 5 benchmarks. (2) Imbalanced-
Defects4J, we only use the correct patches from Defects4J. We design the second
scenario because the correct patches from other benchmarks may create a sample bias.
(3) Balanced-Defects4J, we use the correct patches for the 184 Defects4J bugs that
the 674 incorrect patches target. In this scenario, incorrect and correct sets have the
same number of patches. We design this to avoid the underlying bias of imbalanced
sets. The comparison is done with different scenarios specified in Table 3.3.

[Experimental Results for RQ-1.2]: In this experiment, we further assess
whether incorrectly-patched code exhibits different similarity score distributions than
correctly-patched code. Figure 3.8 shows the distributions of cosine similarity scores
for correct patches (i.e., similarity between buggy code fragments and correctly-
patched ones) and incorrect patches (i.e., similarity between buggy code fragments
and incorrectly-patched ones). The comparison is done with different scenarios
specified in Table 3.3.

● ●●● ● ● ●● ●

● ● ● ● ●●●● ● ● ●● ● ● ●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ●● ● ● ●●●● ●●●●● ● ●●●●●●●●●●●●●●●●●● ●●

CC2Vec

99 100

● ●●●● ●● ●●● ●●

● ●● ● ● ● ● ● ● ● ● ●●●● ●● ● ●● ●●● ● ● ●● ●●●● ●● ●● ●●●●●●●● ● ●● ●●●● ●●●● ● ●●●●●● ●●●●

●● ●● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●●●●●● ●● ● ●● ●● ● ●● ●●●●● ●●●●●●● ●● ● ●●●●●●●●●●●●● ●● ●●●● ● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

BERT

95 96 97 98 99 100

BERT

CC2Vec

Doc2Vec

0 20 40 60 80 100
Similarity (%)

Datasets
Incorrect code
Correct code from Inbalanced−all
Correct code from Inbalanced Defects4J
Correct code from Balanced Defects4J

100 100

Zoomed in CC2Vec and BERT

Figure 3.8: Comparison of similarity score distributions for code fragments in
incorrect and correct patches.

The comparisons do not include the case of learned embeddings for code2vec.
Indeed, unlike the previous experiment where code2vec was able to parse enough
code fragments, for the considered 184 correct patches of Defects4J, code2vec failed
to parse most of the relevant code fragments. Hence, we focus the comparison on the
other three embedding models (pre-trained BERT, trained Doc2Vec and pre-trained
CC2Vec). Overall, we observe that the distribution of cosine similarity scores is
substantially different for correctly-patched and incorrectly-patched code fragments.

We observe that the similarity distributions of buggy code and patched code from
incorrect patches are significantly different from the similarities for correct patches.
The difference of median values is confirmed to be statistically significant by an

2Except for Defects4J, there are no publicly-released incorrect patches for APR datasets.

41

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

MWW test. Note that the difference remains high for BERT, Doc2Vec and CC2Vec
whether the correctly-patched code is the counterpart of the incorrectly-patched ones
(i.e., the scenario of Balanced-Defects4J) or whether the correctly-patched code is
from a larger dataset (i.e., Imbalanced-Defects4J scenarios). As for the comparison
with the dataset of Imbalanced-all, the heuristic remains valid but note it may be
affected by other benchmarks, i.e., the different bugs caused the results.

✍ RQ-1.2 ▶ learned embeddings of code fragments with BERT, CC2Vec and
Doc2Vec yield similarity scores that, given a buggy code, substantially differ
between correctly-patched code and incorrectly-patched one. This result suggests
that similarity score can be leveraged to discriminate correct patches from incorrect
patches.◀

3.4.2 RQ-2: Filtering of Incorrect Patches based on Similarity
Thresholds

[Objective]: Following up on the findings related to the first research question,
we investigate the selection of cut-off similarity scores to decide on which APR-
generated patches are likely incorrect. Results from this investigation will provide
insights to guide the exploitation of code learned embeddings in program repair
pipelines.

[Experimental Design]: To select threshold values, we consider the distributions
of similarity scores from the above experiments (cf. Section 3.4.1). Table 3.4
summarizes relevant statistics on the distributions on the similarity scores distribution
for correct patches. Given the differences that were exhibited with incorrect patches
in previous experiments, we use, for example, the 1st quartile value as an inferred
threshold value.
Table 3.4: Statistics on the distributions of similarity scores for correct patches of
Bears+Bugs.jar+Defects4J.

Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 90.84 99.47 99.73 99.86 100 99.54
CC2Vec 99.36 99.91 99.95 99.98 100 99.93
Doc2Vec 28.49 85.80 92.60 96.10 99.89 89.19
code2vec 2.64 81.19 93.63 98.87 100 87.11

Given our previous findings that different datasets exhibit different similarity
score distributions, we also consider inferring a specific threshold for the QuixBugs
dataset (cf. statistics in Table 3.5).
Table 3.5: Statistics on the distributions of similarity scores for correct patches of
QuixBugs.

Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 95.63 99.69 99.89 99.95 99.97 99.66
CC2Vec 99.60 99.94 99.99 100 100 99.95
Doc2Vec 55.51 89.56 96.65 97.90 99.72 91.29
code2vec 81.16 98. 53 100 100 100 97.06

Our test data is constituted of 64,293 patches generated by 11 APR tools in
the empirical study of Durieux et al. [28]. First, we use the four embedding models
to generate learned embeddings of buggy code and patched code fragments and
compute cosine similarity scores. Second, for each bug, we rank all generated patches

42

3.4. Experiments and Results

Table 3.6: Filtering incorrect patches by generalizing thresholds inferred from
Section 3.4.1.Results.

Dataset Bears,Bugsjar,Defects4J QuixBugs
Correct Patches 893 7
Incorrect Patches 61,932 1,461
Model/Metric/Threshold 1st Qu. Mean 1st Qu. Mean

+CP 57 49 4 4
-IP 48,846 51,783 1,387 1,378

+Recall 6.4% 5.5% 57.1% 57.1%BERT

-Recall 78.9% 83.6% 94.9% 94.3%
+CP 797 789 4 4
-IP 19,499 23,738 1,198 1,255

+Recall 89.2% 88.4% 57.1% 57.1%CC2Vec

-Recall 31.5% 38.3% 82.0% 85.9%
+CP 794 771 7 7
-IP 25,192 33,218 1,226 1,270

+Recall 88.9% 86.3% 100% 100%Doc2Vec

-Recall 40.7% 53.6% 83.9% 86.9%
“# +CP” means the number of correct patches that can be ranked upon the threshold, while “#
-IP” means the number of incorrect patches that can be filtered out by the threshold. “+Recall”
and “-Recall” represent the recall of identifying correct patches and filtering out incorrect patches,
respectively.

based on the similarity scores between the patched code and the buggy one, where
we consider that the higher the score, the more likely the correctness. Finally, to
filter incorrect candidates, we consider two experiments:

1. Patches that lead to similarity scores that are lower to the inferred threshold
(i.e., 1st quartile in previous experimental data) will be considered as incorrect.
Patches where patched code exhibit higher similarity scores than the threshold
are considered correct.

2. Another approach is to consider only the top-1 patches with the highest similarity
scores as correct patches. Other patches are considered incorrect.

In all cases, we systematically validate the correctness of all 64,293 patches to have
the correctness labels, for which the dataset authors did not provide (all plausible
patches having been considered as valid). First, if the file(s) modified by a patch
are not the same buggy files in the benchmark, we systematically consider it as
incorrect: with this simple scheme, 33,489 patches are found incorrect. Second, with
the same file, if the patch is not making changes at the same code locations, we
consider it to be incorrect: 26,386 patches are further tagged as incorrect with this
decision (cf. Threats to validity in Section 3.5). Finally, for the remaining 4,418
plausible patches in the dataset, we manually validate correctness by following the
strict criteria enumerated by Liu et al. [175] to enable reproducibility. Overall, we
could label 900 correct patches. The remainders are considered as incorrect.

[Experimental Results]: By considering the patch with the highest (top-1)
similarity score between the patched code and buggy code as correct, we were able
to identify a correct patch for 10% (with BERT), 9% (with CC2Vec) and 10% (with
Doc2Vec) of the bug cases. Overall we also misclassified 96% correct patches as
incorrect. However, only 1.5% of incorrect patches were misclassified as correct
patches.

Given that a given bug can be fixed with several correct patches, the top-1
criterion may not be adequate. Furthermore, this criterion makes the assumption

43

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

that a correct patch indeed exists among the patch candidates. By using filtering
thresholds inferred from previous experiments (which do not include the test dataset
in this experiment), we can attempt to filter all incorrect patches generated by APR
tools. Filtering results presented in Table 3.6 show the recall scores that can be
reached. We provide experimental results when we use 1st quartile and Mean values
of similarity scores in the “training” set as threshold values. The thresholds are
also applied by taking into account the datasets: thresholds learned on QuixBugs
benchmark are applied to generated patches for QuixBugs bugs.

✍ RQ-2 ▶Building on cosine similarity scores, code fragment learned embeddings
can help to filter out between 31.5% with CC2Vec and 94.9% with BERT of incorrect
patches. While BERT achieves the highest recall of filtering incorrect patches, it
produces learned embeddings that lead to a lower recall (at 5.5%) at identifying
correct patches.◀

3.4.3 RQ-3: Classification of Correct Patches with supervised
learning

[Objective]: Cosine similarity between embeddings (which was used in the
previous experiments) considers every deep learned feature as having the same
weight as the others in the embedding vector. We investigate the feasibility to
infer, using machine learning, the weights that different features may present with
respect to patch correctness. We compare the prediction evaluation results with the
achievements of related approaches in the literature.

[Experimental design]: To perform our machine learning experiments, we first
require a ground-truth dataset. To that end, we rely on labeled datasets in the
literature. Since incorrect patches generated by actual APR tools are only available
for the Defects4J bugs, we focus on labeled patches provided by two independent
teams (Liu et al. [175] and Xiong et al. [2]). Very few patches generated by the
different tools are actually labeled as correct, leading to an imbalanced dataset.
To reduce the imbalance issue, we supplement the dataset with developer (correct)
patches as supplied in the Defects4J benchmark. Eventually, our dataset shown in
Table 3.7 included 1000 patches after removing duplicates to avoid data bias.

Table 3.7: Dataset for evaluating ML-based predictors of patch correctness.
Correct patches Incorrect patches Total

Liu et al. [175] 137 502 639
Xiong et al. [2] 30 109 139
Defects4J (developers) [88] 356 0 356
Whole dataset 523 611 1134
Final Dataset (deduplicated) 468 532 1000

Our ground truth dataset patches are then fed to our embedding models to
produce embedding vectors. As for previous experiments, the parsability of Defects4J
patch code fragments prevented the application of code2vec: we use pre-trained
models of BERT (trained with natural language text) and CC2Vec (trained with
code changes) as well as a retrained model of Doc2Vec (trained with patches).

Since the representation learning models are applied to code fragments inferred
from patches (and not to the patch themselves), we collect the embeddings of both
buggy code fragment and patched code fragment for each patch. Then we must
merge these vectors back into a single input vector for the classification algorithm.

44

3.4. Experiments and Results

We follow an approach that was demonstrated by Hoang et al. [163] in a recent work
on bug fix patch prediction: the classification model performs best when features
of patched code fragment and buggy code fragment are crossed together. We thus
propose a classification pipeline (cf. Figure 3.9) where the feature extraction for a
given patch is done by applying subtraction, multiplication, cosine similarity and
euclidean similarity to capture crossed features between the buggy code vector and
the patched code vector. The resulting patch embedding has 2*n+2 dimensions
where n is the dimension of input code fragment embeddings. The values of the
dimension n for BERT, Doc2Vec and CC2Vec are set as 1024, 64 and 64, respectively.

Feature	extractor

Cc2vec

patches

buggy	code
fragments

patched	code
fragments

Preprocessing

Input

code	representation	learning	m
ethod

Bert

Doc2vec

n

Feature	crosses

n

Train	&
	test

Classifiers

Logistic	regression

Decision	tree

Naive	Bayes

Eb

Ep 2*n+2

sub

multi

cosine
Euclidian

Figure 3.9: Feature engineering for correctness classification.
[Experimental Results]: We compare the performance of different predictors

(varying the embeding models) using different learners (i.e., classification algorithms).
Results presented in Table 3.8 are averaged from a 5-fold cross validation setup.
All classical metrics used for assessing predictors are reproted: Accuracy, Precision,
Recall, F1-Measure, Area Under Curve (AUC). Logistic Regression (LR) applied to
BERT embeddings yield the best performance measurements: 0.720 for F1 and 0.808
for AUC.

Table 3.8: Evaluation of representation models on three ML classifiers.
Classifier Embedding Acc. Prec. Recall. F1 AUC

DecisionTree
BERT 63.6 62.0 57.3 59.6 0.632

CC2Vec 69.0 66.9 68.0 67.2 0.690
Doc2Vec 60.2 57.4 57.7 57.5 0.600

Logistic regression
BERT 74.4 73.8 70.3 72.0 0.808

CC2Vec 73.9 72.5 72.0 72.0 0.788
Doc2Vec 66.3 65.3 59.9 62.3 0.707

Naive bayes
BERT 60.3 55.6 77.0 64.5 0.642

CC2Vec 58.0 65.4 22.7 28.5 0.722
Doc2Vec 66.3 69.4 49.8 57.9 0.714

✍ RQ3.1 ▶ An ML classifier trained using Logistic Regression with BERT
embeddings yield very promising performance on patch correctness prediction (F-
Measure at 72.0% and AUC at 80.8%). ◀

[Comparison against the state of the art]. There are two related
works for patch prediction which were both evaluated on 139 patches released by

45

Chapter 3. Learning Representation of Code Changes for Patch
Correctness
Table 3.9: Comparison of incorrect patch identification between PATCH-SIM (uses
dynamic information) and BERT+ LR (uses embeddings statically inferred from
patches).

Ground Truth PATCH-SIM BERT + LR
Project Incorrect Correct Incorrect Correct Incorrect Correct

excluded (%) excluded excluded (%) excluded
Chart 23 3 14(60.9%) 0 16(69.6%) 0
Lang 10 5 6(54.5%) 0 1(10%) 0
Math 63 20 33(52.4%) 0 23(36.5%) 0
Time 13 2 9(69.2%) 0 3(23.1%) 0
Total 109 30 62(56.3%) 0 43(39.4%) 0

Xiong et al. [2]. PATCH-SIM [2] compares execution traces of patched programs to
identify correctness. ODS [148] leverages manually-crafted features to build machine
learning classifiers.

We consider the 139 patches as test set and the remainder in our dataset (870 =
1000−1303) for training. Note that the 139 patches are associated to bug cases where
repair tools can generate patches. These patches may thus be substantially different
from the rest in our dataset. Indeed our best learner (Logistic Regression with
BERT embeddings) yields an AUC of 0.765, i.e., the overall capability of classifying
correct patches. The Receiver Operating Characteristic (ROC) curve is presented in
Figure 3.10.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

AUC = 0.765

Figure 3.10: Performance of ML patch correctness predictor using BERT/Logistic
Regression: Test set from [2].

In the validation of PATCH-SIM [2], the authors aimed for avoiding to filter
out any correct patches. Eventually, when guaranteeing that no correct patch is
excluded, they could still exclude 62 (56.3%) incorrect patches. If we constrain the
threshold of our predictor to avoid misclassifying any correct patch (threshold value
= 0.219), our predictor is able to exclude up to 43 (39.4%) incorrect patches, which
represents a reasonably promising achievement since no dynamic information is used
(in contrast to PATCH-SIM). Table 3.9 overviews the prediction results comparison.

We also compare the predictive power of our models against that of ODS [148],
which builds on manually engineered features. We directly compare against the
results reported by the authors on the 139 test patches. While the pre-trained BERT

39 patches in the ground truth dataset by Xiong et al. [2] were duplicates (e.g., Patch151 ≡
Patch23).

46

3.4. Experiments and Results

Table 3.10: Confusion matrix of ML predictions based on BERT embedddings with
different thresholds.

Learners AUC Thresholds
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.765

#TP 30 30 24 19 16 12 10 6 4
#TN 13 37 61 79 85 95 100 106 108
#FP 96 72 48 30 24 14 9 3 1
#FN 0 0 6 11 14 18 20 24 26

RF 0.751

#TP 30 30 29 26 20 12 4 2 0
#TN 1 1 6 32 79 102 107 108 109
#FP 108 108 103 77 30 7 2 1 0
#FN 0 0 1 4 10 18 26 28 30

Table 3.11: Confusion matrix of ODS predictions with different thresholds.

Learners AUC Thresholds
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.705

#TP 27 27 27 27 27 27 27 27 27
#TN 50 50 50 50 50 51 51 52 52
#FP 60 60 60 60 60 59 59 58 58
#FN 2 2 2 2 2 2 2 2 2

RF 0.841

#TP 29 29 29 29 29 29 25 23 14
#TN 20 33 36 43 51 60 68 81 101
#FP 90 77 74 67 59 50 42 29 13
#FN 0 0 0 0 0 0 4 6 15

model associated with Logistic Regression (LR) achieves better AUC than ODS
LR-based model (0.765 vs 0.705), ODS Random Forest-based model achieves a higher
AUC at 0.841. Note however that ODS has been trained on over 13 thousand patches
(including patches for bugs associated to the test set patch), our training dataset
includes only 870 patches (i.e., ∼1/20th of their dataset).

Tables 3.10 and 3.11 provide confusion matrices for different cut-off thresholds
of the classifiers for ODS and our BERT embeddings-based classifiers: TP (true
positives) represent correct patches that were classified as such; TN (true negatives)
represent incorrect patches that were classified as such; FP (false positives) represent
incorrect patches that were classified as correct; and FN (false negatives) represent
correct patches that were classified as incorrect. Overall, the BERT-based predictor
is very sensitive to the cut-off thresholds while ODS is less sensitive. We also note
that BERT embeddings applied to Random Forrest does not yield good performance:
decision trees are indeed known to be good for categorical data and request large
datasets for training. In our case, the data set is small, while ODS has a training
dataset that is about 20 times larger. The hand-crafted features of ODS may also
help split the patches into categories while our deep learned features are based on a
large vocabulary of natural language text.

We observe nevertheless that LR classifiers fed with BERT embeddings are able to
recall high numbers of incorrect patches (#TN is high and #FP is low on threshold
> 0.5). In contrast ODS consistently recalls correct patches (however with high
false positives). These experimental results suggest that both approaches can be
used in a complementary way. In future work, we will propose an approach that
carefully merges deep learned features to hand-crafted features towards yielded a
better predictors of patch correctness.

47

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

✍ RQ3.2 ▶ML predictors trained on learned representations appear to perform
slightly less well than state of the art PATCH-SIM approach which relies on
dynamic information. On the other hand, deep code representations appear to be
complementary to hand-crafted features engineered for ODS. Overall, we recall that
our experimental evaluations are performed in a zero-shot scenario, i.e., without
fine-tuning the parameters of any of the pre-trained models. Furthermore, the
training dataset of the classifiers is an order of magnitude smallera than the one
used by most closely-related work (i.e., ODS) and may further not be representative
to best fit the test set.◀

aWe were not able to collect or reconstitute the training dataset used in ODS to train our
model.

48

3.5. Discussions

3.5 Discussions
We enumerate a few insights from our experiments with representation learning

models and discuss some threats to validity.

3.5.1 Experimental Insights
Code-oriented embedding models may not yield the best embeddings for training

patch correctness classifiers. Our experiments have revealed that the BERT model,
which was pre-trained on Wikipedia, is yielding the best recall in the identification
of incorrect patches. There are several possible reasons for this situation: BERT
implements the deepest neural network and builds on the largest training data. Its
performance suggests to researchers that code-oriented embedding models should
be trained on large code datasets or fine-tuned on specific target tasks in order
to become competitive against BERT. While we were completing the experiments,
a pre-trained CodeBERT [154] model has been released. In future work, we will
investigate its relevance for producing embeddings that may yield higher performance
in patch correctness prediction. In any case, we note that CC2Vec provided the
best embeddings for yielding the best recall in identifying correct patches (using
similarity thresholds). This finding suggests we use the embedding model built for
code changes (e.g., CC2Vec) for the objective of having a high recall in identifying
correct patches.

The small sizes of the code fragments lead to similar embeddings. Figure 3.11
illustrates the different cosine similarity scores that can be obtained for the BERT
embeddings of different pairs of short sentences. Although the sentences are seman-
tically (dis)similar, the cosine similarity scores are quite close. This explains why
recalling correct patches based on a similarity threshold was a failed attempt (∼ 5%
for APR-generated patches for Defects4J+Bears+Bugs.jar bugs). Nevertheless, ex-
perimental results demonstrated that deep learned features are relevant for learning
to discriminate. Considering the different sizes of code fragments contained in each
patch may affect the similarity computation, we suggest that researchers control the
size of the code fragments of the patch when investigating the hypothesis in RQ-2
for patch correctness.

"our",	"grandpa",	"has",	"a",
"very",	"handsome",	"look"

"computer",	"science",
"is",	"difficult"

"his",	"spouse",	"is",
"lovely"

0.919 0.914 0.869

Figure 3.11: Close cosine similarity scores with small-sized inputs for BERT
embedding model.
[Embeddings are most suitable when applied to simple ML algorithms.] Because
embeddings are yielded from neural networks, they are actually formed by complex
crossed features. When they are fed to a complex discriminant model such as Random
Forrest, it may lead to overfitting with small datasets. Our experiments however show
that simple Logistic Regression yields the best AUC, suggesting that this learner

49

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

was able to better identifying discriminating features for the prediction task.

3.5.2 Threats to validity
Our empirical study carries a number of threats to validity that we have tried to

mitigate.
Threats to External Validity. There are a variety of representation learning
models in the literature. A threat to validity of our study is that we may have
a selection bias by considering only four embedding models. We have mitigated
this threat by considering representative models in different scenarios (pre-trained
vs retrained, code change specific vs natural language oriented). Another threat
to validity is related to the use of Defects4J data in evaluating the ML classifiers.
This choice however was dictated by the data available and the aim to compare
against related work. Finally, with respect to the explored models, the attention
system of CC2Vec requires some execution parameters to perform well. Since the
relevant code was not available, we use use a non-attention version instead, potentially
making CC2Vec embeddings be under-performing. We release the artifacts for future
comparisons by the research community.
Threats to Internal Validity. A major threat to internal validity lies in
the manual assessment heuristics that we applied to the RepairThemAll-generated
dataset. We may have misclassified some patches due to mistakes or conservatism.
This threat however holds for all APR work that relies on manual assessment. We
mitigate this threat by following clear and reproducible decision criteria, and by
further releasing our labelled datasets for the community to review.
Threats to Construct Validity. For our experiment, the considered embedding
models are not perfect and they may have been under-trained for the prediction
task that we envisioned. For this reason, the results that we have reported are likely
an under-estimation of the capability of representation learning models to capture
discriminative features for the prediction of patch correctness. Our future studies on
representation learning will address this threat by considering different re-training
experiments.

50

3.6. Related Work

3.6 Related Work
Predicting Patch Correctness: To predict the correctness of patches, one of

the first explored research directions relied on the idea of augmenting test inputs,
i.e., more tests need to be proposed. Yang et al. [34] design a framework to detect
overfitting patches. This framework leverages fuzz strategies on existing test cases in
order to automatically generate new test inputs. In addition, it leverages additional
oracles (i.e., memory-safety oracles) to improve the validation of APR-generated
patches. In a contemporary study, Xin and Reiss [35] also explored to generate new
test inputs, with the syntactic differences between the buggy code and its patched
code, for validating the correctness of APR-generated patches. As complemented
by Xiong et al. [2], they proposed to assess the patch correctness of APR systems
by leveraging the automated generation of new test cases and measuring behavior
similarity of the failing tests on buggy and patched programs.

Through an empirical investigation, Yu et al. [1] summarized two common
overfitting issues: incomplete fixing and regression introduction. To assist allevi-
ating the overfitting issue for synthesis-based APR systems, they further proposed
UnsatGuided that relies on additional generated test cases to strengthen patch
synthesis, and thus reduce the generation of incorrect overfitting patches.

Predicting patch correctness with thanks to an augmented set of test cases
heavily relies on the quality of tests. In practice, tests with high coverage might be
unavailable [148]. In our paper, we do not rely on any new test cases to assess patch
correctness, but leverage representation learning techniques to build representation
vectors for buggy and patched code of APR-generated patches.

To predict overfitting patches yielded by APR tools, Ye et al. [148] propose ODS,
an overfitting detection system. ODS first statically extracts 4,199 code features at
the AST level from the buggy code and generated patch code of APR-generated
patches. Those features are fed into three machine learning algorithms (logistic
regression, KNN, and random forest) to learn an ensemble probabilistic model for
classifying and ranking potentially overfitting patches. To evaluate the performance
of ODS, the authors considered 19,253 training samples and 713 testing samples
from the Durieux et al. empirical study [28]. With these settings, ODS is capable
of detecting 57% of overfitting patches. The ODS approach relates to our study
since both leverage machine learning and static features. However, ODS only relies
on manually identified features which may not generalize to other programming
languages or even other datasets.

In a recent work, Csuvik et al. [125] exploit the textual and structural similar-
ity between the buggy code and the APR-patched code with two representation
learning models (BERT [155] and Doc2Vec [159]) by considering three patch code
representation (i.e., source code, abstract syntax tree and identifiers). Their results
show that the source code representation is likely to be more effective in correct
patch identification than the other two representations, and the similarity-based
patch validation can filter out incorrect patches for APR tools. However, to assess
the performance of the approach, only 64 patches from QuixBugs [149] have been
considered (including 14 in-the-lab bugs). This low number of considered patches
raises questions about the generalization of the approach for fixing bugs in the wild.
Moreover, unlike our study, new representation learning models (code2vec [167] and
CC2Vec [163]) dedicated to code representation have not been exploited.

51

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

Representation Learning for Program Repair Tasks: In the literature,
representation learning techniques have been widely explored to boost program
repair tasks. Long and Rinard explored the topic of learning correct code for
patch generation [38]. Their approach learns code transformation for three kinds
of bugs from their related human-written patches. After mining the most recent
100 bug-fixing commits from each of the 500 most popular Java projects, Soto and
Le Goues [150] have built a probabilistic model to predict bug fixes for program
repair. To identify stable Linux patches, Hoang et al. [178] proposed a hierarchical
deep learning-based method with features extracted from both commit messages and
commit code. Liu et al. [166] and Bader et al. [179] proposed to learn recurring fix
patterns from human-written patches and suggest fixes. Our paper is not aiming
at proposing a new automated patch generation approach. We indeed rather focus
on assessing representation learning techniques for predicting correctness of patches
generated by program repair tools.

52

3.7. Conclusion

3.7 Conclusion
In this paper, we investigated the feasibility of statically predicting patch correct-

ness by leveraging representation learning models and supervised learning algorithms.
The objective is to provide insights for the APR research community towards improv-
ing the quality of repair candidates generated by APR tools. To that end, we, first
investigated the use of different distributed representation learning to capture the
similarity/dissimilarity between buggy and patched code fragments. These experi-
ments gave similarity scores that substantially differ for across embedding models
such as BERT, Doc2Vec, code2vec and CC2Vec. Building on these results and in
order to guide the exploitation of code embeddings in program repair pipelines, we
investigated in subsequent experiments the selection of cut-off similarity scores to
decide which APR-generated patches are likely incorrect. This allowed us to filter
out between 31.5% and 94.9% incorrect patches based on brute cosine similarity
scores. Finally, we investigated the discriminative power of the deep learned features
by training machine learning classifiers to predict correct Patches. Decision Tree,
Logistic Regression and Naive Bayes are tried with code embeddings from BERT,
Doc2Vec and CC2Vec. Logistic Regression with BERT embeddings yielded very
promising performance on patch correctness prediction with metrics like F-Measure
at 0.72% and AUC at 0.8% on a labeled deduplicated dataset of 1000 patches. We
further showed that the performance of these models on static features is promising
when compared to the state of the art (PATCH-SIM [2]), which uses dynamic exe-
cution traces. Experimental results suggest that the deep learned features can be
complementary to hand-crafted features (such as those engineered by ODS [148]).
This finding underscores the efficacy of employing representation learning techniques
to assess the behavior of code changes in relation to patch correctness. It also
encourages further exploration into the viability of combining learned and engineered
features for accurate prediction.
Availability. All artifacts of this study are available in the following public repository:

https://github.com/SerVal-DTF/DL4PatchCorrectness

53

https://github.com/SerVal-DTF/DL4PatchCorrectness

Chapter 3. Learning Representation of Code Changes for Patch
Correctness

54

4 Combining Learned Embeddings with
Engineered Features for Accurate
Prediction of Correct Patches

In this chapter, we propose to investigate the combination of deep learned embeddings
and engineered features for the accurate prediction of patch correctness. By combining
deep learned embeddings and engineered features, our proposed approach Panther
outperforms the previous state of the arts with higher scores in terms of AUC, +Recall
and -Recall, and can accurately identify more (in)correct patches that cannot be pre-
dicted by the classifiers only with learned embeddings or engineered features. Finally,
we use an explainable ML technique, SHAP, to empirically interpret how the learned
embeddings and engineered features are contributed to the patch correctness prediction.

This chapter is based on the work published in the following research paper:

• Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil Koyuncu,
Andrew Habib, Li Li, Junhao Wen, Jacques Klein, and Tegawendé F. Bissyandé.
The Best of Both Worlds: Combining Learned Embeddings with Engineered
Features for Accurate Prediction of Correct Patches. ACM Transactions on
Software Engineering and Methodology 32, no. 4 (2023): 1-34.

Contents
4.1 Overview . 56
4.2 Background . 57

4.2.1 Engineered Features . 57
4.2.2 SHAP - SHapley Additive exPlanations 57

4.3 Methodology . 58
4.4 Experiments and Results 60

4.4.1 RQ-1: Classification of Correct Patches with Supervised
Learning . 60

4.4.2 RQ-2: Combining Learned Embeddings and Engineered
Features for more Accurate Classification of Correct Patches 65

4.4.3 RQ-3: Explanation of Improvements of Combination . . . 67
4.5 Experimental Insights . 72
4.6 Conclusion . 73

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

4.1 Overview
The issue of overfitting patches represents a significant obstacle in generate-and-

validate APR strategies [145, 50, 132]. Recent research on APR systems underscores
the crucial need for an accurate estimation of the proportion of valid patches that
can be discovered. In order to enhance this proportion, various directions have been
explored by researchers [34, 35, 46, 38]. So far, the state-of-the-art works targeting
the identification of patch correctness are based on computing the similarity of
test case execution traces [2], or using machine learning to identify correct patches
based on engineered static code features [148], pre-trained natural language-based
embeddings [125], and source code trained embeddings [3].

This paper. In this work, we extensively study and evaluate how effective
are source code embeddings and engineered features in predicting correct patches.
For example, which set of features: engineered or learned embeddings yield better
performance in predicting correct patches? Can a combination of both kinds of
feature achieve higher performance? Our work fills this gap.

This work builds on and extends the research conducted in Chapter 3 in the
following manner:

• We examine and compare the effectiveness of code embeddings, engineered
features, and their combination for predicting patch correctness.

• We present an analysis for detecting which kinds of features contribute to the
(in)correct prediction of patch correctness.

We investigate in this paper the feasibility of leveraging advances in deep rep-
resentation learning to produce embeddings for APR-generated patches and their
engineered features, that are amenable to reasoning about correctness. The main
contributions can be summarized as follows:
❶ We evaluate our proposed approach Leopard and state of the art approaches by

applying a 10-group cross validation in a practical perspective. Comparing against
the state of the art, Leopard is complementary to them, even outperforms them
on filtering out incorrect patches.

❷ We explore the combination of the learned embeddings and the engineered features
to improve the performance on identifying patch correctness with more accurate
classification, and implement an upgraded version of Leopard, that we named
Panther. The exploring examination is supported by our experimental results.

❸ We empirically interpret the cause of prediction behind features and classifiers to
help aware the essence of identifying patch correctness with an explainable ML
technique SHAP.

56

4.2. Background

4.2 Background
This works leverages engineered features and machine learning techniques to

tackle the problem of identifying correct patches among incorrect and plausible
APR-generated patches. Additionally, we examine the explainability of ML models
used to predict correct patches. The explainability aspect is of high importance
to developers applying APR in their workflow. Therefore, we begin by providing
the necessary background of the two pillars of our work: (i) engineered features for
predicting patch correctness, (ii) the explainability of ML models using SHAP.

4.2.1 Engineered Features
Engineered features are carefully designed and selected features which represent

and capture important properties of the underlying data. In APR, one possibility is
to statically extract those features from the abstract syntax tree (AST) of the buggy
code, the AST of the patched path and the related AST edit scripts as proposed by
ODS [148].

ODS extract three kinds of features to detect correct patches: (i) Code description
features, e.g., kinds of specific operators in patch code and kinds of statements, (ii)
Repair pattern features, whether the repair code has specific patterns according
to [180], and (iii) Contextual syntactic features, e.g., the types of faulty statements
and the types of their surrounding statements. Using these engineered features,
ODS trains a series of machine learning classifiers to predict patch correctness.
The experimental evaluation on 713 patches shows that ODS can filter out 57% of
overfitting patches and exhibits competitive results when compared with state of the
art. We adopt ODS engineered features to conduct our study. Because ODS can not
steadily generate contextual syntactic features for our patches, we consider mainly
using, in our study, two rest kinds of engineered features1: (1) Code description
features and (2) Repair pattern features.

4.2.2 SHAP - SHapley Additive exPlanations
SHAP is a unified framework proposed by Lundberg et al. [181] to interpret the

output of machine learning models. It connects optimal credit allocation with local
explanations using the classic Shapley values from the game theory and their related
extensions, thus can provide the importance of each feature for certain particular
prediction. Through SHAP, the positive and negative effect of features on prediction
can be generated, which allow practitioners to understand which behaviors lead to
the (in)correct prediction. Besides, SHAP provides the interaction analysis between
features to explore how different features are complementary to each other.

1We have received confirmation from the authors about this bug and the effectiveness of these
two kinds of features.

57

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

4.3 Methodology
In this section, we first present the methodology of our study and then we introduce

the research questions that we aim to answer using the proposed methodology.
Overall, our goal is to study the effectiveness of different representations of APR-

generated patches and codes for the task of predicting which patches are correct.
We first investigate a widespread hypothesis that a patch incurring minimal changes
is more likely to be correct. To quantify the patch changes, we exploit different
code representation learning methods that leverage deep learning techniques to learn
features for code. We adapt them to generate the vectors of buggy code and patched
code as well as compute the similarity value of vectors. Based on the similarity
distribution, we experimentally filter out incorrect APR-generated patches by relying
on naively-defined thresholds.

In the view of learning representation reveals the properties of code related
to patch correctness, we propose to further identify patch by training classifiers
(learners) on the representation vector of a patch. Figure 4.1 provides an overview
of such a pipeline and its variants. To represent patches in a format suitable for
learning algorithms, we use the aforementioned representation learning methods to
generate vectors for buggy code and patched code. Afterwards, we cross the vectors
by applying subtraction, multiplication, cosine similarity and euclidean similarity
to obtain the deep learned feature of the patches. The resulting patch embedding
has 2*n+2 dimensions where n is the dimension of input code fragment embeddings.
The values of the dimension n for BERT, Doc2Vec and CC2Vec are set as 1024, 64
and 64, respectively. On the other hand, we also exploit the manually engineered
features that are extracted from the given data, the patch in our case, and aim to
capture specific information that is thought to be relevant to the patch correctness.
The dimension m for ODS is 195.

Feature extractor

CC2Vec

patches

buggy code
fragments

patched code
fragments

Preprocessing

Input

code representation learning m
ethod

BERT

Doc2Vec

n

Feature crosses

n

Train & test

Learners

Eb

Ep 2*n+2

sub

multi

cosine
Euclidian

LR

Random Forest

DNN

XGBoost

ODS m

Engineered

C
om

bination

Extract

Figure 4.1: Overview of Panther.

Learned and engineered features represent a patch from different perspectives. To
improve the identification performance of patch correctness, we further propose three
methods (Ensemble learning, Naïve Vector Concatenation, and Deep Combination.)
to combine the two features for obtaining the informative representation of a patch.
After obtaining a vector that represents a given patch, different machine learning
algorithms such as random forest or a deep neural network (DNN) are trained as

58

4.3. Methodology

classifiers that distinguish correct from incorrect APR patches. In the end, we
provide the SHAP explanation of the features and interaction of different features
that contribute to the patch correctness prediction. In the following, we present the
details of each research question.

Research Questions
RQ-1: Can we learn to identify patch correctness by training predictors with learned

embeddings and engineered features of code input in realistic scenario? Through
cross-project evaluation (10-group cross validation), we investigate whether such
a machine learning predictor built with static features can provide comparable
performance with dynamic approaches, such as PATCH-SIM, which leverage
execution behaviour information. We also compare the performance yielded
when using deep learned features against the performance yielded when using
the engineered features in the state of the art.

RQ-2: Can the combination of learned embeddings and engineered features achieve
optimum performance for predicting patch correctness? We investigate the
possibility of ensuring high accuracy in patch correctness identification by
combining different representations of patches.

RQ-3: Which features are most useful for predicting patch correctness? We leverage
SHAP explanation models to provide an interpretation of the contribution of
different features to the predictions.

59

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

4.4 Experiments and Results
We first introduce the metrics used in the experiments. Then, we present the

experiments that we designed to answer the research questions of our study. For
each experiment, we state the objective, overview the execution details, and present
the results.

Our objective is to measure the ability of the approaches in terms of recalling
correct patches while filtering out incorrect patches. Thus, we use the definitions of
Recall for the evaluation of the patch correct assessment systems:

• +Recall measures to what extent correct patches are identified, i.e., the
percentage of correct patches that are identified from all correct patches.

• -Recall measures to what extent incorrect patches are filtered out, i.e., the
percentage of incorrect patches that are filtered out from all incorrect patches.

+Recall = TP

TP + FN
(4.1) −Recall = TN

TN + FP
(4.2)

where TP represents true positive, FN represents false negative, FP represents false
positive, TN represents true negative.

Accuracy and Precision. The ratio of positive and negative samples of our
dataset is balanced (1.3:1). We thus use accuracy and precision to evaluate the
performance of the approaches in classifying the patches.

Area Under Curve (AUC) and F1-measure. We train a few machine and
deep learning-based classifiers to identify the patch correctness. Therefore, we use
two commonly used metrics for evaluating overall performance of the classifiers: AUC
(the overall ability to distinguish between correct and incorrect patches) and F1 score
(harmonic mean between precision and recall for identifying correct patches).

4.4.1 RQ-1: Classification of Correct Patches with Supervised
Learning

[Objective]: Cosine similarity between learned embeddings (which was used
in the previous experiments) considers every deep learned feature as having the
same weight as the others in the embedding vector. We investigate the feasibility to
infer, using machine learning, the weights that different features may present with
respect to patch correctness. To this end, we build a patch correctness prediction
framework, Leopard (LEarn tO Predict pAtch coRrectness with embeDdings), with
the embedding models and machine learning algorithms. We compare the prediction
evaluation results of Leopard with the achievements of related approaches in the
literature. The experiments are performed towards providing insights for the three
sub-questions:

• RQ-1.1 Can Leopard learn to predict patch correctness by training classifiers
based on the learned embeddings of code ?

• RQ-1.2 Can Leopard be as reliable as a dynamic state-of-the-art approach
such as PATCH-SIM in the patch correctness identification task?

• RQ-1.3 To what extent learned embeddings of Leopard are providing different
prediction results than the engineered features?

[Experimental Design for RQ-1.1]: To perform our machine learning exper-
iments, we first require a ground-truth dataset. To that end, we rely on labeled
datasets in the literature. Since incorrect patches generated by APR tools are only
available for the Defects4J bugs, we focus on labeled patches provided by three

60

4.4. Experiments and Results

Table 4.1: Dataset for evaluating ML-based predictors of patch correctness.
Correct patches Incorrect patches Total

Liu et al. [175] 94 366 460
Ye et al. [182] 242 452 694
Xiong et al. [2] 30 109 139
Defects4J (developers) [88] 969 0 969
Other APR tools 263 162 425
Dataset 1,598 1,089 2,687
Dataset (deduplicated) 1,288 956 2,244
Dataset (final, with available features) 1,199 948 2,147

independent teams (Liu et al. [175], Ye et al. [182] and Xiong et al. [2]) and other
patches generated by APR tools. Very few patches generated by the different tools
are actually labeled as correct, which leads to an imbalanced dataset. To reduce
the imbalance issue, we supplement the dataset with developer (correct) patches as
supplied in the Defects4J benchmark. Note that one developer patch could include
multiple fixing hunks for different files, but the extraction of engineered features only
work on the patches with respect to changing single file. Thus, we split such patches
into sub patches by their changed files to ensure that one sub patch is only involved
with one code file. In total, we collect 2,687 patches. After removing duplicates,
2,244 patches are remained. 97 patches are failed to obtain their engineered feature.
Eventually, the ground-truth dataset is built with 2,147 patches, shown in Table 4.1.

Our ground truth dataset patches are then fed to our embedding models in
Leopard to produce embedding vectors. As for previous experiments, the parsability
of Defects4J patch code fragments prevented the application of code2vec: Leopard
uses pre-trained models of BERT (trained with natural language text) and CC2Vec
(trained with code changes) as well as a retrained model of Doc2Vec (trained with
patches). Since the representation learning models are applied to code fragments
inferred from patches (and not to the patch themselves), Leopard collects the
embeddings of both buggy code fragment and patched code fragment for each patch.
Then Leopard must merge these vectors back into a single input vector for the
classification algorithm. We follow an approach that was demonstrated by Hoang
et al. [163] in a recent work on bug fix patch prediction: the classification model
performs best when features of patched code fragment and buggy code fragment are
crossed together.

At first, and following related works in the literature, we used a 10-fold cross
validation scheme to evaluate and compare our approach against the state of the art.
However, we found that, with this scheme, a patch set generated for the same bug can
be split into both the training and testing sets. Such a scenario is actually unrealistic
(and biased) since we should not train the model with some labeled patches of a
bug that we intend to repair (test set). To address this bias, we propose instead
a 10-group cross validation scheme: First, we randomly distribute all bugs into 10
groups. Every group contains unique bugs and their associated patches. Then, we
use 9 groups as train data and the remaining group as the test data. Finally, we
repeat the selection of train and test groups for ten rounds and obtain the average
score of the metrics.

[Experimental Results for RQ-1.1]: We compare the performance of different
embedding models using different classification algorithms. Table 4.2 presents the
results with 10-group cross validation setup. All classical metrics used for assessing
predictors are reported: Accuracy, Precision, Recall, F1-Measure, Area Under Curve

61

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches
Table 4.2: Evaluation of learned embeddings on six ML classifiers in Leopard.

Learner Embedding Accuracy Precision Recall F1-measure AUC

Decision Trees
BERT 62.1 64.7 70.8 67.6 0.611

CC2Vec 58.0 61.7 65.5 63.5 0.572
Doc2Vec 58.7 62.0 67.6 64.6 0.576

Logistic regression
BERT 72.2 73.5 78.7 76.0 0.796

CC2Vec 61.8 64.8 68.9 66.8 0.679
Doc2Vec 65.8 66.6 77.7 71.7 0.717

Naive bayes
BERT 66.5 72.5 57.6 65.7 0.726

CC2Vec 57.6 70.1 31.9 45.7 0.670
Doc2Vec 55.9 63.0 51.0 56.4 0.610

Random forest
BERT 69.4 68.3 77.9 75.5 0.793

CC2Vec 62.1 63.9 74.1 68.6 0.705
Doc2Vec 64.9 63.5 87.6 73.6 0.705

XGBoost
BERT 71.8 71.6 82.1 76.5 0.803

CC2Vec 65.3 66.4 76.6 71.1 0.729
Doc2Vec 63.2 63.5 80.2 70.8 0.693

DNN
BERT 70.3 74.4 71.3 72.8 0.767

CC2Vec 51.8 55.5 69.0 61.6 0.503
Doc2Vec 63.2 64.7 75.1 69.5 0.679

(AUC). XGBoost applied to BERT embeddings yields the best performance on the
most of metrics (e.g. AUC with 0.803 and F1-measure with 0.765), while DNN
achieves the best performance on precision of 0.744.

Our previous work 3 was conducted through a 5-fold cross validation. To evaluate
performance change of the approach on the new augmented dataset, we re-conduct a
5-fold cross validation experiment. The results show that after increasing the number
of training examples (1,147 more patches), the performance of the decision tree,
logistic regression and naive bayes classifiers are improved. For instance, applying
the three classifiers with BERT embeddings, their accuracy, precision, recall and
F1-measure are improved with 3 to 23.6 points (except the recall of Naive bayes
+ BERT embedding is decreased). Their AUC values are increased with 0.067,
0.06, 0.126, respectively. These results provide us the possibility of evolving the
patch identification through datasets augmentation. Note that, for the following
experiment, we proceed to focus on using 10-group cross validation because of its
effectiveness for evaluating the approaches in practice.

✍ RQ3.1 ▶ Tree-based boosting classifiers (Random forest and XGBoost) and Deep
learning classifier (DNN) with BERT embeddings yield the promising performance
on predicting the patch correctness for APR tools (e.g., F1-measure at 76.5% and
AUC at 80.3%).◀

[Experimental Design for RQ-1.2]: PATCH-SIM [2] is the state-of-the-art
work on predicting the patch correctness for APR tools. It is a dynamic-based
approach, which generates execution traces of patched programs with new generated
tests, and compares the execution traces across test cases to assess the correctness of
APR-generated patches. We propose to apply PATCH-SIM to our collected patches
(cf. Table 4.1). Unfortunately, PATCH-SIM is implemented to run on Defects4J-
v1.2.02. Therefore, it failed to process 476 patches generated for some bugs (e.g.,
JSoup bugs) in the latest version of Defects4J (i.e., Defects4J-v2.0.0). Furthermore,
even when PATCH-SIM can run, we observe that it does not yield any prediction

2https://github.com/rjust/defects4j/releases/tag/v1.2.0

62

https://github.com/rjust/defects4j/releases/tag/v1.2.0

4.4. Experiments and Results

output for 1,022 patches3. Eventually, we were able to assess the performance of
PATCH-SIM on 649 patches. To avoid a potential bias in comparisons, we also
conduct the ML-based classification experiments for Leopard on the 649 patches.

[Experimental Results for RQ-1.2]: Table 4.3 provides the comparing results
on predicting patch correctness. In terms of Recall, PATCH-SIM achieved 78.9%
that is a bit higher than the BERT embedding + Random forest of Leopard, which
demonstrates its ability of recalling correct patch from plausible patches as reported
in [2] by its authors. However, the accuracy, precision and AUC measurements are
just 38.8%, 24.7% and 52.8%, respectively. These results underperform the three ML
classifiers of Leopard. It indicates the many incorrect patches are wrongly identified
as correct by PATCH-SIM. Figure 4.2 further gives an example on comparing the
BERT embedding + the XGBoost classifier of Leopard and PATCH-SIM in terms
of the number of (in) patches correctly identified by them. XGBoost classifier of
Leopard can recall more correct and incorrect patches than the PATCH-SIM, and
the 24 correct patches and 124 incorrect patches are exclusively correctly predicted
by it.
Table 4.3: Comparing evaluation of Leopard (BERT embedding + ML classifiers)
against PATCH-SIM.

Approach Accuracy Precision Recall F1-measure AUC
PATCH-SIM 38.8 24.7 78.9 37.7 0.528

Le
op

ar
d BERT + Random forest 41.3 25.5 78.3 38.4 0.594

BERT + XGBoost 42.7 26.2 79.6 39.4 0.614
BERT + DNN 40.0 26.1 85.5 40.0 0.546

Leopard(BERT + XGBoost) PATCH-SIM

24 97 23 124 32 100

identified correct patches # identified incorrect patches

Figure 4.2: Comparison on the number of (in)patches correctly identified by
Leopard (with the BERT embeddings + the XGBoost learner) against PATCH-
SIM.
Time cost. Note that we have recorded that, on average, PATCH-SIM takes ∼17.5
minutes to predict the correctness of each patch. In contrast, each of the ML
classifiers of Leopard takes less than 1 minute for prediction. However, note that
the training of Leopard requires the input of the learned embeddings of patches
generated by pre-trained models (e.g. BERT). Such models, which are available
on-the-shelf, have been trained using hundreds of TPUs that were run for several
hours on a large corpus.

✍ RQ-1.2 ▶ ML predictors of Leopard trained on learned embeddings can be
complementary to the state-of-the-art PATCH-SIM. They can also outperform
PATCH-SIM in filtering out more patches generated by APR tools.

Experimental Design for RQ-1.3: As reported by Ye et al. [148] in a recent
3We have reported the issue to the authors but have not yet been made aware of any solution to

address it. Note that in their original paper the authors transparently informed readers that the
tool indeed is sensitive to the datasets.

63

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

Table 4.4: Evaluation of engineered feature on six ML classifiers.

Learner Accuracy Preci-
sion Recall F1-measure AUC

DecisionTree 66.6 68.6 73.9 71.1 0.666
Logistic regression 70.0 72.7 74.1 73.4 0.773
Naive bayes 49.6 74.6 14.7 24.5 0.689
Random forest 70.7 72.1 77.5 74.7 0.769
XGBoost 70.5 72.6 79.9 74.1 0.776
DNN 69.8 72.1 74.8 73.4 0.777

study, post-processing APR-generated patches through engineered features achieves
promising results. Therefore, in this study, we also use some of the engineered
features (Prophet features and repair pattern) in [148] to predict correct patches on
a larger dataset: overall, our study is based on 2,147 patches while Ye et al. applied
only 713 patches. Results in this study are given based on 10-group cross validation.

Results for RQ-1.3: Table 4.4 presents the results of predicting patch cor-
rectness with the engineered features. The naive bayes learning algorithm achieves
a unusual performance compared to the other five learners. It yields the highest
precision, but leads to a much lower recall than others. This suggests that a very
small number of correct patches can be recalled via using this learner. The Random
Forest and XGBoost learners achieve similarly high performance (e.g., F1-measure
at 74.7%/74.1% and AUC at 76.9%/77.6%), and are followed by the DNN learner.
Overall, the performance reached with engineered features is generally comparable
(in terms of global metrics) to that yielded by Leopard using learned embeddings,
except when using the Naive Bayes and Decision Trees learning algorithm.

Figure 4.3 further illustrates the differences between the XGBoost classifier
with the BERT embeddings and the engineered features in terms of the number of
identified (in)correct patches. More (in)correct patches can be correctly identified
by the XGBoost classifier with both two scenarios. Nevertheless, there still is a big
complementary space of identifying the patch correctness for the two scenarios.

BERT embeddings Engineered feature

166 775 132 180 432 174

identified correct patches # identified incorrect patches

Figure 4.3: Comparison on the number of (in)patches correctly identified by the
XGBoost classifier with the BERT embeddings and the engineered features.

✍ RQ-1.3 ▶ The ML classifiers fed with the engineered features (from static
code) can achieve comparable performance to learned embeddings based classifiers
in identifying patch correctness. There is nevertheless the possibility to improve the
prediction performance in both cases since their correct predictions are not perfectly
overlapping: learned embeddings lead to the identification of correct/incorrect
patches that are not recalled with engineered features and vice versa. ◀

64

4.4. Experiments and Results

4.4.2 RQ-2: Combining Learned Embeddings and Engineered
Features for more Accurate Classification of Correct Patches

[Objective]: Following up on the insights from the previous research question,
which compared engineered features against learned embeddings, we investigate
the potential of leveraging both feature sets to improve the classification of correct
patches.

[Experimental Design]: Leveraging different feature sets can be achieved
in several ways, e.g., by concatenating feature vectors or by performing ensemble
learning. In this study, we investigate three different methods which are implemented
in the upgraded version of Leopard, Panther (Predict pAtch correctNess wiTH
the learned Embbeddings and engineeRed features), as illustrated in Figure 4.4:

1. Ensemble learning. We rely on the six learning algorithms (cf. Tables 4.2
and 4.4) to predict the correctness of patches based either on the learned
embeddings or on the engineered features. Eventually, to combine both,
we simply compute the average prediction probability provided by a pair of
classifiers (one trained with learned embeddings and the other with engineered
features), and use this probability to decide on patch correctness.

2. Naïve Vector Concatenation. In the second method, we ignore the fact that
learned embeddings vectors and engineered feature vectors are not from the
same space and propose to Naïvely concatenate them into a single representation.
Our intuition, indeed, is that both representations capture different features of
patches and can therefore offer, together, a better representation. The yielded
concatenated vectors are then used to train the classifiers (with the usual
learning algorithms).

3. Deep Combination. In the last method, we consider that learned embeddings
and engineered features are from different spaces. Therefore, we must learn
their different weights as well as the common representations for them before
concatenation. We resort thus to deep neural networks to attempt a deep
combination of feature sets before classification.

In this RQ, given the performance of BERT in previous experiments (cf. Table 4.2),
we focus on the BERT embedding model to learn the learned embeddings of patches.
Similarly, we only consider Random forest and XGBoost as the best learners to be
applied (cf. Table 4.2 and Table 4.4). The Deep Combination method is based on
the work of Cheng et al. [183] who proposed a deep learning fusion structure which
combined layers that were specialized to explore memorization and generalization of
features. Following up this idea of fusion, we design a Double-DNN-fusion structure
where learned embeddings are considered useful for generalization and engineered
features are considered for memorization. Eventually, we conduct 10-group cross
validation for the experimental assessment.

[Experimental Results]: Table 4.5 presents the performance comparison for
correctness identification when using combined features vs using single feature sets.
The comparison is done in terms of three main metrics: +Recall (to what extent
correct patches can be identified), -Recall (to what extent incorrect patches can be
filtered out), and AUC (area under the ROC curve, i.e. comprehensive performance
of the predictor). Overall, the performance of classifying correct patches is improved
after using each of the three combination strategies (except the -Recall of the random
forest classifier with the Naïve Vector Concatenation) for the learned (BERT) and

65

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

93 33 23 ... 66 15 5 6 Yes ... Yes No

Learned representation Engineered vector

Classifier Classifier

Ensemble
learning

Prediction

(a) Ensemble learning.

93 33 23 ... 66 15 5 6 Yes ... Yes No

Learned representation Engineered vector

Classifier

Concatenation

Prediction

(b) Naïve Vector Concatena-
tion.

93 33 23 ... 66 15 5 6 Yes ... Yes No

Learned representation Engineered vector

Dense

Prediction

Dense
Dense

Dense Dense

Concatenate

Dense

(c) Deep Combination.

Figure 4.4: Combination options of features for patch classification in Panther.
Table 4.5: Comparing results of classifying correct patches with combined feature
against the single feature.

Tool Feature Accuracy Precision +Recall -Recall F1-measure AUC
Random Forest

Leopard BERT embeddings 0.694 0.683 0.779 0.624 0.755 0.793
Engineered feature 0.707 0.721 0.775 0.620 0.747 0.769

Panther Ensemble Learning 0.745 0.740 0.837 0.629 0.786 0.818
Naïve Vector Concatenation 0.708 0.693 0.786 0.629 0.766 0.799

XGBoost

Leopard BERT embeddings 0.718 0.716 0.821 0.588 0.765 0.803
Engineered feature 0.705 0.726 0.799 0.596 0.741 0.776

Panther Ensemble Learning 0.757 0.754 0.837 0.655 0.794 0.822
Naïve Vector Concatenation 0.730 0.725 0.833 0.600 0.775 0.811

DNN

Leopard BERT embeddings 0.703 0.744 0.713 0.690 0.728 0.767
Engineered feature 0.698 0.721 0.748 0.634 0.734 0.777

Panther Deep Combination 0.730 0.760 0.757 0.696 0.758 0.798

engineered (ODS) feature. With respect to +Recall (i.e., recalling the correct
patches), the Random forest and XGBoost based classifier with Ensemble Learning
achieve the highest value at 83.7%, improving by 1 to 6 percentage points the
performance with single feature sets. With respect to -Recall (i.e., filtering out the
incorrect patches), the best classifier is DNN-based with the Deep Combination of
features: it achieves the highest recall in correctly excluding 69.6% of the incorrect
patches. With respect to AUC, the XGBoost-based classifier with the Ensemble
Learning present the best performance at 82.2%, improving by 2 to 5 percentage
points the performance with single feature sets. To sum up, combining the BERT
embeddings of patches with their ODS features does improve the performance of
identifying patch correctness. Note that the results show that, in general, Ensemble
Learning applied to independently trained classifiers yields the highest performance
gains. The McNemar’s statistical hypothesis test [184] further confirms that the
gains are statistically significant for the Ensemble Learning and Deep Combination
while it is not the case for the Naïve Vector Concatenation. This suggest that the
features (learned and engineered) are from different spaces and are best exploited
when applied standalone to model patch correctness, and can complement each other
in terms of prediction.

Figure 4.5 further highlights the number of (in)correct patches identified based
on BERT embeddings, engineered features and the combined features, respectively.
Since the “Random forest” learner presents a similar performance with “XGBoost”,
Figure 4.5 focuses on the latter.

From a qualitative point of view, with the Ensemble Learning, more (in)correct

66

4.4. Experiments and Results

41 0
799

47

61144

0

BERT
embeddings

Engineered
feature

Ensemble Learning

(a) Identified correct patches.

39 0
400

103

103118
0

Engineered
feature

Ensemble Learning

BERT
embeddings

(b) Identified incorrect patches

30 36
763

57

51155

30

Engineered
feature

Naïve Vector Concatenation

BERT
embeddings

(c) Identified correct patches.

29 40
360

147

59128

22

Engineered
feature

Naïve Vector Concatenation

BERT
embeddings

(d) Identified incorrect patches.

75 25
690

48

13465

19

Engineered
feature

Deep Combination

BERT
embeddings

(e) Identified correct patches.

84 26
437

44

94107

22

Engineered
feature

Deep Combination

BERT
embeddings

(f) Identified incorrect patches.

Figure 4.5: Comparison on the number of patches identified with the combined
feature vs. the simple feature.
patches can be identified than each single feature set (i.e., BERT embeddings or
engineered features). However, this combination does not help to identifying patches
that were not identified using at least one feature set. In contrast, with Naïve
Vector Concatenation and the Deep Combination, which combine features before
classification, we can identify some (in)correct patches that could not be identified
using either feature set alone.

From a quantitative point of view, the Naïve Vector Concatenation helps to
identify slightly more correct patches (among those that could not be identified by
each feature set alone) than the Deep Combination. As for new identified incorrect
patches, they achieve the same metrics. Nevertheless, overall, the Ensemble Learning
method helps to identify more correct patches while the Deep Combination helps to
identify more incorrect patches.

✍ RQ-2 ▶ Leveraging learned embeddings (BERT) and engineered features (ODS)
contributes to improve the performance in predicting patch correctness for APR
tools. Merging independently trained classifiers achieves higher performance com-
pared to each separate classifier, but does not lead to the identification of correc-
t/incorrect patches that could not be identified by at least one of the classifier. In
contrast, feature combination (i.e., Naïve Vector Concatenation and Deep Com-
bination) before classification training appears to provide more information to
discriminate some patches that were not correctly classified based on their learned
embeddings or their engineered features alone. ◀

4.4.3 RQ-3: Explanation of Improvements of Combination
[Objective]: The experimental results for previous RQs show that ML classifiers

built based on learned embeddings, or on engineered features, or on both, yield
promising performance in predicting patch correctness. The fact remains, however,

67

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

that the classifier is a black box model for practitioners. In particular, when leveraging
combined feature sets, it may be helpful to investigate the impact of different features
on the identification of patch correctness. To that end, we propose to build on
Explainable ML techniques to explore how the models are built. In this work, we
focus on Shapley Values, which compute the contributions of each feature in a
given prediction. Shapley values originate from the field of game theory and have
been implemented in the SHAP framework [181], which is widely used in the AI
community.

[Experimental Design]: Our experiments are focused on the classifier yielded
with the Naïve Vector Concatenation method since it managed to recall more correct
patches through combining learned embeddings and engineered features (cf. RQ-3.3
in Section 4.4.1). We consider the case where the classifier is trained with the
XGBoost learning algorithm. Using SHAP values as metric of feature importance, we
investigate the top most important features that contribute to the combined model
predictions. We further compare those important features against the features that
are most contributing when the classifier is trained only with learned embeddings
or only with engineered features. Finally, we present three specific patches that
identified by different feature sets to observe the contribution of the features to
prediction.

[Experimental Results]: Figure 4.6 illustrates the top-10 most contributing
features: a feature named B-i refers to the ith feature learned with BERT. Others
(e.g., singleLine and codeMove) refer to engineered features. The appearance of
features from learned and engineered feature sets among the most contributing
features suggests that both types of features are not only relevant but are also
exploited in the yielded classifier.

Figure 4.6: Top-10 Contributing Features (based on SHAP values) for the Classifier
built by combining learned embeddings and engineered features.

Reading a SHAP explanation graph: In a given SHAP graph, each row is a
distribution values for a given feature (Y-axis), where each data point is associated
to one sample input data (i.e., a patch in our case). The color indicates the feature
value, which is normalized: the more red, the higher the value. The X-axis represents
the SHAP values, which indicate to what extent a given feature impacted the model
output for a given patch. For example, most patches with high value (red) for feature

68

4.4. Experiments and Results

singleLine are located on the left (negative SHAP value), which suggests negative
impact of singleLine on correctness prediction. It should be noted that, eventually,
it is the contributions of different features that will be merged to yield the final
prediction for each sample.

In Figure 4.6, we note that singleLine and codeMove are the top contributing
engineered features among the combined feature sets. As we see from the figure,
their red (high value) points and blue (low value) points are clearly separated to two
sides, which demonstrates their values have obvious positive or negative effects on the
model output. In Figure 4.7, when leveraging only engineered features, singleLine
and codeMove also have significant contributions and are appearing in the 1st and
4th positions among the top contributing features. This indicates that the engineered
features must be high-contributors to the decision (e.g., in terms of information gain)
as shown in Figure 4.7, in order to obtain an efficient combination with learned
features. Therefore, in practice we suggest that the research community should
focus more on devising few but effective engineered features instead of massive but
inefficient features to improve the performance of models.

Figure 4.7: Top-10 contributing features (based on SHAP values) for the Classifier
built only by the engineered features.

Overall, the SHAP explanations suggest that engineered features have an impor-
tant effect on model prediction (because they appear among the top contributing
features) but are complementary to the learned feature set. Indeed, the combination
with Naive Vector Concatenation enables classifiers to identify correct patches that
could not be identified when each feature set was used without the other. There-
fore, we conclude that it is the interaction among the features that yields such a
performance improvement. We propose to further investigate the interaction among
pairs of features (one from the engineered features set and the other from the learned
features set).

Figure 4.8 illustrates the interactions information provided by SHAP among
singleLine, codeMove and B-1530. As it can be seen, in Figure 4.8(a), when the
feature value of singleLine is 0, higher (redder) feature values of B-1530 will lead to
a more negative SHAP value for singleLine (i.e., it has negative impact on patch
correctness prediction). In contrast, when the feature value of singleLine is 1, the
same higher feature values of B-1530 will tend to draw a positive SHAP value (i.e.,
positive impact). This example illustrates how learned and engineered features
can interact to balance their contributions for the final predictions based on their
respective feature values. Figure 4.8(b) and Figure 4.8(d) exhibit effective interaction

69

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

(a) Interaction between singleLine and B-
1530.

(b) Interaction between singleLine and B-
2026.

(c) Interaction between codeMove and B-
1530.

(d) Interaction between codeMove and B-
2026.

Figure 4.8: Feature Interaction.

(a) Patch for Closure-57.

(b) Patch for Math-85.

(c) Patch for Math-56.

Figure 4.9: SHAP Analysis on Patches.
while Figure 4.8(c) cannot because not enough of the test data are reaching both
the two feature nodes in the tree-based boosting classifier. In the same direction,
we cannot present the SHAP interaction between singleLine and codeMove. Overall,
Figure 4.8 provides evidence for the impact of the interaction between learned and
engineered features on the model prediction. In contrast, merging classifiers through
Ensemble Learning does not allow for features interaction and thus fails to identify
patches that were not identified using one feature set. This motivates model trainers
to combine different types of features through tree-based classifiers or deep neural
networks to obtain efficient deep information for identifying previously-unidentified
correct patches.

Finally, Figure 4.9 presents the SHAP analyses of three patches that are exclusively

70

4.4. Experiments and Results

identified by classifiers built based either on learned feature set (a), or on engineered
feature set (b), or on combined feature set (c). We note that contributions of each
learned feature is small and it is the sum of contributions that lead to a prediction.
In contrast, contributions of engineered features are significantly larger for several
features. When the sets are combined, engineered features are contributing in the
top, their contributions are impactful, while learned features still contribute, each,
to a lesser extent. Overall, few engineered features make most of the contributions
for good prediction which unsurprisingly imply that the quality and relevance of
engineered features are more important than the number of features.

✍ RQ-3 ▶ Thanks to SHAP explanations, we were able to confirm that combining
engineered and learned feature sets creates interactions that impact the prediction
of classifiers, leading to improved precision and recall in correctness prediction. ◀

71

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

4.5 Experimental Insights
Refutation of literature assumption that “patches with fewer changes are more

likely to be correct”. In RQ-2, we leveraged similarity between buggy code and
patched code to filter out incorrect patches. The hypothesis is the more similar they
are, the more likely to be correct the patch is. The best performance appears in
QuixBugs which only contain bugs on one single line. However, regarding Bears,
Bugs.jar and Defects4j, while a large number of incorrect patches are filtered out
(cf. -Recall in Table 3.6), correct patches are recalled in low numbers (cf. +Recall
in Table 3.6). Or, -Recall is low while keeping high +Recall. In the RQ-5, we
use ground-truth labeled developer’s patches and generated patches with balanced
numbers for Defects4j to avoid bias. We use SHAP to interpret the impact of features
and find the most important feature is “singleLine”. The feature analysis suggests
that patches consisting of a single line of code (i.e., fewer changes) are more prone
to being incorrect. In contrast, correct code generally necessitates changes spanning
multiple lines. For example, a value of 0 for the "singleLine" feature (indicating a
change across more than one line) is the most significant contributor to identifying a
correct patch for Math-56, as shown in Figure 4.9(c). This insight refutes the validity
of the widely spread hypothesis.

72

4.6. Conclusion

4.6 Conclusion
In this paper, we implemented a patch correctness predicting framework, Leop-

ard, to investigate the discriminative power of the deep learned features by training
machine learning classifiers to predict correct Patches. Decision Trees, Logistic
Regression, Naïve Bayes, Random Forest, XGBoost, and DNN are tried with code
embeddings from BERT, Doc2Vec and CC2Vec. With BERT embeddings, Leopard
(with XGBoost) yielded very promising performance on patch correctness predic-
tion with metrics like Recall at 82.1% and F-Measure at 76.5%, Leopard (with
DNN) achieved the highest score with the metric Precision at 0.744 on a labeled
deduplicated dataset of 2,147 patches. We further showed that the performance of
these models on learned embedding features is promising when comparing against
the state of the art (PATCH-SIM [2]), which uses dynamic execution traces. We
further implemented Panther (an upgraded version of Leopard) to explore the
combination of the learning embeddings and the engineered features to improve the
performance of identifying patch correctness with more accurate classification. In
conclusion, through the utilization of SHAP, we conducted an analysis to elucidate
the underlying factors and classifiers responsible for patch correctness predictions.
Our analysis challenges the widely spread belief that bug fixes typically involve
minimal changes. Furthermore, the explanation analysis suggests that a select set of
high-quality engineered features outperforms a larger set of noisy ones, encouraging
researchers to focus on the development of such features. Given our approach’s
capability for rapid patch correctness prediction, future research should explore its
integration with APR tools to more efficiently traverse large patch spaces.
Availability. All artifacts of this study are available in the following public repository:

https://github.com/HaoyeTianCoder/Panther

73

https://github.com/HaoyeTianCoder/Panther

Chapter 4. Combining Learned Embeddings with Engineered Features
for Accurate Prediction of Correct Patches

74

5 Predicting Patch Correctness Based
on the Similarity of Failing Test
Cases

In this chapter, towards predicting patch correctness in APR, we propose a novel
yet simple hypothesis on how the link between the patch behaviour and failing test
specifications can be drawn: similar failing test cases should require similar patches.
We then propose BATS, an unsupervised learning-based approach to predict patch
correctness by checking patch Behaviour Against failing Test Specification. Experi-
mentally, our approach outperforms state-of-the-art techniques for identifying correct
patches without the need for large labeled patch datasets; as is the case with machine
learning-based approaches.

This chapter is based on the work published in the following research paper:

• Haoye Tian, Yinghua Li, Weiguo Pian, Abdoul Kader Kabore, Kui Liu,
Andrew Habib, Jacques Klein, and Tegawendé F. Bissyandé. Predicting Patch
Correctness Based on the Similarity of Failing Test Cases. ACM Transactions
on Software Engineering and Methodology (TOSEM) 31, no. 4 (2022): 1-30.

Contents
5.1 Overview . 77
5.2 Approach . 80

5.2.1 Pre-processing Test Cases and Patches 80
5.2.2 Embedding Test Cases and Patches 81
5.2.3 Finding Similar Test Cases 81
5.2.4 Mapping Historical Failing Test Cases to their Patches . . 82
5.2.5 Predicting Patch Correctness 82
5.2.6 An Example . 82

5.3 Study Design . 85
5.3.1 Research Questions . 85
5.3.2 Datasets . 85
5.3.3 Cluster Analysis Metrics 86
5.3.4 Performance Metrics . 87

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

5.4 Experiments and Results 89
5.4.1 RQ-1: Cluster of Similar Test Cases and Patches 89
5.4.2 RQ-2: Identifying Correct Patches with BATS 93
5.4.3 RQ-3: Competitive/Complementary to the State-of-the-art 95

5.5 Ablation Study . 100
5.5.1 Bug types of failing test cases clusters 100
5.5.2 Asymmetry of the hypothesis 100

5.6 Threats to Validity . 101
5.7 Related Work . 102
5.8 Conclusion . 103

76

5.1. Overview

5.1 Overview
Patch overfitting [25, 26] is now acknowledged as one of the major blockers to

the adoption of automated program repair (APR) by software practitioners. It refers
to the fact that APR-generated patches often overfit to the repair (incomplete) test
suite without necessarily generalizing to other test cases. In short, overfitting patches
do not implement the desired behavior that the program developers would expect.
Consequently, when a generated patch is validated as passing all test cases in the
test suite, it is referred to as a plausible patch. Its correctness, indeed, must still
be decided manually by developers. Given that existing APR approaches generate a
large number of plausible patches, most of which are actually incorrect, there is a
need to develop automated approaches that can filter out incorrect patches or that
can rank the correct ones higher to alleviate the burden of manual assessment.

Recently, the literature has proposed various heuristics to predict patch cor-
rectness. Csuvik et al. [125] translate some empirical observations into a simple
assumption for ranking valid patches: correct patches apply fewer changes than
incorrect ones. Xiong et al. [2] build on the hypothesis that test case dynamic
execution behaviours are different between correct and incorrect patches. Other
researchers propose to focus on learning, with static features of patches, to filter out
incorrect patches. For example, Ye et al. [27] proposed such a supervised learning-
based approach after investing in careful engineering of patch features. In contrast,
Tian et al. [3] relied on deep representation learning of code changes for yielding
patch embeddings that are fed to a supervised learning system.

Overall, existing research in patch correctness prediction has provided promising
performance [33]. Nevertheless, they suffer from various caveats. On the one hand,
the state of the art dynamic-based approaches require the expensive execution of
test cases, which unfavorably impacts the efficiency of the patch assessment process.
Besides, such approaches are challenged in practice by the oracle problem: given a
test case, we do not always have an accurate specification of what the output should
be [185]. On the other hand, static-based approaches often require a substantial
analysis effort to identify adequate features and properties. In addition, machine
learning-based approaches require many labeled patch samples (both correct and
overfitting patches). They further exhibit issues of generalization beyond the projects
they have been trained on [33].

In their seminal study on patch plausibility and correctness, Qi et al. [25] have
presented Kali, a system that performs “repair” by only removing or skipping code
in programs. Kali generated several patches that pass many weak test suites. Our
postulate, however, is that Kali-generated patches should be readily-identifiable as
plausible but incorrect in an APR pipeline: it is unlikely that fixing a program that
presents a bug in array iteration would require simply removing whole statements.
This calls for research to assess the behaviour of the patch (i.e., what it does) against
the nature of the bug (i.e., as expressed by the failing test case specification).

The idea of checking patch behaviour against failing test specification has not yet
been fully exploited in the literature. Recent work by Ye et al. [27] and Tian et al. [3]
do not even reason about the test cases. The approach by Xiong et al. [2] builds on
heuristics that consider the similarity of execution behaviours of passing test cases
on original and patched programs. Their work, however, does not try to answer the
specific question of whether the generated correct patch is actually relevant

77

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

to the failing test case(s) triggering the repair process. This is the key
hypothesis we introduce and validate:

“When different programs fail to pass similar test cases, it is likely that
these programs require similar code changes.”

Similarity thus becomes a key challenge: syntactic similarity is not sufficient as it
would restrict the search to type-1 or type-2 clones. We have to explore similarity
measurements that can capture semantic relationships. Recent work [167, 163, 14,
186, 187] in learning distributed representations of code and code changes have
been shown to preserve some semantics (beyond token similarity) and have yielded
promising models that were effective on a variety of downstream tasks.

This paper. We build on the aforementioned hypothesis to investigate the
possibility of predicting patch correctness by clustering test cases and patches. In
this paper, we rely on recent approaches for code representation learning to reason
about code and patch similarity.

❶ [Heuristic] We propose a novel heuristic on the relationship between patches
and their failing test cases. Although the intuition behind this heuristic is basic
and hinted at in regression testing literature [188], we are the first to propose
and validate it in the APR patch assessment area.

❷ [Validation] We present a comprehensive validation of the hypothesis that sim-
ilar test cases are associated with similar patches. Concretely, we consider the
case of developer-written patches in the Defects4J dataset and leverage various
distance metrics to perform hierarchical clustering based on the embeddings of
test cases and patches.

❸ [BATS] Based on the heuristic, we propose BATS (Behaviour Against failing
Test Specification), an approach to predict patch correctness by statically
checking the similarity of generated patches against past correct patches that
correspond to failing test cases which are similar to the failing tests of the
bug under resolution. More specifically, given one buggy program with its
failing test cases and the APR-generated patches, BATS first enumerates
similar failing test cases within the search space of historical bugs. Then,
BATS calculates the similarity between the correct patches associated with
the identified failing test cases and the APR-generated patches. Finally, APR-
generated patches with similarity scores above a predefined threshold t are
predicted as correct while patches with similarity scores lower than t are
predicted as incorrect. The artifact of this study is publicly available at
https://github.com/HaoyeTianCoder/BATS.

❹ [Evaluation] After collecting a large dataset of plausible patches generated
by 32 APR tools or extracted from defects benchmarks, we apply BATS and
measure its performance in classifying correct patches.

– Overall, BATS achieves an AUC (Area Under Curve) between ∼0.56 and
∼0.72 and a recall between ∼56% ∼84% in identifying correct patches.

– When comparing with a recent supervised learning classifier [3], BATS
improves the recall in identifying correct patches by 7 percentage points
and achieves an equivalent recall in excluding incorrect patches.

– Comparing against the state-of-the-art dynamic approach PATCH-SIM [2],
BATS outperforms it with higher scores of AUC, F1 +Recall and -Recall

78

https://github.com/HaoyeTianCoder/BATS

5.1. Overview

for the subset of patches where BATS can find similar test cases.
– We note that the performance of BATS is impacted by the search space

for finding similar test cases. Therefore, after demonstrating the promise
of the proposed heuristic, we show that it is worthwhile to combine BATS
with the state-of-the-art approaches in order to improve performance in
identifying correct patches. To that end we consider a usage scenario
where similar test cases are lacking to apply BATS. Instead, we investigate
whether BATS can still be used as a supplement to another approach:
when BATS is integrated with the recent supervised learning classifier [3]
, the overall recall in detecting correct patches is improved with 5 per-
centage points. The experimental results also show that BATS can be
complementary to PATCH-SIM [2] to recall more correct and exclude
more incorrect patches.

79

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

5.2 Approach

Decreasing
similarity

New bug, its test cases,
& generated APR patches

Historical bugs, their test cases,
& associated correct patches

Threshold

Compute pairwise
similarity between

Bug-new test cases
& historical test cases

3

K=3

Decreasing
similarity

Bug-1
t1
t2

p1

Bug-3
t6
t7

p4

p5

Bug-2
t3

t4
t5

p2

p3

p'1x

t5

t7

t'2

t3
t1
t6
t2
t4

t3
t6

t'1

t5
t1
t4
t2
t7

Map top k-similar
tests to their patches

4
p'3

p'2

Predict patch
correctness based on

similarity threshold

7

Bug-new

t'1
t'2

p'2?

p'1?

p'3?
Compute pairwise similarity between

APR patches & average similarity

6

Calculate
average similarity

5
p2

p4

p3

Preprocessing test cases and patches

1

Em
bedding (vectorizing) test cases and patches

2

Figure 5.1: Overview of BATS.
In this section, we present BATS, our approach to predict patch correctness

based on the similarity of the new patch to known correct patches with similar
failing test cases. Figure 5.1 gives an overview of the approach. BATS assumes the
following inputs: (i) The bug under resolution, its associated failing test cases, and
APR-generated plausible patches, and (ii) Historical bugs with their failing test cases
and the associated known correct patches.

To predict patch correctness, BATS performs the following steps: (1) Pre-process
patches and test cases to prepare them for the embedding step, (2) Embed patches
and test cases into higher dimensional space, (3) Compute pairwise similarity between
the failing test cases of the bug under resolution and the historical test cases, (4)
Select at most top-k historical test cases with similarity score greater than tT est, and
map them to their associated correct patches, (5) Compute an average similarity
among selected historical known correct patches, (6) Compute pairwise similarity
between every plausible patch for the bug under resolution and the average similarity
of known correct patches from the previous step, and (7) Predict a plausible patch
as correct if its similarity to the average similarity of correct patches (from step 5)
is greater than some threshold tP atch, otherwise, BATS predicts the patch to be
incorrect.

5.2.1 Pre-processing Test Cases and Patches
BATS leverages the similarity of test cases and their corresponding patches to

predict patch correctness. Therefore, the first two steps of BATS aim at preparing
the test cases and patches into a form suitable for computing similarity. One way to
achieve this is by embedding patches and test cases into higher dimensional space to
obtain numerical vectors that are suitable for vector similarity computations.

Tokenizing test cases BATS treats the source code of individual test methods as
sequences of tokens while also using camelCase tokenization to further breakdown
identifiers into their sub tokens.

Tokenizing patches Patches are tokenized in the same manner as test cases with
two differences. First, BATS considers changed lines without their contexts. I.e., it

80

5.2. Approach

selects added and removed lines only, marked with ‘+’ and ‘-’, respectively. Second,
to keep the information about added and removed lines, BATS keeps the ‘+’ and ‘-’
markers as part of each patch line.

5.2.2 Embedding Test Cases and Patches
BATS relies on similarity calculations between test cases and between patches.

Therefore, the second step is to embed test cases and patches into a higher dimensional
space to enable similarity computations. An embedding is a function that maps each
token into a high dimension real-value vector while maintaining semantic similarities
between similar tokens.

In our approach, embedding individual test methods is straightforward but it is
not the case for patches. Patches are composed of several individual hunks (contiguous
changes) while the order of the hunks is irrelevant to the patch. Each hunk can be
embedded as a sequence of tokens into a single vector. But how can we combine
the different hunks to obtain a single vector representing the entire patch? Simple
concatenation of the vectors of different hunks does not produce a unique vector.
Because there is no specific order for the individual hunks, different orderings of the
different hunks produces different vectors for the same patch. Therefore, instead of
concatenating vectors of different hunks, we sum the vectors of the different hunks
to obtain a unique vector representing the entire patch.

To obtain the embeddings for test cases and patches, we leverage three state-of-
the-art pre-trained models:
◗ code2vec. Alon et al. [167] leverage the AST representation of a method to

produce its embedding. code2vec has been applied to a variety of downstream
tasks, including predicting method names, where it revealed its ability to learn the
structure and semantics of code fragments. We propose in this work to leverage
code2vec for embedding test cases. To that end, we build on a pre-trained model
provided by the authors [167] who trained the model on a dataset containing ∼14
million Java methods.

◗ CC2Vec. Hoang et al. [163] introduced the CC2Vec hierarchical attention neural
network model for learning vector representations of patches. In the training
phase, the learning is guided by the commit messages that are associated with
patches and uses them as semantic descriptions of the patches. We propose in this
work to leverage CC2Vec for embedding APR-generated patches. We consider
the same architecture where we skip the feature crossing layer and train a new
model building on the large dataset of 24,000 patches provided by the authors.

◗ BERT. Another popular embedding method that is applied to natural language
is BERT [155], a transformer-based self-supervised language model. Recent work
in software engineering fine-tuned BERT on code fragments and applied it to
produce embeddings that were shown effective [162, 169]. Tian et al. [3] recently
leveraged BERT in their experiments on filtering out incorrect patches based
on the similarity between buggy code and patched code. For comprehensive
experiments, we also propose to investigate using BERT for embedding patches.

5.2.3 Finding Similar Test Cases
The major hypothesis of BATS is that similar failing test cases have similar

associated patches. Therefore, the third step of the approach is to find similar test
cases from historical fixed bugs, i.e., test cases that failed before their associated

81

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

fixes are applied, and are similar to the failing test cases of the current bug under
resolution. To this end, BATS computes pairwise similarities between each failing
test of the bug under resolution and all tests found in the search space of BATS.
To compute the similarity between test cases, we apply the Euclidean distance to
their code2vec embeddings. Then using a similarity threshold, tT est, BATS selects
at most the top-k historical tests with similarity score > tT est. If the number of top
k similar test cases is smaller than the number of tests with similarity score > tT est,
k is adjusted accordingly. Note that historical failing test cases do not need to be
from the history of the same project of the bug under resolution.

5.2.4 Mapping Historical Failing Test Cases to their Patches
When BATS finds the most similar test cases that failed in the past, BATS

further maps these historical failing tests to their associated correct patches which
were applied and accepted as correct fixes for those failing tests. Our hypothesis is
that a plausible patch for the current bug under resolution is correct if it is similar
to these historical correct patches because their failing test cases are also similar. To
facilitate the comparison of the plausible patches to these historical correct patches1,
BATS averages the historical correct patches by computing an average of their
embedding vectors.

5.2.5 Predicting Patch Correctness
To predict whether a given plausible patch is correct or not, BATS calculates

the similarity between this patch and the average of the historical correct patches
obtained in the previous step. BATS computes the similarity of patches through
Euclidean and Cosine similarity measurements. If this similarity score is higher than
a threshold tP atch, BATS predicts that this patch is correct, otherwise, the plausible
patch is predicted as incorrect. In our experiments, we set tP atch = 0.5.

5.2.6 An Example
Consider the following example of bug Chart-26 from the Defects4J dataset.

Chart-26 triggers 22 test cases to fail. To fix this bug, APR tools SOFix and
KaliA generate the two plausible patches presented in Figure 5.2 and Figure 5.3,
respectively.

--- .../source/org/jfree/chart/axis/Axis.java
+++ .../source/org/jfree/chart/axis/Axis.java
@@ -1189,10 +1189,12 @@

}
if (plotState != null && hotspot != null) {

ChartRenderingInfo owner = plotState.getOwner();
+ if (owner != null) {

EntityCollection entities = owner.getEntityCollection();
if (entities != null) {

entities.add(new AxisLabelEntity(this, hotspot,
this.labelToolTip, this.labelURL));

}
+ }

}
return state;

Figure 5.2: A correct patch generated by APR SOFix for the Defects4J bug Chart-
26.

1The patches were written by developers to fix the related bugs and were committed in the
historical repository of related projects.

82

5.2. Approach

--- .../source/org/jfree/chart/plot/CategoryPlot.java
+++ .../source/org/jfree/chart/plot/CategoryPlot.java
@@ -2541,7 +2541,9 @@

// record the plot area...
if (state == null) {
// if the incoming state is null, no information will be passed

+ if (true)
+ return;

// back to the caller - but we create a temporary state to record
// the plot area, since that is used later by the axes
state = new PlotRenderingInfo(null);

Figure 5.3: An incorrect patch generated by APR KaliA for the Defects4J bug
Chart-26.

First, to find out whether any of the two patches is correct, BATS looks for
test cases that are similar to the 22 failing test cases in the available search space.
The search space includes the history of the Chart project as well as other projects,
when available. Second, BATS, thanks to its code2vec-based similarity checker,
identifies two test cases as similar to some of the 22 failing tests: one test case
is associated with bug Chart-4 and the other is associated with bug Chart-25. A
manual investigation of the semantics of these two test cases reveals that they indeed
aim at detecting unhandled Null pointer dereferences.

Third, after BATS maps the two identified historical test cases to their corre-
sponding correct patches, it measures the similarity of the APR-generated patches to
these relevant correct patches. Finally, based on the similarity score and a similarity
threshold, BATS precisely predicts that the generated patches by SOFix and KaliA
are correct and incorrect, respectively. When we manually inspect the historical
correct patches that were applied to fix Chart-4 (cf. Figure 5.4) and Chart-25 (cf.
Figure 5.5), we notice that they both implement similar behavior (i.e., adding null
check) as the proposed patch by SOFix (cf. Figure5.2). On the contrary, the KaliA
patch (cf. Figure 5.3) suggests an irrelevant code change.

--- .../source/org/jfree/chart/plot/XYPlot.java
+++ .../source/org/jfree/chart/plot/XYPlot.java
@@ -4490,6 +4490,7 @@ public class XYPlot extends Plot implements ValueAxisPlot,

Pannable,
}

}

+ if (r != null) {
Collection c = r.getAnnotations();
Iterator i = c.iterator();
while (i.hasNext()) {

@@ -4498,6 +4499,7 @@ public class XYPlot extends Plot implements ValueAxisPlot,
Pannable,

includedAnnotations.add(a);
}

}
+ }

}
}

Figure 5.4: A correct developer-written patch for the Defects4J bug Chart-4.
In our evaluation, there are 17 plausible patches generated by different APR

tools for Chart-262. In Figure 5.6, we see the 17 patches ranked according to their
similarity score computed by BATS. On the x-axis, each patch is labeled with a
combination of the name of the APR tool that generated it and a numerical id as a

2These APR-generated patches have been labeled in previous work.

83

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

--- .../source/org/jfree/chart/renderer/category/StatisticalBarRenderer.java
+++ .../source/org/jfree/chart/renderer/category/StatisticalBarRenderer.java
@@ -256,6 +256,9 @@ public class StatisticalBarRenderer extends BarRenderer

// BAR X
Number meanValue = dataset.getMeanValue(row, column);

+ if (meanValue == null) {
+ return;
+ }

double value = meanValue.doubleValue();
double base = 0.0;

@@ -312,7 +315,9 @@ public class StatisticalBarRenderer extends BarRenderer
}

// standard deviation lines
- double valueDelta = dataset.getStdDevValue(row, column).doubleValue

();
+ Number n = dataset.getStdDevValue(row, column);
+ if (n != null) {
+ double valueDelta = n.doubleValue();

double highVal = rangeAxis.valueToJava2D(meanValue.doubleValue()
+ valueDelta, dataArea, yAxisLocation);

double lowVal = rangeAxis.valueToJava2D(meanValue.doubleValue()
@@ -341,6 +346,7 @@ public class StatisticalBarRenderer extends BarRenderer

line = new Line2D.Double(lowVal, rectY + rectHeight * 0.25,
lowVal, rectY + rectHeight * 0.75);

g2.draw(line);
+ }

CategoryItemLabelGenerator generator = getItemLabelGenerator(row,
column);

Figure 5.5: A correct developer-written patch for the Defects4J bug Chart-25.
tool may generate more than one patch. We note that most of the correct patches
(grey bars) are ranked ahead of incorrect patches (white bars) which confirms that
our hypothesis is effective in discriminating correct patches from incorrect ones.

Figure 5.6: The ranked patches generated by APR tools for Chart-26. The
numerical value next to each tool name indicates patch id since a tool can generate
more than one patch.

84

5.3. Study Design

5.3 Study Design
In this section, we introduce the experimental setup to evaluate our hypothesis

and our approach, BATS. We present the research questions in Section 5.3.1, the
datasets in Section 5.3.2, and the evaluation metrics in Sections 5.3.3 and 5.3.4.

5.3.1 Research Questions
Our research questions aim to validate the hypothesis, draw insights for developing

a prediction method for patch correctness and finally assess the BATS approach
with APR-generated plausible patches while comparing against recent state of the
art approaches.

RQ-1. Does the similarity of bug-triggering test cases correlate with the similarity
of the associated bug fixing patches? This research question aims to validate the
feasibility of our proposed hypothesis. To this end, we conduct two experiments:
clustering similar test cases and assessing patch similarity with the similar test
cases. This offers insights into the design of the patch correctness identification
system based on inferred thresholds.

RQ-2. To what extent can an approach assessing patch behaviour against test
specification based on unsupervised learning be effective in identifying correct
patches among plausible ones? With this research question, we first present the
implementation of BATS and evaluate its performance in identifying correct
patches in 1,278 patches generated by 32 APR tools.

RQ-3. Can BATS achieve competitive results against the recent state of the art
approaches? In this research question, we compare BATS against static and
dynamic approaches of predicting patch correctness for APR tools. Then we
explore the possibility of leveraging BATS to complement the state of the art
in identifying correct patches.

5.3.2 Datasets
We focus our experiments on the Defects4J [88] benchmark since it is widely

used in the literature, and we can readily collect plausible patches generated by
APR tools on the programs included in the benchmark. Table 5.1 provides the
statistics on the collected patches. Besides the 205 developer (correct) patches
provided in the benchmark, we also leverage the reproduced dataset from the study
of 16 APR systems by Liu et al. [175], which we augment with a dataset provided by
Ye et al. [182]. Finally, we also scan the artifacts released in the literature towards
identifying plausible patches generated by recent APR tools. Overall, we share with
the community the largest dataset3, to-date, of patches for Defects4J bugs, which
includes hundreds of overfitting (i.e., incorrect) patches.

Dataset per experiment: For answering RQ-1, we rely on the 1,120 failing
test cases and the associated 205 developer patches in the Defects4J dataset. For
answering RQ-2 and RQ-3 (assessment of the BATS approach), we consider the
1,278 plausible patches generated by APR tools or provided by the Defects4j project
developers. In these RQs, we also rely on the 1,120 test cases and 205 developer
patches as the search space for similar test cases to the failing test case being
addressed. We ensure, however, that for every execution of BATS we remove from

3https://github.com/HaoyeTianCoder/BATS

85

https://github.com/HaoyeTianCoder/BATS

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases
Table 5.1: Statistics on the dataset of developer-written and APR-generated patches.

Subject Patches Incorrect Correct Subject Patches Incorrect Correct
Developer [88] 205 0 205 jGenProg2015 [189] 11 8 3
3sFix [190] 60 57 3 jKali [191] 14 12 2
ACS [44] 21 6 15 jMutRepair [191] 15 12 3
ARJA [192] 183 168 15 KaliA [192] 14 14 0
CapGen [46] 64 39 25 kPAR [100] 50 42 8
Cardumen [193] 10 8 2 LSRepair [147] 18 15 3
CoCoNut [194] 28 0 28 Nopol2015 [189] 10 8 2
ConFix [195] 66 52 14 PraPR [113] 22 0 22
DeepRepair [196] 13 9 4 RSRepiarA [192] 18 18 0
DynaMoth [59] 18 18 0 SequenceR [65] 35 24 11
ELIXIR [197] 36 13 23 SimFix [132] 35 12 23
FixMiner [19] 27 17 10 SketchFix [130] 21 9 12
GenPat [45] 29 18 11 SOFix [17] 21 2 19
GenProgA [192] 14 14 0 ssFix [129] 19 8 11
HDRepair [16] 6 2 4 TBar [50] 57 36 21
Hercules [146] 51 14 37 VFix [102] 23 1 22
JAID [108] 64 33 31

All 1,278 689 589

the search space the failing test cases and the developer patches that are related to
the bug under resolution.

Figure 5.7 presents the distribution of 1,278 generated patches for Chart, Lang,
Math, and Time projects that have been widely used in the community of automated
program repair [175, 29] and patch correctness identification [2, 3].

Figure 5.7: Distribution of the number of collected patches per project in the
Defects4j dataset.

5.3.3 Cluster Analysis Metrics
To group similar test cases and similar patches together respectively, we explore

unsupervised learning algorithms to perform clustering. K-means [198] generally pro-
vides a good clustering performance and strong interpretability. Its main limitation,
however, is that it requires the user to specify the number of clusters k, which is
unfortunately specific to the datasets. We therefore adopt a hierarchical clustering
algorithm, e.g., bisecting K-means [199], to empirically determine the appropriate
value of k.

Bisecting K-means. This algorithm was initially proposed to overcome the
challenges of K-means (local minima, non-spherical clusters, etc.). Bisecting K-means
modifies the K-Means algorithm to produce partitional/hierarchical clustering, thus
recognizes clusters of any shape and size. The algorithm starts by splitting the
dataset into two clusters based on K-means. Then, iteratively, each cluster is split.
Each time the two clusters are identified as those presenting the smaller sum of
squared errors (SSE). By placing a threshold for the performance in terms of the
sum of squared errors, the clustering iterations can be stopped. This algorithm is
therefore convenient to infer a reasonable number k of clusters in a dataset.

86

5.3. Study Design

Cluster Similarity Coefficient (Adjusted Silhouette Coefficient). Once
clusters are yielded, we can measure to what extent each element is actually similar
to its own cluster (cohesion) compared to other clusters (separation). To that end, we
propose a similarity coefficient (SC) and cluster similarity coefficient (CSC) metrics
of each cluster element based on its internal similarity and its external similarity
towards other elements. We use the following equations:

SC(e) = in(e) − out(e)
max{in(e), out(e)} (5.1) CSC = 1

n

n∑
e=1

SC(e) (5.2)

where in(e) represents the average Euclidean Similarity from the (test case or patch)
embedding e to other embeddings in the same cluster; out(e) represents the average
Euclidean Similarity from the embedding e to the embeddings in other clusters. The
value range of SC is [-1,1]: the larger the value of SC, the better the clustering
effect. When SC value is greater than 0, the clustering is consistent. And in order
to measure the overall performance, CSC (averaging SC) is used to calculate the
coefficient taking into account all clusters.

Sum of Squared Error (SSE). Finally, we rely on the commonly-used sum of
squared errors to measure the variance within clusters. SSE in our study is computed
as the sum of the squared differences between each embedding and its cluster’s mean.
If within each and every cluster, all cases are identical, the SSE would then be equal
to 0 as per equation 5.3.

SSE =
k∑

i=1

ni∑
j=1

(xij − xi)2 (5.3)

where k represents the number of clusters, ni represents the number of elements of
the i-th cluster, xij represents the j-th element of the i-th cluster, and xi represents
the center element of the i-th cluster. Therefore, the smaller the SSE, the better the
clustering effect.

5.3.4 Performance Metrics
We consider the Recall of BATS in two dimensions:
• +Recall measures to what extent correct patches are identified, i.e., the

percentage of correct patches that are indeed predicted as correct [3].
• -Recall measures to what extent incorrect patches are filtered out, i.e., the

percentage of incorrect patches that are indeed predicted as incorrect [3].

+Recall = TP

TP + FN
(5.4) −Recall = TN

TN + FP
(5.5)

where TP represents true positive, FN represents false negative, FP represents false
positive, TN represents true negative.

Area Under Curve (AUC) and F1. By considering the similarity score as
a prediction probability, BATS can be evaluated like any machine learning model
with the common metrics such as AUC (the overall ability to distinguish between
correct and incorrect patches) and F1 score (harmonic mean between precision and
recall for identifying correct patches).

MAP and MRR. Since BATS ranks all generated patches based on similarity
scores, instead of simply considering the top-1 as the correct, we can consider a
recommendation and leverage common metrics used in assessing the ranked list. The

87

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

mean average precision (MAP) and mean reciprocal rank (MRR) are such metrics
that help assess whether BATS can place correct patches ahead of incorrect patches
in the ranked list presented to the developers.

MAP = 1
n

n∑
i=1

∑m
j=1(Pij × Relij)

correct patches (5.6) MRR = 1
n

n∑
i=1

1
ranki

(5.7)

Where Relij is an indicator function that is 1 if the j-th patch is correct in list i,
otherwise it is 0. Pij is the precision at the threshold j in the list i, and the rank
represents the first correct ranking.

BATS relies on the unsupervised learning technique and considers to set thresh-
olds of similarities among test cases and patches to predict the correctness of patches.
Given that in practice we cannot tune the decision threshold based on the specific
case of each bug, we fix a single similarity threshold to compute the accuracy, pre-
cision, and false positives. We set the model prediction threshold to 0.5. As soon
as the normalized similarity score between the generated patch and the identified
cluster of historical patches is higher than 0.5, we predict the patch as a correct one.
Otherwise, we predict it as incorrect. We note, however, that in the literature, some
approaches [2] are assessed by adjusting the threshold in the test data to achieve the
best possible +Recall.

88

5.4. Experiments and Results

5.4 Experiments and Results
In this section, we first present the validation of the hypothesis in our work

(Answer to RQ-1 in Section 5.4.1). Then , we report the experimental results of patch
correctness prediction on our collected dataset (Answer to RQ-2 in Section 5.4.2 and
RQ-3 in Section 5.4.3).

5.4.1 RQ-1: Cluster of Similar Test Cases and Patches
[Objective]: We perform experiments to answer RQ-1, whether the proposed
hypothesis is valid for patch correctness identification with the following two sub
questions to observe whether failing test cases are similar when the associated patches
are similar. First, we investigate whether the 1,120 failing test cases in Defects4J can
be grouped in clearly separable clusters. Based on each such test cluster, we decide
that the associated 205 developer patches constitute a cluster. Then, we seek to
validate the feasibility of leveraging similar test cases to predict the patch correctness
with Defects4J dataset.

• RQ-1.1 Do patches cluster well together when their test cases are similar? To
answer this RQ, we automatically cluster test cases into groups of similar test
cases, then we assess whether the associated patches in each group also have a
good clustering cohesion.

• RQ-1.2 Given two test cases, can their similarity score be used as an indicator
of their relatedness in terms of patch similarity? We investigate test case
similarity vs. patch similarity hypothesis in a fine-grained manner beyond the
clusters.

[Experimental Design for RQ-1.1]: First, we use the code2vec and CC2Vec
pre-trained models to produce embeddings for each test case and for each patch
respectively in the Defects4J dataset. To cluster test cases, we rely on the bisecting
K-means algorithm to produce hierarchical clusters. At each iteration of bisecting
K-means, we compute the sum of squared error of the clusters. We use the evolution
of reduction in SSE values to decide on a threshold for the number of clusters into
which we can split the test cases in our dataset. Experimentally, we observed that
the number of clusters k for which the SSE saturates, i.e., no longer drops, is 40.
Additionally, we empirically validate the consistency of our proposed hypothesis by
investigating the Cluster Similarity Coefficient (CSC) of different cluster settings
(i.e., k ∈ {30, 40, 50}).

In this experiment, we leverage the Similarity Coefficient (SC) and Cluster
Similarity Coefficient (CSC) (cf. Section 5.3.3) to assess the consistency and cohesion
of the yielded clusters. Nevertheless, we can observe the clustering effect for test
cases by investigating the distance distribution of each test case to the center of its
cluster: we first consider the distance4 with all test cases in a single group. Then,
we compute the distance of each test case to the center of its K-means-inferred
cluster. We consider that if the distribution of distances shows that, on average,
distances in a cluster are lower than in the whole group, then the test cases have been
well-separated. We confirm that when considering the whole dataset, the distances
are the longest (i.e., the median value of distance distributions for all clusters are
lower than the one for the whole dataset). In several inferred clusters, the median

4Distance and similarity are two concepts that are used interchangeably in this section depending
on the context to facilitate comprehension.

89

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

Figure 5.8: Similarity coefficient of test cases and patches at each cluster.
distance (of the test case to the cluster center) is halved. These observations suggest
indeed that the test cases could be readily clustered.
[Experimental Results for RQ-1.1]: Considering the test cases clusters, we infer
associated groupings of patches that address these test cases. We then compute the
CSC to evaluate the consistency and cohesion of the patch clusters that we have
derived. These metrics evaluate the distances among patches within each cluster
and the distances among clusters. We validate the metrics on the overall Defects4J
ground-truth dataset.

Table 5.2 presents the cohesion and consistency metrics for the patches regrouped
based on the clusters of test cases when the number of clusters is 30, 40 and 50,
respectively. The Cluster Similarity Coefficient(CSC) is the average value of similarity
coefficient (SC) values for all clusters. “Qualified” represents the ratio of clusters
that have SC > 0 out of all clusters identified. We compare those metrics (on
test case clusters) to the associated patch clusters. The positive values of the CSC
indicate that, on average, the elements inside the same group are indeed more similar
among themselves than they are similar to the elements in other groups. When test
cases are well grouped (CSC > 0), the corresponding clustering of the associated
patches clusters together consistently (CSC > 0). In more details, a large ratio of
clusters (33/40) also have high cohesion. When adjusting the number of clusters
to 30 or 50, the results show that the major clusters of patches (23/30, 37/50) still
keep high cohesion, and the clustering of test cases and patches are consistent to
each other (CSC > 0).
Table 5.2: Statistics on the performance of clustering of test cases and patches with
30, 40 and 50 clusters.

Subjects Cluster Similarity Coefficient Qualified
Test Cases 0.19 30/30
Patches 0.16 23/30
Test Cases 0.19 40/40
Patches 0.16 33/40
Test Cases 0.21 50/50
Patches 0.14 37/50

Figure 5.8 further presents the similarity coefficient (SC) of test cases and patches
for each cluster when k is set to 40. We observe that, for most pairwise clusters of
test cases and patches, when the SC value of test cases (presented with grey bar) in
one cluster is high, the associated patches (presented with white bar) also have a
high SC score. We further calculate a Pearson correlation between the clusters of
test cases and the clusters of associated patches, of which value is 0.883 > 0. Pearson

90

5.4. Experiments and Results

correlation can be used to measure the linear correlation between two sets of data
where a higher positive value (i.e., > 0) indicates a more positive association. Such
results indicate that the similar test cases can lead to similar patches.

[RQ-1.1] Given a cluster of similar test cases, their associated patches cluster
consistently. This experiment also hints that the representation models for test
cases and clusters yield meaningful embeddings for investigating the relatedness of
patches and test cases.

[Experimental Design for RQ-1.2]: The clustering experiment for RQ-1.1 focuses
on average distances within clusters, we further seek to validate the possibility of
using test case similarity as a potential heuristic to predict correct patch behavior.
The objective is to answer “whether the similarity of two test cases can be used as
an indicator of their relatedness in terms of patch similarity”. To this end, we first
consider finding the most similar test case from the search space of historical test
cases for the failing-executed test case of a given bug. We then assess to what extent
the patch of a given bug is similar to the patch associated to the most similar test
case (referred to ① Scenario H), of which results are compared against the results
in ② Scenario N where we compute the average similarity between a given patch
and all other patches. The experiments finally investigate scenarios where the closest
test case is sought within the all project or only in other projects (excluding the one
where the test case is found).
[Experimental Results for RQ-1.2]: Figure 5.9 presents the overall similarity
distribution between each of the 1,120 test cases in the dataset and its closest
counterpart: while some test cases indeed have very similar counterparts, many
test cases have low similarities with their closest counterparts. These relatively low
similarities for many test cases can be explained by the limited number of test cases
considered in the study datasets. These results suggest that it may not always make
sense, for a given test case, to blindly consider the most similar counterpart since
this counterpart can still be highly dissimilar. We thus propose to experimentally
determine a threshold to decide when in practice the closest test should not be
considered as similar.

Figure 5.9: Distribution on the similarities between each failing test case of each
bug and its closest similar test case.

In Figure 5.10, we compare the distributions of the similarity scores for the
two scenarios H and N. In all projects, the distributions in the scenario H of our
hypothesis present higher similarities. This indicates that the most similar test case

91

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

1.0
QJ

0 0.9

� 0.8

�0.7
·-

� 0.6
-

·E o.s
lf> 0.4

H -N

i i

Project

Figure 5.10: Distributions on the similarities of pairwise patches (similar patch
selected with Scenario H vs. Scenario N from all projects, i.e., the search space for
searching similar cases is all projects in the dataset).

1.0
QJ

0 0.9

� 0.8

�0.7
·-

� 0.6
-

·E o.s
lf> 0.4

H -N

i i

Project

Figure 5.11: Distributions on the similarities of pairwise patches (similar patch
selected with Scenario H vs. Scenario N from other projects, i.e., the search space
for searching similar cases does not include the buggy project itself).
is a good proxy to identify a patch5 that will be more similar than the average patch
in a dataset.

In the aforementioned experiment, the test cases in search space are allowed from
the same project due to the lack of test cases. To evaluate our hypothesis in the
scene of insufficient test cases, we further reproduce the comparison by focusing on
test cases and patches that are from other projects (i.e., the buggy project itself
is excluded from the search space of test cases). Figure 5.11 further provides the
distributions for the two scenarios H and N. In this case, we note that the difference
is less pronounced for most projects. We postulate that this is due to the fact that
similarity scores are low. Thus we propose to set a threshold and consider, for the
scenario H, cases where the test cases present a higher similarity than the threshold.

When considering each of the 1,120 test cases, for many of them the closest
test case in the search space is actually not a “similar” one. By looking at the
pairwise similarity distribution shown in Figure 5.9, we note that 74% (831/1120)
similarity values are lower than 0.6. We therefore arbitrarily decided to use this
value as the threshold6 to explore the hypothesis by isolating the minority of cases
where the similarities are significant (more experiments with different thresholds
are presented in Section 5.4.2 for RQ-2). Figure 5.12 presents the comparison of

5This patch is the one associated with the similar test case that failed in the past.
6Note that it aims to validate our hypothesis but not to infer a specific/adaptable threshold.

92

5.4. Experiments and Results

OJ 1.0
0

0 0.9

� 0.8
?;0.7
·-

!i.....

m 0.6
-

·E o.s
lf> 0.4

H -N

i i

Project

Figure 5.12: Distributions on the similarities of pairwise patches (similar patch
selected with Scenario H vs. Scenario N from other projects, i.e., the search space
for searching similar cases does not include the buggy project itself, by setting the
threshold at 0.6).
similarity distribution when the patch pairs are selected with Scenarios H and N
from other projects, after setting a threshold of 0.6 for the similarity of test cases in
Scenario H to reduce noise. We observe that scenario H now provides the highest
similarities for the paired patches (based on the similarities of test cases). Note that
some white boxes (scenario H) in the plot are missing is due to lack of high enough
similar test cases.

[RQ-1.2] Given a test case and its most similar test case, their associated patch
pair will exhibit a similarity that is statistically higher than the average similarity
for all pairs of patches in the same project. This finding is also confirmed across
projects.

5.4.2 RQ-2: Identifying Correct Patches with BATS
[Objective]: Findings in answering the above RQ confirm our hypothesis that test
case similarity correlates with patch similarity. BATS is therefore implemented to
explore this hypothesis scenario in an APR setting where generated plausible patches
(for a failing test case T) are ranked based on their similarity with a set of historical
patches that were applied by developers (to address failing test cases similar to T).
To answer this RQ, we leverage the 1,278 plausible patches which are composed
of 205 developer-written patches and 1,073 APR-generated patches by the tools in
Table 5.1.

By assessing BATS on the collected dataset of plausible patches generated by liter-
ature APR tools, our main aim is to demonstrate to the community the feasibility
of the proposed research direction for patch assessment.

[Overall Assessment]: We first design a baseline with a simple hypothesis which
considers that a patch is more likely to be correct if it is similar to some historically
correct patches (i.e., any correct patches). In contrast to BATS, this baseline does
not consider failing test cases as the constraint for reducing the search space. We
recall that the performance of BATS, which relies on search, is dependent on the
availability (in project repositories) of test cases that are actually similar to the
failing test case addressed by the APR-generate patches. As introduced earlier, the
closest test cases in the search space may actually not be that similar: this is a

93

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

Table 5.3: Baseline’s performance on identifying (in)correct patches.
Patch
embedding† Correct Incorrect AUC F1 +Recall -Recall

CC2Vec 589 689 0.586 0.579 0.705 (415) 0.379 (261)
Bert 0.593 0.558 0.647 (381) 0.428 (295)

Table 5.4: BATS’s performance on identifying (in)correct patches.
Patch
embedding† T∗ # Correct

patches
Incorrect

patches AUC F1 +Recall -Recall

CC2Vec

0.0 589 689 0.557 0.549 0.628 (370) 0.437 (301)
0.6 144 181 0.559 0.505 0.562 (81) 0.470 (85)
0.7 94 141 0.678 0.590 0.766 (72) 0.447 (63)
0.8 57 57 0.718 0.722 0.842 (48) 0.509 (29)
0.9 41 44 0.709 0.693 0.854 (35) 0.432 (19)

BERT

0.0 589 689 0.561 0.518 0.593 (349) 0.406 (280)
0.6 144 181 0.611 0.576 0.694 (100) 0.431 (78)
0.7 94 141 0.639 0.570 0.766 (72) 0.440 (62)
0.8 57 57 0.676 0.626 0.719 (41) 0.421 (24)
0.9 41 44 0.647 0.600 0.732 (30) 0.341 (15)

†Embeddings of test cases are always done with code2vec.
∗T: Threshold of test case similarity. Given the failing test case of an APR-generated patch, we consider only
historical test cases with the similarity which are higher than the threshold. Thus, depending on the threshold,
some generated patches cannot be assessed as we are not able to associate them with any past test case.
“(#)” in last two columns represents the number correct/incorrect patches identified by BATS.

classical challenge of search engines [200]. Therefore, we propose to filter in only
test cases that present a sufficient level of similarity with the targeted test cases.
Experimental evaluations will further offer insights on the use of such a threshold.

We chose the cosine similarity for the baseline and BATS implementation.
Table 5.3 reports the classification performance of the baseline (AUC less than 0.6).
For reference, the performance of BATS is provided later (cf. Table 5.4). We
note that the baseline performance is similar with BATS when the test similarity
threshold is not set. However, when we only consider test cases with higher similarity
with the failing test cases, the performance of BATS increases (up to 0.85 for +Recall
and 0.71 AUC). CC2Vec, as an embedding model for patches, helps achieve high
AUC, F1, +Recall (i.e., the recall in identifying correct patches) and -Recall (i.e.,
the recall in filtering out incorrect patches).

Table 5.5 provides performance results in terms of MAP and MRR. The high
metric values further confirm that most correct patches are indeed ranked higher in
the recommended patch list that is sorted based on their similarities with historically-
relevant patches (given test case similarity). The MAP and MRR of the baseline are
both 0.63, underperforming against BATS (up to 0.80 and 0.8 for MAP and MRR
respectively).

Table 5.5: BATS’s performance on ranking correct patches.
Threshold of test case similarity 0.00 0.60 0.70 0.80 0.90
MAP 0.62 0.63 0.71 0.80 0.70
MRR 0.63 0.65 0.74 0.81 0.75

Figure 5.13 illustrates the overall performance evolution of BATS when the
threshold of the test case similarity is varied. We note, while the -Recall does not
change drastically, there is a positive effect on +Recall (and other metrics) when
the similarity threshold is increased. These results confirm that the underlying

94

5.4. Experiments and Results

hypothesis of BATS is just: when BATS identifies highly similar test cases, its
prediction of correctness for APR-generated patches is more accurate.

Figure 5.13: Performance evolution of BATS with varying threshold of the test-
case similarity.

Representation learning vs. raw strings Beyond the performance metrics
on AUC, +/-Recall and F1 of BATS, we propose to investigate the choice of
representation learning for embedding patches. To assess the value of leveraging
deep learning models for embedding patches, we consider computing similarity of
patches as raw strings. To that end, we simply use the Levenshtein distance between
the patches (considered as strings, and not after computing embeddings): by setting
the threshold of test case similarity as 0.8, we obtain the lowest AUC and F1 values,
respectively at 0.46 and 0.53. -Recall even drops at 0.12. These results validate
our decision to leverage deep representation learning models for producing patch
embeddings.

[RQ-2] BATS performs well in identifying patch correctness with an AUC ∼ 0.7
and an F1∼0.7 while the Recall of identifying correct patches reaches ∼0.8. Further
experimental investigations, with constraints on test case similarities, support our
hypothesis: similar test cases are addressed by similar patches.

5.4.3 RQ-3: Competitive/Complementary to the State-of-the-
art

[Objective]: In previous research questions, we validate our hypothesis and
develop the pipeline BATS to identify the correctness of patches generated by APR
tools. The experimental results show BATS achieves promising performance. To
further evaluate BATS in practice, we compare it against the state of the art static
and dynamic approaches with the same dataset used for RQ-2. Recall that, in
practice, the performance of BATS, is impacted by the availability to find (really)
similar test cases. As illustrated in the results of Table 5.4, when the threshold of
test case similarity is set high, the number of patches for which similar test cases
are found in our dataset decrease significantly. While this does not contradict the
hypothesis underlying BATS, it may limit its value when larger datasets are not
available. Nevertheless, we postulate that BATS can be complementary to the
previous two state of the art approaches (i.e., Tian et al. [3] and PATCH-SIM [2]).

95

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

I. Comparing Against the State-of-the-art

We conduct the comparison of BATS against the state-of-the-art patch correct-
ness predicting tools, i.e., Tian et al.’s deep learning approach [3], PATCH-SIM [2]
and ODS [27].

BATS vs. Deep learning approach

Since BATS leverages pre-trained DL-based (deep learning representation) mod-
els, we proceed to compare it against the recent related work by Tian et al. [3]
where DL-based embeddings of patches are leveraged for static checks. To ensure
that the results of BATS and of the DL-based approach are compared on the same
dataset, we focus on the 114 patches (threshold>0.8) as the testing set of the DL-
based approach. Because the approach of Tian et al. require a training dataset for
supervisely producing a classifier, we use the remaining 1164 (1278-114) patches. As
for classification algorithms, we leverage both Logistic Regression (LR) and Random
Forrest (RF), following the experiments of the authors. As shown in in Table 5.6,
BATS can recall (+Recall) more correct patches while preserve the same or higher
-Recall. It should be noted also that, unlike the DL-approach by Tian et al., BATS
doesn’t require large dataset for training a classifier.

Table 5.6: Comparison with a state of the art supervised classifier [3].
Classifier AUC F1 +Recall -Recall
Tian et al. (LR) 0.72 0.68 0.77 0.51
Tian et al. (RF) 0.70 0.49 0.75 0.46
BATS 0.72 0.72 0.84 0.51

BATS vs. PATCH-SIM

The state of the art in dynamic assessment of patch correctness is PATCH-SIM [2].
It targets excluding incorrect patches via comparing execution behaviour of tests
for the patched and original programs. We apply PATCH-SIM to the 114 test data
to generate prediction. However, PATCH-SIM fails to produce prediction results
for some of the bugs/patches7. Furthermore, we observed that PATCH-SIM takes
several hours to produce a prediction outcome for some patches. In our experiment,
we set a one hour timeout for the prediction per patch. Eventually, 48 out of 114
could be evaluated by PATCH-SIM. Our experiment was conducted on Linux server
equipped with 8 cores 2.10GHz CPU and 125G memory. Results in Table 5.7 show
that PATCH-SIM achieves a 0.80 of +Recall and a 0.42 of -Recall. Among patches
evaluated, the average prediction time for each patch is 1044s (i.e., more than 17
minutes), while BATS only spends ∼0.3 second on validating each patch. Overall,
the dynamic approach, PATCH-SIM, is constrained in terms of resource requirements,
as it needs to generate new test inputs and exploit the behavior similarity of test
case executions for validating each patch. The resource cost of BATS is mainly
decided by two aspects: ❶ the model training process, although BATS leverages the
pre-trained models, and ❷ the search space of historical test cases. The time cost
of finding similar test cases will be sharply increased only when the search space is
expanded.

7We reported the problem to the PATCH-SIM authors and we are still waiting for their response.

96

5.4. Experiments and Results

Table 5.7: Comparison with a state of the art dynamic-based patch assessment [2]
Classifier AUC F1 +Recall -Recall
PATCH-SIM 0.61 0.52 0.80 0.42
BATS 0.72 0.72 0.84 0.51

BATS vs. ODS
We also compare our performance against a recent machine learning-based ap-

proach leveraging manually-engineered features. We compare BATS against a recent
work by Ye et al. [27] where the authors propose a supervised learning approach
ODS that explores manually engineering patch features for overfitting detection. To
predict patch correctness, ODS first constructs the engineering features from the AST
representation of patches to express potential behavior information. Such features
are used by ODS to train a ML-based model to proceed the classification of patch
correctness. While we could not fully reproduce their work on our dataset due to the
unavailability of their training dataset, we are able to compare our results with the
ones presented in their paper since we have test sets of similar size and from the same
sources. Overall, BATS and ODS exhibit similar performance metrics. When they
tune their learners to have a high +Recall (e.g., 1.00), their -Recall drops (e.g., 0.46,
respectively). Our BATS unsupervised learning approach further aims to cope with
two challenges with approaches such as ODS: (1) they require large sets of labelled
patches to perform supervised learning; (2) it can be difficult to manually explain a
prediction classification (e.g., because features that contribute to the classification
decision are difficult to track back to the failing test case specification and may not
generalize to new data).

[RQ-3] ❶ When the availability of similar test cases is satisfied, BATS can
achieve competitive performance on predicting the correctness of APR-generated
patches against the state-of-the-art dynamic and static approaches.

II. Enhancing the State-of-the-art with BATS
We present experimental results to demonstrate that we can achieve enhanced

performance in correct patch identification by using existing (static or dynamic)
state of the art approaches in conjunction with BATS.
Supplementing a supervised classifier with BATS

[Objective]: Given that BATS is fairly accurate when highly similar test cases
(with associated historical patches) are available, we propose to build a pipeline
where BATS is applied on the subset of bug cases where such test cases exist. For
the rest of bugs, the correctness of generated patches is predicted by using a relevant
literature classification-based approach proposed by Tian et al. [3]. We then compare
the performance of this pipeline against the performance yielded when the classifier
is used alone on the whole dataset.
[Experimental Design]: We set a threshold of the test case similarity at 0.6
(cf. Table 5.4) to identify which failing test cases are relevant for assessing the
added-value of BATS. The dataset is then split into 325 patches for test and 935
for training a patch classifier described in recent literature: we reproduce the work
of Tian et al. [3] using their provided artefacts which provide a supervised learning
model to classify patches based only on embeddings (computed with Bert). As for

97

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

learner, we leverage alternatively Logistic Regression (LR) and Random Forrest (RF)
following the experiments of the authors.

We first compute the performance of the supervised learning classifier alone on the
test dataset. Then, we evaluate the combined pipeline (Tian et al. [3] + BATS) with
the following procedure: BATS is first applied to predict correctness for all patches
that are associated to test cases for which historical test cases with a high similarity
(≥ 0.9) can be found. 26.1% (85/325) of patches in the test set are then evaluated
by BATS. The rest of patches are passed to the trained supervised classifier which
does not require test case information.
[Experimental Results]: The results presented in Table 5.8 show that the combined
pipeline can indeed supplement the baseline classifier. +Recall can be improved
by up to 5 percentage points while -Recall can be improved by up to 4 percentage
points.

Table 5.8: Supplementing a supervised classifier with BATS.
Classifier AUC F1 +Recall -Recall
Tian et al. (LR) 0.75 0.60 0.53 0.80
Tian et al. (LR) + BATS 0.75 0.62 0.53 0.85
Tian et al. (RF) 0.75 0.59 0.56 0.82
Tian et al. (RF) + BATS 0.75 0.67 0.61 0.82

[RQ-3] ❷ BATS can supplement a state of the art patch classification system,
which : on bug cases where the failing test case is highly similar to historical test
cases, BATS can provide more accurate classification.

II. Complementing test execution based detection

[Objective]: Our objective is to assess whether BATS (which statically reasons
about test case similarity) can boost PATCH-SIM [2] (which considers dynamic
execution behaviour). We consider that BATS value can be confirmed if it can help
exclude incorrect patches that PATCH-SIM could not. Therefore, we build on a
similar pipeline than in Section 5.4.3, where BATS is applied instead of PATCH-SIM
when enough similar test cases can be found.
[Experimental Design]: We apply PATCH-SIM to the above 325 test patches in
last Section 5.4.3. As for BATS, we use the Defects4J dataset as search space. Note
that, as in all experiments, we ensure that the search space does not include test case
or patches linked to the assessed generated patch. To achieve reliable performance
with BATS, we must consider only cases where highly similar test cases exist in our
dataset. Therefore it is possible that our performance measurement could only be
computed on a portion of the test set. Finally, PATCH-SIM can successfully produce
results for 153 patches, of which 48 patches are applied by BATS when setting the
similarity threshold at 0.8. is sufficient to find similar test cases.
[Experimental Results]: Table 5.9 presents the performance results of PATCH-
SIM (alone) and the combination (PATCH-SIM with BATS). We note that, by
applying BATS to the subset of patches where similar test cases are available, we
are able to improve the overall performance in patch correctness prediction. Theses
results demonstrate that BATS can be complementary to a dynamic approach.

98

5.4. Experiments and Results

Table 5.9: Complementing PATCH-SIM with BATS.
Classifier AUC F1 +Recall -Recall
PATCH-SIM 0.62 0.55 0.82 0.43
PATCH-SIM + BATS 0.65 0.59 0.84 0.51

[RQ-3] ❸ BATS static approach is complementary to the PATCH-SIM [2] dy-
namic approach. By being able to identify incorrect and correct patches when test
cases are sufficient, BATS implementation confirms our initial hypothesis that
statically reasoning about similar test cases offers a novel and promising perspective
to the assessment of APR-generate patch correctness.

99

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

5.5 Ablation Study
5.5.1 Bug types of failing test cases clusters

In this study, we manually check whether bugs, grouped with respect to the
test cases, in each cluster are actually similar or not in terms of bug types. We
first note that the failing test cases grouped in the same cluster perform similar
checks (e.g., date-related checks). Building upon the dissection study of Defects4J
bugs by Sobreiraet al. [201], we further investigate the categories of bugs in each
cluster. We find that test cases in a given cluster are indeed related to bugs in the
same category. For instance, test cases triggering Chart-2 and Chart-4 bugs are in
the same cluster and the dissection study data indicates that these two bugs are
in the same category of NullPointerException. However, it’s important to
note that these categories are organized solely based on types of exceptions, rather
than fine-grained behavior. As a result, some of our clusters simply fall into the
same overarching category. Finally, note that the dissection study was performed
in a previous (smaller) version of Defects4J, which does not allow us to provide
comprehensive results for our dataset. Nevertheless, the observations that we have
made support the framing of our hypothesis that test cases similarity can reflect very
well the category of bugs, and hence of the required fixes. In future work, we will
consider exploring other possible representations of bugs beyond test cases, such as
bug reports.

5.5.2 Asymmetry of the hypothesis
The experimental results validate the feasibility of our proposed hypothesis:

similar test cases can lead to similar patches for fixing associated bugs. We investigate
the symmetry of the hypothesis: Could similar patches be referred to similar test
cases? To this end, we first independently cluster patches with their similarities, and
then assess the similarities of the associated test cases in each patch cluster. With
respect to independent clustering of patches, the clustered patches achieve a Cluster
Similarity Coefficient (CSC) of 0.26 and all the groups are qualified. However, the
CSC for associated test cases groups is 0.03 that is very close to zero and much lower
than the CSC value of clustered patches. The results indicate that the symmetry
of the hypothesis is invalidated, i.e., similar patches cannot fully be mapped to
addressing similar failing test cases. It is reasonable, since different bugs can be fixed
with similar code change ways which lead to similar patches [202], but the different
bugs are triggered by different test cases.

100

5.6. Threats to Validity

5.6 Threats to Validity
Threats to External Validity. We relied on Bisecting-K-means for the
clustering experiments to validate our hypothesis. Other algorithms may reveal
different results. We have mitigated a potential bias by using multiple evaluation
metrics to exhaustively assess the clusters. We also relied only on Defects4j to ensure
that we can collect enough plausible patches from literature APR experiments.

In future work, the community could further investigate other datasets as well as
test cases augmentation (through test generation [203, 204, 205] or code search [206])
to enlarge the datasets of patches and test cases.

Threats to Internal Validity A major threat to internal validity is that we
manually process patches to build the dataset. We may have introduced some
mismatching errors when associating test cases. To mitigate this threat, we publicly
release all artefacts for review by the community.

Towards reasoning about code similarity, we rely on code2vec, which parses test
cases to deep learning features. Unfortunately, while most projects format their
test case specifications as for typical code (such as in Figure 5.14), the Closure
project presents an ad-hoc format where the essential parts of the specification
are formatted as a string (see Figure 5.15): in such cases, code2vec embeddings
abstract away the string as a mere argument to a function, rendering the embeddings
semantically irrelevant. Therefore, because we leverage off-the-shelf tools to validate
our hypothesis, we simply discard Closure bugs, for which future work can investigate
specific learners to parse test specification defined in the form of string. Eventually,
our experimental evaluation considers 1,278 plausible patches, 598 of which are
correct while 689 are overfitting (i.e., incorrect). Overall, the dataset is, to the best
of knowledge, the largest set of plausible patches explored in the literature on patch
correctness assessment.

public void testDrawWithNullInfo() {
boolean success = false;

try {
BufferedImage image = new BufferedImage(200, 100,
BufferedImage.TYPE_INT_RGB);
Graphics2D g2 = image.createGraphics();
this.chart.draw(g2, new Rectangle2D.Double(0, 0, 200, 100), null, null)

; g2.dispose();
}

catch (Exception e) {
success = false;

}
assertTrue(success);

}

Figure 5.14: A typical failing test case specification (Chart-26).

public void testComplexInlineNoResultNoParamCall3() {
test("function f(){a();b();var z=1+1}function _foo(){f()}",

"function _foo(){{a();b();var z$$inline_0=1+1}}");

Figure 5.15: String-based format for test specification (Closure-49).

Threats to Construct Validity. The used embedding models are pre-trained
and some parameter weights may not be adapted to our work. In future work, we
could retrain and fine-tune the parameters after collecting large datasets.

101

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

5.7 Related Work
Representation Learning. Embedding is a key challenge for reasoning about

similarity. Initial works on software engineering artefacts have explored models [155,
159] trained on natural language text (such as Wikipedia). BERT is a widely used
bidirectional encoder representations model in textual tasks where it outperforms
the state of the art by learning to obtain the conditional parameters. Recent works
have however proposed specialized architectures to be trained on code. For example,
Alon et al. [167] proposed code2vec to capture the semantic properties of code
snippets by learning distributed representation. Zhangyin et al. presented a pre-
trained CodeBert [154] that leveraged programming language and natural language
data on code tasks. To learn the representation of code changes, Hoang et al. [163]
proposed an attention-based neural network model CC2Vec with the hierarchical
structure to predict the difference between the removed and added code of the patch.

Code Similarity and Code Clone Detection. Finding code that implements
similar functionality is what BATS does to find similar test cases and similar patches.
DeepSim [157] leverages deep learning on semantic features matrix representing
control- and data-flow information to predict whether a given pair of functions
implements similar functionality. Fang et al. [158] introduced a new granularity level
of the call-callee relationship to capture similar functionality while leveraging word
embeddings and graph embeddings to train a deep neural network for the same task.

To detect code clones across different programming languages, CLCDSA [207]
extracts 9 syntactic source code features from the ASTs of different pieces of code and
uses either Cosine similarity or trained neural network to detect clones. BATS also
uses Euclidean distance and Cosine similarity to find similar test cases and similar
patches. Alternatively, SLACC [208] uses dynamic analysis and input-output pairs to
detect clones across different programming languages. Finally, binary code similarity
has been studied extensively [209] with recent approaches also leveraging graph and
instruction embeddings [210, 211, 212] to find similar binaries. These approaches for
finding similar code across different programming languages and across binaries could
benefit BATS in the future by enabling cross-project and cross-language search for
similar test cases and similar patches.

102

5.8. Conclusion

5.8 Conclusion
In this work, we propose and investigate a simple yet effective hypothesis for static

patch correctness assessment: given a failing test case, any associated generated
patch is likely correct if it is similar to patches that were used to address similar
failing test cases. We have validated our hypothesis using the developer correct
patches and the associated failing test cases in the Defects4J benchmark. To evaluate
the potential of this hypothesis in predicting patch correctness, we propose a patch
identification system, BATS, to check patch behaviour against test specification
based on unsupervised learning. BATS achieves its highest performance when the
similarity of test cases is high, which further validates our hypothesis. Comparing
against state of the art, BATS outperforms them in identifying correct patches and
filtering out incorrect patches. Despite potential issues in the availability of large
datasets of projects to search for historical examples (test cases and their associated
patches), we demonstrate that BATS can be complementary to both state of the
art static and dynamic approaches to predict patch correctness. In summary, BATS
highlights a promising avenue for research in patch assessment. It paves the way for
future studies focused on delving into deep bug semantics—specifically, the semantics
of failing test functions in our context—to establish correlations with correct patches.

103

Chapter 5. Predicting Patch Correctness Based on the Similarity of
Failing Test Cases

104

6 Correlating Descriptions of Bug and
Code Changes for Evaluating Patch
Correctness

In this chatper, we propose a novel perspective to the problem of patch correctness
assessment: a correct patch implements changes that “answer” to a problem posed by
buggy behavior. Concretely, we turn the patch correctness assessment into a Question
Answering problem. To tackle this problem, our intuition is that natural language
processing can provide the necessary representations and models for assessing the
semantic correlation between a bug (question) and a patch (answer). Experiments on
a large dataset of 9 135 patches generated for three bug datasets (Defects4j, Bugs.jar
and Bears) show that Quatrain achieves an AUC of 0.886 on predicting patch cor-
rectness, and recalling 93% correct patches while filtering out 62% incorrect patches.

This chapter is based on the work published in the following research paper:

• Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin
Xia, Jacques Klein, and TegawendÉ F. BissyandÉ. Is this Change the Answer
to that Problem? Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness. In 37th IEEE/ACM International Conference
on Automated Software Engineering, pp. 1-13. 2022.

Contents
6.1 Overview . 107
6.2 Related Work and Hypothesis 109

6.2.1 Related work . 109
6.2.2 Hypothesis Validation . 109

6.3 Approach . 111
6.3.1 Extraction of Bug Reports 112
6.3.2 Generation of Patch Description 112
6.3.3 Construction of Training Examples 112
6.3.4 Embedding of Bug Reports and Patches 113
6.3.5 Training of the Neural QA-Model 113
6.3.6 Classifying a Pair of Bug Report and Patch 115

6.4 Study Design . 116

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

6.4.1 Research Questions . 116
6.4.2 Datasets . 116
6.4.3 Metrics . 117

6.5 Experiments and Results 118
6.5.1 RQ-1: Effectiveness of Quatrain 118
6.5.2 RQ-2: The Impact of Input Quality on Quatrain 119
6.5.3 RQ-3: Comparison against the State-of-the-art 122

6.6 Discussion . 125
6.6.1 Experimental Insights . 125
6.6.2 Case Study . 125
6.6.3 Threats to Validity . 126

6.7 Conclusion . 127

106

6.1. Overview

6.1 Overview
Generate-and-validate techniques have achieved success in automatic program

repair (APR) by yielding valid patches for a large number of defects in several
benchmarks [213, 214, 175, 215, 15, 30]. While such techniques are commonplace,
their adoption by the industry faces a critical concern with respect to their practicality:
state-of-the-art approaches tend to generate patches that overfit the weak oracles
(e.g., test suites) [77, 1, 85, 126]. Indeed, in practice, patches validated by test cases
are only plausible. Most of them will be manually found by practitioners to be
incorrect [175, 28, 29].

Research on automatic assessment of patch correctness has been prolific in
recent years [3, 216, 33, 136]. We identify mainly two categories leveraging either
static or dynamic information. In the first category, only static information is
leveraged to decide on patch correctness. For example, Ye et al. [27] have manually
crafted static features of code changes that can be used for training a machine
learning (ML) based classifier of patch correctness. Similar approaches based on
deep representation learning have been proposed [3]. More recently, Tian et al. [4]
proposed a system where correctness is decided by checking the static similarity of
failing test cases vs the similarity of code changes. In the second category, traces of
dynamic execution of test suites are leveraged for correctness evaluation. To predict
patch correctness, Xiong et al. [2] check the behavioral change of failing test case
executions. Shariffdeen et al. [56] relied on concolic execution to traverse test inputs
and patch spaces to reduce the number of patch candidates.

Despite the promising results achieved by the aforementioned approaches to patch
correctness assessment, we identify one fundamental issue and one opportunity that
open roads to the new research direction studied in this work. As a fundamental
issue, we note that state-of-the-art approaches generally assess patch correctness
by reasoning mostly about the code changes, and sometimes also about the test
case. However, the bug itself, which is targeted by the generated patch, is
seldom explicitly investigated. Yet, patches are written to address a specific
buggy behavior. As an opportunity, we note that bug reports, while informal, may
offer an explicit description of the bug, which can be leveraged to assess patch
correctness.

To the best of our knowledge, no prior work has investigated the problem of
patch correctness as a question-answering problem. We follow the intuition that
when a code base maintainer is presented with a patch, the suggested changes are
evaluated with respect to the reported bug. That bug is therefore a question. Bug
reports, with their natural language description (cf. Example of Figure 6.1(a)),
typically pose the problem. The code changes implementing a patch offer an answer
to the problem. The commit message describing these changes (cf. Example of
Figure 6.1(b)) typically presents the solutions to the maintainer. The maintainer
can then immediately perceive whether the solution (patch) would be relevant to the
problem (bug). This scenario of patch validation by human maintainers may appear
naive since there are other aspects that developers consider, including whether the
bug is real, whether the changes are riskier, etc. Nevertheless, this constitutes a first
screening process that we aim to automate by leveraging recent advances in natural
language processing (NLP) and machine learning (ML).

This paper. We explore the feasibility of leveraging a deep NLP model to assess

107

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

Missing type-checks for var_args notation

(a) Title of the bug report.

check var_args properly

(b) The commit message of the developer’s patch.

Figure 6.1: The bug report of Closure-96 from Defects4J and the corresponding
commit message of the developer’s patch.

the semantic correlation between a bug description and a patch description, towards
predicting patch correctness for automated program repair. Our main contributions
are as follows:
❶ We perform a preliminary validation study to demonstrate that bug and patch

descriptions are correlated within a dataset of developer submitted patches. This
hypothesis validation constitutes a first finding that opens a novel direction for
patch correctness studies using bug artifacts.

❷ We formulate the patch correctness assessment problem as a question answering
problem and propose Quatrain (Question Answering for Patch Correctness
Evaluation), a supervised learning approach that exploits a deep NLP model to
classify the relatedness of a bug report with a patch description.

❸ We extensively evaluate the effectiveness of Quatrain to identify correct patches
as well as filter out incorrect patches among a dataset of 9,135 plausible patches
(written by developers or generated by APR tools). Our evaluation further
compares Quatrain to state-of-the-art dynamic [2] and static [3] approaches,
and demonstrates that Quatrain achieves comparable or better performance in
terms of AUC, F1, +Recall and -Recall.

❹ We conduct an analysis of the impact of inputs quality on the prediction perfor-
mance. In particular, we show that the software engineering committee could
benefit from extended research into the direction of patch summarization (a.k.a.
commit message generation).

Availability. Our artifact, code, and dataset are publicly available at: https:
//github.com/Trustworthy-Software/Quatrain.

108

https://github.com/Trustworthy-Software/Quatrain
https://github.com/Trustworthy-Software/Quatrain

6.2. Related Work and Hypothesis

6.2 Related Work and Hypothesis
In this section, we describe the related work to highlight the relevance of our work

and the novelty of our approach. Then we validate the hypothesis that Quatrain
builds on.

6.2.1 Related work
Leveraging NLP in program repair. Given that the target of program repair is
to transform a buggy program into its correct version, a number of recent studies
have considered it as a translation task. Building on the software naturalness
hypothesis [164], researchers proposed to apply existing neural machine translation
(NMT) techniques generally leveraged in natural language processing. Chen et al.
[65] proposed a recurrent neural network (RNN) based approach that fixes one-
line bugs by translating the buggy line into the correct line. Tufano et al. [217]
designed another RNN based model that works at the method level: the model
takes a buggy method as input and generates the entire fixed method as output.
Lutellier et al. [194] proposed to separately encode the buggy line and its surrounding
contexts (i.e., statements that appear before or after the buggy line). CURE [218],
a more advanced approach, leverages pre-training techniques to help the model gain
knowledge about the rigorous syntax of programming languages and how developers
write code. Another recent study [219] investigated the feasibility of applying a
large-scale pre-trained model, CodeBERT, to generate patches.

Overall, while these previous works apply NLP techniques to the patch generation
process, our work investigates NLP models for patch correctness assessment.
Leveraging bug reports in software engineering tasks: Bug reports are
considered as invaluable resources for debugging activities since they typically contain
detailed descriptions about the program failures as well as the clues of the fault
(usually in the form of stack traces) [220]. A number of studies have exploited bug
reports to facilitate diverse software engineering tasks. Liu et al. [221] and Koyuncu
et al. [107] investigated the feasibility of building program repair systems based on
bug reports, instead of the traditional test cases. Indeed, the primary motivation
of their works is that the required test case in APR for triggering the bug may not
be readily available in practice when the bug is reported. Fazzini et al. [222] and
Zhao et al. [223] explored how to automatically reproduce program failures from bug
reports without human intervention. By leveraging code change patterns mined from
bug reports, Khanfir et al. [224] proposed an approach that injects realistic faults to
improve mutation testing. Besides, bug reports have been utilized for constructing
high-quality defect benchmarks for software testing [172, 225]. In our study, we
leverage bug reports to model the semantics of the bug and thus better assess the
patch correctness.

6.2.2 Hypothesis Validation
Our hypothesis is that there is a semantic correlation between a bug description

and the associated (correct) patch description. To validate the existence of such
a correlation, we conduct a preliminary experiment on a collected dataset. The
experiment investigates the semantic similarity between the descriptions. To that end,
we consider a ground truth dataset of Defects4J bugs for which a bug report is available
and the commit messages describing developer-written patches are provided. These
are denoted “original pairs”. Then, we assign a randomly selected commit message

109

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

to each bug report in order to build ‘random pairs’. Finally, to capture the semantics
of the natural language sentences forming the descriptions (of bugs and patches), we
utilize a pre-trained deep learning model BERT [155] (introduced in Section 6.3.4),
which embeds the descriptions into vectors. We standardize1 these vector values
to eliminate the influence of dimension on the similarity computation. Finally, we
calculate Euclidean distance for all pairs. Figure 6.2 presents the distribution for
original pairs and random pairs. The results show that the original (i.e., ground
truth) bug report and associated commit message pairs are more similar than random
pairs. The Mann–Whitney–Wilcoxon test [226] (p-value: 1.2e-32) further validates
the significance of the distribution difference. Note that we use semantic similarity as
a metric to determine correlation. The validation of the existence of such correlation
motivates the Quatrain approach, where NLP modelling is leveraged to develop a
classification approach of patch correctness by building on predicting the relevance
of a patch (based on its description) for a bug (given its description).

Figure 6.2: Distributions of Euclidean distances between bug and patch descriptions.

1In a standardized dataset, each feature has a range of values with a mean of 0 and standard
deviation of 1.

110

6.3. Approach

6.3 Approach
In this section, we first describe the overview of our proposed approach. Then, we

fill in the details of the approach with specific steps separated in several subsections.
[Overview]: The intuition we build on is that the natural language description of a
bug-fixing patch is semantically related to the bug report describing that specific
bug: the bug report describes the problem (bug) and the patch description describes
the solution to the problem. This semantic relation between a bug report and its
associated patch is similar to the QA relation between questions and their answers
in NLP. We present the definition as follow:

Definition 6.3.1 (Patch Correctness Prediction as a QA Problem)
Given a bug report in natural language brnl, a patch patchc for the reported bug,
and a natural language description patchnl of the patch, predict whether the QA-like
pair (brnl, patchnl) is matching or not. I.e, predict whether the patch patchnl is
relevant to (answers) the bug report brnl (the question) or not.

To solve this problem, we propose an approach, Quatrain, which takes as input
a program whose buggy behavior is described in a bug report and the associated
patch generated by an APR tool, and outputs a prediction of correctness. Figure 6.3
provides an overview of the approach, which includes two phases: training (offline)
and prediction (online).

Buggy program
w/ bug report

Patch (code)

Bug desc.

Patch desc.

Build +ve & -ve
examples

3

Vectorize pairs

4

Extract
bug report

1

Obtain
patch description

2

Train
QA classifier

5

Classify new pair
6

Gathered
 data

Training

Pairs of:
bug desc. & patch desc.

New pair

Prediction

Figure 6.3: Overview of the approach.
In the training phase, given a batch of a buggy program, Quatrain first extracts

the bug NL description (bug report) from the program repository in an automatic
way; then, for each candidate patch associated to the bug, it generates the patch NL
description by leveraging a code change summarization tool (e.g., a commit message
generator - cf. Sections 6.3.1 and 6.3.2). Subsequently, Quatrain requires a large
number of positive (i.e. correct) and negative (i.e. incorrect) examples to train a
classifier that predicts the correlation between a bug report and a patch description.
Our third step (Section 6.3.3) thus focuses on building a dataset of positive and
negative examples of pairs of bug reports and associated (in)correct patches. In
the fourth step (Section 6.3.4), Quatrain converts the patch descriptions and the
bug reports into vectors in high-dimensional vector space to enable model learning.
Finally, in the fifth step (Section 6.3.5), Quatrain trains a neural QA classifier on
the pairs of bug reports and patch descriptions.

In the prediction phase, Quatrain pre-processes a new buggy program and
its associated candidate patch by applying the first, second, and fourth steps in
Figure 6.3. It then uses the trained QA classifier to predict whether the candidate
patch indeed answers the problem in the bug report. The answer is equivalent to a

111

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

statement on the correctness of the plausible patch (yes:correct; no:incorrect).

6.3.1 Extraction of Bug Reports

The first step of our approach is to obtain descriptions of the bugs. A natural
choice for finding such descriptions is to leverage bug reports. They exist in large
numbers across projects and provide a NL description of program buggy behavior
which, at least, describes the symptom of the bug. Bug reports are submitted via
different platforms, e.g., issue trackers such as Jira and issues in GitHub. For our
purpose, we use a script to automatically mine bug reports for the bug datasets that
we use.

An official bug report typically includes three parts: title, description, and
comments. In the benchmark that we build, some bug reports include comments
where the correct solution or even the entire patch is posted. Note, however, that in
our experimental assessment, we must assume that the bug has not yet been fixed.
Thus, to remain practical and reduce bias, we discard all comments and leverage
only the title and the description body of bug reports.

6.3.2 Generation of Patch Description

The second step of our approach is to summarize an APR-generated patch in
natural language so as to obtain a semantic explanation of the changes applied in
the patch. The idea here is to get a representation of the patch that is as close as
possible to how a bug report describes, in natural language, what is the bug. If the
patch is written by a developer (e.g., positive example patches in our training set),
its associated commit message could be used as a proxy for such NL description of
the patch. We use a script to mine the commit messages from developer repositories
such as GitHub and collect the descriptions associated to the patches in our datasets.

Note however that commit messages are obviously not available for APR-generated
patches. Therefore, we automatically generate patch descriptions with the help of
state-of-the-art commit message generation techniques. In particular, we consider
CodeTrans [227], an encoder-decoder transformer based model that has been devel-
oped to tackle several software engineering tasks. Quatrain uses CodeTrans-TF-
Large, the largest such model which achieves the highest BLEU score so far of 44.41
on the commit message generation task.

During training, we obtain patch descriptions either from: (i) Manually written
commit messages of bug-fixing patches provided by developers, or (ii) Automatically
generated descriptions using CodeTrans for APR-generated patches.

6.3.3 Construction of Training Examples

Recall from Definition 6.3.1 that we are addressing a binary classification problem.
To train a binary classifier, one needs to collect positive (i.e. correct) as well as
negative (i.e. incorrect) examples. Therefore, the third step of Quatrain is to build
a dataset of positive and negative training examples.

At a high level, a positive (or negative) training (or testing) example consists of
a bug report and its associated patch.

112

6.3. Approach

Definition 6.3.2 (Bug report-patch description pair) A bug report-patch
description pair is a tuple (brnl, patchnl) of a bug report brnl and a patch de-
scription patchnl (in NL) of a patch that is intended to fix the bug reported in
br.

I. Positive Examples
We collect two kinds of positive (correct) training examples. The first kind of

correct examples are developer-written patches and their associated bug reports. The
second kind of correct examples are APR-generated patches and their associated bug
reports where the APR patches have been manually labeled in previous studies [4,
27, 145, 14]
II. Negative Examples

We need to create negative examples to train Quatrain to identify incorrect
patches. To do so, we build two kinds of incorrect examples.

For the first kind of negative examples, we randomly assign developer-written
patches to irrelevant bug reports. For example, we create a training sample by
assigning the patch for bug-x with the bug report of bug-y. The rationale for creating
this kind of negative examples is to mobilize the model to learn the hidden relations
between bug reports and their associated patch descriptions. A patch that tackles
a totally irrelevant bug would carry much less - if any - relation to the bug under
examination.

The second kind of negative examples is created by selecting APR-generated
patches that have been labeled as incorrect in previous studies [4, 27, 145, 14] and
their associated bug reports. The idea is that those APR-generated patches were
intended to address the specific bug under examination, but a manual verification
revealed that they were incorrect. Correspondingly, the patch description generated
for such incorrect patch does not correctly answer the bug report and thus could be
considered as negative example.

6.3.4 Embedding of Bug Reports and Patches
To efficiently learn the relationship between bug reports and patch descriptions,

we first need to convert the text into a numerical representations. Though there
exist various techniques [228, 229, 230, 231] for transforming texts into numerical
vectors, selecting the proper embedding technique is crucial, as it influences how
precisely the vectors represent the text. Compared with popular embedding models
such as Word2Vec [168], which uses a fixed representation for each word regardless
of the context within which the word appears, BERT [155] has more advantages for
representing texts: it produces word representations that are dynamically informed
by the words around them. Thus, we employ BERT as our initial embedding model
for both bug reports and patch tokenized texts. The used model is a pre-trained large
model with 24 layers and 1,024 embedding dimension trained on cased English text.
After representing texts into a vector space, we can perform numerical computations
on them, e.g., compute text similarity or correlation metrics.

6.3.5 Training of the Neural QA-Model
QA-Models are widely applied in Natural Language Processing (NLP) and Soft-

ware Engineering (SE) communities. Existing literature on QA has addressed various
tasks [232, 233, 234], among which, the task of answer selection shares fundamental
similarities with our bug report-patch description matching problem, i.e., select a

113

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

Patch DescriptionBug Report

BiLSTM

Attention

DenseCosine

Candidate Answer
Correct (Y/N)

Score

probabilityprobability

Sigmoid

Output

Sigmoid
&

Cosine
&

Attention

Q

BiLSTM

A
vectorize vectorize

Share parameters

Figure 6.4: Architecture of the neural QA model.

correct answer (patch) for a question (bug report). Tan et al. [235] ’s approach
exhibits powerful performance on this task by extending basic bidirectional long
short-term memory (BiLSTM) model with an efficient attention mechanism. Thus,
in the fifth step of Quatrain, we propose to adapt the extended QA model from
Tan et al. to learn the correlation between bug reports and patch descriptions. We
present the architecture of our adapted QA model in Figure 6.4.

The QA model requires two inputs: bug report and patch description, in their
vectorized format (as per Section 6.3.4). Then, the BiLSTM layer takes the inputs
to learn the correlation between the bug report and the patch description. Assuming
input vectors are vectorb and vectorc, we present the BiLSTM in Equation 6.1.

eb = BiLSTM(vectorb) = [xb1, xb2, ..., xbN] ∈ RN×dim

ec = BiLSTM(vectorc) = [xc1, xc2, ..., xcN] ∈ RN×dim
(6.1)

where eb and ec represent BiLSTM embeddings of one bug report b and one associated
patch description c. N is the length of the input sequence and dim refers to the
dimension size of each sequence. xbi and xcj are the embeddings of i-th word in b
and c.

To better distinguish the correct patch from other patches based on the bug
report, we employ an attention mechanism on the patch description to combine the
most relevant information according to the bug report, similar to Tan et al. [235].

To this end, for each word embedding xcj in patch description, we compute the
matrix product eb(xcj)T . We then propagate the resulting vector through a softmax
operator to obtain the impact weight αxcj

of each word of bug report to xcj.

αxcj
= Softmax(eb(xcj)T) ∈ RN (6.2)

where Softmax(x) = exp(x)
Σiexp(x) , and exp(x) is the element-wise exponentiation of the

vector x. Afterwards, we map the impact weight αxcj
back to each bug report word

embedding xbi to obtain attention representation attxcj
,

attxcj
= ΣN

n αxcj ,nxbi ∈ Rdim (6.3)

114

6.3. Approach

where αxcj ,n means the n-th value of αxcj
. Then, we flatten eb and attxcj

to one-
dimensional vectors reb and rec representing the bug report and patch description
(with attention), respectively.

Finally, we compute cosine similarity between bug report vector reb and associated
patch description vector rec and use the sigmoid activation function to normalize the
output value of cosine layer to the value range of 0 and 1.

Score = Sigmoid(cosine(reb, rec)) (6.4)

where Sigmoid(x) = 1
1+exp(−x) . The Score is the prediction probability of patch

correctness.
[Hyper-parameters]: The employed QA model is mainly based on BiLSTM. We
set the max sequence length to 64 and the hidden state dimension size to 16 for
the BiLSTM layer. During the training period, we iterate the model parameters by
using an Adam optimizer with a leaning rate of 0.01. Considering the data size, we
execute 10 training epochs to ensure the convergence of the model. The batch size
at each epoch is 128.

6.3.6 Classifying a Pair of Bug Report and Patch
For a given buggy program and its APR-generated patch, Quatrain classifies

the pair as being correlated or not by first extracting the bug description, generating
a textual description of the patch, vectorizing the pair of texts, and finally querying
the trained QA model. A prediction probability is a value between 0 (incorrect) and
1 (correct). Quatrain labels a patch as being correct or not based on a threshold
on the prediction output (Section 6.5.1).

115

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

6.4 Study Design
We first enumerate the research questions that we investigate to assess the

effectiveness of our approach. Then, we describe the dataset used for answering the
questions. Finally, we present the evaluation metrics used in our study.

6.4.1 Research Questions
• RQ-1: What is the effectiveness of Quatrain in patch correctness identification

based on correlating bug and patch descriptions?
We evaluate Quatrain on a large dataset consisting of ground truth correct and
incorrect patches.

• RQ-2: To what extent does the quality of the bug report and of the patch description
influence the effectiveness of Quatrain?
We perform two separate experiments: in the first, we consider the size of texts
(i.e., number of words) as a proxy for quality, and we investigate whether there is a
difference in quality measurement across correct and incorrect predictions. In the
second experiment, given the original bug report and developer patch description
pairs, we replace them alternatively with a random bug report or a tool-generated
patch description and observe changes in performance measurements.

• RQ-3: How does Quatrain perform in comparison with the state-of-the-art
techniques for patch correctness identification?
We propose to compare our approach against static and dynamic approaches
proposed in the literature for APR patch assessment.

6.4.2 Datasets
In this paper, we leverage benchmarks that are widely used in the program

repair community and on which several APR tools have been applied to generate a
large number of patches: Defects4J [88], Bugs.jar [172] and Bears [173]. Table 6.1
summarizes the patch dataset that we use for our experiments. First, we mainly collect
the labeled patches (including developer patches) from the studies of Tian et al. [4]
and Ye et al. [27]. We then supplement the dataset with the patches generated
by AVATAR [145] and DLFix [14], which were not considered in these prior works.
Considering that different APR tools may generate the same patches for the same
bug, we use a simple string-based comparison script to deduplicate our patch dataset.
Overall, we obtain a large duplicated patch assessment dataset of 11,352 patches
consisting of 2,260 correct and 9,092 incorrect patches. Nevertheless, although we
removed some duplicated patches, there are some semantically equivalent patches that
could not be detected with our script. For instance, the two conditional statements if
(dataset == null) and if ((dataset) == null) in Java are equivalent,
although the extra parentheses make their raw strings mismatch. To reduce the bias
of these duplications in our experiments, we design a specific dataset split scheme in
Section 6.5.1.

In our experiment: We recall that our approach relies on measuring the
correlation between the bug report (BR) and the patch description to predict patch
correctness. The collected patches above involve 1,932 unique bugs To obtain the
associated bug reports, we mined their code repositories. Unfortunately, 631 bugs
do not contain associated bug reports. Eventually, we were able to leverage 1,301
bug reports. Finally, for the 1,301 unique bugs, we obtain 9,135 available patches
consisting of 1,591 correct and 7,544 incorrect patches for our experimental evaluation.

116

6.4. Study Design

Table 6.1: Datasets of labeled patches.
Benchmark Subjects Correct Incorrect All

Defects4J [88]
Tian et al. [4] 1,344 1,017 2,361
Ye et al. [27] 0 5,493 5,493
AVATAR [145], DLFix [14] 59 38 97

Bugs.jar [172] Ye et al. [27] 930 2,254 3,184
Bears [173] 251 531 782
Total 2,584 9,333 11,917
Total (deduplicated) 2,260 9,092 11,352
Total (experiment) 1,591 7,544 9,135

6.4.3 Metrics
Our objective in patch correctness identification is to recall as many correct

patches while filtering out as many incorrect patches as possible. Thus, we follow the
definitions of Recall proposed by Tian et al. for the evaluation of their BATS [4]:

• +Recall measures to what extent correct patches are identified, i.e., the
percentage of correct patches that are identified from all correct patches.

• -Recall measures to what extent incorrect patches are filtered out, i.e., the
percentage of incorrect patches that are filtered out from all incorrect patches.

+Recall = TP

TP + FN
(6.5) −Recall = TN

TN + FP
(6.6)

where TP represents true positive, FN represents false negative, FP represents false
positive, TN represents true negative.

Area Under Curve (AUC) and F1. We construct a deep learning-based NLP
classifier to identify the correctness of the patch. Therefore, we use the two most
common metrics, AUC (i.e., the overall ability to distinguish between correct and
incorrect patches) and F1 score (harmonic mean between precision and recall for
identifying correct patches), to evaluate the overall performance of our approach [236].

117

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

6.5 Experiments and Results
We conduct several experiments to answer our research questions. In Sections 6.5.1

and 6.5.2, we focus on the evaluation of approach performance and analysis of
approach input to performance. In Section 6.5.3, we compare against the state-of-
the-art approaches.

6.5.1 RQ-1: Effectiveness of Quatrain
[Experiment Goal]: We answer RQ-1 by investigating to what extent the Qua-
train approach, which predicts patch correctness by correlating bug and patch
descriptions, is effective.
[Experiment Design]: In the literature, ML-based approaches to patch correctness
identification are commonly evaluated using 10-fold cross validation (i.e., patch set
is divided into 90% for training and 10% for test) [3]. However, as we noted in
the analysis of our datasets, there are semantically equivalent patches. Thus the
training and testing set may contain duplicate samples, which could lead to biased 2

experimental results due to data leakage (i.e., the model already sees some same
test samples in the training phase).

Given the challenge to fully deduplicate the dataset, we propose to limit the
bias via a new split scheme, referred to as 10-group cross validation. A first manual
analysis has shown that the duplicated patches are typically generated by different
APR tools while targeting the same buggy program. Therefore, we first randomly
distribute 1,301 unique bugs (including 9,135 patches) into 10 groups: and every
group contains unique bugs and their corresponding patches. Then, 9 groups are
used as train data and the remaining one group is used as the test data. Finally, we
repeat the selection of train and test groups for ten rounds and average the metrics
obtained across the different experimental rounds. Through this 10-group cross
validation scheme, each patch is able to be leveraged as train data and test data
once, which fits the objective of cross-validation. Additionally though, during each
train-test process, the unique bugs along with their sets of semantically equivalent
patches are exclusively assigned to either train or test group. We trust that such
a scheme will provide a realistic evaluation of the performance of learning-based
approaches for patch correctness assessment.

Figure 6.5 shows the distribution of the number of patches assigned to train and
test data at each round of 10-group cross validation. The overall ratio of train and test
data splits is around 10:1. This ratio is close to typical 10-fold cross validation (9:1)
and thus is appropriate to evaluate the performance of train-test based approaches.

Figure 6.5: Distribution of Patches in Train and Test Data.

2We discuss this threat in Section 6.6.

118

6.5. Experiments and Results

Table 6.2: Confusion matrix of Quatrain prediction.
AUC F1 Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.886 0.628

#TP 1,591 1,582 1,551 1,475 1,175 583 189 0 0
#TN 0 2,388 3,010 4,653 6,566 7,261 7,522 7,544 7,544
#FP 7,544 5,156 4,534 2,891 978 283 22 0 0
#FN 0 9 40 116 416 1008 1,402 1,591 1,591
+Recall(%) 100 99.4 97.5 92.7 73.9 36.6 11.9 0 0
-Recall(%) 0 31.7 39.9 61.7 87.0 96.2 99.7 100 100

[Experiment Results]: Using the presented 10-group cross validation, we provide
the overall confusion matrix as well as the average +Recall (recall of correct patches)
and -Recall (recall of incorrect patches) of Quatrain in Table 6.2.

Quatrain achieves high AUC at 0.886, demonstrating the overall effectiveness
of the QA model for patch correctness prediction. We note however that the F1 score
(0.628) is relatively low. This metric is known to yield low values when the test data
is imbalanced [237]: in our setting, the ratio is around 5:1 between the incorrect and
the correct patch sets. We indeed confirm that that better F1 can be obtained by
re-balancing the test data: with a ratio of 1:1 (1,591:1,591) at each round, the same
trained classifier achieves a F1 score of 0.793. Later, in our experiments, we mitigate
the potential imbalance bias by comparing against state-of-the-art approaches on the
same experimental settings (cf. Section 6.5.3). We found that +Recall and -Recall
are sensitive to the selection of thresholds. When setting the threshold at a low
value (e.g., 0.1), we are able to identify all correct patches (+Recall=100%) but
conversely none of the incorrect patches can be filtered out (-Recall=0%). Similarly,
at the threshold value of 0.9, we filter out all incorrect patches but cannot recall
any correct patch. Nonetheless, we see that Quatrain achieves promising results
balanced between +Recall and -Recall when an adequate threshold is selected. For
instance, Quatrain can recall 92.7% correct patches while filtering out 61.7%
incorrect patches at a threshold value of 0.4 or +Recall of 73.9% and -Recall of 87.0%
respectively at a threshold of 0.5. The results demonstrate our approach is effective
on identifying correct and incorrect patches.

✍ RQ-1 Experimental validation on our collected ground truth demonstrates the
effectiveness of Quatrain in identifying correct patches and filtering out incorrect
patches: our implementation achieves a +Recall of 92.7% and -Recall of 61.7%
when the decision threshold is set at 0.4.

6.5.2 RQ-2: The Impact of Input Quality on Quatrain
[Experiment Goal]: Quatrain relies on specific steps to extract bug and patch
descriptions once a patch candidate is generated to be applied for a buggy program.
The quality of these descriptions may thus influence the performance of our approach.
We investigate such an influence by attempting to answer three sub-questions:
• RQ-2.1 To what extent does the length of bug reports and patch descriptions

influence the prediction performance? We hypothesize that good descriptions
should have more distinct words, and explore whether correct predictions are
made on patch/bug descriptions of larger size.

• RQ-2.2 Does the NLP-based QA classifier actually correlate the bug report and
the patch description? We introduce noise in the test data and evaluate whether
the classifier is actually looking at the correlation that we seek to check with the
QA.

119

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

• RQ-2.3 Do generated patch descriptions provide the same learning value as
developer-written commit messages? We perform experiments where ground truth
patch descriptions in the training set are alternatively switched between developer-
written (assumed of high quality) and automatically generated (assumed of lower
quality) commit messages.

[Experiment Design (RQ-2.1)]: We first define the length of input sentence as
the number of distinct words included in the bug reports. Our assumption is that
the presence of more distinct words in a textual description may indicate higher
quality. Then, for each evaluation round of the 10-group cross validation scheme, we
compute the boxplot distribution of length of bug and patch description for correct
and incorrect predictions made by our model respectively. Finally, we calculate
Mann Whitney Wilcoxon (MWW) to evaluate whether the difference of length is
significant across the distributions. The analysis is made on both the length of bug
report and patch description.
[Experiment Results (RQ-2.1)]: Figure 6.6 presents the distributions of patch
description lengths for each round of prediction. We observe that, overall in most
groups, the length of patch description are bigger in the correct predictions than
in the incorrect predictions: the model is effective when the patch description has
larger size. The Mann–Whitney–Wilcoxon test (p-value: 4.1e-16) further confirms
that the difference of length is statistically significant. In contrast, the difference for
the case of bug reports was not found to be statistically significant.

Figure 6.6: Impact of length of patch description to prediction.

✍ RQ-2.1 The higher the quality of patch description (i.e., in terms of text
length), the more Quatrain is accurate in predicting patch correctness.

[Experiment Design (RQ-2.2)]: We recall that our NLP model is designed to
correlate the bug report and patch description to predict the patch correctness. To
validate that some correlation is indeed learned by the devised model, we investigate
the influence of associating wrong bug reports to some patches in the test set. We
consider the dataset of 1,301 developer-written patches in this experiment since
the developer patch description and associated bug report are known to be indeed
related by construction. We first compute the performance achieved by Quatrain
in the prediction of correct patches. Then, for the patches that Quatrain correctly
predicts (recall), we re-run the classification test where we replace the original bug
reports with other randomly selected bug reports among the test data. We investigate
whether this breakdown of the correlation between bug report and patch description

120

6.5. Experiments and Results

is reflected in the prediction performance of NLP model.
[Experiment Results (RQ-2.2)]: Figure 6.7 presents the distribution of prediction
probability of Quatrain for the 1,073 correct patches when the classifier is applied
on the ground truth pairs (i.e., original pairs) and when the classifier is applied on
pairs where the patch is associated to a random bug report (i.e., random pairs) . As
we see from the boxplot, the lowest value of the distribution of original pairs (white
box) is around 0.5. This is normal by construction: we set 0.5 as the threshold
probability for deciding correctness, and our data is focused on cases where the
prediction was correct. After breaking the correlation of bug report and patch
description pairs, we found that Quatrain yields some prediction probability values
smaller than 0.5 (i.e., they will be wrongly-classified as incorrect) although the
patches are correct. The Mann–Whitney–Wilcoxon test (p-value:4.0e-35) confirms
that the difference of median probability values is statistically significant between
the two distributions. Concretely, 22% (241/1,073) of developer patches, which were
previously predicted as correct, are no longer recalled by Quatrain after they have
been associated to a random bug report. These results suggest that Quatrain
indeed assesses the correlation between the bug report and the patch description for
predicting correctness.

Figure 6.7: The distribution of probability of patch correctness on original and
random bug report.

✍ RQ-2.2 When developer patches are paired with random bug reports, Quatrain
is no longer able to predict over 20% of them correctly. The results suggest that the
QA learner in Quatrain indeed assesses the correlation between the bug report
and the patch description for predicting correctness.

[Experiment Design (RQ-2.3)]: Commit messages are generally accepted as high-
quality descriptions of changes since they are manually written by Developers. While
CodeTrans is a state-of-the-art, its generated-descriptions should be lesser quality.
Nevertheless, because developer-written commit messages are unavailable in practice
for APR-generated patches, we must resort to automatic patch summarization tools
such as CodeTrans. We evaluate the impact of the quality of patch description
(developer-written vs. CodeTrans-generated) on the prediction performance. Our
experiments focus on the developer patches only as in RQ-2.2. In the dataset, each
patch has two kinds of descriptions, i.e., written by developer and generated by
Codetrans. We first evaluate our approach based on developer-written descriptions.
Then, we replace the developer descriptions with CodeTrans-generated descriptions
to assess the performance evolution.

Besides, we speculate that Quatrain is more likely to correctly predict a correct
patch if the generated description is similar to developer-written descriptions used
in the training set, we conduct experiments to validate this hypothesis. Note
however that the semantics of developer-written and generated descriptions should
be equivalent as they describe the same developer patch. To measure the differences

121

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

in the descriptions, we adopt the Levenshtein distance 3 and compute their textual
similarity.
[Experiment Results (RQ-2.3)]: The experimental results show that Quatrain
achieves a +Recall of 82% (1,073/1,301) when the input for test data uses developer-
written descriptions of patches as in RQ-2.2. However, that metric (+Recall) drops
by 37 percentage points to 45% when the developer-written descriptions are replaced
with CodeTrans-generated descriptions. This demonstrates that the quality of
patch description considerably impacts the prediction performance of Quatrain.
Figure 6.8 displays the boxplot distribution of Levenshtein distance between developer
description and generated description on correct and incorrect predictions respectively.
In most of the groups, the white box (correct predictions) presents the shorter
Levenshtein distance value, i.e., higher similarity. This result suggests that if a
generated description has a quality that is as high as that of the developer description,
Quatrain prediction ability will benefit from it. Finally, note that in Section 6.5.1,
we evaluated Quatrain in a setting where all developer commit messages were
replaced with generated descriptions: the AUC metric dropped by 11 percentage
points to 0.774, confirming our findings.

Figure 6.8: Impact of distance between generated patch description to ground
truth on prediction performance

✍ RQ-2.3 Patch descriptions generated by CodeTrans are often of different
quality than ground-truth descriptions. Good patch descriptions help Quatrain
identify more correct patches.

6.5.3 RQ-3: Comparison against the State-of-the-art
While previous RQs have shown that Quatrain is effective, in this section

we compare it against state-of-the-art static and dynamic approaches. Finally, we
investigate the complementarity of Quatrain to other existing approaches.
I. Comparing against Static Approaches

We compare Quatrain against two state-of-the-art approaches: (i) A pure
classification approach based on patch embeddings [3] and (ii) BATS which leverages
the embedding of test cases to compute similarity among failing test cases and among
associated patches [4].

3A classic metric for measuring the distance between two strings by calculating the minimal edit
operations required.

122

6.5. Experiments and Results

Quatrain vs. (supervised) DL-based Patch Classifier
In Quatrain, we first leverage pre-trained Bert model to embed the natural

language text of bug report and patch description of patch. Then, we build a deep
learning classifier to capture the QA relationship between these descriptions to
predict patch correctness. Since Tian et al.’s approach also use BERT and construct
a classifier for patch correctness validation, we compare our approach against theirs.
For a fair comparison, we reproduce their evaluation on our dataset. Concretely,
when we train or test our model with divided-by-group patches, we consistently use
the same patches for the training and testing of Tian et al.’s classifiers of Logistic
Regression (LR) and Random Forrest (RF), following their experimental setup.

Table 6.3 presents the comparison results: Tian et al.’s best classifier (RF)
achieves +Recall of 89.4% while filtering out 59.8% incorrect patches. Meanwhile,
Quatrain achieves a better +Recall of 92.7%, and filters out slightly more incorrect
patches (-Recall of 61.7%). Regarding the overall performance metrics AUC and
F1, Quatrain outperforms the approach of Tian et al.. We finally investigate the
complementarity of our approach. Among 9,135 patches, our approach identifies
7,842 patches, of which 2,735 patches cannot be identified by Tian et al.’s approach
(RF).

Table 6.3: Quatrain vs a DL-based patch classifier [3].
Classifier Incorrect:Correct AUC F1 +Recall -Recall
Tian et al. (LR) 7,544:1,591 (5:1) 0.719 0.449 0.833 0.605
Tian et al. (RF) 7,544:1,591 (5:1) 0.746 0.470 0.894 0.598
Quatrain 7,544:1,591 (5:1) 0.886 0.628 0.927 0.617

Quatrain vs. (unsupervised) BATS
BATS [4] is the most recent patch correctness assessment approach proposed by

Tian et al.. It is devised based on a simple but novel hypothesis that when different
defective programs fail to pass similar test cases, it’s likely that the programs can be
repaired by similar code changes. Given a buggy program, failing test cases and a
plausible patch, BATS first searches the most similar failing test cases from other
oracle programs. Afterwards, the associated correct patches that fix these similar
test cases are extracted to compute their similarity with the generated plausible
patch. BATS labels the plausible patch as correct if that similarity is beyond an
inferred threshold, otherwise it is predicted as incorrect.

According to the authors’ open-source artifacts, BATS is currently able to be
evaluated on Defects4J and is not adapted for Bears and Bugs.jar. We thus conduct
the comparison on the benchmark of Defects4J. Although Tian et al. demonstrated
that BATS shows promising results on identifying patch correctness, its scalability is
limited due to the lack of enough test cases in the search space to compute similarity.
They thus added a cut-off on the similarity computation of test cases to focus on
a subset of patches where BATS is applicable. We follow their experimental setup
to reproduce BATS evaluation on our dataset with the cut-off of 0.0 (non-specific
scenario) and 0.8 (the best performance in their evaluation). We compare our
approach on the same available dataset.

As shown in Table 6.4, the configuration of cut-off incurs the reduction of patch
set that can be evaluated. Our approach comprehensively outperforms BATS whether
they filter dissimilar programs or not (cut-off: 0.0 and 0.8). Note that BATS is not

123

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

able to scale its performance, in this scenario, to the entire dataset due to the lack of
similar test cases. In addition, in this scenario, 180 out of 345 patches are exclusively
identified by Quatrain.

Table 6.4: Quatrain vs BATS [4].
Classifier Incorrect:Correct AUC F1 +Recall -Recall
BATS (cut-off: 0.0) 4,930:385 (13:1) 0.549 0.149 0.647 0.452
Quatrain 4,930:385 (13:1) 0.824 0.350 0.803 0.662
BATS (cut-off: 0.8) 367:41 (9:1) 0.620 0.235 0.805 0.436
Quatrain 367:41 (9:1) 0.832 0.462 0.902 0.453

II. Comparing against a Dynamic Approach
We consider a dynamic approach where execution traces are also leveraged in

the prediction of correctness. PATCH-SIM [2] is a state-of- the-art tool for dynamic
assessment of patch correctness: it compares test execution information before and
after patching a buggy program. The hypothesis they proposed is that correct patches
tend to change the behavior of execution of failing test cases and retain the behavior
of passing test cases. Due to the failure of prediction for part of the patches 4 and
limitation of timeout, we can apply PATCH-SIM to 3,546 patches. The results in
Table 6.5 show that our approach filters out more incorrect patches while reaching
same +Recall compared to PATCH-SIM. Most of the patches (1,856/3,149) that we
identify are not correctly predicted by PATCH-SIM. Note that the low values of F1
score (both for PATCH-SIM and Quatrain) are due to the extremely imbalanced
ratio of 44:1 in incorrect:correct sets.

Table 6.5: Quatrain vs (execution-based) PATCH-SIM [2].
Classifier Incorrect:Correct AUC F1 +Recall -Recall
PATCH-SIM 3,468:78 (44:1) 0.581 0.053 0.769 0.392
Quatrain 3,468:78 (44:1) 0.792 0.127 0.769 0.667

✍ RQ-3 Comparing against state-of-the-art static and dynamic approaches, Qua-
train achieves competitive (or better) performance in predicting patch correctness.

4We reported the problem to the PATCH-SIM authors and we are still waiting for their response.

124

6.6. Discussion

6.6 Discussion
We enumerate a few insights from our results and discuss the threats to the

validity of our study.

6.6.1 Experimental Insights
[Insufficient deduplication of semantically-equivalent patches may lead to biased
prediction performance.] As we mentioned in the experimental design in Section 6.5.1,
the traditional 10-fold cross validation scheme may assign the same semantically-
equivalent patches simultaneously into both train and test datasets. In practice, this
setup violates the principles in machine/deep learning-based evaluations since it’s
equivalent to letting the models cheat by learning knowledge from test data during
the training process [238, 239, 240]. To showcase this bias in the results, we propose
to focus on a straightforward classifier using a random forest on the embeddings
of the bug report and the patch: when using 10-fold cross validation scheme on
our ground truth dataset, the achieved AUC is as high as 0.978 (with F1 at 0.860);
however, when using our deduplication scheme (10-group cross validation based on
bug ID), the AUC drops to 0.780 (and F1 at 0.344).
[Generating high quality code change description can help identify patch correctness]
We found that the quality of code change description influences the prediction
performance of Quatrain. In RQ-2.1 and RQ-2.3, the experimental results show
the model makes more correct predictions when addressing longer or more developer
written-similar code change description. Our experiments offer some evidence to
encourage the community to design advanced patch summarization approaches.
Quatrain indeed can become a prime candidate for leveraging such research output
to further increase the practicality and adoption of automated program repair.

6.6.2 Case Study
Figure 6.9 presents an example correct patch generated by DLFix, an APR tool,

for Defects4J bug Lang-7. Quatrain successfully predicts its correctness while
BATS fails to do so. The associated bug 5 is reported as follows:

Title: NumberUtils#createNumber - bad behaviour for leading "--".
Description: NumberUtils#createNumber checks for a leading "--"
in the string, and returns null if found. This is documented ...

--- ./src/main/.../NumberUtils.java
+++ ./src/main/.../NumberUtils.java
@@ -449,9 +449,7 @@

if (StringUtils.isBlank(str)) {
throw new NumberFormatException("A blank string is not a valid

number");
}

- if (str.startsWith("--")) {
- return null;
- }
+

if (str.startsWith("0x") || str.startsWith("-0x") || str.startsWith("0X
") || str.startsWith("-0X")) {

Figure 6.9: A correct generated patch for Defects4J Lang-7.

5https://issues.apache.org/jira/browse/LANG-822

125

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

BATS assumes that similar buggy programs require similar patches to fix. To
predict the generated patch correctness, BATS searches for a buggy program that fails
on similar failing test cases with Lang-7. The retrieved program is the bug Lang-16 6

in Defects4J. BATS predicts the generated patch is correct if it’s similar with the
developer patch addressing bug Lang-16. However, the retrieved bug Lang-16 is
not related with bug Lang-7 even though they have similar test cases and require a
dissimilar patch to fix. Thus, BATS fail to predict the generated patch correctness.

Consider however the NL description of the patch as it is generated by CodeTrans:

removed the unnecessary "" -- "" from NumberUtils . startsWith (
) , it was restricting our.

The syntactic and semantic correlation between the bug and patch description is
obvious, which supports the fact that Quatrain predicts the patch as correct.

6.6.3 Threats to Validity
The implementation of Quatrain uses a pre-trained BERT to embed bug and

patch descriptions before feeding them into the QA model. Quatrain also uses
CodeTrans to generate patch descriptions. These choices may have influenced greatly
our results. The associated threat is nevertheless limited since these constitute the
state-of-the-art in their respective domains.

Our evaluation dataset includes 9,135 patches, though it is highly imbalanced
(83% incorrect vs. 17% correct patches). This imbalance may bias our results. We
mitigate this bias by stressing more on AUC metric, rather than F1 score and by
performing comparison experiments against the state-of-the-art.

Our patch correctness labels have been manually decided in prior work [4]. The
accuracy of the labels and the ground truth constitute a threat to validity [241],
which is mitigated in part by our comparison against the state-of-the-art on the same
datasets.

Our experimental evaluation does not perform any fine-tuning of the hyper-
parameters of the QA model or even the initial BERT model used for embedding
bug and patch descriptions. The yielded performance may thus not be representative
of what can be achieved.

6An upper-case hex bug in https://issues.apache.org/jira/browse/LANG-746

126

6.7. Conclusion

6.7 Conclusion
In this paper, we present a novel perspective to the patch correctness assessment

problem in automated program repair. Given a plausible patch, which is validated
by an imperfect oracle, the need for correctness identification is acute, as several
studies have revealed that state-of-the-art repair tools generate overfitting patches.
Our idea is that a correct patch is the one that answers to the problem revealed
by the execution failure (bug). We therefore design Quatrain, a neural network
architecture that leverages NLP to learn to correlate bugs and patch descriptions
and produce a Question-Answering based classifier. Given a buggy program, we
consider its bug report and leverage CodeTrans to generate descriptions for all APR-
generated patches targeting the bug. Then, we use these NL descriptions of bugs and
patches to feed the QA classifier of Quatrain. The classification decision serves as
a prediction of patch correctness. The experimental results show that our approach
identifies 92.7% correct patches and filter 61.7% incorrect patches with an AUC of
0.886. We then investigate and discuss the influence of the quality of the input (bug
report and code change description) on the effectiveness of Quatrain. We also
perform experiments to demonstrate that Quatrain indeed learns and builds on the
correlation between the bug report and the patch to make the predictions. Finally,
we reproduce recent state-of-the-art static and dynamic patch assessment tools on
our dataset and show that Quatrain exhibits comparable or better effectiveness
in recalling correct patches and filtering out incorrect patches. Insights from our
work open new research directions in patch assessment, but also provide a novel use
case for a large body of the literature that is focused on commit message generation.
Additionally, we underscore the importance of high-quality bug reports to the APR
community. Moving forward, a promising research direction for assessing patch
correctness involves continuing to establish connections between the semantics of
bugs and code changes.

127

Chapter 6. Correlating Descriptions of Bug and Code Changes for
Evaluating Patch Correctness

128

7 Conclusion

In this dissertation, we presented four research focuses to address the patch
overfitting problem that threatens the practical adoption of APR techniques. Given
the limitations of existing approaches and challenges, our work is devoted to assessing
patch correctness by statically capturing the semantics of a correct patch. Specifically,
we divide the work into two parts: 1) evaluating representation learning of code
changes and 2) identifying the semantic correlation between a correct patch and the
bug.

The objective of the first part is to investigate whether we can capture patch
semantics for patch correctness by evaluating representation learning of code changes.
By leveraging advances in representation learning models (e.g., LLMs), we first
conducted an empirical study of a widely-spread hypothesis in filtering out incorrect
patches. Then, we built a patch correctness prediction framework Leopard with the
embedding models and machine learning algorithms. Furthermore, since engineered
features crafted by humans have semantics, we proposed combining both features
to improve the performance. Towards accurate prediction, we developed Panther,
the upgraded version of Leopard, that combines learned and engineered features
in three methods. Experimental results show that Panther outperforms state of
the art approaches. When applying the XGBoost classifier with BERT embeddings,
Panther achieves the highest score with the metrics: an AUC value of 0.82 and
an F-Measure score of 0.79. Finally, we conducted an analysis using an explainable
ML technique SHAP on features and classifiers to enhance the understanding of
the essence of identifying patch correctness and inspire the development of future
approaches.

In the second part, we presented two approaches that identify the behavior of a
correct patch in relation to the bug. We first heuristically proposed that different
buggy programs may require similar code changes if they both fail on similar test
cases. We then validated the hypothesis by performing hierarchical clustering based
on the semantic embeddings of test cases and patches. Building upon this hypothesis,
we introduced BATS (Behaviour Against failing Test Specification), an unsupervised
approach to predict patch correctness by statically checking the behavioral similarity
of generated patches against historical projects’ correct patches that correspond to
failing test cases that are similar to the failing tests of the bug is resolved. To evaluate
the effectiveness of BATS, we collected a large dataset of plausible patches generated
by 32 APR tools or extracted from defects benchmarks. We applied BATS to this
dataset and measured its performance in accurately identifying correct patches while
filtering out incorrect ones. Furthermore, we proposed another novel perspective by
formulating the problem of patch correctness assessment as a question-answering task.
To address this challenge, we presented Quatrain, a supervised learning approach
that leverages a deep NLP model to classify the semantic correlation between a

Chapter 7. Conclusion

bug (question) and a patch (answer). In our evaluation, we compared Quatrain
against state-of-the-art static and dynamic approaches using three commonly used
benchmarks. The results demonstrated that Quatrain achieves comparable or
better performance in patch correctness assessment, as measured by metrics such as
AUC, F1, +Recall, and -Recall.

In summary, this dissertation contributed to the field of APR by introducing
static assessment approaches to assess the correctness of patches produced by APR
tools. In particular, we have identified the key of patch correctness assessment:
identifying the semantic correlation between a correct patch and its associated bug.
Our methodologies enhanced the comprehensiveness, soundness, and precision of
static approaches for evaluating patch correctness, paving the way for future research
aimed at learning the behavior of correct patches.

130

8 Future Work

In this chapter, we present potential future research directions that are in line with
this dissertation.

Contents
8.1 Learning to Represent Patches 132
8.2 Capturing the Semantics of the Bug 132
8.3 Integrating Patch Correctness Assessment with Heuristic-

based APR . 132
8.4 Overfitting in LLMs-based Repair 133

Chapter 8. Future Work

8.1 Learning to Represent Patches
A software patch, which represents the source code differences between two

software versions, is the primary outcome of the APR process. In recent years,
building upon empirical insights concerning the repetitiveness of code changes [42],
numerous approaches have utilized machine learning models based on patch datasets
to learn the deep representation of the patch. This has facilitated the automation of
various tasks, such as just-in-time defect prediction [242, 243], code completion [244,
245, 246, 247, 156], and patch correctness assessment [81, 4]. State-of-the-art patch
representation approaches have endeavoured to capture the inherent semantic and
structural information in source code through token and AST data [248, 249, 250].
Specifically, this dissertation leverages advanced representation learning to evaluate
patch correctness across our four research focuses. Unfortunately, these methods
do not explicitly represent the code differences but rather depend on representing
the code before and after the change, although adding some ad-hoc annotations to
highlight the changes for the trained model. Therefore, a promising direction for
future research could involve integrating contextual information with AST-based
and token-based differences to improve patch representation learning and to more
effectively identify the nuances of a given patch in the field of patch correctness
assessment.

8.2 Capturing the Semantics of the Bug
To accurately assess patch correctness, it is crucial to grasp the underlying

semantics of the bug in question. In this dissertation, we introduce BATS, a
tool designed to compare patch behaviors by measuring the similarity between the
functions of failing test cases associated with the bug. However, this approach
has limitations, as it does not take into account dynamic execution information
triggered by the bug. On the other hand, Quatrain employs bug reports to
represent the semantics of the bug. Unfortunately, the quality of such reports is often
suboptimal, leading to a loss of valuable semantic information. Additionally, our
methodologies neglect to consider the original source code containing the bug itself.
Recent research has shown that ChatGPT can effectively discern the intentions behind
buggy programs and identify failure-inducing test cases [251]. This capability offers a
valuable avenue for capturing more nuances of the semantics of a bug. Consequently,
we believe a promising avenue for enhancing patch correctness assessment lies in
utilizing LLMs to extract a more comprehensive understanding of the semantics of a
bug and correlate this understanding with the behavior of correct patches.

8.3 Integrating Patch Correctness Assessment with
Heuristic-based APR

Heuristic-based APR usually involves the construction of a vast search space for
generating patches. As such, the efficient identification of correct patches becomes
a key objective of these techniques, especially when dealing with the challenges
posed by patch overfitting [25]. In response, state of the art strategies proposed
constraining the search space to generate or prioritize high-quality patches [46, 41].
However, these methodologies tend to depend on the extraction of dynamic execution
information, a process that can be time-consuming and restrict search efficiency.

132

8.4. Overfitting in LLMs-based Repair

Moreover, the correct behavior of the patch corresponds to the bug it addresses,
which has not been identified during the patch generation. Meanwhile, static patch
correctness assessment approaches have gained attention due to their effectiveness
and efficiency [4, 81]. Nonetheless, these techniques are often perceived as a separate
phase, independent from patch generation, and consequently do not facilitate the
exploration of the patch space. Given this, investigating the integration of static
patch correctness assessment strategies with heuristic-based APR is a worthwhile
endeavor in future research. Such integration could potentially enhance the efficiency
of the search process for correct patches.

8.4 Overfitting in LLMs-based Repair
The recent emergence of large-scale language models (LLMs) has received much

attention in society in general. LLMs, which are pre-trained on vast amounts of
source code and natural language data, have demonstrated exceptional capabilities
in understanding code structures and generating codes or texts. Advances led by
LLMs have further enhanced the effectiveness of automatic techniques for program
repair by generating more correct patches than the state of the arts [252, 253, 254,
255, 69, 70, 256]. However, existing program repair studies with LLMs tend to assess
their performance using old publicly available benchmark data, which may have
been leaked into the training corpus of the LLMs. This experimental bias potentially
jeopardizes the generalizability of reported results to new and unseen problems. In
particular, our recent study preliminarily validated the generalizability problem of the
LLMs and found that the responses generated by LLMs may overfit to their training
corpus [68]. Therefore, the evaluation or identification of overfitting in LLM-based
repair represents a promising research direction warranting further investigation.

133

Chapter 8. Future Work

134

Research Activities

We finally present the research activities undertaken during my Ph.D. journey.
Specifically, we list: 1) the papers to which we contributed; 2) the tools and datasets
produced through our research; 3) the venues where I served.

List of Papers

Papers included in this dissertation:

• [ASE’20] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li
Li, Jacques Klein, and Tegawendé F. Bissyandé. Evaluating representation
learning of code changes for predicting patch correctness in program repair. In
Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, pp. 981-992. 2020.

• [TOSEM’22, ICSE’23 Journal First] Haoye Tian, Yinghua Li, Weiguo
Pian, Abdoul Kader Kabore, Kui Liu, Andrew Habib, Jacques Klein, and
Tegawendé F. Bissyandé. Predicting Patch Correctness Based on the Similar-
ity of Failing Test Cases. ACM Transactions on Software Engineering and
Methodology (TOSEM) 31, no. 4 (2022): 1-30.

• [ASE’22] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui
Liu, Xin Xia, Jacques Klein, and TegawendÉ F. BissyandÉ. Is this Change
the Answer to that Problem? Correlating Descriptions of Bug and Code
Changes for Evaluating Patch Correctness. In 37th IEEE/ACM International
Conference on Automated Software Engineering, pp. 1-13. 2022.

• [TOSEM’23] Haoye Tian, Kui Liu, Yinghua Li, Abdoul Kader Kaboré, Anil
Koyuncu, Andrew Habib, Li Li, Junhao Wen, Jacques Klein, and Tegawendé
F. Bissyandé. The Best of Both Worlds: Combining Learned Embeddings
with Engineered Features for Accurate Prediction of Correct Patches. ACM
Transactions on Software Engineering and Methodology 32, no. 4 (2023): 1-34.

Papers not included in this dissertation:

• [Under Review] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi
Cheung, Jacques Klein, and Tegawendé F. Bissyandé. Is ChatGPT the Ultimate
Programming Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

• [EMSE’21] Deheng Yang, Kui Liu, Dongsun Kim, Anil Koyuncu, Kisub Kim,
Haoye Tian, Yan Lei, Xiaoguang Mao, Jacques Klein, and Tegawendé F.
Bissyandé. Where were the repair ingredients for Defects4j bugs? Exploring
the impact of repair ingredient retrieval on the performance of 24 program

Chapter 8. Future Work

repair systems. Empirical Software Engineering 26 (2021): 1-33.
• [AAAI’23] Weiguo Pian, Hanyu Peng, Xunzhu Tang, Tiezhu Sun, Haoye

Tian, Andrew Habib, Jacques Klein, and Tegawendé F. Bissyandé. MetaTP-
Trans: A Meta Learning Approach for Multilingual Code Representation
Learning. The 37th AAAI Conference on Artificial Intelligence, 2023.

• [ASE’23] Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, and
Shing-Chi Cheung. Nuances are the Key: Unlocking ChatGPT to Find Failure-
Inducing Tests with Differential Prompting. In 38th IEEE/ACM International
Conference on Automated Software Engineering, 2023.

Tools and Datasets
• LEOPARD: https://github.com/SerVal-DTF/DL4PatchCorrectness
• PANTHER: https://github.com/HaoyeTianCoder/Panther
• BATS: https://github.com/HaoyeTianCoder/BATS
• QUATRAIN: https://github.com/Trustworthy-Software/Quatrain
• ChatGPT-Study: https://github.com/HaoyeTianCoder/ChatGPT-Study

Services
• Organizing Committee: ASE’23 Publicity Co-Chair
• Program Committee: SANER’24 Tools Demo PC, A-Mobile’23 PC, ES-

EC/FSE’23 AE PC, ISSTA’23 AE PC, MSR’23 Junior PC
• Journal Referee: TSE’23, EMSE’23, TSE’22, STVR’21, JCST’21
• Conference Reviewer: ISSTA’23, ICSE’22, ICSE’21, ICSE’20 , ASE’20

136

https://github.com/SerVal-DTF/DL4PatchCorrectness
https://github.com/HaoyeTianCoder/Panther
https://github.com/HaoyeTianCoder/BATS
https://github.com/Trustworthy-Software/Quatrain
https://github.com/HaoyeTianCoder/ChatGPT-Study

Bibliography

[1] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus, “Alleviating
patch overfitting with automatic test generation: a study of feasibility and
effectiveness for the nopol repair system,” Empirical Software Engineering,
vol. 24, pp. 33–67, 2019.

[2] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch cor-
rectness in test-based program repair,” in Proceedings of the 40th international
conference on software engineering, pp. 789–799, 2018.

[3] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and T. F.
Bissyandé, “Evaluating representation learning of code changes for predicting
patch correctness in program repair,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 981–992,
IEEE, 2020.

[4] H. Tian, Y. Li, W. Pian, A. K. Kabore, K. Liu, A. Habib, J. Klein, and T. F.
Bissyandé, “Predicting patch correctness based on the similarity of failing test
cases,” ACM Transactions on Software Engineering and Methodology, 2022.

[5] M. Broy, “Challenges in automotive software engineering,” in Proceedings of
the 28th international conference on Software engineering, pp. 33–42, 2006.

[6] C. Jones, Applied software measurement. McGraw-Hill Education, 2008.

[7] Wikipedia, “Knight capital group,” 2023. Accessed: 2023-04-27.

[8] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen, “Reversible
debugging software,” Judge Bus. School, Univ. Cambridge, Cambridge, UK,
Tech. Rep, vol. 229, 2013.

[9] M. Monperrus, “Automatic software repair: a bibliography,” ACM Computing
Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[10] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program repair,”
Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[11] X. Gao, Y. Noller, and A. Roychoudhury, “Program repair,” arXiv preprint
arXiv:2211.12787, 2022.

[12] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c
language errors by deep learning,” in Proceedings of the aaai conference on
artificial intelligence, 2017.

137

Bibliography

[13] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method names,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 1–12, IEEE, 2019.

[14] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation
learning for automated program repair,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pp. 602–614, 2020.

[15] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with execution-
based backpropagation,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 1506–1518, 2022.

[16] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,” in
2016 IEEE 23rd international conference on software analysis, evolution, and
reengineering (SANER), vol. 1, pp. 213–224, IEEE, 2016.

[17] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining fix patterns
for findbugs violations,” IEEE Transactions on Software Engineering, vol. 47,
no. 1, pp. 165–188, 2018.

[18] M. Martinez and M. Monperrus, “Mining software repair models for reason-
ing on the search space of automated program fixing,” Empirical Software
Engineering, vol. 20, pp. 176–205, 2015.

[19] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus, and
Y. Le Traon, “Fixminer: Mining relevant fix patterns for automated program
repair,” Empirical Software Engineering, vol. 25, pp. 1980–2024, 2020.

[20] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Program
repair via semantic analysis,” in 2013 35th International Conference on Software
Engineering (ICSE), pp. 772–781, IEEE, 2013.

[21] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “Jfix: semantics-
based repair of java programs via symbolic pathfinder,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pp. 376–379, 2017.

[22] S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury, “Symbolic exe-
cution with existential second-order constraints,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 389–399, 2018.

[23] G. Yang, S. Khurshid, and M. Kim, “Specification-based test repair using a
lightweight formal method,” in FM 2012: Formal Methods: 18th International
Symposium, Paris, France, August 27-31, 2012. Proceedings 18, pp. 455–470,
Springer, 2012.

[24] A. Nilizadeh, “Automated program repair and test overfitting: measurements
and approaches using formal methods,” in 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST), pp. 480–482, IEEE, 2022.

138

Bibliography

[25] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis, pp. 24–
36, 2015.

[26] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse than
the disease? overfitting in automated program repair,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, pp. 532–543,
2015.

[27] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code features,”
IEEE Transactions on Software Engineering, vol. 48, no. 8, pp. 2920–2938,
2021.

[28] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical review of
java program repair tools: A large-scale experiment on 2,141 bugs and 23,551
repair attempts,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 302–313, 2019.

[29] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F. Bissyandé,
“A critical review on the evaluation of automated program repair systems,”
Journal of Systems and Software, vol. 171, p. 110817, 2021.

[30] D. Yang, K. Liu, D. Kim, A. Koyuncu, K. Kim, H. Tian, Y. Lei, X. Mao,
J. Klein, and T. F. Bissyandé, “Where were the repair ingredients for defects4j
bugs? exploring the impact of repair ingredient retrieval on the performance of
24 program repair systems,” Empirical Software Engineering, vol. 26, pp. 1–33,
2021.

[31] Y. Noller, R. Shariffdeen, X. Gao, and A. Roychoudhury, “Trust enhancement
issues in program repair,” in Proceedings of the 44th International Conference
on Software Engineering, pp. 2228–2240, 2022.

[32] X.-B. D. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On reliabil-
ity of patch correctness assessment,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 524–535, IEEE, 2019.

[33] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin, “Auto-
mated patch correctness assessment: How far are we?,” in Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 968–980, 2020.

[34] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair,” in Proceedings of the 2017 11th joint meeting on
foundations of software engineering, pp. 831–841, 2017.

[35] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through test
case generation,” in Proceedings of the 26th ACM SIGSOFT international
symposium on software testing and analysis, pp. 226–236, 2017.

139

Bibliography

[36] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program re-
pair,” in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 8–18, 2019.

[37] M. Böhme, C. Geethal, and V.-T. Pham, “Human-in-the-loop automatic
program repair,” in 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 274–285, IEEE, 2020.

[38] F. Long and M. Rinard, “Automatic patch generation by learning correct code,”
in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 298–312, 2016.

[39] X. Gao and A. Roychoudhury, “Interactive patch generation and suggestion,”
in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pp. 17–18, 2020.

[40] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-patterns in
search-based program repair,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 727–738,
2016.

[41] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-and
semantic-guided repair synthesis via programming by examples,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp. 593–
604, 2017.

[42] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 306–317, ACM, 2014.

[43] J. Chen, A. F. Donaldson, A. Zeller, and H. Zhang, “Testing and verification of
compilers (dagstuhl seminar 17502),” Dagstuhl Reports, vol. 7, no. 12, pp. 50–65,
2017.

[44] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang, “Precise
condition synthesis for program repair,” in Proceedings of the 39th IEEE/ACM
International Conference on Software Engineering, pp. 416–426, IEEE, 2017.

[45] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transformations
from singular examples via big code,” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering, pp. 255–266,
IEEE, 2019.

[46] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware patch
generation for better automated program repair,” in Proceedings of the 40th
International Conference on Software Engineering, pp. 1–11, ACM, 2018.

[47] P. Cashin, C. Martinez, W. Weimer, and S. Forrest, “Understanding
automatically-generated patches through symbolic invariant differences,” in
2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 411–414, IEEE, 2019.

140

Bibliography

[48] B. Yang and J. Yang, “Exploring the differences between plausible and correct
patches at fine-grained level,” in 2020 IEEE 2nd International Workshop on
Intelligent Bug Fixing (IBF), pp. 1–8, IEEE, 2020.

[49] S. Kang and S. Yoo, “Language models can prioritize patches for practical
program patching,” in Proceedings of the Third International Workshop on
Automated Program Repair, pp. 8–15, 2022.

[50] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting template-
based automated program repair,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 31–42, 2019.

[51] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” Ieee transactions on software engineer-
ing, vol. 38, no. 1, pp. 54–72, 2011.

[52] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search on
automated program repair,” in Proceedings of the 36th International Conference
on Software Engineering, pp. 254–265, 2014.

[53] F. Long and M. Rinard, “Staged program repair with condition synthesis,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 166–178, 2015.

[54] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from
human-written patches,” in 2013 35th International Conference on Software
Engineering (ICSE), pp. 802–811, IEEE, 2013.

[55] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu, “Nn repair:
constraint-based repair of neural network classifiers,” in Computer Aided
Verification: 33rd International Conference, CAV 2021, Virtual Event, July
20–23, 2021, Proceedings, Part I 33, pp. 3–25, Springer, 2021.

[56] R. Shariffdeen, Y. Noller, L. Grunske, and A. Roychoudhury, “Concolic program
repair,” in Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pp. 390–405, 2021.

[57] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional
statement bugs in java programs,” IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 34–55, 2016.

[58] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program
patch synthesis via symbolic analysis,” in Proceedings of the 38th international
conference on software engineering, pp. 691–701, 2016.

[59] T. Durieux and M. Monperrus, “Dynamoth: dynamic code synthesis for
automatic program repair,” in Proceedings of the 11th International Workshop
on Automation of Software Test, pp. 85–91, 2016.

[60] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.,” in OSDI,
vol. 8, pp. 209–224, 2008.

141

Bibliography

[61] OpenAI, “Chatgpt: Optimizing language models for dialogue,” 2022.

[62] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs? an
evaluation on quixbugs,” in Proceedings of the Third International Workshop
on Automated Program Repair, pp. 69–75, 2022.

[63] J. A. Prenner and R. Robbes, “Automatic program repair with openai’s codex:
Evaluating quixbugs,” arXiv preprint arXiv:2111.03922, 2021.

[64] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit: Code editing
with tree-based neural models,” IEEE Transactions on Software Engineering,
vol. 48, no. 4, pp. 1385–1399, 2020.

[65] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and
M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-to-end
program repair,” IEEE Transactions on Software Engineering, vol. 47, no. 9,
pp. 1943–1959, 2019.

[66] OpenAI, “Openai documentation,” 2022.

[67] Github, “Copilot.”

[68] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F. Bissyandé,
“Is chatgpt the ultimate programming assistant–how far is it?,” arXiv preprint
arXiv:2304.11938, 2023.

[69] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of the automatic
bug fixing performance of chatgpt,” arXiv preprint arXiv:2301.08653, 2023.

[70] C. S. Xia and L. Zhang, “Conversational automated program repair,” arXiv
preprint arXiv:2301.13246, 2023.

[71] J. Jiang and Y. Xiong, “Can defects be fixed with weak test suites? an analysis
of 50 defects from defects4j,” arXiv preprint arXiv:1705.04149, 2017.

[72] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been fixed?,”
in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pp. 55–64, 2010.

[73] M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues, “Quality of auto-
mated program repair on real-world defects,” IEEE Transactions on Software
Engineering, vol. 48, no. 2, pp. 637–661, 2020.

[74] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8 each,” in
2012 34th International Conference on Software Engineering (ICSE), pp. 3–13,
IEEE, 2012.

[75] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence for
adaptive program repair: Models and first results,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 356–
366, IEEE, 2013.

142

Bibliography

[76] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through
fault-recorded testing prioritization,” in 2013 IEEE International Conference
on Software Maintenance, pp. 180–189, IEEE, 2013.

[77] F. Long and M. Rinard, “An analysis of the search spaces for generate and
validate patch generation systems,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 702–713, IEEE, 2016.

[78] X.-B. D. Le, F. Thung, D. Lo, and C. L. Goues, “Overfitting in semantics-
based automated program repair,” in Proceedings of the 40th International
Conference on Software Engineering, pp. 163–163, 2018.

[79] A. Nilizadeh, G. T. Leavens, X.-B. D. Le, C. S. Păsăreanu, and D. R. Cok, “Ex-
ploring true test overfitting in dynamic automated program repair using formal
methods,” in 2021 14th IEEE Conference on Software Testing, Verification
and Validation (ICST), pp. 229–240, IEEE, 2021.

[80] X. Kong, L. Zhang, W. E. Wong, and B. Li, “The impacts of techniques,
programs and tests on automated program repair: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 480–496, 2018.

[81] H. Tian, X. Tang, A. Habib, S. Wang, K. Liu, X. Xia, J. Klein, and T. F.
Bissyandé, “Is this change the answer to that problem? correlating descriptions
of bug and code changes for evaluating patch correctness,” in Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering,
pp. 1–13, 2022.

[82] M. Motwani, “High-quality automated program repair,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), pp. 309–314, IEEE, 2021.

[83] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer, “The manybugs and introclass benchmarks for automated
repair of c programs,” IEEE Transactions on Software Engineering, vol. 41,
no. 12, pp. 1236–1256, 2015.

[84] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury, et al., “Codeflaws: a program-
ming competition benchmark for evaluating automated program repair tools,”
in 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pp. 180–182, IEEE, 2017.

[85] S. Wang, M. Wen, L. Chen, X. Yi, and X. Mao, “How different is it between
machine-generated and developer-provided patches?: An empirical study on
the correct patches generated by automated program repair techniques,” in
2019 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 1–12, IEEE, 2019.

[86] G. Bennett, T. Hall, and D. Bowes, “Some automatically generated patches are
more likely to be correct than others: an analysis of defects4j patch features,”
in Proceedings of the Third International Workshop on Automated Program
Repair, pp. 46–52, 2022.

143

Bibliography

[87] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discov-
ering likely program invariants to support program evolution,” in Proceedings
of the 21st international conference on Software engineering, pp. 213–224, 1999.

[88] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults
to enable controlled testing studies for java programs,” in Proceedings of the
2014 International Symposium on Software Testing and Analysis, pp. 437–440,
2014.

[89] L. Zemín, S. G. Brida, A. Godio, C. Cornejo, R. Degiovanni, G. Regis,
N. Aguirre, and M. Frias, “An analysis of the suitability of test-based patch
acceptance criteria,” in 2017 IEEE/ACM 10th International Workshop on
Search-Based Software Testing (SBST), pp. 14–20, IEEE, 2017.

[90] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus, “Au-
tomatic repair of real bugs in java: A large-scale experiment on the defects4j
dataset,” Empirical Software Engineering, vol. 22, no. 4, pp. 1936–1964, 2017.

[91] J. Jiang, Y. Xiong, and X. Xia, “A manual inspection of defects4j bugs and its
implications for automatic program repair,” Science china information sciences,
vol. 62, no. 10, pp. 1–16, 2019.

[92] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: A multi-lingual
program repair benchmark set based on the quixey challenge,” in Proceedings
Companion of the 2017 ACM SIGPLAN international conference on systems,
programming, languages, and applications: software for humanity, pp. 55–56,
2017.

[93] J. Yi, S. H. Tan, S. Mechtaev, M. Böhme, and A. Roychoudhury, “A correlation
study between automated program repair and test-suite metrics,” in Proceedings
of the 40th International Conference on Software Engineering, pp. 24–24, 2018.

[94] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A comprehensive study
of automatic program repair on the quixbugs benchmark,” Journal of Systems
and Software, vol. 171, p. 110825, 2021.

[95] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing: Theoretical results
and practical implications,” IEEE transactions on Software Engineering, vol. 38,
no. 2, pp. 258–277, 2011.

[96] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller, “Automated
fixing of programs with contracts,” Ieee transactions on software engineering,
vol. 40, no. 5, pp. 427–449, 2014.

[97] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “An empirical analysis of
the influence of fault space on search-based automated program repair,” arXiv
preprint arXiv:1707.05172, 2017.

[98] D. Yang, Y. Qi, and X. Mao, “Evaluating the strategies of statement selection in
automated program repair,” in Software Analysis, Testing, and Evolution: 8th
International Conference, SATE 2018, Shenzhen, Guangdong, China, November
23–24, 2018, Proceedings 8, pp. 33–48, Springer, 2018.

144

Bibliography

[99] A. Afzal, M. Motwani, K. T. Stolee, Y. Brun, and C. Le Goues, “Sosrepair:
Expressive semantic search for real-world program repair,” IEEE Transactions
on Software Engineering, vol. 47, no. 10, pp. 2162–2181, 2019.

[100] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon,
“You cannot fix what you cannot find! an investigation of fault localization
bias in benchmarking automated program repair systems,” in 2019 12th IEEE
conference on software testing, validation and verification (ICST), pp. 102–113,
IEEE, 2019.

[101] F. Y. Assiri and J. M. Bieman, “Fault localization for automated program
repair: effectiveness, performance, repair correctness,” Software Quality Journal,
vol. 25, pp. 171–199, 2017.

[102] X. Xu, Y. Sui, H. Yan, and J. Xue, “Vfix: value-flow-guided precise program
repair for null pointer dereferences,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 512–523, IEEE, 2019.

[103] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, pp. 448–458, IEEE, 2015.

[104] T. Xu, L. Chen, Y. Pei, T. Zhang, M. Pan, and C. A. Furia, “Restore:
Retrospective fault localization enhancing automated program repair,” IEEE
Transactions on Software Engineering, vol. 48, no. 1, pp. 309–326, 2020.

[105] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric
of small source code changes,” IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 511–526, 2005.

[106] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!,” in Proceedings
of the 2008 international working conference on Mining software repositories,
pp. 67–76, 2008.

[107] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein, and
Y. Le Traon, “ifixr: Bug report driven program repair,” in Proceedings of the
2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp. 314–325, 2019.

[108] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without the
contracts,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 637–647, IEEE, 2017.

[109] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without the
contracts: An extended study,” IEEE Transactions on Software Engineering,
vol. 47, no. 12, pp. 2841–2857, 2020.

[110] M. Motwani and Y. Brun, “Better automatic program repair by using bug re-
ports and tests together,” in International Conference on Software Engineering
(ICSE), 2023.

145

Bibliography

[111] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs with
semantic code search (t),” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 295–306, IEEE, 2015.

[112] R. van Tonder and C. L. Goues, “Static automated program repair for heap
properties,” in Proceedings of the 40th International Conference on Software
Engineering, pp. 151–162, 2018.

[113] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via bytecode
mutation,” in Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 19–30, 2019.

[114] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software regres-
sions,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, pp. 471–482, IEEE, 2015.

[115] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoudhury,
“Semantic program repair using a reference implementation,” in Proceedings of
the 40th International Conference on Software Engineering, pp. 129–139, 2018.

[116] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with quanti-
tative objectives,” in Computer Aided Verification: 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
II, pp. 383–401, Springer, 2016.

[117] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury, “Beyond
tests: Program vulnerability repair via crash constraint extraction,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 30,
no. 2, pp. 1–27, 2021.

[118] G. C. Website, “Gnu coreutils.,” 2022.

[119] B. Website, “Busybox,” 2022.

[120] M. Motwani and Y. Brun, “Automatically generating precise oracles from struc-
tured natural language specifications,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 188–199, IEEE, 2019.

[121] M. P. Gissurarson, L. Applis, A. Panichella, A. van Deursen, and D. Sands,
“Propr: property-based automatic program repair,” in Proceedings of the 44th
International Conference on Software Engineering, pp. 1768–1780, 2022.

[122] Y. Yuan and W. Banzhaf, “A hybrid evolutionary system for automatic soft-
ware repair,” in Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1417–1425, 2019.

[123] A. Ghanbari, “Objsim: Lightweight automatic patch prioritization via object
similarity,” in Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 541–544, 2020.

[124] A. Ghanbari and A. Marcus, “Patch correctness assessment in automated
program repair based on the impact of patches on production and test code,”
in Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 654–665, 2022.

146

Bibliography

[125] V. Csuvik, D. Horváth, F. Horváth, and L. Vidács, “Utilizing source code
embeddings to identify correct patches,” in 2020 IEEE 2nd International
Workshop on Intelligent Bug Fixing (IBF), pp. 18–25, IEEE, 2020.

[126] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change embedding
for better patch correctness assessment,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 3, pp. 1–29, 2022.

[127] Q.-N. Phung, M. Kim, and E. Lee, “Identifying incorrect patches in program
repair based on meaning of source code,” IEEE Access, vol. 10, pp. 12012–12030,
2022.

[128] Y. Dong, D. Tang, X. Cheng, and Y. Yang, “Quality evaluation method of
automatic software repair using syntax distance metrics,” Symmetry, vol. 14,
no. 8, p. 1751, 2022.

[129] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated program
repair,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 660–670, IEEE, 2017.

[130] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program
repair with on-demand candidate generation,” in Proceedings of the 40th
international conference on software engineering, pp. 12–23, 2018.

[131] R. K. Saha, H. Yoshida, M. R. Prasad, S. Tokumoto, K. Takayama, and
I. Nanba, “Elixir: an automated repair tool for java programs,” in Proceedings
of the 40th International Conference on Software Engineering: Companion
Proceeedings, pp. 77–80, 2018.

[132] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program repair
space with existing patches and similar code,” in Proceedings of the 27th
ACM SIGSOFT international symposium on software testing and analysis,
pp. 298–309, 2018.

[133] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the" naturalness" of buggy code,” in Proceedings of the 38th International
Conference on Software Engineering, pp. 428–439, 2016.

[134] S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,” in
Proceedings of the 33rd International Conference on Software Engineering,
pp. 121–130, 2011.

[135] Y. Yuan and W. Banzhaf, “Toward better evolutionary program repair: An
integrated approach,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 29, no. 1, pp. 1–53, 2020.

[136] D. Yan, K. Liu, Y. Niu, L. Li, Z. Liu, Z. Liu, J. Klein, and T. F. Bissyandé,
“Crex: Predicting patch correctness in automated repair of c programs through
transfer learning of execution semantics,” Information and Software Technology,
vol. 152, p. 107043, 2022.

147

Bibliography

[137] M. Martinez, M. Kechagia, A. Perera, J. Petke, F. Sarro, and A. Aleti, “Test-
based patch clustering for automatically-generated patches assessment,” arXiv
preprint arXiv:2207.11082, 2022.

[138] S. P. Reiss and Q. Xin, “A quick repair facility for debugging,” arXiv preprint
arXiv:2202.05577, 2022.

[139] J. Lee, S. Hong, and H. Oh, “Npex: repairing java null pointer exceptions
without tests,” in Proceedings of the 44th International Conference on Software
Engineering, pp. 1532–1544, 2022.

[140] E. B. Bae, “Effective and efficient patch validation via differential fuzzing,”
2022.

[141] H. Cao, F. Liu, J. Shi, Y. Chu, and M. Deng, “Automated repair of java
programs with random search via code similarity,” in 2021 IEEE 21st Inter-
national Conference on Software Quality, Reliability and Security Companion
(QRS-C), pp. 470–477, IEEE, 2021.

[142] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program repair,”
Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[143] M. Monperrus, “The living review on automated program repair,” in
HAL/archives-ouvertes. fr, Technical Report, 2018.

[144] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding
patches using genetic programming,” in Proceedings of the 31st International
Conference on Software Engineering, pp. 364–374, IEEE, 2009.

[145] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “AVATAR: fixing semantic
bugs with fix patterns of static analysis violations,” in Proceedings of the
26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, pp. 456–467, IEEE, 2019.

[146] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for multi-
hunk program repair,” in Proceedings of the 41st International Conference on
Software Engineering, pp. 13–24, IEEE, 2019.

[147] K. Liu, A. Koyuncu, K. Kim, D. Kim, and T. F. Bissyandé, “LSRepair: Live
search of fix ingredients for automated program repair,” in Proceedings of the
25th Asia-Pacific Software Engineering Conference ERA Track, pp. 658–662,
IEEE, 2018.

[148] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code features,”
IEEE Transactions on Software Engineering, 2021.

[149] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A comprehensive study
of automatic program repair on the quixbugs benchmark,” in Proceedings of the
1st International Workshop on Intelligent Bug Fixing, pp. 1–10, IEEE, 2019.

148

Bibliography

[150] M. Soto and C. Le Goues, “Using a probabilistic model to predict bug fixes,”
in Proceedings of the 25th International Conference on Software Analysis,
Evolution and Reengineering, pp. 221–231, IEEE, 2018.

[151] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for
defect prediction,” in Proceedings of the 38th International Conference on
Software Engineering, pp. 297–308, ACM, 2016.

[152] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 281–293, ACM, 2014.

[153] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic
method for automatic software repair,” IEEE Transactions on Software Engi-
neering, vol. 38, no. 1, pp. 54–72, 2012.

[154] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, et al., “CodeBERT: a pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[155] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 4171–4186,
2019.

[156] W. Pian, H. Peng, X. Tang, T. Sun, H. Tian, A. Habib, J. Klein, and T. F.
Bissyandé, “Metatptrans: A meta learning approach for multilingual code
representation learning,” arXiv preprint arXiv:2206.06460, 2022.

[157] G. Zhao and J. Huang, “Deepsim: deep learning code functional similarity,” in
Proceedings of the 2018 ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
pp. 141–151, 2018.

[158] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone detec-
tion with syntax and semantics fusion learning,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
p. 516–527, ACM, 2020.

[159] Q. V. Le and T. Mikolov, “Distributed representations of sentences and doc-
uments,” in Proceedings of the 31st International Conference on Machine
Learning, pp. 1188–1196, JMLR.org, 2014.

[160] H. Wei and M. Li, “Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code,” in
Proceedings of the 26th International Joint Conference on Artificial Intelligence,
pp. 3034–3040, Morgan Kaufmann, 2017.

[161] S. Ndichu, S. Kim, S. Ozawa, T. Misu, and K. Makishima, “A machine learning
approach to detection of javascript-based attacks using AST features and
paragraph vectors,” Applied Soft Computing, vol. 84, 2019.

149

Bibliography

[162] S. Zhou, B. Shen, and H. Zhong, “Lancer: Your code tell me what you need,”
in Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering, pp. 1202–1205, IEEE, 2019.

[163] T. Hoang, H. J. Kang, J. Lawall, and D. Lo, “CC2Vec: distributed representa-
tions of code changes,” in Proceedings of the 42nd International Conference on
Software Engineering, pp. 518–529, ACM, 2020.

[164] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the naturalness
of software,” in Proceedings of the 34th International Conference on Software
Engineering, pp. 837–847, IEEE, 2012.

[165] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. A. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing Surveys,
vol. 51, no. 4, pp. 81:1–81:37, 2018.

[166] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. Le Traon, “Mining fix patterns
for findbugs violations,” IEEE Transactions on Software Engineering, 2018.

[167] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning distributed
representations of code,” Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 40:1–40:29, 2019.

[168] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[169] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters: Semantic-
aware neural networks for binary code similarity detection,” in Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 1145–1152, AAAI, 2020.

[170] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java classes with
code2vec: Improvements from variable obfuscation,” in Proceedings of the 17th
Mining Software Repositories, ACM, 2020.

[171] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. Le Traon, “A
closer look at real-world patches,” in Proceedings of the 34th International
Conference on Software Maintenance and Evolution, pp. 275–286, IEEE, 2018.

[172] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad, “Bugs.jar: A large-scale,
diverse dataset of real-world java bugs,” in Proceedings of the 15th IEEE/ACM
International Conference on Mining Software Repositories, pp. 10–13, ACM,
2018.

[173] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “BEARS: an extensible
java bug benchmark for automatic program repair studies,” in Proceedings
of the 26th International Conference on Software Analysis, Evolution and
Reengineering, pp. 468–478, IEEE, 2019.

[174] R. Karampatsis and C. A. Sutton, “How often do single-statement bugs oc-
cur? the manysstubs4j dataset,” in Proceedings of the 17th Mining Software
Repositories, IEEE, 2020.

150

Bibliography

[175] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the 42nd International Conference on
Software Engineering, pp. 625–627, ACM, 2020.

[176] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bul-
letin, vol. 1, no. 6, pp. 80–83, 1945.

[177] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other,” The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[178] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “PatchNet: hier-
archical deep learning-based stable patch identification for the linux kernel,”
CoRR, vol. abs/1911.03576, 2019.

[179] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: learning to fix bugs
automatically,” Proceedings of the ACM on Programming Languages, vol. 3,
no. OOPSLA, pp. 159:1–159:27, 2019.

[180] F. Madeiral, T. Durieux, V. Sobreira, and M. Maia, “Towards an automated
approach for bug fix pattern detection,” 2018.

[181] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model pre-
dictions,” in Advances in Neural Information Processing Systems 30 (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), pp. 4765–4774, Curran Associates, Inc., 2017.

[182] H. Ye, M. Martinez, and M. Monperrus, “Automated patch assessment for
program repair at scale,” Empirical Software Engineering, vol. 26, no. 2, pp. 1–
38, 2021.

[183] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, et al., “Wide & deep learning for
recommender systems,” in Proceedings of the 1st workshop on deep learning
for recommender systems, pp. 7–10, 2016.

[184] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning algorithms,” Neural computation, vol. 10, no. 7, pp. 1895–
1923, 1998.

[185] F. Tsimpourlas, A. Rajan, and M. Allamanis, “Learning to encode and classify
test executions,” arXiv preprint arXiv:2001.02444, 2020.

[186] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating sequences
from structured representations of code,” arXiv preprint arXiv:1808.01400,
2018.

[187] Q. Huang, A. Qiu, M. Zhong, and Y. Wang, “A code-description represen-
tation learning model based on attention,” in Proceedings of the IEEE 27th
International Conference on Software Analysis, Evolution and Reengineering,
pp. 447–455, IEEE, 2020.

151

Bibliography

[188] M. Boehme, Automated regression testing and verification of complex code
changes. PhD thesis, National University of Singapore, 2014.

[189] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J. Xuan, “Au-
tomatic repair of real bugs: An experience report on the defects4j dataset,”
CoRR, vol. abs/1505.07002, 2015.

[190] Z. Chen and M. Monperrus, “The remarkable role of similarity in redundancy-
based program repair,” arXiv preprint arXiv:1811.05703, 2018.

[191] M. Martinez and M. Monperrus, “ASTOR: a program repair library for java
(demo),” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, pp. 441–444, ACM, 2016.

[192] Y. Yuan and W. Banzhaf, “ARJA: automated repair of java programs via multi-
objective genetic programming,” IEEE Transactions on Software Engineering,
vol. 46, no. 10, pp. 1040–1067, 2020.

[193] M. Martinez and M. Monperrus, “Ultra-large repair search space with au-
tomatically mined templates: the cardumen mode of astor,” in Proceedings
of the 10th International Symposium on Search Based Software Engineering,
pp. 65–86, Springer, 2018.

[194] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNuT:
Combining context-aware neural translation models using ensemble for program
repair,” in Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 101–114, ACM, 2020.

[195] J. Kim and S. Kim, “Automatic patch generation with context-based change
application,” Empirical Software Engineering, vol. 24, no. 6, pp. 4071–4106,
2019.

[196] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning code
similarities,” in Proceedings of the IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering, pp. 479–490, IEEE, 2019.

[197] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR: effective object-
oriented program repair,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pp. 648–659, IEEE, 2017.

[198] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,”
tech. rep., Stanford, 2006.

[199] M. S. G. Karypis, V. Kumar, and M. Steinbach, “A comparison of document
clustering techniques,” in TextMining Workshop at KDD2000 (May 2000),
2000.

[200] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. Grundy, “Opportunities and
challenges in code search tools,” ACM Computing Surveys (CSUR), vol. 54,
no. 9, pp. 1–40, 2021.

152

Bibliography

[201] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and M. de Almeida Maia,
“Dissection of a bug dataset: Anatomy of 395 patches from defects4j,” in
Proceedings of the IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering, pp. 130–140, IEEE, 2018.

[202] K. Liu, D. Kim, T. F. Bissyandé, S. Yoo, and Y. L. Traon, “Mining fix patterns
for findbugs violations,” IEEE Transactions on Software Engineering, vol. 47,
no. 1, pp. 165–188, 2021.

[203] C. Peng and A. Rajan, “Automated test generation for opencl kernels using
fuzzing and constraint solving,” in Proceedings of the 13th Annual Workshop on
General Purpose Processing using Graphics Processing Unit, pp. 61–70, 2020.

[204] E. Soremekun, E. Pavese, N. Havrikov, L. Grunske, and A. Zeller, “Probabilistic
grammar-based test generation,” Software Engineering 2021, vol. P-310, pp. 97–
98, 2021.

[205] M. Selakovic, M. Pradel, R. Karim, and F. Tip, “Test generation for higher-order
functions in dynamic languages,” Proceedings of the ACM on Programming
Languages, vol. 2, no. OOPSLA, pp. 1–27, 2018.

[206] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L. Traon,
“FaCoY: a code-to-code search engine,” in Proceedings of the 40th International
Conference on Software Engineering, pp. 946–957, ACM, 2018.

[207] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider, “CLCDSA: Cross
language code clone detection using syntactical features and api documentation,”
in Proceedings of the 34th IEEE/ACM International Conference on Automated
Software Engineering, pp. 1026–1037, 2019.

[208] G. Mathew, C. Parnin, and K. T. Stolee, “SLACC: Simion-based language
agnostic code clones,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 210–221, 2020.

[209] I. U. Haq and J. Caballero, “A survey of binary code similarity,” ACM Com-
puting Surveys (CSUR), vol. 54, no. 3, 2021.

[210] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph-based
bug search for firmware images,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 480–491, 2016.

[211] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detection,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 363–376, 2017.

[212] J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “VulSeeker-pro: en-
hanced semantic learning based binary vulnerability seeker with emulation,” in
Proceedings of the 2018 ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
pp. 803–808, 2018.

153

Bibliography

[213] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,”
IEEE Transactions on Software Engineering, vol. 45, no. 1, pp. 34–67, 2017.

[214] M. Monperrus, “The living review on automated program repair,” 2020.

[215] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “Selfapr: Self-
supervised program repair with test execution diagnostics,” 2022.

[216] H. Tian, K. Liu, Y. Li, A. K. Kaboré, A. Koyuncu, A. Habib, L. Li, J. Wen,
J. Klein, and T. F. Bissyandé, “The best of both worlds: Combining learned
embeddings with engineered features for accurate prediction of correct patches,”
arXiv preprint arXiv:2203.08912, 2022.

[217] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-
vanyk, “An empirical study on learning bug-fixing patches in the wild via
neural machine translation,” ACM Transactions on Software Engineering and
Methodology, vol. 28, no. 4, pp. 19:1–19:29, 2019.

[218] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine transla-
tion for automatic program repair,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 1161–1173, IEEE, 2021.

[219] E. Mashhadi and H. Hemmati, “Applying codebert for automated program
repair of java simple bugs,” in 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR), pp. 505–509, IEEE, 2021.

[220] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann,
“What makes a good bug report?,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pp. 308–318,
2008.

[221] C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically generating
bug fixes from bug reports,” in 2013 IEEE Sixth international conference on
software testing, verification and validation, pp. 282–291, IEEE, 2013.

[222] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso, “Automatically trans-
lating bug reports into test cases for mobile apps,” in Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
pp. 141–152, 2018.

[223] Y. Zhao, T. Yu, T. Su, Y. Liu, W. Zheng, J. Zhang, and W. G. Halfond, “Rec-
droid: automatically reproducing android application crashes from bug reports,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 128–139, IEEE, 2019.

[224] A. Khanfir, A. Koyuncu, M. Papadakis, M. Cordy, T. F. Bissyandé, J. Klein,
and Y. L. Traon, “Ibir: Bug report driven fault injection,” arXiv preprint
arXiv:2012.06506, 2020.

[225] M. Kim, Y. Kim, and E. Lee, “Denchmark: A bug benchmark of deep learning-
related software,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), pp. 540–544, IEEE, 2021.

154

Bibliography

[226] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini encyclopedia
of psychology, pp. 1–1, 2010.

[227] A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher, C. Angerer, S. Severini,
F. Matthes, and B. Rost, “Codetrans: Towards cracking the language of silicon’s
code through self-supervised deep learning and high performance computing,”
arXiv preprint arXiv:2104.02443, 2021.

[228] P. Bafna, D. Pramod, and A. Vaidya, “Document clustering: Tf-idf approach,”
in 2016 International Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), pp. 61–66, IEEE, 2016.

[229] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pp. 1532–1543, 2014.

[230] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23, no. 1,
pp. 155–162, 2017.

[231] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext.zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[232] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions
for machine comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

[233] S. Min, M. Seo, and H. Hajishirzi, “Question answering through transfer learn-
ing from large fine-grained supervision data,” arXiv preprint arXiv:1702.02171,
2017.

[234] Z. Gao, X. Xia, D. Lo, J. Grundy, and Y.-F. Li, “Code2que: A tool for improving
question titles from mined code snippets in stack overflow,” in Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 1525–1529,
2021.

[235] M. Tan, C. d. Santos, B. Xiang, and B. Zhou, “Lstm-based deep learning
models for non-factoid answer selection,” arXiv preprint arXiv:1511.04108,
2015.

[236] M. Hossin and M. N. Sulaiman, “A review on evaluation metrics for data
classification evaluations,” International journal of data mining & knowledge
management process, vol. 5, no. 2, p. 1, 2015.

[237] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–
recommendations for the use of performance metrics,” in 2013 Humaine associ-
ation conference on affective computing and intelligent interaction, pp. 245–251,
IEEE, 2013.

[238] M. Allamanis, “The adverse effects of code duplication in machine learning
models of code,” in Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pp. 143–153, 2019.

155

Bibliography

[239] P. Irolla and A. Dey, “The duplication issue within the drebin dataset,” Journal
of Computer Virology and Hacking Techniques, vol. 14, no. 3, pp. 245–249,
2018.

[240] Y. Zhao, L. Li, H. Wang, H. Cai, T. F. Bissyandé, J. Klein, and J. Grundy,
“On the impact of sample duplication in machine-learning-based android mal-
ware detection,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 3, pp. 1–38, 2021.

[241] D. Yang, Y. Lei, X. Mao, D. Lo, H. Xie, and M. Yan, “Is the ground truth
really accurate? dataset purification for automated program repair,” in 2021
IEEE 28th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2021.

[242] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: an
end-to-end deep learning framework for just-in-time defect prediction,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pp. 34–45, IEEE, 2019.

[243] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A. E.
Hassan, “Studying just-in-time defect prediction using cross-project models,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2072–2106, 2016.

[244] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia: Ai-assisted code
completion system,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2727–2735, 2019.

[245] F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-trained
language model for code completion,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 473–485,
2020.

[246] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional neural
architecture for code completion with multi-task learning,” in Proceedings of
the 28th International Conference on Program Comprehension, pp. 37–47, 2020.

[247] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk, M. Di Penta, and
G. Bavota, “An empirical study on the usage of bert models for code comple-
tion,” in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp. 108–119, IEEE, 2021.

[248] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural
source code representation based on abstract syntax tree,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pp. 783–794,
IEEE, 2019.

[249] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning distributed
representations of code,” PACMPL, vol. 3, no. POPL, pp. 40:1–40:29, 2019.

[250] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao, “Fira: Fine-
grained graph-based code change representation for automated commit message
generation,” 2022.

156

Bibliography

[251] T.-O. Li, W. Zong, Y. Wang, H. Tian, Y. Wang, and S.-C. Cheung, “Finding
failure-inducing test cases with chatgpt,” 2023.

[252] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out of 337
bugs for $0.42 each using chatgpt,” arXiv preprint arXiv:2304.00385, 2023.

[253] C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era of large
pre-trained language models,” arXiv preprint arXiv:2210.14179, 2022.

[254] J. Zhang, J. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares, and
G. Verbruggen, “Repairing bugs in python assignments using large language
models,” arXiv preprint arXiv:2209.14876, 2022.

[255] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language models
on automated program repair,” arXiv preprint arXiv:2302.05020, 2023.

[256] N. M. S. Surameery and M. Y. Shakor, “Use chat gpt to solve programming
bugs,” International Journal of Information Technology & Computer Engineer-
ing (IJITC) ISSN: 2455-5290, vol. 3, no. 01, pp. 17–22, 2023.

157

	Introduction
	Motivation
	Limitations and Challenges
	Limitations of Existing Approaches
	Challenges in Capturing Correct Patch Behavior

	Contributions
	Roadmap

	Background and Related Work
	Automated Program Repair
	Heuristic-Based Repair
	Constraint-Based Repair
	Learning-Based Repair

	Patch Overfitting
	Empirical Studies of Patch Overfitting
	Addressing Before Patch Generation
	Addressing After Patch Generation

	Learning Representation of Code Changes for Patch Correctness
	Overview
	Background
	Patch Plausibility and Correctness
	Distributed Representation Learning

	Study Design
	Research Questions
	Datasets
	Model input pre-processing
	Embedding models

	Experiments and Results
	RQ-1: Similarity Measurements for Buggy and Patched Code using Embeddings
	RQ-2: Filtering of Incorrect Patches based on Similarity Thresholds
	RQ-3: Classification of Correct Patches with supervised learning

	Discussions
	Experimental Insights
	Threats to validity

	Related Work
	Conclusion

	Combining Learned Embeddings with Engineered Features for Accurate Prediction of Correct Patches
	Overview
	Background
	Engineered Features
	SHAP - SHapley Additive exPlanations

	Methodology
	Experiments and Results
	RQ-1: Classification of Correct Patches with Supervised Learning
	RQ-2: Combining Learned Embeddings and Engineered Features for more Accurate Classification of Correct Patches
	RQ-3: Explanation of Improvements of Combination

	Experimental Insights
	Conclusion

	Predicting Patch Correctness Based on the Similarity of Failing Test Cases
	Overview
	Approach
	Pre-processing Test Cases and Patches
	Embedding Test Cases and Patches
	Finding Similar Test Cases
	Mapping Historical Failing Test Cases to their Patches
	Predicting Patch Correctness
	An Example

	Study Design
	Research Questions
	Datasets
	Cluster Analysis Metrics
	Performance Metrics

	Experiments and Results
	RQ-1: Cluster of Similar Test Cases and Patches
	RQ-2: Identifying Correct Patches with BATS
	RQ-3: Competitive/Complementary to the State-of-the-art

	Ablation Study
	Bug types of failing test cases clusters
	Asymmetry of the hypothesis

	Threats to Validity
	Related Work
	Conclusion

	Correlating Descriptions of Bug and Code Changes for Evaluating Patch Correctness
	Overview
	Related Work and Hypothesis
	Related work
	Hypothesis Validation

	Approach
	Extraction of Bug Reports
	Generation of Patch Description
	Construction of Training Examples
	Embedding of Bug Reports and Patches
	Training of the Neural QA-Model
	Classifying a Pair of Bug Report and Patch

	Study Design
	Research Questions
	Datasets
	Metrics

	Experiments and Results
	RQ-1: Effectiveness of Quatrain
	RQ-2: The Impact of Input Quality on Quatrain
	RQ-3: Comparison against the State-of-the-art

	Discussion
	Experimental Insights
	Case Study
	Threats to Validity

	Conclusion

	Conclusion
	Future Work
	Learning to Represent Patches
	Capturing the Semantics of the Bug
	Integrating Patch Correctness Assessment with Heuristic-based APR
	Overfitting in LLMs-based Repair

