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Synchronization, a key process in a communication system, can be very demanding,
especially in burst mode transmissions. The estimation of timing, frequency and phase
offsets is sensitive to the magnitude of these offsets as well as the ambient interference and
noise levels. The aggressive reuse of frequencies in a multibeam satellite system increases
the co-channel interference significantly and motivates the need to revisit, and re-design
if needed, the algorithms used for synchronization. This paper deals with such a scenario
occurring on the return link of a mobile interactive satellite system and provides a set of
synchronization sub-systems that allow for the design of a robust modem that can reap the
benefits of sophisticated interference mitigation techniques.

I. Introduction

With the proliferation of the mobile paradigm, there is an increased demand for providing multimedia
applications and personalized services to the user on the move. Interactive services tend to contribute
significantly to this demand. Such a development impacts satellite services positively by opening up new
opportunities in addition to the traditional broadcasting and has motivated efforts towards standardization
of mobile interactive satellite networks [1, 2]. However, the increase in demand is not complemented by
a proportional increase in the availability of spectrum warranting the need to explore architectures and
techniques that make the system spectrally efficient. Towards this, multibeam architecture in conjunction
with sophisticated signal processing on-ground have been considered. In systems that employ multiple beams,
capacity increase is limited by the signals originating from different users in the same or adjacent spot beams.
Such a scenario can occur due to co-channel interference (CCI) caused by inter-beam interference or adjacent
channel interference (ACI) caused by aggressive carrier spacing.

Focussing on the return link (RL) of a mobile satellite system [2], in order to fully exploit the available
spectrum, different multiuser detection (MUD) techniques can be applied at the gateway to mitigate the
interference and detect the users data more efficiently with a tolerated bit error rate. Towards improving the
spectral efficiency by reducing the carrier spacing between two RL time division multiple access (TDMA)
carriers, iterative interference cancellation techniques have been considered in [3]. On a similar note, the
authors in [4] increase the number of carriers per transponder and employ a MUD at the gateway (processing
all the carriers jointly) to reduce the ACI caused by increased carrier overlap. On the other hand, Minimum-
mean-squared error with successive interference cancellation (MMSE-SIC) is applied against CCI is caused
by frequency reuse in [5].

A key challenge in MUD-based techniques is the timing, phase and frequency synchronisation. Timing
error is caused by uncertainty associated with the optimal sampling instance. On the other hand, the
transmitter and the receiver oscillators are not guaranteed to produce exactly the carrier frequency for
up-conversion and down-conversion, respectively. This, coupled with the uncertainty associated with the
oscillator phase and compounded by the relative mobility between the user terminals and a satellite, imposes
phase and frequency offsets and can deteriorate the system performance. In order to improve the performance

∗Email: zohair.abushaban@uni.lu, 4 rue Alphonse Weicker, L-2721 Luxembourg Tel +352 4666445897

1 of 10

American Institute of Aeronautics and Astronautics



in presence of imperfections, efficient synchronization systems need to be incorporated. The synchronization
challenge is accentuated by the burst mode transmissions on the RL which require rapid estimation and
compensation of these offsets. The trend in literature has been to focus either on the synchronization aspects
assuming absence of ACI/ CCI or on the derivation and application of MUD techniques assuming perfect
synchronization. For example, [2,4] assume perfect synchronization while a large body of works [6–8] provide
techniques for acquisition in packet oriented systems. The synchronization techniques consider variations of
the well-known O&M algorithm [9] as well as those obtained from the derivation of Cramer-Rao bounds.
To the best of the authors’ knowledge, only [3] discusses the incorporation of synchronization sub-systems
along with MUD on the RL.

In this paper we devise timing, phase and frequency synchronisation for joint processing of carriers from
co-channel beams. This work can be considered as an extension of [5] due to its inclusion of practical
imperfections; it further complements [3] by dealing with CCI. To enhance the novelty, we consider the
Broadband Global Access Network (BGAN) system model of [4] which is currently being standardized [2].
This set-up employs burst transmission in a multibeam system and different frequency reuse factors are
considered towards generating CCI. Central to the synchronisation and subsequent processing is the pilot
pattern (also known as Unique Word in [2]). We show that the synchronization is poor when employing
the current pattern due to its inability to discriminate users. A simple modification based on scrambling
is proposed to improve the acquisition performance. A hybrid timing synchronization algorithm where the
estimates from non-data aided (NDA) Oerder&Meyr algorithm [9] is further refined by the use of a data aided
binning is also proposed. Frequency and phase offset estimators are derived using the Maximum Likelihood
(ML) estimation and the performance of various estimators are then evaluated.

II. System Description

A BGAN-like narrowband mobile satellite system for interactive services depicted in figure 1 is considered.
The multiple user terminals (UT) operate in the L band (1626.5 MHz − 1660.5 MHz and 1668.0 MHz −
1675.0 MHz) supporting continuous and burst mode transmissions through dedicated bearers (or carriers).
These carriers are capable of carrying nominal data rates in the range between 3.2 to 848 kb/s with the
maximum channel bandwidth being 200 kHz. In this paper we assume that the power amplifiers at the UT
and gateway (GW) are operated in a linear mode so as not to cause additional interference.

II.A. Space Segment and its Modelling

A GEO satellite with 210 beams is considered with frequency reuse factors of 2 and 4. For the purpose
of this paper, we consider only the first tier of co-channel beams, depicted in figure 2 for the two reuse
factors. To model the multibeam antenna radiation pattern in such a scenario, an approximation using
Bessel functions [10] is employed wherein the gain coefficients in each beam are calculated as gij(θij) =√
Gmax

(
J1(u)
2u + J3(u)

u3

)
with u = 2.07123 sin( θ

θ3dB
), and J1, J3 are respectively, the first and third order

Bessel functions of the first kind. The jth user corresponds to an off-axis angle θij , with respect to the
bore sight of the ith beam; clearly θii = 0o. Subsequently, beam gain for each satellite antenna − user pair,
depends on the spot beam antenna pattern and on the user position. For ease of analysis, we assume that
user position does not change considerably over the duration of a codeword. Thus, the position dependant
beam gain between the K users and the Nt antennas can be represented by a Nt × K deterministic real
positive matrix, B, where the (i, j) element of B denotes the gain accorded by the beam i to an UT in beam

j. Hence, we have, B(i, j) =
√

gij(θij)
Gmax

. The C/I values for the reuse 2 and 4 at the centre of the beam are

provided in Tables 1 and 2 respectively.

Table 1. C/I values at the Centre of Beam for Reuse 2

Beam 1 6 7 5 9 10 11 8 4 3 2

C/I (dB) 3.4 3.4 3.4 6.4 6.2 3.5 6.2 6.4 6.2 3.5 6.2
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Figure 1. Generic system model used in the activity

Table 2. C/I values at the Centre of Beam for Reuse 4

Beam 1 2 3 4 5 6 7

C/I (dB) 19.5 18.8 18.9 18.9 18.8 18.7 18.7

II.B. Ground Segment and its Modelling

The ground segment consists of the transmitting UTs and the receiving GW. Since the focus of this work is
on synchronization, only the relevant functionalities are described.

II.B.1. User Terminal

While UTs can be classified based on the RF characteristics, we focus on the intermediate gain maritime
UT having a minimum EIRP of 15 dBW. The diagram of the generic UT transmitter with relevant blocks
is shown in figure 3.

Modulator Two types of modulations namely π
4 QPSK and 16 QAM are considered with the constellation

points and the corresponding mapping obtained from [2].

Burst formats A key feature of the RL traffic is its bursty nature [2]. Burst formats with 5, 20 and 80
ms slots are described in [2] and we consider the 20ms slots since it serves as the principal data carrying
burst. The structure of the burst is shown in figure 4 and consists of a guard interval (GI) followed by a
preamble (denoted as CW in the figure). The CW field is used to provide a smooth ramping up of power to
avoid violating ACI specifications by the sudden appearance of the carrier power at the input of the amplifier
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Figure 2. First tier CCI beams for different frequency reuse factors : (a) reuse 2, (b) reuse 4. In red the center beam
where the intended UT is located and in orange the interfering beams.

Bit Source Turbo Enc Modulator Framing RRC filter
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Figure 3. Block Diagram of the UT Transmitter

and is not prescribed for synchronisation [2]. Unique Words (UW), which follow the CW field, are used to
signal the different FEC blocks used; further, they are used for frequency, phase and clock synchronization.
Typically, each UW consists of 64 bits (rotated BPSK) for π

4 QPSK and 60 bits for 16 QAM; further, the
code-book size of the UWs is 15 [2]. The UWs are split into start and end sections with the start section
having 40 bits. UW bits are mapped onto symbols depending on the modulation used in the bearer.

GI CW UW_Start Data Subframe UW_end

0.36ms 0.12ms

20 ms

Figure 4. Frame format of the 20 ms Return Burst

Pulse shaping, Amplification and Upconversion A roll-off factor of 0.25 is assumed for the Root
Raised Cosine pulse shaping filter and the amplifier is assumed to operate in the linear region. Further, the
up-conversion assumes a frequency offset of △fi for the ith UT.

II.B.2. GW Processing

The generic receiver structure used depicted in figure 5, where Ts refers to the sampling rate. The relevant
blocks comprise synchronization subsystems followed by joint processing of co-channel signals (MUD) where
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the aspects of FEC decoding are also incorporated. The synchronisation sub-systems are detailed in the
sequel.
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Figure 5. Detailed GW receiver architecture

II.C. Channel

Each beam is assumed to be served by a dedicated onboard feed/ antenna and the user uplink channel is
modelled as a Rician fading channel. The signals from different co-channel antennas/feeds are multiplexed
on the feeder downlink which is further assumed to be ideal. We also assume that only one user is served
per beam at a particular time instance. The resulting set-up can be abstracted as a N ×N multiple-input
multiple-output (MIMO) system where N is the number of co-channel users and the equivalent channel at
time instance t takes the form,

H(t) = γB(t)G(t), (1)

where G(t) is a diagonal matrix comprising the uplink channel parameters at instance t and γ is the power
normalization factor. Note that we have used the time dependence of B to reflect the mobility. Let sk(t)
be the symbol transmitted from user k at time t and s(t) = [s1(t), s2(t), . . . , sN (t)]T be the N × 1 vector
obtained by stacking the signals transmitted from N co-channel users. Similarly, defining y(t) to be the
corresponding received vector and letting △fk, ωk to be the frequency and phase offsets, respectively, for
user k, the input-output relation then takes the form,

y(t) = Λ(t)H(t)s(t− τT ) + η(t), (2)

Λ(t) = diag({e−j2π(△fk)t+ωk}Nk=1), (3)

where η(t) is the receiver thermal Gaussian noise, Λ(t) is the diagonal matrix encompassing frequency and

phase offsets and s(t − τT ) = [s1(t − τ1T ), s2(t − τ2T ), . . . , sN (t − τNT )]T reflects the time offset. Here, T
T is the symbol duration and {τl} are the normalized offsets. Note that the model supports different offset
parameters for different users.

III. Synchronization Subsystems

In this section we describe the various synchronization algorithms employed. Both feedforward and
iterative mechanisms in conjunction with MUD can be considered. While iterative techniques can improve
the performance, such an implementation is complicated by the absence of a priori knowledge of the UW and
also the use of complex MUD. Hence feedforward mechanism is considered and the offsets are estimated and
compensated for each user stream separately. The standard methodology of correcting the timing offsets
first, and then effecting by frequency and phase offset compensations is followed. However, some subtle
changes are incorporated in the techniques per-se and the same are described below.

III.A. Timing Synchronization

The Oerder and Meyr (O&M) algorithm [9] has been considered for synchronizing burst mode transmissions
in [3, 6, 7]. The timing offset estimate for the kth user takes the form,

τ̂k = − 1

2π
∠
{

M0P∑
l=0

∣∣∣∣yk( lTM0
)

∣∣∣∣2 e−j2πl
M0

}
, (4)

where M0 is the oversampling factor (typically M0 = 4) and P is the integration window in symbol periods.
However, it has been observed in [3] that the performance of O&M algorithm is degraded in presence of ACI.
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Further, a technique exploiting the preamble structure, known as dichotomic search with linear interpolation
has been suggested as an alternative [3]. Also, it is also shown in [6] that the unbiased region of the O&M
algorithm is limited and needs to be enhanced using data aided techniques. These motivate the following
hybrid strategy pursued in the paper

• Without loss of generality, we assume τk ∈ [−0.5, 0.5]

• O&M Estimate: Obtain O&M timing estimates τ̂k using equation (4)

• Binning: Quantize τ̂k into one of the 2Q levels in the range [−0.5, 0.5] where Q ≥ 4. Define the resulting
estimate as τ̃k

• Effecting Timing Correction: Upsample and interpolate y
k
( lT
M0

) to a rate T
Q , effect the timing correction

of τ̃k. Define the resulting signal as xk(l) = y
k
( lTQ + τ̃k)

Once the stream xk(l) is obtained, a frame synchronization is undertaken (to be described in Section III.B).
The proposed algorithm has similarities to the dichotomic sampling of [3] and its performance depends on
the choice of Q. The choice of Q results in a complexity-performance trade-off. While the steps leading to
τ̂k do not exploit CCI, the quantization step allows for a further refinement through frame synchronization
where the UW correlation is exploited to mitigate CCI.

III.B. Frame Synchronization

The frame synchronization is carried out in the upsampled domain essentially by correlating with the UW.
To keep the presentation simple, we assume that the start and end parts of the UW are concatenated into a
single field. The proposed methodology can be used with straightforward variations to the frame structure
depicted in figure 4. Frequency offset can degrade the performance of a mere correlation based technique.
Motivated by post detection integration techniques in [11], the frame synchronization algorithm takes the
form,

• Upsample the UW: Let um(n) denote the nth symbol of um and UWLen is the length of the UW.
Further, let um denote a stacking of the symbols corresponding to mth UW. Define the upsampled UW
as ûm = um ⊗ 1 where 1 is 1×Q vector of ones and ⊗ denotes the Kronecker product.

• One tap UW correlation: Obtain tm(n) = ûm(n)[ûm(n + 1)]∗ where ∗ denotes complex conjugation.
From the form of UWs (rotated BPSK [2]), it can be easily verified that tm(n) = ±α, α > 0.

• One tap received signal correlation: Obtain rm(n) = xm(n)[xm(n+ 1)]∗.

• Fourth order correlation: Obtain βm,k(p) =
∑UWLen−1

n=1 tm(n)[rk(n+ p)]∗.

• Frame Synchronisation: The frame offset for mth is obtained as nm = argmaxp(maxm|βm,k(p)|). Note
that we search for the peak of the correlation over all the UWs and this step reflects the lack of
a priori information about UW used. The motivation for this technique stems from the fact that,
rm(n) = ej2π[△f ]m r̃m(n) where r̃m(n) is independent of the frequency offset when noise and CCI terms
are neglected and |βm,k(p)| will be independent of the frequency offset.

• Instead of peak picking, a detection mechanism is put in place where we look at the peak only if

max
p

(max
m

|βm,k(p)|) > THR (5)

for some threshold THR. If equation (5) fails then we consider it to be a failure. On the other hand if
equation (5) holds and the detector provides wrong values for the beginning of the frame, we declare
a false alarm. These events would be useful when plotting the Receiver Operating Characteristics.

Once the frame is synchronized, the signal is resampled to the symbol duration and we denote the symbol
sampled stream as x̂m.
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III.C. Joint Frequency and Phase Synchronization

For obtaining the estimates of frequency and phase offsets, we assume the CCI as an additional source of
Gaussian noise that is independent of the signal and the receiver noise. Under such an assumption, it is
possible to derive the joint Maximum Likelihood (ML) estimate of frequency and carrier offsets as solutions
to

Imag

{
UWLen∑

l=1

e−j2π[△fm](l−1)[x̂m(n)]∗um(n)

}
= 0. (6)

Equation (6) involves root finding which could be cumbersome. Motivated by |Imag(y)| ≤ |y| and resorting
to finding the minimum instead of the roots, we use the following methodology to obtain the estimates,

△f̃m =
1

Len
argmin

k
|Gm

Len(k)|, (7)

{Gm
Len(k)}k = FFT ([x̂m(n)]∗um(n), Len), (8)

ω̂m = ∠
{

UWLen∑
l=1

e−j2π([△f̃m](l−1))[x̂m(n)]∗um(n)

}
. (9)

In equation (8), {Gm
Len(k)}k refers to the Len length Fast Fourier Transform (FFT) of the sequence {[x̂m(n)]∗

um(n)}.

IV. Simulation Results

We evaluate the performance of the proposed estimators by simulating the proposed chain with the uplink
modelled as a Rician channel with K = 15dB and a fading bandwidth of 2 Hz to emulate a maritime channel.
Focusing on users located at the centre of the beam, we present the results for the user in the central beam
(worst case CCI). In all the simulations, we assume a single slot per burst. It should be recalled that different
users can have different UWs and these need to be estimated the GW as well. The frequency offset is chosen
as △fi =

0.015
T , ∀i and the phase offset is chosen uniformly in [0, 2π]. Further, we assume the phase offset to

be constant during the duration of the UW.

IV.A. Frame Synchronization

We assume perfect timing and illustrate the probability of detecting the start of frame correctly for different
SNRs in presence of frequency offsets. The aim of this exercise is to illustrate that the selection of UWs has a
significant effect on frame, phase and frequency synchronization. The probability of detection is obtained by
averaging over 105 bursts. To put the SNR range in perspective, it should be noted that the supported codes
achieve a packet error rate of 10−3 for a SNR range of [3− 15]dB when employing 16-QAM constellation [2].
From figure 6, it can be seen that the frame detection with the current set of UWs is rather poor (legend
: Existing UW) and requires additional processing to improve performance. On the other hand, a simple
modification where the UWs are scrambled using ±1 yields a much better performance (legend : Modified
UW). Further, the performance of reuse 2 is poorer than reuse 4 as expected. Also depicted in figures 7 and
8 are the Mean Squared Error(MSE) of the normalized frequency and phase offsets respectively.

These results indicate that the existing UWs do not discriminate between users well. Henceforth, we
consider using the modified UW. It should be noted that the scrambling sequence has been chosen ad-hoc
and there exists scope for further optimization.

IV.B. Timing Synchronization

Figure 9 illustrates the performance of the proposed timing algorithm for τ1 = ± k
16T , k ∈ [0, 7], τl = 0, l >

1, Q = 8 at Es/N0 = 0 dB. The mean of the estimated normalized offset closely follows the true value over
the considered range. The apparent bias in the estimation arises from the quantization and is generally of
the order 1/Q. This is implicitly removed when the UW aided frame synchronization is performed. It should
be noted that the resulting frame synchronization is achieved with an average probability of 99.99% over
the chosen range of τ1. Further, the MSE of the frequency and phase offsets are 10−4 and 10−2 respectively
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Figure 6. Frame Detection probability at different SNR, normalized frequency offset of 0.015

−8 −6 −4 −2 0 2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E
 o

f F
re

qu
en

cy
 O

ffs
et

 e
st

im
at

e

MSE of frequency offset estimate

 

 
Reuse 4, Modified UW
Reuse 2, Modified UW

Figure 7. MSE of the normalized frequency offset estimate at different SNR, normalized frequency offset of 0.015

over the considered range. These results indicate the effectiveness of the various synchronization algorithms
in overcoming the imperfections.

V. Conclusions

This paper deals with the design of synchronisation algorithms for the return link of a mobile interactive
satellite network. A hybrid timing synchronization algorithm where the non-data aided estimate is refined
by exploiting the pilot pattern is proposed along with a start of frame detector that is robust to frequency
offsets. Further, a FFT based frequency estimator and a low complexity phase estimator are also provided
and their performance is evaluated. Key to the performance of these algorithms is the ability to correctly
detect the start of frame which further requires a better design of pilot pattern (unique words) than the
currently prescribed.
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Figure 8. MSE of the phase offset estimate at different SNR, normalized frequency offset of 0.015
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