Visual Behavioural Modelling with Contracts

Nuno Amalio Pierre Kelsen

University of Luxembourg, 6, r. Coudenhove-Kalergi,
L-1359 Luxembourg

nuno.amalio@uni.lu pierre.kelsen@uni.lu

This paper presents the Visual Contract Language (VCL). VCL is a new visual language for abstract
software specification at level of requirements. It is designed to be visual, formal and modular, and
aims at expressing precisely structural and behavioural properties of software systems. VCL takes
an approach to behavioral modelling based on design by contract that emphasises modularity.

1 Introduction

Visual languages (VLs) are widely used to model software systems. VLs like UML are known as semi-
formal methods; they have a formal syntax but no formal semantics. They have several shortcomings:

e They were mostly designed to be semi-formal (with a formal syntax, but no formal semantics).
Although, there have been successful formalisations of semantics (e.g subsets of UML, see [1]),
they are mostly used semi-formally. This brings numerous problems: it is difficult to be precise,
unambiguous and consistent, and resulting models are not mechanically analysable.

e They cannot express a large number of properties diagrammatically; hence, UML is accompanied
by the textual Object Constraint Language (OCL).

This paper presents the visual contract language (VCL) [12, 13} 4] |5} [6], which tries to address these
problems. VCL targets abstract specification at level of requirements (or high-level designs), and takes
an approach to behavioural modelling based on design by contract [7].

2 An Overview of VCL

2.1 Visual Primitives

Account VCL blobs are labelled rounded contours denoting a set; they are akin to classes of the
object-oriented (OO) paradigm. Blobs resemble Euler circles because topological notion of
enclosure denotes subset relation (e.g. to the left, Savings is subset of Account).
Objects, represented as rectangles, denote an element of some set. Their label includes
Ocusttyee | their name and may include set to which they belong (e.g. ¢ to the left). Blobs may also
enclose objects, and be defined in terms of things they enclose by preceding blob’s label
with symbol (). To the left, CustType is defined by enumerating its elements.

balance Property edges, represented as labelled directed arrows, denote some property pos-
sessed by all elements of a set, like attributes in OO paradigm (e.g. balance to the left).
Relational edges, represented as directed lines where direction is indicated by arrow symbol above the
line, denote some relation between blobs (associations in OO) — e.g. Holds to the left.

. © N. Amilio & P. Kelsen
Submitted to: . ..
This work is licensed under the
FLACOS 2010 - T .
Creative Commons Attribution License.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Visual Behavioural Modelling with Contracts

)
address

cType aType

OCustType OAccType Int
[corporate | [personal | [savings | [current |

CorporateHaveNoSavings HasCurrentBefSavings TotalBallsPositive

CrCustomer openaccount) AccDeposit)
> Cacawithdraw ¢ Accdelete Yy { AccGetsal)

balance <GelAcc5|nDebl> < GetCustAccs >

name
(e

Customer New

Account

Holds AddNew
__De\civenAcc

GetBalance

Figure 1: Structural (left) and behavioural (right) diagrams of simple Bank.

Represented as single-lined labelled hexagons, constraints denote some state con-
straint or observe (or query) operation (e.g TotalBalIsPositive to the left). They

refer to a particular state of some structure or ensemble. Contracts, represented as labelled double-lined
hexagons, denote operations that change state; hence, they are double-lined (e.g. Wi thdraw to the left).

2.2 Semantics

VCL’s design is accompanied by a formal semantics. VCL takes a generative (or translational) approach
to semantics. Currently, VCL diagrams are mapped into ZOO [8} [1], a OO semantic domain expressed
in the formal language Z. We intend to support other formal languages in the future.

3 Defining structures and overall behaviour

VCL is illustrated with the simple bank case study, which is used to illustrate the ZOO semantic do-
main [[1} 8] and VCL’s structural [2] and behavioural parts [3]]. Full VCL model of case study together
with generated Z are given in [6]]

VCL diagrams are constructed using the visual primitives presented above. Structural diagrams
(SDs) define structures; an ensemble of structures makes a state space. Structures and ensembles are
subject to constraints (invariants), which are identified in SDs and defined in constraint diagrams. SD of
simple bank is defined in Fig. [I] (left); it defines main problem domain concepts (blobs Customer and
Account), their relationships (relational edge Holds) and invariants (e.g. TotalBalIsPositive).

Behavioural diagrams (BDs) identify operations of some ensemble. Operations can either be local
(operate upon individual structure) or global (operate upon ensemble of structures). Update operations
are represented in BDs as contracts, observe operations as constraints; these are defined in constraint and
contract diagrams. BD of simple Bank (Fig. [I] right) identifies eight system operations, represented as
global units, one operation of blob Customer, five operations of blob Account, and two operations of
relational edge Holds. Next section shows how to describe in VCL some of these behaviours.

4 Defining Behaviour using contracts

4.1 Contract diagrams of local operations

Local operations have a localised scope and effect. They factorise the local effects of the overall (global)
package behaviour.

Figure[2] presents VCL contracts for local operations New, Delete and Withdraw of blob Account.
Remaining local contracts are given in [[6]. Semantics of contract diagrams is given in [3]. Local contracts

1[6] extends simple bank case study with security concerns; simple Bank is localised in VCL package Bank in [6].

N. Amalio & P. Kelsen 3

— [] e]
lacho? : AcclD HaType? : AccType] —

balance balance

11—

Figure 2: VCL contracts diagrams describing local operations of simple Bank.

OpenAccount AccDelete AccWithdraw GetAccsInDebt
aType? : AccType New AddNew [al/a?]
l] « » S Account TDelete hdraw accs! : Account

ac 0:
Accid ToenAse

balance[<]
Account E]

Figure 3: VCL contracts of global operations of Simple Bank.

that change state are expressed in terms of action units (represented with a bold line), identifying the
object or link whose state is to change. Contracts of Fig. 2| are as follows:

e Contract New (Fig.[2] left) declares inputs new account’s number (accNo?) and type (aType?),
and output for created object (a!). Pre-condition is true as its compartment is empty. Post-
condition sets properties of action object a!; a! 1is to be created: it is on the right predicate
compartment, but not on the left.

e Contract Delete (Fig.[2] centre) declares account to delete as input (a?). Pre-condition says that
action object a? must have a balance of 0. Post-condition compartment is empty. a? is to be
deleted: it is on the left predicate compartment, but not on the right.

e Contract Withdraw (Fig. |2} right) declares two inputs: account (a?), and amount to withdraw
(amount?). Pre-condition says that action object a? exists. Post-condition sets balance property
of a? to value of expression balance-amount? (where balance refers to before-state value).
a? is to be updated: it is both on the left and right predicate compartments.

4.2 Contract diagrams of global operations

Global operations define the behaviour of an ensemble of structures (such as a system). Their contracts
are a composition of contracts of local operations plus some extra behaviour of their own. In VCL, this
form of contract composition is done through contract importing (see [3l] for details), enabling larger
contracts to be built from smaller ones.

In VCL, a contract imports all contracts placed on its declarations compartment. Usually, importing
is used to promote local contracts to a global scope. Semantically, contract importing is conjunction: of
all pre- and post- conditions of imported contracts with pre- and post- condition of composite. Rules of
contract importing are given in [3} [6].

Figure |3| describes in VCL some global operations of simple Bank; remaining operations are given
in [6]. Diagrams of Fig. [3|are as follows:

e Opendccount declares inputs aType? and c?, and partially import contracts Account.New
(Fig. Q]) and Holds.AddNew (creates a new tuple of relation Holds). aType? and c? are shared

2There are two modes of importing (see [3|] for details). Partial importing (the default) means that only the contract’s
predicate is imported; declarations are hidden. Total importing means that both declarations and predicates are imported.

5

Visual Behavioural Modelling with Contracts

inputs; accNo? and a! (of Account.New) are used internally only. Arrow from AccID (set of
all account identifiers) means that some object of this set (selected non-deterministically) is passed
to Account . New through channel accNo?.

e AccDelete imports totally both Account.Delete and Holds.DelGivendccount. Action com-
partments are empty and so pre- and post-conditions are conjunction of imported contracts.

o AccWithdraw imports Account.Withdraw totally. Action compartments are empty; pre- and
post-conditions are those of imported contract.

e GetAccsInDebt, an observe contract, declares output accs! to hold set of accounts whose bal-
ance is less than dﬂ

Conclusions and Future Work

This paper presents VCL, a visual language for formal abstract specification of software systems. A
prominent feature of VCL is its support for modularity: constraints and contracts are all modular con-
structs. We have recently applied VCL to model a large system [3]]. Currently, we are completing formal
definition of VCL, and developing VCL’s too]ﬂ

of

We intend to leverage VCL’s underlying formal semantics to enable formal analysis and verification
VCL models. This is to be done visually. Future work will look at incorporating the snapshot analysis

technique for ZOO models of [[1, 9] in VCL; this enables analysis of state spaces to validate invariants,
and of behaviours to validate contracts.

References

(1]

(2]

(3]
[4]

(5]

Amadlio, N. Generative frameworks for rigorous model-driven development. Ph.D. thesis, Dept. Computer
Science, Univ. of York (2007)

Amadlio, N., Kelsen, P., Ma, Q. Specifying structural properties and their constraints formally, visually and
modularly using VCL. In EMMSAD 2010, vol. 50 of LNBIP. Springer (2010)

Amadlio, N., Kelsen, P. Modular design by contract visually and formally using VCL. In VI/HCC 2010 (2010)

Amdlio, N., Kelsen, P. VCL, a visual language for modelling software systems formally. In Diagrams 2010,
vol. 6170 of LNAI. Springer (2010)

Amalio, N., Kelsen, P, Ma, Q., Glodt, C. Using VCL as an aspect-oriented approach to requirements mod-
elling. Transactions on Aspect Oriented Software Development, 7:151-199 (2010)

Amalio, N., Kelsen, P., Ma, Q. The visual contract language: abstract modelling of software systems visually,
formally and modularly. Tech. Report TR-LASSY-10-03, Univ. of Luxembourg (2010). Available at http:
//bit.1ly/9cbYwQ.

Meyer, B. Applying “design by contract”. Computer, 25(10):40-51 (1992)

Amdlio, N., Polack, F., Stepney, S. An object-oriented structuring for Z based on views. In ZB 2005, vol. 3455
of LNCS, pp. 262-278. Springer (2005)

Amalio, N., Stepney, S., Polack, F. Formal proof from UML models. In Proc. ICFEM 2004, vol. 3308 of
LNCS, pp. 418-433. Springer (2004)

3In contracts, property edges link object to some value; by default they denote equality, unless other relational operator is

explicitly provided. In the contracts above, most property edges denote equality; here balance denotes <.

4The Visual Contract Builder, http://vcl.gforge.uni.lu

http://bit.ly/9c5YwQ
http://bit.ly/9c5YwQ
http://vcl.gforge.uni.lu

	Introduction
	An Overview of VCL
	Visual Primitives
	Semantics

	Defining structures and overall behaviour
	Defining Behaviour using contracts
	Contract diagrams of local operations
	Contract diagrams of global operations

	Conclusions and Future Work

