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Chapter 1

Introduction

This document present a type system for the Visual Contract Language (VCL) [AK10, AKMG10].
This formalises a typed object-oriented system with subtyping. This type system has been
implemented in the VCL tool, the Visual Contract Builder1 [AGK11]. The following gives some
background on VCL and an outline of the overall document.

1.1 Background: The Visual Contract Language (VCL)
VCL [AK10, AKMG10, AGK11] is a formal language designed for the abstract description of
software systems. Its modelling paradigms are set theory, object-orientation and design-by-
contract (pre- and post-conditions). VCL’s distinguishing features are its capacity to describe
predicates visually and its approach to behavioural modelling based on design by contract.

VCL’s semantics is based on set theory. Its semantics definition takes a translational ap-
proach. Currently, VCL has a Z semantics: VCL diagrams are mapped to ZOO [APS05, Amá07],
a semantic domain of object orientation for the language Z [Spi92, ISO02].

1.1.1 VCL Diagrams
VCL’s diagram suite comprises package, structural, behaviour, assertion and contract diagrams.

Package Diagrams

Package diagrams (PDs) define VCL packages, coarse-grained modules representing concerns.
Package are represented as clouds because they define a world of their own. Sample PDs from
the secure simple bank case study [Amá11] are given in Fig. 1.1. PDs are as follows:

• The package being defined or the current package is represented in bold. The current
package can either be defined as a container (symbol ⌻) or ensemble (symbol ✶). Container
packages merely contain sets and their local definitions. Ensemble packages have a global
identity; they may include relations between sets and global invariants and operations.
In Fig. 1.1, packages CommonTypes and RolesAndTasksBank are containers; all others are
ensembles.

1http://vcl.gforge.uni.lu/
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(a) CommonTypes (b) Bank (c) Authentication

(d) TransactionsSwitch

(e) RolesAndTasksBank (f) Authorisation (g) SecForBank (h) SecBank

Figure 1.1: Sample package diagrams of secure simple bank (from [Amá11])

• A current package may defined to use elements defined in other packages. Uses edges
are represented with a hollow headed arrows. In Figs. 1.1b and 1.1c, packages Bank and
Authentication use package CommonTypes.

• The current package can incorporate other packages, which means that the current package
includes the structures of incorporated packages plus some structures of its own. Package
incorporation is expressed using enclosure. In Fig. 1.1h, package SecBank incorporates
packages BankWithJI, SecForBank and TransactionsSwitch.

• To resolve conflicts with package incorporations, it is possible to express in a PD conflict
resolution dependencies using edges. There two kinds of such edges: overrides and merges.
Override edges says that certain sets in the source package override those with the same
name in the target package. Merge edges say that certain specified sets with the same
name from the linked packages are to be merged. Figure 1.1f says that set User of package
Authentication overrides User of AccessControl.

• The current package may extend incorporated sets. This is specified using an extends list.
In Fig. 1.1g, package SecForBank extends incorporated set User.

Structural Diagrams

Structural diagrams (SDs) define the structures that make the state space of a VCL package.
Figure 1.2 gives sample SDs from secure simple bank. SDs are as follows:

• SDs define two kinds of sets: value and class. Classes are distinguished from their value
counterparts through a bold line. In Fig. 1.2a all sets are value. In SDs of Fig. 1.2,
Customer, Account, User and Session are class sets; all others are value sets.

• Sets that include symbol⃝ are definitional. This means that they are defined by what they
enclose. Sets that include symbol ⃝ followed by ↔ are derived. This means that they are
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(a) CommonTypes (b) Bank

(c) Authentication

Figure 1.2: Sample structural diagrams of secure simple bank (from [Amá11])

defined from primitive entities of the model. In Figs. 1.2b and 1.2c, sets CustType, AccType,
LoginResult and UserStatus are enumerations defined by indicating their possible values.
In Fig. 1.2a, TimeNat is a derived set defined from the set of natural numbers Nat2.

• Reference sets include symbol ↑; they are used to refer to sets defined in used packages as
defined in the PD (those sets are visible). SDs of Figs. 1.2b and 1.2c have reference sets
referring to Name and TimeNat defined in package CommonTypes (alias CT).

• Edges with circled labels are relation edges. They define binary relations between sets.
Directed edges are property-edges. They define state properties (attributes or fields) pos-
sessed by all objects of some set. In Figs. 1.2b and 1.2c, Holds and HasSession are
relation-edges, and all outgoing edges with arrows emerging from sets Customer, Account,
User and Session are property edges (e.g. name).

• Assertions identify invariants, which are separately defined in ADs. Assertions connected to
some set are local; those standing-alone are global. In VCB, double-clicking on an assertion
takes the user to its AD (symbol �). In Figs. 1.2b and 1.2c, CorporateHaveNoSavings,
HasCurrentBefSavings and HasSessionIffLoggedIn are global, SavingsArePositive
and MaxPwMissesInv are local.

• A SD can contain constants of sets and scalars. Constants have their labels preceded by
symbol ©. Scalar constants are represented as objects (rectangles); set constants as set or

2This defines time as set of time points that are isomorphic to the natural numbers.
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(a) Bank

(b) Authentication (c) SecBank

Figure 1.3: Sample behaviour diagrams of secure simple bank (from [Amá11])

blobs. When placed inside sets, constants objects name values or objects of the enclosing
set; this is a common idiom to define enumeration sets in VCL (e.g. sets CustType, AccType,
LoginResult and UserStatus of the SDs of Fig. 1.2 are defined this way). A SD can also
include constants with a type designator; such constants are local when attached to some
set and global when they stands alone. In Fig. 1.2c, maxPwMisses defines a scalar constant
of type Nat that is local to set User.

Behaviour Diagrams

A behaviour diagram (BD) declares the operations of a package. It may declare: (a) package
operations to be separately specified in ADs and CDs or (b) operation compositions. Figure 1.3
presents sample BDs of secure simple bank. Specified operations of BDs are as follows:

• There are two kinds of specified operations: update (or modifiers) and observe (or queries).
Queries are represented as assertions, modifiers as contracts. In Fig. 1.3b, operations
UserIsLoggedIn, GetUserGivenId and IsLoggedIn are queries; all others are modifiers.

• Specified operations may be local or global: local when they are inside some set and global
otherwise. The global operations of a package define the behaviour that the package offers
to the outside world. Each specified operation needs to be defined in a AD or CD; double-
clicking takes the user to its definition (symbol �).

BDs supports three kinds of operation compositions: integral, merge and join extension. Such
compositions are defined in boxes; each box is named after the kind of composition. Operation
compositions are as follows:

• Integral extension promotes operations from incorporated packages to package operations
so that they become available to the outside world as part of the package being defined.
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The promoted operation is made available in the new package unaltered (hence name
integral). Operations to be integrally extended are represented inside an integral extension
box (there is at most one); they are represented visually as normal operations connected
to the package where they come from. Special operation All refers to all operations of a
package and it may include a list of operations to exclude. BD of Fig. 1.3c says that all
operations of package TransactionsSwitch with the exception of IsSuspended and Init
are to be integrally extended; likewise for all operations of package SecForBank except
UserIsLoggedInAndHasPerm and Init.

• Merge extension is a form of composition that merges or joins separate behaviours coming
from different packages. Merge extensions are specified in a merge box; all separate opera-
tions that are included in the merge box with the same name are merged into a new package
operation joining the separate behaviours. Semantically, merged operations are combined
using an operator that is akin to logical conjunction. BD of Fig. 1.3c includes a merge box
saying that Init of SecForBank is to be merged with Init of TransactionsSwitch.

• Join extension is VCL’s aspect-oriented like mechanism. It inserts a certain extra behaviour
into a group of operations. Join extensions involve placing the group of operations to extend
inside a join box; the extra behaviours to insert are specified as join contracts, comprising
a pre- and post-condition, that is connected to the box through a fork edge. There are two
kinds of fork edges: concurrent (symbol ∧) and sequential (symbol ⌻). BD of Fig. 1.3c
includes a join extension, saying that all operations of BankWithJI are to be concurrently
joined with contract AuthACJoin.

Assertion Diagrams

Assertion Diagrams (ADs) describe predicates over a single state of the modelled system. They
are used to describe invariants and observe operations. Sample ADs are given in Fig. 1.4. ADs
are as follows:

• An AD is made of two compartments: declarations (top) and predicate (bottom). This is
illustrated in the ADs of Fig. 1.4.

• An AD may have a global or a local scope. Global ADs include names of package and
assertion; local ADs include names of package, set and assertion. In Fig. 1.4, ADs of
Figs. 1.4a and 1.4b are local; all others are global.

• The declarations compartment may includes variables, which are either scalar (represented
as objects) or collections (represented as sets or blobs). Each variable has a name and a
type. Variables can denote either inputs (name suffixed by ‘?’) or outputs (name suffixed
by ‘!’). Figure 1.4d declares output set accs!. Figures. 1.4a, 1.4c and 1.4e declare several
input and output objects.

• The declarations compartment may include imported assertions, either standing alone or
combined in logical formulas. Double-clicking on an imported assertion takes the user to
its AD definition (symbol �). An assertion import comprises an optional up arrow symbol
↑, name of imported assertion with optional origin qualifier and an optional rename list.
↑ symbol indicates that the import is total (variables and predicate are imported); when
not present the import is partial (only the predicate is imported). Rename list indicates
variables of imported assertion that are to be renamed (e.g. [a!/a?] says that a! replaces a?).
Fig. 1.4c has two assertion imports: one total and one partial. Total assertion import says
that assertion GetBalance is to be called on Account object a!; as import is total, variable
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(a) (b) (c)

(d)

(e)

(f)

(g) (h)

Figure 1.4: Sample ADs of packages of secure simple bank (from [Amá11])

bal ! defined in Account.GetBalance (Fig. 1.4a) is also defined in AccGetBalance. Partial
import of GetAccountGivenAccNo means that output a! is visible in AccGetBalance, but
is not made available to the outside world; input aNo? is made available to the outside
world as is also defined in AccGetBalance.

• The predicate compartment includes visual formulas combining set expressions, predicates
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and propositional logic operators. Figure 1.4a expresses an equality predicate using a
predicate property edge to say that bal! is to hold value Account.balance. Figure 1.4b
expresses an implication formula to say that if the property aType of Account has value
savings then the property balance must be greater or equal than 0. Figure 1.4d outputs
the set of accounts with negative balances; this builds a set using a set definition construc-
tion (symbol ⃝) by constraining set Account using predicate property edges (arrows); the
constructed set is then assigned to output ‘accs!’. Figure 1.4e expresses a set membership
predicate using a predicate property edge to say that output a! belongs to accounts with
property accNo equal to aNo? (there is at least one). Figure 1.4f comprises a set formula
that defines a set by constraining the relation Holds, using property edge modifiers with
operators domain (▹) and range restriction (◃), to give the set of tuples made of corporate
customers and savings accounts; outer shading (reinforced with symbol ∅) then says that
this set must be empty.

Contract Diagrams

Contract Diagrams (CDs) describe system dynamics. They comprise a pair of predicates corre-
sponding to pre- and post- conditions. Pre-condition describes what holds before operation is
executed. Post-condition describes effect of operation, saying what holds after execution. CDs
are used to describe operations that change the state of modelled system. Sample CDs are given
in Fig. 1.5. CDs are as follows:

• Like ADs, CDs are made of two main compartments for declarations and predicate. In CDs,
the predicate compartment is subdivided in two for pre-condition (left) and post-condition
(right). This is illustrated in CDs of Fig. 1.5.

• CDs are similar to ADs in terms of what can be included in the declarations compartment.
The only difference is that CDs can include both imported assertions and contracts. This is
illustrated in CDs of Fig. 1.5. In Fig. 1.5e, import of contract HasSessionAddNew includes
a renaming. In Fig. 1.5f, the two imported contracts are combined using a disjunction to
say that a login operation is either successful (LoginOk, Fig. 1.5e) or not (LoginNotOk,
Fig. 1.5d).

• In CDs, pre- and post- condition compartments are made of the same sort of visual for-
mulas used in the predicate compartment of ADs. In the post-condition compartment, the
variables that change state are bold-lined. In Figs. 1.5a and 1.5c, pre- and post-conditions
compartments are made of arrows formulas stating equality predicates; the post-state vari-
ables are bold-lined in the post-condition compartment.

1.1.2 Semantics
VCL’s modelling paradigms are set theory, object-orientation and design-by-contract (pre- and
post-conditions). VCL’s semantics is based on set theory. Its semantics definition takes a trans-
lational approach: diagrams are mapped to ZOO [APS05, Amá07], an object-oriented semantic
domain for Z [Spi92, ISO02].

Briefly, VCL’s semantics is as follows:

• Objects are atoms; members of some set.

• Property edges are properties shared by all objects of the set. Relational edges are binary
relations between sets.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: Sample CDs of package Authentication of secure simple bank (from [Amá11])

• An ensemble package is defined as the conjunction of all class sets, relational edges and
global invariants.

• An assertion describes a condition of a particular state structure or ensemble. It is therefore
represented as a predicate over a single state structure or ensemble.

• Operations are relations between a before-state (pre-condition) and an after-state (post-
condition) of particular state structure or ensemble.
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1.2 Outline
The remainder of this document is as follows:

• Chapter 2 presents the syntactic descriptions using metamodels and grammars. The type
system is defined in the grammar.

• Chapter 3 presents the actual VCL type system made up of type rules.

• Appendix A presents the auxiliary definitions that are used to describe VCL’s type system
presented here.

• Appendix B presents the VCL metamodels described using the Alloy formal modelling
language.
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Chapter 2

Syntax

This chapter presents the syntax of VCL package, structural behavioural and assertion diagrams.
It starts by presenting the syntax of these notation using visual metamodels. Then, it presents
their equivalent grammars. The next chapter defines the type system based on the grammar
representation.

2.1 Metamodels
The metamodels of the VCL notations presented here have been defined in the Alloy specification
language [Jac06]. They are given in appendix B. Here, we present these metamodels using UML
class diagrams, which partially describe what is described in Alloy: the Alloy describes constraints
that are not describable using class diagrams.

The Alloy metamodels for the different VCL diagram types comprise the following Alloy mod-
ules: package diagrams (section B.1), common (section B.2), structural diagrams (section B.3),
common assertion and contract diagrams (section B.4), and assertion diagrams (section B.5).
The following class diagrams describe each of these modules.

2.1.1 Package Diagrams

PackageDiagram

defines

inside
*

edges

target

name: Name
alias : [0..1] Name

VCLPackage
* names: [*, Set]Name

PkgEdge
-Overrides
-Merges

PkgEdgeKind

-Container
-Ensemble

PkgKind
kind

kinduses

*

extElems: [*, Set]Name
ExtendsList

0..1extends

CurrPackage

Name

Figure 2.1: The metamodel of VCL Package diagrams

A VCL package diagram (PD) defines a package (the current package) and its relations with
other VCL packages. In VCL, packages are represented using a cloud symbol. The metamodel
of VCL PDs (Fig. 2.1), corresponding to the Alloy module of section B.1, is as follows:
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InsideDefSetExtension
elems
*

PropEdge Expression
target

SetExpression SetExpressionDef

insideExp

*
pes

bd: TypeDesignator
SetExpressionID

SetDef

def

-DOMAIN
-RANGE
-UNION
-INTERSECTION
-CROSSPRODUCT
-SETMINUS
-RELCOMP
-DRES
-RRES
-DSUB
-RSUB
-RIMG
-NONE

SetDefOp

designator [0..1]: Name
PropEdgePred

id : Name
VCLObject

desig : TypeDesignator
ConstrainedSet

-EQ
-NEQ
-IN
-LT
-LEQ
-GT
-GEQ
-SubsetEQ

EdgeOperatorBin

FreeExpression

FreeExpNum

FreeExpUMinus FreeExpBin

-Plus
-Minus
-Times
-Div

FreeExpBinOp

bop

oid : Name
pkgId [0..1] :Name

FreeExpId

Num
num

exp1

FreeExpPar

exp

exp2

Name

TypeDesignator

TypeDesignatorNat

TypeDesignatorInt

exp

{ordered}

idElem1 : Name
idElem2 : Name

Pair

{ordered}
sdop

SetExpressionEmpty

SetInsideExpression

0..*
setDefs

InsideExpSDs

-CARD
-THE
-NONE

EdgeOperatorUnary
uop

SetExpressionCard
sExp

id : Name
Assertion

bop

setId : Name
pkgId [0..1] : Name

TypeDesignatorId
id : Name
propId :Name

FreeExpDot

mop: SetDefOp
PropEdgeMod

-PRE
-POST

PredNameKind

action : PredVarKind
SetElement

Figure 2.2: The common metamodel

• A PD (class PackageDiagram) comprises the package being defined (defines association-
end), an instance of CurrPackage, which is just a special Package (inheritance relation).
A CurrPackage is depicted with a bold line; it can either be Ensemble or Container
(kind association-end): containers have their label preceded by symbol ⌻, and ensembles
by symbol ✶ . A CurrPackage can: (a) enclose other packages to represent the pack-
ages it incorporates (inside association-end), (b) be connected with uses arrows to other
packages (uses association -end) and (c) contain an extends list (ExtendsList class) to
indicate sets being extended. A container cannot incorporate ensembles. All packages
being incorporated and used must have been defined.

• The packages being incorported may be connected with edges (PkgEdge). There are two
kinds of edges (kind association-end): Overrides and Merges. An edge has a label indi-
cating the blobs being overridden or merged (names attribute). Only blobs with no local
properties (property edges) may be overridden. Edges define package relations that are
anti-reflexive and anti-symmetric.
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2.1.2 Common
The metamodel of the part that is common to both SDs and ADs (Fig. 2.2), corresponding to
the Alloy module of section B.2, is as follows:

• Several constructions have a name attribute; the metaclass (Name, bottom-left) denotes all
names of a VCL model. Several constructions use the type designator (TypeDesignator,
bottom-left). A type designator can either denote the set of natural numbers (TypeDesig-
natorNat), the set of integers (TypeDesignatorInt), or some set defined by a blob or
relation edge and denoted by their identifier (TypeDesignatorId).

• A property edge (PropEdge) can either be of type predicate (PropEdgePred) or modi-
fier (PropEdgeMod). PropEdgePreds comprise a unary and binary operator (uop and bop
association-ends), an instance of EdgeOperatorUn and EdgeOperatorBin, respectivelly, a
target Expression (target association-end) and an optional designator (attribute desig-
nator) to refer to some property of a blob. A PropEdgeMod comprises a modifier operator
(mop association-end) an instance of EdgeOperatorMod.

• A modifier edge operator (EdgeOperatorMod) is an enumeration comprising the operators:
domain restriction (DRES, ▹), range restriction (RRES, ◃), domain subtraction (DSUB, ⌫)
and range subtraction (RSUB, ⌦). A predicate edge operator is enumeration comprising
the operators: equality (EQ, =), non-equality (NEQ, ̸=), set membership (IN, ∈), less then
(LT, <), less or equal then (LEQ, ≤), greater then (GT, >), greater or equal then (GEQ, ≥),
and subsetting (SubsetEQ, ⊆).

• There are two kinds of expressions: object (ObjExpression), represented as objects (rect-
angles), and set (SetExpression), represented as blobs (rectangles with rounded corners).
An object expression can either be: an identifier (ObExpId); a number (ObjExpNum); a unary
minus expression (ObjExpUMinus), comprising another expression (exp association-end); a
binary object expression, comprising two expressions (association-ends exp1 and exp2) and
an infix operator (bop association-end); or a parenthesised expression, comprising another
expression (exp association-end). A binary object-expression operator (ObjExpBinOp) is
an enumeration comprising the operators: Plus (+), Minus (−), Times (∗), and Div (div).

• A SetExpression can either refer to some existing set (SetExpressionId), denote the
empty set (a blob that is shaded), be a cardinality operator applied to another set expression
SetExpressionCard, or be a set definition (SetExpressionDef). A SetExpressionId
comprises a designator of the set being referred (attribute desig). A SetExpressionCard
is the cardinality operator applied to another set expression (sExp association-end). A
SetExpressionDef comprises a set definition (association-end def), an instance of SetDef.

• Set definitions (SetDef) are defined by the things they have inside. They comprise an
inside expression (insideExp association-end), representing the expression placed inside
the blob, and by a set definition operator (sdop association-end). A set definition operator
(SetDefOp) is an enumeration defining the operators Domain (symbol ←), Range (symbol
→), Union (symbol ∪), Intersection (symbol ∩), CrossProduct (symbol ×), SetMinus
(symbol \) or None (no operator).

• A set inside expression (SetInsideExpression is either an inside definition (InsideDef)
or a sequence of set definitions (InsideExpSDs). A InsideExpSDs comprises a sequence
of set definitions (setDefs association-end). An InsideDef is an abstract class, which
comprises either a SetExtension or a ConstrainedSet. A ConstrainedSet represents
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Figure 2.3: The metamodel of VCL Structural diagrams

a set constrained with an ordered collection of property edges (association-end pes). A
set extension (SetExtension) represents a set defined extensionally by a set of elements
(association-end elems), which are instances of SetElem.

• A SetElem is represented visually as a rectangles; it can either be a VCLObject (a member
of set) or a Pair (a member of a relation). A VCLObject comprises a name (the name of
the object); a Pair comprises a pair of names.

2.1.3 Structural Diagrams
The metamodel of VCL structural diagrams (SDs) (Fig. 2.3), corresponding to the Alloy module
of section B.3, is as follows:

• A SD (SDDiag) is made of structural elements (SDElem) and invariants (Assertion). A
SDElem can be a relation edge (RelEdge), constant (Constant) or set (Set).

• In a SD, an Assertion represents an invariant. If they belong to the overall SD (association-
end invariants) they represent global invariants; if they are connected to a set (association-
end lInvariants), the invariant is local to the set.

• A relation edge (RelEdge), or association, represents an edge between two sets: the source
and the target. It holds two attributes to record the multiplicities attached to source and
target (multS and multT).

• Like invariants, constants (Constant) are global if they are not connected to any set and
local otherwise (association-end lConstants).
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Figure 2.4: The common metamodel of VCL assertion and contract diagrams

• A set can be primary (PrimarySet), derived (DerivedSet) or one of the sets corresponding
to primitive types: integers (IntSet) or natural numbers (NatSet).

• A derived set has a name (attribute id) and is associated with a set definition (SetDef,
defined in common metamodel).

• A primary set has a kind (SetKind), indicating whether the set is Class or Value. A pri-
mary set comprises a set of local constants (association-end lConstants), a set of local in-
variants (association-end lInvariants), and a set of property edge definitions (association-
end lProps). A primary set may have other primary sets and objects inside (association-
ends hasInsideSet and hasInsideO).

• A property edge definition (PropEdgeDef) has a set has the edge’s target (association-end
peTarget) indicating the type of the property, and a multiplicity constraint (attribute
mult).

• In SDs, VCL objects (VCLObject) may be placed inside blobs to represent objects of some
set. This construction is used to define enumerations in VCL SDs.

• Multiplicities (Mult) are attached to relation edges and property edge definitions. A mul-
tiplicity can either be single (MOne), optional (MOpt), sequence (MSeq), multiple with 0 or
more (Many), multiple with at least one (MOneToMany), or be defined as a range (MRange)
comprising a lower and an upper bound (association-ends ub and lb).

2.1.4 Common Assertion and Contract Diagrams
The metamodel of common assertion and contract diagrams (Fig. 2.4), corresponding to the
Alloy module of section B.4, is as follows:
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Figure 2.5: The metamodel of VCL assertion diagrams

• A declarations compartment (DeclCompartment) comprises several declarations (Decl),
which can either be a typed declaration (TypedDecl) or a declaration formula (DeclFormula).
A typed declaration has a name (dName) and a type (dTy), and it can either be a declara-
tion of an object (DeclObj) or the declaration of a set (DeclSet). The sequence attribute
of DeclSet indicates whether the set is a normal set (value false) or a sequence (value
true). The optional attribute of DeclObj indicates whether the object is optional or not.

• A declarations formula (DeclFormula) can either be a declarations formula atom (Decl-
FormulaAtom), which comprises a declaration reference, a negated declaration formula
(DeclFormulaNot), which comprises the declarations formula being negated, or a binary
declaration formula (DeclFormulaBin), which comprises an operator (DeclFormulaBinOp)
and two declarations formulas.

• FormulaSource represents the source of a predicate formula in AD or CDs. It can either be
a formula source element (FormulaSourceElem), which comprises a set Element (defined
in Common, Fig. 2.2), or a blob element (FormulaSourceBlob).

2.1.5 Assertion Diagrams
The metamodel of VCL assertion diagrams (Fig. 2.5), corresponding to the Alloy module of
section B.5, is as follows:

• An assertion diagram (ADiag) comprises a name (aName), a set of declarations correspond-
ing to the declarations compartment (declarations association-end), and a set of formulas
corresponding to the predicate compartment (predicate association-end).

• A formula (Formula) can either be a negation formula (FormulaNot), a binary formula
(FormulaBin), an object formula (ObjFormula) or a set formula (SetFormula).

• A negation formula (FormulaNot) comprises another formula corresponding to the formula
being negated (frml association-end). A binary formula (FormulaBin) comprises two for-
mulas corresponding to the formulas being combined (frml1 and frml2 association-ends),
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VCL ::= Pkg
Pkg ::= PD SD AD

Figure 2.6: Syntax of VCL Models

and an operator (op association-end). A binary formula operator (FormulaBinOp) can ei-
ther be an implication (implies), a conjunction (and), a disjunction (or), or an equivalence
(equiv).

• An arrows formula (ArrowsFormula) comprises a set of predicate property edges (pes
association-end).

• A set formula (SetFormula) can either be a subset formula (FormulaSubset), a shaded
blob formula (SetFormulaShaded) or a set definition formula (SetFormulaDef). A subset
formula (FormulaSubset) corresponds to the situation where one set is placed inside an-
other to denote the subset relationship; it has a set identifier (attribute setId) and a set
expression to denote the inside set (hasInside association-end). A shaded set formula cor-
responds to the situation where some set is shaded; it comprises a set identifier (attribute
setId). A definition set formula (SetFormulaDef) comprises a SetDef (association-end
setdef) from the common metamodel (Fig. 2.2); it can be shaded or have an identifier
(either one or the other).

2.2 Grammars
The metamodels presented above are the basis for the implementation of diagram editors in
VCL’s tool. To specify type systems, grammars are a more convenient representation. The
following presents the grammars of VCL package, structural and assertion diagrams; they are
equivalent to the visual metamodels presented above.

The grammars use the following operators:

• x for zero or more repetitions of x;

• x 1 for one or more repetitions of x;

• x | y for a choice of x or y;

• [x ] for an optional x.

In addition,

• xc for some character symbol c means zero or more occurrences of x separated with c;

• xc1 for some character symbol c means one or more occurrences of x separated with c;

Symbols are set in bold type when they are to be interpreted as terminals to avoid confusion
with grammar symbols. We introduce two syntactic sets, representing terminals: the set of
identifiers Id , and the set of numeric constants (Num).

Figure 2.6 defines the grammar of a VCL model. A VCL model (VCL) comprises a sequence
of package models (Pkg). A package model (Pkg) comprises one package diagram (PD), one
structural diagram (SD) and several assertion diagrams (ADs).

The grammars defining the syntax of the different VCL diagrams are as follows:
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• Figure 2.7 presents the grammar of package diagrams (PDs).

• Figure 2.8 describes the syntactic constructions that are common to both SDs and ADs.

• Figure 2.9 presents the grammar of structural diagrams (SDs).

• Figure 2.10 presents the grammar of assertion diagrams (ADs).

PK ::= container | ensemble
PD ::= PK package Id [uses PRef ,]

[incorporates PRef ,] { PDep [PExts] }
PRef ::= Id [as Id]

PExts ::= extends (Id ,1)
PDep ::= Id PEdgKind Id on ( Id ,1)

PEdgKind ::= merges | overrides

Figure 2.7: Syntax of Package Diagrams

TD ::= Int | Nat | [Id ::] Id
O ::= object Id
P ::= pair (Id, Id)

SE ::= O | P
A ::= assertion AId

PE ::= (PEP | PEM) TExp
PEP ::= [UEOp] [Id.] → BEOp

UEOp ::= # | ◉| ⊥
BEOp ::= = | ≠ | ∈ | < | ≤ | > | ≥ | ⊆
PEM ::= [ SOp ] ⇒
TExp ::= FExp | SExp
FExp ::= [Id ::] Id | Id.Id | Num | −FExp | FExp FEOP FExp | (FExp)
FEOp ::= + | − | ∗ | div
SExp ::= set TD | SDef | set shaded | # SExp
SDef ::= set ⃝ SOp hasIn {IExp}
SOp ::= ← | → | ∩ | ∪ | × | \ | ▹ | ◃ | ⌫ | ⌦ | 〖〗| ⊥
IExp ::= IDef | SDef ;

IDef ::= set TD { PE
1 } | SE1

Figure 2.8: Common syntactic constructions to ADs and SDs
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SD ::= SDE A
SDE ::= GC | RE | Set | PkgE

GC ::= C | CR
C ::= const Id : TD | const Id : TD ↔ A

CR ::= ↑ const [Id.] Id ↔ Assertion
M ::= opt | one | some | many | seq | Num .. (Num | *)

RE ::= relEdge Id (M TD, M TD)
SK ::= value | class
Set ::= PSet | RSet | Id ↔ set SetDef

RSet ::= ↑ set [Id ::] Id
PSet ::= PSetDef | ExtSet

PSetDef ::= set Id SK [⃝] { C PED A } [hasIn {(O | PSet)}]
ExtSet ::= ↓ set Id { C PED A } [hasIn {(O | PSet)}]
PkgE ::= pkg Id { PED }
PED ::= Id → M TD

Figure 2.9: Syntax of structural diagrams

AD ::= AD Id [:Id] decls {D} pred {F}
D ::= VD | DF

VD ::= [hidden] DV Id , : TD
DV ::= [opt] object | set | seq

R ::= Id / Id
DFA ::= [↑] A [R] | [↑] assertion Id (→ | . | ::) Id [R]

DF ::= DFA | FOp[DF ]
FOp ::= ⇒ | ⇔ | ∧ | ∨ | ⌻ | ¬

F ::= AF | SF | FOp [F ] | QF
AFS ::= SE | AFSS | FSOp AFS

AFSS ::= set Id | SDef
FSOp ::= # | ← | → | ◉

AF ::= AFS { PEP }
SF ::= [shaded] [Id] SDef | set shaded TD | set TD hasIn {SExp}
QF ::= QD , • F ;
QD ::= (∀ | ∃ ) VD ;

Figure 2.10: Syntax of Assertion Diagrams
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Chapter 3

Type System

This chapter presents VCL’s type system. It starts by defining VCL’s types and typing environ-
ments (section 3.1). Then, it presents the basic (section 3.2) and common rules (section 3.3) of
the type system. Finally, it presents the rules that are specific to package (section 3.4), structural
(section 3.5) and assertion diagrams (section 3.6).

3.1 Types and Environments
A variable environment (VE ) denotes a set of bindings, mapping identifiers to their types:

VE == Id 7→ T

VCL’s types (set T ) are as follows:

T ::= Int | Nat | Null | Pow T | Seq T | Opt T | Top | Obj | Set Id::Id | Pair (T, T)
| Assertion [VEv , VEh ] | Contract [ VEv , VEh ] | Pkg Id

Here, (a) Int represents the integers, (b) Nat the natural numbers; (c) Null represents erroneous
results (implementation only); (d) Pow T represents a powerset of some set; (e) Seq T represents
a sequence of some type; (f) Opt T represents an optional (either it exists or is empty); (g) Top
is a maximal type (type of all well-formed terms); (h) Obj is the maximal type of all well-formed
objects; (i) Set represents primary sets, comprising two identifiers to represent the set’s package
and the set’s name; (j) Pair represents a cartesian product of two types; (k) Assertion represents
assertions (variable environments indicate assertion’s variables, which are either visible, VEv , or
hidden, VEh); (l) Contract represents assertions; and (i) Pkg represents packages.

VCL’s type rules use and manipulate environments (set E below), which are made of four
components: (a) variable, (b) package, (c) set and (d) subtyping. Variable environments give
the type bindings of some scope. Package environments (PE ) map identifiers to a pair made up
of the package’s kind (PK, Fig. 2.7) and the package’s environment. Set environments (SE ) map
identifiers to a quadruple made up of the set’s kind (value or class), definitional status (DK ),
identifier of originating package and local variable environment. Subtyping environments (set
SubE ) are the subtyping relations between types:
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Table 3.1 Judgements associated with the basic rules of VCL’s type system
E ⊢T T is well-formed type in E
E ⊢T1 <: T2 T1 is a subtype of T2 in E
E ⊢ Id : T Id is well-formed identifier of type T in E
E ⊢ Ids .Idl : T Idl is well-formed local identifier of set Ids with type T in E
E ⊢ Idp::Id : T Id is well-formed identifier of package Idp with type T in E

SK ::= value | class
DK ::= def | notDef
PE == Id 7→ PK × E
SE == Id 7→ SK ×DK × Id ×VE
SubE == T ↔ T
E == VE × PE × SE × SubE

A VCL diagram environment (DE ) maps package identifiers (Id) to package definitions (Pkg ,
Fig. 2.6), made of one PD, one SD and several ADs. This is used to retrieve package definitions
during type-checking.

DE == Id 7→ Pkg

We introduce the following conventions:

• X is a sequence of some set X .

• E∅ is an empty environment. E .VE , E .PE , E .SE and E .SubE denote the different com-
ponents of E .

• Id : T , Id
se

7→ (SK ,DK , Id ,VE ) and Id
pe

7→ (PK ,E ) are type (VE ), set (SE ) and package
(PE ) bindings. T1 <: T2 denotes a subtyping tuple, saying that T1 is a subtype of T2.

• Two disjoint environments are combined using E1, E1. Bindings are added to an envi-
ronment using E , Id : T ; similarly for other types of bindings. E ⊕ VE means that the
environment E is overridden with the set of type bindings VE ; similarly for other types of
bindings. These operators are defined precisely in appendix A.1.

3.2 Basic Rules
The basic type rules of VCL’s type system manipulate environments and define subtype relations.
The judgements are listed in table 3.1. The first judgement asserts that the type T is well-formed
in the environment E . The second judgement asserts that the type T1 is a subtype of T2 in the
environment E . The third judgement says that Id is a well-formed identifier with type T in E .
The fourth judgement asserts the well-formedness of a set-property access; it says that property
Idl of set named Ids has type T in E .

Table 3.2 lists basic rules concerning types. Rule Ty Id says that some identifier yields
type T provided the variable binding is defined in the variable environment (E .VE ). Rule Type
describes the conditions for some type to be valid in some environment E : set and package types
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Table 3.2 Basic VCL typing rules

(Ty Id) (Type) (SetId Prop)

(Id ,T ) ∈ E .VE

E ⊢ Id : T

T = Set Idp ::Ids ⇒ Ids ∈ domE .SE
T = Pkg Id ⇒ Id ∈ domE .PE

E ⊢T

E ⊢Set Idp ::Ids Idl ∈ dom(E .SE (Ids)).VE
E ⊕ (E .SE (Ids)).VE ⊢ Idl : T

E ⊢ Ids .Idl : T
(Package Id)
E ⊢ Idp : Pkg Idp2 (E .PE(Idp2)).E ⊢ Id : T

E ⊢ Idp::Id : T

Table 3.3 Basic VCL sub-typing rules

(SubTy) (Sub Refl) (Sub Trans) (Subsumption) (Sub Top)
E ⊢T1 E ⊢T2

(T1,T2) ∈ E .SubE

E ⊢T1 <: T2

E ⊢T
E ⊢T <: T

E ⊢ TA <: TB

E ⊢ TB <: TC

E ⊢ TA <: TC

E ⊢ I : TA

E ⊢ TA <: TB

E ⊢ I : TB

E ⊢T
E ⊢T <: Top

(Sub Obj ) (Sub NatInt) (Sub Pow) (Sub Seq)
E ⊢Set Ids

E ⊢Set Ids <: Obj E ⊢Nat <: Int

E ⊢TA <: TB

E ⊢PowTA <: PowTB

E ⊢TA <: TB

E ⊢SeqTA <: SeqTB

(Sub Opt) (Sub Opt PSet) (Sub Pair)
E ⊢TA <: TB

E ⊢OptTA <: OptTB

E ⊢TA <: TB

E ⊢OptTA <: PowTB

E ⊢TA1 <: TA2 E ⊢ TB1 <: TB2

E ⊢Pair (TA1,TB1) <: Pair (TA2,TB2)

are valid provided their identifiers are defined in set and package environments; all remaining
types are valid. Rule SetId Prop yields the type that is associated with some local identifier Idl
of some set Ids ; the rule checks that the set type is defined and then retrieves the type of the
local identifier from the set’s variable environment. Rule Package Id retrieves the type of some
identifier Id defined in some package Idp ; this requires that there is a package type defined for the
given package identifier Idp and that the given identifier is defined in the package’s environment.

Table 3.3 lists basic subtyping rules. Rule SubTy checks whether some type is a subtype of
another; this amounts to check that both types are defined and that the subtyping tuple belongs
to the environment’s set of subtypes (E .SubE ). Rules Sub Refl and Sub Trans says that the
subtyping relation is both reflexive and transitive. Rule Subsumption is the subsumption rule
that says that if some variable has type TA, and if TA is subtype of TB then the variable also
has type TB . The remaining rules define subtype relations between types. Rule Sub Top says
that any valid type is a subtype of type Top. Rule Sub Obj says that any set type is a subtype
of type Obj. Rule Sub NatInt says that type of natural numbers is a subtype of the integers.
Rules SubPow, (Sub Seq) and Sub Opt say, respectively, that two powerset, sequence or optional types
are subtypes of each other provided their enclosed types (TA and TB ) are also. Rule Sub Opt PSet
says that optional types are a subtype of powerset types provided their enclosed types (TA and TB ) are
also. Finally, rule Sub Pair says that two pair types are subtypes of each other if their corresponding
components are subtypes of each other also.
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Table 3.4 Judgements for common syntactic constructions of VCL ADs and SDs
E ⊢td TD : T TD is well-formed type designator with type T in E

E ⊢ta A ∴ AId : T A is well-formed assertion with identifier AId and type T in E
E ⊢se SE : T SE is well-formed set element with type T in E

E ⊢sdef SDef : T Set definition SDef yields type T in E

E ⊢id IDef : T Inside definition IDef yields type T in E

E ;SOP ⊢sdo T : T T is sequence of types yielding type T when applied to operator SOp
E ;Ts ⊢pe PE : T ′

s Property edge PE yields type T ′
s

E ;Ts ⊢pep PEP : T ′
s Predicate property edge PEP yields type T ′

s

E ;Ts ⊢pem PEM : T ′
s Modifier property edge PEM yields type T ′

s

E ⊢te TExp : T Target expression TExp yields type T in E
E ⊢ueo UEOp(T1) : T2 Application of unary edge operator UEOp to type T1 yields type T2

E ⊢eo BEOP(T1 T2) Application of predicate edge operator BEOP to types T1, T2 is well-
typed

E ;⊢mo SOP(T1 T2) : T Application of set definition operator SOP to types T1, T2 yields type
T

E ;AD ; Ids⊥; Idc⊥ ⊢aok A ∴ VE Assertion A has AD yielding variable environment VE

E ;AD ; Ids⊥ ⊢adok
︷︸︸︷
AD ∴ VE

︷︸︸︷
AD is set of ADs yielding variable environment VE

Table 3.5 Type rules for type designators (TD non-terminal)

(TD Nat) (TD Int) (TD Id) (TD Id Pkg)

E ⊢td Nat : Nat E ⊢td Int : Int

E ⊢ Id : T

E ⊢td Id : T

E ⊢ Idp :: Id : T

E ⊢td Idp :: Id : T

3.3 Common Rules
The judgements for the common part of the VCL type system are given in table 3.4. They assert the
well-formedness of different terms of the grammar that is common to SDs and ADs of Fig. 2.8 (chapter 2).

Type designator rules (Table 3.5) derive a type from a designator, yielding a primitive type (Int or
Nat) or some type that is associated with an identifier either from the current package (rule TD Id) or
some foreign package being used (rule TD Id Pkg).

Table 3.6 presents rules for checking the well-formedness of assertions (T Assertion), VCL objects
(T SE Obj) and pairs (T SE Pair. These rules merely extracts the types associated with identifiers from
the environment. The assertion rule assumes that the AD associated with the assertion being checked
has already been type-checked and its information can, therefore, be retrieved from the environment.
Pair rule builds a pair type from the types of its constituent identifiers.

A set definition (SDef nonterminal, Fig. 2.8) is a syntactic construct to build sets. The type rules
for set definitions (table 3.7) consider two cases, depending on whether the inside expression comprises
one inside definition (rule T SDef IDef) or a sequence of set definitions (rule T SDef SDef ). The rule
essentially derive a sequence of types from inside definition (IDef ) or sequence of set definitions (SDef )
and then apply the rule for the set definition’s operator (SOp) to retrieve the types yielded by the rules.
An inside definition (IDef nonterminal, Fig. 2.8) is a construction associated with set definitions. An
inside definition can either be a constrained set or a set expression. The type rules for inside definitions
(table 3.7) consider these two cases. The constrained set rule (IDef CntSet) derives a type from the
given type designator (TD) and then checks the sequence of property edges in the context of this derived
type (T ); the rule says that the set of property edges must either be of only one kind: either predicate or
modifier (disjunction). The type rules for set extensions (IDef SE and IDef SE *) process the sequence
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Table 3.6 Type rules for assertions and set elements

(T Assertion) (T SE Obj ) (T SE Pair)
E ⊢ Id : T

T = Assertion[VEv ,VEh ]
E ⊢ta assertion Id ∴ Id : T

E ⊢ Id : T T <: Obj
E ⊢se object Id ∴ Id : T

E ⊢ Id1 : T1 E ⊢ Id2 : T2

E ⊢se pair(Id1, Id2) : Pair (T1,T2)

Table 3.7 Type rules for set definitions and associated inside definitions

(T SDef IDef ) (T SDef SDef )

E ⊢id IDef : T1 E ;SOp ⊢sdo T1 : T

E ⊢sdef set⃝SOp hasIn {IDef } :T
E ⊢sdef SDef ; : Tsd E ;SOp ⊢sdo Tsd : Tf

E ⊢sdef set⃝SOp hasIn {SDef ;} :Tf

(IDef CntSet) (IDef SE) (IDef SE ∗)
E ⊢td TD : T

E ;T ⊢pe PE : T ′

(IsPEP(PE) ∨ IsPEM (PE))

E ⊢id setTD {PE} : PowT ′
E ⊢se SE : T

E ⊢id SE : PowT

E ⊢se SE : T1 E ⊢id SE : T2

(Tr = T1 ∧ T2 <: T1)
∨ (Tr = T2 ∧ T1 <: T2)

E ⊢id SE SE : PowTr

of set elements inductively; retrieving the greatest type of all the elements in the sequence, which must
be subtypes of each other.

The rules for set definition operators (SOp non-terminal) apply to a sequence of types in the context
of an environment and a set definition operator; they are given in table 3.8. The rules are as follows:

• Rule SOp None considers the case where there is no operator. The rule requires that the sequence
of types is made of a single element, and yields the type given in the sequence.

• Rules for domain and range operators (SOp Dom and SOp Ran) require that there is a single type
given in the sequence and that this type is a powerset of a pair (it is a binary relation). Rule SOp
Dom returns a type formed as the powerset of the first type of the pair (the domain). Rule SOp Ran
returns a type formed as the powerset of the second type (the range).

• The cross product rules (SOp Cross and SOp * Cross) consider two cases depending on whether
the sequence is made of a pair of types or more than a pair. The pair rule takes a pair of powerset
types and yields a powerset of a pair type. Rule SOp * Cross takes a powerset type and a sequence
of types and returns a powerset of a pair type formed with the derived type.

• The intersection (SOp Pair Intersection and SOp * Intersection) and union rules (SOp Pair
Union and SOp * Union) take a sequence of at least two powerset types and return a powerset
of the greatest type in the sequence, according to the subtyping relation (function getGType,
appendix A). All given types must be subtypes of each other. The set subtraction rule (SOp Pair
SetMinus) does the same for a pair of powerset types.
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Table 3.8 Type rules for set def operators

(SOp None) (SOp Dom)

E ;⊥ ⊢sdo T : T E ;← ⊢sdo PowPair (Td ,Tr ) : PowTd

(SOp Ran) (SOp Cross)

E ;→ ⊢sdo PowPair (Td ,Tr ) : PowTr E ;×⊢sdo PowT1 PowT2 : PowPair (T1,T2)
(SOp ∗ Cross) (SOp Pair Intersection)

E ;×⊢sdo T 1
: PowT2

E ;×⊢sdo PowT1 T
1
: PowPair(T1,T2)

T = getGType(E ,T1,T2)

E ;∩⊢sdo PowT1 PowT2 : PowT

(SOp ∗ Intersection) (SOp Pair Union)

E ;∩⊢sdo T 1
: PowT2 T = getGType(E ,T1,T2)

E ;∩⊢sdo PowT1 T
1
: PowT

T = getGType(E ,T1,T2)

E ;∪⊢sdo PowT1 PowT2 : PowT

(SOp ∗ Union) (SOp Pair SetMinus)

E ;∪⊢sdo T 1
: PowT2 T = getGType(E ,T1,T2)

E ;∪⊢sdo PowT1 T
1
: PowT

T = getGType(E ,T1,T2)

E ; \⊢sdo PowT1 PowT2 : PowT

Table 3.9 Type rules for property edges

(PE PEP) (PE PEM) (PE *)
E ⊢te TExp : Tt

E ; (Ts ,Tt)⊢pep PEP
E ;Ts ⊢pe PEP TExp : Ts

E ⊢te TExp : Tt

E ; (Ts ,Tt)⊢pem PEM : T ′
s

E ;Ts ⊢pe PEM TExp : T ′
s

E ;Ts ⊢pe PE : T ′′
s

E ;T ′′
s ⊢pe PE

1
: T ′

s

E ;Ts ⊢pe PE PE
1
: T ′

s

(PEP) (PEPS ϵ) (PEPS PrId) (PEPM )
E ;Ts ⊢peps [Id ] : T ′′

s

E ⊢ueo UEOp(T ′′
s ) : T ′

s

E ⊢eo BEOP(T ′
s T2)

E ; (Ts ,Tt)⊢pep [UEOp] [Id ]→ [BEOP ] E ;T ⊢peps ϵ : T

T = Set Ids
E ⊢ Ids .Idpr : Tp

E ;T ⊢peps Idpr : Tp

E ⊢mo MOp(Ts Tt) : T

E ; (Ts ,Tt)⊢pem [MOp] ⇒: T

(UEOp No) (UEOp Card) (UEOp The)

E ⊢ueo ⊥ (T) : T E ⊢ueo # (PowT) : Int E ⊢ueo ◉(OptT) : T
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Table 3.10 Type rules for binary predicate edge operators (BEOp)

(BEOP EQ) (BEOP NEQ) (BEOP IN )
(E ⊢T1 <: T2 ∨ E ⊢T2 <: T1)

E ; =⊢eo(T1,T2)

E ; =⊢(T1,T2)

E ; ̸=⊢eo(T1,T2)

E ⊢T1 <: T2

E ;∈⊢eo(T1,PowT2)
(BEOP LT ) (BEOP LEQ)
E ⊢T1 <: Int E ⊢T2 <: Int

E ;<⊢eo(T1,T2)

E ⊢T1 <: Int E ⊢T2 <: Int

E ;≤⊢eo(T1,T2)
(BEOP GT ) (BEOP GEQ)
E ⊢T1 <: Int E ⊢T2 <: Int

E ;>⊢eo(T1,T2)

E ⊢T1 <: Int E ⊢T2 <: Int

E ;≥⊢eo(T1,T2)
(BEOP SUBSETEQ)

E ⊢T1 <: T2

E ;⊆⊢eo(PowT1,PowT2)

Table 3.11 Type rules for modifier edge operators (MOp)

(MOp DRES )
E ⊢T :< Td

E ⊢mo ▹(PowPair (Td ,Tr ),PowT) : PowPair (Td ,Tr )
(MOp RRES )

E ⊢T :< Tr

E ⊢mo ◃(PowPair (Td ,Tr ),PowT) : PowPair (Td ,Tr )
(MOp DSUB)

E ⊢T :< Td

E ⊢mo ⌫(PowPair (Td ,Tr ),PowT) : PowPair (Td ,Tr )
(MOp RSUB)

E ⊢T :< Tr

E ⊢mo ⌦(PowPair (Td ,Tr ),PowT) : PowPair (Td ,Tr )
(MOp RIMG) (MOp UNION)

E ⊢T :< Td

E ⊢mo 〖〗(PowPair (Td ,Tr ),PowT) : PowTr

T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo ∪(PowT1,PowT2) : PowT

(MOp INTERSEC) (MOp SETMINUS)
T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo ∩(PowT1,PowT2) : PowT

T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo \(PowT1,PowT2) : PowT
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Table 3.12 Type rules for set expressions

(SExp TD) (SExp SDef) (SExp Empty) (SExp Card)
E ⊢td TD : T

E ⊢te setTD : PowT

E ⊢sdef SDef : T

E ⊢te SDef : T E ⊢te set shaded : PowTop

E ⊢te SExp : PowT

E ⊢te #SExp : Int
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Table 3.13 Type rules for free expressions

(FExp ID) (FExp ID Pkg) (FExp Dot)
E ⊢ Id : T

E ⊢te Id : T

E ⊢ Idp::Id : T

E ⊢te Idp::Id : T

E ⊢ Ido : Set Idp ::Ids E ⊢ Ids .Idpr : T

E ⊢te Ido .Idpr : T
(FExp Num) (FExp Uminus) (FExp FEOP)

E ⊢te Num : Nat

E ⊢te FE : Int

E ⊢te −FE : Int

E ⊢te FE1 : Int E ⊢te FE2 : Int

E ⊢te FE1 FEOP FE2 : Int

Table 3.14 Type rules for checking assertions

(Assertion Ok) (AD Ok)

IdFA = getFAId(Idc⊥, IdA)
IdFA ̸∈ domE .VE

AD = findAD(AD , IdFA, Ids⊥)

E ;AD ; Ids⊥; Idc⊥ ⊢adok AD ∴ VE

E ;AD ; Ids⊥; Idc⊥ ⊢aok assertion IdA ∴ VE

︷︸︸︷
AD = getDepsOfAD (AD ,AD , Ids⊥)

E ;AD ; Ids⊥ ⊢adok
︷︸︸︷
AD ∴ VE

Idc⊥ ̸=⊥⇒
︷︸︸︷
AD = {}

E ,VE ⊢ad AD ∴ IdA : T

E ;AD ; Ids⊥; Idc⊥ ⊢adok AD ∴ VE , IdA : T

(AD Ok ϵ) (AD Ok ∗)

E ;AD ; Ids⊥ ⊢adok {} ∴ VE∅

E ;AD ; Ids⊥;⊥ ⊢adok AD ∴ VE E ;AD ; Ids⊥ ⊢adok
︷︸︸︷
AD ∴ VE ′

E ;AD ; Ids⊥ ⊢adok{AD} ∪
︷︸︸︷
AD ∴ VE ,VE ′

Table 3.14 presents the rules for checking ADs associated with some assertion. These rules are used
when the AD type information is to be loaded into the environment. The rules are as follows:

• Rule Assertion Ok derives the name of the assertion diagram through function getFAId, which
considers the special case of assertions associated with constants, and then looks for the AD using
function findAD (both functions defined in appendix A, section A.3.9). The retrieved AD is then
checked (rule associated with judgement ⊢adok ) to yield variable environment VE .

• Rule AD Ok processes a single AD. It retrieves all the ADs that are included in the given AD

through function getDepsOfAD (appendix A, section A.3.8) to yield set
︷︸︸︷
AD and then checks them

using the rules associated with judgement ⊢adok to derive variable environment VE . The current
AD is also checked using the rule for assertion diagrams to yield a variable binding. The rule
yields a variable environment formed by adding the retrieved variable binding to the variable
environment VE .

• Rules AD Ok ϵ and AD Ok ∗ process a set of ADs inductively. Rule AD Ok ϵ considers the case
where the set is empty, yielding an empty set of variable bindings. Rule AD Ok ∗ considers the
case where the set has at least one element; it builds a variable environment by joining the variable
environment derived from the current single AD and the variable environment derived from the
remaining set of ADs.
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Table 3.15 Typing Judgements for VCL Package Diagrams
DE ⊢pd PD ∴ (Idp ,PK ,E) Well-formed PD yields triple (Idp ,PK ,E), comprising the pack-

age’s identifier and kind, and an environment
DE ;E ⊢puse PRef ∴ E ′ Well-formed sequence of package uses PRef yields environment E ′

E ; Idp ⊢pdep PDep ∴ E ′ Well-formed sequence of package dependencies PDep yields E ′

E ; Idp ⊢pm(Idp1, Idp2, Ids
1
) ∴ E ′ Identifiers declaring package merge Idp1, Idp2 and Ids

1 yield E ′

E ; Idp ⊢po(Idp1, Idp2, Ids
1
) ∴ E ′ Identifiers declaring package overrides Idp1, Idp2 and Ids

1 yield E ′

E ; Idp ⊢pext PExts ∴ E ′ Well-formed package extends declaration PExts yields E ′

DE ;E ;PK ⊢pinc Idp ∴ E ′ Sequence of incorporated packages Idp yields E ′

Table 3.16 Type rules for package diagrams (production PD)

(Ok PD)
NoClashes(PRef1 PRef2) DE ;E∅ ⊢puse PRef1 PRef2 ∴ E

E ; Idp ;PRef2 ⊢pdep PDep ∴ E ′ E ′;PK ⊢pinc PRef2 ∴ E ′′ E ′′; Idp ⊢pext [PExts] ∴ Ef

DE ⊢pd PK package Idp [usesPRef1] [incorporatesPRef2]{PDep [PExts]} ∴ (Idp , PK , Ef )

3.4 Package Diagrams
The judgements for package diagrams are listed in table 3.15. The first judgement says that the package
diagram (PD) is well-formed in the diagram environment DE , yielding a triple (Idp ,PK ,E), comprising
the package’s identifier and kind, and an initial environment for the current package resulting from
processing the PD. The remaining judgements assert the well-formedness of the different components of
a PD. This comprises package uses (judgement labelled puse), package dependencies (pdep), package
merges (pm), package overrides (po) and package incorporations (pinc).

The type rule for PDs (rule OK PD, Table 3.16) checks: (a) that there are no name clashes in
imports and incorporates using predicate NoClashes(appendix A, section A.2.3), (b) the well-formedness
of packages being used (PRef1) and incorporated (PRef2) to produce an updated environment E , (c) the
package dependencies (PDep) to produce an updated environment E ′, (d) the package incorporations to
produce an updated environment E ′′, and (e) entities being extended to obtain the environment Ef . The
overall rule yields a triple formed by the package’s identifier (Idp) and kind (PK ) and the environment
that is produced by processing the PD (Ef ).

Table 3.17 Type rules for package uses

(PUses ∗) (Puses ϵ)

DE ;E ⊢puse PRef ∴ E ′′ DE ;E ′′ ⊢puse PRef ∴ E ′

DE ;E ⊢puse PRef PRef ∴ E ′ DE ;E ⊢puse ϵ ∴ E∅

(Puses NoAlias)

Idp ∈ domDE Pkg = DE Idp ¬ Idp ∈ domE DE ⊢pkg Pkg : (Idp ,PK ,E ′)

DE ;E ⊢puse Idp ∴ E , Idp : Pkg Idp , Idp
pe

7→ (PK ,E ′)
(PUses Alias)

Idp ∈ domDE Pkg = DE Idp ¬ ({Idp , Ida} ⊆ domE) DE ⊢pkg Pkg : (Idp ,PK ,E ′)

DE ;E ⊢puse Idp as Ida ∴ E , Idp : Pkg Idp , Ida : Pkg Idp , Idp
pe

7→ (PK ,E ′)
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The rules for processing package uses (Table 3.17) take a sequence of package references, processing
each reference in turn, to yield a new environment. The new environment holds biding for all package
types corresponding to the package references. There are two kinds of references: with and without
alias. Both rules obtain the VCL package from the diagram environment (DE) and then check it to
obtain the package’s environment. The rule then yields an updated environment comprising mappings
to the package types and detailed package information for the referenced packages.

Table 3.18 Type rules for package dependencies (PDep)

(PDeps ∗) (PDeps ϵ)

E ; Idp ;PRef ⊢pdep PDep ∴ E ′ E ′; Idp ;PRef ⊢pdep PDep ∴ E ′′

E ; Idp ;PRef ⊢pdep PDep PDep ∴ E ′′ E ; Idp ;PRef ⊢pdep ϵ ∴ E
(PDep Merge)

E ; Idp ⊢pm(Idp1, Idp2, Ids
1
) ∴ E ′ Idp1 ̸= Idp2 {Idp1, Idp2} ⊆ ranPRef

E ; Idp ;PRef ⊢pdep Idp1 merges Idp2 on (Ids
1) ∴ E ′

(PDep Override)

E ; Idp ⊢po(Idp1, Idp2, Ids
1
) ∴ E ′ Idp1 ̸= Idp2 {Idp1, Idp2} ⊆ ranPRef

E ; Idp ;PRef ⊢pdep Idp1 overrides Idp2 on (Ids
1) ∴ E ′

Table 3.18 presents the type rules for merge and overrides package dependencies. The rules take a
sequence of dependencies, processing each in turn, to yield an updated environment. The appropriate
dependency rule, merge or override, is then used depending on the kind of dependency.

Table 3.19 Type rules for merge dependencies

(PMerge ϵ)

E ; Idp ⊢pm(Idps , Idpt , ϵ) ∴ E
(PMerge *)

E .PE (Idps) = (PKs ,Es) E .PE (Idpt) = (PKt ,Et)
Es .SE (Ids) = (SK ,DK , Id1,VE1) Et .SE (Ids) = (SK ,DK , Id2,VE2)

VEr = mergeVEs(VE1,VE2) Ts = PowSetIds

SI = (SK ,DK , Idp ,VEr ) E , Ids : Ts , Ids
se

7→ SI ⊢pm(Idps , Idpt , Ids) ∴ E ′

E ; Idp ⊢pm(Idps , Idpt , Ids Ids) ∴ E ′

The type rules for the package merge (Table 3.19) take a source package (Idps), a target package
(Idpt) and a sequence of set identifiers to produce an updated environment. The rules consider two
cases, depending on whether the sequence is empty or not. The non-empty rule (PMerge *) retrieves set
definitions for Ids from environments of source and target package (Es and Et), which are retrieved from
E . The actual merge is performed by the function mergeVEs (appendix A, section A.3.5). The current
environment is then updated with the information of the newly formed set and passed to the rule that
processes the remaining sequence of merges.

Like the merge rules, the rules for overrides (table 3.20) take a source package (Idps), a target
package (Idpt) and a sequence of set identifiers to produce an updated environment. The non-empty rule
(POverrides *) retrieves the types and set information associated with Ids from environments of source
and target package (Es and Et), which are retrieved from E . The information associated with Ids in
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Table 3.20 Type rules for overrides dependencies

(POverrides ϵ)

E ; Idp ⊢po(Idps , Idpt , ϵ) ∴ E
(POverrides ∗)

E .PE (Idps) = (PKs ,Es)
E .PE (Idpt) = (PKt ,Et) Et ⊢ Ids : Ts Ts = PowSet Ids Es ⊢ Ids : Ts

Es .SE (Ids) = (SK1,DK1, Idp1,VE ) Et .SE (Ids) = (SK2,DK2, Idp2, {})

SI = (SK1,DK1, Idp ,VE ) E , Ids : Ts , Ids
se

7→ SI ⊢po(PIds ,PIdt , Ids) ∴ E ′

E ; Idp ⊢po(Idps , Idpt , Ids Ids) ∴ E ′

both environment must be overrides compatible: the target set must have an empty set of properties.
Finally, the actual override is reflected in the way the environment E is updated with the new bindings
for Ids ; the updated environment is then passed to the rule that processes the remaining sequence of
overrides.

Table 3.21 Type rules for package incorporations

(PIncorporates ϵ) (PIncorporates ∗)

E ;PK ⊢pinc ϵ ∴ E

E .PE(Idp) = (PK2,Ep) PK1 = container⇒ PK2 = container

E ′′ = transferBindingsForPkgInc(Ep ,E) E ′′;PK ⊢pinc PRef ∴ E ′

E ;PK1 ⊢pinc Idp [as Ida ]PRef ∴ E ′

The rules that process package incorporations (table 3.21) take a sequence of package references to
produce a new environment. The non-empty rule (PIncorporates *) retrieves the package information
for package identifier Idp from the environment E , checks that the package are compatible (if the cur-
rent package is container, then the incorporated package must also be a container), and transfers all
bindings (except those that reefer to package types) incorporated package’s environment (Ep) to the cur-
rent environment E to produce an updated environment E ′′ using function transferBindingsForPkgInc,
(appendix A, section A.3.6). Environment E ′′ is then passed to the rule that processes the remaining
sequence of incorporated packages.

Table 3.22 Type rules for package extends declaration

(PExtends ϵ) (PExtends ∗)

E ; Idp ⊢pext extends(ϵ) ∴ E

E .SE (Ids) = (SK ,SK , Ido ,VE )

E ⊕ {Id
se

7→ (SK ,SK , Idp ,VE )}⊢pext extends(Id ,) ∴ E ′

E ; Idp ⊢pext extends(Ids , Ids ,) ∴ E ′

The rules for processing extensions (table 3.22) take a sequence of extensions, processing each in turn,
to yield an updated environment. The empty-sequence rule (PExtends ϵ) is straightforward, yielding the
current environment E . The non-empty sequence rule (PExtends *) retrieves the set information from
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the current environment, and then updates the information changing the package of origin to the current
package Idp ; this gives ownership to the set to the current package meaning that it can be extended.
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Table 3.23 Judgements for type system of VCL Structural Diagrams
E ;AD ; Idp ⊢sd SD ∴ E ′ Well-formed SD yields E ′

E ;AD ; Idp ⊢sde SDE ∴ E ′ Well-formed sequence of SD elements SDE yields environment E ′

E ;AD ; Ids⊥ ⊢as A ∴ VE Sequence of assertions A yields variable environment VE
E ;AD ⊢gcn GC ∴ E ′ Well-formed global constant GC yields environment E ′

E ;AD ; Ids⊥ ⊢cn C ∴ VE Sequence of constants C yields variable environment VE

E ;AD ; Idp ;T ⊢pset PSet ∴ E ′ Primary Set PSet yields environment E ′

E ⊢ped PED ∴ VE Sequence of edge definitions PED yields variable environment VE
E ;M ⊢mtd

TD : T Designator TD with multiplicity M yields type T

E ;AD ; Idp ;T ⊢hi HI ∴ E ′ HI (HasIn) yields environment E ′

E ;T ⊢io O ∴ VE Sequence of inside objects O yields variable environment VE

E ; Idp ;T ⊢is PSet ∴ E ′ Sequence of inside primary sets PSet yields environment E ′

3.5 Structural Diagrams
Table 3.23 presents the judgements for structural diagrams (SDs). The first judgement says that a
SD is well-formed in the environment E with environment E ′. The remaining judgements assert well-
formedness for the different components of a SD; namely, sequences of structural diagram element (judge-
ment labelled ⊢sde), sequences of assertions denoting invariants (⊢as), global constants (⊢gcn), sequences of
normal constants (⊢cn), primary sets (⊢pset), sequence of property edge definitions (⊢ped), designators with
a multiplicity constraint (⊢mtd), has inside declarations of primary sets (⊢hi), sequence of inside objects
(⊢io) and sequences of inside primary sets (⊢is).

Table 3.24 Type rules for structural diagrams and structural diagram elements

(Ok SD)

E ; Idp ⊢sde SDE ∴ E ′ Acyclic E ′.SE E ′;AD ;⊥ ⊢as A ∴ VE

E ;AD ; Idp ⊢sd SDE A ∴ E ′,VE

(SDE ∗) (SDE ϵ)

E ;AD ; Idp ⊢sde SDE ∴ E ′′ E ′′;AD ; Idp ⊢sde SDE ∴ E ′

E ;AD ; Idp ⊢sde SDE SDE ∴ E ′ E ;AD ; Idp ⊢sde ϵ ∴ E
(SDE Gbl Const) (SDE RelEdge)

E ;AD ⊢gcn GC ∴ E ′

E ;AD ; Idp ⊢sde GC ∴ E ′
E ⊢ TD1 : T1 E ⊢ TD2 : T2 M1 ̸= seq M2 ̸= seq

E ;AD ; Idp ⊢sde relEdge IdRe (M1 TD1, M2 TD2) ∴ E , {IdRe : PowPair (T1,T2)}
(SDE PSet) (SDE RSet Uses) (SDE RSet Inc)

E ;AD ; Idp ;Obj⊢pset PSet ∴ Es

E ;AD ; Idp ⊢sde PSet ∴ Es

E ⊢ Idp :: Ids : PowSet Ids

E ;AD ; Idp ⊢sde ↑ setIdp :: Ids ∴ E

E ⊢ Ids : PowSet Ids
E .SE(Ids) = (SK ,DK , Idp2,VE)

Idp1 ̸= Idp2

E ;AD ; Idp1 ⊢sde ↑ setIds ∴ E

(SDE Derived) (SDE PkgE)

E ⊢sdef SetDef : T

E ⊢sde Ids ↔ SetDef ∴ E , {Ids : T}
E ⊢ped PED ∴ VE

E ⊢sde pkg Id {PED} ∴ E ,VE

35



Table 3.25 Type rules for constants

(Gbl Const) (Gbl CRef GBl)

E ;AD ;⊥ ⊢cn C ∴ VE

E ;AD ⊢gcn C ∴ E ,VE

E ⊢ IdCn : T E ;AD ;⊥; IdCn ⊢aok A ∴ VEa

E ;AD ⊢gcn ↑ const IdCn ↔ A ∴ E ,VEa

(Gbl CRef Local)
E ⊢ Ids : PowSet Ids

E .SE(Ids) = (SK ,DK , Idp ,VEs) E∅,VEs ⊢ IdCn : T E ;AD ; Ids ; IdCn ⊢aok A ∴ VEa

E ;AD ⊢gcn ↑ const Ids .IdCn ↔ A ∴ E ,VEa

(Decl Const) (Decl Const WConstraint)

E ⊢TD : T

E ;AD ; Ids⊥ ⊢cn const IdCn : TD ∴ {IdCn : T}
E ⊢TD : T E , IdCn : T ;AD ; Ids⊥; IdCn ⊢aok A ∴ VEa

E ;AD ; Ids⊥ ⊢cn const IdCn : TD ↔ A ∴ {IdCn : T},VEa

(Cnts epsilon) (Cnts ∗)

E ;AD ; Ids ⊢cn ϵ ∴ VE∅

E ;AD ; Ids ⊢cn C ∴ VEc E ;AD ; Ids ⊢cn C ∴ VE

E ;AD ; Ids ⊢cn C C ∴ VEc , VE

Table 3.26 Type rules for primary sets

(Primary Set Def )

E ;AD ; Ids ⊢cn C ∴ VEc

E ⊢ped PED ∴ VEpe E ;AD ; Ids ⊢as A ∴ VEa VEi = getVE(E ,Ti)
Ts = Set Ids DK = getDK ([⃝]) SI = (SK ,DK , Idp , (VEc ,VEpe ,VEa ,VEi))

E , Ids : PowTs , Ids
se

7→ SI ;AD ;Ts ⊢hi [hasIn { (O | PSet)} ] ∴ E ′)

E ;AD ; Idp ;Ti ⊢pset set Ids SK [⃝]{C PED A} [hasIn { (O | PSet)} ] ∴ (E ′, Ts <: Ti)
(Set Extension)

Ts = Set Ids
E ⊢ Ids : PowTs E .SE(Ids) = (SK ,DK , Idp ,VEs) getGType(superTy(E ,Ts),Ti) = Tif

E ;AD ; Ids ⊢cn C ∴ VEc E ⊢ped PED ∴ VEpe E ;AD ; Ids ⊢as A ∴ VEa

VEi = getVE(E ,Ti) SI = (SK ,DK , Idp , (VEs ,VEc ,VEpe ,VEa ,VEi))

E ⊕ {Ids
se

7→ SI };AD ;Ts ⊢hi [hasIn { (O | PSet)} ] ∴ E ′

E ;AD ; Idp ;Ti ⊢pset ↓ set Ids {C PED A} [hasIn { (O | PSet)} ] ∴ (E ⊕ {Ts <: Tif },Ehi)

Table 3.27 Type rules for property edge definitions

(PED ϵ) (PED ∗)

E ⊢ped ϵ ∴ VE∅

E ;M ⊢mtd TD : T E ⊢ped PED ∴ VE2

E ⊢ped M IdPe → TD PED ∴ {IdPe : T},VE2

(TDOpt) (TDOne) (TDSome)

E ⊢td TD ∴ T

E ;opt⊢mtd
TD : (OptT )

E ⊢td TD ∴ T

E ;one⊢mtd
TD : (T )

E ⊢td TD ∴ T

E ; some⊢mtd
TD : (PowT )

(TDMany) (TDRange) (TDSeq)

E ⊢td TD ∴ T

E ;many⊢mtd
TD : (PowT )

E ⊢td TD ∴ T

E ;Num . . (Num|*)⊢mtd
TD : (PowT )

E ⊢td TD ∴ T

E ;opt⊢mtd
TD : (SeqT )
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Table 3.28 Type rules for sequences of invariants

(A ϵ) (A ∗)

E ;AD ; Ids⊥ ⊢as ϵ ∴ VE∅

E ;AD ; Ids⊥;⊥ ⊢aok A ∴ VEa E ;AD ; Ids⊥ ⊢as A ∴ VE

E ;AD ; Ids⊥ ⊢as AA ∴ VEa , VE

Table 3.29 Type rules for has inside declarations

(HasInside ϵ) (HasInside ∗) (HasInObjs ϵ)

E ; Idp ;T ⊢hi ϵ ∴ E

E ;T ⊢io O ∴ VE E ; Idp ;T ⊢is PSet ∴ E ′

E ; Idp ;T ⊢hi hasIn {O PSet} ∴ E ′,VE E ; Idp ;T ⊢io ϵ ∴ {}
(HasInObjs ∗) (HasInPSets ϵ) (HasInPSets ∗)

E ;T ⊢io O ∴ VE

E ; Idp ;T ⊢io object Ido O ∴ VE , {Ido : T} E ; Idp ;T ⊢is ϵ ∴ E

E ; Idp ;T ⊢pset PSet ∴ E ′

E ′; Idp ;T ⊢is PSet ∴ E ′′

E ; Idp ;T ⊢is PSet PSet ∴ E ′′
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Table 3.30 Judgements for typing of assertion diagrams
E ⊢ad AD ∴ I : T AD yields binding I : T in E

E ⊢d D ∴ (VEv ;VEh) Sequence of declarations D yields binding sets (VEv ,VEh)

E ⊢df DF ∴ (VEv ;VEh) Declarations formula atom DF yields binding sets (VEv ,VEh)

E ⊢f F Sequence of formulas F is well-formed in E

E ⊢afs AFS : T Arrows formula source AFS yields type T

Table 3.31 Type rules for assertion diagrams

(AD GBL)

E ⊢d D ∴ (VEv ;VEh) E ⊕ (VEv ,VEh)⊢f F
E ⊢ad AD IdA decls {D}pred {F} ∴ IdA : Assertion[VEv ,VEh ]
(AD LOCAL)

E ⊢ Ids : PowSet Ids E .SE(Ids) = (SK , DK , Idp , VEs)

E ⊕VEs ⊢d D ∴ (VEv ;VEh) E ⊕ (VEs ,VEv ,VEh)⊢f F
E ⊢ad AD IdA : Ids decls {D}pred {F} ∴ IdA : Assertion [VEv , VEh ]

3.6 Assertion Diagrams
The judgements for ADs are listed in Table 3.30. In the judgements’s contexts, E is an environment;
the AD rules assume that all relevant ADs have been checked and its information can be found in the
environment. The judgements are as follows. The first judgement (⊢ad) asserts the well-formedness
of some AD, yielding a binding made up of the AD’s identifier and type. The remaining judgements
concern either the declarations or predicate compartment of ADs. The declarations judgements include:
judgement ⊢d , which says that a sequence of declarations (D) is well-formed and ⊢df , which says that
a particular declaration formula (DF ) is well-formed. The predicate compartment includes judgements
for formulas (⊢f ) and arrows formula source (⊢afs).

The typing rules for ADs (table 3.31) consider two cases, corresponding to global (AD GBL) and
local ADs (AD LOCAL). The rules are similar: the typing of declarations is followed by the typing of the
predicate. The local rule requires the local blob environment, which it retrieves from the blob’s type.
The processing of the declaration yields two variable environments: the visible variables (VEv ) and the
hidden variables (VEh). The visible variables are visible in the assertions predicate and to the outside
world; the hidden variables are only visible within the assertion.

The type rules for the declarations (table 3.32) build the visible and hidden variable environments.
They are follows:

• Rules D ϵ and D ∗ handle a sequence of declaration inductively. Rule D ϵ yields the empty vari-
able environments ({}) for both visible and hidden: there are no declarations to process. Rule
D ∗ retrieves the variable environments from the current declaration (VEv , VEh) and from the
remaining declarations (VEvs , VEhs); the variables environments to be yielded by the rule are
then merged (operator ◃▹), which requires that identifiers in common in the variable environments
being combined must be bound to the same type; furthermore, all variables from the visible list
(VEvf ) are removed in the hidden list (operator �).

• Rules D Obj and D Set consider the cases where there is a declaration of a scalar (object) or set.
Both rules retrieves a type from the declaration’s type designator (TD) and then yield a visible
binding made of the variable’s identifier and appropriate type. Rule D Obj considers whether there
is an optional qualifier ; type to yield is optional if there is a qualifier (OptT) or the type derived
from the type designator otherwise (T ). Rule D Set also considers whether there is a sequence
qualifier; type to yield is sequence of there is a qualifier (SeqT ) or a powerset otherwise (PowT ).
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Table 3.32 Type rules for declarations

(D ϵ) (D ∗)

E ⊢d ϵ ∴ ({}; {})

E ⊢d D ∴ (VEv ;VEh) E ,VEv ,VEh ⊢d D ∴ (VEvs ,VEhs)
VEvf = VEv ◃▹ VEvs VEhf = (VEh ◃▹ VEhs) � VEvf

E ⊢d D D ∴ (VEvf ,VEhf )

(VD Obj) (VD Set)
E ⊢td TD : T

(Q = opt ∧ Tf = OptT ∨ Q = ϵ ∧ Tf = T )

VE = {Ido , : Tf }
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ objectQ Ido ,:TD ∴ (VEv ,VEh)

E ⊢td TD : T

VE = {Ids , : PowT}
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ set Ids ,:TD ∴ (VEv ,VEh)

(VD Seq) (VD *)
E ⊢td TD : T VE = {Ids , : SeqT}
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ seq Ids ,:TD ∴ (VEv ,VEh)

E ⊢vd VD ∴ (VEv1,VEh1)

E ⊢vd VD ∴ (VEv2,VEh2)
VEv1 ∩VEv2 ∩VEh1 ∩VEh2 = {}

E ⊢vd VD VD :TD ∴ (VEv1 ∪VEv2,VEh1 ∪VEh2)

(D VD) (D DF )

E ⊢vd VD ∴ (VEv ,VEh)

E ⊢d VD ∴ (VEv ,VEh)

E ⊢df DF ∴ (VEv ,VEh)

E ⊢d DF ∴ (VEv ,VEh)

• Rule D DF considers the case where the declaration comprises a declarations formula. In this case,
the type rule for declaration formulas is called.

Table 3.33 presents the type rules for declaration formulas. The rules are as follows:
• Rules DFA Assertion, DFA OCall, DFA ClCall and DFA PkgCall deal with declaration formula

atoms (DFA non-terminal, Fig. 2.10). Rule DFA Assertion considers the case where the construction
refers to a normal assertion defined in the same scope (either local or global); rule DFA OCall
considers the case where there is a local assertion being called on some object; rule DFA ClCall
considers the case where a class assertion is called; rule DFA PkgCall considers the case an assertion
from a foreign package is called.

• Rules for declaration formula atoms assume that the AD associated with the assertion being
checked has already been type-checked: the assertion’s type can be retrieved from the environment.
These rules retrieve the appropriate assertion type from the environment to obtain the assertion’s
visible and hidden bindings (VEv and VEh). From the assertion’s visible bindings (VEv ), the
rule then builds the visible and hidden bindings for the declaration using function conVEs, which
takes into account the presence of symbol ↑, and from these constructed bindings the rule makes
the required substitutions according to what is defined in the sequence of renamings (R) using
function applySubs. All it varies in the rules is the way the assertion type is obtained; rule DFA
Assertion obtains the assertion type directly from the environment; rule DFA OCall obtains the
assertion type from the object’s set; rule DFA ClCall obtains the assertion type from the given set
identifier and DFA PkgCall from the given package identifier.

• Rule DF Neg obtains the visible and hidden variables of a negated declarations formula from the
enclosed declarations formula.

• Rule DF Bin handles a binary declarations formula combined using a binary operator. The rules
obtains the visible and hidden bindings from the two declarations formulas being combined and
then merges them using the operator mergeves.
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Table 3.33 Type rules for declaration formulas

(DFA Assertion) (DFA OCall)

E ⊢ta A ∴ IdA : Assertion[VEv ;VEh ]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = applySubs(VEcv ,VEch , [R,])

E ⊢df [↑]A[R,] ∴ (VEfv ;VEfh)

E ⊢ IdO : Ts

Ids = getSIdFrScalarOrCollection(Ts)
E ⊢ Ids .IdA : Assertion[VEv ,VEh ]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = applySubs(VEcv ,VEch , [R,])

E ⊢df [↑]assertion IdO .IdA[R,] ∴ (VEfv ;VEfh)

(DFA ClCall) (DFA PkgCall)
E ⊢ Ids .IdA : Assertion[VEv ,VEh ]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = applySubs(VEcv ,VEch , [R,])

E ⊢df [↑]assertion Ids → IdA[R,] ∴ (VEfv ;VEfh)

E ⊢ Idp::IdA : Assertion[VEv ,VEh ]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = applySubs(VEcv ,VEch , [R,])

E ⊢df [↑]assertion Idp::IdA[R,] ∴ (VEfv ;VEfh)

(DF Neg) (DF Bin)

E ⊢df DF ∴ (VEv ;VEh)

E ⊢df ¬ [DF ] ∴ (VEv ;VEh)

E ⊢df DF1 ∴ (VEv1;VEh1) E ⊢df DF1 ∴ (VEv2;VEh2) FOp ∈ {⇒, equiv}
E ⊢df FOp[DF1 DF2] ∴ (VEv1 ◃▹ VEv2;VEh1 ◃▹ VEh2)

(DF NAry 2∗)
E ⊢df DF ∴ (VEv ;VEh) FOp ∈ {∨,∧,⌻} #DF ≥ 2

E ⊢df FOp[DF ] ∴ (VEv ;VEh)
(DF NAry ϵ) (DF NAry ∗)

E ⊢df ϵ ∴ ({}; {})
E ⊢df DF ∴ (VEv1;VEh1) E ⊢df DF ∴ (VEv2;VEh2)

E ⊢df DF DF ∴ (VEv1 ◃▹ VEv2;VEh1 ◃▹ VEh2)

Table 3.34 Type rules for Formulas (F)

(F ϵ) (F ∗) (F Not) (F Bin) (F NAry) (F AF)

E ⊢f ϵ

E ⊢f F
E ⊢f F
E ⊢f F F

E ⊢f F

E ⊢f ¬ [F ]

E ⊢f F1 E ⊢f F2

FOp ̸= ⌻
E ⊢f [F1 FOp F2]

E ⊢f F
FOp ∈ {∧,∨}
E ⊢f FOp[F ]

E ⊢afs AFS : T

E ;T ⊢peps PEP1

E ⊢f AFS {PEP1}
(F SF Shaded) (F SF Id) (F SF Inside) (AFS SE )

E ⊢sdef SDef : T

E ⊢f shadedSDef

E ⊢ Ids : T1

E ⊢sdef SDef : T2

(E ⊢T2 <: T1

∨ E ⊢T2 <: T1)

E ⊢f [shaded] Ids SDef

E ⊢td TD : T1

E ⊢te SExp : T2

E ⊢ T1 <: T2

E ⊢f setTD hasIn {SExp}
E ⊢td TD : PowT2

E ⊢f set shadedTD

(QF) (QD) (QD *)
E ⊢qd QD , ∴ VE

E ⊕VE ⊢f F
E ⊢f QD , • F ;

E ⊢vd VD ∴ (VEv ,VEh)
VEh = {}

E ⊢qd Q VD ; ∴ VEv

E ⊢vd VD ∴ (VEv ,VEh)

VEh = {} E ⊢qd QD , ∴ VE

E ⊢qd Q VD ;QD , ∴ VEv ⊕VE
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Table 3.35 Type rules for Arrows Formula Source (production AFS )

(AFS SE) (AFS SetId) (AFS SDef ) (AFSB Un Card)

E ⊢se SE : T

E ⊢afs SE : T

E ⊢ Ids : T

E ⊢afs set Ids : T

E ⊢sdef SDef : T

E ⊢afs SDef : T

E ⊢afs AFS : PowT

E ⊢afs # AFS : Int
(AFS Un Dom) (AFS Un Ran) (AFSB Un The)

E ⊢afs AFS : PowPair (T1,T2)

E ⊢afs ← AFS : PowT1

E ⊢afs AFS : PowPair (T1,T2)

E ⊢afs → AFS : PowT2

E ⊢afs AFS : OptT

E ⊢afs ◉AFS : T
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Table 3.36 Judgements for typing of VCL models
⊢vcl VCL VCL is well-formed VCL model
DE ⊢pkg Pkg ∴ (Idp ,PK ,E) Well-formed Pkg yields triple (Idp ,PK ,E)

Table 3.37 Types rules for overall VCL models made of packages

(OK VCL) (OK Pkg)
PkgsOnce (VCL)

DE = buildDE (VCL) AyclicPkgs(DE)

VCL = Pkg DE ⊢pkg Pkg : (Idp ,PK ,E)

⊢vcl VCL

DE ⊢pd PD ∴ (Idp ,PK ,E)

E ;AD ; Idp ⊢sd SD ∴ E ′

DE ⊢pkg PD SD AD ∴ (Idp ,PK ,E ′)

3.7 VCL Models
We now describe the typing rules for overall VCL models . The judgements are listed in table 3.36. The
first judgement says that a VCL model is well-formed. The second judgement says that a VCL package
(Pkg) is well-formed in the diagram environment DE .

Table 3.37 presents the type rules for VCL models. The rules are as follows:
• Rule OK VCL checks well-formedness of a VCL model. A VCL model is well-formed provided:

(a) all its packages are defined once (predicate PkgsOnce, appendix A, sec. A.2.4), (b) that the
graph formed by the package uses and incorporates dependencies is acyclic (predicate AyclicPkgs,
appendix A, sec. A.2.5) in the diagram environment that is built from the VCL model (function
buildDE , appendix A, sec. A.3.2), (c) and the current package is well-formed in the diagram
environment.

• Rule OK Pkg specify well-formedness of a VCL Package. This amounts to type-check PD, SD and
ADs. The rule for checking PD (⊢pd) yields an environment (E), which is then used to check the
the SD and all relevant ADs, resulting in an updated environment.
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Appendix A

Auxiliary Definitions

This appendix presents the auxiliary definitions that are used in the type system definitions.

A.1 Environment Operators
Several operators manipulate environments. E1,E2 means that two disjoint environments are combined
into one. This is defined as set union for each component of the environments being combined:

E1,E2 = ((VE1,VE2),PE1 ∪ PE2,SE1 ∪ SE2,SubE1 ∪ SubE2)
where, E1 = (VE1,PE1,SE1,SubE1) ∧ E2 = (VE2,PE2,SE2,SubE2)

VE1,VE2 means that two disjoint variable environments are combined into one. This is defined as
set union:

VE1,VE2 = VE1 ∪VE2 ⇔ domVE1 ∩ domVE2 = ∅

Another operation on variable environments is ◃▹, which merges two variable environments. This
requires that if there are identifiers in common in both variable environments, then they must be bound
to the same type. This operator is defined as a partial function:

◃▹ : VE ×VE 7→VE

This is defined inductively by the following equations:

{} ◃▹ VE = VE
({id : T} ∪ VE1) ◃▹ VE2 = VE1 ◃▹ (VE2 ∪ {Id : T})⇔ id ̸∈ domVE2 ∨ VE2(Id) = T

We define an operator for performing subtractions on variable environments that require that iden-
tifiers in common in both variable environments are bound to the same type. This operator is defined
as a partial function:

� : VE × VE 7→VE

This is defined by the following equation:

VE1 � VE2 = VE1 \ VE2 ⇔ (∀ Id ∈ (domVE1 ∩ domVE2) • VE1(Id) = VE2(Id))

E ,VE means that a variable environment is added to an environment. This is defined as:
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E ,VE =

{
(VEE ∪VE ,PE ,SE ,SubE) If E = (VEE ,PE ,SE ,SubE) ∧ ¬ (domVE ⊆ domVEE )
undefined otherwise

E ,T1 <: T2 means that a subtyping tuple is added to an environment. This is defined as:

E ,T1 <: T2 = (VE ,PE ,SE ,SubE ∪ {T1 7→ T2}) where, E = (VE ,PE ,SE ,SubE)

E , Id
se

7→ (SK ,DK , Id ,VE) means that a set environment binding is added to an environment. This
is defined as:

E , Id
se

7→ (SK ,DK , Id ,VE) ={
(VE ,PE ,SE ∪ {(SK ,DK , Id ,VE)},SubE) If E = (VE ,PE ,SE ,SubE) ∧ Id ̸∈ domE .SE
undefined otherwise

E , Id
pe

7→ (PK ,E) means that a package environment binding is added to an environment. This is
defined as:

E , Id
pe

7→ (PK ,E) ={
(VE ,PE ∪ {(PK ,E)},SE ,SubE) If E = (VE ,PE ,SE ,SubE) ∧ Id ̸∈ domE .SE
undefined otherwise

E ⊕VE means that an environment is overridden with a set of variable bindings. This is defined as:

E ⊕ VE2 = (VE1 ⊕VE2,PE ,SE ,SubE) where, E = (VE1,PE ,SE ,SubE)

A.2 Predicates
A.2.1 Predicate Ayclic

The following predicate checks that some graph (or relation) is acyclic.

Acyclic (R)⇔ R ∈ {rel : X ↔X | rel + ∩ idX = ∅}

A.2.2 Predicates IsPEP and IsPEM

IsPEP(PE PEP)⇔ PE = PEP ∧ (PE = ϵ ∨ IsPEP(PE))

IsPEM (PE PEP)⇔ PE = PEM ∧ (PE = ϵ ∨ IsPEM (PE))

A.2.3 Predicate NoClashes

The following predicates check that there are no names clashes in a sequence of package references
(grammar of PDs, chapter 2, Fig. 2.7).

NoClashes : P(PRef )

NoClashes : P(PRef ,
︷︸︸︷
Id )

NoClashes (PRef )⇔ NoClashes0 (PRef ,∅)
NoClashes0 (ϵ,S)

NoClashes0 (Idp [as Ida ]PRef ,S)⇔ Idp ̸∈ S ∧ NoClashes0 (PRef ,S ∪ {Idp})
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A.2.4 Predicate PkgsOnce

The following predicate checks that in a VCL model each package is defined only once.

PkgsOnce : P(Pkg)

PkgsOnce0 : P(PRef ,
︷︸︸︷
Id )

PkgsOnce (Pkg)⇔ PkgsOnce0 (Pkg , {})
PkgsOnce0 (Pkg Pkg ,S)⇔ Pkg = ϵ ∨
(Pkg = (PD SD AD)Pkg2 ∧ Idp = getIdOfPD(PD) ∧ Idp ̸∈ S ∧ PkgsOnce0 (Pkg2,S ∪ {Idp}))

A.2.5 Predicate AcyclicPkgs

The predicate AcyclicPkgs checks that the graph of package use and incorporate dependencies is acyclic.
This uses the function BuildPkgDepG, which builds the package dependency graph from a diagram
environment (DE). Predicate and auxiliary function are defined as follows:

BuildPkgDepG : DE → (Id ↔ Id)
BuildPkgDepG({}) = {}
BuildPkgDepG({Idp 7→ Pkg} ∪DE) = R ⇔ Pkg = PD SD AD ∧ I = getIdsOfIncs(PD)
∧ U = getIdsOfUses(PD) ∧ R = {Idp} × I ∪ {Idp} × U ∪ BuildPkgDepG(DE)

AcyclicPkgs : P(DE)
AcyclicPkgs(DE)⇔ Acyclic(BuildPkgDepG (DE))

A.3 Auxiliary Functions
A.3.1 Functions to extract information from PDs

getIdOfPD : PD → Id

getIdOfPD(PK package Id [usesPRef ,] [incorporatesPRef ,]{PDep [PExts]}) = Id

getIdsOfIncs : PD →
︷︸︸︷
Id

getIdsOfIncs(PK package Id [usesPRef1,] [incorporatesPRef2,]{PDep [PExts]}) = getIdsOfPRefSeq(PRef2,)

getIdsOfUses : PD →
︷︸︸︷
Id

getIdsOfUses(PK package Id [usesPRef1,] [incorporatesPRef2,]{PDep [PExts]}) = getIdsOfPRefSeq(PRef1,)

getIdsOfPRefSeq : PRef ,→
︷︸︸︷
Id

getIdsOfPRefSeq(ϵ) = {}
getIdsOfPRefSeq(Idp [as Ida ]PRef ,) = {Idp} ∪ getIdsOfPRefSeq(PRef ,)

A.3.2 Function buildDE

buildDE : Pkg 7→DE
buildDE(ϵ) = {}
buildDE(Pkg Pkg) = {Idp 7→ Pkg} ∪ buildDE(Pkg)⇔ Pkg = PD SD AD ∧ Idp = getIdOfPD(PD)

A.3.3 Function getGType

The function getGType gets the greatest type between two types ordered by the subtyping relation:
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getGType : E × Type × Type 7→ Type

getGType (E ,T1, T2) =


T1 If E ⊢T2 <: T1
T2 If E ⊢T1 <: T2
undefined otherwise

A.3.4 Function superTy

The function superTy gets the super type of some type:

superTy : E × Type 7→ Type
superTy(E ,T1) = T2 ⇔ (T1,T2) ∈ E .SubE

A.3.5 Functions producing variable environments (VEs)
The function getVE extracts variable environments from set types:

getVE : T × E →VE

getVE (T ,E) =

{
VE If T = Set Ids ∧ E .SE(Ids) = (SK , DK , Idp ,VE)
{} otherwise

The function consVEs constructs a pair of variable environments given an optional imports qualifier
and a variable environment (VE). This function simply makes the given VE the first component of the
pair if there is an imports qualifier and makes it the second component of the pair otherwise:

consVEs : VE× ↑⊥ →VE ×VE

consVEs (VE , ↑⊥) =
{
(VE , {}) if ↑⊥ = ↑)
({},VE) if ↑⊥ =⊥)

The function mergeVEs merges two variable environments (VE). It is a partial function because
there is a condition associated with the merge: if there are identifiers in common in both environments,
then they map to the same type. The function mergeVEs is as follows:

mergeVEs : VE ×VE 7→VE
mergeVEs (VE1,VE2) = VE1 ∪VE2

⇔ ∀ id : Id | id ∈ (domVE1 ∩ domVE2) • VE1 id = VE2 id

A.3.6 Function transferBindingsForPkgInc

The function transferBindingsForPkgInc transfer the bindings from one environment to the other. All
bindings are transferred except those that refer to a package type.

The auxiliary predicate IsNewBindingOf tells whether some type is a new type of some environment
for the purpose of package incorporation (excludes package types).

IsNewBindingOf : P (Id × T × E)
IsNewBindingOf (Id ,T ,E)⇔ T ̸= PkgIdp ∧ ¬ Id ∈ E .VE

The auxiliary function UpdPkgOfSetType updates the originating package of set types.
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UpdPkgOfSetType : Id × T → T

UpdPkgOfSetType (Idpn ,T ) =

{
PowSet Idpn ::Ids If T = PowSet Idp ::Ids
T otherwise

transferBindingsForPkgInc : Id × E × E 7→ E
transferBindingsForPkgInc (Idpn , {},E) = E
transferBindingsForPkgInc (Idpn , {id 7→ T} ∪ E ,E ′) =
{id 7→UpdPkgOfSetType(Idpn ,T )}, transferBindingsForPkgInc (Idpn ,E ,E ′)
⇔ IsNewBindingOf (Id ,T ,E ′)

transferBindingsForPkgInc (Idpn , {id 7→ T} ∪ E ,E ′) = transferBindingsForPkgInc (Idpn ,E ,E ′)
⇔ ¬ IsNewBindingOf (Id ,T ,E ′)

A.3.7 Function getDK

The function getDK extracts the definitional kind:

getDK : [⃝]→DK
getDK (⃝) = def
getDK (ϵ) = notDef

A.3.8 Functions to extract information from ADs
The following functions extract the AD identifier, set identifier and declarations from ADs:

getIdOfAD : AD → Id

getIdOfAD(AD IdA [: Ids ]decls {D}pred {F}) = IdA
getSIdOfAD : AD 7→ Id⊥

getSIdOfAD(AD IdA : Ids decls {D}pred {F}) = Ids
getSIdOfAD(AD IdA decls {D}pred {F}) =⊥

getDeclsOfAD : AD →D

getDeclsOfAD(AD IdA [: Ids ]decls {D}pred {F}) = D

The following functions get the set of ADs that are included in some AD :
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getDepsOfAD : AD × AD × Id⊥→
︷︸︸︷
AD

getDepsOfAD (AD ,AD , Ids⊥) = getADsOfDecls (getDeclsOfAD (AD),AD , Ids⊥)

getADsOfDecls : D × AD × Id⊥→
︷︸︸︷
AD

getADsOfDecls (ϵ,AD , Ids⊥) = {}
getADsOfDecls (D D ,AD , Ids⊥) =

getADsOfDecl(D ,AD , Ids⊥) ∪ getADsOfDecls (D ,AD , Ids⊥)

getADsOfDecl : Decl ×AD × Id⊥→
︷︸︸︷
AD

getADsOfDecl (DV Id :TD ,AD , Ids⊥) = {}
getADsOfDecl (DF ,AD , Ids⊥) = getADsOfDF (DF ,AD , Ids⊥)

getADsOfDF : DF × AD × Id⊥→
︷︸︸︷
AD

getADsOfDF ([↑]assertion IdA [R,],AD , Ids⊥) = {findAD(AD , Ids⊥, IdA)}
getADsOfDF ([↑]assertion Ido.IdA [R,],AD , Ids⊥) = findLADsWithName(AD , IdA)

getADsOfDF ([↑]assertion Ids → IdA [R,],AD , Ids⊥) = {findAD(AD , Ids , IdA)}
getADsOfDF (¬ (DF),AD , Ids⊥) = getADsOfDF (DF ,AD , Ids⊥)

getADsOfDF ((DF1 FOp DF2),AD , Ids⊥) = getADsOfDF (DF1,AD , Ids⊥)

∪ getADsOfDF (DF2,AD , Ids⊥)

getMatchingAD : AD × Id →
︷︸︸︷
AD

getMatchingAD(AD , IdA) =

{
{AD} If getSIdOfAD(AD) ̸=⊥∧ getIdOfAD(AD) = IdA
{} otherwise

findLADsWithName : AD × Id 7→
︷︸︸︷
AD

findLADsWithName(ϵ, IdA) = {}
findLADsWithName(AD AD , IdA) = getMatchingAD(AD , IdA) ∪ findLADsWithName(AD , IdA)

A.3.9 Functions for AD lookup
The following functions look for some AD in a sequence of ADs:

findAD : AD × Ids⊥ × IdA 7→AD

findAD (AD ,⊥, IdA) = findGblAD(AD , IdA)

findAD (AD , Ids , IdA) = findLAD(AD , Ids , IdA)

findGblAD : AD × IdA→ AD
findGblAD (AD , IdA) = AD ⇔ getIdOfAD(AD) = IdA
findGblAD (AD AD , IdA) = AD ⇔ getIdOfAD(AD) = IdA
findGblAD (AD AD , IdA) = findGblAD (AD , IdA)⇔ getIdOfAD(AD) ̸= IdA

findLAD : AD × Ids × IdA 7→AD
findLAD (AD , Ids , IdA) = AD ⇔ getSIdOfAD(AD) = Ids ∧ getIdOfAD(AD) = IdA
findLAD (AD AD , Ids , IdA) = AD ⇔ getSIdOfAD(AD) = IdS ∧ getIdOfAD(AD) = IdA
findLAD (AD AD , Ids , IdA) = findLAD(AD , Ids , IdA)
⇔ getIdOfAD(AD) ̸= IdA ∨ getSIdOfAD(AD) ̸= Ids

The following function gets the identifier that is associated with an AD, given the name of an assertion
and an optional identifier of a constant:

getFAId : Idc⊥ × IdA→ IdA
idCnConstraint : CnId × AId →AId

getFAId (Idc⊥, IdA) =


IdA If Idc⊥ =⊥
idCnConstraint(CnId⊥,AId) otherwise
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A.3.10 Functions for substitutions
The following functions deal with substitutions in variable environments:

applySubs : VE ×VE × PRenaming →VE ×VE
applySubs (VEv ,VEh ,Rens) = (doSubs(VEv ,Rens), doSubs(VEh ,Rens))

substitute : VE × Renaming → VE
doSubs : VE × P1 Renaming →VE

substitute (VE , idn/ido) =


VE If ido ̸∈VE ∨ idn ∈ VE
(VE \ {(ido,VE ido)}) ∪ {(idn,VE ido)} otherwise

doSubs (VE , ) = VE
doSubs (VE ,Renaming ∪ Rens) = doSubs(substitute(VE ,Renaming),Rens)

A.3.11 Function getSIdFrScalarOrCollection

The following function retrieves a set identifier from types involving set types, which may either denote
a scalar or a collection:

getSIdFrScalarOrCollection : Type 7→ Id
getSIdFrScalarOrCollection (Set Ids) = Ids
getSIdFrScalarOrCollection (PowSet Ids) = Ids
getSIdFrScalarOrCollection (SeqSet Ids) = Ids
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Appendix B

Alloy Metamodels of VCL
Diagrams

B.1 Package Diagrams
--=======================================================================
-- Name: 'VCL_PD'
--
--
-- Description:
-- + Defines meta-model of VCL package diagrams (PDs).
--
--========================================================================

module VCL_PD

--========================================================================
-- Name: 'Name'
--
-- Description:
-- + Introduces set of labels to be attached Packages
--========================================================================

-- Signature of all names
sig Name {}

--========================================================================
-- Name: 'PkgKind'
--
-- Description:
-- + Introduces the package kind; either 'ensemble' or 'container'
--========================================================================
abstract sig PkgKind {}

one sig Ensemble, Container extends PkgKind {}

--=========================================================================
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-- Name: 'VCLPackage'
--
-- Description:
-- + Introduces the labelled VCL package
--=========================================================================

sig VCLPackage {
name : Name,
alias : lone Name,

edges : set PkgEdge
}

--Each package has its own name (names is an injective function)
fact PkgNamesDistinct {
all n : VCLPackage.name | one name.n
}

-- The package edges should be anti-reflexive
fact antiReflexiveEdges {
no (edges.target) & iden
}

-- The overrides and merge relation should be anti-symmetric
fact antiSymmetricOverrides {
no (edges.target) & ~(edges.target)
}

--=========================================================================
-- Name: 'PkgEdgeKind'
--
-- Description:
-- + Introduces package edge kind; either 'overrides' or 'merges'
--=========================================================================
abstract sig PkgEdgeKind {}

one sig Overrides, Merges extends PkgEdgeKind {}

--=========================================================================
-- Name: 'PkgEdge'
--
-- Description:
-- + Introduces the package edge
-- + A package edge comprises a set of names
--=========================================================================

sig PkgEdge {
names : some Name,

target : VCLPackage,
kind : PkgEdgeKind

}

-- All Package edges must have a source
fact allPkgEdgesHaveSource {
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all pe : PkgEdge | pe in VCLPackage.edges
}

--=========================================================================
-- Name: 'ExtendsList'
--
-- Description:
-- + Introduces a signture that holds the extends list of a current package
-- + It comprises a set of names
--=========================================================================

sig ExtendsList {
extElems : set Name
}

--=========================================================================
-- Name: 'CurrPackage'
--
-- Description:
-- + Current package, which can have other packages inside,
-- + and can import other packages
--=========================================================================
one sig CurrPackage extends VCLPackage {
inside : set VCLPackage,

imports : set VCLPackage,
pkind : PkgKind,
extendsLs : lone ExtendsList

}{
-- The current package mustn't have an alias
no alias
}

--
-- Current packages cannot have orverride or merge edges
fact CurrPackageCannotOverrideOrMerge {
no (CurrPackage.edges.kind & (Overrides+Merges))
}

--
-- Current packages cannot be target of a dependency.
fact CurrPackageCannotBeOverridenOrMerged {
no (edges.target).CurrPackage
}

--
--
-- The 'inside' relation should be irreflexive
fact irreflexiveIncorporates {

no inside & iden
}

--
-- The 'imports' relation should be irreflexive
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fact irreflexiveImports {
no imports & iden

}

--
-- Imported packages should not have any edges
fact noEdgesForImported {
no imports & edges.target
}

--
-- Packages cannot be imported and incorporated
fact noImportsAndIncorporates {
no imports & inside
}

--=========================================================================
-- Name: 'PackageDiagram'
--
-- Description:
-- + Introduces the package diagram.
-- + A single current packages and package edges.
--=========================================================================

sig PackageDiagram {
defines : CurrPackage
}{
-- All packages must be defined in a package diagram
all p : (VCLPackage-CurrPackage) | p in defines.inside
}

B.2 Common
--=======================================================================
-- Name: 'VCL_Common'
--
-- Description:
-- + Common entities of VCL ADs and SDs
--
--==============================================================================

module VCL_Common

--=============================================================================
-- Name: 'Name'
--
-- Description:
-- + Introduces set of labels to be attached to nodes and edges
--=========================================================================

-- Signature of all names
sig Name {}
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--=============================================================================
-- Name: 'SetElement'
--
-- Description:
-- + Defines a set element
-- + Either a single object or a pair
--=============================================================================

abstract sig SetElement {
}

--=============================================================================
-- Name: 'VCLObject'
--
-- Description:
-- + A named VCL object
-- + Elements that can be inside a blob in either primitive or derived blobs
--=============================================================================

sig VCLObject extends SetElement {
id : Name

}

--=============================================================================
-- Name: 'Pair'
--
-- Description:
-- + Represents a pair made of two named objects
--=============================================================================

sig Pair extends SetElement {
idElem1 : Name,

idElem2 : Name
}

--============================================================================
-- Name: 'Assertion'
--
-- Description:
-- + Defines assertions whose symbol is the elongated hexagon.
--============================================================================
sig Assertion {

idAssertion : Name
}

--=========================================================================
-- Name: 'TypeDesignator'
--
-- Description:
-- + Defines a designator for types.
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--=========================================================================

abstract sig TypeDesignator {
}

--=========================================================================
-- Name: 'TypeDesignator', ' TypeDesignatorNat'
--
-- Description:
-- + Defines a type designator naturals and integers.
--=========================================================================
sig TypeDesignatorInt, TypeDesignatorNat extends TypeDesignator {
}

--=========================================================================
-- Name: 'TypeDesignatorId'
--
-- Description:
-- + Defines a designator of blobs with an identifier.
--=========================================================================
sig TypeDesignatorId extends TypeDesignator {

id : Name
}

--=========================================================================
-- Name: 'PropEdge'
--
-- Description:
-- + Defines property edges with a source and a target.
--=========================================================================
abstract sig PropEdge {

op : EdgeOperator,
target : Expression,

}

--=========================================================================
-- Name: 'PropEdgePred'
--
-- Description:
-- + Defines property edges attached to predicate elements.
--=========================================================================
sig PropEdgePred extends PropEdge {

unop : lone EdgeOperatorUnary,
designator : lone Name

}{
-- 'op' must be a 'EdgeOperatorPred'
op in EdgeOperatorBin

}

--=========================================================================
-- Name: 'PropEdgeMod'
--
-- Description:
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-- + Defines the property edge modifier that applies some operation to
-- the source.
--=========================================================================
sig PropEdgeMod extends PropEdge {
}{

-- 'op' must be a 'EdgeOperatorMod'
op in EdgeOperatorMod

}

--=========================================================================
-- Name: 'EdgeOperator'
--
-- Description:
-- + Defines edge operarator used in edges.
--=========================================================================
abstract sig EdgeOperator {
}

--=========================================================================
-- Name: 'EdgeOperatorBin'
--
-- Description:
-- + Defines edge operarator used in predicate edges.
--=========================================================================
abstract sig EdgeOperatorBin extends EdgeOperator{
}

--=========================================================================
-- Name: 'EdgeOperatorMod'
--
-- Description:
-- + Defines edge operarator used in modifer edges.
--=========================================================================
abstract sig EdgeOperatorMod extends EdgeOperator{
}

--=========================================================================
-- Name: 'EdgeOperatorUnary'
--
-- Description:
-- + Defines edge operarator used in modifer edges.
--=========================================================================
abstract sig EdgeOperatorUnary extends EdgeOperator{
}

--===========================================================================
-- Name: 'EdgeOperatorEq', 'EdgeOperatorIn', 'EdgeOperatorSubsetEQ'
--'EdgeOperatorLT', 'EdgeOperatorLEQ', 'EdgeOperatorGT', 'EdgeOperatorGEQ'
--
-- Description:
-- + Defines different kinds of edge operators.
-- + Eq (=), Neq (�), In (�), LT, (<), LEQ (�), GT (>), GEQ (�)
-- + SubsetEQ (�)
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--============================================================================
one sig EdgeOperatorEq,
EdgeOperatorNEq,
EdgeOperatorIn,
EdgeOperatorLT,
EdgeOperatorLEQ,
EdgeOperatorGT,
EdgeOperatorGEQ,
EdgeOperatorSubsetEQ

extends EdgeOperatorBin {
}

--===========================================================================
-- Name: 'EdgeOperatorDRES', 'EdgeOperatorRRES'
--
-- Description:
-- + Edge Operators used in property edge modifiers.
-- + DRES (�, domain restriction), and RRES (�, range restriction)
-- + DSUB (�, domain subtraction) and RSUB (�, range subtraction)
--============================================================================

one sig EdgeOperatorDRES,
EdgeOperatorRRES,

EdgeOperatorDSUB,
EdgeOperatorRSUB
extends EdgeOperatorMod {
}

--===========================================================================
-- Name: 'EdgeOperatorCARD', 'EdgeOperatorTHE'
-- Description:
-- + Unary edge operator used in predicate property edges
-- + CARD (#, cardinality)
-- + THE (�, the)
--============================================================================
one sig EdgeOperatorCARD, EdgeOperatorTHE

extends EdgeOperatorUnary {
}

--=========================================================================
-- Name: 'Num'
--
-- Description:
-- + String representing natural numbers.
--=========================================================================
sig Num {}

--=========================================================================
-- Name: 'Expression'
--
-- Description:
-- + Defines expressions associated with property edges.
--=========================================================================
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abstract sig Expression {
}

--=========================================================================
-- Name: 'ObjExpression'
--
-- Description:
-- + Defines an object expression.
--=========================================================================
abstract sig ObjExpression extends Expression {
}

--=========================================================================
-- Name: 'ObjExpressionId'
--
-- Description:
-- + Defines object expressions comprising an identifier (a name).
--=========================================================================

sig ObjExpressionId extends ObjExpression {
eid : Name

}

--=========================================================================
-- Name: 'ObjExpressionNum'
--
-- Description:
-- + Defines expressions comprising a number.
--=========================================================================

sig ObjExpressionNum extends ObjExpression {
num : Num

}

--=========================================================================
-- Name: 'ObjExpressionUMinus'
--
-- Description:
-- + Defines unary minus expression (-e).
--=========================================================================
sig ObjExpressionUMinus extends ObjExpression {

e : ObjExpression
}

--=========================================================================
-- Name: 'ObjExpressionBin'
--
-- Description:
-- + Defines expressions that can be combined with binary operators.
--=========================================================================
abstract sig ObjExpressionBin extends ObjExpression {

e1, e2 : ObjExpression,
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op : ObjExpBinOp
}{

e1 != e2
}

--=========================================================================
-- Name: 'ObjExpressionPar'
--
-- Description:
-- + Defines expressions that can be placed within parenthesis.
--=========================================================================
abstract sig ObjExpressionPar extends ObjExpression {

e : ObjExpression,
}

--=========================================================================
-- Name: 'ObjExpBinOp'
--
-- Description:
-- + Infix operators for sum (+), subtraction (-), product (*), div (/).
--=========================================================================
abstract sig ObjExpBinOp {}

one sig ExpBinOpPlus,
ExpBinOpMinus,
ExpBinOpTimes,
ExpBinOpDiv extends ObjExpBinOp {}

--=========================================================================
-- Name: 'BlobExpression'
--
-- Description:
-- + Defines a blob expression.
--=========================================================================
abstract sig BlobExpression extends Expression {
}

--=========================================================================
-- Name: 'BlobExpressionID'
--
-- Description:
-- + Defines a blob expression defined using a blob designator.
--=========================================================================
sig BlobExpressionID extends BlobExpression {

bd : TypeDesignator
}

--=========================================================================
-- Name: 'BlobExpressionEmpty'
--
-- Description:
-- + Defines a blob that is shaded to represent the empty set.
--=========================================================================
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sig BlobExpressionEmpty extends BlobExpression {
}

--=========================================================================
-- Name: 'BlobExpressionCard'
--
-- Description:
-- + Defines a blob with a cardinality unary operator attached.
--=========================================================================
sig BlobExpressionCard extends BlobExpression {

blExp : BlobExpression
}

--=========================================================================
-- Name: 'BlobDef'
--
-- Description:
-- + Defines a blob definition (symbol �).
--=========================================================================
sig BlobDef {

bdop : BlobDefOp, -- optional blob def operator
insideExp : BlobInsideExpression

}

--=========================================================================
-- Name: 'BlobDefOp'
--
-- Description:
-- + Defines blob def operators
-- + Domain operator is represented as symbol �
-- + Range operator is represented as symbol �
-- + None represents no symbol
-- + Union operator is represented as symbol �
-- + Intersection operator is represented as symbol �
-- + Cross product operator is represented as symbol �
-- + Set difference operator is represented as symbol �
--=========================================================================
abstract sig BlobDefOp {
}

one sig BlobDefOpDomain,
BlobDefOpRange,
BlobDefOPNone,
BlobDefOpUnion,
BlobDefOpIntersection,
BlobDefOpCrossProduct,
BlobDefOpSetMinus

extends BlobDefOp {
}

--=========================================================================
-- Name: 'BlobExpressionDef'
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--
-- Description:
-- + Defines a blob expression defined using a blob definition.
--=========================================================================

sig BlobExpressionDef extends BlobExpression {
def : BlobDef

}

--=========================================================================
-- Name: 'BlobInsideExpression'
--
-- Description:
-- + Expression inside the blob def
--=========================================================================
abstract sig BlobInsideExpression {
}

--=========================================================================
-- Name: 'InsideExpBlDs'
--
-- Description:
-- + Expression inside the blob def
--=========================================================================
sig InsideExpBlDs extends BlobInsideExpression {

blobDefs : seq BlobDef
}

--=========================================================================
-- Name: 'InsideDef'
--
-- Description:
-- + Definition of the blob def
-- + Either a constrained blob or a a set extension
--=========================================================================
abstract sig InsideDef extends BlobInsideExpression {
}

--=========================================================================
-- Name: 'ConstrainedBlob'
--
-- Description:
-- + Defines a blob with restrictions (constraints).
--=========================================================================

sig ConstrainedBlob extends InsideDef {
bd : TypeDesignator,
pes : seq PropEdge -- 0 or more predicate property edges

}

fact PropEdgesOfConstrainedBlobAreOfSomeKind {
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all be :ConstrainedBlob |
all disj pe1, pe2 : univ.(be.pes) |

pe1+pe2 in PropEdgePred || pe1+pe2 in PropEdgeMod
}

--=========================================================================
-- Name: 'BlobExtension'
--
-- Description:
-- + Defines a blob extensionally by listing its members.
--=========================================================================

sig BlobExtension extends BlobInsideExpression {
elems : some SetElement

}

B.3 Structural Diagrams
--=======================================================================
-- Name: 'VCL_SD'
--
-- Version: 3.7
--
-- Description:
-- + Defines meta-model of VCL structural diagrams (SDs).
--
--=============================================================================

module VCL_SD

open VCL_Common as c

--=========================================================================
-- Name: 'Bool'
--
-- Description:
-- + Signature of booleans: 'True' or 'False'.
--=========================================================================
abstract sig Bool {}

one sig True, False extends Bool {}

--======================================================================
-- Name: 'Mult' (Multiplicity)
--
-- Description:
-- + Defines what a multiplicity is.
-- + Multiplicities are attached to ends of edges.
-- Details:
-- + There are the folowing kinds of multiplicity: one, optional (0..1),
-- many (0..*), one or many (1..*), range (n1..n2) and sequence.
-- + Multiplicities of kind range have a lower and an upper bound.
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--======================================================================
abstract sig Mult {}

one sig MOne, MOpt, MMany, MOneOrMany, MSeq extends Mult {}

one sig MStar {}

sig MRange extends Mult {
-- lower and upper bounds for 'range' multiplicities.
lb : Int,

ub : (Int+MStar)
}{

-- lower and upper bounds must be greater or equal than 0
-- and 'ub' greater or equal than 'lb'.
lb >= 0 && (ub = MStar || ub >= lb)

}

--=========================================================================
-- Name: 'SDElem'
--
-- Description:
-- + Introduces the labelled structural diagram element.
-- + To be extended by 'Blob', 'Object', 'Edge'.
--=========================================================================
abstract sig SDElem {

name : Name -- a modelling element has a name (a label).
}

--=======================================================================
-- Name: 'ConstantKind'
--
-- Description:
-- + Indicates kind of constant: reference or definition
--======================================================================
abstract sig ConstantKind {
}

one sig ConstReference, ConstDefinition extends ConstantKind {
}

--=======================================================================
-- Name: 'Constant'
--
-- Description:
-- + Represents constants. A constant has a type (field 'type).
-- + Constants can be 'local' or 'global'.
-- + A constant definition has a type
-- + A constant may have a defining assertion, which defines its value
-- + A constant reference has an 'origin' 'Blob or package'
--======================================================================

sig Constant extends SDElem {
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kind : ConstantKind,
type : lone Name,
definition : lone Assertion,
origin : lone Name

}{
-- A constant either has a type or an origin
kind in ConstDefinition => one type && no origin
kind in ConstReference => one origin && no type

}

--=============================================================
-- Name: 'RelEdge' (Relational Edge)
--
-- Description:
-- + Blob relational edges are binary edges connecting blobs.
-- + They have multiplicities at each end of edge.
--=============================================================

sig RelEdge extends SDElem {
source, target : Blob,
sourceMult, targetMult : Mult,

}{
-- Relation edges cannot have multiplicities of type sequence

not (sourceMult+targetMult) in MSeq
}

--============================================================================
-- Name: 'InNode'
--
-- Description:
-- + Nodes that can be inside primitive blobs.
-- + A Node can either hold a 'VCLObject' or a 'PrimaryBlob'.
--============================================================================

sig InNode {
node : (VCLObject+PrimaryBlob)
}

--
-- Each 'InNode' has its own referenced node (object or blob)
fact NodesNotShared {

all n : (VCLObject+PrimaryBlob) | (some node.n)
=> one node.n

}

--=========================================================================
-- Name: 'Blob' (Blob Definitions)
--
-- Description:
-- + Defines a global blob definition.
-- + It's characterised by inside property.
--
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--=========================================================================

abstract sig Blob extends SDElem {
}

--
-- This is a well-formedness constraint to rule out redundant definitons!
-- The transitive constructions on the blob relation are unnecessary because
-- they can be obtained through the transitive closure
--fact insideTransitiveIsRedundant {
--- all n1, n2, n3 : Node | n1->n2 in hasInside && n3 in n2.^hasInside
-- => !(n1->n3 in hasInside)
--}

--=========================================================================
-- Name: 'IntBlob' (Integer Blob)
--
-- Description:
-- + Defines a blob representing the integers
--=========================================================================
one sig IntBlob extends Blob {}

--=========================================================================
-- Name: 'NatBlob' (Natural numbers Blob)
--
-- Description:
-- + Defines a blob representing the natural numbers
--=========================================================================
one sig NatBlob extends Blob {}

abstract sig BlobKind {}

--=========================================================================
-- Name: 'Value', 'Domain'
--
-- Description:
-- + Defines two blob kinds: 'value' and 'domain.
--=========================================================================

one sig Value, Domain extends BlobKind {}

--=========================================================================
-- Name: 'BlobWithProps'
--
-- Description:
-- + Defines a blob with local properties
--
--=========================================================================
abstract sig BlobWithProps extends Blob {

lProps : set PropEdgeDef
}
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--=========================================================================
-- Name: 'PrimaryBlob'
--
-- Description:
-- + Defines a primary blob
-- + A Primary blob can have other primary blobs nside.
--=========================================================================
sig PrimaryBlob extends BlobWithProps {

hasInsideB : set PrimaryBlob
}

--
-- The following defines what it means for VCL structures to be well-formed
-- regarding the 'inside' property

--
-- The graph representing the 'inside' relation should be acyclic.
fact acyclicInside {

no ^(hasInsideB) & iden
}

--
-- An object should be in at most one blob (the inverse of the relation is a partial function)
fact blobInAtMostOneBlob {
all b : PrimaryBlob | lone b.~hasInsideB
}

--=========================================================================
-- Name: 'PrimaryBlobDef'
--
-- Description:
-- + Defines a primary blob definition
-- + A Primary blob can have blobs ad objects inside.
--=========================================================================
sig PrimaryBlobDef extends PrimaryBlob {

kind : BlobKind,
isDefBlob : Bool, -- (symbol �)

hasInsideO : set VCLObject,
lInvariants : set Assertion,
lConstants : set Constant,

}{
-- The constants must be definition constants
lConstants.kind in ConstDefinition
}

--
-- An object should be in at most one blob (the inverse of the relation is a partial function)
fact objInAtMostOneBlob {
all n : VCLObject | lone n.~hasInsideO
}

--
-- Each 'Blob' has its own set of local invariants.
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-- Or local invariants are not shared.
fact LInvariantsNotShared {

all c : Assertion | (some lInvariants.c)
=> one lInvariants.c

}

--
-- Each 'Blob' has its own set of local constants
-- Or local constants are not shared.
fact LConstantsNotShared {

all c : Constant | (some lConstants.c)
=> one lConstants.c

}

-- Definitional blobs must have things inside.
fact DefBlobsHasThingsInside {

all b : isDefBlob.True | #b.hasInsideO > 0 || #b.hasInsideB > 0
}

--
-- Each domain blob can contain other domain blobs obly
-- and they can be inside of domain blobs only.
fact DBlobHasDBlobsInside {

all b : PrimaryBlob | b.kind = Domain
=> (b.hasInsideB) in kind.Domain && hasInsideB.b in kind.Domain

}

--=========================================================================
-- Name: 'BlobReference'
--
-- Description:
-- + Defines a blob representing a reference to a blob defined in other
-- package
-- + Reference blobs have their names preeced by the symbol '↑'
-- + Blob references have a reference to a package. The package
-- name is sepearated from the blob's name using '::'
--=========================================================================
sig BlobReference extends PrimaryBlob {
pkgId : Name
}
--=========================================================================
-- Name: 'PkgBlob'
--
-- Description:
-- + Defines a package blob
-- + Package blobs are represented in bold and double-lined.
--=========================================================================
sig PkgBlob extends BlobWithProps {
}

--=========================================================================

69



-- Name: 'PropEdgeDef' (Property Edge Definition)

-- Description:
-- + Defines properties of blobs.
-- + Relates one blob (having property) to another (type of property).
-- + A property edge has a 'Blob' as target.
-- + A property edge may have a multiplicity.
--
-- ---------- 0..*-------
-- |PropEdge|------------->|Blob |
-- ---------- target -------
--=========================================================================

sig PropEdgeDef extends SDElem {
peTarget : Blob,
mult : Mult

}
{

-- a PropEdgeDef cannot have its blob or his inside blobs as target
not (peTarget in ((this.~lProps) + (this.~lProps).^(hasInsideB)))

}

--
-- Each 'Blob' has its own set of property edge definitions
-- Or property edges are not shared. All property edges belong to some blob
fact propEdgesNotSharedAndBelongToSomeBlob {

all pe : PropEdgeDef | one lProps.pe
}

fun nameOf (elem : SDElem + Assertion) : Name {
elem in SDElem implies elem.name else elem.idAssertion
}

--
-- Local Names in the scope of a 'Blob'must be unique
--
fact LocalNamesAreUnique {
all b : Blob |
all e1, e2 : (b.lConstants+b.lInvariants+b.lProps+(b.hasInsideO))
| nameOf [e1] = nameOf [e2]

=> e1 = e2
}

--
-- All global names must be unique
fact GblNamesAreUnique {

all e1, e2 :
(Blob+(Assertion-(PrimaryBlob.lInvariants))+

RelEdge+(Constant-(PrimaryBlob.lConstants)))
| nameOf[e1] = nameOf[e2] implies e1 = e2

}

--=========================================================================
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-- Name: 'DerivedBlob'
--
-- Description:
-- + Defines a derived blob
-- + Derived blobs make use of symbol '�'
--=========================================================================
sig DerivedBlob extends Blob {

definition : BlobDef
}

--=========================================================================
-- Name: 'SDiag'
--
-- Description:
-- + Defines a derived blob
-- + Derived blobs make use of symbol '�'
--=========================================================================
sig SDDiag {
sdelems : set SDElem,

invs : set Assertion
}

B.4 Common Assertion and Contract Diagrams
--=======================================================================
-- Name: 'VCL_AD_CD_Common'
--
-- Version: 1.5
--
-- Description:
-- + This module provides definitions common to both ADs and CDs.
--==============================================================================

open VCL_Common as c

--=========================================================================
-- Name: 'Bool'
--
-- Description:
-- + Signature of booleans: 'True' or 'False'.
--=========================================================================
abstract sig Bool {}

one sig True, False extends Bool {}

--===============================================================================
-- Name: 'Decl'
--
-- Description:
-- + Defines a declaration of an assertion diagram.
--===============================================================================

71



abstract sig Decl {
}

--===============================================================================
-- Name: 'TypedDecl'
--
-- Description:
-- + Defines a typed declaration of an assertion diagram.
-- + A typed declaration has name, which represents a variable's id
-- + Typed declarations define variables, either objects or blobs
--===============================================================================
abstract sig TypedDecl extends Decl {

dName : Name, -- Name of declaration
dTy : TypeDesignator // Type of declaration

}

--=========================================================================
-- Name: 'DeclObj'
--
-- Description:
-- + Defines declarations of objects.
-- + Declarations of objects are represented as objects (rectangles).
-- + field optional indicates whether declaration is optional or not
-- + If optional is true, then '?' precedes the object's type.
--=========================================================================

sig DeclObj extends TypedDecl{
optional : Bool

}

--=========================================================================
-- Name: 'DeclBlob'
--
-- Description:
-- + Defines declarations of blobs.
-- + Blobs are represented as blobs (rectangles with round corners)
-- + If sequence boolean is true then '[]' preceedes the object's type.
--=========================================================================

sig DeclBlob extends TypedDecl {
isSequence : Bool

}

--=========================================================================
-- Name: 'DeclFormula'
--
-- Description:
-- + Defines a declaration reference formula.
-- + This enables declaration references (either assertions or contracts)
-- to be combined using logical operators.
--=========================================================================

abstract sig DeclFormula extends Decl {
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}

--=========================================================================
-- Name: 'DeclRefKind'
--
-- Description:
-- + Defines kind of a declarations reference.
--=========================================================================
abstract sig DeclRefKind {
}

--=========================================================================
-- Name: 'DeclRefKindCall', 'DeclRefKindCallNew', 'DeclRefKindCallPkg'
--
-- Description:
-- + 'DeclRefKindSimple' call to an operation defined in the same scope
-- + 'DeclRefKindCall' call to a local operation of kind 'Update' or 'Delete'
-- + 'DeclRefKindCallNew' call to a local operation of kind 'New'
-- + 'DeclRefKindCallPkg' call to an operation defined in other package
--=========================================================================

one sig
DeclRefKindSimple,

DeclRefKindCall,
DeclRefKindCallNew,
DeclRefKindCallPkg
extends DeclRefKind {}

--=========================================================================
-- Name: 'RenamingExp'
--
-- Description:
-- + Defines a renaming expression, denoted in logic as [u/y]
-- where expression u denoted as the susbtition for variable y.
--=========================================================================
sig RenamingExp {
subExp : Name, -- Substituting expression

varToSub : Name -- Variable to substitute
}

--=========================================================================
-- Name: 'DeclFormulaAtom'
--
-- Description:
-- + A declarations formula atom holds references to assertions or contracts
-- + 'refId' is the identifier of referenced assertion or contract
-- + The import is represented by the symbol '↑'
-- + Optional 'callObj' indicates a call a local operation on an object
-- represented as :"a.op".
-- + Optional field 'origin' indicates origin of the operation (blob or package).
-- + Renaming expressions represented as '[t/x,u/y]'. In Ecore,
-- 'RenamingExp' is just a String.
--=========================================================================
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abstract sig DeclFormulaAtom extends DeclFormula {
refId : Name, -- Id of referenced assertion or contract
refKind : DeclRefKind, -- Kind of reference (simple, call, new call, package)
import : Bool, -- Whether import symbol is present or not

origin : lone Name, -- optional origin (calling object, blob or package)
renameExp : set RenamingExp -- a set of renaming expressions

}

--=========================================================================
-- Name: ' DeclFormulaNot'
--
-- Description:
-- + Defines a declaration negation formula
--=========================================================================
sig DeclFormulaNot extends DeclFormula {
df : DeclFormula
}

--=========================================================================
-- Name: 'DeclFormulaBinOp'
--
-- Description:
-- + Defines a binary Formula operator for declaration references.
--=========================================================================
abstract sig DeclFormulaBinOp {
}

--=========================================================================
-- Name: DFImplies, DFAnd, DFOr, DFEquiv, DFComp
--
-- Description:
-- + Defines formulas for implication ([f1�f2]), conjunction ([f1�f2]),
-- disjunction ([f1�f2]), equivalence ([f1�f2])
-- and sequential composition ([f1�f2]).
--========================================================================
one sig DFImplies, DFAnd, DFOr, DFEquiv, DFSComp extends DeclFormulaBinOp {
}

--=========================================================================
-- Name: ' DeclFormulaBin'
--
-- Description:
-- + Defines a declaration binary formula
-- + This supports the logical operators �, �, �
--=========================================================================
sig DeclFormulaBin extends DeclFormula {

dFrml1, dFrml2 : DeclFormula,
dfop : DeclFormulaBinOp

}

--=========================================================================
-- Name: 'FormulaSource'
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--
-- Description:
-- + Defines the source of an arrows formula
-- + It cain either be: obj, blob or pair
--=========================================================================
abstract sig FormulaSource {
}

--=========================================================================
-- Name: 'FormulaSourceElement'
--
-- Description:
-- + Defines source formula of type object
-- + 'elem' indicates the 'SetElement' either object or pair
--=========================================================================
sig FormulaSourceElem extends FormulaSource {
elem : SetElement

}

--=========================================================================
-- Name: 'FormulaSourceBlob'
--
-- Description:
-- + Defines source formula of type blob
--=========================================================================
abstract sig FormulaSourceBlob extends FormulaSource {
}

--=========================================================================
-- Name: 'FormulaSourceBlobId'
--
-- Description:
-- + Defines source formula of type blob identifier
-- + 'bId' indicates identifier of the blob
--=========================================================================
sig FormulaSourceBlobId extends FormulaSourceBlob {

bId : Name
}

--=========================================================================
-- Name: 'FormulaSourceBlobDef'
--
-- Description:
-- + Defines source formula of type blob definition
-- + 'blDef' holds blob definition
--=========================================================================
sig FormulaSourceBlobDef extends FormulaSourceBlob {

blDef : BlobDef
}

--=========================================================================
-- Name: 'FormulaSourceUOp'
--
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-- Description:
-- + Defines a unary Formula operator for a formula source.
--=========================================================================
abstract sig FormulaSourceUOp {
}

--=========================================================================
-- Name: FSBCardinality, FSBDom, FSBRan
--
-- Description:
-- + Symbol of Formula source operator cardinality is #
-- + Symbol of Formula source operator domain is '�'
-- + Symbol of Formula source operator range is '�'
-- + Symbol of Formula source operator the is '�'
--========================================================================
one sig FSBCardinality, FSBDom, FSBRan , FSBThe
extends FormulaSourceUOp {
}

--=========================================================================
-- Name: 'FormulaSourceUnary'
--
-- Description:
-- + Defines source formula with unary operator
-- + Let 'O' be a blob, this construction is expressed as # [O]
--=========================================================================
sig FormulaSourceUnary extends FormulaSource {

operator : FormulaSourceUOp,
frmlSrc : FormulaSource

}

--=========================================================================
-- Name: ' DeclCompartment'
--
-- Description:
-- + Defines a declarations compartment
-- + Comprises a set of declarations and a set of decls formula
--=========================================================================
sig DeclCompartment {

decls : set Decl,
declFrmls : set DeclFormula

}

B.5 Assertion Diagrams
--=======================================================================
-- Name: 'VCL_AD'
--
--
-- Description:
-- + Module defining the meta-model of VCL assertion diagrams.
--
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--==============================================================================

open VCL_Common as c
open VCL_AD_CD_Common as d

--=========================================================================
-- Name: 'AD'
--
-- Description:
-- + Defines what an assertion diagram is.
--=========================================================================

abstract sig AD {
aName : Name,

}

--=========================================================================
-- Name: 'VAD'
--
-- Description:
-- + Defines what a visual assertion diagram is.
-- + A VAD supports the visual expression of ADs.
--=========================================================================

sig VAD extends AD {
declarations : DeclCompartment,
predicate : set Formula

}

--=========================================================================
-- Name: 'TAD'
--
-- Description:
-- + Defines what a textual assertion diagram is.
-- + A TAD supports the visual expression of an assertion using the target
-- langauge (e.g Z).
--=========================================================================

sig TAD extends AD {
txtAssertion : String

}

--=========================================================================
-- Name: 'Formula'
--
-- Description:
-- + Defines a Formula.
--=========================================================================
abstract sig Formula {
}

--=========================================================================
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-- Name: 'FormulaNot'
--
-- Description:
-- + Defines a not Formula (¬[f]).
--=========================================================================
sig FormulaNot extends Formula {

f: Formula
}

--=========================================================================
-- Name: 'FormulaBin'
--
-- Description:
-- + Defines a binary Formula.
--=========================================================================
sig FormulaBin extends Formula {

f1, f2: Formula,
bop : FormulaBinOp

}{
f1 != f2

}

--=========================================================================
-- Name: 'FormulaBinOp'
--
-- Description:
-- + Defines a binary Formula operator.
--=========================================================================
abstract sig FormulaBinOp {
}

--=========================================================================
-- Name: FImplies, FAnd, FOr, FEquiv
--
-- Description:
-- + Defines formulas for implication ([f1]�[f2]), conjunction ([f1]�[f2]),
-- disjunction ([f1]�[f2]) and equivalence ([f1]�[f2]).
--=========================================================================
one sig FImplies, FAnd, FOr, FEquiv extends FormulaBinOp {
}

--=========================================================================
-- Name: 'ArrowsFormula'
--
-- Description:
-- + Defines an arrows formula
-- + Made of predicate property edges
-- + With a source, which can either be: obj, blob or pair
--=========================================================================
sig ArrowsFormula extends Formula {

source : FormulaSource,
pes : some PropEdgePred
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}

--=========================================================================
-- Name: 'BlobFormula'
--
-- Description:
-- + Defines a 'Blob' formula.
--=========================================================================
abstract sig BlobFormula extends Formula {
}

--=========================================================================
-- Name: 'BlobFormulaDef'
--
-- Description:
-- + Defines a 'Blob' formula using a blob definition (symbol �)
--=========================================================================
sig BlobFormulaDef extends BlobFormula {

shaded : Bool, -- blob may be shaded to mean empty set
bid : lone TypeDesignator,-- the optional blob designator
bdef : BlobDef -- the blob definition

}

--=========================================================================
-- Name: 'BlobFormulaSubset'
--
-- Description:
-- + Defines a 'Blob' formula defined using a subset definition.
--=========================================================================
sig BlobFormulaSubset extends BlobFormula {

bid : TypeDesignator,
hasInside : BlobExpression

}

--=========================================================================
-- Name: 'BlobFormulaShaded'
--
-- Description:
-- + Defines a 'Blob' formula defined using shading.
--=========================================================================
sig BlobFormulaShaded extends BlobFormula {

bid : TypeDesignator
}
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