ni. I LRSS

Laboratory for Advanced Software Systems

The Type System of VCL Structural and Assertion
Diagrams

Nuno Amalio
Laboratory for Advanced Software Systems
University of Luxembourg
6, rue R. Coudenhove-Kalergi
L-1359 Luxembourg

TR-LASSY-11-04

Version Date Description

0.1 22/04/2011 1st release with type system of structural and assertion diagrams

0.2 23/03/2012 Updated type system of structural and assertion diagrams

0.3 12/06/2012 Updated with section and proofs of information preserving isomorphism
between metamodels and grammars.

0.4 15/02/2012 Updated diagrams to meet new concrete syntax. Added Quantifiers.

Table 1: Document Revision History

Contents

L

Introductioﬂ

|!.1 Background: The Visual Contract Language (VCLY.

1.1.1 VCL Diagramg
1.1.2 VCL Syntax and Semantics’

|I .2 Outlind ...

2

Running Exampld

E Svntag

B.l Metamodelé
3.1.1 Common e

3.1.2 Structural Diagrams
3.1.3 Assertion Diagrama

B.Q Grammarﬂ ..

o

From Metamodels to Grammars and Bac
1.1 Overall settingl L . e e e e e

4.2 VCL Syntactic Isomorphismd o

Ig.2.1

Proofs for the SD partl
Proofs for the AD par

B

Type Svsterd

.1 _Types and Environmentsi

b.2 Base Ruled
5.3 Common Rules

5.4 Rules for Structural Diagrams
5.5 Rules for Assertion Diagrama

A.3 Auxiliary Functions]

A.3.1 Function getGTupd . o o o oo oo oot e e
A.3.2 Functions producing variable environments (VEs).
A.3.3 Function getDAl e e
A.3.4 Functions to extract information from ADE{

S Ot ot ot O

A.3.5 Functions for AD lookud 39
A.3.6 Functions for substitutiondo Lo 39

A.3.7 Function getSIdFrScalarOrCollectz’m{ 40

IB Alloy Metamode 5’ 41
B.1 VCL Common v it et e e e e e e e e e 41
B.2 BoolModuld 50

B.3 VCL Structural Diagramg 51
B.4 VCL Assertion Diagrama 56

66
A Commonl e e e e 66

i 66

93

94

110

.3 Assertion diagram

.3.1 73 Outpu

Chapter 1

Introduction

This document present a type system for the Visual Contract Language (VCL) [AK10, AKMG10],
covering structural and assertion diagrams. This formalises a typed object-oriented system
with subtyping. This type system has been implemented in the VCL tool, the Visual Con-
tract Builderd [AGK11]. The following gives some background on VCL and an outline of the
overall document.

1.1 Background: The Visual Contract Language (VCL)

VCL [AK10, AKMG10, AGK11] is a formal language for the abstract modelling of software de-
signs. Its modelling paradigms are set theory, object-orientation and design-by-contract (pre- and
post-conditions). VCL’s distinguishing features are its capacity to describe predicates visually
and its approach to behavioural modelling based on design by contract.

VCL’s semantics is based on set theory. Its semantics definition takes a translational ap-
proach. Currently, VCL has a Z semantics: VCL diagrams are mapped to ZOO [APS05, Am&07],
a semantic domain of object orientation for the language Z [Spi92, [SO02].

1.1.1 VCL Diagrams

A VCL model is made up of diagrams of different kinds. VCL’s diagram suite comprises: pack-
age, structural, behaviour, assertion and contract diagrams. Package diagrams (PDs) define VCL
packages, coarse-grained modules, and their dependencies with other packages. Structural di-
agrams (SDs) define state structures and their relations that together make the state space of
a package (e.g. Fig.) Behaviour diagrams (BDs) provide a map over the behaviour units
of a package. ADs define predicates over a single state, which are used to define invariants and
query operations (e.g. Figs. to) Finally, contract diagrams (CDs) describe operations
that change state through a contract (a pre- and a post-condition). The type system presented
here cover SDs and ADs only.

1.1.2 VCL Syntax and Semantics

VCL’s semantic domain is detailed in [APS05]. Briefly, syntax and semantics of SDs and ADs
are as follows:

Thttp://vcl.gforge.uni.lu/

http://vcl.gforge.uni.lu/

e All rounded contours in Fig. are sets (or blobs). Objects are represented as labelled
rectangles; they are atoms, members of a set of possible objects.

e Ina SD, a set can either be value or class. In Fig. , Customer and Account are classes,
and all others are value sets. Value sets represent values; class sets (like OO classes)
represent objects with identity.

o Property edges are represented as directed arrows. In a SD, property edges define properties
shared by all objects of a set (e.g. custNo, accNo and balance in Fig.)) In ADs,
property edges are used to state predicates that relate the source set or object with some
target expression.

o Relation edges are labelled directed lines; direction is indicated by arrow symbol above the
line (e.g. Holds in Fig.)

e SDs define state spaces. ADs describe assertions (conditions or predicates) on a state space.
A global (or package) state is a collection of object states, together with states of relation
edges. Object states are functions that map object identifiers to their states; there is such
a function for each class set. Semantically, a relation edge is a binary relation; it denotes
a set of tuples.

1.2 Outline

The remainder of this document is as follows:

e Chapter E presents the running example that is used to illustrate the type system presented
here.

e Chapter E presents the syntactic descriptions of VCL structural and assertion diagrams,
from which the type system is defined.

e Chapter H discusses the mapping from metamodels to grammars for the purpose of defining
the type system, showing that this mapping is sound.

e Chapter a presents the actual type system of VCL structural and assertion diagrams.

o Appendix @ presents the auxiliary definitions that are used to describe VCL’s type system
presented here.

o Appendix E presents the VCL metamodels describe using the Alloy formal modelling lan-
guage.

e Appendix @ presents the Z3 encondings for the graphs of metamodels and grammars to-
gether with the results of the isomorphism proofs.

Chapter 2

Running Example

This paper’s running example is the Simple Bank case stud [AKlO]El. Figure @ give several
diagrams of this case study’s VCL model. The SD (Fig.) is as follows:

e The two class sets, Customer and Account, represent, respectively, bank customers and
bank accounts.

e Value sets CustId, Name and Address represent, respectively, sets of identifiers, names and
addresses of bank customers. CustType defines the possible types of customers (a defini-
tional set, symbol (0): constant objects corporate and personal. AccID represents set of
account identifiers. Int (a primitive set) represents the integers. AccType (a definitional
set) represents the possible kinds of accounts: constant objects savings and current.

o Relation-edge Holds relates customers and their accounts. Assertions (elongated hexagons)
identify invariants, which can either be local (linked to a set) or global (not linked).

Local Account invariant SavingsArePositive (Fig.) says, using an implication formula,
that savings accounts must be positive. This AD results in the Z predicate: aType = savings =
balance > 0. The same invariant is described globally using a set formula in Fig. ; this says
that the set of negative savings accounts (inner set) must be empty (shading). This results in
the Z predicate:

{0 : sAccount | (stAccount 0).aType = savings A (stAccount o).balance < 0} = @

sAccount is set of all existing account objects; stAccount is a function mapping account objects
to their states.

Global invariant CustIdsUnique (Fig.) says that customer identifiers are unique. The
AD says this using a quantifier formula: for all pairs of distinct customer objects, their customer
numbers must also be distinct. This results in the Z predicate:

Vcl, 2 : sCustomer o ¢l # ¢2 = (stCustomer cl).custNo # (stCustomer c2).custNo

Global invariant CorporateHaveNoSavings (Fig.) says that corporate customers cannot
have savings accounts. The AD builds a set by restricting relation Holds using property edge
modifiers (edges with double-arrow): the domain is restricted to the set of corporate customers

LA tutorial using this case study is available at http://vcl.gforge.uni.lu/SBDemd.

http://vcl.gforge.uni.lu/SBDemo

O CustType

‘AcclD]
Int

aceNp

balange

Account

O AccType

SavingsArePositive @

(a) Structural Diagram

Bank::Account.SavingsArePositive

Bank: SavingsArePositive2

Bank:CustidsUnique

(=]
-

(b) A local invariant

(2]

balance [<]

(c) A global invariant

custNo [#]
c2.custNo

Bank::CorporateHaveNoSavings

Bank::HasCurrentBefSavings

(d) A global invariant

| custsCurr : Customer | custsSav : Customer !
N RN J

Bank::AccGetBalance

O = custsCurr

Bank::Account.GetBalance

—~0

Holds

cType [=]
corporate

aType []

(e) A global invariant

O = custssav

—0

atype (=) -
savings

custsSav

custsCurr

aNo?:AcclD | GetAccountGivenAccNo @)

a

- -
*).balan(e

Bank::GetAccountGivenAccNo

(g) A local Operation (h) A global Operatio:

Em— aceNo [=]
Account aNo?

Figure 2.1: Sample assertion diagrams of the simple bank VCL model

(f) A global invariant

(i) A global Operation

(symbol <1); the range to the set of savings accounts (symbol >). The outer set is shaded to say
that this constructed set must be empty. The resulting Z is:

({o : sCustomer | (stCustomer o).cType = corporate}
< rHolds) > {o: sAccount | (stAccount 0).aType = savings} = &

Here, < and > are domain and range restriction relation operators.

Global invariant HasCurrentBefSavings (Fig.) says that customers must have a current
account before opening a savings account using a subset formula. This involves building two
auxiliary sets (respectively): (a) set of customers with current accounts (local or hidden variable
custsCurr) and (b) set of customers with savings accounts (local or hidden variable custsSav).
Both sets are built similarly by taking the domain (symbol) of Holds restricted on the range.
AD of Fig. imports the auxiliary ADs (represented as assertions) and says that custsSav
is a subset of custsCurr; as custsSav and custsCurr are not declared in Fig. , they are
internal variables hidden to the outside world. The Z resulting from Fig. R.1{ is:

—_ BankHasCurrentBefSavings0
BankGblSt
custsCurr : PO CustomerCl
custsSav : PO CustomerCl

custsCurr = dom (rHolds > {0 : sAccount | (stAccount o).aType = current})
custsSav = dom (rHolds > {o : sAccount | (stAccount 0).aType = savings})

custsSav C custsCurr

BankHasCurrentBefSavings == BankHasCurrentBefSavings0 \ (custsCurr, custsSav)

Above, variables custsSav and custsCurr are hidden using the \ Z operator.

In VCL, queries are defined using ADs, which can be local or global. Often, global operations
are built from local ones. Local operation Account.GetBalance (AD of Fig.) retrieves the
balance of some account object and stores it in output variable bal!. Global operation AccGet-
Balance (Fig. R.1h) retrieves some account balance given some account number (input aNo?); this
involves obtaining the object account (a!) associated with aNo? through operation GetAccount-
GivenAccNo (Fig,) and then retrieving the account’s balance using Account.GetBalance.
The 1 symbol says that variables, and not only the predicate, are imported; this means that
output bal! is defined also in AccGetBalance.

This running example highlights the utility of typing. For instance, in AD of Fig. t

would be useful to check that Holds, Customer and Account are sets defined in SD of Fig. ,
that the operators <1 and > are applied correctly, and that the properties cType and aType exist
and are applied correctly with respect to the operator =. Similarly for the remaining ADs.

Chapter 3

Syntax

This chapter presents the syntax of VCL structural and assertion diagrams in terms grammars
and class metamodels. The metamodels are the primary representation; metamodels are the
basis for constructing the graphical parsers of VCL’s tool. The grammars are used to describe
the type system; in the implementation the grammar representation is used for type-checking
and translation to Z.

3.1 Metamodels

The metamodels of the VCL notations presented here have been defined in the Alloy specification
language [Jac06]. They are given in appendix [B. Here, we present these metamodels using UML
class diagrams, which partially describe what is described in Alloy: the Alloy describes constraints
that are not describable using class diagrams.

The Alloy metamodels of VCL package, structural and assertion diagrams comprises the fol-
lowing modules: common (section @), structural diagrams (section B.3) and assertion diagrams
(section). The following class diagrams describe each of these modules.

3.1.1 Common

The metamodel of the part that is common to both SDs and ADs (Fig. @), corresponding to
the Alloy module of section , is as follows:

o Several constructions have a name attribute; the metaclass (Name, bottom-left) denotes all
names of a VCL model. Several constructions use the type designator (TypeDesignator,
bottom-left). A type designator can either denote the set of natural numbers (TypeDesig-
natorNat), the set of integers (TypeDesignatorInt), or some set defined by a blob or
relation edge and denoted by their identifier (TypeDesignatorId).

e A property edge (PropEdge) can either be of type predicate (PropEdgePred) or modi-
fier (PropEdgeMod). PropEdgePreds comprise a unary and binary operator (wop and bop
association-ends), an instance of EdgeOperatorUn and EdgeOperatorBin, respectivelly, a
target Expression (target association-end) and an optional designator (attribute desig-
nator) to refer to some property of a blob. A PropEdgeMod comprises a modifier operator
(mop association-end) an instance of EdgeOperatorMod.

10

SetExtension

SetDefOp
[VCLObject | Pair [__ConstrainedSet | | InsideExpSDs |—|>| SetInsideExpression | ggl\'\/?égl
id : Name idElem1 : Name [desig : TypeDesignator | ¥ SideExp e
idElem2 : Name -INTSERSECTION
[PropEdgePred pes |{ordered} {ordered} \ -CROSSPRODUCT
[designator [0..1]: Name * target setDefs,——l sdop |-SETMINUS
uop o~ PropEdge |&——>| Expression : SetDef -EEII_E%OMP
EccfsgperatorUnary A A def \ RRES
=t -DSUB
NONE bop PropEdgeMod SetExpression SetExpressionDef | | -RSUB
- mop : SetDefOp -RIMG
Ecg;eOperatorBin -NONE
-E
-NEQ SetExpressioniD | A |
AN FR o BN SetExpressionCard
-LT
LEQ SetExpressionEmpty |
-GEQ FreeExpld [>| FreeExpression
-SubsetEQ oid : Name
num e FreeExpBinOp
IEI FreeExpNum I\P/|I|l:18us
FreeExpBin s
- FreeExpUMinus [e— bop |
| TypeDesignatorint | -Div

$ [TypeDesignatorld | idFr?\T:r:sDOt

setld : Name FreeExpPar | | propld :Name

| TypeDesignatorNat |

TypeDesignator

Figure 3.1: The common metamodel

o A modifier edge operator (EdgeOperatorMod) is an enumeration comprising the operators:
domain restriction (DRES, <), range restriction (RRES, >), domain subtraction (DSUB,),
range subtraction (RSUB,) and relation image (RIMG, []). A predicate edge operator is
enumeration comprising the operators: equality (EQ, =), difference (NEQ, #), set member-
ship (IN, €), less then (LT, <), less or equal then (LEQ, <), greater then (GT, >), greater
or equal then (GEQ, >), and subsetting (SubsetEQ, C).

o There are two kinds of expressions: object (ObjExpression), represented as objects (rect-
angles), and set (SetExpression), represented as blobs (rectangles with rounded corners).
An object expression can either be: an identifier (ObExpId); a number (ObjExpNum); a unary
minus expression (0bjExpUMinus), comprising another expression (exp association-end); a
binary object expression, comprising two expressions (association-ends expl and exp2) and
an infix operator (bop association-end); or a parenthesised expression, comprising another
expression (exp association-end). A binary object-expression operator (0bjExpBinOp) is
an enumeration comprising the operators: Plus (+), Minus (—), Times (%), and Div (div).

e A SetExpression can either refer to some existing set (SetExpressionId), denote the
empty set (a blob that is shaded), be a cardinality operator applied to another set expression
SetExpressionCard, or be a set definition (SetExpressionDef). A SetExpressionld
comprises a designator of the set being referred (attribute desig). A SetExpressionCard

11

elements N invariants
*|_SDElem | Assertion
SDiag (e name : Name (Common)
A/

*1 linvariants

RelEdge
multS : Mult

multT : Mult
target source

type : TypeDesignator TypeDesignator
* Constants (Common)

PropEdgeDef
[mult: Mult |

. SetDefObject

haslnsideO

. kind
definition Setkind ConstantKind
SetDef ouin -Reference

(Common) [UBoundint | g?algg -Definition
| Mult | MOneToMany| Ib EI val Int

MRange I%| UBound |<]—| UBoundStar

DerivedSet

| MSeq | | MOne | | MOpt | | MMany |

Figure 3.2: The metamodel of VCL Structural diagrams

is the cardinality operator applied to another set expression (sExp association-end). A
SetExpressionDef comprises a set definition (association-end def), an instance of SetDef.

o Set definitions (SetDef) are defined by the things they have inside. They comprise an
inside expression (insideExp association-end), representing the expression placed inside
the blob, and by a set definition operator (sdop association-end). A set definition operator
(SetDef0p) is an enumeration defining the operators Domain (symbol +), Range (symbol
—), Union (symbol U), Intersection (symbol N), CrossProduct (symbol X), SetMinus
(symbol \) or None (no operator).

o A set inside expression (SetInsideExpression is either an inside definition (InsideDef)
or a sequence of set definitions (InsideExpSDs). A InsideExpSDs comprises a sequence
of set definitions (setDefs association-end). An InsideDef is an abstract class, which
comprises either a SetExtension or a ConstrainedSet. A ConstrainedSet represents
a set constrained with an ordered collection of property edges (association-end pes). A
set extension (SetExtension) represents a set defined extensionally by a set of elements
(association-end elems), which are instances of SetElem.

o A SetElem is represented visually as a rectangles; it can either be a VCLObject (a member
of set) or a Pair (a member of a relation). A VCLObject comprises a name (the name of
the object); a Pair comprises a pair of names.

3.1.2 Structural Diagrams

The metamodel of VCL structural diagrams (SDs) (Fig. @)7 corresponding to the Alloy module
of section , is as follows:

o A SD (SDDiag) is made of structural elements (SDElem) and invariants (Assertion). A
SDElem can be a relation edge (RelEdge), constant (Constant) or set (Set).

12

e InaSD, an Assertion represents an invariant. If they belong to the overall SD (association-
end invariants) they represent global invariants; if they are connected to a set (association-
end 1lInvariants), the invariant is local to the set.

o A relation edge (RelEdge), or association, represents an edge between two sets: the source
and the target. It holds two attributes to record the multiplicities attached to source and
target (multS and multT).

o Like invariants, constants (Constant) are global if they are not connected to any set and
local otherwise (association-end 1Constants).

o A set can be primary (PrimarySet), derived (DerivedSet) or one of the sets corresponding
to primitive types: integers (IntSet) or natural numbers (NatSet).

o A derived set has a name (attribute id) and is associated with a set definition (SetDef,
defined in common metamodel).

o A primary set has a kind (SetKind), indicating whether the set is Class or Value. A pri-
mary set comprises a set of local constants (association-end 1Constants), a set of local in-
variants (association-end 1Invariants), and a set of property edge definitions (association-
end 1Props). A primary set may have other primary sets and objects inside (association-
ends hasInsideSet and hasInside0).

o A property edge definition (PropEdgeDef) has a set has the edge’s target (association-end
peTarget) indicating the type of the property, and a multiplicity constraint (attribute
mult).

o Multiplicities (Mult) are attached to relation edges and property edge definitions. A mul-
tiplicity can either be single (MOne), optional (MOpt), sequence (MSeq), multiple with 0 or
more (Many), multiple with at least one (MOneToMany), or be defined as a range (MRange)
comprising a lower and an upper bound (association-ends ub and 1b).

3.1.3 Assertion Diagrams

The metamodel of VCL assertion diagrams (Fig. @), corresponding to the Alloy module of
section , is as follows:

o An assertion diagram (ADiag) comprises a name (aName), a set of declarations correspond-
ing to the declarations compartment (declarations association-end), and a set of formulas
corresponding to the predicate compartment (predicate association-end).

o A declaration (Decl) can either be a typed declaration (TypedDecl) or a declaration formula
(DeclFormula). A typed declaration has a name (dName) and a type (dTy), and it can
either be a declaration of an object (Decl0bj) or the declaration of a set (DeclSet). The
sequence attribute of DeclSet indicates whether the set is a normal set (value false) or
a sequence (value true). The optional attribute of Decl0bj indicates whether the object
is optional or not.

o A formula (Formula) can either be a negation formula (FormulaNot), a binary formula
(FormulaBin), an arrows formula (ArrowsFormula) or a set formula (SetFormula).

13

FormulaSourceElem

[elem : SetElement

PropEdgePred
(Common)

>

source

[FormulaNAry | pes FormulaSourceSet

N FormulaSourceUnary

[operator : FormulaOp | ¢ 4

ArrowsFormula

F laS SetDef t
[FormulaSourceSetld | | ormulasourcesetbe | operator
['setld : Name | ¢ FormulaSourceUOp
setDef ~Cardinality

i -Domain
redicate SetDef
P (Common) '_F;snge

-The
Formula setdef

SetFormulaDef
shaded : Boolean
setld [0..1] : TypeDesignator

*

gKind decls,| {ordered} [FormulaSubset |

setld : TypeDesignator
QuantifierKind QDecl l 'y II SetFormulaShaded |
“ForAl hasinside LSetld : TypeDesignator |

-Exists SetExpression DeclObj
(Common) optional : Boolean

*
ADiag . *\ vars
[aName : Name j&——————>

VarDecl
decls dName [*]: Name

ﬂi
o
8
(7
BE

dTy : TypeDesignator
isHidden : Boolean EormuIaOp
-implies
-and
DeclFormulaAtom _3?
refld : Name N RenamingExp -equiv
ingSet : Name subExp : Name
[DeclFormulaNAry |——>| DeclFormula [<}——— °WNiNg< ' -seqcomp
[dfop : FormulaOp | callobj : Name renameExp varToSub : Name -not

dFrmls import : Boolean

Figure 3.3: The metamodel of VCL assertion diagrams

o A negation formula (FormulaNot) comprises another formula corresponding to the formula
being negated (frml association-end). A binary formula (FormulaBin) comprises two for-
mulas corresponding to the formulas being combined (frml1 and frml2 association-ends),
and an operator (bop attribute). A binary formula operator (FormulaBinOp) can either be
an implication (implies), a conjunction (and), a disjunction (or), an equivalence (equiv)
or be a sequential composition (seqcomp).

e An arrows formula (ArrowsFormula) comprises a set of predicate property edges (pes
association-end).

o A set formula (SetFormula) can either be a subset formula (FormulaSubset), a shaded
blob formula (SetFormulaShaded) or a set definition formula (SetFormulaDef). A subset
formula (FormulaSubset) corresponds to the situation where one set is placed inside an-
other to denote the subset relationship; it has a set identifier (attribute setId) and a set
expression to denote the inside set (hasInside association-end). A shaded set formula cor-
responds to the situation where some set is shaded; it comprises a set identifier (attribute
setId). A definition set formula (SetFormulaDef) comprises a SetDef (association-end
setdef) from the common metamodel (Fig. @), it can be shaded or have an identifier
(either one or the other).

14

o A declarations formula (DeclFormula) can either be a declarations formula atom (Decl-
FormulaAtom), which comprises a declaration reference, a negated declaration formula
(DeclFormulaNot), which comprises the declarations formula being negated, or a binary
declaration formula (DeclFormulaBin), which comprises an operator (DeclFormulaBinOp)
and two declarations formulas.

e FormulaSource represents the source of a predicate formula. This source can either be a
set element (FormulaSourceElem), which comprises a SetElement (defined in Common,
Fig.), a set (FormulaSourceSet) or a be some unary operator applied to a formula
source FormulaSourceUnary.

3.2 Grammars

The following presents the grammars of VCL structural and assertion diagrams; they are equiv-
alent to the visual metamodels presented above.
The grammars use the following operators:

e T for zero or more repetitions of x;
« 7! for one or more repetitions of x;
e z | y for a choice of x or y;

e [z] for an optional x.

In addition,

e 7c for some character symbol ¢ means zero or more occurrences of x separated with c;
——1 . .

e 7Zc- for some character symbol ¢ means one or more occurrences of x separated with c;

Symbols are set in bold type when they are to be interpreted as terminals to avoid confusion
with grammar symbols. We introduce two syntactic sets, representing terminals: the set of
identifiers Id, and the set of numeric constants (Num).

15

SD SD STRUCTURES: SDE INVARIANTS: A

SDE := C|RE] Set
C == wconstld : TD
TD == Int| Nat|Id M = opt | one | some | many
O == object [Id | self] | seq | Num .. (Num | *)
P == pair ([Id | self], [Id | self]) RE = relEdge Id (M TD, M TD)
SE == O|P SK = value | class
A = assertion I|d Set = PSet | Id <> SDef
PE == (PEP|PEM) TExp PSet = setldSK[O]{ C PED 4}
PEP := UEOp [.Id] BEOp [hasin {(O | PSet)}]
UEOp == #|°|elems|e¢ PED := Id—MTD
BEOp | >| |é|‘ E <1< (b) Structural Diagrams
PEM = [SOp]= AD := AD Id [:Id] DECLARATIONS: D PREDICATE:
TExp == FExp | SExp D .= VD|DF
FExp == :d | SeIT | [Id | self].ld VD == [hidden] DV Id, : TD
Num | —FExp o . s
| FExp FEOP FExp D\é = I[gp/t]lgb’ea | set | seq
| (FBxp) DFA == [f] assertion [Id —] [Id .] Id [R]
FEOp == + | —]*|div DF :— DFA | FOp[DF]
SExp = set TD | set iden | SDef T P
| set shaded FOop = =]efn[vI- e
| UEOP SExp F u= AF|SF|FOp[F]|QF
SDef == set O SOp hasin {IExp} AFS u= SE|AFSS | FSOp AFS
- AFSS = setId | SDef
SOp = <+« | = |Nnjulx]|\|® FSOp = # |« |—|e
< l>la] o] DL AF = AFS { PEP }
IE == IDef | SDef; o
P ef | efi,l ——1 SF = |[shaded] [Id] SDef | set shaded TD
IDef = setTD { PE } | SE ‘ set TD hasln {SEXP}
(a) Common Syntax QF == QD, e F;
QD = (Y|3) VD

(c) Assertion Diagrams

Figure 3.4: Syntax of VCL Structural and Assertion diagrams

16

Chapter 4

From Metamodels to Grammars
and Back

This chapter demonstrates that metamodel and grammar representations of chapter E are equiv-
alent, which means that it is straightforward to go from one representation to the other. This
is important because the type system presented in the next chapter is defined on the grammar,
but the graphical editors of VCL’s tool are based on metamodels. This chapter shows that this
approach based on these two representations is sound.

4.1 Overall setting

In [EEPTO6], a graph is defined as a tuple G = (V| E, s, t), where V is a set of nodes, E is a set
of edges, and s, t : E — V are the source and target functions, respectively, assigning to each
edge a source and a target node. A metamodel is actually a typed graph [EEPTO06], but this
does not concern us here. We are interested in going from the metamodel to the grammar.

A grammar (in our context, a context-free grammar) is defined as the tuple Gr = (V, %, S, P),
where V is a set of non-terminals, 3 a set of terminals, S is the starting symbol (it is a member of
V) and P is a set of grammar rules or productions. The abstract syntax induced by a grammar
can be represented as a graph (a special kind of graph, a tree), where the nodes are the terminals
and non-terminals of the grammar, the root node of the tree is the starting symbol, and the
edges represent the dependencies between terminal and non-terminals of the grammar as defined
by the grammar’s productions.

The approach presented here requires the construction of a graph-isomorphism between
graphs of metamodel and abstract syntax tree. This ensures that we can go from the metamodel
to the grammar in a way that preserves the information of the metamodel and back. Given
graphs G; = (Vi, E;, s;,t;), a graph-morphism is defined as (from [EEPTO06]), f : G — G2,
where f = (fv, fg) consists of two functions fy : Vi — Vs and fg : By — FE5 that preserve the
source and target functions (that is, fy o 1 = ta o fg). f is called isomorphic if both functions
fv and fg are bijections (both injective and surjective).

4.2 VCL Syntactic Isomorphisms

To show that that metamodel and grammar representations are equivalent, we need to show that
there is an information-preserving isomorphism between the metamodels of common (Fig. B.1)),

17

SDs (Fig. @) and ADs (Fig.) and the corresponding grammars of common (Fig.), SDs
(Fig. B.4H) and ADs (Fig.), respectively. These proofs are performed using the Z3 theorem

prover [AMBOS&]Y; this involved encoding in Z3 the graphs of metamodel and grammar and all
required theorems to prove. Z3 proves automatically all required theorems. The Z3 enconding
of graphs and required theorems is given in appendix (.

4.2.1 Isomorphism Theorems and their Proofs

For each pair metamodel and grammar, several theorems need to be proved to demonstrate the
existence of the information-preserving isomorphism as defined above. Let, Gy and Gg, be
the graphs of metamodel and grammar respectively, such that: Gy = (Vs Evig, Svaas tanr)
and Ggr = (Var, Egr, Sar, tar). The two mapping functions of the isomorphism are: fy :
Vv — Var and fE cFEym — Egr.

In the Z3 prover, the following theorems are proved. The source and target functions of both
graphs must be total:

YV emm : Exar @ 3vmm : Vg © sy (emm) = vmm
YV emm : Exar ¢ 3vmm : Vs © tum (emm) = vmm
Vegr: Egr @ Jvgr: Vg, e SGT(EQT‘) = vgr
Vegr: Eg- @ Jvgr: Vg, e tar(egr) = vgr

The mapping functions must be totalE:

Youmm : Vyu @ Jugr @ Var e fy(vmm) = vgr
Yemm : Exy @ egr: Egr ® fg(emm) = egr

The mapping functions must be injective:

Y vmma, vmma : Vi ® fv(vmma) = fv(vmma) = vmma = vmms
Y emma, emms : Eyy o fr(emma) = fg(emme) = emmi = emma

The mapping functions must be surjective:

Yugr: Vg, @ Juvmm : Vg e fy(vmm) = vgr
Vegr: Eg- @« 3emm : Eyu o fg(emm) = egr

All required Z3 encondings of graphs and theorems are given in appendix B

Proofs for the common part

There is a direct isomorphism from the metamodel of common (Fig. @ to the corresponding
grammar (Fig.) Further details of the Z3 proof are given in section [C.1.1].

Proofs for the SD part

The SD metamodel of Fig. @ requires a transformation into a another metamodel so that it
is then possible to obtain a direct isomorphism. The transformed metamodel of SD that is
isomorphic to the grammar of Fig. M is given in Fig. @ Further details of the Z3 proof for
the transformed metamodel are given in section .

Thttp://research.microsoft.com/en-us/um/redmond/projects/z3/

2In 73, all functions definitions are total. To prove totality for the mapping functions in Z3, we resorted to
a trick based on a special node called Null. The mapping functions are defined using Z3’s ite (if-then-else)
construct with the ultimate else being an assignment to the special Null node. A function is total provided there
is one assignment to Null.

18

http://research.microsoft.com/en-us/um/redmond/projects/z3/

TypeDesignator *_Vinvariants
(Common) elem*ents Assertion
SDiag [e SDElem (Common)
soxce
target * linvariants
RelEdge
name : Name Constant
multS : Mult name : Name
multT : Mult type : TypeDesignator
* /NMConstants
_ VCLObject
DerivedSet . (Common)
name : Name
PrimarySet > * 1 haslnsideO
* name : Name
def T ’\F;ILTtpEdgeDef IProps isDef : boolean]
SetDef peTa.r et : TypeDesignator klr]d
(Common) get: 9 haslInsfdeSet SetKind
-g?lue | UBoundStar |
-Class
| MOne |—|>| Mult | MOneToMany | A/
ub 3

o

UBoundNum
val : Num

Figure 4.1: The transformed metamodel of SDs that is isomorphic to the grammar
Proofs for the AD part

There is a direct isomorphism from the metamodel of ADs (Fig. @) to the corresponding
grammar (Fig.) Further details of the Z3 proof are given in section .

19

Chapter 5

Type System

This chapter presents the type system of VCL structural and assertion diagrams. It starts by
defining VCL'’s types and typing environments (section @)

5.1 Types and Environments

A variable environment (VE) denotes a set of bindings, mapping identifiers to their types:

VE==1I1d+T

VCL’s types (set T) are as follows:

T == Int|Nat|Null| Pow T |Seq T | OptT| Top | Obj| Set Id | Pair (T, T)
| Assertion [VE,, VE;]

Here, (a) Int represents the integers, (b) Nat the natural numbers; (c) Null represents erroneous
results (implementation only); (d) Pow T represents a powerset of some set; (e) Seq T represents
a sequence of some type; (f) Opt T represents an optional (either it exists or is empty); (g) Top is
a maximal type (type of all well-formed terms); (h) Obj is the maximal type of all well-formed
objects; (i) Set represents primary sets; (j) Pair represents a cartesian product of two types; (k)
Assertion represents assertions (variable environments indicate assertion’s variables, which are
either visible, VE,, or hidden, VE}).

VCL’s type rules use and manipulate environments (set £ below), which are made of three
components: (a) variable, (b) set and (¢) subtyping. Variable environments give the type bindings
of some scope. Set environments (SE) map identifiers to a triple made up of the set’s kind (value
or class), definitional status (DK) and local variable environment. Subtyping environments (set
SubFE) are the subtyping relations between types:

SK ::= value | class

DK ::=def | notDef

SE == 1d + SK x DK x VE
SubE == T < T

E == VE x SE x SubE

We introduce the following conventions:

20

Table 5.1 Judgements associated with the base rules of VCL’s type system

E-T T is well-formed type in £

EFHET) < Ty T1 is a subtype of T in E

Er-ld:T 1d is well-formed identifier of type T in F

ErIdg,.Idy : T 1d; is well-formed local identifier of set Ids with type T in F

Table 5.2 Basic VCL typing rules

(Ty Id) (Type) (Ty LId)
EvSetld, Id, € dom(E.SE (Id)).VE
E.VE(Id)=T T =Setld= Id € domE.SE E® (E.SE (Id,)).VE+-Id, : T
EFId: T EFT EFId,.Id;: T

I =~
e X and X denote, respectivelly, a sequence and a set of some set X.

e FEy is an empty environment. F.VE, E.PE, E.SE and E.SubE denote the different com-
ponents of F.

e Id: T and Id — (SK, DK, Id, VE) are type (VE) and set (SE) bindings. T; <: T» says
that T is a subtype of Ts.

¢ Disjoint environments are combined using Fy, Ep; similarly for other types of environments.
Bindings are added to an environment using F, Id : T'; similarly for other types of bindings.
E & VFE means that the environment F is overridden with the set of type bindings VE;
similarly for other types of bindings. These operators are defined precisely in appendix .

5.2 Base Rules

The base type rules of VCL’s type system manipulate environments and define subtype relations.
The judgements are listed in table b.1. The first judgement asserts that the type T is well-formed
in the environment E. The second judgement asserts that the type T is a subtype of T3 in the
environment E. The third judgement says that Id is a well-formed identifier with type T in E.
The fourth judgement asserts the well-formedness of a set-property access; it says that property
1d; of set named Id, has type T in F.

Table lists basic rules concerning types. Rule Ty Id says that some identifier yields type T
provided the variable binding is defined in the variable environment (E. VE). Rule Type describes
the conditions for some type to be valid in some environment E: set types are valid provided
their identifiers are defined in the set environment; all remaining types are valid. Rule Ty LId
yields the type associated with some local identifier Id; of some set Ids; the rule checks that
the set type is defined and then retrieves the type of the local identifier from the set’s variable
environment.

Table @ lists basic subtyping rules. Rule Sub Ty checks whether some type is a subtype of
another; this amounts to check that both types are defined and that the subtyping tuple belongs
to the environment’s set of subtypes (F.SubE). Rules Sub Refl and Sub Trans says that the
subtyping relation is both reflexive and transitive. Rule Subsumption is the subsumption rule
that says that if some variable has type T4, and if T4 is subtype of Tz then the variable also

21

Table 5.3 Basic VCL sub-typing rules

(Sub Ty) (Sub Refl) (Sub Trans) (Subsumption) (Sub Top)

E-Ty E-T, EFTy<: Tg EFT:Ty

(Ty, To) € E.SubE EFT ErTs<:Tec EF Ta<:Ts EFT
EFETy <: T E-FT<T EFTa<Tc EF-I:Tp EFT <: Top

(Sub Oby) (Sub NatInt) (Sub Pow) (Sub Seq)

E+Set Id, EFTy < Tp EFTa<: Tp
EtrSetlds <: Obj EFNat<:Int FEFPowTs <:PowTp FFSeqTs <:SeqTs
(Sub Opt) (Sub Opt PSet) (Sub Pair)

Er-Ts<: Tp Er-Ts<: Tg EFTa <: Tao Er Tgy <: Tpo

EtOptTa<:OptTp FEFOptTa<:Pow Tp EFPair (Ta1, Tp1) <: Pair (Taz, Ts2)

Table 5.4 Judgements of syntactic constructions common to VCL ADs and SDs

EFYTD : T TD is well-formed type designator with type T in F

EH'A - Ald: T A is well-formed assertion with identifier Ald and type T in FE
EF“SE: T SE is well-formed set element with type T in F

EF%™ SDef : T Set definition SDef yields type T in FE

EHYIDef : T Inside definition IDef yields type T in E

EF°SOP(T): T Application of operator SOp to sequence of types T yields type T
E, T,H°PE: T! Property edge PE yields type T,

E; T,H¥ PEP : T! Predicate property edge PEP yields type 7.

E; T, ¥ PEM : T, Modifier property edge PEM yields type T

EH*TEzp: T Target expression TEzp yields type T in E

EH UEOp(T1) : T» Application of unary edge operator UEOp to type T yields type T»
E+° BEOP(Ty T2) Application of predicate edge operator BEOP to types Ti, T» is well-typed

E;F" SOP(Ty T2) : T Application of set definition operator SOP to types Ti, T» yields type T

has type Tp. The remaining rules say how different types are subtyping related. Rule Sub Top
says that any valid type is a subtype of Top. Rule Sub 0bj says that any set type is a subtype
of Obj. Rule Sub NatInt says that type of natural numbers is a subtype of the integers. Rules
SubPow, Sub Seq and Sub Opt say, respectively, that two powerset, sequence or optional types are
subtypes of each other provided their enclosed types (T4 and Tg) are also. Rule Sub Opt PSet
says that optional types are a subtype of powerset types provided their enclosed types are also.
Finally, rule Sub Pair says that two pair types are subtypes of each other if their corresponding
components are also subtypes of each other.

5.3 Common Rules

The judgements for the syntactic constructions that are common to SDs and ADs (grammar or
Fig.) are given in table @

Type designator rules (Table @) derive a type from a designator, yielding a primitive type
(Int or Nat) or some type that is associated with an identifier (rule TD Id).

Table @ presents rules for checking the well-formedness of assertions (T Assertion), VCL
objects (T SE 0bj) and pairs (T SE Pair. These rules merely extracts the types associated

22

Table 5.5 Type rules for type designators (TD non-terminal)

(TD Nat) (TD Int) (TD Id)
EvId: T

EH'Nat : Nat EH¢Int : Int EFYId: T

Table 5.6 Type rules for assertions and set elements

(T Assertion) (T SE Obj) (T SE Pair)
EFId:T (IdS = Id v IdS = self) (IdS = Id v IdS = self)
T = Assertion[VE,, VE,] EFIdS:T T <: Obj ErIdS : Th EF1dSy : T

EH"assertionld . Id : T EF°objectIdS . 1dS : T EP°pair(ldSi, IdSs) : Pair (Ti, T»)

with identifiers from the environment. The assertion rule assumes that the AD associated with
the assertion being checked has already been type-checked and its information can, therefore, be
retrieved from the environment. Pair rule builds a pair type from the types of its constituent
identifiers.

A set definition (SDef nonterminal, Fig.) is a syntactic construct to build sets. The type
rules for set definitions (table p.7) consider two cases, depending on whether the inside expression
comprises one inside definition (rule T SDef IDef) or a sequence of set definitions (rule T SDef
SDef). The rule essentially derive a sequence of types from inside definition (IDef) or sequence
of set definitions (SDef) and then apply the rule for the set definition’s operator (SOp) to
retrieve the types yielded by the rules. An inside definition (IDef nonterminal, Fig.) is a
construction associated with set definitions. An inside definition can either be a constrained set
or a set expression. The type rules for inside definitions (table @) consider these two cases.
The constrained set rule (IDef CntSet) derives a type from the given type designator (7D)
and then checks the sequence of property edges in the context of this derived type (7'); the rule
says that the set of property edges must either be of only one kind: either predicate or modifier
(disjunction). The type rules for set extensions (IDef SE and IDef SE *) process the sequence
of set elements inductively; retrieving the greatest type of all the elements in the sequence, which
must be subtypes of each other.

The rules for set definition operators (SOp non-terminal) apply to a sequence of types in the
context of an environment and a set definition operator; they are given in table p.§. The rules
are as follows:

e Rule SOp Nomne considers the case where there is no operator. The rule requires that the
sequence of types is made of a single element, and yields the type given in the sequence.

o Rules for domain and range operators (SOp Dom and SOp Ran) require that there is a
single type given in the sequence and that this type is a powerset of a pair (it is a binary
relation). Rule SOp Dom returns a type formed as the powerset of the first type of the pair
(the domain). Rule SOp Ran returns a type formed as the powerset of the second type (the
range).

o The cross product rules (SOp Cross and SOp * Cross) consider two cases depending on
whether the sequence is made of a pair of types or more than a pair. The pair rule takes

23

Table 5.7 Type rules for set definitions and associated inside definitions

(T SDef IDef) (T SDef SDef)
EH IDef : Ty EE°SOp(Th): T EF“ SDef;: Ty EF° SOp(Te): Ty
EFY set O SOp hasIn {IDef} : T EF% set O SOp hasIn {SDef;} : Ty

(IDef CntSet) (IDef SE) (IDef SE %)
EHYTD . T EE*SE: T, EF'SE: Ty
E;TH*PE:T" (T, =T A Te <: Th)
(IsPEP(PE) v IsPEM (PE)) EF°SE: T V(Tr=Ta ATy <: T2)
EFH'set TD {PE} : PowT EF'SE:PowT EF! SESE : Pow T,

a pair of powerset types and yields a powerset of a pair type. Rule SOp * Cross takes a
powerset type and a sequence of types and returns a powerset of a pair type formed with
the derived type.

e The intersection (SOp Pair Intersection and SOp * Intersection) and union rules
(SOp Pair Union and SOp * Union) take a sequence of at least two powerset types and
return a powerset of the greatest type in the sequence, according to the subtyping relation
(function getG Type, appendix @) All given types must be subtypes of each other. The set
subtraction rule (SOp Pair SetMinus) does the same for a pair of powerset types.

24

Table 5.8 Type rules for set def operators

(SOp None) (SOp Dom)

E¥® 1 (T): T EP + (PowPair (T4, T,)): Pow Ty
(SOp Ran) (SOp RelComp)

E¥® — (Pow Pair (T4, T)) : Pow T, Et*° @(Pow Pair (T4, T2) Pow Pair (1%, T3)) : Pow Pair (71, T5)
(SOp Cross) (SOp Pair Intersection)

T = getGType(E, T1, T2)
E¥® x(Pow T1 Pow T%) : Pow Pair (71, T2) EF°N(Pow Ty Pow T2) : Pow T

(S0p * Cross) (SOp * RelComp)
EF° x(T) : Pow T Er°a(T) : Pow Pair (T, T3)
EF° x(Pow T1 T) : Pow Pair (T1,T:) EF°8(Pow Pair (71, 72) T) : Pow Pair (T, T5)
(SOp * Intersection) (SOp Pair Union)
EP° H(Tl) : Pow T, T = getGType(E, T1, T2) T = getGType(E, T1, T2)
EF n(Pow Ty T) - Pow T EF U(Pow 71 Pow T) : Pow T
(SOp * Union) (SOp Pair SetMinus)
EP° U(Tl) : Pow Th T = getGType(E, Th, T2) T = getGType(E, T1, T2)
E°U(Pow T1 71) : Pow T EF’\(Pow Ty Pow T3) : Pow T

Table 5.9 Type rules for property edges

(PE PEP) (PE PEM) (PE *)
EH¢ TExp : T, EF TEzp : T, E; Ty PE: T,
E; (T, T:) ¥’ PEP E;(Ts, T,) ™ PEM : T E; T/W*PE : T
E; T,H° PEP TExp : T, E; T PEM TExp : T, [, T,#° PEPE' : T.

(PEP) (PEPS ¢) (PEPS Prld) (PEPM)
E; T, (1d] : T
EHF“ UEOp(T.) : T, T = Set Id;
EF° BEOP(T. T2) EvIdIdy : T, EF"™ SOp(Ts T)) : T
E;(T,, T,)¥** UEOp [Id] — [BEOP] E;T¥*"e: T E;TE"Id, : T, FE;(Ts, T:)F™ [SOp] =: T
(UEOp No) (UEOp Card) (UEOp The) (UEOp elems)

EF°e(T): T EF“°#PowT):Int EH“eOptT): T EF*“elemsSeqT:Pow T

Table 5.10 Type rules for binary predicate edge operators (BEOp)

(BEOP EQNEQ) (BEOP IN)
(E"T1<IT2VE|_T2<IT1) BEOPG{#,:} ErTy <:TeVEFTy<:Th
Er° BEOP(T1 Tg) Er° €(T1 Pow T2)
(BEOP INEQ) (BEOP SUBSETEQ)
ErTy <: Int Er Ty <: Int BEOP € {<,<,>,>} EFEFTI<:ToVEFT:<:Th
EF° BEOP(T: Ty) EF° C(Pow T; Pow Tb)

25

Table 5.11 Type rules for modifier edge operators (MOp)

(MOp DRES)
E-T :< Ty
EF" a(Pow Pair (Tq4, Tr),PowT) : Pow Pair (T4, T-)
(MOp RRES)
E-T:<T,
EF" >(Pow Pair (Tq4, Tr),PowT) : Pow Pair (T4, T-)
(MOp DSUB)
EFT:<Tq
EH" &(Pow Pair (T4, T,),PowT) : Pow Pair (T4, T})
(MOp RSUB)
E-T:<T,
EH" ©(Pow Pair (T4, T,),PowT) : Pow Pair (T4, T})
(MOp RIMG) (MOp UNION)
T = GetGType(E, T, T2)
EF-T:< Ty (Ty <: T2V To <: Th)
Er [1 (PowPair (T4, T),PowT) : Pow T, EF"°U(Pow T1,PowT:) : Pow T
(MOp INTERSEC) (MOp SETMINUS)
T = GetGType(E, T1, T2) T = GetGType(E, T1, T2)
(Tl <: Ty V Ty <: Tl) (T1 <: Ty V Ty <: T1)

EF" N(Pow T1,PowT:) : Pow T EF"\(Pow T1,PowT) : Pow T

Table 5.12 Type rules for set expressions

(SEzp TD) (SEzp Iden) (SEzp SDef)
EHYTD . T EF% SDef - T
EHsetTD : Pow T EH°setiden : Pow Pair (Top, Top) EH®SDef : T
(SEzp Empty) (SEzp Card) (SEzp elems)
EH® SEzp : Pow T EH® SEzp : SeqT
EH®setshaded : Pow Top EH°# SEzp:Int EH°elems SExp : Pow T

Table 5.13 Type rules for free expressions

(FExp ID) (FExp Dot) (FExp Num) (FEzp Uminus)
(IdS = Id v 1dS = self) (IdS, = Id v 1dS, = self)
EFIdS: T EF1dS, :SetId, EFIds.Idy : T EH®FE : Int
EH°IdS: T EH® 1dS,.Idy, : T EH® Num : Nat EH®—FE : Int
(FEzp FEOP)

EH¢ FE, : Int EH¢ FEy : Int
EH¢ FEy FEOP FEs : Int

26

Table 5.14 Judgements for type system of VCL Structural Diagrams

E;El—‘gd SD . E’ SD yields environment E’

E; ADE™SDE - F' Sequence of SD elements SDE yields environment £’

E:AD;Id, VA . VE Sequence of assertions A yields variable environment VE

EF"C . VE Sequence of constants C' yields variable environment VE

E; AD; T°°" PSet - E' Primary Set PSet yields environment E’

E®“PED - VE Sequence of edge definitions PED yields variable environment VE

E;M Kt D L T Designator T'D with multiplicity M yields type T

E;AD; TH" HI - F' HI (HasIn) yields environment B’

E;T 0 . VE Sequence of inside objects O yields variable environment VE

E;T I PSet . E' Sequence of inside primary sets PSet yields environment E’

E;AD; SId 1*" A - AId: T A has a well-formed assertion diagram with identifier AId type T
in £

_ = =
E; AD; Ids, F4ok°AD - VE AD is set of ADs yielding variable environment VE

5.4 Rules for Structural Diagrams

Table presents the judgements for structural diagrams (SDs). The first judgement says that
a SD is well-formed in the environment F with environment E’. The remaining judgements assert
well-formedness for the different components of a SD; namely, sequences of structural diagram
element (judgement labelled Iﬁde), sequences of assertions denoting invariants (H*), sequences of
constants (F"), primary sets (2°°"), sequence of property edge definitions (FPEd), designators with
a multiplicity constraint (Fmtd)7 has inside declarations of primary sets (FM), sequence of inside
objects (lio), sequences of inside primary sets (Iis), assertion whose AD has not been checked
(%) and set of ADs (F**°%).

Table 5.15 Type rules for structural diagrams and sequences of diagram elements

(Ok SD) (SDE *) (SDE ¢)
E,ADE*SDE - E’ L
Acyclic E'.SE E; ADE* SDE - E'
E,E';AD; LV 4 - VE E, E';ADE™ SDE - E"
E;ADV'SDEA - E,E', VE E;AD¥* SDESDE . E,E',E" E;ADE%¢ - Eg

27

Table 5.16 Type rules for constants, relation edges and sets

(SDE Const) (SDE RelEdge)

EF" C . VE, EHYTD,: Ty EFYTDy: T, M #seq M, #seq
E;ADEY™ C - Ey, VE. E; ADF% relEdge Idrgs(M; TD1, My TD,) . Eg, Idgg : Pow Pair (11, Tb)
(Const) (Const e) (Const %)

EF"C - VE, EF"C - VE
EH'TD: T dom VE; Ndom VE, = {}
EF"const Ide, : TD . {Ide, : T} EF"e. . {} EF"CC . VE, VE,
(SDE PSet) (SDE Derived)
E; AD; Obj " PSet -. B, EFY SDef : T

E; ADE% pSet -, B, E; ADE® Id, <» SDef . Eg,Id, : T

Table 5.17 Type rules for primary sets

(Primary Set)
Id, ¢ E.VE
EF"C . VE, EE“PED . VEp. E;AD;1d, VA -, VE, VE; = getVE(E, T)
Ts =Setld;, DK = getDK(]Q]) SI = (SK,DK,(VE., VEp., VE,, VE;))

E, Id, : Pow T, Ids — SI; AD; T, H*[hasIn { (O | PSet)}].". (En)

E; AD; T #** set Id, SK [O) {C PED A} [hasIn { (O | PSet)}] .. (Es,Ids : Pow Ty, Ids — SI, Ty <: T, Ep;)

Table 5.18 Type rules for property edge definitions

(PEDe) (PED x)
E;:ME" TD: T ER“PED - VE,

Ef ¢ - VE; EW“M Idp, — TD PED . {Idp. : T}, VE,

(MTD One) (MTD Pow)
EHYTD - T EHYTD . T M =someV M =many V M = Num .. (Num|*)
E;oneF™™ TD: T E; M TD : Pow T
(MTD Opt) (MTD Seq)
EHYTD - T EHYTD - T

E;optF™ TD :Opt T E;seqH™ TD:Seq T

Table 5.19 Type rules for sequences of invariants

(Ae) (A%) - -
E;AD;Id; 1*°F A - VE, E;AD;Ids, VA4 - VB,

E;AD;Id,, M e . {} E;AD;Id,, F*° AA . VEy, VEs

28

Table 5.20 Type rules for has inside declarations

(HasInside €) (HasInside x) ‘ (HasInObjs €)
E;:T¥ O . VE E;TF PSet. . E
E;TH¢ - Ey E; TH" hasIn {0 PSet} .. E', VE E;TH e {}

(HasInObjs *) (HasInSet €) (HasInSets x)
‘ E; T#* PSet . E'
E;TH0 . VE E,E'; T PSet - E"

E; T object Id, O . VE,{Id,: T} E;TW¥e. Es E;T\ PSetPSet. . E' E"

Table 5.21 Type rules for checking assertions

(AssertionOk)
Idy ¢dom E.VE AD = findAD(AD, Ida,Ids,) E;AD;Id,, F*" AD - VE

E;AD; Id,, 1°°F assertion Idy . VE

(AD Ok)
N _
AD = getDepsOfAD (AD, AD, Id;,)
T adak/\ A7 Lad
E;AD; Id, "' AD -. VE ~ E,VE;ADF*AD - Ids: T
E;AD; Ids, " AD - VE, Ids : T

(ADs Ok e Local) (ADs Ok e Global)
Id, #1 ErId, : Pow T VE = {self: T} Ids =1
B AD; Ids 1 H* {} - VE By AD; Idsy F*" {} - {}
(ADs Ok %)

__ _ =~
E;AD;Id, """ AD . VE E;AD;Id,, *® AD -. VE'

AN adok ~ !
E;AD; Id,, F“*{AD} U'AD . VE, VE

Table presents the rules for checking ADs associated with some assertion. These rules
are used when the AD type information is to be loaded into the environment. The rules are as
follows:

e Rule Assertion Ok derives the name of the assertion diagram through function getFAId,
which considers the special case of assertions associated with constants, and then looks
for the AD using function £indAD (both functions defined in appendix @, section)
The retrieved AD is then checked (rule associated with judgement pedok

environment VE.

) to yield variable

e Rule AD Ok processes a single AD. It retrieves all the ADs that are included in the given

AD through function getDeps0OfAD (appendix @, section) to yield set XB and then
checks them using the rules associated with judgement 4% ¢ derive variable environment
VE. The current AD is also checked using the rule for assertion diagrams to yield a variable
binding. The rule yields a variable environment formed by adding the retrieved variable
binding to the variable environment VFE.

e Rules AD Ok e and AD Ok * process a set of ADs inductively. Rule AD Ok € considers the

29

case where the set is empty, yielding an empty set of variable bindings. Rule AD Ok x
considers the case where the set has at least one element; it builds a variable environment
by joining the variable environment derived from the current single AD and the variable
environment derived from the remaining set of ADs.

30

Table 5.22 Judgements for typing of assertion diagrams
EFYAD - 1:T AD yields binding I : T in F
EFYVD - (VE,, VE,) Variable declarations block VD yields binding sets (VE,, VE})
EHD - (VE,, VE) Sequence of declarations D yields binding sets (VE,, VE})
E DF -, (VE,, VEy) Declarations formula atom DF yields binding sets (VE,, VE})
EHTF Sequence of formulas F is well-formed in E
ErP AFS . T Arrows formula source AFS yields type T

Table 5.23 Type rules for assertion diagrams

(AD GBL)

EFD . (VE,; VE,) E&(VE, VE,)HTF
EF% AD Ida decls {D} pred {F} .. Ida : Assertion[VE,, VE,]
(AD LOCAL)

E+ Id, : Pow Set Id,
E.SE(Id)) = (SK, DK, VE,) E@® VE.F"D . (VE,; VE,) E& (VE,s, VE,, VE,)H F

EF* AD Ida : Id, decls {D} pred {F} .. Ids : Assertion [VE,, VE]

5.5 Rules for Assertion Diagrams

The judgements for ADs are listed in Table . In the judgements’s contexts, E is an environ-
ment; the AD rules assume that all relevant ADs have been checked and its information can be
found in the environment. The judgements are as follows. The first judgement (I—ad) asserts the
well-formedness of some AD, yielding a binding made up of the AD’s identifier and type. The
remaining judgements concern either the declarations or predicate compartment of ADs. The
declarations judgements include: judgement I—d, which says that a sequence of declarations (D) is
well-formed and F/ , which says that a particular declaration formula (DF) is well-formed. The
predicate compartment includes judgements for formulas (lj) and arrows formula source (l—af).

The typing rules for ADs (table @) consider two cases, corresponding to global (AD GBL) and
local ADs (AD LOCAL). The rules are similar: the typing of declarations is followed by the typing
of the predicate. The local rule requires the local variable environment, which it retrieves from
the set environment component of the environment (E.SE). The processing of the declaration
yields two variable environments: the visible (VE,) and the hidden (VE}) variables. The visible
variables are visible in the assertions predicate and to the outside world; the hidden variables
are only visible within the assertion.

The type rules for the declarations (table) build the visible and hidden variable environ-
ments. They are follows:

o Rules D e and D * handle a sequence of declaration inductively. Rule D e yields the empty
variable environments ({}) for both visible and hidden: there are no declarations to process.
Rule D * retrieves the variable environments from the current declaration (VE,, VE}) and
from the remaining declarations (VE,s, VEy); the variables environments to be yielded
by the rule are then merged (operator i), which requires that identifiers in common in the
variable environments being combined must be bound to the same type; furthermore, all
variables from the visible list (VE,y) are removed in the hidden list (operator N).

e Rules D Obj and D Set consider the cases where there is a declaration of a scalar (object)

31

Table 5.24 Type rules for declarations

(De) (D %)
EV D (VE;VE,) E,VE,, VE,F*D . (VEu; VE)
VEy = VE, 1 VE,, VEn = (VE, > VEys) N VEyf

EF e ({h{}D) EF DD . (VEy; VEy)
(VD Obj) (VD Set)
EHYTD: T
(OQ=0pt ATy =OptTVOQ=ecAT;=T) EH'TD: T
VE = {Ido, : Ty} VE = {Id,, : Pow T}
(HQ =€eA VE, = VE A VE, = {} (HQ =€¢A VE, = VE A VE, = {}
V HQ = hidden A VE, = {} A VE, = VE) V HQ = hidden A VE, = {} A VE, = VE)
EF* HQobject 0QTdo,:TD .. (VE,, VEy) EFYHQsetd,,:TD . (VE,, VEy)
(VD Seq) (VD *)
EH'TD:T VE={Id,,:SeqT} EF* VD - (VE,, VEw)
(HQ =¢ A VE, = VE A VE, = {} EFYVD . (VEya, VEys)
V HQ = hidden A VE, = {} A VE, = VE) VE,1 N VEy N VEu N VEy = {}
EFYHQseqld,,:TD . (VE,, VE) EF* VD VD:TD ;. (VE, U VEya, VEu1 U VEys)
(D VD) (D DF)

EV* VD - (VE,, VE,) EW DF - (VE,, VE,)
EH VD - (VE,, VE,) EV DF - (VE,, VE)

or set. Both rules retrieves a type from the declaration’s type designator (7D) and then
yield a visible binding made of the variable’s identifier and appropriate type. Rule D 0bj
considers whether there is an optional qualifier ; type to yield is optional if there is a
qualifier (OptT) or the type derived from the type designator otherwise (7). Rule D Set
also considers whether there is a sequence qualifier; type to yield is sequence of there is a
qualifier (SeqT) or a powerset otherwise (Pow T).

e Rule D DF considers the case where the declaration comprises a declarations formula. In
this case, the type rule for declaration formulas is called.

Table presents the type rules for declaration formulas. The rules are as follows:

o Rules DFA Assertion, DFA 0Call and DFA C1Call deal with declaration formula atoms (DFA
non-terminal, Fig.) Rule DFA Assertion considers the case where the construction
refers to a normal assertion defined in the same scope (either local or global); rule DFA
0Call considers the case where there is a local assertion being called on some object; and
rule DFA C1lCall considers the case where a class assertion is called.

e Rules DFA Assertion, DFA 0Call and DFA ClCall assume that the AD associated with
the assertion being checked has already been type-checked: the assertion’s type can be
retrieved from the environment. These rules retrieve the appropriate assertion type from
the environment to obtain the assertion’s visible and hidden bindings (VE, and VE).
From the assertion’s visible bindings (VE,), the rule then builds the visible and hidden
bindings for the declaration using function conVEs, which takes into account the presence
of symbol 1, and from these constructed bindings the rule makes the required substitutions

32

Table 5.25 Type rules for declaration formulas

(DFA Assertion) (DFA OCall)
EvIdo: T,
Ids = getSIdFrTy(Ts)
EH"A - Ida : Assertion[VE,; VE}] EtIds.Ids : Assertion[VE,, VEy]
(VEey, VEe,) = consVEs(VE,, [1]) (VEcy, VEe) = consVEs(VE,, [1])
(VEy,, VEg) = doSubs(VEe,, VE., [R)]) (VEjp,, VEg) = doSubs(VEe,, VE., [R)])
EF AR, . (VEp; VEp) EH [t]assertion Ido.1dA[R)] .. (VEy; VEp)

(DFA ClCall)
Et Ids.Ids : Assertion|VE,, VE;]
(VEcy, VEer) = consVEs(VEy, [1]) (VEp,, VEp) = doSubs(VEe., VE4, [R,])

E ' [t)assertion Id, — Ida[R,] . (VEs; VEn)

(DF Neg) (DF Bin)
EV! DFy . (VEy1; VER)
EVFT DF - (VE,; VEy) EV! DFy - (VEy; VEns) FOp € {=, equiv}
EVY —[DF] . (VE,; VE,) EV FOp[DFy DF3] ;. (VE,1 < VEy; VEy < VEys)
(DF NAry 2x)

EV DF - (VE,; VE,) FOpe{V,A8} #DF>2
EV! FOp[DF)] . (VE,; VE)

(DF NArye€) (DF NAry *)
EVY DF : (VEy1; VEw) EFYDF - (VE,o; VEns)
EF e - ({1:{) EVY DFDF . (VEy, < VEya; VEp1 < VEps)

according to what is defined in the sequence of renamings (R) using function applySubs. All
it varies in the rules is the way the assertion type is obtained; rule DFA Assertion obtains
the assertion type directly from the environment; rule DFA 0Call obtains the assertion
type from the object’s set; and rule DFA C1lCall obtains the assertion type from the given
set identifier.

Rule DF Neg obtains the visible and hidden variables of a negated declarations formula
from the enclosed declarations formula.

Rule DF Bin handles a binary declarations formula combined using a binary operator. The
rules obtains the visible and hidden bindings from the two declarations formulas being
combined and then merges them using the operator mergeves.

33

Table 5.26 Type rules for Formulas (F)

(Fe) (F %) (F Not) (F Bin) (F NAry) (F AF)
EHF EHF EHFR EHF #F>2 EI—“fSAFS:Tl
EHTF EH F FOp € {=, =} FOp € {A,V} E; T {°** PEP
EHe EHFF EH -[F] EH FOp|FiF) EH FOp [F] EH AFS {PEP'}
(F SF Shaded) (F SF Id) (F SF Inside) (AFS SE)
Ev1d, : Ty
EF™ SDef : Ty EH TD: Ty
‘ (EFT, <: Th EH® SExp : Ty
ERY SDef . T VEFT, <: Th) (EF Ty <: ToVEF T <:T1) EH* TD:PowT
EH shaded SDef EH [shaded] Id, SDef EH set TD hasIn {SEzp} EH set shaded TD
(QF) (QD) Q¥
EF'QD, . VE EWVD - (VE,, VE,) EWYVD - (VE,, VE,)
E® VEHTF VE, = {} VE,={} EVM'QD,. . VE
EH QD, e F; EV¢QVD; -. VE, EF*QVD;QD, .. VE, & VE

Table 5.27 Type rules for Arrows Formula Source (production AFS)

(AFS SE) (AFS Setld) (AFS SDef) (AFSB Un Card)

E¥¢SE: T EvId,: T EF™ SDef : T EF AFS : Pow T

EF* SE.T Erfsetld,: T EF*SDef:T EFF# AFS:Int

(AFS Un Dom) (AFS Un Ran) (AFSB Un The)

EV® AFS : Pow Pair (T1, o) EF AFS : Pow Pair (T1, T2) EF” AFS:Opt T
Er « AFS:Pow Ty Et — AFS : Pow T, Et e AFS: T

34

References

[AGK11]

[AK10]

[AKMG10]

[Am&07]

[APSO05]

[AMBOS]

[EEPT06]

[1SO02]

[Jac06]

[Spi92]

Nuno Amalio, Christian Glodt, and Pierre Kelsen. Building VCL models and au-
tomatically generating Z specifications from them. In FM 2011, number 6664 in
LNCS, pages 149-153. Springer, 2011.

Nuno Amalio and Pierre Kelsen. Modular design by contract visually and formally
using VCL. In VL/HCC 2010, 2010.

Nuno Amalio, Pierre Kelsen, Qin Ma, and Christian Glodt. Using VCL as an aspect-
oriented approach to requirements modelling. TAOSD, VII:151-199, 2010.

Nuno Amaélio. Generative frameworks for rigorous model-driven development. PhD
thesis, Dept. Computer Science, Univ. of York, 2007.

Nuno Amélio, Fiona Polack, and Susan Stepney. An object-oriented structuring for
7Z based on views. In ZB 2005, volume 3455 of LNCS, pages 262-278. Springer, 2005.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In TACAS
2008, pages 337-340, 2008.

Harmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Tranformation. Springer, 2006.

ISO. Information technology—7 formal specification notation—syntax, type system
and semantics, 2002. ISO/TEC 13568:2002, Int. Standard.

Daniel Jackson. Software Abstractions: logic, lanaguage, and analysis. MIT Press,
2006.

J. M. Spivey. The Z notation: A reference manual. Prentice-Hall, 1992.

35

Appendix A

Auxiliary Definitions

This appendix presents the auxiliary definitions that are used to describe the VCL type system
presented in chapter .

A.1 Environment Operators

Several operators manipulate environments. Fi, F, means that two disjoint environments are
combined into one. This is defined as set union for each component of the environments being
combined:

FEi, By = (VE1 U VEs, SE, U SEQ, SubEq U SubEz)
Where, E1 = (VEl, SEl, SubEl) A E2 = (VEQ, SEQ7 SubEg)

VE1, VE; means that two disjoint variable environments are combined into one. This is
defined as set union:

VE1, VE; = VEL U VEy < dom VE; Ndom VE, = &

Another operation on variable environments is b, which merges two variable environments.
This requires that if there are identifiers in common in both variable environments, then they
must be bound to the same type. This operator is defined as a partial function:

Xx: VEX VE+ VE
This is defined inductively by the following equations:

{} 1 VE = VE
({id : T} U VEy) <1 VEy = VEy 0 (VE, U{Id : T}) < id & dom VE, V VEy(Id) = T

We define an operator for performing subtractions on variable environments that require that
identifiers in common in both variable environments are bound to the same type. This operator
is defined as a partial function:

N:VEXVE+ VE

36

This is defined by the following equation:
VE\ N VE, = VE, \ VE; < (V1d € (dom VE; N dom VE,) e VE, (Id) = VEx(Id))
E,Id : T means that a variable binding is added to an environment. This is defined as:

(VEU{Id s T},SE, SubE) 1f E = (VE, SE, SubE) A - Id € dom E.VE

Eld:T= { undefined otherwise

E, Ty <: Ty means that a subtyping tuple is added to an environment. This is defined as:

E, Ty <: To =(VE,SE, SubEU{Ty — T2}) where, E = (VE,SE, SubFE)

E,Id— (SK, DK, Id, VE) means that a set environment binding is added to an environment.
This is defined as:

B, Id v (SK, DK, Id, VE) —
(VE,PE,SEU{(SK,DK,Id, VE)}, SubE) If E=(VE,SE,SubE) A - Id € dom E.SE
undefined otherwise

E @ VE means that an environment is overridden with a set of variable bindings. This is
defined as:

E @ VE, = (VE\, @ VE,, PE,SE, SubE) where, E = (VEi1, PE, SE, SubE)
A.2 Predicates

Acyclic(R) & R € {rel : X ++ X | rel T Nid X = &}
IsPEP(PE PEP) < PE = PEP A (PE = ¢V IsPEP(PE))

IsPEM (PE PEP) < PE = PEM A (PE = e v IsPEM(PE))

A.3 Auxiliary Functions

A.3.1 Function getGType

The function getGType gets the greatest type between two types ordered by the subtyping
relation:

getGType : E x Type x Type + Type

Ty IfEFT, <: T1
- T> IfEFT, < T2
getGType (B, Ty, T2) = If (T, Ts) € E.SubE A Ty = getGType(E, Ts, Ts)

undefined otherwise
getGType (E,Pair (T, T2),Pair (T3, T4)) = Pair (getGType(E, T1, Ts), getGType(E, T>, T4))

37

A.3.2 Functions producing variable environments (VEs)

The function getVE extracts variable environments from set types:

getVE: T x E— VE
getVE(T.5) — { VE 1T =Setld, A B.SE(Id) = (SK, DK, VE)
{} otherwise

The function consVEs constructs a pair of variable environments given an optional imports
qualifier and a variable environment (VE). This function simply makes the given VE the first
component of the pair if there is an imports qualifier and makes it the second component of the
pair otherwise:

consVEs : VEx 1, —-VE x VE

J(VE,{Y) ifti=1)
consVEs (VE,T.1) = {({}7 VE) if Ti =1)

A.3.3 Function getDK
The function getDK extracts the definitional kind:

getDK : [O] — DK
getDK (O) = def
getDK (e¢) = notDef

A.3.4 Functions to extract information from ADs

The following functions extract the AD identifier, set identifier and declarations from ADs:

getldOfAD : AD — Id

getldOfAD(AD Ida [: Ids] decls {D} pred {F'}) = Ida
getSIdOFAD : AD + Id,

getSIdOfAD(AD Ida : Ids decls { D} pred {F'}) = Id,

getSIdOfAD(AD Ids decls {D} pred {F}) =1
getDeclsOfAD : AD — D

getDeclsOfAD(AD Idg4 [: Ids] decls {D} pred {F}) = D

The following functions get the set of ADs that are included in some AD:

38

_ —~~
getDepsOfAD : AD x AD x Id, — AD
getDepsOfAD (AD, AD, Ids,) = getADsOfDecls (getDeclsOfAD (AD), AD, Ids)

getADsOfDecls : D x AD x Idy %’ZB
getADsOfDecls (¢, AD, Ids 1) = {}
getADsOfDecls (D D, AD, Ids,) =
getADsOfDecl(D, AD, Ids,) U getADsOfDecls (D, AD, Id;)

_ N
getADsOfDecl : Decl x AD x Id;, — AD
getADsOfDecl (DV Id: TD, AD, Id) = {}
getADsOfDecl (DF, AD, Ids,) = getADsOfDF (DF, AD, Id)

get ADsOfDF : DF x AD x Id, —>;1/B
getADsOfDF ([t]assertion Id4 [R)], AD, Ids 1) = {findAD(AD, Ids . , Ida)}
getADsOfDF ([t]assertion Id,.Id4 [R,], AD, Ids) = findLADsWithName(AD, Id4)
getADsOfDF ([t]assertion Ids — Ida [R)), AD, Ids1) = {findAD(AD, Ids, Ida)}
getADsOfDF (-~ (DF), AD, Ids,) = getADsOfDF (DF, AD, Ids,)
getADsOfDF ((DFy FOp DFy), AD, Ids)) = getADsOfDF(DFy, AD, Ids)
U getADsOfDF (DFs, AD, Id, 1)

~~
getMatchingAD : AD x Id - AD

getMatchingAD(AD, Id) :{ ng} iftgzﬁfvli;iQOfAD(AD) # LN getldOfAD(AD) = Ida

o~~~ —

_ ~~
findLADsWithName : AD x Id -+ AD
findLADsWithName(e, Ida) = {}
findLADsWithName(AD AD, Id4) = getMatchingAD(AD, Ida) U findLADsWithName(AD, Ida)

A.3.5 Functions for AD lookup

The following functions look for some AD in a sequence of ADs:

findAD : AD x Id,, x Ids - AD
findAD (AD, 1, Id) = findGbIAD(AD, Id)
findAD (AD, Id,, Ids) = findLAD(AD, Ids, Id4)
findGbIAD : AD x Idy — AD
findGbIAD (AD, Ids) = AD < getIdOfAD(AD) = Ida
findGbIAD (AD AD, Idp) = AD < getldOfAD(AD) = Ida
findGbIAD (AD AD, Ida) = findGHIAD (AD, Ids) < getldOfAD(AD) # Ida
findLAD : AD x Id, x Ids + AD
findLAD (AD, Id,, Idp) = AD < getSIdOfAD(AD) = Id, A getldOfAD(AD) = Ida
findLAD (AD AD, Id,, Ids) = AD < getSIAOfAD(AD) = Ids A getldOfAD(AD) = Ida
findLAD (AD AD, Id,, Ids) = findLAD(AD, Ids, Idx)
& getldOfAD(AD) # Ida V getSIAOfAD(AD) # Id,

A.3.6 Functions for substitutions

The following functions deal with substitutions in variable environments:

doSubs : VE x VE x R+ VE x VE
doSubs (VE,, VE,, R) = (applySubs(VE,, R), applySubs(VE, R))

39

applySubs : VE x R+ VE
substitute (VE, idn/ido) = {

applySubs (VE,€) = VE
applySubs (VE, R R) = applySubs(substitute(VE, R), R)

(VE\ {(ido, VE(ido))}) U{(idn, VE(ido))} 1If ido € dom VE A idn ¢ dom VE
undefined otherwise

A.3.7 Function getSIdFrScalarOrCollection

The following function retrieves a set identifier from types involving set types, which may either
denote a scalar or a collection:

getSIdFrTy : Type + Id
getSIdFrTyn (Set Ids) = Ids
getSIdFrTy (Pow Set Id,) = Id;
getSIdFrTy (Seq Set Id,) = Id,
getSIdFrTy (Opt Set Id,) = Ids

40

Appendix B

Alloy Metamodels

B.1 VCL Common

—- Name: 'VCL_Common'
—-- Description:
- + Common entities of VCL ADs and SDs

module VCL_Common

—-- Name: 'Name'
-— Description:
- + Introduces set of labels to be attached to nodes and edges

sig Name {}

-- Name: 'SetElement'

—-- Description:

-- + Defines a set element

- + Either a single object or a pair

abstract sig SetElement {
}

—-- Name: 'VCLObject'

—-— Description:

-= + A named VCL object

- + Elements that can be inside a set (either primitive or derived)

sig VCLObject extends SetElement {
id : Name

41

-- Name: 'Pair’
—-- Description:
- + Represents a pair made of two named objects

sig Pair extends SetElement {
idEleml : Name,
idElem2 : Name

-- Name: 'Assertion'
—-- Description:
- + Defines assertions whose symbol is the elongated hexagon.

sig Assertion {
idAssertion : Name

}

-- Name: 'TypeDesignator'
-— Description:
- + Defines a designator for types.

abstract sig TypeDesignator {
}

-- Name: 'TypeDesignator', ' TypeDesignatorNat'
—— Description:
- + Defines a type designator naturals and integers.

sig TypeDesignatorInt, TypeDesignatorNat extends TypeDesignator {
}

—-- Name: 'TypeDesignatorId'
—-- Description:
- + Defines a designator of sets with an identifier.

sig TypeDesignatorId extends TypeDesignator {
setId : Name
}

42

-- Name: 'PropEdge'
—-- Description:
- + Defines property edges with a source and a target.

abstract sig PropEdge {
op : EdgeOperator,
target : Expression,

—-- Name: 'PropEdgePred’
—-- Description:
- + Defines property edges attached to predicate elements.

sig PropEdgePred extends PropEdge {
unop : lone EdgeOperatorUnary,
designator : lone Name

H
-- 'op' must be a 'EdgeOperatorPred'
op in EdgeOperatorBin

—-- Name: 'PropEdgeMod'

—— Description:
- + Defines the property edge modifier that applies some operation to
-= the source.

sig PropEdgeMod extends PropEdge {

H
-- 'op' must be a 'EdgeOperatorMod'
op in EdgeOperatorMod

—-- Name: 'EdgeOperator!'

—-- Description:
- + Defines edge operarator used in edges.

abstract sig EdgeOperator {
3

43

—-- Name: 'EdgeOperatorBin'

—-— Description:
+ Defines edge operarator used

in predicate edges.

abstract sig EdgeOperatorBin extends

}

EdgeOperator{

—-- Name: 'EdgeOperatorMod'

—-- Description:
+ Defines edge operarator used

in modifer edges.

abstract sig EdgeOperatorMod extends
}

EdgeOperator{

-- Name: 'EdgeOperatorUnary'

-- Description:
+ Defines edge operarator used

in modifer edges.

abstract sig EdgeOperatorUnary extends EdgeOperator{

}

-- Name: 'EdgeOperatorEq', 'EdgeOperatorIn', 'EdgeOperatorSubsetEQ'
--'EdgeOperatorLT', 'EdgeOperatorLEQ', 'EdgeOperatorGT', 'EdgeOperatorGEQ'
—-- Description:

+ SubsetEQ ()

+ Defines different kinds of edge operators.
+ Eq (=), Neq (), In (), LT, (<), LEQ (), GT (>), GEQ ()

one sig EdgeOperatorEq,
EdgeOperatorNEq,
EdgeOperatorIn,
EdgeOperatorLT,
EdgeOperatorLEQ,
EdgeOperatorGT,
EdgeOperatorGEQ,
EdgeOperatorSubsetEQ

extends EdgeOperatorBin {
}

—-- Name: 'EdgeOperatorDRES',

'EdgeOperatorRRES'

44

—-- Description:

- + Edge Operators used in property edge modifiers.

- + DRES (, domain restriction), and RRES (, range restriction)
- + DSUB (, domain subtraction) and RSUB (, range subtraction)

one sig EdgeOperatorDRES,

EdgeOperatorRRES,
EdgeOperatorDSUB,

EdgeOperatorRSUB

extends EdgeOperatorMod {

}

-- Name: 'EdgeOperatorCARD', 'EdgeOperatorTHE'

—-- Description:

- + Unary edge operator used in predicate property edges
- + CARD (#, cardinality)

— + THE (, the)

one sig EdgeOperatorCARD, EdgeOperatorTHE
extends EdgeOperatorUnary {

}

-- Name: 'Num'

—-- Description:

- + String representing natural numbers.
sig Num {}

—-- Name: 'Expression'
—-- Description:
- + Defines expressions associated with property edges.

abstract sig Expression {

}

-- Name: 'FreeExpression'
—-- Description:
-- + Defines a free (editable) expression.

abstract sig FreeExpression extends Expression {

}

45

-- Name: 'FreeExpId'
—-- Description:
- + Defines object expressions comprising an identifier (a name).

sig FreeExpId extends FreeExpression {
oid : Name,

pkgId : lone Name,

}

—-- Name: 'FreeExpDot'
—-- Description:
- + Defines expressions that access the state of objects.

abstract sig FreeExpDot extends FreeExpression {
oid : Name, -- Identifier of the object
propld : Name -- Identifier of the property

-- Name: 'FreeExpNum'
—-- Description:
- + Defines expressions comprising a number.

sig FreeExpNum extends FreeExpression {
num : Num

}

-- Name: 'FreeExpUMinus'
—— Description:
-- + Defines unary minus expression (-e).

sig FreeExpUMinus extends FreeExpression {
e : FreeExpression

}

-- Name: 'FreeExpBin'

46

—-- Description:
- + Defines expressions that can be combined with binary operators.

abstract sig FreeExpBin extends FreeExpression {
el, e2 : FreeExpression,
op : FreeExpBinOp

H
el = e2

}

-- Name: 'FreeExpPar'
—— Description:
- + Defines expressions that can be placed within parenthesis.

abstract sig FreeExpPar extends FreeExpression {
e : FreeExpression

}

—--— Name: 'FreeExpBinOp'
—— Description:
- + Infix operators for sum (+), subtraction (-), product (%), div (/).

abstract sig FreeExpBinOp {}

one sig FreeExpBinOpPlus,
FreeExpBinOpMinus,
FreeExpBinOpTimes,
FreeExpBinOpDiv extends FreeExpBinOp {}

—-- Name: 'SetExpression'
—-- Description:
- + Defines a set expression.

abstract sig SetExpression extends Expression {

}

—-- Name: 'SetExpressionID'
—— Description:
- + Defines a set expression defined using a type designator.

sig SetExpressionID extends SetExpression {

47

bd : TypeDesignator

-- Name: 'SetExpressionEmpty'
—-- Description:
- + Defines a set that is shaded to represent the empty set.

sig SetExpressionEmpty extends SetExpression {

}

-- Name: 'SetExpressionCard'
—-- Description:
- + Defines a set with a cardinality unary operator attached.

sig SetExpressionCard extends SetExpression {
setExp : SetExpression

}

-- Name: 'SetDef'
—-- Description:
-- + Defines a set definition (symbol).

sig SetDef {
bdop : SetDefOp, —- optional blob def operator
insideExp : SetInsideExpression

-- Name: 'SetDefOp'

—-- Description:

- + Defines set def operators

Domain operator is represented as symbol

Range operator is represented as symbol

None represents no symbol

Union operator is represented as symbol
Intersection operator is represented as symbol
Cross product operator is represented as symbol
Relation composition operator is represented by symbol
Set difference operator is represented as symbol

|
|
+ o+ o+ o+ A+ o+ 4+

abstract sig SetDefOp {

48

one sig SetDefOpDomain,
SetDefOpRange,
SetDef0OPNone,
SetDefOpUnion,
SetDefOpIntersection,
SetDefOpCrossProduct,
SetDefOpSetMinus,

SetDefOpRelComp

extends SetDefOp {

}

-- Name: 'SetExpressionDef'
—-- Description:
-= + Defines a set expression defined using a set definition.

sig SetExpressionDef extends SetExpression {
def : SetDef
}

-- Name: 'SetInsideExpression'
—-- Description:
-= + Expression inside the set definition

abstract sig SetInsideExpression {

}

-- Name: 'InsideExpBlDs'
—-- Description:
-- + Expression inside the set def

sig InsideExpBlDs extends SetInsideExpression {
blobDefs : seq SetDef
}

—— Name: 'InsideDef'

—-- Description:

49

- + Definition of the blob def
- + Either a constrained blob or a a set extension

abstract sig InsideDef extends SetInsideExpression {

}

—- Name: 'ConstrainedSet'
—-- Description:
- + Defines a set with restrictions (constraints).

sig ConstrainedSet extends InsideDef {

bd : TypeDesignator,

pes : seq PropEdge -- O or more predicate property edges
}

fact PropEdgesOfConstrainedSetAreOfSomeKind {
all be :ConstrainedSet |
all disj pel, pe2 : univ.(be.pes) |
pel+pe2 in PropEdgePred || pel+pe2 in PropEdgeMod

-- Name: 'SetExtension'
-- Description:
- + Defines a set extensionally by listing its members.

sig SetExtension extends SetInsideExpression {
elems : some SetElement

}

B.2 Bool Module

-- Name: 'Bool'
—-- Description:
- + Signature of booleans: 'True' or 'False'.

abstract sig Bool {}

one sig True, False extends Bool {}

50

B.3 VCL Structural Diagrams

-- Name: 'VCL_SD'

—-- Description:
- + Defines meta-model of VCL structural diagrams (SDs).

module VCL_SD

open VCL_Common as c
open Bool

-- Name: 'Mult' (Multiplicity)

-— Description:

- + Defines what a multiplicity is.

- + Multiplicities are attached to ends of edges.
-- Details:

- + There are the folowing kinds of multiplicity: one, optional (O.

- many (0..%), one or many (1..%), range (nl..n2) and sequence.
- + Multiplicities of kind range have a lower and an upper bound.

abstract sig Mult {}
one sig MOne, MOpt, MMany, MOneOrMany, MSeq extends Mult {}
one sig MStar {}

sig MRange extends Mult {
-- lower and upper bounds for 'range' multiplicities.
1b : Int,
ub : (Int+MStar)
H
-- lower and upper bounds must be greater or equal than O
-- and 'ub' greater or equal than 'lb'.
1b >= 0 && (ub = MStar || ub >= 1b)

1),

—- Name: 'SDElem'

—— Description:
- + Introduces the labelled structural diagram element.
- + To be extended by 'Set', 'Object', 'Edge'.

abstract sig SDElem {
name : Name -- a modelling element has a name (a label).

}

51

-- Name: 'Constant'

—-- Description:

- + Represents constants. A constant has a type (field 'type).
- + Constants can be 'local' or 'global'.

- + A constant definition has a type

sig Constant extends SDElem {
type : lone Name

}

-- Name: 'RelEdge' (Relational Edge)

—-- Description:

- + Set relational edges are binary edges connecting sets.
- + They have multiplicities at each end of edge.

sig RelEdge extends SDElem {
source, target : Set,
sourceMult, targetMult : Mult,
H
-- Relation edges cannot have multiplicities of type sequence
not (sourceMult+targetMult) in MSeq
}

—-- Name: 'Set' (Set Definitioms)

—— Description:

- + Defines a global set definition.

- + It's characterised by inside property.

abstract sig Set extends SDElem {
}

—-- Name: 'IntSet' (Integer Set)

—-- Description:
- + Defines a set representing the integers

52

one sig IntBlob extends Set {}

—-- Name: 'NatSet' (Natural numbers Set)
—-- Description:
- + Defines a set representing the natural numbers

one sig NatSet extends Set {}

abstract sig SetKind {}

—- Name: 'Value', 'Class
—-- Description:
- + Defines two set kinds: 'value' and 'class'.

one sig Value, Class extends SetKind {}

—-— Name: 'SetDefObject'
—-- Description:
- + An object that can be inside a primitive set.

sig SetDefObject {
objName : Name

}

—-— Name: 'PrimarySet'

-- Description:

- + Defines a primary set

- + A Primary set can have sets ad objects inside.

sig PrimarySet extends Set {

kind : SetKind,

1Props : set PropEdgeDef,
hasInsideSet : set PrimarySet,

isDefSet : Bool, -- (symbol if 'True')
hasInside0 : set SetDefObject,
lInvariants : set Assertion,

1Constants : set Constant,

53

-- The following defines what it means for VCL structures to be well-formed
-- regarding the 'inside' property

-- The graph representing the 'inside' relation should be acyclic.
fact acyclicInside {

no ~(hasInsideSet) & iden
}

—-- An object should be in at most one set (the inverse of the relation is a partial function)
fact setInAtMostOneBlob {
all s : PrimarySet | lone s.~hasInsideSet

}

—— An object should be in at most one set (the inverse of the relation is a partial function)
fact objInAtMostOneBlob {

all n : SetDefObject | lone n.~hasInsideO

}

-- Each 'Set' has its own set of local invariants.
-- Or local invariants are not shared.
fact LInvariantsNotShared {
all ¢ : Assertion | (some lInvariants.c)
=> one lInvariants.c

—-— Each 'Set' has its own set of local constants
—-— Or local constants are not shared.
fact LConstantsNotShared {
all ¢ : Constant | (some 1lConstants.c)
=> one lConstants.c

-- Definitional sets must have things inside.
fact DefSetsHasThingsInside {

all b : isDefSet.True | #b.hasInside0 > O || #b.hasInsideSet > 0
}

-- Each class set can contain other classes obly
-- and they can be inside of class sets only.
fact ClSetHasClSetsInside {
all b : PrimarySet | b.kind = Class
=> (b.hasInsideSet) in kind.Class && hasInsideSet.b in kind.Class

54

-- Name: 'PropEdgeDef' (Property Edge Definition)

—-- Description:

- + Defines properties of sets.

Relates one blob (having property) to another (type of property).
A property edge has a 'Set' as target.

A property edge may have a multiplicity.

|
|
+ 4+ 4+

sig PropEdgeDef extends SDElem {
peTarget : Set,

mult : Mult
}
{
-- a PropEdgeDef cannot have its blob or his inside blobs as target
not (peTarget in ((this.~1Props) + (this.~1Props) .~ (hasInsideSet)))
}

-- Each 'Set' has its own set of property edge definitionms
-- Or property edges are not shared. All property edges belong to some set
fact propEdgesNotSharedAndBelongToSomeSet {
all pe : PropEdgeDef | one 1Props.pe
}

fun nameOf (elem : SDElem + Assertion) : Name {
elem in SDElem implies elem.name else elem.idAssertion

}

-- Local Names in the scope of a 'Set'must be unique
fact LocalNamesAreUnique {
all s : Set |
all el, e2 : (s.lConstants+s.lInvariants+s.lProps+(s.hasInside0))
| nameOf [el] = nameOf [e2]
=> el = e2

}

-- All global names must be unique

fact GblNamesAreUnique {
all el, e2 :
(Set+(Assertion-(PrimarySet.lInvariants))+

55

RelEdge+(Constant-(PrimarySet.1lConstants)))
| nameOf [el] = nameOf [e2] implies el = e2

}

-- Name: 'DerivedSet'

—— Description:

- + Defines a derived set

- + Derived sets make use of symbol ' '

sig DerivedSet extends Set {
definition : SetDef
}

-- Name: 'SDiag'
—-— Description:
- + Defines a structural diagram

sig SDDiag {
sdelems : set SDElem,
invs : set Assertion

B.4 VCL Assertion Diagrams

-- Name: 'VCL_AD'
—-- Description:
-= + Module defining the meta-model of VCL assertion diagrams.

open VCL_Common as ¢
open Bool

-- Name: 'Decl’
—-- Description:
- + Defines a declaration of an assertion diagram.

abstract sig Decl {
}

56

-- Name: 'VarDecl'

—-- Description:

- + Defines a typed variable declaration of AD or CD.

- + A typed variable declaration has a name, type and hidden status

- + In EMF metamodel 'dNames' is just a string (to be parsed by type-checker)

abstract sig VarDecl extends Decl {
dNames : set Name, -- set of declaration names separated by commas
dTy : TypeDesignator, // Type of declaration
isHidden : Bool, // Indicates whether the variable is hidden or not

-- Name: 'DeclObj'
—-- Description:
-- + Defines declarations of objects.
+ Declarations of objects are represented as objects (rectangles).
- + field optional indicates whether declaration is optional or not
+ If optional is true, then '?7' precedes the object's type.

sig DeclObj extends VarDecl{
optional : Bool

}

—— Name: 'DeclSet'

—-- Description:

-= + Defines declarations of sets.

-- + Sets are represented as blobs (ovals); they include the word "SET" on
- top-left corner

sig DeclSet extends VarDecl {
}

—-- Name: 'DeclSeq'

—-- Description:

- + Defines declarations of sequence.

-= + Sequences are represented as blobs (ovals); they include the word
- "SEQUENCE" on top-left corner

57

sig DeclSeq extends VarDecl {
}

—- Name: 'DeclFormula'’

—-- Description:

- + Defines a declaration reference formula.

-= + This enables declaration references (either assertions or contracts)
- to be combined using logical operators.

abstract sig DeclFormula extends Decl {

}

-- Name: 'RenamingExp'

—-— Description:

-- + Defines a renaming expression, denoted in logic as [u/y]

- where expression u denoted as the susbtition for variable y.

sig RenamingExp {
subExp : Name, -- Substituting expression
varToSub : Name -- Variable to substitute

}

-- Name: 'DeclFormulaAtom'

—-- Description:

-- + A declarations formula atom holds represents references to assertions or contracts
- + The import is represented by the symbol 'T'

-- + Optional 'callObj' indicates a call a local operation on an object

- represented as "a.op".

-- + Optional field 'origin' indicates origin of the operation (blob or package) .

- + Optional owning set indicates set of local contract or assertion

-- + Renaming expressions represented as '[t/x,u/y]'. In Ecore,

-= 'RenamingExp' is just a String.

abstract sig DeclFormulaAtom extends DeclFormula {

refId : Name, -- Name of assertion or contract

owningSet : lone Name, -- Id of set that owns local assertion or contract

callObj : lone Name, -- Id of obj on which local assertion or contract is called
origin : lone Name, -- optional originating package

import : Bool, —-- Whether import symbol is present or not

renameExp : set RenamingExp -- a set of renaming expressions

58

-- Name: 'DeclAssertion'
—-- Description:
-- + Represents an assertion reference of a declarations formula

sig DeclAssertion extends DeclFormulaAtom {

}

-- Name: 'FormulaOp'
—— Description:
- + Defines a formula operator.

abstract sig FormulaOp {
}

-- Name: FImplies, FAnd, FOr, FEquiv

—-- Description:

- + Defines formula operators for implication (), conjunction (),
- disjunction (), equivalence (), negation (-),

-- + and sequential composition ()

one sig FImplies, FAnd, FOr, FEquiv, FNot, FSComp extends FormulaOp {
}

-- Name: 'DeclFormulaNAry'

—— Description:

- + Defines a declaration binary formula
- + This supports the logical operators |,

sig DeclFormulaNAr extends DeclFormula {
dfrmls : DeclFormula,
dfop : FormulaOp
H
all df1, df2 : dfrmls | df1l != df2
dfop != FSComp
dfop in FAnd+FOr implies #dfrmls >= 2
dfop in FNot implies #dfrmls = 1
dfop in FImplies+FEquiv implies #dfrmls = 2

59

—- Name: 'FormulaSource'

—-- Description:

- + Defines the source of an arrows formula
- + It cain either be: obj, blob or pair

abstract sig FormulaSource {

}

-- Name: 'FormulaSourceElement'

—— Description:

- + Defines source formula of type object

- + 'elem' indicates the 'SetElement' either object or pair

sig FormulaSourceElem extends FormulaSource {
elem : SetElement

}

—-- Name: 'FormulaSourceSet'
-— Description:
- + Defines source formula of type set

abstract sig FormulaSourceSet extends FormulaSource {

}

—-- Name: 'FormulaSourceSetId'

—-- Description:

-- + Defines source formula of type blob identifier
-= + 'bId' indicates identifier of the set

sig FormulaSourceSetId extends FormulaSourceSet {
bId : Name
}

-- Name: 'FormulaSourceSetDef'

—-- Description:

- + Defines source formula of type set definition
- + 'blDef' holds set definition

sig FormulaSourceSetDef extends FormulaSourceSet {

60

blDef : SetDef

—-- Name: 'FormulaSourceUQOp'
—-- Description:
- + Defines a unary Formula operator for a formula source.

abstract sig FormulaSourceUOp {

}

—-- Name: FSBCardinality, FSBDom, FSBRan

—-- Description:

- + Symbol of Formula source operator cardinality is #
Symbol of Formula source operator domain is ' '
Symbol of Formula source operator range is ' '
Symbol of Formula source operator the is '

|
|
+ 4+ 4+

one sig FSBCardinality, FSBDom, FSBRan , FSBThe
extends FormulaSourceUOp {

}

-- Name: 'FormulaSourceUnary'

—-- Description:

- + Defines source formula with unary operator

-- + Let '0' be a blob, this construction is expressed as # [0]

sig FormulaSourceUnary extends FormulaSource {
operator : FormulaSourceUOp,
frmlSrc : FormulaSource

-- Name: 'AD'
—-- Description:
- + Defines what an assertion diagram is.

abstract sig AD {

aName : Name,
declarations : set Decl,
predicate : set Formula

61

—- Name: 'Formula'
—-- Description:
- + Defines a Formula.

abstract sig Formula {

}

-- Name: 'FormulaNAry'
—-- Description:
- + Defines an n-ary Formula

sig FormulaNAry extends Formula {
frmls : set Formula,
operator : FormulaOp
H
all f1, f2 : frmls | f1 != f2
operator != FSComp
operator in FAnd+FOr implies #frmls >= 2
operator in FNot implies #frmls = 1
operator in FImplies+FEquiv implies #frmls = 2

-— Name: 'QFormula'’ (Quantified formula)

—-- Description:
- + Defines a quantified Formula.
- + Includes a set of variable declarations and one formula

sig QFormula extends Formula {
decls : seq QDecl,
frml : Formula
H
-- all elements in the sequence must be distinct
not decls.hasDups

}

-- Name: 'QDecl' (Quantified Declaration)

—-- Description:

62

- + Defines a quantified declaration.
- + Includes a set of variable declarations and one variable kind

sig QDecl {
gkind : QuantifierKind, -- quantifier kind
vars : set VarDecl -- variable declarations
H

—-— Vars are distinct

all v1, v2 : vars | v1 != v2

-- hidden variables not allowed in quantified formulas
all v : vars | v.isHidden = False

—- Name: 'QuantifierKind'

—-- Description:
- + Defines the kind of quantifier: forall or exists.

abstract sig QuantifierKind {

}

—- Name: 'QForAll'

—-- Description:
-- + Defines the 'forall' (or universal) quantifier kind
- + Represented in terms of concrete syntax by symbol classic symbol '''

one sig QForAll extends QuantifierKind {

}

—- Name: 'QExists'

—-- Description:

- + Defines the 'exists' quantifier kind

- + Represented in terms of concrete syntax by symbol classic symbol '''

one sig QExists extends QuantifierKind {

}

—- Name: 'ArrowsFormula'

—-- Description:
-= + Defines an arrows formula
- + Made of predicate property edges

63

- + With a source, which can either be: obj, blob or pair

sig ArrowsFormula extends Formula {
source : FormulaSource,
pes : some PropEdgePred

—- Name: 'SetFormula'
—-- Description:
- + Defines a 'Set' formula.

abstract sig SetFormula extends Formula {

}

—-- Name: 'SetFormulaDef'
—-- Description:
-- + Defines a 'Set' formula using a set definition (symbol)

sig SetFormulaDef extends SetFormula {
shaded : Bool, -- set may be shaded to mean empty set
bid : lone TypeDesignator, -- optional set designator
bdef : SetDef -- set definition

-- Name: 'SetFormulaSubset'
—-- Description:
- + Defines a 'Set' formula defined using a subset definition.

sig SetFormulaSubset extends SetFormula {
bid : TypeDesignator,
hasInside : SetExpression

—- Name: 'SetFormulaShaded'
—-- Description:
-= + Defines a 'Set' formula defined using shading.

sig SetFormulaShaded extends SetFormula {
bid : TypeDesignator
}

64

65

Appendix C

7.3 Proofs

C.1 Common

C.1.1 Z3 Encoding

(set-option :mbgi true)

(set-option :macro-finder true)

(set-option :pull-nested-quantifiers true)
(set-option :produce-unsat-cores true)

(set-option :produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 SetDefOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_Name
MM_Num
MM_Assertion
MM_VCLObj
MM_Pair
MM_SetElement
MM_InsideDef

MM_SetExtension
MM_ConstrainedSet

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

MM_SetInsideExpression V_MM)

MM_InsideExpSDs

MM_SetDef

MM_SetDefOp
MM_SOp_Domain
MM_SOp_Range
MM_SOp_Union

MM_SOp_Intersection

V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

66

(declare-const
(declare-const
(declare-const
(declare-const

MM_SOp_CrossProduct
MM_SOp_SetMinus
MM_SOp_RelComp
MM_SOp_None

;5 Type Designator

(declare-const
(declare-const
(declare-const
(declare-const

MM_TypeDesignator
MM_TypeDesignatorNat
MM_TypeDesignatorInt
MM_TypeDesignatorId

;5 FreeExpression

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

;35 FreeExpBinOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_FreeExpression
MM_FreeExpld
MM_FreeExpNum
MM_FreeExpUMinus
MM_FreeExpPar
MM_FreeExpDot
MM_FreeExpBin

MM_FreeExpBinOp
MM_FreeExpBinOp_Plus
MM_FreeExpBinOp_Minus
MM_FreeExpBinOp_Times
MM_FreeExpBinOp_Div

;35 SetExpression

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 Expression
(declare-const
;5 PropEdge

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_SetExpression
MM_SetExpressionCard
MM_SetExpressionld
MM_SetExpressionEmpty
MM_SetExpressionDef

MM_Expression

MM_PropEdge
MM_PropEdgePred
MM_PropEdgeMod
MM_EdgeOperatorBin
MM_EdgeOperatorMod
MM_EdgeOperatorUn

;5 EdgeOperatorUnary

(declare-const
(declare-const
(declare-const

MM_UOpCard
MM_UOpThe
MM_UOpNone

;5 EdgeOperatorBin

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_BOpEQ
MM_BOpNEQ
MM_BOpIN
MM_BOpLT
MM_BOpLEQ
MM_BOpGT

V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

67

(declare-const
(declare-const

;5 EdgeOperatorMod

(declare-const
(declare-const
(declare-const
(declare-const

(declare-const

(declare-const
(declare-const
;; ID
(declare-const
(declare-const
(declare-const
(declare-const
;3 A, 0O, P, SE
(declare-const
(declare-const
(declare-const
(declare-const
;; PE
(declare-const
(declare-const
(declare-const
;5 UEOp
(declare-const
(declare-const
(declare-const
(declare-const
;5 BEOp
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 MOp
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 TExp
(declare-const

MM_BOpGEQ V_MM)
MM_BOpSubsetEQ V_MM)
MM_MOpDRES V_MM)
MM_MOpRRES V_MM)
MM_MOpDSUB V_MM)
MM_MOpRSUB V_MM)
;; Special 'Null' constant to check totality
MM_Null V_MM)
G_Num _®
G_Id _®
G_TD V_&)
G_TD_Int V_G)
G_TD_Nat V_&)
G_TD_Id _®
G_A V_G)
G_0 V_G)
G_P V_G&)
G_SE _®
G_PE V_G)
G_PEP V_G)
G_PEM V_G)
G_UEOp _®
G_UEOp_Card V_G)
G_UEOp_The V_&)
G_UEOp_None V_G)
G_BEOp V_&)
G_BEOp_EQ V_G)
G_BEOp_NEQ V_G)
G_BEOp_IN V_G)
G_BEOp_LT V_G&)
G_BEOp_LEQ V_G)
G_BEOp_GT V_&)
G_BEOp_GEQ V_G)
G_BEOp_SubsetEQ V_&)
G_MOp _®
G_MOp_DRES V_&)
G_MOp_RRES V_G)
G_MOp_DSUB V_G)
G_MOp_RSUB _®
G_TExp V_&)

68

;5 FExp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;; FEOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 SExp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 IDef

(declare-const
(declare-const
(declare-const
;5 IExp

(declare-const
(declare-const
(declare-const
(declare-const
;5 SOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

G_FExp
G_FExpId
G_FExpDot
G_FExpNum
G_FExpUMinus
G_FExpPar
G_FExpBin

G_FEOp
G_FEOp_Plus
G_FEOp_Minus
G_FEOp_Times
G_FEOp_Div

G_SExp
G_SExpTD
G_SExpSDef
G_SExpEmpty
G_SExpCard

G_IDef
G_IDef_SExt
G_IDef_CntSet

G_IExp
G_IExp_SDs
G_IExp_IDef
G_SDef

G_S0p
G_SOp_Domain
G_SOp_Range
G_SOp_Union
G_SOp_Intersection
G_SOp_CrossProduct
G_SOp_SetMinus
G_SOp_RelComp
G_SOp_None

;; Special 'Null' constant to check totality

(declare-const

; Assertion, VCLObj, Pair, SetElement

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

G_Null

MM_EAssertion_Id
MM_EVCLObj_Id
MM_EIVCLObj
MM_EPair_Id1l
MM_EPair_Id2
MM_EIPair

V_G)

69

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 SetDefOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_ESetExtension_Elems

MM_EConstrainedSet_Desig

MM_EConstrainedSet_PropEdge

MM_EISetExtension
MM_EIConstrainedSet
MM_EIInsideDef
MM_EIInsideExpSDs
MM_ESetDef_insideExp
MM_ESetDef _sdop
MM_EInsideExpSDs_setDefs

MM_EISOp_Domain
MM_EISOp_Range
MM_EISOp_Union
MM_EISOp_Intersection
MM_EISOp_CrossProduct
MM_EISOp_SetMinus
MM_EISOp_RelComp
MM_EISOp_None

;5 Type Designator

(declare-const
(declare-const
(declare-const
(declare-const

MM_ETypeDesignatorId
MM_EITypeDesignatorId
MM_EITypeDesignatorNat
MM_EITypeDesignatorInt

;3 FreeExpression

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_EFreeExpNum
MM_EIFreeExpNum
MM_EFreeExpId
MM_EIFreeExpld
MM_EFreeExpUMinus
MM_EIFreeExpUMinus
MM_EFreeExpPar
MM_EIFreeExpPar
MM_EFreeExpDotId
MM_EFreeExpDotPropId
MM_EIFreeExpDot
MM_EFreeExpBinExpl
MM_EFreeExpBinExp2
MM_EFreeExpBinOp
MM_EIFreeExpBinExp

;5 FreeExpBinOp

(declare-const MM_EIFreeExpBinOp_Plus
(declare-const MM_EIFreeExpBinOp_Minus
(declare-const MM_EIFreeExpBinOp_Times
(declare-const MM_EIFreeExpBinOp_Div
;5 SetExpression

(declare-const MM_ESetExpressionCard
(declare-const MM_EISetExpressionCard
(declare-const MM_ESetExpressionId

70

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)

(declare-const
(declare-const
(declare-const
(declare-const
;; Expression
(declare-const
(declare-const
;; PropEdge

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_EISetExpressionld
MM_EISetExpressionEmpty
MM_ESetExpressionDef
MM_EISetExpressionDef

MM_EISetExpression
MM_EIFreeExp

MM_EPropEdgeTarget
MM_EPropEdgePredBOp
MM_EPropEdgePredName
MM_EPropEdgePredUOp
MM_EPropEdgeModMOp
MM_EIPropEdgeMod
MM_EIPropEdgePred

;5 EdgeOperatorUnary

(declare-const
(declare-const
(declare-const

MM_EIUOp_Card
MM_EIUOp_The
MM_EIUOp_None

;5 EdgeOperatorBin

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_EIBOp_EQ
MM_EIBOp_NEQ
MM_EIBOp_In
MM_EIBOp_LT
MM_EIBOp_LEQ
MM_EIBOp_GT
MM_EIBOp_GEQ
MM_EIBOp_SubsetEQ

;5 EdgeOperatorMod

(declare-const
(declare-const
(declare-const
(declare-const

MM_EIMOp_DRES
MM_EIMOp_RRES
MM_EIMOp_DSUB
MM_EIMOp_RSUB

E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)

;; Special 'Null' constant to check totality

(declare-const

;5 ID

(declare-const
(declare-const
(declare-const
(declare-const
;; A, 0, P, SE
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 PE

MM_ENull

G_E_TD_Id
G_E_TD_Def_Id
G_E_TD_Def_Nat
G_E_TD_Def_Int

G_E A_Id
G_E_SE_Def 0
G_E_SE_Def_P
G_E 0_Id

G EP Id 1

G EP_Id 2

71

E_MM)

E_G)
E_G)
E_G)
E_®)

E_G)
E_G)
E_G)
E_G)
E_G)
E_G)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 UEOp

(declare-const
(declare-const
(declare-const
;; BEOp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 MOp

(declare-const
(declare-const
(declare-const
(declare-const
;5 TExp

(declare-const
(declare-const
;5 FExp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 FEOp

(declare-const
(declare-const
(declare-const
(declare-const

[’UD‘JILTJILTJ

_E_PEP_UEOp
G_E_PEP_Id
G_E_PEP_BEOp
G_E_PEM_MOp

G_E_UEOp_Def_Card
G_E_UEOp_Def_The
G_E_UEOp_Def_None

G_E_BEOp_Def_Eq
G_E_BEOp_Def_Neq
G_E_BEOp_Def_In
G_E_BEOp_Def_ LT
G_E_BEOp_Def _LEQ
G_E_BEOp_Def_GT
G_E_BEOp_Def_GEQ
G_E_BEOp_Def _SUBSETEQ

G_E_MOp_Def DRES
G_E_MOp_Def_RRES
G_E_MOp_Def_DSUB
G_E_MOp_Def_RSUB

G_E_TExp_Def_SExp
G_E_TExp_Def_FExp

G_E_FExpld
G_E_FExpNum
G_E_FExpUMinus
G_E_FExpPar
G_E_FExpDot_Id
G_E_FExpDot_PropId
G_E_FExpBinExpl
G_E_FExpBinExp2
G_E_FExpBinOp
G_E_FExp_Def_Id
G_E_FExp_Def_Num
G_E_FExp_Def_UMinus
G_E_FExp_Def_Par
G_E_FExp_Def_Dot
G_E_FExp_Def_Bin

G_E_FEOp_Def_Plus
G_E_FEOp_Def_Minus
G_E_FEOp_Def_Times
G_E_FEOp_Def_Div

72

;5 SExp

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 IDef

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 IExp

(declare-const
(declare-const
(declare-const
;3 SDef

(declare-const
(declare-const
;5 S0p

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

G_E_SExpTD
G_E_SExpSDef
G_E_SExpCard
G_E_SExp_Def_TD
G_E_SExp_Def_SetDef
G_E_SExp_Def_Empty
G_E_SExp_Def_Card

G_E_IDef_SExt_SEs
G_E_IDef_CntSet_TD
G_E_IDef CntSet_PEs
G_E_IDef Def_ SExt
G_E_IDef Def_CntSet

G_E_IExp_Def_IDef
G_E_IExp_Def_SDs
G_E_IExpSDs_SDef

G_E_SDef_IExp
G_E_SDef_SOp

E_SOp_Def_Domain
E_SOp_Def_Range
E_SOp_Def_Union
E_SOp_Def_Intersection
G_E_SOp_Def_CrossProduct
G_E_SOp_Def_SetMinus
G_E_SOp_Def_RelComp
G_E_SOp_Def_None

G_
G_
G_
G_

E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)

E_G)
E_G)
E_G)
E_G)
E_G)

E_G)
E_G)
E_G)

E_G)
E_G)

E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)

;5 Special 'Null' constant to check totality

(declare-const

G_E_Null

(assert (distinct

MM_Null
MM_Num
MM_Name

MM_TypeDesignator
MM_TypeDesignatorNat
MM_TypeDesignatorInt
MM_TypeDesignatorId
MM_FreeExpression

MM_FreeExpId

MM_FreeExpNum
MM_FreeExpUMinus
MM_FreeExpPar
MM_FreeExpDot
MM_FreeExpBin
MM_FreeExpBinOp

73

E_G)

MM_FreeExpBinOp_Plus
MM_FreeExpBinOp_Minus
MM_FreeExpBinOp_Times
MM_FreeExpBinOp_Div
MM_SetExpression
MM_SetExpressionId
MM_SetExpressionDef
MM_SetExpressionEmpty
MM_PropEdge
MM_PropEdgePred
MM_PropEdgeMod
MM_EdgeOperatorUn
MM_EdgeOperatorBin
MM_EdgeOperatorMod
MM_UOpCard

MM_UOpThe

MM_UOpNone

MM_BOpEQ

MM_BOpNEQ

MM_BOpIN

MM_BOpLT

MM_BOpLEQ

MM_BOpGT

MM_BOpGEQ
MM_BOpSubsetEQ
MM_MOpDRES
MM_MOpRRES
MM_MOpDSUB
MM_MOpRSUB
MM_Assertion
MM_VCLObj

MM_Pair
MM_SetElement
MM_InsideDef
MM_SetExtension
MM_ConstrainedSet
MM_SetInsideExpression
MM_InsideExpSDs
MM_SetDef
MM_SetDefOp
MM_SOp_Domain
MM_SOp_Range
MM_SOp_Union
MM_SOp_Intersection
MM_SOp_CrossProduct
MM_SOp_SetMinus
MM_SOp_RelComp
MM_SOp_None))

74

(assert (distinct
G_Null
G_Id
G_PE
G_PEP
G_PEM
G_BEOp
G_UEOp
G_MOp
G_UEOp_Card
G_UEOp_The
G_UEOp_None
G_BEOp_EQ
G_BEOp_NEQ
G_BEOp_IN
G_BEOp_LT
G_BEOp_LEQ
G_BEOp_GT
G_BEOp_GEQ
G_BEOp_SubsetEQ
G_MOp_DRES
G_MOp_RRES
G_MOp_DSUB
G_MOp_RSUB
G_TD
G_TD_Nat
G_TD_Int
G_TD_Id
G_FExp
G_FExpId
G_FExpNum
G_FExpUMinus
G_FExpPar
G_FExpDot
G_FExpBin
G_FEOp
G_FEOp_Plus
G_FEOp_Minus
G_FEOp_Times
G_FEOp_Div
G_SExp
G_SExpTD
G_SExpSDef
G_SExpEmpty

G_IDef_SExt
G_IDef_CntSet
G_IExp

G_IExp_SDs
G_IExp_IDef

G_SDef

G_SOp

G_SOp_Domain
G_SOp_Range
G_SOp_Union
G_SOp_Intersection
G_SOp_CrossProduct
G_SOp_SetMinus
G_SOp_RelComp
G_SOp_None))

(assert (distinct
MM_ENull
MM_ETypeDesignatorld
MM_EITypeDesignatorIld
MM_EITypeDesignatorNat
MM_EITypeDesignatorInt
MM_EISetExpression
MM_EIFreeExp
MM_EFreeExpNum
MM_EIFreeExpNum
MM_EFreeExpId
MM_EIFreeExpId
MM_EFreeExpUMinus
MM_EIFreeExpUMinus
MM_EFreeExpPar
MM_EIFreeExpPar
MM_EFreeExpDotId
MM_EFreeExpDotPropld
MM_EIFreeExpDot
MM_EFreeExpBinExpl
MM_EFreeExpBinExp2
MM_EFreeExpBinOp
MM_EIFreeExpBinExp
MM_EIFreeExpBinOp_Plus
MM_EIFreeExpBinOp_Minus
MM_EIFreeExpBinOp_Times
MM_EIFreeExpBinOp_Div
MM_ESetExpressionld
MM_EISetExpressionId
MM_ESetExpressionCard
MM_EISetExpressionCard
MM_ESetExpressionDef
MM_EISetExpressionDef

MM_EISetExpressionEmpty
MM_EPropEdgeTarget
MM_EPropEdgePredBOp
MM_EPropEdgePredName
MM_EPropEdgeModMOp
MM_EIPropEdgeMod
MM_EIPropEdgePred
MM_EPropEdgePredUOp
MM_EIUOp_Card
MM_EIUOp_The
MM_EIUOp_None
MM_EIBOp_EQ
MM_EIBOp_NEQ
MM_EIBOp_In
MM_EIBOp_LT
MM_EIBOp_LEQ
MM_EIBOp_GT
MM_EIBOp_GEQ
MM_EIMOp_DRES
MM_EIMOp_RRES
MM_EIMOp_DSUB
MM_EIMOp_RSUB
MM_EIBOp_SubsetEQ
MM_EAssertion_Id
MM_EVCLObj_Id
MM_EPair_Id1l
MM_EPair_Id2
MM_EIVCLObj

MM_EIPair
MM_ESetExtension_Elems
MM_EConstrainedSet_Desig
MM_EConstrainedSet_PropEdge
MM_EISetExtension
MM_EIConstrainedSet
MM_EIInsideDef
MM_EIInsideExpSDs
MM_ESetDef_insideExp
MM_ESetDef_sdop
MM_EInsideExpSDs_setDefs
MM_EISOp_Domain
MM_EISOp_Range
MM_EISOp_Union
MM_EISOp_Intersection
MM_EISOp_CrossProduct
MM_EISOp_SetMinus
MM_EISOp_RelComp
MM_EISOp_Nomne))

(assert (distinct

7

E_Null

E_TD_Id
E_TD_Def_Id
E_TD_Def_Nat
G_E_TD_Def_Int
G_E_TExp_Def_SExp
G_E_TExp_Def_FExp
G_E_FExpld
G_E_FExp_Def_Id
G_E_FExpNum
G_E_FExp_Def_Num
G_E_FExpUMinus
G_E_FExp_Def_UMinus
G_E_FExpPar
G_E_FExp_Def_Par
G_E_FExpBinExp1l
G_E_FExpBinExp2
G_E_FExpBinOp
G_E_FExp_Def_Bin
G_E_FExpDot_Id
G_E_FExpDot_PropId
G_E_FExp_Def_Dot
G_E_FEOp_Def_Plus
G_E_FEOp_Def_Minus
G_E_FEOp_Def_Times
G_E_FEOp_Def _Div
G_E_SExpTD
G_E_SExp_Def_TD
G_E_SExpSDef
G_E_SExp_Def_SetDef
G_E_SExpCard
G_E_SExp_Def_Card
G_E_SExp_Def_Empty
G_E_PE_TExp
G_E_PE_PEP
G_E_PE_PEM
G_E_PEP_UEQOp
G_E_PEP_Id
G_E_PEP_BEOp
G_E_PEM_MOp
G_E_UEOp_Def_Card
G_E_UEOp_Def_The
G_E_UEOp_Def_None
G_E_BEOp_Def_Eq
G_E_BEOp_Def_Neq
G_E_BEOp_Def_In
G_E_BEOp_Def LT
G_E_BEOp_Def_LEQ
G_E_BEOp_Def GT

G_
G_
G_
G_

78

G_E_BEOp_Def_GEQ
G_E_BEOp_Def_SUBSETEQ
G_E_MOp_Def_DRES
G_E_MOp_Def _RRES
G_E_MOp_Def _DSUB
G_E_MOp_Def _RSUB
G_E_A_Id

G_E_SE_Def_ O
G_E_SE_Def_P

G_E_0_Id

G_E_P_Id_1

G_E_P_Id_2

G_E_IDef_ SExt_SEs
G_E_IDef_CntSet_TD
G_E_IDef CntSet_PEs
G_E_IDef_Def_ SExt
G_E_IDef Def CntSet
G_E_IExp_Def_IDef
G_E_IExp_Def_SDs
G_E_SDef_IExp
G_E_SDef _SOp
G_E_IExpSDs_SDef
G_E_SOp_Def_Domain
G_E_SOp_Def_Range
G_E_SOp_Def_Union
G_E_SOp_Def_Intersection
G_E_SOp_Def_CrossProduct
G_E_SOp_Def_SetMinus
G_E_SOp_Def_RelComp
G_E_SOp_Def _None))

(define-fun Map_V ((v V_MM)) V_G

(ite (= v MM_Num) G_Num

(ite (= v MM_Name) G_Id

(ite (= v MM_TypeDesignator) G_TD

(ite (= v MM_TypeDesignatorNat) G_TD_Nat
(ite (= v MM_TypeDesignatorInt) G_TD_Int
(ite (= v MM_TypeDesignatorId) G_TD_Id

(ite (= v MM_FreeExpression) G_FExp

(ite (= v MM_FreeExpld) G_FExpId
(ite (= v MM_FreeExpNum) G_FExpNum
(ite (= v MM_FreeExpUMinus) G_FExpUMinus
(ite (= v MM_FreeExpPar) G_FExpPar
(ite (= v MM_FreeExpDot) G_FExpDot
(ite (= v MM_FreeExpBin) G_FExpBin
(ite (= v MM_FreeExpBinQOp) G_FEOp

(ite (= v MM_FreeExpBinOp_Plus) G_FEOp_Plus
(ite (= v MM_FreeExpBinOp_Minus) G_FEOp_Minus
(ite (= v MM_FreeExpBinOp_Times) G_FEOp_Times

79

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

<4 9 9 9 d d d 9 <999 <d9d<dddddddd9d9<9<99<ddddddddddd999ddddddadadgdgdac«s

MM_FreeExpBinOp_Div)
MM_TypeDesignator)
MM_SetExpression)
MM_SetExpressionId)
MM_SetExpressionDef)
MM_SetExpressionEmpty)
MM_PropEdge)
MM_PropEdgePred)
MM_PropEdgeMod)
MM_EdgeOperatorUn)
MM_EdgeOperatorBin)
MM_EdgeOperatorMod)
MM_UOpCard)
MM_UOpThe)
MM_UOpNone)
MM_BOpEQ)

MM_BOpNEQ)

MM_BOpIN)

MM_BOpLT)

MM_BOpLEQ)

MM_BOpGT)

MM_BOpGEQ)
MM_BOpSubsetEQ)
MM_MOpDRES)
MM_MOpRRES)
MM_MOpDSUB)
MM_MOpRSUB)
MM_PropEdge)
MM_Assertion)
MM_VCLObj)

MM_Pair)
MM_SetElement)
MM_InsideDef)
MM_SetExtension)
MM_ConstrainedSet)
MM_SetInsideExpression)
MM_InsideExpSDs)
MM_SetDef)
MM_SetDef0p)
MM_SOp_Domain)
MM_SOp_Range)
MM_SOp_Union)
MM_SOp_Intersection)
MM_SOp_CrossProduct)
MM_SOp_SetMinus)
MM_SOp_RelComp)
MM_SOp_None)

G_FEOp_Div
G_TD

G_SExp
G_SExpTD
G_SExpSDef
G_SExpEmpty
G_PE

G_PEP

G_PEM
G_UEOp
G_BEOp
G_MOp
G_UEQOp_Card
G_UEOp_The
G_UEOp_None
G_BEOp_EQ
G_BEOp_NEQ
G_BEOp_IN
G_BEOp_LT
G_BEOp_LEQ
G_BEOp_GT
G_BEOp_GEQ
G_BEOp_SubsetEQ
G_MOp_DRES
G_MOp_RRES
G_MOp_DSUB
G_MOp_RSUB

Op_Intersection
Op_CrossProduct
_S0p_SetMinus
G_SOp_RelComp
G_SOp_None

G_Null))33331333333333333333333333333333333333)333333))333333))I133)))))

80

(define-fun Map_E ((e E_MM)) E_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

(= e

L}
®©o ®o ®o ® O O

MM_ETypeDesignatorId)
MM_EITypeDesignatorId)
MM_EITypeDesignatorNat)
MM_EITypeDesignatorInt)
MM_EFreeExpNum)
MM_EIFreeExpNum)
MM_EFreeExpId)
MM_EIFreeExpId)
MM_EFreeExpUMinus)
MM_EIFreeExpUMinus)
MM_EFreeExpPar)
MM_EIFreeExpPar)
MM_EFreeExpDotId)
MM_EFreeExpDotPropId)
MM_EIFreeExpDot)
MM_EFreeExpBinExp1)
MM_EFreeExpBinExp2)
MM_EFreeExpBinOp)
MM_EIFreeExpBinExp)
MM_EIFreeExpBinOp_Plus)
MM_EIFreeExpBinOp_Minus)
MM_EIFreeExpBinOp_Times)
MM_EIFreeExpBinOp_Div)
MM_ESetExpressionCard)
MM_EISetExpressionCard)
MM_ESetExpressionId)
MM_EISetExpressionId)
MM_EISetExpressionEmpty)
MM_ESetExpressionDef)
MM_EISetExpressionDef)
MM_EISetExpression)
MM_EIFreeExp)
MM_EAssertion_Id)
MM_EPropEdgeTarget)
MM_EPropEdgePredB0p)
MM_EPropEdgePredName)
MM_EPropEdgeModMOp)
MM_EPropEdgePredUOp)
MM_EIPropEdgePred)
MM_EIPropEdgeMod)
MM_EIUOp_Card)
MM_EIUOp_The)
MM_EIUOp_None)
MM_EIBOp_EQ)
MM_EIBOp_NEQ)
MM_EIBOp_In)
MM_EIBOp_LT)
MM_EIBOp_LEQ)

81

G_E_TD_Id
G_E_TD_Def_Id
G_E_TD_Def_Nat
G_E_TD_Def_Int
G_E_FExpNum
G_E_FExp_Def_Num
G_E_FExpld
G_E_FExp_Def_Id
G_E_FExpUMinus
G_E_FExp_Def_UMinus
G_E_FExpPar
G_E_FExp_Def_Par
G_E_FExpDot_Id
G_E_FExpDot_PropId
G_E_FExp_Def_Dot
G_E_FExpBinExp1l
G_E_FExpBinExp2
G_E_FExpBinOp
G_E_FExp_Def_Bin
G_E_FEOp_Def_Plus
G_E_FEOp_Def_Minus
G_E_FEOp_Def_Times
G_E_FEOp_Def_Div
G_E_SExpCard
G_E_SExp_Def_Card
G_E_SExpTD
G_E_SExp_Def_TD
G_E_SExp_Def_Empty
G_E_SExpSDef
G_E_SExp_Def_SetDef
G_E_TExp_Def_SExp
G_E_TExp_Def_FExp
G_E_A_Id
G_E_PE_TExp
G_E_PEP_BEOp
G_E_PEP_Id
G_E_PEM_MOp
G_E_PEP_UEOp
G_E_PE_PEP
G_E_PE_PEM
G_E_UEOp_Def_Card
G_E_UEOp_Def_The
G_E_UEOp_Def_None
G_E_BEOp_Def_Eq
G_E_BEOp_Def_Neq
G_E_BEOp_Def_In
G_E_BEOp_Def LT
G_E_BEOp_Def_LEQ

(ite e MM_EIBOp_GT) G_E_BEOp_Def_GT

(ite (= e MM_EIBOp_GEQ) G_E_BEOp_Def_GEQ

(ite e MM_EIBOp_SubsetEQR) G_E_BEOp_Def_SUBSETEQ
(ite (= e MM_EIMOp_DRES) G_E_MOp_Def DRES

(ite (= e MM_EIMOp_RRES) G_E_MOp_Def_RRES

(ite (= e MM_EIMOp_DSUB) G_E_MOp_Def_DSUB

(ite (= e MM_EIMOp_RSUB) G_E_MOp_Def_RSUB

(ite (= e MM_EIVCLObj) G_E_SE Def O

(ite (= e MM_EIPair) G_E_SE_Def_P

(ite (= e MM_EVCLObj_Id) G E 0_Id

(ite (= e MM_EPair_ Id1) GEPId1

(ite (= e MM_EPair_Id2) G_E_P_Id_2

(ite (= e MM_ESetExtension_Elems) G_E_IDef_SExt_SEs
(ite (= e MM_EConstrainedSet_Desig) G_E_IDef_CntSet_TD
(ite (= e MM_EConstrainedSet_PropEdge) G_E_IDef_CntSet_PEs
(ite (= e MM_EISetExtension) G_E_IDef_Def_ SExt
(ite (= e MM_EIConstrainedSet) G_E_IDef Def CntSet
(ite (= e MM_EIInsideDef) G_E_IExp_Def_IDef
(ite (= e MM_EIInsideExpSDs) G_E_IExp_Def_SDs

(ite (= e MM_ESetDef_insideExp) G_E_SDef_IExp

(ite (= e MM_ESetDef_sdop) G_E_SDef_SOp

(ite (= e MM_EInsideExpSDs_setDefs) G_E_IExpSDs_SDef

(ite (= e MM_EISOp_Domain) G_E_SOp_Def_Domain
(ite (= e MM_EISOp_Range) G_E_SOp_Def_Range
(ite (= e MM_EISOp_Union) G_E_SOp_Def_Union
(ite (= e MM_EISOp_Intersection) G_E_SOp_Def_Intersection
(ite (= e MM_EISOp_CrossProduct) G_E_SOp_Def_CrossProduct
(ite (= e MM_EISOp_SetMinus) G_E_SOp_Def_SetMinus
(ite (= e MM_EISOp_RelComp) G_E_SOp_Def_RelComp

(ite (= e MM_EISOp_None) G_E_SOp_Def_None
G_E_Null)))>)2)3332)33)323233332333233332323233333)23332333)2)3)2333)))3)3)3)))))))))))))

(push)

(echo "Testing function 'Map_V' (1) --> sat")
(assert (= (Map_V MM_PropEdge) G_PE))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_VCLObj) G_0))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_SetElement) G_P))
(check-sat)

(pop)

82

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmml V_MM) (vmm2 V_MM))

(=> (= (Map_V vmm1) (Map_V vmm2)) (= vmml vmm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' --> sat")
(assert (forall ((vg V_G))
(exists ((vmm V_MM))
(= (Map_V vmm) vg))))
(check-sat)

(pop)

; (push)

; (echo "Checking Surjectiveness of 'Map_V' (2)--> sat")
; (declare-fun svmm (V_G) V_MM)

; (assert (forall ((vg V_G))

; (= (Map_V (svmm vg)) vg)))

; (check-sat)

; (pop)

(push)

(echo "Testing function 'Map_E' (1) --> sat")
(assert (= (Map_E MM_EAssertion_Id) G_E_A_Id))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_E' (2) --> sat")

(assert (= (Map_E MM_ESetExtension_Elems) G_E_IDef_ SExt_SEs))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_E' (3) --> unsat")
(assert (= (Map_E MM_EAssertion_Id) G_E_SOp_Def_Nomne))
(check-sat)

(pop)

83

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emml E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emml emm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' --> sat")
(assert (forall ((eg E_G))
(exists ((emm E_MM))
(= (Map_E emm) eg))))
(check-sat)

(pop)

; (push)

; (echo "Checking surjectiveness of 'Map_E' (2)--> sat")
; (declare-fun semm (E_G) E_MM)
; (assert (forall ((eg E_G))

; (= (Map_E (semm eg)) eg)))
; (check-sat)

; (pop)

(define-fun Target MM ((e E_MM)) V_MM

(ite (= e MM_ETypeDesignatorId) MM_Name

(ite (= e MM_EITypeDesignatorId) MM_TypeDesignator
(ite (= e MM_EITypeDesignatorNat) MM_TypeDesignator
(ite (= e MM_EITypeDesignatorInt) MM_TypeDesignator
(ite (= e MM_EISetExpression) MM_Expression
(ite (= e MM_EIFreeExp) MM_Expression
(ite (= e MM_EFreeExpNum) MM_Num

(ite (= e MM_EIFreeExpNum) MM_FreeExpression
(ite (= e MM_EFreeExpId) MM_Name

(ite (= e MM_EIFreeExpId) MM_FreeExpression
(ite (= e MM_EFreeExpUMinus) MM_FreeExpression
(ite (= e MM_EIFreeExpUMinus) MM_FreeExpression
(ite (= e MM_EFreeExpPar) MM_FreeExpression
(ite (= e MM_EIFreeExpPar) MM_FreeExpression
(ite (= e MM_EFreeExpDotId) MM_Name

(ite (= e MM_EFreeExpDotPropId) MM_Name

(ite (= e MM_EIFreeExpDot) MM_FreeExpression

84

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite

®©o ® ®o ®© ® O® @

MM_EFreeExpBinExp1)
MM_EFreeExpBinExp2)
MM_EFreeExpBinOp)
MM_EIFreeExpBinExp)
MM_EIFreeExpBinOp_Plus)
MM_EIFreeExpBinOp_Minus)
MM_EIFreeExpBinOp_Times)
MM_EIFreeExpBinOp_Div)
MM_ESetExpressionId)
MM_ESetExpressionDef)
MM_ESetExpressionCard)
MM_EISetExpressionId)
MM_EISetExpressionDef)
MM_EISetExpressionCard)
MM_EISetExpressionEmpty)
MM_EPropEdgeTarget)
MM_EPropEdgePredB0Op)
MM_EPropEdgePredName)
MM_EPropEdgeModMOp)
MM_EIPropEdgeMod)
MM_EIPropEdgePred)
MM_EPropEdgePredUQp)
MM_EIUOp_Card)
MM_EIUOp_The)
MM_EIUOp_None)
MM_EIBOp_EQ)
MM_EIBOp_NEQ)
MM_EIBOp_In)
MM_EIBOp_LT)
MM_EIBOp_LEQ)
MM_EIBOp_GT)
MM_EIBOp_GEQ)
MM_EIBOp_SubsetEQ)
MM_EIMOp_DRES)
MM_EIMOp_RRES)
MM_EIMOp_DSUB)
MM_EIMOp_RSUB)
MM_EAssertion_Id)
MM_EIVCLObj)

MM_EIPair)
MM_EVCLObj_Id)

MM_EPair Id1)
MM_EPair_Id2)
MM_ESetExtension_Elems)
MM_EConstrainedSet_Desig)

MM_EConstrainedSet_PropEdge)

MM_EISetExtension)
MM_EIConstrainedSet)
MM_EIInsideDef)

MM_FreeExpression
MM_FreeExpression
MM_FreeExpBinQOp
MM_FreeExpression
MM_FreeExpBinOp
MM_FreeExpBinOp
MM_FreeExpBinOp
MM_FreeExpBinQOp
MM_TypeDesignator
MM_SetDef
MM_SetExpression
MM_SetExpression
MM_SetExpression
MM_SetExpression
MM_SetExpression
MM_Expression
MM_EdgeOperatorBin
MM_Name
MM_EdgeOperatorMod
MM_PropEdge
MM_PropEdge
MM_EdgeOperatorUn
MM_EdgeOperatorUn
MM_EdgeOperatorUn
MM_EdgeOperatorUn
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorBin
MM_EdgeOperatorMod
MM_EdgeOperatorMod
MM_EdgeOperatorMod
MM_EdgeOperatorMod
MM_Name
MM_SetElement
MM_SetElement
MM_Name

MM_Name

MM_Name
MM_SetElement
MM_TypeDesignator
MM_PropEdge
MM_InsideDef
MM_InsideDef

MM_SetInsideExpression

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite

MM_Nul1))))))3)))333)333))33333333333333333333333)333))))))IIIIIIIIIIIIIIIIII))))))II))

® ® ® ® ® ® ® ® ® ® ® O®

MM_EIInsideExpSDs)
MM_ESetDef_insideExp)
MM_ESetDef_sdop)
MM_EInsideExpSDs_setDefs)
MM_EISOp_Domain)
MM_EISOp_Range)
MM_EISOp_Union)
MM_EISOp_Intersection)
MM_EISOp_CrossProduct)
MM_EISOp_SetMinus)
MM_EISOp_RelComp)
MM_EISOp_None)

(define-fun Source MM ((e E_MM)) V_MM

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

®©o ® O O

MM_ETypeDesignatorId)
MM_EITypeDesignatorId)
MM_EITypeDesignatorNat)
MM_EITypeDesignatorInt)
MM_EISetExpression)
MM_EIFreeExp)
MM_EFreeExpNum)
MM_EIFreeExpNum)
MM_EFreeExpId)
MM_EIFreeExpId)
MM_EFreeExpUMinus)
MM_EIFreeExpUMinus)
MM_EFreeExpPar)
MM_EIFreeExpPar)
MM_EFreeExpDotId)
MM_EFreeExpDotPropId)
MM_EIFreeExpDot)
MM_EFreeExpBinExp1)
MM_EFreeExpBinExp2)
MM_EFreeExpBinOp)
MM_EIFreeExpBinExp)
MM_EIFreeExpBinOp_Plus)
MM_EIFreeExpBinOp_Minus)
MM_EIFreeExpBinOp_Times)
MM_EIFreeExpBinOp_Div)
MM_ESetExpressionId)
MM_ESetExpressionDef)
MM_ESetExpressionCard)
MM_EISetExpressionId)
MM_EISetExpressionDef)
MM_EISetExpressionCard)
MM_EISetExpressionEmpty)
MM_EPropEdgeTarget)
MM_EPropEdgePredB0p)

86

MM_SetInsideExpression
MM_SetInsideExpression
MM_SetDefOp

MM_SetDef

MM_SetDef0Op
MM_SetDefOp
MM_SetDefOp
MM_SetDefOp
MM_SetDefOp
MM_SetDefOp
MM_SetDefOp
MM_SetDefOp

MM_TypeDesignatorId
MM_TypeDesignatorId
MM_TypeDesignatorNat
MM_TypeDesignatorInt
MM_SetExpression
MM_FreeExpression
MM_FreeExpNum
MM_FreeExpNum
MM_FreeExpld
MM_FreeExpld
MM_FreeExpUMinus
MM_FreeExpUMinus
MM_FreeExpPar
MM_FreeExpPar
MM_FreeExpDot
MM_FreeExpDot
MM_FreeExpDot
MM_FreeExpBin
MM_FreeExpBin
MM_FreeExpBin
MM_FreeExpBin
MM_FreeExpBinOp_Plus
MM_FreeExpBinOp_Minus
MM_FreeExpBinOp_Times
MM_FreeExpBinOp_Div
MM_SetExpressionId
MM_SetExpressionDef
MM_SetExpressionCard
MM_SetExpressionCard
MM_SetExpressionDef
MM_SetExpressionCard
MM_SetExpressionEmpty
MM_PropEdge
MM_PropEdgePred

(ite (=
(ite (=

MM_EPropEdgePredName)
MM_EPropEdgeModM0p)

MM_PropEdgePred
MM_PropEdgeMod

(ite
(ite

(ite (

MM_EIPropEdgeMod)
MM_EIPropEdgePred)

MM_EPropEdgePredUQp)

MM_PropEdgeMod
MM_PropEdgePred
MM_PropEdgePred

(ite (MM_EIInsideExpSDs) MM_InsideExpSDs
(ite MM_ESetDef_insideExp) MM_SetDef

(ite MM_ESetDef_sdop) MM_SetDef

(ite MM_EInsideExpSDs_setDefs) MM_InsideExpSDs
(ite MM_EISOp_Domain) MM_SOp_Domain
(ite (MM_EISOp_Range) MM_SOp_Range

e
e
e
e
e
(ite e MM_EIUOp_Card) MM_UOpCard
(ite (= e MM_EIUOp_The) MM_UOpThe
(ite e MM_EIUOp_None) MM_UQpNone
(ite e MM_EIBOp_EQ) MM_BOpEQ
(ite (= e MM_EIBOp_NEQ) MM_BOpNEQ
(ite (= e MM_EIBOp_In) MM_BOpIN
(ite (= e MM_EIBOp_LT) MM_BOpLT
(ite (= e MM_EIBOp_LEQ) MM_BOpLEQ
(ite e MM_EIBOp_GT) MM_BOpGT
(ite (= e MM_EIBOp_GEQ) MM_BOpGEQ
(ite (= e MM_EIBOp_SubsetEQ) MM_BOpSubsetEQ
(ite e MM_EIMOp_DRES) MM_MOpDRES
(ite (= e MM_EIMOp_RRES) MM_MOpRRES
(ite e MM_EIMOp_DSUB) MM_MOpDSUB
(ite (= e MM_EIMOp_ RSUB) MM_MOpRSUB
(ite e MM_EAssertion_Id) MM_Assertion
(ite e MM_EIVCLObj) MM_VCLObj
(ite (= e MM_EIPair) MM_Pair
(ite e MM_EVCLObj_Id) MM_VCLObj
(ite (= e MM_EPair_Id1) MM_Pair
(ite e MM_EPair_Id2) MM_Pair
(ite e MM_ESetExtension_Elems) MM_SetExtension
(ite (= e MM_EConstrainedSet_Desig) MM_ConstrainedSet
(ite e MM_EConstrainedSet_PropEdge) MM_ConstrainedSet
(ite (= e MM_EISetExtension) MM_SetExtension
(ite e MM_EIConstrainedSet) MM_ConstrainedSet
(ite e MM_EIInsideDef) MM_InsideDef
e
e
e
e
e
e
e
e
e
e
e
e

(ite MM_EISOp_Union) MM_SOp_Union

(ite MM_EISOp_Intersection) MM_SOp_Intersection
(ite MM_EISOp_CrossProduct) MM_S0p_CrossProduct
(ite MM_EISOp_SetMinus) MM_SOp_SetMinus
(ite MM_EISOp_RelComp) MM_SOp_RelComp

(ite MM_EISOp_None) MM_SOp_None

MM_Nul1))1))))))3333333))333333333333333333333333333))))))IIIIIIIIIIIIIIIII)))))))I)))

(define-fun Target_G ((e E_G)) V_G

(ite (= e G_E_TD_Id)
(ite (= e G_E_TD_Def_Id)

87

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite

®©o ® ®o ®© ® O® @

G_E_TD_Def_Nat)
G_E_TD Def_Int)
G_E_TExp_Def _SExp)
G_E_TExp_Def_FExp)
G_E_FExpNum)
G_E_FExpId)
G_E_FExpUMinus)
G_E_FExpPar)
G_E_FExpBinExp1)
G_E_FExpBinExp2)
G_E_FExpBinOp)
G_E_FExp_Def_Id)
G_E_FExp_Def_Num)
G_E_FExp_Def_UMinus)
G_E_FExp_Def_Par)
G_E_FExp_Def Bin)
G_E_FExpDot_Id)
G_E_FExpDot_PropId)
G_E_FExp_Def_Dot)
G_E_FEOp_Def_Plus)
G_E_FEOp_Def Minus)
G_E_FEOp_Def_Times)
G_E_FEOp_Def _Div)
G_E_SExpTD)
G_E_SExpSDef)
G_E_SExpCard)
G_E_SExp_Def_TD)
G_E_SExp_Def_SetDef)
G_E_SExp_Def_Card)
G_E_SExp_Def_Empty)
G_E_PE_TExp)
G_E_PE_PEP)
G_E_PE_PEM)
G_E_PEP_UEOp)
G_E_PEP_Id)
G_E_PEP_BEOp)
G_E_PEM_MOp)
G_E_UEOp_Def_Card)
G_E_UEOp_Def_The)
G_E_UEOp_Def_None)
G_E_BEOp_Def_Eq)
G_E_BEOp_Def_Neq)
G_E_BEOp_Def_In)
G_E_BEOp_Def LT)
G_E_BEOp_Def_ LEQ)
G_E_BEOp_Def_GT)
G_E_BEOp_Def_ GEQ)

G_E_BEOp_Def_ SUBSETEQ)

G_E_MOp_Def _DRES)

G_TD
G_TD
G_TExp
G_TExp
G_Num
G_Id
G_FExp
G_FExp
G_FExp
G_FExp
G_FEOp
G_FExp
G_FExp
G_FExp
G_FExp
G_FExp
G_Id
G_Id
G_FExp
G_FEOp
G_FEOp
G_FEOp
G_FEOp
G_TD
G_SDef
G_SExp
G_SExp
G_SExp
G_SExp
G_SExp
G_TExp
G_PE
G_PE
G_UEOp
G_Id
G_BEOp
G_MOp
G_UEOp
G_UEOp
G_UEOp
G_BEOp
G_BEOp
G_BEOp
G_BEOp
G_BEOp
G_BEOp
G_BEOp
G_BEOp
G_MOp

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite

G_Null))33331333)333333)))3333))))113))))))JI)))

o ® O®

G_E_MOp_Def _RRES)
G_E_MOp_Def_DSUB)
G_E_MOp_Def_RSUB)

G E A Id)

G_E 0_Id)

G EP Id 1)
G_E_P_Id_2)
G_E_SE_Def_0)

G_E_SE Def_P)
G_E_IDef SExt_ SEs)
G_E_IDef_CntSet_TD)
G_E_IDef _CntSet_PEs)
G_E_IDef_Def_ SExt)
G_E_IDef_Def_CntSet)
G_E_IExp Def_IDef)
G_E_IExp_Def_SDs)
G_E_SDef_IExp)
G_E_SDef_S0p)
G_E_IExpSDs_SDef)
G_E_SOp_Def _Domain)
G_E_SOp_Def_Range)
G_E_SOp_Def_Union)
G_E_SOp_Def_Intersection)
G_E_SOp_Def_CrossProduct)
G_E_SOp_Def_SetMinus)
G_E_SOp_Def_RelComp)
G_E_SOp_Def_None)

(define-fun Source_G ((e E_G)) V_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® O

G_E_TD_Id)

G_E_TD Def_Id)
G_E_TD_Def_Nat)
G_E_TD Def_Int)
G_E_TExp_Def _SExp)
G_E_TExp_Def_FExp)
G_E_FExpNum)
G_E_FExpId)
G_E_FExpUMinus)
G_E_FExpPar)
G_E_FExpBinExp1)
G_E_FExpBinExp2)
G_E_FExpBinOp)
G_E_FExp_Def_Id)
G_E_FExp_Def_Num)
G_E_FExp_Def_UMinus)
G_E_FExp_Def_Par)
G_E_FExp_Def Bin)
G_E_FExpDot_Id)

89

(@]
o]

o
o]

|
HHHS 2
QO
el

Q Q

—
Q.

QIOIOOOIQQQOO
0N n wn
MM m

IO
=
[w)

G_PE
G_IDef
G_IDef
G_IExp
G_IExp
G_IExp
G_SOp
G_SDef
G_SOp
G_SOp
G_SOp
G_SOp
G_SOp
G_SOp
G_SOp
G_SOp

G_TD_Id
G_TD_Id
G_TD_Nat
G_TD_Int
G_SExp
G_FExp
G_FExpNum
G_FExpId
G_FExpUMinus
G_FExpPar
G_FExpBin
G_FExpBin
G_FExpBin
G_FExpId
G_FExpNum
G_FExpUMinus
G_FExpPar
G_FExpBin
G_FExpDot

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite

®©o ® ®o ®© ® O® @

G_E_FExpDot_PropId)
G_E_FExp_Def_Dot)
G_E_FEOp_Def_Plus)
G_E_FEQOp_Def_Minus)
G_E_FEOp_Def_Times)
G_E_FEOp_Def Div)
G_E_SExpTD)
G_E_SExpSDef)
G_E_SExpCard)
G_E_SExp_Def_TD)
G_E_SExp_Def_SetDef)
G_E_SExp_Def_Card)
G_E_SExp_Def _Empty)
G_E_PE_TExp)
G_E_PE_PEP)
G_E_PE_PEM)
G_E_PEP_UEQp)
G_E_PEP_Id)
G_E_PEP_BEOp)
G_E_PEM_MOp)
G_E_UEOp_Def_Card)
G_E_UEOp_Def_The)
G_E_UEQOp_Def_None)
G_E_BEOp_Def_Eq)
G_E_BEOp_Def_Neq)
G_E_BEOp_Def_In)
G_E_BEOp_Def LT)
G_E_BEOp_Def_ LEQ)
G_E_BEOp_Def_GT)
G_E_BEOp_Def_GEQ)

G_E_BEOp_Def_ SUBSETEQ)

G_E_MOp_Def_DRES)
G_E_MOp_Def _RRES)
G_E_MOp_Def_DSUB)
G_E_MOp_Def_RSUB)
G_E_A_Id)

G_E_0_Id)

G EP Id 1)

G EP Id 2)

G_E_SE Def_0)
G_E_SE_Def_P)
G_E_IDef SExt_ SEs)
G_E_IDef_CntSet_TD)
G_E_IDef CntSet_PEs)
G_E_IDef_Def_ SExt)
G_E_IDef_Def_CntSet)
G_E_IExp Def IDef)
G_E_IExp_Def_SDs)
G_E_SDef_IExp)

90

G_FExpDot
G_FExpDot
G_FEOp_Plus
G_FEOp_Minus
G_FEOp_Times
G_FEOp_Div
G_SExpTD
G_SExpSDef
G_SExpCard
G_SExpTD
G_SExpSDef
G_SExpCard
G_SExpEmpty
G_PE

G_PEP

G_PEM

G_PEP

G_PEP

G_PEP

G_PEM
G_UEOp_Card
G_UEOp_The
G_UEOp_None
G_BEOp_EQ
G_BEOp_NEQ
G_BEOp_IN
G_BEOp_LT
G_BEOp_LEQ
G_BEOp_GT
G_BEOp_GEQ
G_BEOp_SubsetEQ
G_MOp_DRES
G_MOp_RRES
G_MOp_DSUB
G_MOp_RSUB

Def_ SExt
Def_CntSet

_IDef_CntSet
G_IDef
G_IExp_SDs
G_SDef

(ite (= e G_E_SDef_S0p) G_SDef

(ite (= e G_E_IExpSDs_SDef) G_IExp_SDs

(ite (= e G_E_SOp_Def_Domain) G_SOp_Domain

(ite (= e G_E_SOp_Def_Range) G_SOp_Range

(ite (= e G_E_SOp_Def_Union) G_SOp_Union

(ite (= e G_E_SOp_Def_Intersection) G_SOp_Intersection
(ite (= e G_E_SOp_Def_CrossProduct) G_SOp_CrossProduct
(ite (= e G_E_SOp_Def_SetMinus) G_SOp_SetMinus
(ite (= e G_E_SOp_Def_RelComp) G_SOp_RelComp

(ite (= e G_E_SOp_Def_None) G_SOp_None

G_Null))33333)33)))313)3)))))))))

(push)

(echo "Testing the 'Target_MM' function (1) --> sat")
(assert (= (Target_MM MM_EAssertion_Id) MM_Name))
(check-sat)

(pop)

(push)

(echo "Testing the target 'Target _MM' function (2) --> sat")
(assert (= (Target_MM MM_EISOp_Range) MM_SetDefOp))
(check-sat)

(pop)

(push)

(echo "Testing the 'Target_MM' function (3) --> unsat")
(assert (= (Target_MM MM_EISetExtension) MM_PropEdge))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_MM' function (1) --> sat")
(assert (= (Source_MM MM_EAssertion_Id) MM_Assertion))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_MM' function (2) --> sat")
(assert (= (Source_MM MM_EISOp_Range) MM_SOp_Range))
(check-sat)

(pop)

91

(push)

(echo "Testing the 'Source_MM' function (3) --> unsat")
(assert (= (Source_MM MM_EISetExtension) MM_SetDef))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Source_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Source_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved -> sat")
(assert (forall ((emml E_MM))
(= (Map_V (Target_MM emm1)) (Target_G (Map_E emml)))))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (1)-> sat")
(assert (= (Source_G G_E_IDef Def_ SExt) G_IDef_ SExt))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (2) -> sat")
(assert (= (Source_G G_E_SDef_SOp) G_SDef))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (3) -> unsat")
(assert (= (Source_G G_E_IDef CntSet_TD) G_TD))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Source_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))

92

(check-sat)
(pop)

(push)
(echo "Checking that the source function 'Source_MM' is preserved -> sat")
(assert (forall ((emml E_MM))
(= (Map_V (Source_MM emml1)) (Source_G (Map_E emml)))))
(check-sat)

(pop)

C.1.2 Z3 Proof Output

Testing function 'Map_V' (1) --> sat

sat

Testing function 'Map_V' (2) --> sat

sat

Testing function 'Map_V' (3) --> unsat

unsat

Checking Totality of 'Map_V' --> sat

sat

Checking injectiveness of 'Map_V' --> sat
sat

Checking Surjectiveness of 'Map_V' --> sat
sat

Testing function 'Map_E' (1) --> sat

sat

Testing function 'Map_E' (2) --> sat

sat

Testing function 'Map_E' (3) --> unmsat

unsat

Checking Totality of 'Map_E' --> sat

sat

Checking injectiveness of 'Map_E' --> sat
sat

Checking Surjectiveness of 'Map_E' --> sat
sat

Testing the 'Target_MM' function (1) --> sat
sat

Testing the target 'Target_MM' function (2) --> sat
sat

Testing the 'Target_MM' function (3) --> unsat
unsat

Checking totality of 'Target_MM' --> sat

sat

Testing the 'Source_MM' function (1) --> sat
sat

Testing the 'Source_MM' function (2) --> sat
sat

Testing the 'Source_MM' function (3) --> unsat

93

unsat

Checking Totality of 'Source_MM' --> sat

sat

Checking totality of 'Target_G' ->sat

sat

Checking that the target function 'Target_MM' is preserved -> sat

sat

Testing the 'Source_G' function (1)-> sat

sat

Testing the 'Source_G' function (2) -> sat

sat

Testing the 'Source_G' function (3) -> unsat

unsat

Checking Totality of 'Source_G' ->sat

sat

Checking that the source function 'Source_MM' is preserved -> sat

sat

C.2 Structural diagrams

(set-option
(set-option
(set-option
(set-option
(set-option

:mbqi true)
:macro-finder true)
:pull-nested-quantifiers true)
:produce-unsat-cores true)
:produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'Mult!

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

MM_Name

MM_Num

MM_Bool
MM_Assertion
MM_TypeDesignator
MM_SetDef

MM_Mult
MM_MSeq
MM_MOne
MM_MOpt
MM_MMany
MM_MRange
MM_MOneToMany
MM_UBound
MM_UBoundNum

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)
V_MM)

94

(declare-const MM_UBoundStar V_MM)
;3 'SetKind'

(declare-const MM_SetKind V_MM)
(declare-const MM_SetKind_Value V_MM)
(declare-const MM_SetKind_Class V_MM)
;3 'SDElem'

(declare-const MM_SDElem V_MM)
;3 'Constant'

(declare-const MM_Constant V_MM)
;5 'Relation Edge'

(declare-const MM_RelEdge V_MM)
;3 'PropEdgeDef'

(declare-const MM_PropEdgeDef V_MM)
;3 'Set!

(declare-const MM_Set V_MM)
(declare-const MM_PrimarySet V_MM)
(declare-const MM _DerivedSet V_MM)
;5 'SetDefObject'’

(declare-const MM_SetDefObject V_MM)
;5 'SDiag'’

(declare-const MM_SDiag V_MM)

;5 Special 'Null' constant to check totality

(declare-const MM_Null V_MM)

;3 Mult

(declare-const MM_E_I_MSeq E_MM)
(declare-const MM_E_I_MOne E_MM)
(declare-const MM_E_I_MOpt E_MM)
(declare-const MM_E_I_MMany E_MM)
(declare-const MM_E_I_MOneToMany E_MM)
(declare-const MM_E_I_MRange E_MM)
(declare-const MM_E_MRange_1b E_MM)
(declare-const MM_E_MRange_ub E_MM)
(declare-const MM_E_I_UBoundNum E_MM)
(declare-const MM_E_I_UBoundStar E_MM)

;3 'SetKind'

(declare-const MM_E_I_SetKind_Value E_MM)
(declare-const MM_E_I_SetKind_Class E_MM)
;3 'Constant'

(declare-const MM_E_I_Constant E_MM)
(declare-const MM_E_Constant_name E_MM)
(declare-const MM_E_Constant_TD E_MM)

;5 'PropEdgeDef'
(declare-const MM_E_PropEdgeDef _mult E_MM)
(declare-const MM_E_PropEdgeDef_tgt E_MM)

(declare-const MM_E_PropEdgeDef_id E_MM)
;5 'RelEdge’

(declare-const MM_E_I_RelEdge E_MM)
(declare-const MM_E_RelEdge_name E_MM)

95

(declare-const MM_E_RelEdge_Src E_MM)
(declare-const MM_E_RelEdge_MultS E_MM)

(declare-const MM_E_RelEdge_Tgt E_MM)
(declare-const MM_E_RelEdge MultT E_MM)
;3 'Set!

(declare-const MM_E_I_Set E_MM)
(declare-const MM_E_I_PrimarySet E_MM)

(declare-const MM_E_PrimarySet_name E_MM)
(declare-const MM_E_PrimarySet_isDef E_MM)
(declare-const MM_E_PrimarySet_lcs E_MM)
(declare-const MM_E_PrimarySet_lis E_MM)
(declare-const MM_E_PrimarySet_hio E_MM)
(declare-const MM_E_PrimarySet_his E_MM)
(declare-const MM_E_PrimarySet_kind E_MM)
(declare-const MM_E_PrimarySet_lps E_MM)
(declare-const MM_E_I DerivedSet E_MM)
(declare-const MM_E _DerivedSet_name E_MM)
(declare-const MM_E_DerivedSet_def E_MM)
;5 'SetDefObject'’

(declare-const MM_E_SetDefObject_objName E_MM)
;5 'SDiag'

(declare-const MM_E_SDiag_elements E_MM)
(declare-const MM_E_SDiag_invariants E_MM)
;; Special 'Null' constant to check totality

(declare-const MM_ENull E_MM)
(declare-const G_Num V_G)
(declare-const G_Id V_G)
(declare-const G_Bool V_G)
(declare-const G_A V_G)
(declare-const G_O V_G)
(declare-const G_TD V_G)
(declare-const G_SDef V_G)
;s M

(declare-const G_M V_G)
(declare-const G_M_One V_G)
(declare-const G_M_Opt V_G)
(declare-const G_M_Some V_G)
(declare-const G_M_Many V_G)
(declare-const G_M_Seq V_G)
(declare-const G_M_Range V_G)
(declare-const G_UBound V_G)

(declare-const G_UBound_Num V_G)
(declare-const G_UBound_Star V_G)
;5 'SK!

(declare-const G_SK V_G)
(declare-const G_SK_Value V_G)
(declare-const G_SK_Class V_G)

;; 'SDE'

96

(declare-const
5 'C
(declare-const
55 'RE'
(declare-const
;3 'PED'
(declare-const
;3 'Set!
(declare-const
(declare-const
(declare-const
;5 'SD!
(declare-const

;; Special 'Null' constant to check totality

(declare-const

;5 0
(declare-const
;3 Mult
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'SK!
(declare-const
(declare-const
;3 'SDE'
(declare-const
(declare-const
(declare-const
;5 'C!
(declare-const
(declare-const
;5 'RE!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'PED'
(declare-const
(declare-const

G_SDE V_G)

G_C V_G)

G_RE V_G)

G_PED V_&)

G_Set V_G)

G_DSet V_G)

G_PSet V_G)

G_SD V_G)

G_Null V_G)

G_E_0_Id E_®)
G_E_M_Def_opt E_®
G_E_M_Def_one E_G)
G_E_M_Def_some E_G)
G_E_M_Def_many E_G)
G_E_M_Def_seq E_G)
G_E_M_Def_range E_G)
G_E_MRange_lb E_®
G_E_MRange_ub E_G)
G_E_UBound_Def_Num E_G)
G_E_UBound_Def_Star E_G)
G_E_SK_Def Value E_G)
G_E_SK_Def_Class E_G)
G_E_SDE_Def C E_G)
G_E_SDE_Def RE E_G)
G_E_SDE Def_ Set E_G)
G_E_ C_TD E_G)
G_E_C_Id E_®)
G_E RE_Id E_G)
G_E_RE_Src_TD E_G)
G_E_RE Src M E_G)
G_E_RE_Tgt_TD E_G)
G_E_RE_Tgt_M E_G)
G_E_PED M E_G)
G_E_PED_TD E_G)

97

(declare-const
;3 'Set!

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'SD!

(declare-const
(declare-const

;5 Special 'Null' constant to check

(declare-const

(assert (disti
MM_Null
MM_Num
MM_Name
MM_Bool
MM_TypeDesig
MM_Assertion
MM_SetDef
MM_Mult
MM_MSeq
MM_MOne
MM_MOpt
MM_MMany
MM_MRange
MM_MOneToMan
MM_UBound
MM_UBoundNum
MM_UBoundSta
MM_SetKind
MM_SetKind_C
MM_SetKind_V
MM_SDElem
MM_Constant
MM_RelEdge
MM_PropEdgeD
MM_Set
MM_PrimarySe
MM_DerivedSe
MM_SetDef0bj

G_E_PED_Id

G_E_Set_Def_PSet
G_E_Set_Def DSet

G_E_PSet_Id
G_E_PSet_SK
G_E_PSet_isDef
G_E_PSet_Cs
G_E_PSet_PEDs
G_E_PSet_As
G_E_PSet_hiOs
G_E_PSet_hiPSs
G_E_DSet_SDef
G_E_DSet_Id

G_E_SD_SDEs
G_E_SD_As

G_E_Null

nct

nator

y

r

lass
alue

ef

t
t
ect

E_G)

E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)
E_G)

E_G)
E_G)
totality
E_G)

98

MM_SDiag))

(assert (distinct
G_Null
G_Id

G_M_Range
G_UBound
G_UBound_Num
G_UBound_Star
G_SK
G_SK_Value
G_SK_Class
G_SDE
G_C
G_RE
G_PED
G_Set
G_DSet
G_PSet
G_SD))

(assert (distinct
MM_ENull
MM_E_I_MSeq
MM_E_I_MOne
MM_E_I_MOpt
MM_E_I_MMany
MM_E_I_MOneToMany
MM_E_I_MRange
MM_E_MRange_1b
MM_E_MRange_ub
MM_E_I_UBoundNum
MM_E_I_UBoundStar
MM_E_I_SetKind_Value
MM_E_I_SetKind_Class
MM_E_I_ Constant
MM_E_Constant_TD

MM_E_Constant_name
MM_E_I_RelEdge
MM_E_RelEdge_name
MM_E_RelEdge_Src
MM_E_RelEdge_Tgt
MM_E_RelEdge_MultS
MM_E_RelEdge_MultT
MM_E_PropEdgeDef _mult
MM_E_PropEdgeDef_tgt
MM_E_PropEdgeDef_id
MM_E_I_Set
MM_E_I_PrimarySet
MM_E_PrimarySet_name
MM_E_PrimarySet_isDef
MM_E_PrimarySet_lcs
MM_E_PrimarySet_lis
MM_E_PrimarySet_hio
MM_E_PrimarySet_his
MM_E_PrimarySet_kind
MM_E_PrimarySet_lps
MM_E_I_DerivedSet
MM_E_DerivedSet_name
MM_E_DerivedSet_def
MM_E_SetDefObject_objName
MM_E_SDiag_elements
MM_E_SDiag_invariants))

(assert (distinct
G_E_Null
G_E_0_Id
G_E_M_Def_opt
G_E_M_Def_omne
G_E_M Def_some
G_E_M_Def_many
G_E_M_Def_seq
G_E_M_Def_range
G_E_MRange_1b
G_E_MRange_ub
G_E_UBound_Def_Num
G_E_UBound_Def_Star
G_E_SK_Def Value
G_E_SK_Def_Class
G_E_SDE_Def_C
G_E_C_Id
G_E_C_TD
G_E_SDE_Def_RE
G_E_RE_Id
G_E_RE_Src_TD
G_E_RE_Tgt_TD

100

_E_SDE_Def_Set

G_E_Set_Def PSet
G_E_Set_Def_DSet
G_E_PSet_Id
G_E_PSet_SK
G_E_PSet_isDef
G_E_PSet_Cs
G_E_PSet_PEDs
G_E_PSet_As
G_E_PSet_hiOs
G_E_PSet_hiPSs
G_E_DSet_Id
G_E_DSet_SDef
G_E_SD_SDEs
G_E_SD_As))

(define-fun Map_V ((v V_MM)) V_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

(= v

|
< 9 d ddd<d<d<d9d<d9d<d<dddddddd9 9999 <<

MM_Num)

MM_Name)

MM_Bool)
MM_TypeDesignator)
MM_Assertion)
MM_SetDef)
MM_Mult)

MM_MSeq)

MM_MOne)

MM_MOpt)
MM_MMany)
MM_MRange)
MM_MOneToMany)
MM_UBound)
MM_UBoundNum)
MM_UBoundStar)
MM_SetKind)
MM_SetKind_Value)
MM_SetKind_Class)
MM_SDElem)
MM_Constant)
MM_RelEdge)
MM_PropEdgeDef)
MM_Set)
MM_PrimarySet)
MM_DerivedSet)
MM_SetDefObject)

G_Num

G_Id

G_Bool

G_TD

G_A

G_SDef

G_M

G_M_Seq
G_M_0One
G_M_Opt
G_M_Many
G_M_Range
G_M_Some
G_UBound
G_UBound_Num
G_UBound_Star
G_SK
G_SK_Value
G_SK_Class
G_SDE

m

OIOIQIQIQIQO
oYYy wndmAQ
0w o -
® ® ¢ O

ct ct

101

(ite (= v MM_SDiag)
G_Null)))3333)3333333)33333))))))))

(define-fun Map_E ((e E_MM)) E_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

(= e

o ®o ®o ® @

= e

MM_E_I_MSeq)

MM _E_I MOne)
MM_E_I_MOpt)
MM_E_I_MMany)
MM_E_I_MOneToMany)
MM_E_I_MRange)
MM_E_MRange_1b)
MM_E_MRange_ub)
MM_E_I_UBoundNum)
MM_E_I_UBoundStar)
MM_E_I_SetKind_Value)
MM_E_I_SetKind_Class)
MM_E_I Constant)
MM_E_Constant_name)
MM_E_Constant_TD)
MM_E_I_RelEdge)
MM_E_RelEdge_name)
MM_E_RelEdge_Src)
MM_E_RelEdge_Tgt)
MM_E_RelEdge_MultS)
MM_E_RelEdge_MultT)
MM_E_PropEdgeDef _mult)
MM_E_PropEdgeDef_tgt)
MM_E_PropEdgeDef_id)
MM_E_I Set)
MM_E_I_PrimarySet)
MM_E_PrimarySet_name)
MM_E_PrimarySet_isDef)
MM_E_PrimarySet_lcs)
MM_E_PrimarySet_lis)
MM_E_PrimarySet_hio)
MM_E_PrimarySet_his)
MM_E_PrimarySet_kind)
MM_E_PrimarySet_lps)
MM_E_I_DerivedSet)
MM_E_DerivedSet_name)
MM_E_DerivedSet_def)

G_SD

G_E_M_Def_seq
G_E_M_Def_one
G_E_M_Def_opt
G_E_M_Def_many
G_E_M Def_some
G_E_M_Def_range
G_E_MRange_1b
G_E_MRange_ub

G_E_UBound_Def_Num
G_E_UBound_Def_Star

G_E_SK_Def Value
G_E_SK_Def _Class
G_E_SDE_Def_C

_RE_Src_TD
_E_RE_Tgt_TD
G_E_RE_Src_M
G_E_RE_Tgt_M
G_E_PED_M
G_E_PED_TD
G_E_PED_Id
G_E_SDE_Def_Set
G_E_Set_Def_PSet
G_E_PSet_Id
G_E_PSet_isDef
G_E_PSet_Cs
G_E_PSet_As
G_E_PSet_hiOs
G_E_PSet_hiPSs
G_E_PSet_SK
G_E_PSet_PEDs
G_E_Set_Def DSet
G_E_DSet_Id
G_E_DSet_SDef

MM_E_SetDefObject_objName) G_E_0_Id

MM_E_SDiag_elements)
MM_E_SDiag_invariants)

G_E_SD_SDEs
G_E_SD_As

G_E_Null)>333331113)))))))))))))))33331333333))))

(push)

(echo "Testing function 'Map_V' (1) --> sat")

(assert (= (Map_V MM_SDElem) G_SDE))

102

(check-sat)
(pop)

(push)

(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_PropEdgeDef) G_PED))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_SetKind_Class) G_SK_Value))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmml V_MM) (vmm2 V_MM))

(=> (= (Map_V vmm1l) (Map_V vmm2)) (= vmml vmm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' (1) --> sat")
(assert (forall ((vg V_G))
(exists ((vmm V_MM))
(= (Map_V vmm) vg))))
(check-sat)
(pop)

; (push)

; (echo "Checking Surjectiveness of 'Map_V' (2)->sat")
; (declare-fun svmm (V_G) V_MM)

; (assert (forall ((vg V_G))

; = (Map_V (svmm vg)) vg)))

; (check-sat)

; (pop)

(push)

(echo "Testing function 'Map_E' (1) --> sat")
(assert (= (Map_E MM_E_I_Constant) G_E_SDE_Def_C))
(check-sat)

103

(pop)

(push)

(echo "Testing function 'Map_E' (2) --> sat")
(assert (= (Map_E MM_E_I_RelEdge) G_E_SDE_Def_RE))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_E' (3) --> unsat")
(assert (= (Map_E MM_E_MRange_1b) G_E_M_Def_opt))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emml E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emml emm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' (1) --> sat")
(assert (forall ((eg E_G))
(exists ((emm E_MM))
(= (Map_E emm) eg))))
(check-sat)

(pop)

; (push)

; (echo "Checking surjectiveness of 'Map_E' (2) -> sat")
; (declare-fun semm (E_G) E_MM)

; (assert (forall ((eg E_G))

; (= (Map_E (semm eg)) eg)))

; (check-sat)

; (pop)

(define-fun Target_MM ((e E_MM)) V_MM
(ite (= e MM_E_I_MSeq) MM_Mult
(ite (= e MM_E_I_MOne) MM_Mult
(ite (= e MM_E_I_MOpt) MM_Mult
(ite (= e MM_E_I_MMany) MM_Mult

104

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

o o ® O ® ® O O O®

e

MM_E_I_MOneToMany)
MM_E_I_MRange)
MM_E_MRange_1b)
MM_E_MRange_ub)
MM_E_I_UBoundNum)
MM_E_I_UBoundStar)

MM_E_I_SetKind_Value)
MM_E_I_SetKind_Class)

MM_E_I_Constant)
MM_E_Constant_name)
MM_E_Constant_TD)
MM_E_I_RelEdge)
MM_E_RelEdge_name)
MM_E_RelEdge_Src)
MM_E_RelEdge Tgt)
MM_E_RelEdge MultS)
MM_E_RelEdge_MultT)

MM_E_PropEdgeDef_mult)
MM_E_PropEdgeDef_tgt)
MM_E_PropEdgeDef_id)

MM E I Set)
MM_E_I_PrimarySet)

MM_E_PrimarySet_name)
MM_E_PrimarySet_isDef)
MM_E_PrimarySet_lcs)
MM_E_PrimarySet_lis)
MM_E_PrimarySet_hio)
MM_E_PrimarySet_his)
MM_E_PrimarySet_kind)
MM_E_PrimarySet_1lps)

MM_E_I_DerivedSet)

MM_E_DerivedSet_name)
MM_E _DerivedSet_def)

MM_Mult

MM_Mult

MM_Num

MM_UBound
MM_UBound
MM_UBound
MM_SetKind
MM_SetKind
MM_SDElem

MM_Name
MM_TypeDesignator
MM_SDElem

MM_Name
MM_TypeDesignator
MM_TypeDesignator
MM_Mult

MM_Mult

MM_Mult
MM_TypeDesignator
MM_Name

MM_SDElem

MM_Set

MM_Name

MM_Bool
MM_Constant
MM_Assertion
MM_SetDef(Object
MM_PrimarySet
MM_SetKind
MM_PropEdgeDef
MM_Set

MM_Name

MM_SetDef

MM_E_SetDef0Object_objName) MM_Name

MM_E_SDiag_elements)

MM_SDElem

MM_E_SDiag_invariants) MM_Assertion

MM_Null)>313))33333333333333))333333))33333))))))

(define-fun Source_MM ((e E_MM)) V_MM

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

® ® ® ® ® ® ® ® ® O

MM_E_I_MSeq)
MM_E_I_MOne)
MM_E_I_MOpt)
MM_E_I_MMany)
MM_E_I_MOneToMany)
MM_E_I_MRange)
MM_E_MRange_1b)
MM_E_MRange_ub)
MM_E_I_UBoundNum)
MM_E_I_UBoundStar)

MM_MSeq
MM_MOne
MM_MOpt
MM_MMany
MM_MOneToMany
MM_MRange
MM_MRange
MM_MRange
MM_UBoundNum
MM_UBoundStar

105

(ite (= e MM_E_I_SetKind_Value) MM_SetKind_Value
(ite (= e MM_E_I_SetKind_Class) MM_SetKind_Class
(ite (= e MM_E_I_Constant) MM_Constant

(ite (= e MM_E_Constant_name) MM_Constant

(ite (= e MM_E_Constant_TD) MM_Constant

(ite (= e MM_E_I_RelEdge) MM_RelEdge

(ite (= e MM_E_RelEdge_name) MM_RelEdge

(ite (= e MM_E_RelEdge_Src) MM_RelEdge

(ite (= e MM_E_RelEdge_Tgt) MM_RelEdge

(ite (= e MM_E_RelEdge MultS) MM_RelEdge

(ite (= e MM_E_RelEdge_MultT) MM_RelEdge

(ite (= e MM_E_PropEdgeDef _mult) MM_PropEdgeDef
(ite (= e MM_E_PropEdgeDef_tgt) MM_PropEdgeDef
(ite (= e MM_E_PropEdgeDef_id) MM_PropEdgeDef
(ite (= e MM_E_I_Set) MM_Set

(ite (= e MM_E_I_PrimarySet) MM_PrimarySet
(ite (= e MM_E_PrimarySet_name) MM_PrimarySet
(ite (= e MM_E_PrimarySet_isDef) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lcs) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lis) MM_PrimarySet
(ite (= e MM_E_PrimarySet_hio) MM_PrimarySet
(ite (= e MM_E_PrimarySet_his) MM_PrimarySet
(ite (= e MM_E_PrimarySet_kind) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lps) MM_PrimarySet
(ite (= e MM_E_I_DerivedSet) MM_DerivedSet
(ite (= e MM_E_DerivedSet_name) MM_DerivedSet
(ite (= e MM_E_DerivedSet_def) MM_DerivedSet
(ite (= e MM_E_SetDefObject_objName) MM_SetDefObject
(ite (= e MM_E_SDiag_elements) MM_SDiag

(ite (= e MM_E_SDiag_invariants) MM_SDiag
MM_Null))))))))2)23333))2)2)33333)))))))))))))))

(define-fun Target_G ((e E_G)) V_G

(ite (= e G_E_0_Id) G_Id
(ite (= e G_E_M_Def_opt) G_M

(ite (= e G_E_M_Def_one) G_M

(ite (= e G_E_M_Def_some) G_M

(ite (= e G_E_M_Def_many) G_M

(ite (= e G_E_M_Def_seq) G_M

(ite (= e G_E_M_Def_range) G_M

(ite (= e G_E_MRange_1b) G_Num
(ite (= e G_E_MRange_ub) G_UBound
(ite (= e G_E_UBound_Def_Num) G_UBound
(ite (= e G_E_UBound_Def_Star) G_UBound
(ite (= e G_E_SK_Def_Value) G_SK
(ite (= e G_E_SK_Def_Class) G_SK
(ite (= e G_E_SDE_Def C) G_SDE
(ite (= e G_E_C_TD) G_TD
(ite (= e G_E_C_Id) G_Id

106

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

G_Null)))3333))3333333))333))))

o ®o ® O®

G_E_SDE_Def RE)
G_E_RE_Id)
G_E_RE_Src_TD)
G_E_RE_Tgt_TD)
G_E_RE_Src_M)
G_E_RE_Tgt_M)
G_E_PED_M)
G_E_PED_TD)
G_E_PED_Id)
G_E_SDE_Def Set)
G_E_Set_Def PSet)
G_E_Set_Def DSet)
G_E_PSet_Id)
G_E_PSet_SK)
G_E_PSet_isDef)
G_E_PSet Cs)
G_E_PSet_PEDs)
G_E_PSet_As)
G_E_PSet_hiOs)
G_E_PSet_hiPSs)
G_E_DSet_Id)
G_E_DSet_SDef)
G_E_SD_SDEs)
G_E_SD_As)

G_SDE
G_Id
G_TD
G_TD
G_M
G_M
G_M
G_TD
G_Id
G_SDE
G_Set
G_Set
G_Id
G_SK
G_Bool
G_C
G_PED
G_A

0
_PSet
_Id
_SDef
_SDE
A

~ Q0o

39)))9900)))

(define-fun Source_G ((e E_G)) V_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

® O

G_E_0_Id)
G_E_M_Def_opt)
G_E_M_Def_one)
G_E_M_Def_some)
G_E_M_Def_many)
G_E_M_Def_seq)
G_E_M_Def_range)
G_E_MRange_1b)
G_E_MRange_ub)

G_E_UBound_Def_Num)
G_E_UBound_Def_Star)

G_E_SK_Def_Value)
G_E_SK_Def_Class)
G_E_SDE_Def C)
G_E_C_TD)

G_E C_Id)
G_E_SDE_Def RE)
G_E_RE_Id)
G_E_RE_Src_TD)
G_E_RE_Tgt_TD)
G_E RE_Src_M)
G_E_RE_Tgt_M)

G_O
G_M_Opt
G_M_One
G_M_Some
G_M_Many
G_M_Seq
G_M_Range
G_M_Range
G_M_Range
G_UBound_Num
G_UBound_Star
G_SK_Value
G_SK_Class
G_C
G_C
G_C
G_RE
G_RE
G_RE
G_RE
G_RE
G_RE

107

(ite (= e G_E_PED_M) G_PED
(ite (= e G_E_PED_TD) G_PED
(ite (= e G_E_PED_Id) G_PED
(ite (= e G_E_SDE_Def_Set) G_Set
(ite (= e G_E_Set_Def_PSet) G_PSet
(ite (= e G_E_Set_Def_DSet) G_DSet
(ite (= e G_E_PSet_Id) G_PSet
(ite (= e G_E_PSet_SK) G_PSet
(ite (= e G_E_PSet_isDef) G_PSet
(ite (= e G_E_PSet_Cs) G_PSet
(ite (= e G_E_PSet_PEDs) G_PSet
(ite (= e G_E_PSet_As) G_PSet
(ite (= e G_E_PSet_hiOs) G_PSet
(ite (= e G_E_PSet_hiPSs) G_PSet
(ite (= e G_E_DSet_Id) G_DSet
(ite (= e G_E_DSet_SDef) G_DSet
(ite (= e G_E_SD_SDEs) G_SD

(ite (= e G_E_SD_As) G_SD

G_Null))33333)3333333)333333))3333)3))3)33)))))

(push)

(echo "Testing function 'Target_MM' (1) --> sat")

(assert (= (Target_MM MM_E_Constant_TD) MM_TypeDesignator))
(check-sat)

(pop)

(push)

(echo "Testing function 'Target MM' (2)->sat")
(assert (= (Target_MM MM_E_I_RelEdge) MM_SDElem))
(check-sat)

(pop)

(push)

(echo "Testing function 'Target_MM' (3) -> unsat")
(assert (= (Target_MM MM_E_I_SetKind_Value) MM_Num))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_MM' ->sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))

108

(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved -> sat")
(assert (forall ((emml E_MM))
(= (Map_V (Target_MM emml1)) (Target_G (Map_E emml)))))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_MM' function (1)-> sat")
(assert (= (Source_MM MM_E_RelEdge_Tgt) MM_RelEdge))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_MM' function (2)-> sat")

(assert (= (Source_MM MM_E_I_SetKind_Value) MM_SetKind_Value))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_MM' function (3) -> unsat")

(assert (= (Source_MM MM_E_I_SetKind_Class) MM_SetKind_Value))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (1)-> sat")
(assert (= (Source_G G_E_RE_Src_M) G_RE))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (2) -> sat")
(assert (= (Source_G G_E_SK Def _Value) G_SK_Value))
(check-sat)

(pop)

(push)

(echo "Testing the 'Source_G' function (3) -> unsat")
(assert (= (Source_G G_E_MRange_1lb) G_TD))
(check-sat)

(pop)
(push)

(echo "Checking Totality of 'Source_MM' ->sat")
(assert (forall ((emm E_MM))

109

(=> (= (Source_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Source_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the source function 'Source_MM' is preserved -> sat")
(assert (forall ((emml E_MM))
(= (Map_V (Source_MM emml1)) (Source_G (Map_E emml)))))
(check-sat)

(pop)

C.2.1 Z3 Output

Testing function 'Map_V' (1) --> sat

sat

Testing function 'Map_V' (2) --> sat

sat

Testing function 'Map_V' (3) --> unmsat
unsat

Checking Totality of 'Map_V' -—> sat

sat

Checking injectiveness of 'Map_V' --> sat
sat

Checking Surjectiveness of 'Map_V' (1) --> sat
sat

Testing function 'Map_E' (1) --> sat

sat

Testing function 'Map_E' (2) --> sat

sat

Testing function 'Map_E' (3) --> unsat
unsat

Checking Totality of 'Map_E' --> sat

sat

Checking injectiveness of 'Map_E' --> sat
sat

Checking Surjectiveness of 'Map_E' (1) --> sat
sat

Testing function 'Target_MM' (1) --> sat
sat

Testing function 'Target_MM' (2)->sat

sat

Testing function 'Target_MM' (3) -> unsat

110

unsat

Checking totality of 'Target_MM' ->sat

sat

Checking totality of 'Target_G' ->sat

sat

Checking that the target function 'Target_MM' is preserved -> sat
sat

Testing the 'Source_MM' function (1)-> sat

sat

Testing the 'Source_MM' function (2)-> sat
sat

Testing the 'Source_MM' function (3) -> unsat
unsat

Testing the 'Source_G' function (1)-> sat
sat

Testing the 'Source_G' function (2) -> sat
sat

Testing the 'Source_G' function (3) -> unsat
unsat

Checking Totality of 'Source_MM' ->sat

sat

Checking Totality of 'Source_G' ->sat

sat

Checking that the source function 'Source_MM' is preserved -> sat
sat

C.3 Assertion diagrams

(set-option :mbqi true)

(set-option :macro-finder true)
(set-option :pull-nested-quantifiers true)
(set-option :produce-unsat-cores true)
(set-option :produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const MM_Name V_MM)
(declare-const MM_Bool V_MM)
; From 'Common'

(declare-const MM_TypeDesignator V_MM)
(declare-const MM_SetDef V_MM)
(declare-const MM_SetElement V_MM)
(declare-const MM_PropEdgePred V_MM)
(declare-const MM_SetExpression V_MM)

111

;3 'FormulaSource'

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'Formula'
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'QFormula’
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'FormulaOp'
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'Decl'
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

;3 'DeclFormula’

(declare-const
(declare-const
(declare-const
;5 'Renaming'
(declare-const
;5 'ADiag'’
(declare-const

MM_FormulaSource V_MM)
MM_FormulaSourceSet V_MM)
MM_FormulaSourceElem V_MM)
MM_FormulaSourceUnary V_MM)
MM_FormulaSourceSetId V_MM)
MM_FormulaSourceSetDef V_MM)
MM_FormulaSourceUOp V_MM)
MM_FormulaSourceUOp_Card V_MM)
MM_FormulaSourceUOp_Domain V_MM)
MM_FormulaSourceUOp_Range V_MM)
MM_FormulaSourceUOp_The V_MM)
MM_Formula V_MM)
MM_FormulaNAry V_MM)
MM_ArrowsFormula V_MM)
MM_SetFormula V_MM)
MM_FormulaSubset V_MM)
MM_SetFormulaDef V_MM)
MM_SetFormulaShaded V_MM)
MM_QFormula V_MM)
MM_QDecl V_MM)
MM_QuantifierKind V_MM)
MM_QuantifierKind ForAll V_MM)
MM_QuantifierKind_Exists V_MM)
MM_FormulaOp V_MM)
MM_FOp_Implies V_MM)
MM_FOp_And V_MM)
MM_FOp_Or V_MM)
MM_FOp_Equiv V_MM)
MM_FOp_SeqComp V_MM)
MM_FOp_Not V_MM)
MM_Decl V_MM)
MM_VarDecl V_MM)
MM_Dec10bj V_MM)
MM_DeclSet V_MM)
MM_DeclSeq V_MM)
MM_DeclFormula V_MM)
MM_DeclFormulaNAry V_MM)
MM_DeclFormulaAtom V_MM)
MM_RenamingExp V_MM)
MM_ADiag V_MM)

;5 Special 'Null' constant to check totality

112

(declare-const

(declare-const
(declare-const
; From 'Common
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 '"AFS!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;s 'F!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'QF!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;; 'FOp!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'D!
(declare-const
(declare-const
(declare-const
(declare-const

MM_Null

G_Id
G_Bool
G_TD
G_SDef
G_SE
G_PEP
G_SExp

G_AFS
G_AFS_SE
G_AFSS
G_AFS_FSOp
G_AFSS_Setld
G_AFSS_SDef
G_FSOp
G_FSOp_Card
G_FSOp_Domain
G_FSOp_Range
G_FSOp_The

F_SDef
F_shaded
F_hasIn

F
A
F
SF
S
S
S

A1l

Q
Q
QK
QK_
QK_Exists

G_FOp
G_FOp_Implies
G_FOp_Equiv
G_FOp_And
G_FOp_Or
G_FOp_Not
G_FOp_SeqComp

GD
G_VD
G_VD_O
G_VD_Set

V_G)
V_@)

V_G)
V_G)
V_6)
V_G)
V_G)

V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_@)
V_@)

V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_G)

V_G)
V_G)
V_G)
V_G)
V_G)

V_G)
V_G)
V_G)
V_G)
V_G)
V_G)
V_G)

V_G)
V_G)
V_G)
V_G)

113

V_MM)

(declare-const
;5 'DF!
(declare-const
(declare-const
(declare-const
;5 'R
(declare-const
;5 "AD!
(declare-const

G_VD_Seq V_G)
G_DF V_G)
G_DFA V_G)
G_DF_NAry V_G)
G_R V_G)
G_AD V_G)

;5 Special 'Null' constant to check totality

(declare-const

G_Null V_G)

;3 'FormulaSource'

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
; 'Formula'
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
; 'QDecl’
(declare-const
(declare-const
(declare-const
(declare-const
;5 'FormulaOp'
(declare-const

MM_E_I_FormulaSourceElem
MM_E_I FormulaSourceSet
MM_E_I_FormulaSourceUnary

MM_E_FormulaSourceUnary_frmlSrc
MM_E_FormulaSourceUnary_operator

MM_E_I_FormulaSourceSetId
MM_E_FormulaSourceSetId_setId
MM_E_TI_FormulaSourceSetDef

MM_E_FormulaSourceSetDef_setDef

MM_E_I_FormulaNAry
MM_E_FormulaNAry_frmls
MM_E_FormulaNAry_operator
MM_E_TI_SetFormula
MM_E_TI_ArrowsFormula
MM_E_ArrowsFormula_source
MM_E_ArrowsFormula_pes
MM_E_I FormulaSubset
MM_E_I_SetFormulaShaded
MM_E_I_SetFormulaDef
MM_E_FormulaSubset_setId
MM_E_FormulaSubset_hasIn
MM_E_SetFormulaDef_ shaded
MM_E_SetFormulaDef_setId
MM_E_SetFormulaDef_setDef
MM_E_SetFormulaShaded_setId
MM_E_I_QFormula
MM_E_QFormula_decls
MM_E_QFormula_frml

MM_E_QDecl_vars
MM_E_QDecl_gkind

MM _E_ I QuantifierKind_ ForAll
MM_E I QuantifierKind_ Exists

MM_E_I_FOp_Implies

114

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)

E_MM)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'Decl'

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const

;3 'DeclFormula

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'Renaming'’
(declare-const
(declare-const
;5 'ADiag'
(declare-const
(declare-const
(declare-const

MM_E_I_FOp_And
MM_E_I_FOp_Or
MM_E_I_FOp_Equiwv
MM_E_I_FOp_SeqComp
MM_E_I_FOp_Not

MM_E_I_VarDecl

MM_E_TI_DeclSet

MM_E_I_DeclSeq

MM_E_I_Decl0bj
MM_E_DeclObj_optional
MM_E_VarDecl_dName
MM_E_VarDecl_dTy
MM_E_VarDecl_isHidden

MM_E_TI DeclFormula
MM_E_I_DeclFormulaNAry
MM_E_DeclFormulaNAry_dfop
MM_E_DeclFormulaNAry_dFrmls
MM_E_I DeclFormulaAtom
MM_E_DeclFormulaAtom_refId
MM_E_DeclFormulaAtom_owningSet
MM_E_DeclFormulaAtom_callObj
MM_E_DeclFormulaAtom_import
MM_E_DeclFormulaAtom_renameExp

MM_E_Renaming_subExp
MM_E_Renaming_varToSub

MM_E_ADiag_aName
MM_E_ADiag_predicate
MM_E_ADiag_decls

;; Special 'Null' constant to check totality

(declare-const

;3 'AFS!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;3 'AFSS'
(declare-const
(declare-const
(declare-const
(declare-const
;s 'F!
(declare-const
(declare-const

MM_E_Null

G_E_AFS Def SE E_G)
G_E_AFS_Def AFSS E_G)
G_E_AFS_Def_FSOp E_G)
G_E_AFS_FSOp_Op E_G)
G_E_AFS_FSOp_AFS E_G)
G_E_AFSS_Def SetId E_G)
G_E_AFSS_Def SDef E_G)
G_E_AFSS_SetId_Id E_G)
G_E_AFSS_SDef_SDef E_G)
G_E_F_Def AF E_G)
G_E_F _Def SF G)

115

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)
E_MM)

E_MM)
E_MM)

E_MM)
E_MM)
E_MM)

E_MM)

(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'QF!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'FOp!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'D!
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
(declare-const
;5 'DF!
(declare-const
(declare-const
(declare-const
(declare-const
;3 'DFA'
(declare-const
(declare-const
(declare-const
(declare-const

_F_Def_NAry
_F_NAry_Fs
_F_NAry_FOp
_AF_AFS
_AF_PEPs
_SF_Def_SDef
_SF_Def_shaded
_SF_Def_hasIn
_SF_SDef_shaded
_SF_SDef_Id
_SF_SDef_SDef
G_E_SF_shaded_TD
G_E_SF_hasIn_TD
G_E_SF_hasIn_SExp

GE
GE
G_E
GE
G_E
G_E
GE
G_E
GE
GE
G_E

G_E_FOp_Def_Implies
G_E_FOp_Def_Equiv
G_E_FOp_Def_And
G_E_FOp_Def _Or
G_E_FOp_Def_SeqComp
G_E_FOp_Def _Not

E_D_Def_VD
E_D_Def DF
E_DV_Def 0O
E_DV_Def_Set
E_DV_Def_Seq
E_D_VD_Id
E_D_VD_TD
E_D_VD_isHidden
G_E_DV_Def_0_opt

G_
G_
G_
G_
G_
G_
G_
G_

G_E_DF_Def _DFA
G_E_DF_Def _NAry
G_E_DF_NAry_DFs
G_E_DF_NAry_FOp
G_E_DFA_uparrow
G_E_DFA_RefId
G_E_DFA_ObjId
G_E_DFA_SetId

116

(declare-const G_E_DFA Rs E_G)
s 'R

(declare-const G_E_R_Id1l E_®
(declare-const G_E_R_Id2 E_G)

;5 'AD!

(declare-const G_E_AD_Id E_G)
(declare-const G_E_AD_Ds E_G)
(declare-const G_E_AD_Fs E_G)

;5 Special 'Null' constant to check totality
(declare-const G_E_Null E_G)

(assert (distinct
MM_Null
MM_Name
MM_Bool
MM_TypeDesignator
MM_SetDef
MM_SetElement
MM_PropEdgePred
MM_SetExpression
MM_FormulaSource
MM_FormulaSourceSet
MM_FormulaSourceElem
MM_FormulaSourceUnary
MM_FormulaSourceSetId
MM_FormulaSourceSetDef
MM_FormulaSourceUOp
MM_FormulaSourceUOp_Card
MM_FormulaSourceUOp_Domain
MM_FormulaSourceUOp_Range
MM_FormulaSourceUOp_The
MM_Formula
MM_ArrowsFormula
MM_SetFormula
MM_FormulaNAry
MM_FormulaSubset
MM_SetFormulaDef
MM_SetFormulaShaded
MM_QFormula
MM_QDecl
MM_QuantifierKind
MM_QuantifierKind ForAll
MM_QuantifierKind_Exists
MM_Decl
MM_VarDecl
MM_Decl0bj
MM_DeclSet
MM_DeclSeq
MM_DeclFormula

117

MM_DeclFormulaNAry
MM_DeclFormulaAtom
MM_FormulaOp
MM_FOp_Implies
MM_FOp_And
MM_FOp_Or
MM_FOp_Equiv
MM_FOp_SeqComp
MM_FOp_Not
MM_RenamingExp
MM_ADiag))

(assert (distinct
G_Null
G_Id
G_Bool
G_TD
G_SDef
G_SE
G_PEP
G_SExp
G_AFS
G_AFS_SE
G_AFSS
G_AFS_FSOp
G_AFSS_SetId
G_AFSS_SDef
G_FS0p
G_FSOp_Card
G_FSOp_Domain
G_FSOp_Range
G_FSOp_The
G_F
G_AF
G_SF
G_F_NAry
G_QF
G_QD
G_QK
G_QK_All
G_QK_Exists
G_D
G_VD
G_VD_0
G_VD_Set
G_VD_Seq
G_DF
G_DFA
G_DF_NAry

118

G_FOp
G_FOp_Implies
G_FOp_Equiv
G_FOp_And
G_FOp_Or
G_FOp_SeqComp
G_FOp_Not

G_R

G_AD))

(assert (distinct
MM_E_Null
MM_E_I_FormulaSourceElem
MM_E_I_FormulaSourceSet
MM_E_I_FormulaSourceUnary
MM_E_FormulaSourceUnary_frmlSrc
MM_E_FormulaSourceUnary_operator
MM_E_I_FormulaSourceSetId
MM_E_FormulaSourceSetId_setId
MM_E_I_FormulaSourceSetDef
MM_E_FormulaSourceSetDef_setDef
MM_E_ArrowsFormula_source
MM_E_ArrowsFormula_pes
MM_E_I_FormulaNAry
MM_E_FormulaNAry_frmls
MM_E_FormulaNAry_operator
MM_E_I_FormulaSubset
MM_E_I_SetFormulaShaded
MM_E_I_SetFormulaDef
MM_E_FormulaSubset_setId
MM_E_FormulaSubset_hasIn
MM_E_SetFormulaDef_shaded
MM_E_SetFormulaDef setId
MM_E_SetFormulaDef_setDef
MM_E_SetFormulaShaded_setId
MM_E_I_QFormula
MM_E_QFormula_decls
MM_E_QFormula_frml
MM_E_QDecl_vars
MM_E_QDecl_qgkind
MM_E_I QuantifierKind_ ForAll
MM_E I QuantifierKind_Exists
MM_E_I_VarDecl
MM_E_TI_DeclSet
MM_E_I_DeclSeq
MM_E_I_DeclObj
MM_E_I_DeclFormula
MM_E_I_DeclFormulaNAry
MM_E_TI DeclFormulaAtom

119

MM_E_DeclFormulaNAry_dfop
MM_E_DeclFormulaNAry_dFrmls
MM_E_DeclFormulaAtom_refId
MM_E_DeclFormulaAtom_import
MM_E_DeclFormulaAtom_renameExp
MM_E_VarDecl_dName
MM_E_VarDecl_dTy
MM_E_VarDecl_isHidden
MM_E_DeclObj_optional
MM_E_I_FOp_Implies
MM_E_I_FOp_And
MM_E_I_FOp_Or
MM_E_I_FOp_Equiv
MM_E_I_FOp_SeqComp
MM_E_I_FOp_Not
MM_E_Renaming_subExp
MM_E_Renaming_varToSub
MM_E_ADiag_aName
MM_E_ADiag_predicate
MM_E_ADiag_decls))

(assert (distinct
G_E_Null
G_E_AFS_Def_SE
G_E_AFS_Def_ AFSS
G_E_AFS_Def _FSOp
G_E_AFS_FSOp_Op
G_E_AFS_FSOp_AFS
G_E_AFSS_Def_SetId
G_E_AFSS_Def_SDef
G_E_AFSS_SetId_Id
G_E_AFSS_SDef_SDef
G_E_F_Def_AF
G_E_F_Def_SF
G_E_F_Def _NAry
G_E_F_NAry_Fs
G_E_F_NAry_FOp
G_E_AF_AFS
G_E_AF_PEPs
G_E_SF_Def_SDef
G_E_SF_Def_shaded

E_SF_Def_hasIn

SF_SDef_shaded

SF_SDef_Id

E_SF_SDef_SDef

G_E_SF_shaded_TD

G_E_SF_hasIn_TD

G_E_SF_hasIn_SExp

G_E_F_Def QF

G_
G_E_
G_E_
G_

120

G_E_QK_Def_ForAll
G_E_QK_Def_Exists
G_E_D_Def_VD
G_E_D_Def_ DF
G_E_DV_Def_ 0O
G_E_DV_Def_Set
G_E_DV_Def_Seq
G_E_DF_Def_DFA
G_E_DF_Def _NAry
G_E_D_VD_Id
G_E_D_VD_TD
G_E_D_VD_isHidden
G_E_DV_Def_0_opt
G_E_DF_NAry_DFs
G_E_DF_NAry_FOp
G_E_FOp_Def_Implies
G_E_FOp_Def_Equiv
G_E_FOp_Def_And
G_E_FOp_Def _Or
G_E_FOp_Def_SeqComp
G_E_FOp_Def_Not
G_E_DFA_uparrow
G_E_DFA_RefId
G_E_DFA_0ObjId
G_E_DFA_SetId
G_E_DFA_Rs
G_E_R_Id1
G_E_R_Id2
G_E_AD_Id
G_E_AD_Ds
G_E_AD_Fs))

(define-fun Map_V ((v V_MM)) V_G

(ite (= v MM_Name)

(ite (= v MM_Bool)

(ite (= v MM_TypeDesignator)
(ite (= v MM_SetDef)

(ite (= v MM_SetElement)

(ite (= v MM_PropEdgePred)

(ite (= v MM_SetExpression)

(ite (= v MM_FormulaSource)

(ite (= v MM_FormulaSourceSet)
(ite (= v MM_FormulaSourceElem)
(ite (= v MM_FormulaSourceUnary)
(ite (= v MM_FormulaSourceSetId)

G_Id
G_Bool
G_TD
G_SDef
G_SE

G_PEP
G_SExp
G_AFS
G_AFSS
G_AFS_SE
G_AFS_FSOp
G_AFSS_SetId

121

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

< 9 9 9d 9 d d 999 d<d<ddddddd<9<9dddddddddad9d99da4<ac¢<

MM_FormulaSourceSetDef)

MM_FormulaSourceUQp)

MM_FormulaSourceUOp_Card)

G_AFS
G_FS0
G_FS0

MM_FormulaSourceUOp_Domain) G_FSO

MM_FormulaSourceUOp_Range)
MM_FormulaSourceUOp_The)

MM_Formula)
MM_FormulaNAry)
MM_SetFormula)
MM_ArrowsFormula)
MM_FormulaNAry)
MM_FormulaSubset)
MM_SetFormulaDef)
MM_SetFormulaShaded)
MM_QFormula)
MM_QDecl)
MM_QuantifierKind)

MM_QuantifierKind_ForAll)
MM_QuantifierKind_Exists)

MM_Decl)
MM_VarDecl)
MM_Decl10bj)
MM_DeclSet)
MM_DeclSeq)
MM_DeclFormula)
MM_DeclFormulaNAry)
MM_DeclFormulaAtom)
MM_FormulaOp)
MM_FOp_Implies)
MM_FOp_And)
MM_FOp_Or)
MM_FOp_Equiv)
MM_FOp_SeqComp)
MM_FOp_Not)
MM_RenamingExp)
MM_ADiag)

G_FSO
G_FSO
GF

G F.N
G_SF
G_AF
G_F.N
G_SF_
G_SF_
G_SF_
_QF

o

K

D
D_
D_
G_VD_
G_DF
G_DF_
G_DFA
G_FOp

G

G_Q
G_Q
G_QK
G_QK
G_D
G_V
G_V
G_V

G_FOp_
G_FOp_
G_FOp_
G_FOp_
G_FOp_
G_FOp_

G_R
G_AD

S_SDef

p
p_Card
p_Domain
p_Range
p_The

Ary

Ary
hasIn
SDef
shaded

K_All
_Exists

0
Set
Seq

NAry

Implies
And

Or
Equiv
SeqComp
Not

G_Null))33331333333333333333333333333)3333333)333333))))

(define-fun Map_E ((e E_MM)) E_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

® ® ® ® ® ® ® ® ® O

MM_E_I_FormulaSourceElem)
MM_E_I_FormulaSourceSet)

MM_E_I_FormulaSourceUnary)
MM_E_FormulaSourceUnary_frmlSrc)
MM_E_FormulaSourceUnary_operator)
MM_E_I_FormulaSourceSetId)
MM_E_FormulaSourceSetId_setId)
MM_E_I_FormulaSourceSetDef)
MM_E_FormulaSourceSetDef_setDef)

MM_E_I_SetFormula)

122

G_E_AFS _Def_ SE
G_E_AFS_Def AFSS
G_E_AFS_Def _FSOp
G_E_AFS_FSOp_AFS
G_E_AFS_FS0Op_0Op
G_E_AFSS_Def_SetId
G_E_AFSS_SetId_Id
G_E_AFSS_Def_SDef
G_E_AFSS_SDef_SDef
G_E_F_Def_ SF

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite

®©o ®o ®o ®© ® O® @

MM_E_I_ ArrowsFormula)
MM_E_I_FormulaNAry)
MM_E_FormulaNAry_frmls)
MM_E_FormulaNAry_operator)
MM_E_ArrowsFormula_source)
MM_E_ArrowsFormula_pes)
MM_E_I_FormulaSubset)
MM_E_I_SetFormulaShaded)
MM_E_I_SetFormulaDef)
MM_E_FormulaSubset_setId)
MM_E_FormulaSubset_hasIn)
MM_E_SetFormulaDef_shaded)
MM_E_SetFormulaDef_setId)
MM_E_SetFormulaDef_setDef)
MM_E_SetFormulaShaded_setId)
MM_E_I_QFormula)
MM_E_QFormula_decls)
MM_E_QFormula_frml)
MM_E_QDecl_vars)
MM_E_QDecl_gkind)

MM_E_I QuantifierKind_ ForAll)
MM_E_I_QuantifierKind_Exists)
MM_E_I_VarDecl)
MM_E_I_DeclSet)
MM_E_I_DeclSeq)
MM_E_I_DeclObj)
MM_E_I_DeclFormula)
MM_E_I_DeclFormulaNAry)
MM_E_I_DeclFormulaAtom)
MM_E_DeclFormulaNAry_dfop)
MM_E_DeclFormulaNAry_dFrmls)
MM_E_VarDecl_dName)
MM_E_VarDecl_dTy)
MM_E_VarDecl_isHidden)
MM_E_Decl0Obj_optional)
MM_E_I_FOp_Implies)
MM_E_I_FOp_And)
MM_E_I_FOp_Or)
MM_E_I_FOp_Equiv)
MM_E_I_FOp_SeqComp)
MM_E_I_FOp_Not)
MM_E_DeclFormulaAtom_refId)
MM_E_DeclFormulaAtom_callObj)
MM_E_DeclFormulaAtom_owningSet)
MM_E_DeclFormulaAtom_import)
MM_E_DeclFormulaAtom_renameExp)
MM_E_Renaming_subExp)
MM_E_Renaming_varToSub)
MM_E_ADiag_aName)

123

G_E_F_Def_AF
G_E_F_Def _NAry
G_E_F_NAry_Fs
G_E_F_NAry_FOp
G_E_AF_AFS
G_E_AF_PEPs
G_E_SF_Def _hasIn
G_E_SF_Def_shaded
G_E_SF_Def_SDef
G_E_SF_hasIn_TD
G_E_SF_hasIn_SExp
G_E_SF_SDef_shaded
G_E_SF_SDef_Id
G_E_SF_SDef_SDef
G_E_SF_shaded_TD
G_E_F_Def QF
G_E_QF_QDs
G_E_QF_F
G_E_QD_VDs
G_E_QD_QK
G_E_QK_Def_ForAll
G_E_QK_Def_Exists

E
E
E
E
E
E

G_E_D_Def_VD
G_E_DV_Def_Set
G_E_DV_Def_Seq
G_E_DV_Def_ O

G_E_D_Def_ DF
G_E_DF_Def _NAry
G_E_DF_Def_DFA
G_E_DF_NAry_FOp
G_E_DF_NAry_DFs
G_E_D_VD_Id
G_E_D_VD_TD
G_E_D_VD_isHidden
G_E_DV_Def_0_opt
G_E_FOp_Def_Implies
G_E_FOp_Def_And
G_E_FOp_Def_Or
G_E_FOp_Def_Equiv
G_E_FOp_Def_SeqComp
G_E_FOp_Def_Not
G_E_DFA_ReflId
G_E_DFA_0bjId
G_E_DFA_SetId
G_E_DFA_uparrow
G_E_DFA_Rs
G_E_R_Id1l
G_E_R_Id2
G_E_AD_Id

(ite (= e MM_E_ADiag_predicate) G_E_AD_Fs
(ite (= e MM_E_ADiag_decls) G_E_AD Ds
G_E_Null))))3)33323)332323333233)33)3)233)333)32)))3333))))3)))))))))))

(push)

(echo "Testing function 'Map_V' (1) --> sat")
(assert (= (Map_V MM_SetDef) G_SDef))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_PropEdgePred) G_PEP))
(check-sat)

(pop)

(push)

(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_FormulaSourceUOp) G_FSOp_Range))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmml V_MM) (vmm2 V_MM))

(=> (= (Map_V vmml) (Map_V vmm2)) (= vmml vmm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' -->sat")
(assert (forall ((vg V_G))
(exists ((vmm V_MM))
(= (Map_V vmm) vg))))
(check-sat)

(pop)

; (push)

; (echo "Checking Surjectiveness of 'Map V' (2)->sat")
; (declare-fun svmm (V_G) V_MM)

; (assert (forall ((vg V_G))

; = (Map_V (svmm vg)) vg)))

124

; (check-sat)
; (pop)

(push)

(echo "Testing the 'Map_E' function (1) --> sat")

(assert (= (Map_E MM_E_I_DeclFormulaNAry) G_E_DF_Def_NAry))
(check-sat)

(pop)

(push)

(echo "Testing the 'Map_E' function (2) --> sat")
(assert (= (Map_E MM_E_I_FormulaNAry) G_E_F_Def_NAry))
(check-sat)

(pop)

(push)

(echo "Testing the 'Map_E' function (3) --> unsat")
(assert (= (Map_E MM_E_I_FormulaSourceSetDef) G_E_Null))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_E_Null))))
(check-sat)

(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emml E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emml emm2))))
(check-sat)

(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' (1) --> sat")
(assert (forall ((eg E_G))
(exists ((emm E_MM))
(= (Map_E emm) eg))))
(check-sat)

(pop)

; (push)

; (echo "Checking surjectiveness of 'Map_E' (2) --> sat")
; (declare-fun semm (E_G) E_MM)

; (assert (forall ((eg E_G))

; (= (Map_E (semm eg)) eg)))

; (check-sat)

125

; (pop)

(define-fun Target_MM ((e E_MM)) V_MM

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

®©o o ®o ® O®

MM_E_I_FormulaSourceElem)
MM_E_I_FormulaSourceSet)
MM_E_I_FormulaSourceUnary)

MM_E_FormulaSourceUnary_frmlSrc)
MM_E_FormulaSourceUnary_operator)

MM_E_I_FormulaSourceSetId)
MM_E_I_FormulaSourceSetDef)
MM_E_FormulaSourceSetId_setId)

MM_E_FormulaSourceSetDef_setDef)

MM_E_ArrowsFormula_source)
MM_E_ArrowsFormula_pes)
MM_E_I_FormulaNAry)
MM_E_FormulaNAry_frmls)
MM_E_FormulaNAry_operator)
MM_E_I_FormulaSubset)
MM_E_I_SetFormulaShaded)
MM_E_I_SetFormulaDef)
MM_E_FormulaSubset_setId)
MM_E_FormulaSubset_hasIn)
MM_E_SetFormulaDef_shaded)
MM_E_SetFormulaDef_setId)
MM_E_SetFormulaDef_setDef)
MM_E_SetFormulaShaded_setId)
MM_E_I_QFormula)
MM_E_QFormula_decls)
MM_E_QFormula_frml)
MM_E_QDecl_vars)
MM_E_QDecl_gkind)

MM_E_I QuantifierKind_ ForAll)
MM_E_I QuantifierKind Exists)
MM_E_I_VarDecl)
MM_E_I_DeclSet)
MM_E_I_DeclObj)
MM_E_I_DeclSeq)
MM_E_I_DeclFormula)
MM_E_I_DeclFormulaNAry)
MM_E_I DeclFormulaAtom)
MM_E_VarDecl_dName)
MM_E_VarDecl_dTy)
MM_E_VarDecl_isHidden)
MM_E_DeclObj_optional)
MM_E_DeclFormulaNAry_dFrmls)
MM_E_DeclFormulaNAry_dfop)
MM_E_I_FOp_Implies)
MM_E_I_FOp_And)
MM_E_I_FOp_Or)

126

MM_FormulaSource
MM_FormulaSource
MM_FormulaSource
MM_FormulaSource
MM_FormulaSourceUOp
MM_FormulaSourceSet
MM_FormulaSourceSet
MM_Name

MM_SetDef
MM_FormulaSource
MM_PropEdgePred
MM_Formula
MM_Formula
MM_FormulaOp
MM_SetFormula
MM_SetFormula
MM_SetFormula
MM_TypeDesignator
MM_SetExpression
MM_Bool

MM_Name

MM_SetDef
MM_TypeDesignator
MM_Formula
MM_QDecl
MM_Formula
MM_VarDecl
MM_QuantifierKind
MM_QuantifierKind
MM_QuantifierKind
MM_Decl
MM_VarDecl
MM_VarDecl
MM_VarDecl
MM_Decl
MM_DeclFormula
MM_DeclFormula
MM_Name
MM_TypeDesignator
MM_Bool

MM_Bool
MM_DeclFormula
MM_FormulaOp
MM_FormulaOp
MM_FormulaOp
MM_FormulaOp

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

[}
® ® ® ® ® ® ® ® ® ® ® O®

= e

MM_E_I_FOp_Equiv)
MM_E_I_FOp_SeqComp)
MM_E_I_FOp_Not)
MM_E_DeclFormulaAtom_refId)
MM_E_DeclFormulaAtom_import)
MM_E_DeclFormulaAtom_callObj)
MM_E_DeclFormulaAtom_owningSet)
MM_E_DeclFormulaAtom_renameExp)
MM_E_Renaming_subExp)
MM_E_Renaming_varToSub)
MM_E_ADiag_aName)
MM_E_ADiag_predicate)
MM_E_ADiag_decls)

MM_FormulaOp
MM_FormulaOp
MM_FormulaOp
MM_Name
MM_Bool
MM_Name
MM_Name
MM_RenamingExp
MM_Name
MM_Name
MM_Name
MM_Formula
MM_Decl

MM_Nul1)3)3)333333333333333)33333333333333)3333333)333333)))11)))))

(define-fun Source MM ((e E_MM)) V_MM

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

(= e

®o ® O®

MM_E_I_FormulaSourceElem)
MM_E_I_FormulaSourceSet)
MM_E_I_FormulaSourceUnary)
MM_E_FormulaSourceUnary_frmlSrc)

MM_E_FormulaSourceUnary_operator)

MM_E_I_FormulaSourceSetId)
MM_E_I_FormulaSourceSetDef)
MM_E_FormulaSourceSetId_setId)
MM_E_FormulaSourceSetDef_setDef)
MM_E_ArrowsFormula_source)
MM_E_ArrowsFormula_pes)
MM_E_I_FormulaNAry)
MM_E_FormulaNAry_frmls)
MM_E_FormulaNAry_operator)
MM_E_I_FormulaSubset)
MM_E_I_SetFormulaShaded)
MM_E_I_SetFormulaDef)
MM_E_FormulaSubset_setId)
MM_E_FormulaSubset_hasIn)
MM_E_SetFormulaDef_shaded)
MM_E_SetFormulaDef_setId)
MM_E_SetFormulaDef_setDef)
MM_E_SetFormulaShaded_setId)
MM_E_I_QFormula)
MM_E_QFormula_decls)
MM_E_QFormula_frml)
MM_E_QDecl_vars)
MM_E_QDecl_gkind)
MM_E_I_QuantifierKind_ForAll)
MM_E_I QuantifierKind_Exists)
MM_E_I_VarDecl)

MM_E_I DeclSet)
MM_E_I_DeclObj)

127

MM_FormulaSourceElem
MM_FormulaSourceSet
MM_FormulaSourceUnary
MM_FormulaSourceUnary
MM_FormulaSourceUnary
MM_FormulaSourceSetId
MM_FormulaSourceSetDef
MM_FormulaSourceSetId
MM_FormulaSourceSetDef
MM_ArrowsFormula
MM_ArrowsFormula
MM_FormulaNAry
MM_FormulaNAry
MM_FormulaNAry
MM_FormulaSubset
MM_SetFormulaShaded
MM_SetFormulaDef
MM_FormulaSubset
MM_FormulaSubset
MM_SetFormulaDef
MM_SetFormulaDef
MM_SetFormulaDef
MM_SetFormulaShaded
MM_QFormula
MM_QFormula
MM_QFormula

MM_QDecl

MM_QDecl
MM_QuantifierKind_ForAll
MM_QuantifierKind_ Exists
MM_VarDecl

MM_DeclSet

MM_Decl0bj

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

o ®o ® O

e

MM_E_I_DeclSeq)
MM_E_I_DeclFormula)

MM_E_I_DeclFormulaNAry)
MM_E_I DeclFormulaAtom)

MM_E_VarDecl_dName)
MM_E_VarDecl_dTy)

MM_E_DeclObj_optional)
MM_E_VarDecl_isHidden)
MM_E_DeclFormulaNAry_dFrmls)
MM_E_DeclFormulaNAry_dfop)

MM_E_I_FOp_Implies)
MM_E_I_FOp_And)
MM_E_I_FOp_Or)
MM_E_I_FOp_Equiv)
MM_E_I_FOp_SeqComp)
MM_E_I_FOp_Not)

MM_E _DeclFormulaAtom_refId)
MM_E_DeclFormulaAtom_import)
MM_E_DeclFormulaAtom_owningSet)
MM_E_DeclFormulaAtom_callObj)
MM_E_DeclFormulaAtom_renameExp)
MM_E_Renaming_subExp)
MM_E_Renaming_varToSub)

MM_E_ADiag_aName)

MM_E_ADiag_predicate)

MM_E_ADiag_decls)

MM_DeclSeq
MM_DeclFormula
MM_DeclFormulaNAry
MM_DeclFormulaAtom
MM_VarDecl
MM_VarDecl
MM_Decl0bj
MM_VarDecl
MM_DeclFormulaNAry
MM_DeclFormulaNAry
MM_FOp_Implies
MM_FOp_And
MM_FOp_Or
MM_FOp_Equiv
MM_FOp_SeqComp
MM_FOp_Not
MM_DeclFormulaAtom
MM_DeclFormulaAtom
MM_DeclFormulaAtom
MM_DeclFormulaAtom
MM_DeclFormulaAtom
MM_RenamingExp
MM_RenamingExp
MM_ADiag

MM_ADiag

MM_ADiag

MM_Null}>313)333333333333333333333333333333)3333333))33333)))131))))

(define-fun Target_G ((e E_G)) V_G

(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite
(ite

® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® @

G_E_AFS_Def SE)
G_E_AFS Def AFSS)
G_E_AFS_Def_FSOp)
G_E_AFS_FSOp_Op)
G_E_AFS_FSOp_AFS)
G_E_AFSS_Def_SetId)
G_E_AFSS_Def_ SDef)
G_E_AFSS_SetId_Id)
G_E_AFSS_SDef_SDef)
G_E_AF_AFS)
G_E_AF_PEPs)
G_E_F_Def AF)
G_E_F_Def SF)
G_E_F_Def_NAry)
G_E_F_NAry_Fs)
G_E_F_NAry_FOp)
G_E_SF_Def_hasIn)
G_E_SF_Def_shaded)
G_E_SF_Def_SDef)
G_E_SF_hasIn_TD)

G_AFS
G_AFS
G_AFS
G_FSOp
G_AFS
G_AFSS
G_AFSS
G_Id
G_SDef

=]
n

3|
o

o
el

=

=5

=3

Hnwnwownmdmem Do d e

QOO0 00 00
o

128

(ite (= e G_E_SF_hasIn_SExp) G_SExp
(ite (= e G_E_SF_SDef_shaded) G_Bool
(ite (= e G_E_SF_SDef_Id) G_Id
(ite (= e G_E_SF_SDef_SDef) G_SDef
(ite (= e G_E_SF_shaded_TD) G_TD
(ite (= e G_E_F_Def QF) G F
(ite (= e G_E_QF_QDs) G_QD
(ite (= e G_E_QF_F) G_F
(ite (= e G_E_QD_QK) G_QK
(ite (= e G_E_QD_VDs) G_VD
(ite (= e G_E_QK_Def_ForAll) G_QK
(ite (= e G_E_QK_Def_Exists) G_QK
(ite (= e G_E_D_Def_VD) GD
(ite (= e G_E_DV_Def_Set) G_VD
(ite (= e G_E_DV_Def_Seq) G_VD
(ite (= e G_E_DV_Def_0) G_VD
(ite (= e G_E_D_Def_DF) G_D
(ite (= e G_E_DF_Def_NAry) G_DF
(ite (= e G_E_DF_Def_DFA) G_DF
(ite (= e G_E_D_VD_Id) G_Id
(ite (= e G_E_D_VD_TD) G_TD
(ite (= e G_E_D_VD_isHidden) G_Bool
(ite (= e G_E_DV_Def_0_opt) G_Bool
(ite (= e G_E_DF_NAry_DFs) G_DF
(ite (= e G_E_DF_NAry_FOp) G_FOp
(ite (= e G_E_FOp_Def_Implies) G_FOp
(ite (= e G_E_FOp_Def_Equiv) G_FOp
(ite (= e G_E_FOp_Def_And) G_FOp
(ite (= e G_E_FOp_Def_0Or) G_FOp
(ite (= e G_E_FOp_Def_SeqComp) G_FOp
(ite (= e G_E_FOp_Def_Not) G_FOp
(ite (= e G_E_DFA_RefId) G_Id
(ite (= e G_E_DFA_0bjId) G_Id
(ite (= e G_E_DFA_SetId) G_Id
(ite (= e G_E_DFA_uparrow) G_Bool
(ite (= e G_E_DFA Rs) GR
(ite (= e G_E_R_Id1) G_Id
(ite (= e G_E_R_Id2) G_Id
(ite (= e G_E_AD_Id) G_Id
(ite (= e G_E_AD_Fs) G_F
(ite (= e G_E_AD_Ds) G_D

G_Null))333333)33333333333333333333333)333333)3333333))3333)3)))))))

(define-fun Source G ((e E_G)) V_G

(ite (= e G_E_AFS Def SE) G_AFS_SE
(ite (= e G_E_AFS Def AFSS) G_AFSS
(ite (= e G_E_AFS_Def_FSOp) G_AFS_FSOp
(ite (= e G_E_AFS_FSOp_0p) G_AFS_FSOp
(ite (= e G_E_AFS_FSOp_AFS) G_AFS_FSOp

129

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite

(ite (

(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite
(ite
(ite
(ite

(ite (

(ite

®©o ® ®o ®© ® O® @

G_E_AFSS_Def_SetId)
G_E_AFSS_Def_SDef)
G_E_AFSS_SetId_Id)
G_E_AFSS_SDef_SDef)
G_E_AF_AFS)
G_E_AF_PEPs)
G_E_F_Def_AF)
G_E_F_Def_SF)
G_E_F_Def_NAry)
G_E_F_NAry_Fs)
G_E_F_NAry_FOp)
G_E_SF_Def_hasIn)
G_E_SF_Def_shaded)
G_E_SF_Def_SDef)
G_E_SF_hasIn_TD)
G_E_SF_hasIn_SExp)
G_E_SF_SDef_shaded)
E_SF_SDef_Id)
E_SF_SDef_SDef)
E_SF_shaded_TD)
_E_F_Def_QF)
_E_QF_QDs)

E QF_F)

E_QD_QK)
_E_QD_VDs)
G_E_QK_Def_ ForAll)
G_E_QK_Def Exists)
G_E_D_Def_VD)
G_E_DV_Def_Set)
G_E_DV_Def_Seq)
G_E_DV_Def 0)
G_E_D_Def_DF)
G_E_DF_Def _NAry)
G_E_DF_Def DFA)
G_E_D_VD_Id)
G_E_D_VD_TD)

G_E D_VD_isHidden)
G_E_DV_Def_0_opt)
G_E_DF_NAry_DFs)
G_E_DF_NAry_FOp)
G_E_FOp_Def_Implies)
G_E_FOp_Def_Equiv)
G_E_FOp_Def_And)
G_E_FOp_Def_Or)
G_E_FOp_Def_SeqComp)
G_E_FOp_Def_Not)
G_E_DFA_RefId)
G_E_DFA_ObjId)
G_E_DFA_SetId)

G_
G_
G_
G
G
G_
G_
G

G_AFSS_SetId
G_AFSS_SDef
G_AFSS_SetId
G_AFSS_SDef

G_DF_NAry
G_FOp_Implies
G_FOp_Equiv
G_FOp_And
G_FOp_Or
G_FOp_SeqComp
G_FOp_Not
G_DFA

G_DFA

G_DFA

130

(ite (= e G_E_DFA_uparrow) G_DFA
(ite (= e G_E_DFA_Rs) G_DFA
(ite (= e G_E_R_Id41l) G_R
(ite (= e G_E_R_Id2) GR
(ite (= e G_E_AD_Id) G_AD
(ite (= e G_E_AD_Fs) G_AD
(ite (= e G_E_AD _Ds) G_AD

G_Nu11)))))))3))33))23))23)33)333)333)33))32)))))))))))I))

(push)

(echo "Testing function 'Target_MM' (1) --> sat")

(assert (= (Target_MM MM_E_I_FormulaSourceSet) MM_FormulaSource))
(check-sat)

(pop)

(push)

(echo "Testing function 'Target_MM' (2) --> sat")

(assert (= (Target_MM MM_E_FormulaSourceUnary_operator) MM_FormulaSourceUOp))
(check-sat)

(pop)

(push)

(echo "Testing function 'Target MM' (3) --> unsat")

(assert (= (Target_MM MM_E_FormulaSourceSetDef_setDef) MM_Null))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_E_Null))))
(check-sat)

(pop)

(push)
(echo "Checking totality of 'Target_G' --> sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved --> sat")
(assert (forall ((emml E_MM))
(= (Map_V (Target_MM emm1)) (Target_G (Map_E emml)))))
(check-sat)

(pop)

(push)

131

(echo "Testing function 'Source_MM' (1) --> sat")
(assert (= (Source MM MM_E_I FormulaSourceSetId) MM_FormulaSourceSetId))
(check-sat)

(pop)

(push)

(echo "Testing function 'Source_MM' (2) --> sat")

(assert (= (Source_MM MM_E_I_FormulaSourceSetDef) MM_FormulaSourceSetDef))
(check-sat)

(pop)

(push)

(echo "Testing function 'Source_MM' (3) --> unsat")

(assert (= (Source_MM MM_E_FormulaSourceUnary_operator) MM_Null))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Source_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Source_MM emm) MM_Null) (= emm MM_E _Null))))
(check-sat)

(pop)

(push)

(echo "Testing function 'Source_G' (1) --> sat")
(assert (= (Source_G G_E_AFS_FSOp_AFS) G_AFS_FS0p))
(check-sat)

(pop)

(push)

(echo "Testing function 'Source_G' (2) --> sat")
(assert (= (Source_G G_E_AFSS Def_SetId) G_AFSS_SetId))
(check-sat)

(pop)

(push)

(echo "Testing function 'Source_G' (3) --> unsat")
(assert (= (Source_G G_E_AFSS_SDef_SDef) G_Null))
(check-sat)

(pop)

(push)
(echo "Checking Totality of 'Source_G' -->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

132

(push)

(echo "Checking that the source function 'Source_MM' is preserved --> sat")

(assert (forall ((emml E_MM))

(= (Map_V (Source_MM emml1)) (Source_G (Map_E emml)))))

(check-sat)
(pop)

C.3.1 Z3 Output

Testing function 'Map_V' (1) --> sat

sat

Testing function 'Map_V' (2) --> sat

sat

Testing function 'Map_V' (3) --> unsat
unsat

Checking Totality of 'Map_V' --> sat

sat

Checking injectiveness of 'Map_V' --> sat
sat

Checking Surjectiveness of 'Map_V' -->sat
sat

Testing the 'Map_E' function (1) --> sat
sat

Testing the 'Map_E' function (2) --> sat
sat

Testing the 'Map_E' function (3) --> unsat
unsat

Checking Totality of 'Map_E' --> sat

sat

Checking injectiveness of 'Map_E' --> sat
sat

Checking Surjectiveness of 'Map_E' (1) --> sat
sat

Testing function 'Target_MM' (1) --> sat
sat

Testing function 'Target_MM' (2) --> sat
sat

Testing function 'Target_MM' (3) --> unsat
unsat

Checking totality of 'Target_MM' --> sat

sat

Checking totality of 'Target_G' --> sat

sat

Checking that the target function 'Target_MM' is preserved --> sat

sat
Testing function 'Source_MM'
sat

&)

--> sat

133

Testing function 'Source_MM' (2) --> sat

sat

Testing function 'Source MM' (3) --> unsat
unsat

Checking Totality of 'Source_MM' --> sat
sat

Testing function 'Source_G' (1) --> sat
sat

Testing function 'Source_G' (2) --> sat
sat

Testing function 'Source_G' (3) --> unsat
unsat

Checking Totality of 'Source_G' -->sat
sat

Checking that the source function 'Source_MM' is preserved --> sat
sat

134

	Introduction
	Background: The Visual Contract Language (VCL)
	VCL Diagrams
	VCL Syntax and Semantics

	Outline

	Running Example
	Syntax
	Metamodels
	Common
	Structural Diagrams
	Assertion Diagrams

	Grammars

	From Metamodels to Grammars and Back
	Overall setting
	VCL Syntactic Isomorphisms
	Isomorphism Theorems and their Proofs
	Proofs for the common part
	Proofs for the SD part
	Proofs for the AD part

	Type System
	Types and Environments
	Base Rules
	Common Rules
	Rules for Structural Diagrams
	Rules for Assertion Diagrams

	Auxiliary Definitions
	Environment Operators
	Predicates
	Auxiliary Functions
	Function getGType
	Functions producing variable environments (VEs)
	Function getDK
	Functions to extract information from ADs
	Functions for AD lookup
	Functions for substitutions
	Function getSIdFrScalarOrCollection

	Alloy Metamodels
	VCL Common
	Bool Module
	VCL Structural Diagrams
	VCL Assertion Diagrams

	Z3 Proofs
	Common
	Z3 Encoding
	Z3 Proof Output

	Structural diagrams
	Z3 Output

	Assertion diagrams
	Z3 Output

