
The Type System of VCL Structural and Assertion
Diagrams

Nuno Amálio
Laboratory for Advanced Software Systems

University of Luxembourg
6, rue R. Coudenhove-Kalergi

L-1359 Luxembourg

TR-LASSY-11-04

Version Date Description
0.1 22/04/2011 1st release with type system of structural and assertion diagrams
0.2 23/03/2012 Updated type system of structural and assertion diagrams
0.3 12/06/2012 Updated with section and proofs of information preserving isomorphism

between metamodels and grammars.
0.4 15/02/2012 Updated diagrams to meet new concrete syntax. Added Quantifiers.

Table 1: Document Revision History

2

Contents

1 Introduction 5
1.1 Background: The Visual Contract Language (VCL) 5

1.1.1 VCL Diagrams . 5
1.1.2 VCL Syntax and Semantics . 5

1.2 Outline . 6

2 Running Example 7

3 Syntax 10
3.1 Metamodels . 10

3.1.1 Common . 10
3.1.2 Structural Diagrams . 12
3.1.3 Assertion Diagrams . 13

3.2 Grammars . 15

4 From Metamodels to Grammars and Back 17
4.1 Overall setting . 17
4.2 VCL Syntactic Isomorphisms . 17

4.2.1 Isomorphism Theorems and their Proofs 18
Proofs for the common part . 18
Proofs for the SD part . 18
Proofs for the AD part . 19

5 Type System 20
5.1 Types and Environments . 20
5.2 Base Rules . 21
5.3 Common Rules . 22
5.4 Rules for Structural Diagrams . 27
5.5 Rules for Assertion Diagrams . 31

A Auxiliary Definitions 36
A.1 Environment Operators . 36
A.2 Predicates . 37
A.3 Auxiliary Functions . 37

A.3.1 Function getGType . 37
A.3.2 Functions producing variable environments (VEs) 38
A.3.3 Function getDK . 38
A.3.4 Functions to extract information from ADs 38

3

A.3.5 Functions for AD lookup . 39
A.3.6 Functions for substitutions . 39
A.3.7 Function getSIdFrScalarOrCollection . 40

B Alloy Metamodels 41
B.1 VCL Common . 41
B.2 Bool Module . 50
B.3 VCL Structural Diagrams . 51
B.4 VCL Assertion Diagrams . 56

C Z3 Proofs 66
C.1 Common . 66

C.1.1 Z3 Encoding . 66
C.1.2 Z3 Proof Output . 93

C.2 Structural diagrams . 94
C.2.1 Z3 Output . 110

C.3 Assertion diagrams . 111
C.3.1 Z3 Output . 133

4

Chapter 1

Introduction

This document present a type system for the Visual Contract Language (VCL) [AK10, AKMG10],
covering structural and assertion diagrams. This formalises a typed object-oriented system
with subtyping. This type system has been implemented in the VCL tool, the Visual Con-
tract Builder1 [AGK11]. The following gives some background on VCL and an outline of the
overall document.

1.1 Background: The Visual Contract Language (VCL)
VCL [AK10, AKMG10, AGK11] is a formal language for the abstract modelling of software de-
signs. Its modelling paradigms are set theory, object-orientation and design-by-contract (pre- and
post-conditions). VCL’s distinguishing features are its capacity to describe predicates visually
and its approach to behavioural modelling based on design by contract.

VCL’s semantics is based on set theory. Its semantics definition takes a translational ap-
proach. Currently, VCL has a Z semantics: VCL diagrams are mapped to ZOO [APS05, Amá07],
a semantic domain of object orientation for the language Z [Spi92, ISO02].

1.1.1 VCL Diagrams
A VCL model is made up of diagrams of different kinds. VCL’s diagram suite comprises: pack-
age, structural, behaviour, assertion and contract diagrams. Package diagrams (PDs) define VCL
packages, coarse-grained modules, and their dependencies with other packages. Structural di-
agrams (SDs) define state structures and their relations that together make the state space of
a package (e.g. Fig. 2.1a). Behaviour diagrams (BDs) provide a map over the behaviour units
of a package. ADs define predicates over a single state, which are used to define invariants and
query operations (e.g. Figs. 2.1b to 2.1i). Finally, contract diagrams (CDs) describe operations
that change state through a contract (a pre- and a post-condition). The type system presented
here cover SDs and ADs only.

1.1.2 VCL Syntax and Semantics
VCL’s semantic domain is detailed in [APS05]. Briefly, syntax and semantics of SDs and ADs
are as follows:

1http://vcl.gforge.uni.lu/

5

http://vcl.gforge.uni.lu/

• All rounded contours in Fig. 2.1a are sets (or blobs). Objects are represented as labelled
rectangles; they are atoms, members of a set of possible objects.

• In a SD, a set can either be value or class. In Fig. 2.1a, Customer and Account are classes,
and all others are value sets. Value sets represent values; class sets (like OO classes)
represent objects with identity.

• Property edges are represented as directed arrows. In a SD, property edges define properties
shared by all objects of a set (e.g. custNo, accNo and balance in Fig. 2.1a)). In ADs,
property edges are used to state predicates that relate the source set or object with some
target expression.

• Relation edges are labelled directed lines; direction is indicated by arrow symbol above the
line (e.g. Holds in Fig. 2.1a).

• SDs define state spaces. ADs describe assertions (conditions or predicates) on a state space.
A global (or package) state is a collection of object states, together with states of relation
edges. Object states are functions that map object identifiers to their states; there is such
a function for each class set. Semantically, a relation edge is a binary relation; it denotes
a set of tuples.

1.2 Outline
The remainder of this document is as follows:

• Chapter 2 presents the running example that is used to illustrate the type system presented
here.

• Chapter 3 presents the syntactic descriptions of VCL structural and assertion diagrams,
from which the type system is defined.

• Chapter 4 discusses the mapping from metamodels to grammars for the purpose of defining
the type system, showing that this mapping is sound.

• Chapter 5 presents the actual type system of VCL structural and assertion diagrams.

• Appendix A presents the auxiliary definitions that are used to describe VCL’s type system
presented here.

• Appendix B presents the VCL metamodels describe using the Alloy formal modelling lan-
guage.

• Appendix C presents the Z3 encondings for the graphs of metamodels and grammars to-
gether with the results of the isomorphism proofs.

6

Chapter 2

Running Example

This paper’s running example is the Simple Bank case study [AK10]1. Figure 2.1 give several
diagrams of this case study’s VCL model. The SD (Fig. 2.1a) is as follows:

• The two class sets, Customer and Account, represent, respectively, bank customers and
bank accounts.

• Value sets CustId, Name and Address represent, respectively, sets of identifiers, names and
addresses of bank customers. CustType defines the possible types of customers (a defini-
tional set, symbol ⃝): constant objects corporate and personal. AccID represents set of
account identifiers. Int (a primitive set) represents the integers. AccType (a definitional
set) represents the possible kinds of accounts: constant objects savings and current.

• Relation-edge Holds relates customers and their accounts. Assertions (elongated hexagons)
identify invariants, which can either be local (linked to a set) or global (not linked).

Local Account invariant SavingsArePositive (Fig. 2.1b) says, using an implication formula,
that savings accounts must be positive. This AD results in the Z predicate: aType = savings ⇒
balance ≥ 0. The same invariant is described globally using a set formula in Fig. 2.1c; this says
that the set of negative savings accounts (inner set) must be empty (shading). This results in
the Z predicate:

{o : sAccount | (stAccount o).aType = savings ∧ (stAccount o).balance < 0} = ∅

sAccount is set of all existing account objects; stAccount is a function mapping account objects
to their states.

Global invariant CustIdsUnique (Fig. 2.1d) says that customer identifiers are unique. The
AD says this using a quantifier formula: for all pairs of distinct customer objects, their customer
numbers must also be distinct. This results in the Z predicate:

∀ c1, c2 : sCustomer • c1 ̸= c2⇒ (stCustomer c1).custNo ̸= (stCustomer c2).custNo

Global invariant CorporateHaveNoSavings (Fig. 2.1e) says that corporate customers cannot
have savings accounts. The AD builds a set by restricting relation Holds using property edge
modifiers (edges with double-arrow): the domain is restricted to the set of corporate customers

1A tutorial using this case study is available at http://vcl.gforge.uni.lu/SBDemo.

7

http://vcl.gforge.uni.lu/SBDemo

(a) Structural Diagram

(b) A local invariant (c) A global invariant (d) A global invariant

(e) A global invariant (f) A global invariant

(g) A local Operation (h) A global Operation

(i) A global Operation

Figure 2.1: Sample assertion diagrams of the simple bank VCL model

8

(symbol ▹); the range to the set of savings accounts (symbol ◃). The outer set is shaded to say
that this constructed set must be empty. The resulting Z is:

({o : sCustomer | (stCustomer o).cType = corporate}
▹ rHolds)◃ {o : sAccount | (stAccount o).aType = savings} = ∅

Here, ▹ and ◃ are domain and range restriction relation operators.
Global invariant HasCurrentBefSavings (Fig. 2.1f) says that customers must have a current

account before opening a savings account using a subset formula. This involves building two
auxiliary sets (respectively): (a) set of customers with current accounts (local or hidden variable
custsCurr) and (b) set of customers with savings accounts (local or hidden variable custsSav).
Both sets are built similarly by taking the domain (symbol ←) of Holds restricted on the range.
AD of Fig. 2.1f imports the auxiliary ADs (represented as assertions) and says that custsSav
is a subset of custsCurr; as custsSav and custsCurr are not declared in Fig. 2.1f, they are
internal variables hidden to the outside world. The Z resulting from Fig. 2.1f is:

BankHasCurrentBefSavings0
BankGblSt
custsCurr : PO CustomerCl
custsSav : PO CustomerCl

custsCurr = dom (rHolds ◃ {o : sAccount | (stAccount o).aType = current})

custsSav = dom (rHolds ◃ {o : sAccount | (stAccount o).aType = savings})

custsSav ⊆ custsCurr

BankHasCurrentBefSavings == BankHasCurrentBefSavings0 \ (custsCurr , custsSav)

Above, variables custsSav and custsCurr are hidden using the \ Z operator.
In VCL, queries are defined using ADs, which can be local or global. Often, global operations

are built from local ones. Local operation Account.GetBalance (AD of Fig. 2.1g) retrieves the
balance of some account object and stores it in output variable bal!. Global operation AccGet-
Balance (Fig. 2.1h) retrieves some account balance given some account number (input aNo?); this
involves obtaining the object account (a!) associated with aNo? through operation GetAccount-
GivenAccNo (Fig, 2.1i) and then retrieving the account’s balance using Account.GetBalance.
The ↑ symbol says that variables, and not only the predicate, are imported; this means that
output bal ! is defined also in AccGetBalance.

This running example highlights the utility of typing. For instance, in AD of Fig. 2.1e it
would be useful to check that Holds, Customer and Account are sets defined in SD of Fig. 2.1a,
that the operators ▹ and ◃ are applied correctly, and that the properties cType and aType exist
and are applied correctly with respect to the operator =. Similarly for the remaining ADs.

9

Chapter 3

Syntax

This chapter presents the syntax of VCL structural and assertion diagrams in terms grammars
and class metamodels. The metamodels are the primary representation; metamodels are the
basis for constructing the graphical parsers of VCL’s tool. The grammars are used to describe
the type system; in the implementation the grammar representation is used for type-checking
and translation to Z.

3.1 Metamodels
The metamodels of the VCL notations presented here have been defined in the Alloy specification
language [Jac06]. They are given in appendix B. Here, we present these metamodels using UML
class diagrams, which partially describe what is described in Alloy: the Alloy describes constraints
that are not describable using class diagrams.

The Alloy metamodels of VCL package, structural and assertion diagrams comprises the fol-
lowing modules: common (section B.1), structural diagrams (section B.3) and assertion diagrams
(section B.4). The following class diagrams describe each of these modules.

3.1.1 Common
The metamodel of the part that is common to both SDs and ADs (Fig. 3.1), corresponding to
the Alloy module of section B.1, is as follows:

• Several constructions have a name attribute; the metaclass (Name, bottom-left) denotes all
names of a VCL model. Several constructions use the type designator (TypeDesignator,
bottom-left). A type designator can either denote the set of natural numbers (TypeDesig-
natorNat), the set of integers (TypeDesignatorInt), or some set defined by a blob or
relation edge and denoted by their identifier (TypeDesignatorId).

• A property edge (PropEdge) can either be of type predicate (PropEdgePred) or modi-
fier (PropEdgeMod). PropEdgePreds comprise a unary and binary operator (uop and bop
association-ends), an instance of EdgeOperatorUn and EdgeOperatorBin, respectivelly, a
target Expression (target association-end) and an optional designator (attribute desig-
nator) to refer to some property of a blob. A PropEdgeMod comprises a modifier operator
(mop association-end) an instance of EdgeOperatorMod.

10

InsideDefSetExtension
elems
*

PropEdge Expression
target

SetExpression SetExpressionDef

insideExp

*
pes

bd: TypeDesignator
SetExpressionID

SetDef

def

-DOMAIN
-RAMGE
-UNION
-INTSERSECTION
-CROSSPRODUCT
-SETMINUS
-RELCOMP
-DRES
-RRES
-DSUB
-RSUB
-RIMG
-NONE

SetDefOp

designator [0..1]: Name
PropEdgePred

id : Name
VCLObject

desig : TypeDesignator
ConstrainedSet

-EQ
-NEQ
-IN
-LT
-LEQ
-GT
-GEQ
-SubsetEQ

EdgeOperatorBin

FreeExpression

FreeExpNum

FreeExpUMinus
FreeExpBin

-Plus
-Minus
-Times
-Div

FreeExpBinOp

bop

oid : Name
FreeExpId

Num
num

exp1

FreeExpPar

exp

exp2 Name

TypeDesignator

TypeDesignatorNat

TypeDesignatorInt

exp

{ordered}

SetElement

idElem1 : Name
idElem2 : Name

Pair

{ordered}
sdop

SetExpressionEmpty

SetInsideExpression

0..*

setDefs

InsideExpSDs

-CARD
-THE
-NONE

EdgeOperatorUnary
uop

SetExpressionCard
sExp

id : Name
Assertion

bop

setId : Name
TypeDesignatorId id : Name

propId :Name

FreeExpDot

mop : SetDefOp
PropEdgeMod

Figure 3.1: The common metamodel

• A modifier edge operator (EdgeOperatorMod) is an enumeration comprising the operators:
domain restriction (DRES, ▹), range restriction (RRES, ◃), domain subtraction (DSUB, ⌫),
range subtraction (RSUB, ⌦) and relation image (RIMG, 〖〗). A predicate edge operator is
enumeration comprising the operators: equality (EQ, =), difference (NEQ, ̸=), set member-
ship (IN, ∈), less then (LT, <), less or equal then (LEQ, ≤), greater then (GT, >), greater
or equal then (GEQ, ≥), and subsetting (SubsetEQ, ⊆).

• There are two kinds of expressions: object (ObjExpression), represented as objects (rect-
angles), and set (SetExpression), represented as blobs (rectangles with rounded corners).
An object expression can either be: an identifier (ObExpId); a number (ObjExpNum); a unary
minus expression (ObjExpUMinus), comprising another expression (exp association-end); a
binary object expression, comprising two expressions (association-ends exp1 and exp2) and
an infix operator (bop association-end); or a parenthesised expression, comprising another
expression (exp association-end). A binary object-expression operator (ObjExpBinOp) is
an enumeration comprising the operators: Plus (+), Minus (−), Times (∗), and Div (div).

• A SetExpression can either refer to some existing set (SetExpressionId), denote the
empty set (a blob that is shaded), be a cardinality operator applied to another set expression
SetExpressionCard, or be a set definition (SetExpressionDef). A SetExpressionId
comprises a designator of the set being referred (attribute desig). A SetExpressionCard

11

type : TypeDesignator
Constant

Assertion
(Common)

Set

*

*

source

SDiag
*

elements

*

lInvariants

lConstantsIntSet

NatSet

kind

mult : Mult
PropEdgeDef

lProps

isDef : boolean
PrimarySet

SetDef
(Common)

definition

multS : Mult
multT : Mult

RelEdge

name : Name
SDElem

-Value
-Class

SetKind

hasInsideO
hasInsideSet

DerivedSet

-Reference
-Definition

ConstantKind

*

*

invariants*

Mult

MOne MOpt MMany

MOneToMany

MRange

Intlb

ub

MSeq
UBound UBoundStar

val : Int
UBoundInt

objName : Name
SetDefObject

TypeDesignator
(Common)

target

Figure 3.2: The metamodel of VCL Structural diagrams

is the cardinality operator applied to another set expression (sExp association-end). A
SetExpressionDef comprises a set definition (association-end def), an instance of SetDef.

• Set definitions (SetDef) are defined by the things they have inside. They comprise an
inside expression (insideExp association-end), representing the expression placed inside
the blob, and by a set definition operator (sdop association-end). A set definition operator
(SetDefOp) is an enumeration defining the operators Domain (symbol ←), Range (symbol
→), Union (symbol ∪), Intersection (symbol ∩), CrossProduct (symbol ×), SetMinus
(symbol \) or None (no operator).

• A set inside expression (SetInsideExpression is either an inside definition (InsideDef)
or a sequence of set definitions (InsideExpSDs). A InsideExpSDs comprises a sequence
of set definitions (setDefs association-end). An InsideDef is an abstract class, which
comprises either a SetExtension or a ConstrainedSet. A ConstrainedSet represents
a set constrained with an ordered collection of property edges (association-end pes). A
set extension (SetExtension) represents a set defined extensionally by a set of elements
(association-end elems), which are instances of SetElem.

• A SetElem is represented visually as a rectangles; it can either be a VCLObject (a member
of set) or a Pair (a member of a relation). A VCLObject comprises a name (the name of
the object); a Pair comprises a pair of names.

3.1.2 Structural Diagrams
The metamodel of VCL structural diagrams (SDs) (Fig. 3.2), corresponding to the Alloy module
of section B.3, is as follows:

• A SD (SDDiag) is made of structural elements (SDElem) and invariants (Assertion). A
SDElem can be a relation edge (RelEdge), constant (Constant) or set (Set).

12

• In a SD, an Assertion represents an invariant. If they belong to the overall SD (association-
end invariants) they represent global invariants; if they are connected to a set (association-
end lInvariants), the invariant is local to the set.

• A relation edge (RelEdge), or association, represents an edge between two sets: the source
and the target. It holds two attributes to record the multiplicities attached to source and
target (multS and multT).

• Like invariants, constants (Constant) are global if they are not connected to any set and
local otherwise (association-end lConstants).

• A set can be primary (PrimarySet), derived (DerivedSet) or one of the sets corresponding
to primitive types: integers (IntSet) or natural numbers (NatSet).

• A derived set has a name (attribute id) and is associated with a set definition (SetDef,
defined in common metamodel).

• A primary set has a kind (SetKind), indicating whether the set is Class or Value. A pri-
mary set comprises a set of local constants (association-end lConstants), a set of local in-
variants (association-end lInvariants), and a set of property edge definitions (association-
end lProps). A primary set may have other primary sets and objects inside (association-
ends hasInsideSet and hasInsideO).

• A property edge definition (PropEdgeDef) has a set has the edge’s target (association-end
peTarget) indicating the type of the property, and a multiplicity constraint (attribute
mult).

• Multiplicities (Mult) are attached to relation edges and property edge definitions. A mul-
tiplicity can either be single (MOne), optional (MOpt), sequence (MSeq), multiple with 0 or
more (Many), multiple with at least one (MOneToMany), or be defined as a range (MRange)
comprising a lower and an upper bound (association-ends ub and lb).

3.1.3 Assertion Diagrams
The metamodel of VCL assertion diagrams (Fig. 3.3), corresponding to the Alloy module of
section B.4, is as follows:

• An assertion diagram (ADiag) comprises a name (aName), a set of declarations correspond-
ing to the declarations compartment (declarations association-end), and a set of formulas
corresponding to the predicate compartment (predicate association-end).

• A declaration (Decl) can either be a typed declaration (TypedDecl) or a declaration formula
(DeclFormula). A typed declaration has a name (dName) and a type (dTy), and it can
either be a declaration of an object (DeclObj) or the declaration of a set (DeclSet). The
sequence attribute of DeclSet indicates whether the set is a normal set (value false) or
a sequence (value true). The optional attribute of DeclObj indicates whether the object
is optional or not.

• A formula (Formula) can either be a negation formula (FormulaNot), a binary formula
(FormulaBin), an arrows formula (ArrowsFormula) or a set formula (SetFormula).

13

dName [*]: Name
dTy : TypeDesignator
isHidden : Boolean

VarDecl

FormulaSourceelem : SetElement
FormulaSourceElem

setId : Name
FormulaSourceSetId

subExp : Name
varToSub : Name

RenamingExp

renameExp
DeclFormula

-implies
-and
-or
-equiv
-seqcomp
-not

FormulaOp

*
decls

refId : Name
owningSet : Name
callObj : Name
import : Boolean

DeclFormulaAtom

Decl

SetDef
(Common)

FormulaSourceSetDef

setDef

FormulaSourceUnary

frmlSrc

-Cardinality
-Domain
-Range
-The

FormulaSourceUOp
operator

FormulaSourceSet

optional : Boolean
DeclObj

dfop : FormulaOp
DeclFormulaNAry

*

DeclSet

DeclSeq

Formula

aName : Name
ADiag

predicate

SetFormula

PropEdgePred
(Common)

*pes

SetExpression
(Common)

setId : TypeDesignator
FormulaSubset

setId : TypeDesignator
SetFormulaShaded

setdef

shaded : Boolean
setId [0..1] : TypeDesignator

SetFormulaDef

hasInside

ArrowsFormula

source

operator : FormulaOp
FormulaNAry

frmls

*

QFormula

-ForAll
-Exists

QuantifierKInd
qKind

vars

QDecl

decls
*
{ordered}

frmls

*
*

*dFrmls

1..*

*

Figure 3.3: The metamodel of VCL assertion diagrams

• A negation formula (FormulaNot) comprises another formula corresponding to the formula
being negated (frml association-end). A binary formula (FormulaBin) comprises two for-
mulas corresponding to the formulas being combined (frml1 and frml2 association-ends),
and an operator (bop attribute). A binary formula operator (FormulaBinOp) can either be
an implication (implies), a conjunction (and), a disjunction (or), an equivalence (equiv)
or be a sequential composition (seqcomp).

• An arrows formula (ArrowsFormula) comprises a set of predicate property edges (pes
association-end).

• A set formula (SetFormula) can either be a subset formula (FormulaSubset), a shaded
blob formula (SetFormulaShaded) or a set definition formula (SetFormulaDef). A subset
formula (FormulaSubset) corresponds to the situation where one set is placed inside an-
other to denote the subset relationship; it has a set identifier (attribute setId) and a set
expression to denote the inside set (hasInside association-end). A shaded set formula cor-
responds to the situation where some set is shaded; it comprises a set identifier (attribute
setId). A definition set formula (SetFormulaDef) comprises a SetDef (association-end
setdef) from the common metamodel (Fig. 3.1); it can be shaded or have an identifier
(either one or the other).

14

• A declarations formula (DeclFormula) can either be a declarations formula atom (Decl-
FormulaAtom), which comprises a declaration reference, a negated declaration formula
(DeclFormulaNot), which comprises the declarations formula being negated, or a binary
declaration formula (DeclFormulaBin), which comprises an operator (DeclFormulaBinOp)
and two declarations formulas.

• FormulaSource represents the source of a predicate formula. This source can either be a
set element (FormulaSourceElem), which comprises a SetElement (defined in Common,
Fig. 3.1), a set (FormulaSourceSet) or a be some unary operator applied to a formula
source FormulaSourceUnary.

3.2 Grammars
The following presents the grammars of VCL structural and assertion diagrams; they are equiv-
alent to the visual metamodels presented above.

The grammars use the following operators:

• x for zero or more repetitions of x;

• x 1 for one or more repetitions of x;

• x | y for a choice of x or y;

• [x] for an optional x.

In addition,

• xc for some character symbol c means zero or more occurrences of x separated with c;

• xc1 for some character symbol c means one or more occurrences of x separated with c;

Symbols are set in bold type when they are to be interpreted as terminals to avoid confusion
with grammar symbols. We introduce two syntactic sets, representing terminals: the set of
identifiers Id , and the set of numeric constants (Num).

15

TD ::= Int | Nat | Id
O ::= object [Id | self]
P ::= pair ([Id | self], [Id | self])

SE ::= O | P
A ::= assertion Id

PE ::= (PEP | PEM) TExp
PEP ::= UEOp [.Id] BEOp

UEOp ::= # | ◉| elems | ϵ
BEOp ::= = | ̸= | ∈ | < | ≤

| > | ≥ | ⊆
PEM ::= [SOp] ⇒
TExp ::= FExp | SExp
FExp ::= Id | self | [Id | self].Id

| Num | −FExp
| FExp FEOP FExp
| (FExp)

FEOp ::= + | − | ∗ | div
SExp ::= set TD | set iden | SDef

| set shaded
| UEOp SExp

SDef ::= set ⃝ SOp hasIn {IExp}
SOp ::= ← | → | ∩ | ∪ | × | \ | ⌻

| ▹ | ◃ | ⌫ | ⌦ | 〖〗| ⊥
IExp ::= IDef | SDef ;

IDef ::= set TD { PE
1 } | SE1

(a) Common Syntax

SD ::= SD STRUCTURES: SDE INVARIANTS: A
SDE ::= C | RE | Set

C ::= const Id : TD
M ::= opt | one | some | many

| seq | Num .. (Num | *)
RE ::= relEdge Id (M TD, M TD)
SK ::= value | class
Set ::= PSet | Id ↔ SDef

PSet ::= set Id SK [⃝] { C PED A }
[hasIn {(O | PSet)}]

PED ::= Id → M TD
(b) Structural Diagrams

AD ::= AD Id [:Id] DECLARATIONS: D PREDICATE: F
D ::= VD | DF

VD ::= [hidden] DV Id , : TD
DV ::= [opt] object | set | seq

R ::= Id / Id
DFA ::= [↑] assertion [Id →] [Id .] Id [R]

DF ::= DFA | FOp[DF]
FOp ::= ⇒ | ⇔ | ∧ | ∨ | ¬ | ⌻

F ::= AF | SF | FOp [F] | QF
AFS ::= SE | AFSS | FSOp AFS

AFSS ::= set Id | SDef
FSOp ::= # | ← | → | ◉

AF ::= AFS { PEP }
SF ::= [shaded] [Id] SDef | set shaded TD

| set TD hasIn {SExp}
QF ::= QD , • F ;
QD ::= (∀ | ∃) VD ;

(c) Assertion Diagrams

Figure 3.4: Syntax of VCL Structural and Assertion diagrams

16

Chapter 4

From Metamodels to Grammars
and Back

This chapter demonstrates that metamodel and grammar representations of chapter 3 are equiv-
alent, which means that it is straightforward to go from one representation to the other. This
is important because the type system presented in the next chapter is defined on the grammar,
but the graphical editors of VCL’s tool are based on metamodels. This chapter shows that this
approach based on these two representations is sound.

4.1 Overall setting
In [EEPT06], a graph is defined as a tuple G = ⟨V ,E , s, t⟩, where V is a set of nodes, E is a set
of edges, and s, t : E → V are the source and target functions, respectively, assigning to each
edge a source and a target node. A metamodel is actually a typed graph [EEPT06], but this
does not concern us here. We are interested in going from the metamodel to the grammar.

A grammar (in our context, a context-free grammar) is defined as the tuple Gr = ⟨V ,Σ,S ,P⟩,
where V is a set of non-terminals, Σ a set of terminals, S is the starting symbol (it is a member of
V) and P is a set of grammar rules or productions. The abstract syntax induced by a grammar
can be represented as a graph (a special kind of graph, a tree), where the nodes are the terminals
and non-terminals of the grammar, the root node of the tree is the starting symbol, and the
edges represent the dependencies between terminal and non-terminals of the grammar as defined
by the grammar’s productions.

The approach presented here requires the construction of a graph-isomorphism between
graphs of metamodel and abstract syntax tree. This ensures that we can go from the metamodel
to the grammar in a way that preserves the information of the metamodel and back. Given
graphs Gi = (Vi ,Ei , si , ti), a graph-morphism is defined as (from [EEPT06]), f : G1 → G2,
where f = (fV , fE) consists of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the
source and target functions (that is, fV ◦ s1 = t2 ◦ fE). f is called isomorphic if both functions
fV and fE are bijections (both injective and surjective).

4.2 VCL Syntactic Isomorphisms
To show that that metamodel and grammar representations are equivalent, we need to show that
there is an information-preserving isomorphism between the metamodels of common (Fig. 3.1),

17

SDs (Fig. 3.2) and ADs (Fig. 3.3) and the corresponding grammars of common (Fig. 3.4a), SDs
(Fig. 3.4b) and ADs (Fig. 3.4c), respectively. These proofs are performed using the Z3 theorem
prover [dMB08]1; this involved encoding in Z3 the graphs of metamodel and grammar and all
required theorems to prove. Z3 proves automatically all required theorems. The Z3 enconding
of graphs and required theorems is given in appendix C.

4.2.1 Isomorphism Theorems and their Proofs
For each pair metamodel and grammar, several theorems need to be proved to demonstrate the
existence of the information-preserving isomorphism as defined above. Let, GMM and GGr be
the graphs of metamodel and grammar respectively, such that: GMM = (VMM ,EMM , sMM , tMM)
and GGr = (VGr ,EGr , sGr , tGr). The two mapping functions of the isomorphism are: fV :
VMM →VGr and fE : EMM → EGr .

In the Z3 prover, the following theorems are proved. The source and target functions of both
graphs must be total:

∀ emm : EMM • ∃ vmm : VMM • sMM (emm) = vmm
∀ emm : EMM • ∃ vmm : VMM • tMM (emm) = vmm
∀ egr : EGr • ∃ vgr : VGr • sGr (egr) = vgr
∀ egr : EGr • ∃ vgr : VGr • tGr (egr) = vgr

The mapping functions must be total2:

∀ vmm : VMM • ∃ vgr : VGr • fV (vmm) = vgr
∀ emm : EMM • ∃ egr : EGr • fE (emm) = egr

The mapping functions must be injective:

∀ vmm1, vmm2 : VMM • fV (vmm1) = fV (vmm2)⇒ vmm1 = vmm2

∀ emm1, emm2 : EMM • fE (emm1) = fE (emm2)⇒ emm1 = emm2

The mapping functions must be surjective:

∀ vgr : VGr • ∃ vmm : VMM • fV (vmm) = vgr
∀ egr : EGr • ∃ emm : EMM • fE (emm) = egr

All required Z3 encondings of graphs and theorems are given in appendix C.

Proofs for the common part

There is a direct isomorphism from the metamodel of common (Fig. 3.1) to the corresponding
grammar (Fig. 3.4a). Further details of the Z3 proof are given in section C.1.1.

Proofs for the SD part

The SD metamodel of Fig. 3.2 requires a transformation into a another metamodel so that it
is then possible to obtain a direct isomorphism. The transformed metamodel of SD that is
isomorphic to the grammar of Fig. 3.4b is given in Fig. 4.1. Further details of the Z3 proof for
the transformed metamodel are given in section C.2.

1http://research.microsoft.com/en-us/um/redmond/projects/z3/
2In Z3, all functions definitions are total. To prove totality for the mapping functions in Z3, we resorted to

a trick based on a special node called Null. The mapping functions are defined using Z3’s ite (if-then-else)
construct with the ultimate else being an assignment to the special Null node. A function is total provided there
is one assignment to Null.

18

http://research.microsoft.com/en-us/um/redmond/projects/z3/

name : Name
type : TypeDesignator

Constant

Assertion
(Common)

VCLObject
(Common)

Set

*

target *
source

SDiag *
elements

*

lInvariants

lConstants

kindmult : Mult
peTarget : TypeDesignator

PropEdgeDef
lProps

name : Name
isDef : boolean

PrimarySet

SetDef
(Common)

def

name : Name
multS : Mult
multT : Mult

RelEdge

-Value
-Class

SetKind

hasInsideO

hasInsideSet

*
*

TypeDesignator
(Common)

* invariants

MultMOne

MOpt
MMany

MOneToMany

MRange

Num

lb

ub

MSeq
UBound

UBoundStar

val : Num
UBoundNum

SDElem

name : Name
DerivedSet

Figure 4.1: The transformed metamodel of SDs that is isomorphic to the grammar

Proofs for the AD part

There is a direct isomorphism from the metamodel of ADs (Fig. 3.3) to the corresponding
grammar (Fig. 3.4c). Further details of the Z3 proof are given in section C.3.

19

Chapter 5

Type System

This chapter presents the type system of VCL structural and assertion diagrams. It starts by
defining VCL’s types and typing environments (section 5.1).

5.1 Types and Environments
A variable environment (VE) denotes a set of bindings, mapping identifiers to their types:

VE == Id 7→ T

VCL’s types (set T) are as follows:

T ::= Int | Nat | Null | Pow T | Seq T | Opt T | Top | Obj | Set Id | Pair (T, T)
| Assertion [VEv , VEh]

Here, (a) Int represents the integers, (b) Nat the natural numbers; (c) Null represents erroneous
results (implementation only); (d) Pow T represents a powerset of some set; (e) Seq T represents
a sequence of some type; (f) Opt T represents an optional (either it exists or is empty); (g) Top is
a maximal type (type of all well-formed terms); (h) Obj is the maximal type of all well-formed
objects; (i) Set represents primary sets; (j) Pair represents a cartesian product of two types; (k)
Assertion represents assertions (variable environments indicate assertion’s variables, which are
either visible, VEv , or hidden, VEh).

VCL’s type rules use and manipulate environments (set E below), which are made of three
components: (a) variable, (b) set and (c) subtyping. Variable environments give the type bindings
of some scope. Set environments (SE) map identifiers to a triple made up of the set’s kind (value
or class), definitional status (DK) and local variable environment. Subtyping environments (set
SubE) are the subtyping relations between types:

SK ::= value | class
DK ::= def | notDef
SE == Id 7→ SK ×DK ×VE
SubE == T ↔ T
E == VE × SE × SubE

We introduce the following conventions:

20

Table 5.1 Judgements associated with the base rules of VCL’s type system
E ⊢T T is well-formed type in E
E ⊢T1 <: T2 T1 is a subtype of T2 in E
E ⊢ Id : T Id is well-formed identifier of type T in E
E ⊢ Ids .Idl : T Idl is well-formed local identifier of set Ids with type T in E

Table 5.2 Basic VCL typing rules

(Ty Id) (Type) (Ty LId)

E .VE(Id) = T

E ⊢ Id : T

T = Set Id ⇒ Id ∈ domE .SE

E ⊢T

E ⊢Set Ids Idl ∈ dom(E .SE (Ids)).VE
E ⊕ (E .SE (Ids)).VE ⊢ Idl : T

E ⊢ Ids .Idl : T

• X and
︷︸︸︷
X denote, respectivelly, a sequence and a set of some set X .

• E∅ is an empty environment. E .VE , E .PE , E .SE and E .SubE denote the different com-
ponents of E .

• Id : T and Id
se

7→ (SK ,DK , Id ,VE) are type (VE) and set (SE) bindings. T1 <: T2 says
that T1 is a subtype of T2.

• Disjoint environments are combined using E1, E1; similarly for other types of environments.
Bindings are added to an environment using E , Id : T ; similarly for other types of bindings.
E ⊕ VE means that the environment E is overridden with the set of type bindings VE ;
similarly for other types of bindings. These operators are defined precisely in appendix A.1.

5.2 Base Rules
The base type rules of VCL’s type system manipulate environments and define subtype relations.
The judgements are listed in table 5.1. The first judgement asserts that the type T is well-formed
in the environment E . The second judgement asserts that the type T1 is a subtype of T2 in the
environment E . The third judgement says that Id is a well-formed identifier with type T in E .
The fourth judgement asserts the well-formedness of a set-property access; it says that property
Idl of set named Ids has type T in E .

Table 5.2 lists basic rules concerning types. Rule Ty Id says that some identifier yields type T
provided the variable binding is defined in the variable environment (E .VE). Rule Type describes
the conditions for some type to be valid in some environment E : set types are valid provided
their identifiers are defined in the set environment; all remaining types are valid. Rule Ty LId
yields the type associated with some local identifier Idl of some set Ids ; the rule checks that
the set type is defined and then retrieves the type of the local identifier from the set’s variable
environment.

Table 5.3 lists basic subtyping rules. Rule Sub Ty checks whether some type is a subtype of
another; this amounts to check that both types are defined and that the subtyping tuple belongs
to the environment’s set of subtypes (E .SubE). Rules Sub Refl and Sub Trans says that the
subtyping relation is both reflexive and transitive. Rule Subsumption is the subsumption rule
that says that if some variable has type TA, and if TA is subtype of TB then the variable also

21

Table 5.3 Basic VCL sub-typing rules

(Sub Ty) (Sub Refl) (Sub Trans) (Subsumption) (Sub Top)
E ⊢T1 E ⊢T2

(T1,T2) ∈ E .SubE

E ⊢T1 <: T2

E ⊢T
E ⊢T <: T

E ⊢ TA <: TB

E ⊢ TB <: TC

E ⊢ TA <: TC

E ⊢ I : TA

E ⊢ TA <: TB

E ⊢ I : TB

E ⊢T
E ⊢T <: Top

(Sub Obj) (Sub NatInt) (Sub Pow) (Sub Seq)
E ⊢Set Ids

E ⊢Set Ids <: Obj E ⊢Nat <: Int

E ⊢TA <: TB

E ⊢PowTA <: PowTB

E ⊢TA <: TB

E ⊢SeqTA <: SeqTB

(Sub Opt) (Sub Opt PSet) (Sub Pair)
E ⊢TA <: TB

E ⊢OptTA <: OptTB

E ⊢TA <: TB

E ⊢OptTA <: PowTB

E ⊢TA1 <: TA2 E ⊢ TB1 <: TB2

E ⊢Pair (TA1,TB1) <: Pair (TA2,TB2)

Table 5.4 Judgements of syntactic constructions common to VCL ADs and SDs
E ⊢td TD : T TD is well-formed type designator with type T in E

E ⊢ta A ∴ AId : T A is well-formed assertion with identifier AId and type T in E
E ⊢se SE : T SE is well-formed set element with type T in E

E ⊢sdef SDef : T Set definition SDef yields type T in E

E ⊢id IDef : T Inside definition IDef yields type T in E

E ⊢so SOP(T) : T Application of operator SOp to sequence of types T yields type T
E ;Ts ⊢pe PE : T ′

s Property edge PE yields type T ′
s

E ;Ts ⊢pep PEP : T ′
s Predicate property edge PEP yields type T ′

s

E ;Ts ⊢pem PEM : T ′
s Modifier property edge PEM yields type T ′

s

E ⊢te TExp : T Target expression TExp yields type T in E
E ⊢ueo UEOp(T1) : T2 Application of unary edge operator UEOp to type T1 yields type T2

E ⊢eo BEOP(T1 T2) Application of predicate edge operator BEOP to types T1, T2 is well-typed
E ;⊢mo SOP(T1 T2) : T Application of set definition operator SOP to types T1, T2 yields type T

has type TB . The remaining rules say how different types are subtyping related. Rule Sub Top
says that any valid type is a subtype of Top. Rule Sub Obj says that any set type is a subtype
of Obj. Rule Sub NatInt says that type of natural numbers is a subtype of the integers. Rules
SubPow, Sub Seq and Sub Opt say, respectively, that two powerset, sequence or optional types are
subtypes of each other provided their enclosed types (TA and TB) are also. Rule Sub Opt PSet
says that optional types are a subtype of powerset types provided their enclosed types are also.
Finally, rule Sub Pair says that two pair types are subtypes of each other if their corresponding
components are also subtypes of each other.

5.3 Common Rules
The judgements for the syntactic constructions that are common to SDs and ADs (grammar or
Fig. 3.4a) are given in table 5.4.

Type designator rules (Table 5.5) derive a type from a designator, yielding a primitive type
(Int or Nat) or some type that is associated with an identifier (rule TD Id).

Table 5.6 presents rules for checking the well-formedness of assertions (T Assertion), VCL
objects (T SE Obj) and pairs (T SE Pair. These rules merely extracts the types associated

22

Table 5.5 Type rules for type designators (TD non-terminal)

(TD Nat) (TD Int) (TD Id)

E ⊢td Nat : Nat E ⊢td Int : Int

E ⊢ Id : T

E ⊢td Id : T

Table 5.6 Type rules for assertions and set elements

(T Assertion) (T SE Obj) (T SE Pair)
E ⊢ Id : T

T = Assertion[VEv ,VEh]
E ⊢ta assertion Id ∴ Id : T

(IdS = Id ∨ IdS = self)
E ⊢ IdS : T T <: Obj
E ⊢se object IdS ∴ IdS : T

(IdS = Id ∨ IdS = self)
E ⊢ IdS1 : T1 E ⊢ IdS2 : T2

E ⊢se pair(IdS1, IdS2) : Pair (T1,T2)

with identifiers from the environment. The assertion rule assumes that the AD associated with
the assertion being checked has already been type-checked and its information can, therefore, be
retrieved from the environment. Pair rule builds a pair type from the types of its constituent
identifiers.

A set definition (SDef nonterminal, Fig. 3.4a) is a syntactic construct to build sets. The type
rules for set definitions (table 5.7) consider two cases, depending on whether the inside expression
comprises one inside definition (rule T SDef IDef) or a sequence of set definitions (rule T SDef
SDef). The rule essentially derive a sequence of types from inside definition (IDef) or sequence
of set definitions (SDef) and then apply the rule for the set definition’s operator (SOp) to
retrieve the types yielded by the rules. An inside definition (IDef nonterminal, Fig. 3.4a) is a
construction associated with set definitions. An inside definition can either be a constrained set
or a set expression. The type rules for inside definitions (table 5.7) consider these two cases.
The constrained set rule (IDef CntSet) derives a type from the given type designator (TD)
and then checks the sequence of property edges in the context of this derived type (T); the rule
says that the set of property edges must either be of only one kind: either predicate or modifier
(disjunction). The type rules for set extensions (IDef SE and IDef SE *) process the sequence
of set elements inductively; retrieving the greatest type of all the elements in the sequence, which
must be subtypes of each other.

The rules for set definition operators (SOp non-terminal) apply to a sequence of types in the
context of an environment and a set definition operator; they are given in table 5.8. The rules
are as follows:

• Rule SOp None considers the case where there is no operator. The rule requires that the
sequence of types is made of a single element, and yields the type given in the sequence.

• Rules for domain and range operators (SOp Dom and SOp Ran) require that there is a
single type given in the sequence and that this type is a powerset of a pair (it is a binary
relation). Rule SOp Dom returns a type formed as the powerset of the first type of the pair
(the domain). Rule SOp Ran returns a type formed as the powerset of the second type (the
range).

• The cross product rules (SOp Cross and SOp * Cross) consider two cases depending on
whether the sequence is made of a pair of types or more than a pair. The pair rule takes

23

Table 5.7 Type rules for set definitions and associated inside definitions

(T SDef IDef) (T SDef SDef)

E ⊢id IDef : T1 E ⊢so SOp(T1) : T
E ⊢sdef set⃝SOp hasIn {IDef } : T

E ⊢sdef SDef ; : Tsd E ⊢so SOp(Tsd) : Tf

E ⊢sdef set⃝SOp hasIn {SDef ;} : Tf

(IDef CntSet) (IDef SE) (IDef SE ∗)
E ⊢td TD : T

E ;T ⊢pe PE : T ′

(IsPEP(PE) ∨ IsPEM (PE))

E ⊢id setTD {PE} : PowT ′
E ⊢se SE : T

E ⊢id SE : PowT

E ⊢se SE : T1 E ⊢id SE : T2

(Tr = T1 ∧ T2 <: T1)
∨ (Tr = T2 ∧ T1 <: T2)

E ⊢id SE SE : PowTr

a pair of powerset types and yields a powerset of a pair type. Rule SOp * Cross takes a
powerset type and a sequence of types and returns a powerset of a pair type formed with
the derived type.

• The intersection (SOp Pair Intersection and SOp * Intersection) and union rules
(SOp Pair Union and SOp * Union) take a sequence of at least two powerset types and
return a powerset of the greatest type in the sequence, according to the subtyping relation
(function getGType, appendix A). All given types must be subtypes of each other. The set
subtraction rule (SOp Pair SetMinus) does the same for a pair of powerset types.

24

Table 5.8 Type rules for set def operators

(SOp None) (SOp Dom)

E ⊢so ⊥ (T) : T E ⊢so ← (PowPair (Td ,Tr)) : PowTd

(SOp Ran) (SOp RelComp)

E ⊢so → (PowPair (Td ,Tr)) : PowTr E ⊢so ⌻(PowPair (T1,T2)PowPair (T2,T3)) : PowPair (T1,T3)
(SOp Cross) (SOp Pair Intersection)

E ⊢so ×(PowT1 PowT2) : PowPair (T1,T2)
T = getGType(E ,T1,T2)

E ⊢so ∩(PowT1 PowT2) : PowT
(SOp ∗ Cross) (SOp ∗ RelComp)

E ⊢so ×(T) : PowT2

E ⊢so ×(PowT1 T) : PowPair (T1,T2)
E ⊢so ⌻(T) : PowPair (T2,T3)

E ⊢so ⌻(PowPair (T1,T2)T) : PowPair (T1,T3)
(SOp ∗ Intersection) (SOp Pair Union)

E ⊢so ∩(T 1
) : PowT2 T = getGType(E ,T1,T2)

E ⊢so ∩(PowT1 T
1) : PowT

T = getGType(E ,T1,T2)

E ⊢so ∪(PowT1 PowT2) : PowT

(SOp ∗ Union) (SOp Pair SetMinus)

E ⊢so ∪(T 1
) : PowT2 T = getGType(E ,T1,T2)

E ⊢so ∪(PowT1 T
1) : PowT

T = getGType(E ,T1,T2)

E ⊢so \(PowT1 PowT2) : PowT

Table 5.9 Type rules for property edges

(PE PEP) (PE PEM) (PE *)
E ⊢te TExp : Tt

E ; (Ts ,Tt)⊢pep PEP
E ;Ts ⊢pe PEP TExp : Ts

E ⊢te TExp : Tt

E ; (Ts ,Tt)⊢pem PEM : T ′
s

E ;Ts ⊢pe PEM TExp : T ′
s

E ;Ts ⊢pe PE : T ′′
s

E ;T ′′
s ⊢pe PE

1
: T ′

s

E ;Ts ⊢pe PE PE
1
: T ′

s

(PEP) (PEPS ϵ) (PEPS PrId) (PEPM)
E ;Ts ⊢peps [Id] : T ′′

s

E ⊢ueo UEOp(T ′′
s) : T ′

s

E ⊢eo BEOP(T ′
s T2)

E ; (Ts ,Tt)⊢pep UEOp [Id]→ [BEOP] E ;T ⊢peps ϵ : T

T = Set Ids
E ⊢ Ids .Idpr : Tp

E ;T ⊢peps Idpr : Tp

E ⊢mo SOp(Ts Tt) : T
E ; (Ts ,Tt)⊢pem [SOp] ⇒ : T

(UEOp No) (UEOp Card) (UEOp The) (UEOp elems)

E ⊢ueo ϵ(T) : T E ⊢ueo # (PowT) : Int E ⊢ueo ◉(OptT) : T E ⊢ueo elemsSeqT : PowT

Table 5.10 Type rules for binary predicate edge operators (BEOp)

(BEOP EQNEQ) (BEOP IN)
(E ⊢T1 <: T2 ∨ E ⊢T2 <: T1) BEOP ∈ {̸=,=}

E ⊢eo BEOP(T1 T2)
E ⊢T1 <: T2 ∨ E ⊢T2 <: T1

E ⊢eo ∈(T1 PowT2)
(BEOP INEQ) (BEOP SUBSETEQ)
E ⊢T1 <: Int E ⊢T2 <: Int BEOP ∈ {<,≤, >,≥}

E ⊢eo BEOP(T1 T2)
E ⊢E ⊢T1 <: T2 ∨ E ⊢T2 <: T1

E ⊢eo ⊆(PowT1 PowT2)

25

Table 5.11 Type rules for modifier edge operators (MOp)

(MOp DRES)
E ⊢T :< Td

E ⊢mo ▹(PowPair (Td ,Tr),PowT) : PowPair (Td ,Tr)
(MOp RRES)

E ⊢T :< Tr

E ⊢mo ◃(PowPair (Td ,Tr),PowT) : PowPair (Td ,Tr)
(MOp DSUB)

E ⊢T :< Td

E ⊢mo ⌫(PowPair (Td ,Tr),PowT) : PowPair (Td ,Tr)
(MOp RSUB)

E ⊢T :< Tr

E ⊢mo ⌦(PowPair (Td ,Tr),PowT) : PowPair (Td ,Tr)
(MOp RIMG) (MOp UNION)

E ⊢T :< Td

E ⊢mo 〖〗(PowPair (Td ,Tr),PowT) : PowTr

T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo ∪(PowT1,PowT2) : PowT

(MOp INTERSEC) (MOp SETMINUS)
T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo ∩(PowT1,PowT2) : PowT

T = GetGType(E ,T1,T2)
(T1 <: T2 ∨ T2 <: T1)

E ⊢mo \(PowT1,PowT2) : PowT

Table 5.12 Type rules for set expressions

(SExp TD) (SExp Iden) (SExp SDef)

E ⊢td TD : T

E ⊢te setTD : PowT E ⊢te set iden : PowPair (Top,Top)
E ⊢sdef SDef : T

E ⊢te SDef : T
(SExp Empty) (SExp Card) (SExp elems)

E ⊢te set shaded : PowTop

E ⊢te SExp : PowT

E ⊢te #SExp : Int

E ⊢te SExp : SeqT

E ⊢te elemsSExp : PowT

Table 5.13 Type rules for free expressions

(FExp ID) (FExp Dot) (FExp Num) (FExp Uminus)
(IdS = Id ∨ IdS = self)

E ⊢ IdS : T

E ⊢te IdS : T

(IdSo = Id ∨ IdSo = self)
E ⊢ IdSo : Set Ids E ⊢ Ids .Idpr : T

E ⊢te IdSo.Idpr : T E ⊢te Num : Nat

E ⊢te FE : Int

E ⊢te −FE : Int

(FExp FEOP)

E ⊢te FE1 : Int E ⊢te FE2 : Int

E ⊢te FE1 FEOP FE2 : Int

26

Table 5.14 Judgements for type system of VCL Structural Diagrams
E ;AD ⊢sd SD ∴ E ′ SD yields environment E ′

E ;AD ⊢sde SDE ∴ E ′ Sequence of SD elements SDE yields environment E ′

E ;AD ; Ids⊥ ⊢as A ∴ VE Sequence of assertions A yields variable environment VE
E ⊢cn C ∴ VE Sequence of constants C yields variable environment VE

E ;AD ;T ⊢pset PSet ∴ E ′ Primary Set PSet yields environment E ′

E ⊢ped PED ∴ VE Sequence of edge definitions PED yields variable environment VE
E ;M ⊢mtd

TD : T Designator TD with multiplicity M yields type T

E ;AD ;T ⊢hi HI ∴ E ′ HI (HasIn) yields environment E ′

E ;T ⊢io O ∴ VE Sequence of inside objects O yields variable environment VE

E ;T ⊢is PSet ∴ E ′ Sequence of inside primary sets PSet yields environment E ′

E ;AD ;SId⊥ ⊢aok A ∴ AId : T A has a well-formed assertion diagram with identifier AId type T
in E

E ;AD ; Ids⊥ ⊢adok
︷︸︸︷
AD ∴ VE

︷︸︸︷
AD is set of ADs yielding variable environment VE

5.4 Rules for Structural Diagrams
Table 5.14 presents the judgements for structural diagrams (SDs). The first judgement says that
a SD is well-formed in the environment E with environment E ′. The remaining judgements assert
well-formedness for the different components of a SD; namely, sequences of structural diagram
element (judgement labelled ⊢sde), sequences of assertions denoting invariants (⊢as), sequences of
constants (⊢cn), primary sets (⊢pset), sequence of property edge definitions (⊢ped), designators with
a multiplicity constraint (⊢mtd), has inside declarations of primary sets (⊢hi), sequence of inside
objects (⊢io), sequences of inside primary sets (⊢is), assertion whose AD has not been checked
(⊢aok) and set of ADs (⊢adok).

Table 5.15 Type rules for structural diagrams and sequences of diagram elements

(Ok SD) (SDE *) (SDE ϵ)
E ;AD ⊢sde SDE ∴ E ′

Acyclic E ′.SE

E ,E ′;AD ;⊥ ⊢as A ∴ VE

E ;AD ⊢sd SDE A ∴ E ,E ′,VE

E ;AD ⊢sde SDE ∴ E ′

E , E ′;AD ⊢sde SDE ∴ E ′′

E ;AD ⊢sde SDE SDE ∴ E ,E ′,E ′′ E ;AD ⊢sde ϵ ∴ E∅

27

Table 5.16 Type rules for constants, relation edges and sets

(SDE Const) (SDE RelEdge)

E ⊢cn C ∴ VEc

E ;AD ⊢sde C ∴ E∅,VEc

E ⊢td TD1 : T1 E ⊢td TD2 : T2 M1 ̸= seq M2 ̸= seq

E ;AD ⊢sde relEdge IdRE (M1 TD1,M2 TD2) ∴ E∅, IdRE : PowPair (T1,T2)
(Const) (Const ϵ) (Const ∗)

E ⊢td TD : T

E ⊢cn const IdCn : TD ∴ {IdCn : T} E ⊢cn ϵ ∴ {}

E ⊢cn C ∴ VE1 E ⊢cn C ∴ VE2

domVE1 ∩ domVE2 = {}
E ⊢cn C C ∴ VE1,VE2

(SDE PSet) (SDE Derived)

E ;AD ;Obj⊢pset PSet ∴ Eb

E ;AD ⊢sde PSet ∴ Eb

E ⊢sdef SDef : T

E ;AD ⊢sde Ids ↔ SDef ∴ E∅, Ids : T

Table 5.17 Type rules for primary sets

(Primary Set)
Ids ̸∈ E .VE

E ⊢cn C ∴ VEc E ⊢ped PED ∴ VEpe E ;AD ; Ids ⊢as A ∴ VEa VEi = getVE(E ,T)
Ts = Set Ids DK = getDK ([⃝]) SI = (SK ,DK , (VEc ,VEpe ,VEa ,VEi))

E , Ids : PowTs , Ids
se

7→ SI ;AD ;Ts ⊢hi [hasIn { (O | PSet)}] ∴ (Ehi)

E ;AD ;T ⊢pset set Ids SK [⃝]{C PED A} [hasIn { (O | PSet)}] ∴ (E∅, Ids : PowTs , Ids
se

7→ SI , Ts <: T ,Ehi)

Table 5.18 Type rules for property edge definitions

(PED ϵ) (PED ∗)

E ⊢ped ϵ ∴ VE∅

E ;M ⊢mtd TD : T E ⊢ped PED ∴ VE2

E ⊢ped M IdPe → TD PED ∴ {IdPe : T},VE2

(MTD One) (MTD Pow)

E ⊢td TD ∴ T

E ;one⊢mtd TD : T

E ⊢td TD ∴ T M = some ∨ M = many ∨ M = Num . . (Num|*)
E ;M ⊢mtd TD : PowT

(MTD Opt) (MTD Seq)

E ⊢td TD ∴ T

E ;opt⊢mtd TD : OptT

E ⊢td TD ∴ T

E ; seq⊢mtd TD : SeqT

Table 5.19 Type rules for sequences of invariants

(A ϵ) (A ∗)

E ;AD ; Ids⊥ ⊢as ϵ ∴ {}
E ;AD ; Ids⊥ ⊢aok A ∴ VE1 E ;AD ; Ids⊥ ⊢as A ∴ VE2

E ;AD ; Ids⊥ ⊢as AA ∴ VE1, VE2

28

Table 5.20 Type rules for has inside declarations

(HasInside ϵ) (HasInside ∗) (HasInObjs ϵ)

E ;T ⊢hi ϵ ∴ E∅

E ;T ⊢io O ∴ VE E ;T ⊢is PSet ∴ E ′

E ;T ⊢hi hasIn {O PSet} ∴ E ′,VE E ;T ⊢io ϵ ∴ {}
(HasInObjs ∗) (HasInSet ϵ) (HasInSets ∗)

E ;T ⊢io O ∴ VE

E ;T ⊢io object Ido O ∴ VE , {Ido : T} E ;T ⊢is ϵ ∴ E∅

E ;T ⊢pset PSet ∴ E ′

E ,E ′;T ⊢is PSet ∴ E ′′

E ;T ⊢is PSet PSet ∴ E ′,E ′′

Table 5.21 Type rules for checking assertions

(AssertionOk)

IdA ̸∈ domE .VE AD = findAD(AD , IdA, Ids⊥) E ;AD ; Ids⊥ ⊢adok AD ∴ VE

E ;AD ; Ids⊥ ⊢aok assertion IdA ∴ VE
(AD Ok) ︷︸︸︷

AD = getDepsOfAD (AD ,AD , Ids⊥)

E ;AD ; Ids⊥ ⊢adok
︷︸︸︷
AD ∴ VE E ,VE ;AD ⊢ad AD ∴ IdA : T

E ;AD ; Ids⊥ ⊢adok AD ∴ VE , IdA : T
(ADs Ok ϵLocal) (ADs Ok ϵGlobal)
Ids ̸=⊥ E ⊢ Ids : PowT VE = {self : T}

E ;AD ; Ids⊥ ⊢adok {} ∴ VE

Ids =⊥
E ;AD ; Ids⊥ ⊢adok {} ∴ {}

(ADs Ok ∗)

E ;AD ; Ids⊥ ⊢adok AD ∴ VE E ;AD ; Ids⊥ ⊢ads
︷︸︸︷
AD ∴ VE ′

E ;AD ; Ids⊥ ⊢adok{AD} ∪
︷︸︸︷
AD ∴ VE ,VE ′

Table 5.21 presents the rules for checking ADs associated with some assertion. These rules
are used when the AD type information is to be loaded into the environment. The rules are as
follows:

• Rule Assertion Ok derives the name of the assertion diagram through function getFAId,
which considers the special case of assertions associated with constants, and then looks
for the AD using function findAD (both functions defined in appendix A, section A.3.5).
The retrieved AD is then checked (rule associated with judgement ⊢adok) to yield variable
environment VE .

• Rule AD Ok processes a single AD. It retrieves all the ADs that are included in the given
AD through function getDepsOfAD (appendix A, section A.3.4) to yield set

︷︸︸︷
AD and then

checks them using the rules associated with judgement ⊢adok to derive variable environment
VE . The current AD is also checked using the rule for assertion diagrams to yield a variable
binding. The rule yields a variable environment formed by adding the retrieved variable
binding to the variable environment VE .

• Rules AD Ok ϵ and AD Ok ∗ process a set of ADs inductively. Rule AD Ok ϵ considers the

29

case where the set is empty, yielding an empty set of variable bindings. Rule AD Ok ∗
considers the case where the set has at least one element; it builds a variable environment
by joining the variable environment derived from the current single AD and the variable
environment derived from the remaining set of ADs.

30

Table 5.22 Judgements for typing of assertion diagrams
E ⊢ad AD ∴ I : T AD yields binding I : T in E

E ⊢vd VD ∴ (VEv ,VEh) Variable declarations block VD yields binding sets (VEv ,VEh)

E ⊢d D ∴ (VEv ,VEh) Sequence of declarations D yields binding sets (VEv ,VEh)

E ⊢df DF ∴ (VEv ,VEh) Declarations formula atom DF yields binding sets (VEv ,VEh)

E ⊢f F Sequence of formulas F is well-formed in E

E ⊢afs AFS : T Arrows formula source AFS yields type T

Table 5.23 Type rules for assertion diagrams

(AD GBL)

E ⊢d D ∴ (VEv ;VEh) E ⊕ (VEv ,VEh)⊢f F
E ⊢ad AD IdA decls {D}pred {F} ∴ IdA : Assertion[VEv ,VEh]
(AD LOCAL)

E ⊢ Ids : PowSet Ids
E .SE(Ids) = (SK , DK , VEs) E ⊕ VEs ⊢d D ∴ (VEv ;VEh) E ⊕ (VEs ,VEv ,VEh)⊢f F

E ⊢ad AD IdA : Ids decls {D}pred {F} ∴ IdA : Assertion [VEv , VEh]

5.5 Rules for Assertion Diagrams
The judgements for ADs are listed in Table 5.22. In the judgements’s contexts, E is an environ-
ment; the AD rules assume that all relevant ADs have been checked and its information can be
found in the environment. The judgements are as follows. The first judgement (⊢ad) asserts the
well-formedness of some AD, yielding a binding made up of the AD’s identifier and type. The
remaining judgements concern either the declarations or predicate compartment of ADs. The
declarations judgements include: judgement ⊢d , which says that a sequence of declarations (D) is
well-formed and ⊢df , which says that a particular declaration formula (DF) is well-formed. The
predicate compartment includes judgements for formulas (⊢f) and arrows formula source (⊢afs).

The typing rules for ADs (table 5.23) consider two cases, corresponding to global (AD GBL) and
local ADs (AD LOCAL). The rules are similar: the typing of declarations is followed by the typing
of the predicate. The local rule requires the local variable environment, which it retrieves from
the set environment component of the environment (E .SE). The processing of the declaration
yields two variable environments: the visible (VEv) and the hidden (VEh) variables. The visible
variables are visible in the assertions predicate and to the outside world; the hidden variables
are only visible within the assertion.

The type rules for the declarations (table 5.24) build the visible and hidden variable environ-
ments. They are follows:

• Rules D ϵ and D ∗ handle a sequence of declaration inductively. Rule D ϵ yields the empty
variable environments ({}) for both visible and hidden: there are no declarations to process.
Rule D ∗ retrieves the variable environments from the current declaration (VEv , VEh) and
from the remaining declarations (VEvs , VEhs); the variables environments to be yielded
by the rule are then merged (operator ◃▹), which requires that identifiers in common in the
variable environments being combined must be bound to the same type; furthermore, all
variables from the visible list (VEvf) are removed in the hidden list (operator �).

• Rules D Obj and D Set consider the cases where there is a declaration of a scalar (object)

31

Table 5.24 Type rules for declarations

(D ϵ) (D ∗)

E ⊢d ϵ ∴ ({}; {})

E ⊢d D ∴ (VEv ;VEh) E ,VEv ,VEh ⊢d D ∴ (VEvs ;VEhs)
VEvf = VEv ◃▹ VEvs VEhf = (VEh ◃▹ VEhs) � VEvf

E ⊢d D D ∴ (VEvf ;VEhf)

(VD Obj) (VD Set)
E ⊢td TD : T

(OQ = opt ∧ Tf = OptT ∨ OQ = ϵ ∧ Tf = T)

VE = {IdO , : Tf }
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ objectOQ IdO ,:TD ∴ (VEv ,VEh)

E ⊢td TD : T

VE = {Ids , : PowT}
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ set Ids ,:TD ∴ (VEv ,VEh)

(VD Seq) (VD *)
E ⊢td TD : T VE = {Ids , : SeqT}
(HQ = ϵ ∧ VEv = VE ∧ VEh = {}

∨ HQ = hidden ∧ VEv = {} ∧ VEh = VE)

E ⊢vd HQ seq Ids ,:TD ∴ (VEv ,VEh)

E ⊢vd VD ∴ (VEv1,VEh1)

E ⊢vd VD ∴ (VEv2,VEh2)
VEv1 ∩VEv2 ∩VEh1 ∩VEh2 = {}

E ⊢vd VD VD :TD ∴ (VEv1 ∪VEv2,VEh1 ∪VEh2)

(D VD) (D DF)

E ⊢vd VD ∴ (VEv ,VEh)

E ⊢d VD ∴ (VEv ,VEh)

E ⊢df DF ∴ (VEv ,VEh)

E ⊢d DF ∴ (VEv ,VEh)

or set. Both rules retrieves a type from the declaration’s type designator (TD) and then
yield a visible binding made of the variable’s identifier and appropriate type. Rule D Obj
considers whether there is an optional qualifier ; type to yield is optional if there is a
qualifier (OptT) or the type derived from the type designator otherwise (T). Rule D Set
also considers whether there is a sequence qualifier; type to yield is sequence of there is a
qualifier (SeqT) or a powerset otherwise (PowT).

• Rule D DF considers the case where the declaration comprises a declarations formula. In
this case, the type rule for declaration formulas is called.

Table 5.25 presents the type rules for declaration formulas. The rules are as follows:

• Rules DFA Assertion, DFA OCall and DFA ClCall deal with declaration formula atoms (DFA
non-terminal, Fig. 3.4c). Rule DFA Assertion considers the case where the construction
refers to a normal assertion defined in the same scope (either local or global); rule DFA
OCall considers the case where there is a local assertion being called on some object; and
rule DFA ClCall considers the case where a class assertion is called.

• Rules DFA Assertion, DFA OCall and DFA ClCall assume that the AD associated with
the assertion being checked has already been type-checked: the assertion’s type can be
retrieved from the environment. These rules retrieve the appropriate assertion type from
the environment to obtain the assertion’s visible and hidden bindings (VEv and VEh).
From the assertion’s visible bindings (VEv), the rule then builds the visible and hidden
bindings for the declaration using function conVEs, which takes into account the presence
of symbol ↑, and from these constructed bindings the rule makes the required substitutions

32

Table 5.25 Type rules for declaration formulas

(DFA Assertion) (DFA OCall)

E ⊢ta A ∴ IdA : Assertion[VEv ;VEh]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = doSubs(VEcv ,VEch , [R,])

E ⊢df [↑]A[R,] ∴ (VEfv ;VEfh)

E ⊢ IdO : Ts

Ids = getSIdFrTy(Ts)
E ⊢ Ids .IdA : Assertion[VEv ,VEh]
(VEcv ,VEch) = consVEs(VEv , [↑])

(VEfv ,VEfh) = doSubs(VEcv ,VEch , [R,])

E ⊢df [↑]assertion IdO .IdA[R,] ∴ (VEfv ;VEfh)

(DFAClCall)
E ⊢ Ids .IdA : Assertion[VEv ,VEh]

(VEcv ,VEch) = consVEs(VEv , [↑]) (VEfv ,VEfh) = doSubs(VEcv ,VEch , [R,])

E ⊢df [↑]assertion Ids → IdA[R,] ∴ (VEfv ;VEfh)
(DF Neg) (DF Bin)

E ⊢df DF ∴ (VEv ;VEh)

E ⊢df ¬ [DF] ∴ (VEv ;VEh)

E ⊢df DF1 ∴ (VEv1;VEh1)

E ⊢df DF2 ∴ (VEv2;VEh2) FOp ∈ {⇒, equiv}
E ⊢df FOp[DF1 DF2] ∴ (VEv1 ◃▹ VEv2;VEh1 ◃▹ VEh2)

(DF NAry 2∗)
E ⊢df DF ∴ (VEv ;VEh) FOp ∈ {∨,∧,⌻} #DF ≥ 2

E ⊢df FOp[DF] ∴ (VEv ;VEh)
(DF NAry ϵ) (DF NAry ∗)

E ⊢df ϵ ∴ ({}; {})
E ⊢df DF ∴ (VEv1;VEh1) E ⊢df DF ∴ (VEv2;VEh2)

E ⊢df DF DF ∴ (VEv1 ◃▹ VEv2;VEh1 ◃▹ VEh2)

according to what is defined in the sequence of renamings (R) using function applySubs. All
it varies in the rules is the way the assertion type is obtained; rule DFA Assertion obtains
the assertion type directly from the environment; rule DFA OCall obtains the assertion
type from the object’s set; and rule DFA ClCall obtains the assertion type from the given
set identifier.

• Rule DF Neg obtains the visible and hidden variables of a negated declarations formula
from the enclosed declarations formula.

• Rule DF Bin handles a binary declarations formula combined using a binary operator. The
rules obtains the visible and hidden bindings from the two declarations formulas being
combined and then merges them using the operator mergeves.

33

Table 5.26 Type rules for Formulas (F)

(F ϵ) (F ∗) (F Not) (F Bin) (F NAry) (F AF)

E ⊢f ϵ

E ⊢f F
E ⊢f F
E ⊢f F F

E ⊢f F

E ⊢f ¬ [F]

E ⊢f F1 E ⊢f F2

FOp ∈ {⇒,⇔}
E ⊢f FOp[F1F2]

E ⊢f F #F ≥ 2
FOp ∈ {∧,∨}
E ⊢f FOp [F]

E ⊢afs AFS : T

E ;T ⊢peps PEP1

E ⊢f AFS {PEP1}
(F SF Shaded) (F SF Id) (F SF Inside) (AFS SE)

E ⊢sdef SDef : T

E ⊢f shadedSDef

E ⊢ Ids : T1

E ⊢sdef SDef : T2

(E ⊢T2 <: T1

∨ E ⊢T2 <: T1)

E ⊢f [shaded] Ids SDef

E ⊢td TD : T1

E ⊢te SExp : T2

(E ⊢ T1 <: T2 ∨ E ⊢ T2 <: T1)

E ⊢f setTD hasIn {SExp}
E ⊢td TD : PowT2

E ⊢f set shadedTD

(QF) (QD) (QD *)
E ⊢qd QD , ∴ VE

E ⊕VE ⊢f F
E ⊢f QD , • F ;

E ⊢vd VD ∴ (VEv ,VEh)
VEh = {}

E ⊢qd Q VD ; ∴ VEv

E ⊢vd VD ∴ (VEv ,VEh)

VEh = {} E ⊢qd QD , ∴ VE

E ⊢qd Q VD ;QD , ∴ VEv ⊕VE

Table 5.27 Type rules for Arrows Formula Source (production AFS)

(AFS SE) (AFS SetId) (AFS SDef) (AFSB Un Card)

E ⊢se SE : T

E ⊢afs SE : T

E ⊢ Ids : T

E ⊢afs set Ids : T

E ⊢sdef SDef : T

E ⊢afs SDef : T

E ⊢afs AFS : PowT

E ⊢afs # AFS : Int
(AFS Un Dom) (AFS Un Ran) (AFSB Un The)

E ⊢afs AFS : PowPair (T1,T2)
E ⊢afs ← AFS : PowT1

E ⊢afs AFS : PowPair (T1,T2)
E ⊢afs → AFS : PowT2

E ⊢afs AFS : OptT

E ⊢afs ◉AFS : T

34

References

[AGK11] Nuno Amálio, Christian Glodt, and Pierre Kelsen. Building VCL models and au-
tomatically generating Z specifications from them. In FM 2011, number 6664 in
LNCS, pages 149–153. Springer, 2011.

[AK10] Nuno Amálio and Pierre Kelsen. Modular design by contract visually and formally
using VCL. In VL/HCC 2010, 2010.

[AKMG10] Nuno Amálio, Pierre Kelsen, Qin Ma, and Christian Glodt. Using VCL as an aspect-
oriented approach to requirements modelling. TAOSD, VII:151–199, 2010.

[Amá07] Nuno Amálio. Generative frameworks for rigorous model-driven development. PhD
thesis, Dept. Computer Science, Univ. of York, 2007.

[APS05] Nuno Amálio, Fiona Polack, and Susan Stepney. An object-oriented structuring for
Z based on views. In ZB 2005, volume 3455 of LNCS, pages 262–278. Springer, 2005.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS
2008, pages 337–340, 2008.

[EEPT06] Harmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Tranformation. Springer, 2006.

[ISO02] ISO. Information technology—Z formal specification notation—syntax, type system
and semantics, 2002. ISO/IEC 13568:2002, Int. Standard.

[Jac06] Daniel Jackson. Software Abstractions: logic, lanaguage, and analysis. MIT Press,
2006.

[Spi92] J. M. Spivey. The Z notation: A reference manual. Prentice-Hall, 1992.

35

Appendix A

Auxiliary Definitions

This appendix presents the auxiliary definitions that are used to describe the VCL type system
presented in chapter 5.

A.1 Environment Operators
Several operators manipulate environments. E1,E2 means that two disjoint environments are
combined into one. This is defined as set union for each component of the environments being
combined:

E1,E2 = (VE1 ∪VE2,SE1 ∪ SE2,SubE1 ∪ SubE2)
where, E1 = (VE1,SE1,SubE1) ∧ E2 = (VE2,SE2,SubE2)

VE1,VE2 means that two disjoint variable environments are combined into one. This is
defined as set union:

VE1,VE2 = VE1 ∪VE2 ⇔ domVE1 ∩ domVE2 = ∅

Another operation on variable environments is ◃▹, which merges two variable environments.
This requires that if there are identifiers in common in both variable environments, then they
must be bound to the same type. This operator is defined as a partial function:

◃▹ : VE ×VE 7→VE

This is defined inductively by the following equations:

{} ◃▹ VE = VE
({id : T} ∪ VE1) ◃▹ VE2 = VE1 ◃▹ (VE2 ∪ {Id : T})⇔ id ̸∈ domVE2 ∨ VE2(Id) = T

We define an operator for performing subtractions on variable environments that require that
identifiers in common in both variable environments are bound to the same type. This operator
is defined as a partial function:

� : VE × VE 7→VE

36

This is defined by the following equation:

VE1 � VE2 = VE1 \ VE2 ⇔ (∀ Id ∈ (domVE1 ∩ domVE2) • VE1(Id) = VE2(Id))

E , Id : T means that a variable binding is added to an environment. This is defined as:

E , Id : T =

{
(VE ∪ {Id 7→ T},SE ,SubE) If E = (VE ,SE ,SubE) ∧ ¬ Id ∈ domE .VE
undefined otherwise

E ,T1 <: T2 means that a subtyping tuple is added to an environment. This is defined as:

E ,T1 <: T2 = (VE ,SE ,SubE ∪ {T1 7→ T2}) where, E = (VE ,SE ,SubE)

E , Id
se

7→ (SK ,DK , Id ,VE) means that a set environment binding is added to an environment.
This is defined as:

E , Id
se

7→ (SK ,DK , Id ,VE) ={
(VE ,PE ,SE ∪ {(SK ,DK , Id ,VE)},SubE) If E = (VE ,SE ,SubE) ∧ ¬ Id ∈ domE .SE
undefined otherwise

E ⊕ VE means that an environment is overridden with a set of variable bindings. This is
defined as:

E ⊕ VE2 = (VE1 ⊕VE2,PE ,SE ,SubE) where, E = (VE1,PE ,SE ,SubE)

A.2 Predicates

Acyclic (R)⇔ R ∈ {rel : X ↔X | rel + ∩ idX = ∅}

IsPEP(PE PEP)⇔ PE = PEP ∧ (PE = ϵ ∨ IsPEP(PE))

IsPEM (PE PEP)⇔ PE = PEM ∧ (PE = ϵ ∨ IsPEM (PE))

A.3 Auxiliary Functions
A.3.1 Function getGType

The function getGType gets the greatest type between two types ordered by the subtyping
relation:

getGType : E × Type × Type 7→ Type

getGType (E ,T1, T2) =


T1 If E ⊢T2 <: T1
T2 If E ⊢T1 <: T2
T4 If (T1,T3) ∈ E .SubE ∧ T4 = getGType(E ,T3,T2)
undefined otherwise

getGType (E ,Pair (T1, T2),Pair (T3, T4)) = Pair (getGType(E ,T1,T3), getGType(E ,T2,T4))

37

A.3.2 Functions producing variable environments (VEs)
The function getVE extracts variable environments from set types:

getVE : T × E →VE

getVE (T ,E) =

{
VE If T = Set Ids ∧ E .SE(Ids) = (SK , DK ,VE)
{} otherwise

The function consVEs constructs a pair of variable environments given an optional imports
qualifier and a variable environment (VE). This function simply makes the given VE the first
component of the pair if there is an imports qualifier and makes it the second component of the
pair otherwise:

consVEs : VE× ↑⊥ →VE ×VE

consVEs (VE , ↑⊥) =
{
(VE , {}) if ↑⊥ = ↑)
({},VE) if ↑⊥ =⊥)

A.3.3 Function getDK

The function getDK extracts the definitional kind:

getDK : [⃝]→DK
getDK (⃝) = def
getDK (ϵ) = notDef

A.3.4 Functions to extract information from ADs
The following functions extract the AD identifier, set identifier and declarations from ADs:

getIdOfAD : AD → Id

getIdOfAD(AD IdA [: Ids]decls {D}pred {F}) = IdA
getSIdOfAD : AD 7→ Id⊥

getSIdOfAD(AD IdA : Ids decls {D}pred {F}) = Ids
getSIdOfAD(AD IdA decls {D}pred {F}) =⊥

getDeclsOfAD : AD →D

getDeclsOfAD(AD IdA [: Ids]decls {D}pred {F}) = D

The following functions get the set of ADs that are included in some AD :

38

getDepsOfAD : AD × AD × Id⊥→
︷︸︸︷
AD

getDepsOfAD (AD ,AD , Ids⊥) = getADsOfDecls (getDeclsOfAD (AD),AD , Ids⊥)

getADsOfDecls : D × AD × Id⊥→
︷︸︸︷
AD

getADsOfDecls (ϵ,AD , Ids⊥) = {}
getADsOfDecls (D D ,AD , Ids⊥) =

getADsOfDecl(D ,AD , Ids⊥) ∪ getADsOfDecls (D ,AD , Ids⊥)

getADsOfDecl : Decl ×AD × Id⊥→
︷︸︸︷
AD

getADsOfDecl (DV Id :TD ,AD , Ids⊥) = {}
getADsOfDecl (DF ,AD , Ids⊥) = getADsOfDF (DF ,AD , Ids⊥)

getADsOfDF : DF × AD × Id⊥→
︷︸︸︷
AD

getADsOfDF ([↑]assertion IdA [R,],AD , Ids⊥) = {findAD(AD , Ids⊥, IdA)}
getADsOfDF ([↑]assertion Ido.IdA [R,],AD , Ids⊥) = findLADsWithName(AD , IdA)

getADsOfDF ([↑]assertion Ids → IdA [R,],AD , Ids⊥) = {findAD(AD , Ids , IdA)}
getADsOfDF (¬ (DF),AD , Ids⊥) = getADsOfDF (DF ,AD , Ids⊥)

getADsOfDF ((DF1 FOp DF2),AD , Ids⊥) = getADsOfDF (DF1,AD , Ids⊥)

∪ getADsOfDF (DF2,AD , Ids⊥)

getMatchingAD : AD × Id →
︷︸︸︷
AD

getMatchingAD(AD , IdA) =

{
{AD} If getSIdOfAD(AD) ̸=⊥∧ getIdOfAD(AD) = IdA
{} otherwise

findLADsWithName : AD × Id 7→
︷︸︸︷
AD

findLADsWithName(ϵ, IdA) = {}
findLADsWithName(AD AD , IdA) = getMatchingAD(AD , IdA) ∪ findLADsWithName(AD , IdA)

A.3.5 Functions for AD lookup
The following functions look for some AD in a sequence of ADs:

findAD : AD × Ids⊥ × IdA 7→AD

findAD (AD ,⊥, IdA) = findGblAD(AD , IdA)

findAD (AD , Ids , IdA) = findLAD(AD , Ids , IdA)

findGblAD : AD × IdA→ AD
findGblAD (AD , IdA) = AD ⇔ getIdOfAD(AD) = IdA
findGblAD (AD AD , IdA) = AD ⇔ getIdOfAD(AD) = IdA
findGblAD (AD AD , IdA) = findGblAD (AD , IdA)⇔ getIdOfAD(AD) ̸= IdA

findLAD : AD × Ids × IdA 7→AD
findLAD (AD , Ids , IdA) = AD ⇔ getSIdOfAD(AD) = Ids ∧ getIdOfAD(AD) = IdA
findLAD (AD AD , Ids , IdA) = AD ⇔ getSIdOfAD(AD) = IdS ∧ getIdOfAD(AD) = IdA
findLAD (AD AD , Ids , IdA) = findLAD(AD , Ids , IdA)
⇔ getIdOfAD(AD) ̸= IdA ∨ getSIdOfAD(AD) ̸= Ids

A.3.6 Functions for substitutions
The following functions deal with substitutions in variable environments:

doSubs : VE × VE × R 7→VE × VE

doSubs (VEv ,VEh ,R) = (applySubs(VEv ,R), applySubs(VEh ,R))

39

applySubs : VE × R 7→VE

substitute (VE , idn/ido) =
{

(VE \ {(ido,VE(ido))}) ∪ {(idn,VE(ido))} If ido ∈ domVE ∧ idn ̸∈ domVE
undefined otherwise

applySubs (VE , ϵ) = VE

applySubs (VE ,RR) = applySubs(substitute(VE ,R),R)

A.3.7 Function getSIdFrScalarOrCollection

The following function retrieves a set identifier from types involving set types, which may either
denote a scalar or a collection:

getSIdFrTy : Type 7→ Id
getSIdFrTyn (Set Ids) = Ids
getSIdFrTy (PowSet Ids) = Ids
getSIdFrTy (SeqSet Ids) = Ids
getSIdFrTy (OptSet Ids) = Ids

40

Appendix B

Alloy Metamodels

B.1 VCL Common
--===
-- Name: 'VCL_Common'
-- Description:
-- + Common entities of VCL ADs and SDs
--===

module VCL_Common

--===
-- Name: 'Name'
-- Description:
-- + Introduces set of labels to be attached to nodes and edges
--===
sig Name {}

--===
-- Name: 'SetElement'
-- Description:
-- + Defines a set element
-- + Either a single object or a pair
--===
abstract sig SetElement {
}

--===
-- Name: 'VCLObject'
-- Description:
-- + A named VCL object
-- + Elements that can be inside a set (either primitive or derived)
--===
sig VCLObject extends SetElement {

id : Name

41

}

--===
-- Name: 'Pair'
-- Description:
-- + Represents a pair made of two named objects
--===
sig Pair extends SetElement {

idElem1 : Name,
idElem2 : Name

}

--==
-- Name: 'Assertion'
-- Description:
-- + Defines assertions whose symbol is the elongated hexagon.
--==
sig Assertion {

idAssertion : Name
}

--===
-- Name: 'TypeDesignator'
--
-- Description:
-- + Defines a designator for types.
--===

abstract sig TypeDesignator {
}

--===
-- Name: 'TypeDesignator', ' TypeDesignatorNat'
--
-- Description:
-- + Defines a type designator naturals and integers.
--===
sig TypeDesignatorInt, TypeDesignatorNat extends TypeDesignator {
}

--===
-- Name: 'TypeDesignatorId'
--
-- Description:
-- + Defines a designator of sets with an identifier.
--===
sig TypeDesignatorId extends TypeDesignator {

setId : Name
}

42

--===
-- Name: 'PropEdge'
--
-- Description:
-- + Defines property edges with a source and a target.
--===
abstract sig PropEdge {

op : EdgeOperator,
target : Expression,

}

--===
-- Name: 'PropEdgePred'
--
-- Description:
-- + Defines property edges attached to predicate elements.
--===
sig PropEdgePred extends PropEdge {

unop : lone EdgeOperatorUnary,
designator : lone Name

}{
-- 'op' must be a 'EdgeOperatorPred'
op in EdgeOperatorBin

}

--===
-- Name: 'PropEdgeMod'
--
-- Description:
-- + Defines the property edge modifier that applies some operation to
-- the source.
--===
sig PropEdgeMod extends PropEdge {
}{

-- 'op' must be a 'EdgeOperatorMod'
op in EdgeOperatorMod

}

--===
-- Name: 'EdgeOperator'
--
-- Description:
-- + Defines edge operarator used in edges.
--===
abstract sig EdgeOperator {
}

--===

43

-- Name: 'EdgeOperatorBin'
--
-- Description:
-- + Defines edge operarator used in predicate edges.
--===
abstract sig EdgeOperatorBin extends EdgeOperator{
}

--===
-- Name: 'EdgeOperatorMod'
--
-- Description:
-- + Defines edge operarator used in modifer edges.
--===
abstract sig EdgeOperatorMod extends EdgeOperator{
}

--===
-- Name: 'EdgeOperatorUnary'
--
-- Description:
-- + Defines edge operarator used in modifer edges.
--===
abstract sig EdgeOperatorUnary extends EdgeOperator{
}

--===
-- Name: 'EdgeOperatorEq', 'EdgeOperatorIn', 'EdgeOperatorSubsetEQ'
--'EdgeOperatorLT', 'EdgeOperatorLEQ', 'EdgeOperatorGT', 'EdgeOperatorGEQ'
--
-- Description:
-- + Defines different kinds of edge operators.
-- + Eq (=), Neq (�), In (�), LT, (<), LEQ (�), GT (>), GEQ (�)
-- + SubsetEQ (�)
--==
one sig EdgeOperatorEq,
EdgeOperatorNEq,
EdgeOperatorIn,
EdgeOperatorLT,
EdgeOperatorLEQ,
EdgeOperatorGT,
EdgeOperatorGEQ,
EdgeOperatorSubsetEQ
extends EdgeOperatorBin {

}

--===
-- Name: 'EdgeOperatorDRES', 'EdgeOperatorRRES'
--

44

-- Description:
-- + Edge Operators used in property edge modifiers.
-- + DRES (�, domain restriction), and RRES (�, range restriction)
-- + DSUB (�, domain subtraction) and RSUB (�, range subtraction)
--==

one sig EdgeOperatorDRES,
EdgeOperatorRRES,

EdgeOperatorDSUB,
EdgeOperatorRSUB
extends EdgeOperatorMod {
}

--===
-- Name: 'EdgeOperatorCARD', 'EdgeOperatorTHE'
-- Description:
-- + Unary edge operator used in predicate property edges
-- + CARD (#, cardinality)
-- + THE (�, the)
--==
one sig EdgeOperatorCARD, EdgeOperatorTHE

extends EdgeOperatorUnary {
}

--===
-- Name: 'Num'
--
-- Description:
-- + String representing natural numbers.
--===
sig Num {}

--===
-- Name: 'Expression'
--
-- Description:
-- + Defines expressions associated with property edges.
--===
abstract sig Expression {
}

--===
-- Name: 'FreeExpression'
--
-- Description:
-- + Defines a free (editable) expression.
--===
abstract sig FreeExpression extends Expression {
}

45

--===
-- Name: 'FreeExpId'
--
-- Description:
-- + Defines object expressions comprising an identifier (a name).
--===

sig FreeExpId extends FreeExpression {
oid : Name,

pkgId : lone Name,
}

--===
-- Name: 'FreeExpDot'
--
-- Description:
-- + Defines expressions that access the state of objects.
--===
abstract sig FreeExpDot extends FreeExpression {

oid : Name, -- Identifier of the object
propId : Name -- Identifier of the property

}

--===
-- Name: 'FreeExpNum'
--
-- Description:
-- + Defines expressions comprising a number.
--===

sig FreeExpNum extends FreeExpression {
num : Num

}

--===
-- Name: 'FreeExpUMinus'
--
-- Description:
-- + Defines unary minus expression (-e).
--===
sig FreeExpUMinus extends FreeExpression {

e : FreeExpression
}

--===
-- Name: 'FreeExpBin'
--

46

-- Description:
-- + Defines expressions that can be combined with binary operators.
--===
abstract sig FreeExpBin extends FreeExpression {

e1, e2 : FreeExpression,
op : FreeExpBinOp

}{
e1 != e2

}

--===
-- Name: 'FreeExpPar'
--
-- Description:
-- + Defines expressions that can be placed within parenthesis.
--===
abstract sig FreeExpPar extends FreeExpression {

e : FreeExpression
}

--===
-- Name: 'FreeExpBinOp'
--
-- Description:
-- + Infix operators for sum (+), subtraction (-), product (*), div (/).
--===
abstract sig FreeExpBinOp {}

one sig FreeExpBinOpPlus,
FreeExpBinOpMinus,
FreeExpBinOpTimes,
FreeExpBinOpDiv extends FreeExpBinOp {}

--===
-- Name: 'SetExpression'
--
-- Description:
-- + Defines a set expression.
--===
abstract sig SetExpression extends Expression {
}

--===
-- Name: 'SetExpressionID'
--
-- Description:
-- + Defines a set expression defined using a type designator.
--===
sig SetExpressionID extends SetExpression {

47

bd : TypeDesignator
}

--===
-- Name: 'SetExpressionEmpty'
--
-- Description:
-- + Defines a set that is shaded to represent the empty set.
--===
sig SetExpressionEmpty extends SetExpression {
}

--===
-- Name: 'SetExpressionCard'
--
-- Description:
-- + Defines a set with a cardinality unary operator attached.
--===
sig SetExpressionCard extends SetExpression {

setExp : SetExpression
}

--===
-- Name: 'SetDef'
--
-- Description:
-- + Defines a set definition (symbol �).
--===
sig SetDef {

bdop : SetDefOp, -- optional blob def operator
insideExp : SetInsideExpression

}

--===
-- Name: 'SetDefOp'
--
-- Description:
-- + Defines set def operators
-- + Domain operator is represented as symbol �
-- + Range operator is represented as symbol �
-- + None represents no symbol
-- + Union operator is represented as symbol �
-- + Intersection operator is represented as symbol �
-- + Cross product operator is represented as symbol �
-- + Relation composition operator is represented by symbol �
-- + Set difference operator is represented as symbol �
--===
abstract sig SetDefOp {

48

}

one sig SetDefOpDomain,
SetDefOpRange,
SetDefOPNone,
SetDefOpUnion,
SetDefOpIntersection,
SetDefOpCrossProduct,
SetDefOpSetMinus,

SetDefOpRelComp
extends SetDefOp {
}

--===
-- Name: 'SetExpressionDef'
--
-- Description:
-- + Defines a set expression defined using a set definition.
--===

sig SetExpressionDef extends SetExpression {
def : SetDef

}

--===
-- Name: 'SetInsideExpression'
--
-- Description:
-- + Expression inside the set definition
--===
abstract sig SetInsideExpression {
}

--===
-- Name: 'InsideExpBlDs'
--
-- Description:
-- + Expression inside the set def
--===
sig InsideExpBlDs extends SetInsideExpression {
blobDefs : seq SetDef

}

--===
-- Name: 'InsideDef'
--
-- Description:

49

-- + Definition of the blob def
-- + Either a constrained blob or a a set extension
--===
abstract sig InsideDef extends SetInsideExpression {
}

--===
-- Name: 'ConstrainedSet'
--
-- Description:
-- + Defines a set with restrictions (constraints).
--===

sig ConstrainedSet extends InsideDef {
bd : TypeDesignator,
pes : seq PropEdge -- 0 or more predicate property edges

}

fact PropEdgesOfConstrainedSetAreOfSomeKind {
all be :ConstrainedSet |
all disj pe1, pe2 : univ.(be.pes) |

pe1+pe2 in PropEdgePred || pe1+pe2 in PropEdgeMod
}

--===
-- Name: 'SetExtension'
--
-- Description:
-- + Defines a set extensionally by listing its members.
--===

sig SetExtension extends SetInsideExpression {
elems : some SetElement

}

B.2 Bool Module
--===
-- Name: 'Bool'
--
-- Description:
-- + Signature of booleans: 'True' or 'False'.
--===
abstract sig Bool {}

one sig True, False extends Bool {}

50

B.3 VCL Structural Diagrams
--===
-- Name: 'VCL_SD'
-- Description:
-- + Defines meta-model of VCL structural diagrams (SDs).
--===
module VCL_SD

open VCL_Common as c
open Bool

--==
-- Name: 'Mult' (Multiplicity)
--
-- Description:
-- + Defines what a multiplicity is.
-- + Multiplicities are attached to ends of edges.
-- Details:
-- + There are the folowing kinds of multiplicity: one, optional (0..1),
-- many (0..*), one or many (1..*), range (n1..n2) and sequence.
-- + Multiplicities of kind range have a lower and an upper bound.
--==
abstract sig Mult {}

one sig MOne, MOpt, MMany, MOneOrMany, MSeq extends Mult {}

one sig MStar {}

sig MRange extends Mult {
-- lower and upper bounds for 'range' multiplicities.
lb : Int,

ub : (Int+MStar)
}{

-- lower and upper bounds must be greater or equal than 0
-- and 'ub' greater or equal than 'lb'.
lb >= 0 && (ub = MStar || ub >= lb)

}

--===
-- Name: 'SDElem'
--
-- Description:
-- + Introduces the labelled structural diagram element.
-- + To be extended by 'Set', 'Object', 'Edge'.
--===
abstract sig SDElem {

name : Name -- a modelling element has a name (a label).
}

51

--===
-- Name: 'Constant'
--
-- Description:
-- + Represents constants. A constant has a type (field 'type).
-- + Constants can be 'local' or 'global'.
-- + A constant definition has a type
--==

sig Constant extends SDElem {
type : lone Name
}

--===
-- Name: 'RelEdge' (Relational Edge)
--
-- Description:
-- + Set relational edges are binary edges connecting sets.
-- + They have multiplicities at each end of edge.
--===

sig RelEdge extends SDElem {
source, target : Set,
sourceMult, targetMult : Mult,

}{
-- Relation edges cannot have multiplicities of type sequence

not (sourceMult+targetMult) in MSeq
}

--===
-- Name: 'Set' (Set Definitions)
--
-- Description:
-- + Defines a global set definition.
-- + It's characterised by inside property.
--
--===

abstract sig Set extends SDElem {
}

--===
-- Name: 'IntSet' (Integer Set)
--
-- Description:
-- + Defines a set representing the integers

52

--===
one sig IntBlob extends Set {}

--===
-- Name: 'NatSet' (Natural numbers Set)
--
-- Description:
-- + Defines a set representing the natural numbers
--===
one sig NatSet extends Set {}

abstract sig SetKind {}

--===
-- Name: 'Value', 'Class
--
-- Description:
-- + Defines two set kinds: 'value' and 'class'.
--===

one sig Value, Class extends SetKind {}

--==
-- Name: 'SetDefObject'
--
-- Description:
-- + An object that can be inside a primitive set.
--==

sig SetDefObject {
objName : Name
}

--===
-- Name: 'PrimarySet'
-- Description:
-- + Defines a primary set
-- + A Primary set can have sets ad objects inside.
--===
sig PrimarySet extends Set {

kind : SetKind,
lProps : set PropEdgeDef,

hasInsideSet : set PrimarySet,
isDefSet : Bool, -- (symbol � if 'True')

hasInsideO : set SetDefObject,
lInvariants : set Assertion,
lConstants : set Constant,

}

53

--
-- The following defines what it means for VCL structures to be well-formed
-- regarding the 'inside' property

--
-- The graph representing the 'inside' relation should be acyclic.
fact acyclicInside {

no ^(hasInsideSet) & iden
}

--
-- An object should be in at most one set (the inverse of the relation is a partial function)
fact setInAtMostOneBlob {
all s : PrimarySet | lone s.~hasInsideSet
}

--
-- An object should be in at most one set (the inverse of the relation is a partial function)
fact objInAtMostOneBlob {
all n : SetDefObject | lone n.~hasInsideO
}

--
-- Each 'Set' has its own set of local invariants.
-- Or local invariants are not shared.
fact LInvariantsNotShared {

all c : Assertion | (some lInvariants.c)
=> one lInvariants.c

}

--
-- Each 'Set' has its own set of local constants
-- Or local constants are not shared.
fact LConstantsNotShared {

all c : Constant | (some lConstants.c)
=> one lConstants.c

}

-- Definitional sets must have things inside.
fact DefSetsHasThingsInside {

all b : isDefSet.True | #b.hasInsideO > 0 || #b.hasInsideSet > 0
}

--
-- Each class set can contain other classes obly
-- and they can be inside of class sets only.
fact ClSetHasClSetsInside {

all b : PrimarySet | b.kind = Class
=> (b.hasInsideSet) in kind.Class && hasInsideSet.b in kind.Class

54

}

--===
-- Name: 'PropEdgeDef' (Property Edge Definition)
-- Description:
-- + Defines properties of sets.
-- + Relates one blob (having property) to another (type of property).
-- + A property edge has a 'Set' as target.
-- + A property edge may have a multiplicity.
--
-- ---------- 0..*-------
-- |PropEdge|------------->|Set |
-- ---------- target -------
--===
sig PropEdgeDef extends SDElem {

peTarget : Set,
mult : Mult

}
{

-- a PropEdgeDef cannot have its blob or his inside blobs as target
not (peTarget in ((this.~lProps) + (this.~lProps).^(hasInsideSet)))

}

--
-- Each 'Set' has its own set of property edge definitions
-- Or property edges are not shared. All property edges belong to some set
fact propEdgesNotSharedAndBelongToSomeSet {

all pe : PropEdgeDef | one lProps.pe
}

fun nameOf (elem : SDElem + Assertion) : Name {
elem in SDElem implies elem.name else elem.idAssertion
}

--
-- Local Names in the scope of a 'Set'must be unique
--
fact LocalNamesAreUnique {
all s : Set |
all e1, e2 : (s.lConstants+s.lInvariants+s.lProps+(s.hasInsideO))
| nameOf [e1] = nameOf [e2]

=> e1 = e2
}

--
-- All global names must be unique
fact GblNamesAreUnique {

all e1, e2 :
(Set+(Assertion-(PrimarySet.lInvariants))+

55

RelEdge+(Constant-(PrimarySet.lConstants)))
| nameOf[e1] = nameOf[e2] implies e1 = e2
}

--===
-- Name: 'DerivedSet'
--
-- Description:
-- + Defines a derived set
-- + Derived sets make use of symbol '�'
--===
sig DerivedSet extends Set {

definition : SetDef
}

--===
-- Name: 'SDiag'
--
-- Description:
-- + Defines a structural diagram
--===
sig SDDiag {
sdelems : set SDElem,
invs : set Assertion

}

B.4 VCL Assertion Diagrams
--===
-- Name: 'VCL_AD'
--
-- Description:
-- + Module defining the meta-model of VCL assertion diagrams.
--==

open VCL_Common as c
open Bool

--===
-- Name: 'Decl'
--
-- Description:
-- + Defines a declaration of an assertion diagram.
--===
abstract sig Decl {
}

56

--===
-- Name: 'VarDecl'
--
-- Description:
-- + Defines a typed variable declaration of AD or CD.
-- + A typed variable declaration has a name, type and hidden status
-- + In EMF metamodel 'dNames' is just a string (to be parsed by type-checker)
--===
abstract sig VarDecl extends Decl {

dNames : set Name, -- set of declaration names separated by commas
dTy : TypeDesignator, // Type of declaration
isHidden : Bool, // Indicates whether the variable is hidden or not

}

--===
-- Name: 'DeclObj'
--
-- Description:
-- + Defines declarations of objects.
-- + Declarations of objects are represented as objects (rectangles).
-- + field optional indicates whether declaration is optional or not
-- + If optional is true, then '?' precedes the object's type.
--===

sig DeclObj extends VarDecl{
optional : Bool

}

--===
-- Name: 'DeclSet'
--
-- Description:
-- + Defines declarations of sets.
-- + Sets are represented as blobs (ovals); they include the word "SET" on
-- top-left corner
--===

sig DeclSet extends VarDecl {
}

--===
-- Name: 'DeclSeq'
--
-- Description:
-- + Defines declarations of sequence.
-- + Sequences are represented as blobs (ovals); they include the word
-- "SEQUENCE" on top-left corner
--===

57

sig DeclSeq extends VarDecl {
}

--===
-- Name: 'DeclFormula'
--
-- Description:
-- + Defines a declaration reference formula.
-- + This enables declaration references (either assertions or contracts)
-- to be combined using logical operators.
--===

abstract sig DeclFormula extends Decl {
}

--===
-- Name: 'RenamingExp'
--
-- Description:
-- + Defines a renaming expression, denoted in logic as [u/y]
-- where expression u denoted as the susbtition for variable y.
--===
sig RenamingExp {
subExp : Name, -- Substituting expression
varToSub : Name -- Variable to substitute

}

--===
-- Name: 'DeclFormulaAtom'
--
-- Description:
-- + A declarations formula atom holds represents references to assertions or contracts
-- + The import is represented by the symbol '↑'
-- + Optional 'callObj' indicates a call a local operation on an object
-- represented as "a.op".
-- + Optional field 'origin' indicates origin of the operation (blob or package).
-- + Optional owning set indicates set of local contract or assertion
-- + Renaming expressions represented as '[t/x,u/y]'. In Ecore,
-- 'RenamingExp' is just a String.
--===

abstract sig DeclFormulaAtom extends DeclFormula {
refId : Name, -- Name of assertion or contract
owningSet : lone Name, -- Id of set that owns local assertion or contract
callObj : lone Name, -- Id of obj on which local assertion or contract is called

origin : lone Name, -- optional originating package
import : Bool, -- Whether import symbol is present or not
renameExp : set RenamingExp -- a set of renaming expressions

}

58

--===
-- Name: 'DeclAssertion'
--
-- Description:
-- + Represents an assertion reference of a declarations formula
--==
sig DeclAssertion extends DeclFormulaAtom {
}

--===
-- Name: 'FormulaOp'
--
-- Description:
-- + Defines a formula operator.
--===
abstract sig FormulaOp {
}

--===
-- Name: FImplies, FAnd, FOr, FEquiv
--
-- Description:
-- + Defines formula operators for implication (�), conjunction (�),
-- disjunction (�), equivalence (�), negation (¬),
-- + and sequential composition (�)
--===
one sig FImplies, FAnd, FOr, FEquiv, FNot, FSComp extends FormulaOp {
}

--===
-- Name: 'DeclFormulaNAry'
--
-- Description:
-- + Defines a declaration binary formula
-- + This supports the logical operators �, �
--===
sig DeclFormulaNAr extends DeclFormula {
dfrmls : DeclFormula,
dfop : FormulaOp

}{
all df1, df2 : dfrmls | df1 != df2
dfop != FSComp
dfop in FAnd+FOr implies #dfrmls >= 2
dfop in FNot implies #dfrmls = 1
dfop in FImplies+FEquiv implies #dfrmls = 2

}

59

--===
-- Name: 'FormulaSource'
--
-- Description:
-- + Defines the source of an arrows formula
-- + It cain either be: obj, blob or pair
--===
abstract sig FormulaSource {
}

--===
-- Name: 'FormulaSourceElement'
--
-- Description:
-- + Defines source formula of type object
-- + 'elem' indicates the 'SetElement' either object or pair
--===
sig FormulaSourceElem extends FormulaSource {
elem : SetElement
}

--===
-- Name: 'FormulaSourceSet'
--
-- Description:
-- + Defines source formula of type set
--===
abstract sig FormulaSourceSet extends FormulaSource {
}

--===
-- Name: 'FormulaSourceSetId'
--
-- Description:
-- + Defines source formula of type blob identifier
-- + 'bId' indicates identifier of the set
--===
sig FormulaSourceSetId extends FormulaSourceSet {

bId : Name
}

--===
-- Name: 'FormulaSourceSetDef'
--
-- Description:
-- + Defines source formula of type set definition
-- + 'blDef' holds set definition
--===
sig FormulaSourceSetDef extends FormulaSourceSet {

60

blDef : SetDef
}

--===
-- Name: 'FormulaSourceUOp'
--
-- Description:
-- + Defines a unary Formula operator for a formula source.
--===
abstract sig FormulaSourceUOp {
}

--===
-- Name: FSBCardinality, FSBDom, FSBRan
--
-- Description:
-- + Symbol of Formula source operator cardinality is #
-- + Symbol of Formula source operator domain is '�'
-- + Symbol of Formula source operator range is '�'
-- + Symbol of Formula source operator the is '�'
--==
one sig FSBCardinality, FSBDom, FSBRan , FSBThe
extends FormulaSourceUOp {
}

--===
-- Name: 'FormulaSourceUnary'
--
-- Description:
-- + Defines source formula with unary operator
-- + Let 'O' be a blob, this construction is expressed as # [O]
--===
sig FormulaSourceUnary extends FormulaSource {

operator : FormulaSourceUOp,
frmlSrc : FormulaSource

}

--===
-- Name: 'AD'
--
-- Description:
-- + Defines what an assertion diagram is.
--===

abstract sig AD {
aName : Name,
declarations : set Decl,
predicate : set Formula

61

}

--===
-- Name: 'Formula'
--
-- Description:
-- + Defines a Formula.
--===
abstract sig Formula {
}

--===
-- Name: 'FormulaNAry'
--
-- Description:
-- + Defines an n-ary Formula
--===
sig FormulaNAry extends Formula {

frmls : set Formula,
operator : FormulaOp

}{
all f1, f2 : frmls | f1 != f2
operator != FSComp
operator in FAnd+FOr implies #frmls >= 2
operator in FNot implies #frmls = 1
operator in FImplies+FEquiv implies #frmls = 2

}

--===
-- Name: 'QFormula' (Quantified formula)
--
-- Description:
-- + Defines a quantified Formula.
-- + Includes a set of variable declarations and one formula
--===
sig QFormula extends Formula {

decls : seq QDecl,
frml : Formula

}{
-- all elements in the sequence must be distinct
not decls.hasDups

}

--===
-- Name: 'QDecl' (Quantified Declaration)
--
-- Description:

62

-- + Defines a quantified declaration.
-- + Includes a set of variable declarations and one variable kind
--===
sig QDecl {

qkind : QuantifierKind, -- quantifier kind
vars : set VarDecl -- variable declarations

}{
-- Vars are distinct
all v1, v2 : vars | v1 != v2
-- hidden variables not allowed in quantified formulas
all v : vars | v.isHidden = False

}

--===
-- Name: 'QuantifierKind'
--
-- Description:
-- + Defines the kind of quantifier: forall or exists.
--===
abstract sig QuantifierKind {
}

--===
-- Name: 'QForAll'
--
-- Description:
-- + Defines the 'forall' (or universal) quantifier kind
-- + Represented in terms of concrete syntax by symbol classic symbol '�'
--===
one sig QForAll extends QuantifierKind {
}

--===
-- Name: 'QExists'
--
-- Description:
-- + Defines the 'exists' quantifier kind
-- + Represented in terms of concrete syntax by symbol classic symbol '�'
--===
one sig QExists extends QuantifierKind {
}

--===
-- Name: 'ArrowsFormula'
--
-- Description:
-- + Defines an arrows formula
-- + Made of predicate property edges

63

-- + With a source, which can either be: obj, blob or pair
--===
sig ArrowsFormula extends Formula {

source : FormulaSource,
pes : some PropEdgePred

}

--===
-- Name: 'SetFormula'
--
-- Description:
-- + Defines a 'Set' formula.
--===
abstract sig SetFormula extends Formula {
}

--===
-- Name: 'SetFormulaDef'
--
-- Description:
-- + Defines a 'Set' formula using a set definition (symbol �)
--===
sig SetFormulaDef extends SetFormula {

shaded : Bool, -- set may be shaded to mean empty set
bid : lone TypeDesignator, -- optional set designator
bdef : SetDef -- set definition

}

--===
-- Name: 'SetFormulaSubset'
--
-- Description:
-- + Defines a 'Set' formula defined using a subset definition.
--===
sig SetFormulaSubset extends SetFormula {

bid : TypeDesignator,
hasInside : SetExpression

}

--===
-- Name: 'SetFormulaShaded'
--
-- Description:
-- + Defines a 'Set' formula defined using shading.
--===
sig SetFormulaShaded extends SetFormula {

bid : TypeDesignator
}

64

65

Appendix C

Z3 Proofs

C.1 Common
C.1.1 Z3 Encoding
(set-option :mbqi true)
(set-option :macro-finder true)
(set-option :pull-nested-quantifiers true)
(set-option :produce-unsat-cores true)
(set-option :produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const MM_Name V_MM)
(declare-const MM_Num V_MM)
(declare-const MM_Assertion V_MM)
(declare-const MM_VCLObj V_MM)
(declare-const MM_Pair V_MM)
(declare-const MM_SetElement V_MM)
(declare-const MM_InsideDef V_MM)
(declare-const MM_SetExtension V_MM)
(declare-const MM_ConstrainedSet V_MM)
(declare-const MM_SetInsideExpression V_MM)
(declare-const MM_InsideExpSDs V_MM)
(declare-const MM_SetDef V_MM)
;; SetDefOp
(declare-const MM_SetDefOp V_MM)
(declare-const MM_SOp_Domain V_MM)
(declare-const MM_SOp_Range V_MM)
(declare-const MM_SOp_Union V_MM)
(declare-const MM_SOp_Intersection V_MM)

66

(declare-const MM_SOp_CrossProduct V_MM)
(declare-const MM_SOp_SetMinus V_MM)
(declare-const MM_SOp_RelComp V_MM)
(declare-const MM_SOp_None V_MM)
;; Type Designator
(declare-const MM_TypeDesignator V_MM)
(declare-const MM_TypeDesignatorNat V_MM)
(declare-const MM_TypeDesignatorInt V_MM)
(declare-const MM_TypeDesignatorId V_MM)
;; FreeExpression
(declare-const MM_FreeExpression V_MM)
(declare-const MM_FreeExpId V_MM)
(declare-const MM_FreeExpNum V_MM)
(declare-const MM_FreeExpUMinus V_MM)
(declare-const MM_FreeExpPar V_MM)
(declare-const MM_FreeExpDot V_MM)
(declare-const MM_FreeExpBin V_MM)
;; FreeExpBinOp
(declare-const MM_FreeExpBinOp V_MM)
(declare-const MM_FreeExpBinOp_Plus V_MM)
(declare-const MM_FreeExpBinOp_Minus V_MM)
(declare-const MM_FreeExpBinOp_Times V_MM)
(declare-const MM_FreeExpBinOp_Div V_MM)
;; SetExpression
(declare-const MM_SetExpression V_MM)
(declare-const MM_SetExpressionCard V_MM)
(declare-const MM_SetExpressionId V_MM)
(declare-const MM_SetExpressionEmpty V_MM)
(declare-const MM_SetExpressionDef V_MM)
;; Expression
(declare-const MM_Expression V_MM)
;; PropEdge
(declare-const MM_PropEdge V_MM)
(declare-const MM_PropEdgePred V_MM)
(declare-const MM_PropEdgeMod V_MM)
(declare-const MM_EdgeOperatorBin V_MM)
(declare-const MM_EdgeOperatorMod V_MM)
(declare-const MM_EdgeOperatorUn V_MM)
;; EdgeOperatorUnary
(declare-const MM_UOpCard V_MM)
(declare-const MM_UOpThe V_MM)
(declare-const MM_UOpNone V_MM)
;; EdgeOperatorBin
(declare-const MM_BOpEQ V_MM)
(declare-const MM_BOpNEQ V_MM)
(declare-const MM_BOpIN V_MM)
(declare-const MM_BOpLT V_MM)
(declare-const MM_BOpLEQ V_MM)
(declare-const MM_BOpGT V_MM)

67

(declare-const MM_BOpGEQ V_MM)
(declare-const MM_BOpSubsetEQ V_MM)
;; EdgeOperatorMod
(declare-const MM_MOpDRES V_MM)
(declare-const MM_MOpRRES V_MM)
(declare-const MM_MOpDSUB V_MM)
(declare-const MM_MOpRSUB V_MM)
;; Special 'Null' constant to check totality
(declare-const MM_Null V_MM)

(declare-const G_Num V_G)
(declare-const G_Id V_G)
;; TD
(declare-const G_TD V_G)
(declare-const G_TD_Int V_G)
(declare-const G_TD_Nat V_G)
(declare-const G_TD_Id V_G)
;; A, O, P, SE
(declare-const G_A V_G)
(declare-const G_O V_G)
(declare-const G_P V_G)
(declare-const G_SE V_G)
;; PE
(declare-const G_PE V_G)
(declare-const G_PEP V_G)
(declare-const G_PEM V_G)
;; UEOp
(declare-const G_UEOp V_G)
(declare-const G_UEOp_Card V_G)
(declare-const G_UEOp_The V_G)
(declare-const G_UEOp_None V_G)
;; BEOp
(declare-const G_BEOp V_G)
(declare-const G_BEOp_EQ V_G)
(declare-const G_BEOp_NEQ V_G)
(declare-const G_BEOp_IN V_G)
(declare-const G_BEOp_LT V_G)
(declare-const G_BEOp_LEQ V_G)
(declare-const G_BEOp_GT V_G)
(declare-const G_BEOp_GEQ V_G)
(declare-const G_BEOp_SubsetEQ V_G)
;; MOp
(declare-const G_MOp V_G)
(declare-const G_MOp_DRES V_G)
(declare-const G_MOp_RRES V_G)
(declare-const G_MOp_DSUB V_G)
(declare-const G_MOp_RSUB V_G)
;; TExp
(declare-const G_TExp V_G)

68

;; FExp
(declare-const G_FExp V_G)
(declare-const G_FExpId V_G)
(declare-const G_FExpDot V_G)
(declare-const G_FExpNum V_G)
(declare-const G_FExpUMinus V_G)
(declare-const G_FExpPar V_G)
(declare-const G_FExpBin V_G)
;; FEOp
(declare-const G_FEOp V_G)
(declare-const G_FEOp_Plus V_G)
(declare-const G_FEOp_Minus V_G)
(declare-const G_FEOp_Times V_G)
(declare-const G_FEOp_Div V_G)
;; SExp
(declare-const G_SExp V_G)
(declare-const G_SExpTD V_G)
(declare-const G_SExpSDef V_G)
(declare-const G_SExpEmpty V_G)
(declare-const G_SExpCard V_G)
;; IDef
(declare-const G_IDef V_G)
(declare-const G_IDef_SExt V_G)
(declare-const G_IDef_CntSet V_G)
;; IExp
(declare-const G_IExp V_G)
(declare-const G_IExp_SDs V_G)
(declare-const G_IExp_IDef V_G)
(declare-const G_SDef V_G)
;; SOp
(declare-const G_SOp V_G)
(declare-const G_SOp_Domain V_G)
(declare-const G_SOp_Range V_G)
(declare-const G_SOp_Union V_G)
(declare-const G_SOp_Intersection V_G)
(declare-const G_SOp_CrossProduct V_G)
(declare-const G_SOp_SetMinus V_G)
(declare-const G_SOp_RelComp V_G)
(declare-const G_SOp_None V_G)
;; Special 'Null' constant to check totality
(declare-const G_Null V_G)

; Assertion, VCLObj, Pair, SetElement
(declare-const MM_EAssertion_Id E_MM)
(declare-const MM_EVCLObj_Id E_MM)
(declare-const MM_EIVCLObj E_MM)
(declare-const MM_EPair_Id1 E_MM)
(declare-const MM_EPair_Id2 E_MM)
(declare-const MM_EIPair E_MM)

69

(declare-const MM_ESetExtension_Elems E_MM)
(declare-const MM_EConstrainedSet_Desig E_MM)
(declare-const MM_EConstrainedSet_PropEdge E_MM)
(declare-const MM_EISetExtension E_MM)
(declare-const MM_EIConstrainedSet E_MM)
(declare-const MM_EIInsideDef E_MM)
(declare-const MM_EIInsideExpSDs E_MM)
(declare-const MM_ESetDef_insideExp E_MM)
(declare-const MM_ESetDef_sdop E_MM)
(declare-const MM_EInsideExpSDs_setDefs E_MM)
;; SetDefOp
(declare-const MM_EISOp_Domain E_MM)
(declare-const MM_EISOp_Range E_MM)
(declare-const MM_EISOp_Union E_MM)
(declare-const MM_EISOp_Intersection E_MM)
(declare-const MM_EISOp_CrossProduct E_MM)
(declare-const MM_EISOp_SetMinus E_MM)
(declare-const MM_EISOp_RelComp E_MM)
(declare-const MM_EISOp_None E_MM)
;; Type Designator
(declare-const MM_ETypeDesignatorId E_MM)
(declare-const MM_EITypeDesignatorId E_MM)
(declare-const MM_EITypeDesignatorNat E_MM)
(declare-const MM_EITypeDesignatorInt E_MM)
;; FreeExpression
(declare-const MM_EFreeExpNum E_MM)
(declare-const MM_EIFreeExpNum E_MM)
(declare-const MM_EFreeExpId E_MM)
(declare-const MM_EIFreeExpId E_MM)
(declare-const MM_EFreeExpUMinus E_MM)
(declare-const MM_EIFreeExpUMinus E_MM)
(declare-const MM_EFreeExpPar E_MM)
(declare-const MM_EIFreeExpPar E_MM)
(declare-const MM_EFreeExpDotId E_MM)
(declare-const MM_EFreeExpDotPropId E_MM)
(declare-const MM_EIFreeExpDot E_MM)
(declare-const MM_EFreeExpBinExp1 E_MM)
(declare-const MM_EFreeExpBinExp2 E_MM)
(declare-const MM_EFreeExpBinOp E_MM)
(declare-const MM_EIFreeExpBinExp E_MM)
;; FreeExpBinOp
(declare-const MM_EIFreeExpBinOp_Plus E_MM)
(declare-const MM_EIFreeExpBinOp_Minus E_MM)
(declare-const MM_EIFreeExpBinOp_Times E_MM)
(declare-const MM_EIFreeExpBinOp_Div E_MM)
;; SetExpression
(declare-const MM_ESetExpressionCard E_MM)
(declare-const MM_EISetExpressionCard E_MM)
(declare-const MM_ESetExpressionId E_MM)

70

(declare-const MM_EISetExpressionId E_MM)
(declare-const MM_EISetExpressionEmpty E_MM)
(declare-const MM_ESetExpressionDef E_MM)
(declare-const MM_EISetExpressionDef E_MM)
;; Expression
(declare-const MM_EISetExpression E_MM)
(declare-const MM_EIFreeExp E_MM)
;; PropEdge
(declare-const MM_EPropEdgeTarget E_MM)
(declare-const MM_EPropEdgePredBOp E_MM)
(declare-const MM_EPropEdgePredName E_MM)
(declare-const MM_EPropEdgePredUOp E_MM)
(declare-const MM_EPropEdgeModMOp E_MM)
(declare-const MM_EIPropEdgeMod E_MM)
(declare-const MM_EIPropEdgePred E_MM)
;; EdgeOperatorUnary
(declare-const MM_EIUOp_Card E_MM)
(declare-const MM_EIUOp_The E_MM)
(declare-const MM_EIUOp_None E_MM)
;; EdgeOperatorBin
(declare-const MM_EIBOp_EQ E_MM)
(declare-const MM_EIBOp_NEQ E_MM)
(declare-const MM_EIBOp_In E_MM)
(declare-const MM_EIBOp_LT E_MM)
(declare-const MM_EIBOp_LEQ E_MM)
(declare-const MM_EIBOp_GT E_MM)
(declare-const MM_EIBOp_GEQ E_MM)
(declare-const MM_EIBOp_SubsetEQ E_MM)
;; EdgeOperatorMod
(declare-const MM_EIMOp_DRES E_MM)
(declare-const MM_EIMOp_RRES E_MM)
(declare-const MM_EIMOp_DSUB E_MM)
(declare-const MM_EIMOp_RSUB E_MM)
;; Special 'Null' constant to check totality
(declare-const MM_ENull E_MM)

;; TD
(declare-const G_E_TD_Id E_G)
(declare-const G_E_TD_Def_Id E_G)
(declare-const G_E_TD_Def_Nat E_G)
(declare-const G_E_TD_Def_Int E_G)
;; A, O, P, SE
(declare-const G_E_A_Id E_G)
(declare-const G_E_SE_Def_O E_G)
(declare-const G_E_SE_Def_P E_G)
(declare-const G_E_O_Id E_G)
(declare-const G_E_P_Id_1 E_G)
(declare-const G_E_P_Id_2 E_G)
;; PE

71

(declare-const G_E_PE_TExp E_G)
(declare-const G_E_PE_PEP E_G)
(declare-const G_E_PE_PEM E_G)
(declare-const G_E_PEP_UEOp E_G)
(declare-const G_E_PEP_Id E_G)
(declare-const G_E_PEP_BEOp E_G)
(declare-const G_E_PEM_MOp E_G)
;; UEOp
(declare-const G_E_UEOp_Def_Card E_G)
(declare-const G_E_UEOp_Def_The E_G)
(declare-const G_E_UEOp_Def_None E_G)
;; BEOp
(declare-const G_E_BEOp_Def_Eq E_G)
(declare-const G_E_BEOp_Def_Neq E_G)
(declare-const G_E_BEOp_Def_In E_G)
(declare-const G_E_BEOp_Def_LT E_G)
(declare-const G_E_BEOp_Def_LEQ E_G)
(declare-const G_E_BEOp_Def_GT E_G)
(declare-const G_E_BEOp_Def_GEQ E_G)
(declare-const G_E_BEOp_Def_SUBSETEQ E_G)
;; MOp
(declare-const G_E_MOp_Def_DRES E_G)
(declare-const G_E_MOp_Def_RRES E_G)
(declare-const G_E_MOp_Def_DSUB E_G)
(declare-const G_E_MOp_Def_RSUB E_G)
;; TExp
(declare-const G_E_TExp_Def_SExp E_G)
(declare-const G_E_TExp_Def_FExp E_G)
;; FExp
(declare-const G_E_FExpId E_G)
(declare-const G_E_FExpNum E_G)
(declare-const G_E_FExpUMinus E_G)
(declare-const G_E_FExpPar E_G)
(declare-const G_E_FExpDot_Id E_G)
(declare-const G_E_FExpDot_PropId E_G)
(declare-const G_E_FExpBinExp1 E_G)
(declare-const G_E_FExpBinExp2 E_G)
(declare-const G_E_FExpBinOp E_G)
(declare-const G_E_FExp_Def_Id E_G)
(declare-const G_E_FExp_Def_Num E_G)
(declare-const G_E_FExp_Def_UMinus E_G)
(declare-const G_E_FExp_Def_Par E_G)
(declare-const G_E_FExp_Def_Dot E_G)
(declare-const G_E_FExp_Def_Bin E_G)
;; FEOp
(declare-const G_E_FEOp_Def_Plus E_G)
(declare-const G_E_FEOp_Def_Minus E_G)
(declare-const G_E_FEOp_Def_Times E_G)
(declare-const G_E_FEOp_Def_Div E_G)

72

;; SExp
(declare-const G_E_SExpTD E_G)
(declare-const G_E_SExpSDef E_G)
(declare-const G_E_SExpCard E_G)
(declare-const G_E_SExp_Def_TD E_G)
(declare-const G_E_SExp_Def_SetDef E_G)
(declare-const G_E_SExp_Def_Empty E_G)
(declare-const G_E_SExp_Def_Card E_G)
;; IDef
(declare-const G_E_IDef_SExt_SEs E_G)
(declare-const G_E_IDef_CntSet_TD E_G)
(declare-const G_E_IDef_CntSet_PEs E_G)
(declare-const G_E_IDef_Def_SExt E_G)
(declare-const G_E_IDef_Def_CntSet E_G)
;; IExp
(declare-const G_E_IExp_Def_IDef E_G)
(declare-const G_E_IExp_Def_SDs E_G)
(declare-const G_E_IExpSDs_SDef E_G)
;; SDef
(declare-const G_E_SDef_IExp E_G)
(declare-const G_E_SDef_SOp E_G)
;; SOp
(declare-const G_E_SOp_Def_Domain E_G)
(declare-const G_E_SOp_Def_Range E_G)
(declare-const G_E_SOp_Def_Union E_G)
(declare-const G_E_SOp_Def_Intersection E_G)
(declare-const G_E_SOp_Def_CrossProduct E_G)
(declare-const G_E_SOp_Def_SetMinus E_G)
(declare-const G_E_SOp_Def_RelComp E_G)
(declare-const G_E_SOp_Def_None E_G)
;; Special 'Null' constant to check totality
(declare-const G_E_Null E_G)

(assert (distinct
MM_Null
MM_Num
MM_Name
MM_TypeDesignator
MM_TypeDesignatorNat
MM_TypeDesignatorInt
MM_TypeDesignatorId
MM_FreeExpression
MM_FreeExpId
MM_FreeExpNum
MM_FreeExpUMinus
MM_FreeExpPar
MM_FreeExpDot
MM_FreeExpBin
MM_FreeExpBinOp

73

MM_FreeExpBinOp_Plus
MM_FreeExpBinOp_Minus
MM_FreeExpBinOp_Times
MM_FreeExpBinOp_Div
MM_SetExpression
MM_SetExpressionId
MM_SetExpressionDef
MM_SetExpressionEmpty
MM_PropEdge
MM_PropEdgePred
MM_PropEdgeMod
MM_EdgeOperatorUn
MM_EdgeOperatorBin
MM_EdgeOperatorMod
MM_UOpCard
MM_UOpThe
MM_UOpNone
MM_BOpEQ
MM_BOpNEQ
MM_BOpIN
MM_BOpLT
MM_BOpLEQ
MM_BOpGT
MM_BOpGEQ
MM_BOpSubsetEQ
MM_MOpDRES
MM_MOpRRES
MM_MOpDSUB
MM_MOpRSUB
MM_Assertion
MM_VCLObj
MM_Pair
MM_SetElement
MM_InsideDef
MM_SetExtension
MM_ConstrainedSet
MM_SetInsideExpression
MM_InsideExpSDs
MM_SetDef
MM_SetDefOp
MM_SOp_Domain
MM_SOp_Range
MM_SOp_Union
MM_SOp_Intersection
MM_SOp_CrossProduct
MM_SOp_SetMinus
MM_SOp_RelComp
MM_SOp_None))

74

(assert (distinct
G_Null
G_Id
G_PE
G_PEP
G_PEM
G_BEOp
G_UEOp
G_MOp
G_UEOp_Card
G_UEOp_The
G_UEOp_None
G_BEOp_EQ
G_BEOp_NEQ
G_BEOp_IN
G_BEOp_LT
G_BEOp_LEQ
G_BEOp_GT
G_BEOp_GEQ
G_BEOp_SubsetEQ
G_MOp_DRES
G_MOp_RRES
G_MOp_DSUB
G_MOp_RSUB
G_TD
G_TD_Nat
G_TD_Int
G_TD_Id
G_FExp
G_FExpId
G_FExpNum
G_FExpUMinus
G_FExpPar
G_FExpDot
G_FExpBin
G_FEOp
G_FEOp_Plus
G_FEOp_Minus
G_FEOp_Times
G_FEOp_Div
G_SExp
G_SExpTD
G_SExpSDef
G_SExpEmpty
G_A
G_O
G_P
G_SE
G_IDef

75

G_IDef_SExt
G_IDef_CntSet
G_IExp
G_IExp_SDs
G_IExp_IDef
G_SDef
G_SOp
G_SOp_Domain
G_SOp_Range
G_SOp_Union
G_SOp_Intersection
G_SOp_CrossProduct
G_SOp_SetMinus
G_SOp_RelComp
G_SOp_None))

(assert (distinct
MM_ENull
MM_ETypeDesignatorId
MM_EITypeDesignatorId
MM_EITypeDesignatorNat
MM_EITypeDesignatorInt
MM_EISetExpression
MM_EIFreeExp
MM_EFreeExpNum
MM_EIFreeExpNum
MM_EFreeExpId
MM_EIFreeExpId
MM_EFreeExpUMinus
MM_EIFreeExpUMinus
MM_EFreeExpPar
MM_EIFreeExpPar
MM_EFreeExpDotId
MM_EFreeExpDotPropId
MM_EIFreeExpDot
MM_EFreeExpBinExp1
MM_EFreeExpBinExp2
MM_EFreeExpBinOp
MM_EIFreeExpBinExp
MM_EIFreeExpBinOp_Plus
MM_EIFreeExpBinOp_Minus
MM_EIFreeExpBinOp_Times
MM_EIFreeExpBinOp_Div
MM_ESetExpressionId
MM_EISetExpressionId
MM_ESetExpressionCard
MM_EISetExpressionCard
MM_ESetExpressionDef
MM_EISetExpressionDef

76

MM_EISetExpressionEmpty
MM_EPropEdgeTarget
MM_EPropEdgePredBOp
MM_EPropEdgePredName
MM_EPropEdgeModMOp
MM_EIPropEdgeMod
MM_EIPropEdgePred
MM_EPropEdgePredUOp
MM_EIUOp_Card
MM_EIUOp_The
MM_EIUOp_None
MM_EIBOp_EQ
MM_EIBOp_NEQ
MM_EIBOp_In
MM_EIBOp_LT
MM_EIBOp_LEQ
MM_EIBOp_GT
MM_EIBOp_GEQ
MM_EIMOp_DRES
MM_EIMOp_RRES
MM_EIMOp_DSUB
MM_EIMOp_RSUB
MM_EIBOp_SubsetEQ
MM_EAssertion_Id
MM_EVCLObj_Id
MM_EPair_Id1
MM_EPair_Id2
MM_EIVCLObj
MM_EIPair
MM_ESetExtension_Elems
MM_EConstrainedSet_Desig
MM_EConstrainedSet_PropEdge
MM_EISetExtension
MM_EIConstrainedSet
MM_EIInsideDef
MM_EIInsideExpSDs
MM_ESetDef_insideExp
MM_ESetDef_sdop
MM_EInsideExpSDs_setDefs
MM_EISOp_Domain
MM_EISOp_Range
MM_EISOp_Union
MM_EISOp_Intersection
MM_EISOp_CrossProduct
MM_EISOp_SetMinus
MM_EISOp_RelComp
MM_EISOp_None))

(assert (distinct

77

G_E_Null
G_E_TD_Id
G_E_TD_Def_Id
G_E_TD_Def_Nat
G_E_TD_Def_Int
G_E_TExp_Def_SExp
G_E_TExp_Def_FExp
G_E_FExpId
G_E_FExp_Def_Id
G_E_FExpNum
G_E_FExp_Def_Num
G_E_FExpUMinus
G_E_FExp_Def_UMinus
G_E_FExpPar
G_E_FExp_Def_Par
G_E_FExpBinExp1
G_E_FExpBinExp2
G_E_FExpBinOp
G_E_FExp_Def_Bin
G_E_FExpDot_Id
G_E_FExpDot_PropId
G_E_FExp_Def_Dot
G_E_FEOp_Def_Plus
G_E_FEOp_Def_Minus
G_E_FEOp_Def_Times
G_E_FEOp_Def_Div
G_E_SExpTD
G_E_SExp_Def_TD
G_E_SExpSDef
G_E_SExp_Def_SetDef
G_E_SExpCard
G_E_SExp_Def_Card
G_E_SExp_Def_Empty
G_E_PE_TExp
G_E_PE_PEP
G_E_PE_PEM
G_E_PEP_UEOp
G_E_PEP_Id
G_E_PEP_BEOp
G_E_PEM_MOp
G_E_UEOp_Def_Card
G_E_UEOp_Def_The
G_E_UEOp_Def_None
G_E_BEOp_Def_Eq
G_E_BEOp_Def_Neq
G_E_BEOp_Def_In
G_E_BEOp_Def_LT
G_E_BEOp_Def_LEQ
G_E_BEOp_Def_GT

78

G_E_BEOp_Def_GEQ
G_E_BEOp_Def_SUBSETEQ
G_E_MOp_Def_DRES
G_E_MOp_Def_RRES
G_E_MOp_Def_DSUB
G_E_MOp_Def_RSUB
G_E_A_Id
G_E_SE_Def_O
G_E_SE_Def_P
G_E_O_Id
G_E_P_Id_1
G_E_P_Id_2
G_E_IDef_SExt_SEs
G_E_IDef_CntSet_TD
G_E_IDef_CntSet_PEs
G_E_IDef_Def_SExt
G_E_IDef_Def_CntSet
G_E_IExp_Def_IDef
G_E_IExp_Def_SDs
G_E_SDef_IExp
G_E_SDef_SOp
G_E_IExpSDs_SDef
G_E_SOp_Def_Domain
G_E_SOp_Def_Range
G_E_SOp_Def_Union
G_E_SOp_Def_Intersection
G_E_SOp_Def_CrossProduct
G_E_SOp_Def_SetMinus
G_E_SOp_Def_RelComp
G_E_SOp_Def_None))

(define-fun Map_V ((v V_MM)) V_G
(ite (= v MM_Num) G_Num
(ite (= v MM_Name) G_Id
(ite (= v MM_TypeDesignator) G_TD
(ite (= v MM_TypeDesignatorNat) G_TD_Nat
(ite (= v MM_TypeDesignatorInt) G_TD_Int
(ite (= v MM_TypeDesignatorId) G_TD_Id
(ite (= v MM_FreeExpression) G_FExp
(ite (= v MM_FreeExpId) G_FExpId
(ite (= v MM_FreeExpNum) G_FExpNum
(ite (= v MM_FreeExpUMinus) G_FExpUMinus
(ite (= v MM_FreeExpPar) G_FExpPar
(ite (= v MM_FreeExpDot) G_FExpDot
(ite (= v MM_FreeExpBin) G_FExpBin
(ite (= v MM_FreeExpBinOp) G_FEOp
(ite (= v MM_FreeExpBinOp_Plus) G_FEOp_Plus
(ite (= v MM_FreeExpBinOp_Minus) G_FEOp_Minus
(ite (= v MM_FreeExpBinOp_Times) G_FEOp_Times

79

(ite (= v MM_FreeExpBinOp_Div) G_FEOp_Div
(ite (= v MM_TypeDesignator) G_TD
(ite (= v MM_SetExpression) G_SExp
(ite (= v MM_SetExpressionId) G_SExpTD
(ite (= v MM_SetExpressionDef) G_SExpSDef
(ite (= v MM_SetExpressionEmpty) G_SExpEmpty
(ite (= v MM_PropEdge) G_PE
(ite (= v MM_PropEdgePred) G_PEP
(ite (= v MM_PropEdgeMod) G_PEM
(ite (= v MM_EdgeOperatorUn) G_UEOp
(ite (= v MM_EdgeOperatorBin) G_BEOp
(ite (= v MM_EdgeOperatorMod) G_MOp
(ite (= v MM_UOpCard) G_UEOp_Card
(ite (= v MM_UOpThe) G_UEOp_The
(ite (= v MM_UOpNone) G_UEOp_None
(ite (= v MM_BOpEQ) G_BEOp_EQ
(ite (= v MM_BOpNEQ) G_BEOp_NEQ
(ite (= v MM_BOpIN) G_BEOp_IN
(ite (= v MM_BOpLT) G_BEOp_LT
(ite (= v MM_BOpLEQ) G_BEOp_LEQ
(ite (= v MM_BOpGT) G_BEOp_GT
(ite (= v MM_BOpGEQ) G_BEOp_GEQ
(ite (= v MM_BOpSubsetEQ) G_BEOp_SubsetEQ
(ite (= v MM_MOpDRES) G_MOp_DRES
(ite (= v MM_MOpRRES) G_MOp_RRES
(ite (= v MM_MOpDSUB) G_MOp_DSUB
(ite (= v MM_MOpRSUB) G_MOp_RSUB
(ite (= v MM_PropEdge) G_PE
(ite (= v MM_Assertion) G_A
(ite (= v MM_VCLObj) G_O
(ite (= v MM_Pair) G_P
(ite (= v MM_SetElement) G_SE
(ite (= v MM_InsideDef) G_IDef
(ite (= v MM_SetExtension) G_IDef_SExt
(ite (= v MM_ConstrainedSet) G_IDef_CntSet
(ite (= v MM_SetInsideExpression) G_IExp
(ite (= v MM_InsideExpSDs) G_IExp_SDs
(ite (= v MM_SetDef) G_SDef
(ite (= v MM_SetDefOp) G_SOp
(ite (= v MM_SOp_Domain) G_SOp_Domain
(ite (= v MM_SOp_Range) G_SOp_Range
(ite (= v MM_SOp_Union) G_SOp_Union
(ite (= v MM_SOp_Intersection) G_SOp_Intersection
(ite (= v MM_SOp_CrossProduct) G_SOp_CrossProduct
(ite (= v MM_SOp_SetMinus) G_SOp_SetMinus
(ite (= v MM_SOp_RelComp) G_SOp_RelComp
(ite (= v MM_SOp_None) G_SOp_None
G_Null)))

80

(define-fun Map_E ((e E_MM)) E_G
(ite (= e MM_ETypeDesignatorId) G_E_TD_Id
(ite (= e MM_EITypeDesignatorId) G_E_TD_Def_Id
(ite (= e MM_EITypeDesignatorNat) G_E_TD_Def_Nat
(ite (= e MM_EITypeDesignatorInt) G_E_TD_Def_Int
(ite (= e MM_EFreeExpNum) G_E_FExpNum
(ite (= e MM_EIFreeExpNum) G_E_FExp_Def_Num
(ite (= e MM_EFreeExpId) G_E_FExpId
(ite (= e MM_EIFreeExpId) G_E_FExp_Def_Id
(ite (= e MM_EFreeExpUMinus) G_E_FExpUMinus
(ite (= e MM_EIFreeExpUMinus) G_E_FExp_Def_UMinus
(ite (= e MM_EFreeExpPar) G_E_FExpPar
(ite (= e MM_EIFreeExpPar) G_E_FExp_Def_Par
(ite (= e MM_EFreeExpDotId) G_E_FExpDot_Id
(ite (= e MM_EFreeExpDotPropId) G_E_FExpDot_PropId
(ite (= e MM_EIFreeExpDot) G_E_FExp_Def_Dot
(ite (= e MM_EFreeExpBinExp1) G_E_FExpBinExp1
(ite (= e MM_EFreeExpBinExp2) G_E_FExpBinExp2
(ite (= e MM_EFreeExpBinOp) G_E_FExpBinOp
(ite (= e MM_EIFreeExpBinExp) G_E_FExp_Def_Bin
(ite (= e MM_EIFreeExpBinOp_Plus) G_E_FEOp_Def_Plus
(ite (= e MM_EIFreeExpBinOp_Minus) G_E_FEOp_Def_Minus
(ite (= e MM_EIFreeExpBinOp_Times) G_E_FEOp_Def_Times
(ite (= e MM_EIFreeExpBinOp_Div) G_E_FEOp_Def_Div
(ite (= e MM_ESetExpressionCard) G_E_SExpCard
(ite (= e MM_EISetExpressionCard) G_E_SExp_Def_Card
(ite (= e MM_ESetExpressionId) G_E_SExpTD
(ite (= e MM_EISetExpressionId) G_E_SExp_Def_TD
(ite (= e MM_EISetExpressionEmpty) G_E_SExp_Def_Empty
(ite (= e MM_ESetExpressionDef) G_E_SExpSDef
(ite (= e MM_EISetExpressionDef) G_E_SExp_Def_SetDef
(ite (= e MM_EISetExpression) G_E_TExp_Def_SExp
(ite (= e MM_EIFreeExp) G_E_TExp_Def_FExp
(ite (= e MM_EAssertion_Id) G_E_A_Id
(ite (= e MM_EPropEdgeTarget) G_E_PE_TExp
(ite (= e MM_EPropEdgePredBOp) G_E_PEP_BEOp
(ite (= e MM_EPropEdgePredName) G_E_PEP_Id
(ite (= e MM_EPropEdgeModMOp) G_E_PEM_MOp
(ite (= e MM_EPropEdgePredUOp) G_E_PEP_UEOp
(ite (= e MM_EIPropEdgePred) G_E_PE_PEP
(ite (= e MM_EIPropEdgeMod) G_E_PE_PEM
(ite (= e MM_EIUOp_Card) G_E_UEOp_Def_Card
(ite (= e MM_EIUOp_The) G_E_UEOp_Def_The
(ite (= e MM_EIUOp_None) G_E_UEOp_Def_None
(ite (= e MM_EIBOp_EQ) G_E_BEOp_Def_Eq
(ite (= e MM_EIBOp_NEQ) G_E_BEOp_Def_Neq
(ite (= e MM_EIBOp_In) G_E_BEOp_Def_In
(ite (= e MM_EIBOp_LT) G_E_BEOp_Def_LT
(ite (= e MM_EIBOp_LEQ) G_E_BEOp_Def_LEQ

81

(ite (= e MM_EIBOp_GT) G_E_BEOp_Def_GT
(ite (= e MM_EIBOp_GEQ) G_E_BEOp_Def_GEQ
(ite (= e MM_EIBOp_SubsetEQ) G_E_BEOp_Def_SUBSETEQ
(ite (= e MM_EIMOp_DRES) G_E_MOp_Def_DRES
(ite (= e MM_EIMOp_RRES) G_E_MOp_Def_RRES
(ite (= e MM_EIMOp_DSUB) G_E_MOp_Def_DSUB
(ite (= e MM_EIMOp_RSUB) G_E_MOp_Def_RSUB
(ite (= e MM_EIVCLObj) G_E_SE_Def_O
(ite (= e MM_EIPair) G_E_SE_Def_P
(ite (= e MM_EVCLObj_Id) G_E_O_Id
(ite (= e MM_EPair_Id1) G_E_P_Id_1
(ite (= e MM_EPair_Id2) G_E_P_Id_2
(ite (= e MM_ESetExtension_Elems) G_E_IDef_SExt_SEs
(ite (= e MM_EConstrainedSet_Desig) G_E_IDef_CntSet_TD
(ite (= e MM_EConstrainedSet_PropEdge) G_E_IDef_CntSet_PEs
(ite (= e MM_EISetExtension) G_E_IDef_Def_SExt
(ite (= e MM_EIConstrainedSet) G_E_IDef_Def_CntSet
(ite (= e MM_EIInsideDef) G_E_IExp_Def_IDef
(ite (= e MM_EIInsideExpSDs) G_E_IExp_Def_SDs
(ite (= e MM_ESetDef_insideExp) G_E_SDef_IExp
(ite (= e MM_ESetDef_sdop) G_E_SDef_SOp
(ite (= e MM_EInsideExpSDs_setDefs) G_E_IExpSDs_SDef
(ite (= e MM_EISOp_Domain) G_E_SOp_Def_Domain
(ite (= e MM_EISOp_Range) G_E_SOp_Def_Range
(ite (= e MM_EISOp_Union) G_E_SOp_Def_Union
(ite (= e MM_EISOp_Intersection) G_E_SOp_Def_Intersection
(ite (= e MM_EISOp_CrossProduct) G_E_SOp_Def_CrossProduct
(ite (= e MM_EISOp_SetMinus) G_E_SOp_Def_SetMinus
(ite (= e MM_EISOp_RelComp) G_E_SOp_Def_RelComp
(ite (= e MM_EISOp_None) G_E_SOp_Def_None
G_E_Null)))

(push)
(echo "Testing function 'Map_V' (1) --> sat")
(assert (= (Map_V MM_PropEdge) G_PE))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_VCLObj) G_O))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_SetElement) G_P))
(check-sat)
(pop)

82

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmm1 V_MM) (vmm2 V_MM))

(=> (= (Map_V vmm1) (Map_V vmm2)) (= vmm1 vmm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' --> sat")
(assert (forall ((vg V_G))

(exists ((vmm V_MM))
(= (Map_V vmm) vg))))

(check-sat)
(pop)

;(push)
;(echo "Checking Surjectiveness of 'Map_V' (2)--> sat")
;(declare-fun svmm (V_G) V_MM)
;(assert (forall ((vg V_G))
; (= (Map_V (svmm vg)) vg)))
;(check-sat)
;(pop)

(push)
(echo "Testing function 'Map_E' (1) --> sat")
(assert (= (Map_E MM_EAssertion_Id) G_E_A_Id))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_E' (2) --> sat")
(assert (= (Map_E MM_ESetExtension_Elems) G_E_IDef_SExt_SEs))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_E' (3) --> unsat")
(assert (= (Map_E MM_EAssertion_Id) G_E_SOp_Def_None))
(check-sat)
(pop)

83

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emm1 E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emm1 emm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' --> sat")
(assert (forall ((eg E_G))

(exists ((emm E_MM))
(= (Map_E emm) eg))))

(check-sat)
(pop)

;(push)
;(echo "Checking surjectiveness of 'Map_E' (2)--> sat")
;(declare-fun semm (E_G) E_MM)
;(assert (forall ((eg E_G))
; (= (Map_E (semm eg)) eg)))
;(check-sat)
;(pop)

(define-fun Target_MM ((e E_MM)) V_MM
(ite (= e MM_ETypeDesignatorId) MM_Name
(ite (= e MM_EITypeDesignatorId) MM_TypeDesignator
(ite (= e MM_EITypeDesignatorNat) MM_TypeDesignator
(ite (= e MM_EITypeDesignatorInt) MM_TypeDesignator
(ite (= e MM_EISetExpression) MM_Expression
(ite (= e MM_EIFreeExp) MM_Expression
(ite (= e MM_EFreeExpNum) MM_Num
(ite (= e MM_EIFreeExpNum) MM_FreeExpression
(ite (= e MM_EFreeExpId) MM_Name
(ite (= e MM_EIFreeExpId) MM_FreeExpression
(ite (= e MM_EFreeExpUMinus) MM_FreeExpression
(ite (= e MM_EIFreeExpUMinus) MM_FreeExpression
(ite (= e MM_EFreeExpPar) MM_FreeExpression
(ite (= e MM_EIFreeExpPar) MM_FreeExpression
(ite (= e MM_EFreeExpDotId) MM_Name
(ite (= e MM_EFreeExpDotPropId) MM_Name
(ite (= e MM_EIFreeExpDot) MM_FreeExpression

84

(ite (= e MM_EFreeExpBinExp1) MM_FreeExpression
(ite (= e MM_EFreeExpBinExp2) MM_FreeExpression
(ite (= e MM_EFreeExpBinOp) MM_FreeExpBinOp
(ite (= e MM_EIFreeExpBinExp) MM_FreeExpression
(ite (= e MM_EIFreeExpBinOp_Plus) MM_FreeExpBinOp
(ite (= e MM_EIFreeExpBinOp_Minus) MM_FreeExpBinOp
(ite (= e MM_EIFreeExpBinOp_Times) MM_FreeExpBinOp
(ite (= e MM_EIFreeExpBinOp_Div) MM_FreeExpBinOp
(ite (= e MM_ESetExpressionId) MM_TypeDesignator
(ite (= e MM_ESetExpressionDef) MM_SetDef
(ite (= e MM_ESetExpressionCard) MM_SetExpression
(ite (= e MM_EISetExpressionId) MM_SetExpression
(ite (= e MM_EISetExpressionDef) MM_SetExpression
(ite (= e MM_EISetExpressionCard) MM_SetExpression
(ite (= e MM_EISetExpressionEmpty) MM_SetExpression
(ite (= e MM_EPropEdgeTarget) MM_Expression
(ite (= e MM_EPropEdgePredBOp) MM_EdgeOperatorBin
(ite (= e MM_EPropEdgePredName) MM_Name
(ite (= e MM_EPropEdgeModMOp) MM_EdgeOperatorMod
(ite (= e MM_EIPropEdgeMod) MM_PropEdge
(ite (= e MM_EIPropEdgePred) MM_PropEdge
(ite (= e MM_EPropEdgePredUOp) MM_EdgeOperatorUn
(ite (= e MM_EIUOp_Card) MM_EdgeOperatorUn
(ite (= e MM_EIUOp_The) MM_EdgeOperatorUn
(ite (= e MM_EIUOp_None) MM_EdgeOperatorUn
(ite (= e MM_EIBOp_EQ) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_NEQ) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_In) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_LT) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_LEQ) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_GT) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_GEQ) MM_EdgeOperatorBin
(ite (= e MM_EIBOp_SubsetEQ) MM_EdgeOperatorBin
(ite (= e MM_EIMOp_DRES) MM_EdgeOperatorMod
(ite (= e MM_EIMOp_RRES) MM_EdgeOperatorMod
(ite (= e MM_EIMOp_DSUB) MM_EdgeOperatorMod
(ite (= e MM_EIMOp_RSUB) MM_EdgeOperatorMod
(ite (= e MM_EAssertion_Id) MM_Name
(ite (= e MM_EIVCLObj) MM_SetElement
(ite (= e MM_EIPair) MM_SetElement
(ite (= e MM_EVCLObj_Id) MM_Name
(ite (= e MM_EPair_Id1) MM_Name
(ite (= e MM_EPair_Id2) MM_Name
(ite (= e MM_ESetExtension_Elems) MM_SetElement
(ite (= e MM_EConstrainedSet_Desig) MM_TypeDesignator
(ite (= e MM_EConstrainedSet_PropEdge) MM_PropEdge
(ite (= e MM_EISetExtension) MM_InsideDef
(ite (= e MM_EIConstrainedSet) MM_InsideDef
(ite (= e MM_EIInsideDef) MM_SetInsideExpression

85

(ite (= e MM_EIInsideExpSDs) MM_SetInsideExpression
(ite (= e MM_ESetDef_insideExp) MM_SetInsideExpression
(ite (= e MM_ESetDef_sdop) MM_SetDefOp
(ite (= e MM_EInsideExpSDs_setDefs) MM_SetDef
(ite (= e MM_EISOp_Domain) MM_SetDefOp
(ite (= e MM_EISOp_Range) MM_SetDefOp
(ite (= e MM_EISOp_Union) MM_SetDefOp
(ite (= e MM_EISOp_Intersection) MM_SetDefOp
(ite (= e MM_EISOp_CrossProduct) MM_SetDefOp
(ite (= e MM_EISOp_SetMinus) MM_SetDefOp
(ite (= e MM_EISOp_RelComp) MM_SetDefOp
(ite (= e MM_EISOp_None) MM_SetDefOp
MM_Null)))

(define-fun Source_MM ((e E_MM)) V_MM
(ite (= e MM_ETypeDesignatorId) MM_TypeDesignatorId
(ite (= e MM_EITypeDesignatorId) MM_TypeDesignatorId
(ite (= e MM_EITypeDesignatorNat) MM_TypeDesignatorNat
(ite (= e MM_EITypeDesignatorInt) MM_TypeDesignatorInt
(ite (= e MM_EISetExpression) MM_SetExpression
(ite (= e MM_EIFreeExp) MM_FreeExpression
(ite (= e MM_EFreeExpNum) MM_FreeExpNum
(ite (= e MM_EIFreeExpNum) MM_FreeExpNum
(ite (= e MM_EFreeExpId) MM_FreeExpId
(ite (= e MM_EIFreeExpId) MM_FreeExpId
(ite (= e MM_EFreeExpUMinus) MM_FreeExpUMinus
(ite (= e MM_EIFreeExpUMinus) MM_FreeExpUMinus
(ite (= e MM_EFreeExpPar) MM_FreeExpPar
(ite (= e MM_EIFreeExpPar) MM_FreeExpPar
(ite (= e MM_EFreeExpDotId) MM_FreeExpDot
(ite (= e MM_EFreeExpDotPropId) MM_FreeExpDot
(ite (= e MM_EIFreeExpDot) MM_FreeExpDot
(ite (= e MM_EFreeExpBinExp1) MM_FreeExpBin
(ite (= e MM_EFreeExpBinExp2) MM_FreeExpBin
(ite (= e MM_EFreeExpBinOp) MM_FreeExpBin
(ite (= e MM_EIFreeExpBinExp) MM_FreeExpBin
(ite (= e MM_EIFreeExpBinOp_Plus) MM_FreeExpBinOp_Plus
(ite (= e MM_EIFreeExpBinOp_Minus) MM_FreeExpBinOp_Minus
(ite (= e MM_EIFreeExpBinOp_Times) MM_FreeExpBinOp_Times
(ite (= e MM_EIFreeExpBinOp_Div) MM_FreeExpBinOp_Div
(ite (= e MM_ESetExpressionId) MM_SetExpressionId
(ite (= e MM_ESetExpressionDef) MM_SetExpressionDef
(ite (= e MM_ESetExpressionCard) MM_SetExpressionCard
(ite (= e MM_EISetExpressionId) MM_SetExpressionCard
(ite (= e MM_EISetExpressionDef) MM_SetExpressionDef
(ite (= e MM_EISetExpressionCard) MM_SetExpressionCard
(ite (= e MM_EISetExpressionEmpty) MM_SetExpressionEmpty
(ite (= e MM_EPropEdgeTarget) MM_PropEdge
(ite (= e MM_EPropEdgePredBOp) MM_PropEdgePred

86

(ite (= e MM_EPropEdgePredName) MM_PropEdgePred
(ite (= e MM_EPropEdgeModMOp) MM_PropEdgeMod
(ite (= e MM_EIPropEdgeMod) MM_PropEdgeMod
(ite (= e MM_EIPropEdgePred) MM_PropEdgePred
(ite (= e MM_EPropEdgePredUOp) MM_PropEdgePred
(ite (= e MM_EIUOp_Card) MM_UOpCard
(ite (= e MM_EIUOp_The) MM_UOpThe
(ite (= e MM_EIUOp_None) MM_UOpNone
(ite (= e MM_EIBOp_EQ) MM_BOpEQ
(ite (= e MM_EIBOp_NEQ) MM_BOpNEQ
(ite (= e MM_EIBOp_In) MM_BOpIN
(ite (= e MM_EIBOp_LT) MM_BOpLT
(ite (= e MM_EIBOp_LEQ) MM_BOpLEQ
(ite (= e MM_EIBOp_GT) MM_BOpGT
(ite (= e MM_EIBOp_GEQ) MM_BOpGEQ
(ite (= e MM_EIBOp_SubsetEQ) MM_BOpSubsetEQ
(ite (= e MM_EIMOp_DRES) MM_MOpDRES
(ite (= e MM_EIMOp_RRES) MM_MOpRRES
(ite (= e MM_EIMOp_DSUB) MM_MOpDSUB
(ite (= e MM_EIMOp_RSUB) MM_MOpRSUB
(ite (= e MM_EAssertion_Id) MM_Assertion
(ite (= e MM_EIVCLObj) MM_VCLObj
(ite (= e MM_EIPair) MM_Pair
(ite (= e MM_EVCLObj_Id) MM_VCLObj
(ite (= e MM_EPair_Id1) MM_Pair
(ite (= e MM_EPair_Id2) MM_Pair
(ite (= e MM_ESetExtension_Elems) MM_SetExtension
(ite (= e MM_EConstrainedSet_Desig) MM_ConstrainedSet
(ite (= e MM_EConstrainedSet_PropEdge) MM_ConstrainedSet
(ite (= e MM_EISetExtension) MM_SetExtension
(ite (= e MM_EIConstrainedSet) MM_ConstrainedSet
(ite (= e MM_EIInsideDef) MM_InsideDef
(ite (= e MM_EIInsideExpSDs) MM_InsideExpSDs
(ite (= e MM_ESetDef_insideExp) MM_SetDef
(ite (= e MM_ESetDef_sdop) MM_SetDef
(ite (= e MM_EInsideExpSDs_setDefs) MM_InsideExpSDs
(ite (= e MM_EISOp_Domain) MM_SOp_Domain
(ite (= e MM_EISOp_Range) MM_SOp_Range
(ite (= e MM_EISOp_Union) MM_SOp_Union
(ite (= e MM_EISOp_Intersection) MM_SOp_Intersection
(ite (= e MM_EISOp_CrossProduct) MM_SOp_CrossProduct
(ite (= e MM_EISOp_SetMinus) MM_SOp_SetMinus
(ite (= e MM_EISOp_RelComp) MM_SOp_RelComp
(ite (= e MM_EISOp_None) MM_SOp_None
MM_Null)))

(define-fun Target_G ((e E_G)) V_G
(ite (= e G_E_TD_Id) G_Id
(ite (= e G_E_TD_Def_Id) G_TD

87

(ite (= e G_E_TD_Def_Nat) G_TD
(ite (= e G_E_TD_Def_Int) G_TD
(ite (= e G_E_TExp_Def_SExp) G_TExp
(ite (= e G_E_TExp_Def_FExp) G_TExp
(ite (= e G_E_FExpNum) G_Num
(ite (= e G_E_FExpId) G_Id
(ite (= e G_E_FExpUMinus) G_FExp
(ite (= e G_E_FExpPar) G_FExp
(ite (= e G_E_FExpBinExp1) G_FExp
(ite (= e G_E_FExpBinExp2) G_FExp
(ite (= e G_E_FExpBinOp) G_FEOp
(ite (= e G_E_FExp_Def_Id) G_FExp
(ite (= e G_E_FExp_Def_Num) G_FExp
(ite (= e G_E_FExp_Def_UMinus) G_FExp
(ite (= e G_E_FExp_Def_Par) G_FExp
(ite (= e G_E_FExp_Def_Bin) G_FExp
(ite (= e G_E_FExpDot_Id) G_Id
(ite (= e G_E_FExpDot_PropId) G_Id
(ite (= e G_E_FExp_Def_Dot) G_FExp
(ite (= e G_E_FEOp_Def_Plus) G_FEOp
(ite (= e G_E_FEOp_Def_Minus) G_FEOp
(ite (= e G_E_FEOp_Def_Times) G_FEOp
(ite (= e G_E_FEOp_Def_Div) G_FEOp
(ite (= e G_E_SExpTD) G_TD
(ite (= e G_E_SExpSDef) G_SDef
(ite (= e G_E_SExpCard) G_SExp
(ite (= e G_E_SExp_Def_TD) G_SExp
(ite (= e G_E_SExp_Def_SetDef) G_SExp
(ite (= e G_E_SExp_Def_Card) G_SExp
(ite (= e G_E_SExp_Def_Empty) G_SExp
(ite (= e G_E_PE_TExp) G_TExp
(ite (= e G_E_PE_PEP) G_PE
(ite (= e G_E_PE_PEM) G_PE
(ite (= e G_E_PEP_UEOp) G_UEOp
(ite (= e G_E_PEP_Id) G_Id
(ite (= e G_E_PEP_BEOp) G_BEOp
(ite (= e G_E_PEM_MOp) G_MOp
(ite (= e G_E_UEOp_Def_Card) G_UEOp
(ite (= e G_E_UEOp_Def_The) G_UEOp
(ite (= e G_E_UEOp_Def_None) G_UEOp
(ite (= e G_E_BEOp_Def_Eq) G_BEOp
(ite (= e G_E_BEOp_Def_Neq) G_BEOp
(ite (= e G_E_BEOp_Def_In) G_BEOp
(ite (= e G_E_BEOp_Def_LT) G_BEOp
(ite (= e G_E_BEOp_Def_LEQ) G_BEOp
(ite (= e G_E_BEOp_Def_GT) G_BEOp
(ite (= e G_E_BEOp_Def_GEQ) G_BEOp
(ite (= e G_E_BEOp_Def_SUBSETEQ) G_BEOp
(ite (= e G_E_MOp_Def_DRES) G_MOp

88

(ite (= e G_E_MOp_Def_RRES) G_MOp
(ite (= e G_E_MOp_Def_DSUB) G_MOp
(ite (= e G_E_MOp_Def_RSUB) G_MOp
(ite (= e G_E_A_Id) G_Id
(ite (= e G_E_O_Id) G_Id
(ite (= e G_E_P_Id_1) G_Id
(ite (= e G_E_P_Id_2) G_Id
(ite (= e G_E_SE_Def_O) G_SE
(ite (= e G_E_SE_Def_P) G_SE
(ite (= e G_E_IDef_SExt_SEs) G_SE
(ite (= e G_E_IDef_CntSet_TD) G_TD
(ite (= e G_E_IDef_CntSet_PEs) G_PE
(ite (= e G_E_IDef_Def_SExt) G_IDef
(ite (= e G_E_IDef_Def_CntSet) G_IDef
(ite (= e G_E_IExp_Def_IDef) G_IExp
(ite (= e G_E_IExp_Def_SDs) G_IExp
(ite (= e G_E_SDef_IExp) G_IExp
(ite (= e G_E_SDef_SOp) G_SOp
(ite (= e G_E_IExpSDs_SDef) G_SDef
(ite (= e G_E_SOp_Def_Domain) G_SOp
(ite (= e G_E_SOp_Def_Range) G_SOp
(ite (= e G_E_SOp_Def_Union) G_SOp
(ite (= e G_E_SOp_Def_Intersection) G_SOp
(ite (= e G_E_SOp_Def_CrossProduct) G_SOp
(ite (= e G_E_SOp_Def_SetMinus) G_SOp
(ite (= e G_E_SOp_Def_RelComp) G_SOp
(ite (= e G_E_SOp_Def_None) G_SOp
G_Null)))

(define-fun Source_G ((e E_G)) V_G
(ite (= e G_E_TD_Id) G_TD_Id
(ite (= e G_E_TD_Def_Id) G_TD_Id
(ite (= e G_E_TD_Def_Nat) G_TD_Nat
(ite (= e G_E_TD_Def_Int) G_TD_Int
(ite (= e G_E_TExp_Def_SExp) G_SExp
(ite (= e G_E_TExp_Def_FExp) G_FExp
(ite (= e G_E_FExpNum) G_FExpNum
(ite (= e G_E_FExpId) G_FExpId
(ite (= e G_E_FExpUMinus) G_FExpUMinus
(ite (= e G_E_FExpPar) G_FExpPar
(ite (= e G_E_FExpBinExp1) G_FExpBin
(ite (= e G_E_FExpBinExp2) G_FExpBin
(ite (= e G_E_FExpBinOp) G_FExpBin
(ite (= e G_E_FExp_Def_Id) G_FExpId
(ite (= e G_E_FExp_Def_Num) G_FExpNum
(ite (= e G_E_FExp_Def_UMinus) G_FExpUMinus
(ite (= e G_E_FExp_Def_Par) G_FExpPar
(ite (= e G_E_FExp_Def_Bin) G_FExpBin
(ite (= e G_E_FExpDot_Id) G_FExpDot

89

(ite (= e G_E_FExpDot_PropId) G_FExpDot
(ite (= e G_E_FExp_Def_Dot) G_FExpDot
(ite (= e G_E_FEOp_Def_Plus) G_FEOp_Plus
(ite (= e G_E_FEOp_Def_Minus) G_FEOp_Minus
(ite (= e G_E_FEOp_Def_Times) G_FEOp_Times
(ite (= e G_E_FEOp_Def_Div) G_FEOp_Div
(ite (= e G_E_SExpTD) G_SExpTD
(ite (= e G_E_SExpSDef) G_SExpSDef
(ite (= e G_E_SExpCard) G_SExpCard
(ite (= e G_E_SExp_Def_TD) G_SExpTD
(ite (= e G_E_SExp_Def_SetDef) G_SExpSDef
(ite (= e G_E_SExp_Def_Card) G_SExpCard
(ite (= e G_E_SExp_Def_Empty) G_SExpEmpty
(ite (= e G_E_PE_TExp) G_PE
(ite (= e G_E_PE_PEP) G_PEP
(ite (= e G_E_PE_PEM) G_PEM
(ite (= e G_E_PEP_UEOp) G_PEP
(ite (= e G_E_PEP_Id) G_PEP
(ite (= e G_E_PEP_BEOp) G_PEP
(ite (= e G_E_PEM_MOp) G_PEM
(ite (= e G_E_UEOp_Def_Card) G_UEOp_Card
(ite (= e G_E_UEOp_Def_The) G_UEOp_The
(ite (= e G_E_UEOp_Def_None) G_UEOp_None
(ite (= e G_E_BEOp_Def_Eq) G_BEOp_EQ
(ite (= e G_E_BEOp_Def_Neq) G_BEOp_NEQ
(ite (= e G_E_BEOp_Def_In) G_BEOp_IN
(ite (= e G_E_BEOp_Def_LT) G_BEOp_LT
(ite (= e G_E_BEOp_Def_LEQ) G_BEOp_LEQ
(ite (= e G_E_BEOp_Def_GT) G_BEOp_GT
(ite (= e G_E_BEOp_Def_GEQ) G_BEOp_GEQ
(ite (= e G_E_BEOp_Def_SUBSETEQ) G_BEOp_SubsetEQ
(ite (= e G_E_MOp_Def_DRES) G_MOp_DRES
(ite (= e G_E_MOp_Def_RRES) G_MOp_RRES
(ite (= e G_E_MOp_Def_DSUB) G_MOp_DSUB
(ite (= e G_E_MOp_Def_RSUB) G_MOp_RSUB
(ite (= e G_E_A_Id) G_A
(ite (= e G_E_O_Id) G_O
(ite (= e G_E_P_Id_1) G_P
(ite (= e G_E_P_Id_2) G_P
(ite (= e G_E_SE_Def_O) G_O
(ite (= e G_E_SE_Def_P) G_P
(ite (= e G_E_IDef_SExt_SEs) G_IDef_SExt
(ite (= e G_E_IDef_CntSet_TD) G_IDef_CntSet
(ite (= e G_E_IDef_CntSet_PEs) G_IDef_CntSet
(ite (= e G_E_IDef_Def_SExt) G_IDef_SExt
(ite (= e G_E_IDef_Def_CntSet) G_IDef_CntSet
(ite (= e G_E_IExp_Def_IDef) G_IDef
(ite (= e G_E_IExp_Def_SDs) G_IExp_SDs
(ite (= e G_E_SDef_IExp) G_SDef

90

(ite (= e G_E_SDef_SOp) G_SDef
(ite (= e G_E_IExpSDs_SDef) G_IExp_SDs
(ite (= e G_E_SOp_Def_Domain) G_SOp_Domain
(ite (= e G_E_SOp_Def_Range) G_SOp_Range
(ite (= e G_E_SOp_Def_Union) G_SOp_Union
(ite (= e G_E_SOp_Def_Intersection) G_SOp_Intersection
(ite (= e G_E_SOp_Def_CrossProduct) G_SOp_CrossProduct
(ite (= e G_E_SOp_Def_SetMinus) G_SOp_SetMinus
(ite (= e G_E_SOp_Def_RelComp) G_SOp_RelComp
(ite (= e G_E_SOp_Def_None) G_SOp_None
G_Null)))

(push)
(echo "Testing the 'Target_MM' function (1) --> sat")
(assert (= (Target_MM MM_EAssertion_Id) MM_Name))
(check-sat)
(pop)

(push)
(echo "Testing the target 'Target_MM' function (2) --> sat")
(assert (= (Target_MM MM_EISOp_Range) MM_SetDefOp))
(check-sat)
(pop)

(push)
(echo "Testing the 'Target_MM' function (3) --> unsat")
(assert (= (Target_MM MM_EISetExtension) MM_PropEdge))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_MM' function (1) --> sat")
(assert (= (Source_MM MM_EAssertion_Id) MM_Assertion))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_MM' function (2) --> sat")
(assert (= (Source_MM MM_EISOp_Range) MM_SOp_Range))
(check-sat)
(pop)

91

(push)
(echo "Testing the 'Source_MM' function (3) --> unsat")
(assert (= (Source_MM MM_EISetExtension) MM_SetDef))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Source_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved -> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Target_MM emm1)) (Target_G (Map_E emm1)))))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (1)-> sat")
(assert (= (Source_G G_E_IDef_Def_SExt) G_IDef_SExt))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (2) -> sat")
(assert (= (Source_G G_E_SDef_SOp) G_SDef))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (3) -> unsat")
(assert (= (Source_G G_E_IDef_CntSet_TD) G_TD))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))

92

(check-sat)
(pop)

(push)
(echo "Checking that the source function 'Source_MM' is preserved -> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Source_MM emm1)) (Source_G (Map_E emm1)))))
(check-sat)
(pop)

C.1.2 Z3 Proof Output
Testing function 'Map_V' (1) --> sat
sat
Testing function 'Map_V' (2) --> sat
sat
Testing function 'Map_V' (3) --> unsat
unsat
Checking Totality of 'Map_V' --> sat
sat
Checking injectiveness of 'Map_V' --> sat
sat
Checking Surjectiveness of 'Map_V' --> sat
sat
Testing function 'Map_E' (1) --> sat
sat
Testing function 'Map_E' (2) --> sat
sat
Testing function 'Map_E' (3) --> unsat
unsat
Checking Totality of 'Map_E' --> sat
sat
Checking injectiveness of 'Map_E' --> sat
sat
Checking Surjectiveness of 'Map_E' --> sat
sat
Testing the 'Target_MM' function (1) --> sat
sat
Testing the target 'Target_MM' function (2) --> sat
sat
Testing the 'Target_MM' function (3) --> unsat
unsat
Checking totality of 'Target_MM' --> sat
sat
Testing the 'Source_MM' function (1) --> sat
sat
Testing the 'Source_MM' function (2) --> sat
sat
Testing the 'Source_MM' function (3) --> unsat

93

unsat
Checking Totality of 'Source_MM' --> sat
sat
Checking totality of 'Target_G' ->sat
sat
Checking that the target function 'Target_MM' is preserved -> sat
sat
Testing the 'Source_G' function (1)-> sat
sat
Testing the 'Source_G' function (2) -> sat
sat
Testing the 'Source_G' function (3) -> unsat
unsat
Checking Totality of 'Source_G' ->sat
sat
Checking that the source function 'Source_MM' is preserved -> sat
sat

C.2 Structural diagrams
(set-option :mbqi true)
(set-option :macro-finder true)
(set-option :pull-nested-quantifiers true)
(set-option :produce-unsat-cores true)
(set-option :produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const MM_Name V_MM)
(declare-const MM_Num V_MM)
(declare-const MM_Bool V_MM)
(declare-const MM_Assertion V_MM)
(declare-const MM_TypeDesignator V_MM)
(declare-const MM_SetDef V_MM)
;; 'Mult'
(declare-const MM_Mult V_MM)
(declare-const MM_MSeq V_MM)
(declare-const MM_MOne V_MM)
(declare-const MM_MOpt V_MM)
(declare-const MM_MMany V_MM)
(declare-const MM_MRange V_MM)
(declare-const MM_MOneToMany V_MM)
(declare-const MM_UBound V_MM)
(declare-const MM_UBoundNum V_MM)

94

(declare-const MM_UBoundStar V_MM)
;; 'SetKind'
(declare-const MM_SetKind V_MM)
(declare-const MM_SetKind_Value V_MM)
(declare-const MM_SetKind_Class V_MM)
;; 'SDElem'
(declare-const MM_SDElem V_MM)
;; 'Constant'
(declare-const MM_Constant V_MM)
;; 'Relation Edge'
(declare-const MM_RelEdge V_MM)
;; 'PropEdgeDef'
(declare-const MM_PropEdgeDef V_MM)
;; 'Set'
(declare-const MM_Set V_MM)
(declare-const MM_PrimarySet V_MM)
(declare-const MM_DerivedSet V_MM)
;; 'SetDefObject'
(declare-const MM_SetDefObject V_MM)
;; 'SDiag'
(declare-const MM_SDiag V_MM)
;; Special 'Null' constant to check totality
(declare-const MM_Null V_MM)

;; Mult
(declare-const MM_E_I_MSeq E_MM)
(declare-const MM_E_I_MOne E_MM)
(declare-const MM_E_I_MOpt E_MM)
(declare-const MM_E_I_MMany E_MM)
(declare-const MM_E_I_MOneToMany E_MM)
(declare-const MM_E_I_MRange E_MM)
(declare-const MM_E_MRange_lb E_MM)
(declare-const MM_E_MRange_ub E_MM)
(declare-const MM_E_I_UBoundNum E_MM)
(declare-const MM_E_I_UBoundStar E_MM)
;; 'SetKind'
(declare-const MM_E_I_SetKind_Value E_MM)
(declare-const MM_E_I_SetKind_Class E_MM)
;; 'Constant'
(declare-const MM_E_I_Constant E_MM)
(declare-const MM_E_Constant_name E_MM)
(declare-const MM_E_Constant_TD E_MM)
;; 'PropEdgeDef'
(declare-const MM_E_PropEdgeDef_mult E_MM)
(declare-const MM_E_PropEdgeDef_tgt E_MM)
(declare-const MM_E_PropEdgeDef_id E_MM)
;; 'RelEdge'
(declare-const MM_E_I_RelEdge E_MM)
(declare-const MM_E_RelEdge_name E_MM)

95

(declare-const MM_E_RelEdge_Src E_MM)
(declare-const MM_E_RelEdge_MultS E_MM)
(declare-const MM_E_RelEdge_Tgt E_MM)
(declare-const MM_E_RelEdge_MultT E_MM)
;; 'Set'
(declare-const MM_E_I_Set E_MM)
(declare-const MM_E_I_PrimarySet E_MM)
(declare-const MM_E_PrimarySet_name E_MM)
(declare-const MM_E_PrimarySet_isDef E_MM)
(declare-const MM_E_PrimarySet_lcs E_MM)
(declare-const MM_E_PrimarySet_lis E_MM)
(declare-const MM_E_PrimarySet_hio E_MM)
(declare-const MM_E_PrimarySet_his E_MM)
(declare-const MM_E_PrimarySet_kind E_MM)
(declare-const MM_E_PrimarySet_lps E_MM)
(declare-const MM_E_I_DerivedSet E_MM)
(declare-const MM_E_DerivedSet_name E_MM)
(declare-const MM_E_DerivedSet_def E_MM)
;; 'SetDefObject'
(declare-const MM_E_SetDefObject_objName E_MM)
;; 'SDiag'
(declare-const MM_E_SDiag_elements E_MM)
(declare-const MM_E_SDiag_invariants E_MM)
;; Special 'Null' constant to check totality
(declare-const MM_ENull E_MM)

(declare-const G_Num V_G)
(declare-const G_Id V_G)
(declare-const G_Bool V_G)
(declare-const G_A V_G)
(declare-const G_O V_G)
(declare-const G_TD V_G)
(declare-const G_SDef V_G)
;; M
(declare-const G_M V_G)
(declare-const G_M_One V_G)
(declare-const G_M_Opt V_G)
(declare-const G_M_Some V_G)
(declare-const G_M_Many V_G)
(declare-const G_M_Seq V_G)
(declare-const G_M_Range V_G)
(declare-const G_UBound V_G)
(declare-const G_UBound_Num V_G)
(declare-const G_UBound_Star V_G)
;; 'SK'
(declare-const G_SK V_G)
(declare-const G_SK_Value V_G)
(declare-const G_SK_Class V_G)
;; 'SDE'

96

(declare-const G_SDE V_G)
;; 'C'
(declare-const G_C V_G)
;; 'RE'
(declare-const G_RE V_G)
;; 'PED'
(declare-const G_PED V_G)
;; 'Set'
(declare-const G_Set V_G)
(declare-const G_DSet V_G)
(declare-const G_PSet V_G)
;; 'SD'
(declare-const G_SD V_G)
;; Special 'Null' constant to check totality
(declare-const G_Null V_G)

;; O
(declare-const G_E_O_Id E_G)
;; Mult
(declare-const G_E_M_Def_opt E_G)
(declare-const G_E_M_Def_one E_G)
(declare-const G_E_M_Def_some E_G)
(declare-const G_E_M_Def_many E_G)
(declare-const G_E_M_Def_seq E_G)
(declare-const G_E_M_Def_range E_G)
(declare-const G_E_MRange_lb E_G)
(declare-const G_E_MRange_ub E_G)
(declare-const G_E_UBound_Def_Num E_G)
(declare-const G_E_UBound_Def_Star E_G)
;; 'SK'
(declare-const G_E_SK_Def_Value E_G)
(declare-const G_E_SK_Def_Class E_G)
;; 'SDE'
(declare-const G_E_SDE_Def_C E_G)
(declare-const G_E_SDE_Def_RE E_G)
(declare-const G_E_SDE_Def_Set E_G)
;; 'C'
(declare-const G_E_C_TD E_G)
(declare-const G_E_C_Id E_G)
;; 'RE'
(declare-const G_E_RE_Id E_G)
(declare-const G_E_RE_Src_TD E_G)
(declare-const G_E_RE_Src_M E_G)
(declare-const G_E_RE_Tgt_TD E_G)
(declare-const G_E_RE_Tgt_M E_G)
;; 'PED'
(declare-const G_E_PED_M E_G)
(declare-const G_E_PED_TD E_G)

97

(declare-const G_E_PED_Id E_G)
;; 'Set'
(declare-const G_E_Set_Def_PSet E_G)
(declare-const G_E_Set_Def_DSet E_G)
(declare-const G_E_PSet_Id E_G)
(declare-const G_E_PSet_SK E_G)
(declare-const G_E_PSet_isDef E_G)
(declare-const G_E_PSet_Cs E_G)
(declare-const G_E_PSet_PEDs E_G)
(declare-const G_E_PSet_As E_G)
(declare-const G_E_PSet_hiOs E_G)
(declare-const G_E_PSet_hiPSs E_G)
(declare-const G_E_DSet_SDef E_G)
(declare-const G_E_DSet_Id E_G)
;; 'SD'
(declare-const G_E_SD_SDEs E_G)
(declare-const G_E_SD_As E_G)
;; Special 'Null' constant to check totality
(declare-const G_E_Null E_G)

(assert (distinct
MM_Null
MM_Num
MM_Name
MM_Bool
MM_TypeDesignator
MM_Assertion
MM_SetDef
MM_Mult
MM_MSeq
MM_MOne
MM_MOpt
MM_MMany
MM_MRange
MM_MOneToMany
MM_UBound
MM_UBoundNum
MM_UBoundStar
MM_SetKind
MM_SetKind_Class
MM_SetKind_Value
MM_SDElem
MM_Constant
MM_RelEdge
MM_PropEdgeDef
MM_Set
MM_PrimarySet
MM_DerivedSet
MM_SetDefObject

98

MM_SDiag))

(assert (distinct
G_Null
G_Id
G_Num
G_Bool
G_A
G_O
G_TD
G_SDef
G_M
G_M_One
G_M_Opt
G_M_Some
G_M_Many
G_M_Seq
G_M_Range
G_UBound
G_UBound_Num
G_UBound_Star
G_SK
G_SK_Value
G_SK_Class
G_SDE
G_C
G_RE
G_PED
G_Set
G_DSet
G_PSet
G_SD))

(assert (distinct
MM_ENull
MM_E_I_MSeq
MM_E_I_MOne
MM_E_I_MOpt
MM_E_I_MMany
MM_E_I_MOneToMany
MM_E_I_MRange
MM_E_MRange_lb
MM_E_MRange_ub
MM_E_I_UBoundNum
MM_E_I_UBoundStar
MM_E_I_SetKind_Value
MM_E_I_SetKind_Class
MM_E_I_Constant
MM_E_Constant_TD

99

MM_E_Constant_name
MM_E_I_RelEdge
MM_E_RelEdge_name
MM_E_RelEdge_Src
MM_E_RelEdge_Tgt
MM_E_RelEdge_MultS
MM_E_RelEdge_MultT
MM_E_PropEdgeDef_mult
MM_E_PropEdgeDef_tgt
MM_E_PropEdgeDef_id
MM_E_I_Set
MM_E_I_PrimarySet
MM_E_PrimarySet_name
MM_E_PrimarySet_isDef
MM_E_PrimarySet_lcs
MM_E_PrimarySet_lis
MM_E_PrimarySet_hio
MM_E_PrimarySet_his
MM_E_PrimarySet_kind
MM_E_PrimarySet_lps
MM_E_I_DerivedSet
MM_E_DerivedSet_name
MM_E_DerivedSet_def
MM_E_SetDefObject_objName
MM_E_SDiag_elements
MM_E_SDiag_invariants))

(assert (distinct
G_E_Null
G_E_O_Id
G_E_M_Def_opt
G_E_M_Def_one
G_E_M_Def_some
G_E_M_Def_many
G_E_M_Def_seq
G_E_M_Def_range
G_E_MRange_lb
G_E_MRange_ub
G_E_UBound_Def_Num
G_E_UBound_Def_Star
G_E_SK_Def_Value
G_E_SK_Def_Class
G_E_SDE_Def_C
G_E_C_Id
G_E_C_TD
G_E_SDE_Def_RE
G_E_RE_Id
G_E_RE_Src_TD
G_E_RE_Tgt_TD

100

G_E_RE_Src_M
G_E_RE_Tgt_M
G_E_PED_M
G_E_PED_TD
G_E_PED_Id
G_E_SDE_Def_Set
G_E_Set_Def_PSet
G_E_Set_Def_DSet
G_E_PSet_Id
G_E_PSet_SK
G_E_PSet_isDef
G_E_PSet_Cs
G_E_PSet_PEDs
G_E_PSet_As
G_E_PSet_hiOs
G_E_PSet_hiPSs
G_E_DSet_Id
G_E_DSet_SDef
G_E_SD_SDEs
G_E_SD_As))

(define-fun Map_V ((v V_MM)) V_G
(ite (= v MM_Num) G_Num
(ite (= v MM_Name) G_Id
(ite (= v MM_Bool) G_Bool
(ite (= v MM_TypeDesignator) G_TD
(ite (= v MM_Assertion) G_A
(ite (= v MM_SetDef) G_SDef
(ite (= v MM_Mult) G_M
(ite (= v MM_MSeq) G_M_Seq
(ite (= v MM_MOne) G_M_One
(ite (= v MM_MOpt) G_M_Opt
(ite (= v MM_MMany) G_M_Many
(ite (= v MM_MRange) G_M_Range
(ite (= v MM_MOneToMany) G_M_Some
(ite (= v MM_UBound) G_UBound
(ite (= v MM_UBoundNum) G_UBound_Num
(ite (= v MM_UBoundStar) G_UBound_Star
(ite (= v MM_SetKind) G_SK
(ite (= v MM_SetKind_Value) G_SK_Value
(ite (= v MM_SetKind_Class) G_SK_Class
(ite (= v MM_SDElem) G_SDE
(ite (= v MM_Constant) G_C
(ite (= v MM_RelEdge) G_RE
(ite (= v MM_PropEdgeDef) G_PED
(ite (= v MM_Set) G_Set
(ite (= v MM_PrimarySet) G_PSet
(ite (= v MM_DerivedSet) G_DSet
(ite (= v MM_SetDefObject) G_O

101

(ite (= v MM_SDiag) G_SD
G_Null)))))))))))))))))))))))))))))

(define-fun Map_E ((e E_MM)) E_G
(ite (= e MM_E_I_MSeq) G_E_M_Def_seq
(ite (= e MM_E_I_MOne) G_E_M_Def_one
(ite (= e MM_E_I_MOpt) G_E_M_Def_opt
(ite (= e MM_E_I_MMany) G_E_M_Def_many
(ite (= e MM_E_I_MOneToMany) G_E_M_Def_some
(ite (= e MM_E_I_MRange) G_E_M_Def_range
(ite (= e MM_E_MRange_lb) G_E_MRange_lb
(ite (= e MM_E_MRange_ub) G_E_MRange_ub
(ite (= e MM_E_I_UBoundNum) G_E_UBound_Def_Num
(ite (= e MM_E_I_UBoundStar) G_E_UBound_Def_Star
(ite (= e MM_E_I_SetKind_Value) G_E_SK_Def_Value
(ite (= e MM_E_I_SetKind_Class) G_E_SK_Def_Class
(ite (= e MM_E_I_Constant) G_E_SDE_Def_C
(ite (= e MM_E_Constant_name) G_E_C_Id
(ite (= e MM_E_Constant_TD) G_E_C_TD
(ite (= e MM_E_I_RelEdge) G_E_SDE_Def_RE
(ite (= e MM_E_RelEdge_name) G_E_RE_Id
(ite (= e MM_E_RelEdge_Src) G_E_RE_Src_TD
(ite (= e MM_E_RelEdge_Tgt) G_E_RE_Tgt_TD
(ite (= e MM_E_RelEdge_MultS) G_E_RE_Src_M
(ite (= e MM_E_RelEdge_MultT) G_E_RE_Tgt_M
(ite (= e MM_E_PropEdgeDef_mult) G_E_PED_M
(ite (= e MM_E_PropEdgeDef_tgt) G_E_PED_TD
(ite (= e MM_E_PropEdgeDef_id) G_E_PED_Id
(ite (= e MM_E_I_Set) G_E_SDE_Def_Set
(ite (= e MM_E_I_PrimarySet) G_E_Set_Def_PSet
(ite (= e MM_E_PrimarySet_name) G_E_PSet_Id
(ite (= e MM_E_PrimarySet_isDef) G_E_PSet_isDef
(ite (= e MM_E_PrimarySet_lcs) G_E_PSet_Cs
(ite (= e MM_E_PrimarySet_lis) G_E_PSet_As
(ite (= e MM_E_PrimarySet_hio) G_E_PSet_hiOs
(ite (= e MM_E_PrimarySet_his) G_E_PSet_hiPSs
(ite (= e MM_E_PrimarySet_kind) G_E_PSet_SK
(ite (= e MM_E_PrimarySet_lps) G_E_PSet_PEDs
(ite (= e MM_E_I_DerivedSet) G_E_Set_Def_DSet
(ite (= e MM_E_DerivedSet_name) G_E_DSet_Id
(ite (= e MM_E_DerivedSet_def) G_E_DSet_SDef
(ite (= e MM_E_SetDefObject_objName) G_E_O_Id
(ite (= e MM_E_SDiag_elements) G_E_SD_SDEs
(ite (= e MM_E_SDiag_invariants) G_E_SD_As
G_E_Null)))

(push)
(echo "Testing function 'Map_V' (1) --> sat")
(assert (= (Map_V MM_SDElem) G_SDE))

102

(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_PropEdgeDef) G_PED))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_SetKind_Class) G_SK_Value))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmm1 V_MM) (vmm2 V_MM))

(=> (= (Map_V vmm1) (Map_V vmm2)) (= vmm1 vmm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' (1) --> sat")
(assert (forall ((vg V_G))

(exists ((vmm V_MM))
(= (Map_V vmm) vg))))

(check-sat)
(pop)

;(push)
;(echo "Checking Surjectiveness of 'Map_V' (2)->sat")
;(declare-fun svmm (V_G) V_MM)
;(assert (forall ((vg V_G))
; (= (Map_V (svmm vg)) vg)))
;(check-sat)
;(pop)

(push)
(echo "Testing function 'Map_E' (1) --> sat")
(assert (= (Map_E MM_E_I_Constant) G_E_SDE_Def_C))
(check-sat)

103

(pop)

(push)
(echo "Testing function 'Map_E' (2) --> sat")
(assert (= (Map_E MM_E_I_RelEdge) G_E_SDE_Def_RE))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_E' (3) --> unsat")
(assert (= (Map_E MM_E_MRange_lb) G_E_M_Def_opt))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emm1 E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emm1 emm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' (1) --> sat")
(assert (forall ((eg E_G))

(exists ((emm E_MM))
(= (Map_E emm) eg))))

(check-sat)
(pop)

;(push)
;(echo "Checking surjectiveness of 'Map_E' (2) -> sat")
;(declare-fun semm (E_G) E_MM)
;(assert (forall ((eg E_G))
; (= (Map_E (semm eg)) eg)))
;(check-sat)
;(pop)

(define-fun Target_MM ((e E_MM)) V_MM
(ite (= e MM_E_I_MSeq) MM_Mult
(ite (= e MM_E_I_MOne) MM_Mult
(ite (= e MM_E_I_MOpt) MM_Mult
(ite (= e MM_E_I_MMany) MM_Mult

104

(ite (= e MM_E_I_MOneToMany) MM_Mult
(ite (= e MM_E_I_MRange) MM_Mult
(ite (= e MM_E_MRange_lb) MM_Num
(ite (= e MM_E_MRange_ub) MM_UBound
(ite (= e MM_E_I_UBoundNum) MM_UBound
(ite (= e MM_E_I_UBoundStar) MM_UBound
(ite (= e MM_E_I_SetKind_Value) MM_SetKind
(ite (= e MM_E_I_SetKind_Class) MM_SetKind
(ite (= e MM_E_I_Constant) MM_SDElem
(ite (= e MM_E_Constant_name) MM_Name
(ite (= e MM_E_Constant_TD) MM_TypeDesignator
(ite (= e MM_E_I_RelEdge) MM_SDElem
(ite (= e MM_E_RelEdge_name) MM_Name
(ite (= e MM_E_RelEdge_Src) MM_TypeDesignator
(ite (= e MM_E_RelEdge_Tgt) MM_TypeDesignator
(ite (= e MM_E_RelEdge_MultS) MM_Mult
(ite (= e MM_E_RelEdge_MultT) MM_Mult
(ite (= e MM_E_PropEdgeDef_mult) MM_Mult
(ite (= e MM_E_PropEdgeDef_tgt) MM_TypeDesignator
(ite (= e MM_E_PropEdgeDef_id) MM_Name
(ite (= e MM_E_I_Set) MM_SDElem
(ite (= e MM_E_I_PrimarySet) MM_Set
(ite (= e MM_E_PrimarySet_name) MM_Name
(ite (= e MM_E_PrimarySet_isDef) MM_Bool
(ite (= e MM_E_PrimarySet_lcs) MM_Constant
(ite (= e MM_E_PrimarySet_lis) MM_Assertion
(ite (= e MM_E_PrimarySet_hio) MM_SetDefObject
(ite (= e MM_E_PrimarySet_his) MM_PrimarySet
(ite (= e MM_E_PrimarySet_kind) MM_SetKind
(ite (= e MM_E_PrimarySet_lps) MM_PropEdgeDef
(ite (= e MM_E_I_DerivedSet) MM_Set
(ite (= e MM_E_DerivedSet_name) MM_Name
(ite (= e MM_E_DerivedSet_def) MM_SetDef
(ite (= e MM_E_SetDefObject_objName) MM_Name
(ite (= e MM_E_SDiag_elements) MM_SDElem
(ite (= e MM_E_SDiag_invariants) MM_Assertion
MM_Null)))

(define-fun Source_MM ((e E_MM)) V_MM
(ite (= e MM_E_I_MSeq) MM_MSeq
(ite (= e MM_E_I_MOne) MM_MOne
(ite (= e MM_E_I_MOpt) MM_MOpt
(ite (= e MM_E_I_MMany) MM_MMany
(ite (= e MM_E_I_MOneToMany) MM_MOneToMany
(ite (= e MM_E_I_MRange) MM_MRange
(ite (= e MM_E_MRange_lb) MM_MRange
(ite (= e MM_E_MRange_ub) MM_MRange
(ite (= e MM_E_I_UBoundNum) MM_UBoundNum
(ite (= e MM_E_I_UBoundStar) MM_UBoundStar

105

(ite (= e MM_E_I_SetKind_Value) MM_SetKind_Value
(ite (= e MM_E_I_SetKind_Class) MM_SetKind_Class
(ite (= e MM_E_I_Constant) MM_Constant
(ite (= e MM_E_Constant_name) MM_Constant
(ite (= e MM_E_Constant_TD) MM_Constant
(ite (= e MM_E_I_RelEdge) MM_RelEdge
(ite (= e MM_E_RelEdge_name) MM_RelEdge
(ite (= e MM_E_RelEdge_Src) MM_RelEdge
(ite (= e MM_E_RelEdge_Tgt) MM_RelEdge
(ite (= e MM_E_RelEdge_MultS) MM_RelEdge
(ite (= e MM_E_RelEdge_MultT) MM_RelEdge
(ite (= e MM_E_PropEdgeDef_mult) MM_PropEdgeDef
(ite (= e MM_E_PropEdgeDef_tgt) MM_PropEdgeDef
(ite (= e MM_E_PropEdgeDef_id) MM_PropEdgeDef
(ite (= e MM_E_I_Set) MM_Set
(ite (= e MM_E_I_PrimarySet) MM_PrimarySet
(ite (= e MM_E_PrimarySet_name) MM_PrimarySet
(ite (= e MM_E_PrimarySet_isDef) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lcs) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lis) MM_PrimarySet
(ite (= e MM_E_PrimarySet_hio) MM_PrimarySet
(ite (= e MM_E_PrimarySet_his) MM_PrimarySet
(ite (= e MM_E_PrimarySet_kind) MM_PrimarySet
(ite (= e MM_E_PrimarySet_lps) MM_PrimarySet
(ite (= e MM_E_I_DerivedSet) MM_DerivedSet
(ite (= e MM_E_DerivedSet_name) MM_DerivedSet
(ite (= e MM_E_DerivedSet_def) MM_DerivedSet
(ite (= e MM_E_SetDefObject_objName) MM_SetDefObject
(ite (= e MM_E_SDiag_elements) MM_SDiag
(ite (= e MM_E_SDiag_invariants) MM_SDiag
MM_Null)))

(define-fun Target_G ((e E_G)) V_G
(ite (= e G_E_O_Id) G_Id
(ite (= e G_E_M_Def_opt) G_M
(ite (= e G_E_M_Def_one) G_M
(ite (= e G_E_M_Def_some) G_M
(ite (= e G_E_M_Def_many) G_M
(ite (= e G_E_M_Def_seq) G_M
(ite (= e G_E_M_Def_range) G_M
(ite (= e G_E_MRange_lb) G_Num
(ite (= e G_E_MRange_ub) G_UBound
(ite (= e G_E_UBound_Def_Num) G_UBound
(ite (= e G_E_UBound_Def_Star) G_UBound
(ite (= e G_E_SK_Def_Value) G_SK
(ite (= e G_E_SK_Def_Class) G_SK
(ite (= e G_E_SDE_Def_C) G_SDE
(ite (= e G_E_C_TD) G_TD
(ite (= e G_E_C_Id) G_Id

106

(ite (= e G_E_SDE_Def_RE) G_SDE
(ite (= e G_E_RE_Id) G_Id
(ite (= e G_E_RE_Src_TD) G_TD
(ite (= e G_E_RE_Tgt_TD) G_TD
(ite (= e G_E_RE_Src_M) G_M
(ite (= e G_E_RE_Tgt_M) G_M
(ite (= e G_E_PED_M) G_M
(ite (= e G_E_PED_TD) G_TD
(ite (= e G_E_PED_Id) G_Id
(ite (= e G_E_SDE_Def_Set) G_SDE
(ite (= e G_E_Set_Def_PSet) G_Set
(ite (= e G_E_Set_Def_DSet) G_Set
(ite (= e G_E_PSet_Id) G_Id
(ite (= e G_E_PSet_SK) G_SK
(ite (= e G_E_PSet_isDef) G_Bool
(ite (= e G_E_PSet_Cs) G_C
(ite (= e G_E_PSet_PEDs) G_PED
(ite (= e G_E_PSet_As) G_A
(ite (= e G_E_PSet_hiOs) G_O
(ite (= e G_E_PSet_hiPSs) G_PSet
(ite (= e G_E_DSet_Id) G_Id
(ite (= e G_E_DSet_SDef) G_SDef
(ite (= e G_E_SD_SDEs) G_SDE
(ite (= e G_E_SD_As) G_A
G_Null)))

(define-fun Source_G ((e E_G)) V_G
(ite (= e G_E_O_Id) G_O
(ite (= e G_E_M_Def_opt) G_M_Opt
(ite (= e G_E_M_Def_one) G_M_One
(ite (= e G_E_M_Def_some) G_M_Some
(ite (= e G_E_M_Def_many) G_M_Many
(ite (= e G_E_M_Def_seq) G_M_Seq
(ite (= e G_E_M_Def_range) G_M_Range
(ite (= e G_E_MRange_lb) G_M_Range
(ite (= e G_E_MRange_ub) G_M_Range
(ite (= e G_E_UBound_Def_Num) G_UBound_Num
(ite (= e G_E_UBound_Def_Star) G_UBound_Star
(ite (= e G_E_SK_Def_Value) G_SK_Value
(ite (= e G_E_SK_Def_Class) G_SK_Class
(ite (= e G_E_SDE_Def_C) G_C
(ite (= e G_E_C_TD) G_C
(ite (= e G_E_C_Id) G_C
(ite (= e G_E_SDE_Def_RE) G_RE
(ite (= e G_E_RE_Id) G_RE
(ite (= e G_E_RE_Src_TD) G_RE
(ite (= e G_E_RE_Tgt_TD) G_RE
(ite (= e G_E_RE_Src_M) G_RE
(ite (= e G_E_RE_Tgt_M) G_RE

107

(ite (= e G_E_PED_M) G_PED
(ite (= e G_E_PED_TD) G_PED
(ite (= e G_E_PED_Id) G_PED
(ite (= e G_E_SDE_Def_Set) G_Set
(ite (= e G_E_Set_Def_PSet) G_PSet
(ite (= e G_E_Set_Def_DSet) G_DSet
(ite (= e G_E_PSet_Id) G_PSet
(ite (= e G_E_PSet_SK) G_PSet
(ite (= e G_E_PSet_isDef) G_PSet
(ite (= e G_E_PSet_Cs) G_PSet
(ite (= e G_E_PSet_PEDs) G_PSet
(ite (= e G_E_PSet_As) G_PSet
(ite (= e G_E_PSet_hiOs) G_PSet
(ite (= e G_E_PSet_hiPSs) G_PSet
(ite (= e G_E_DSet_Id) G_DSet
(ite (= e G_E_DSet_SDef) G_DSet
(ite (= e G_E_SD_SDEs) G_SD
(ite (= e G_E_SD_As) G_SD
G_Null)))

(push)
(echo "Testing function 'Target_MM' (1) --> sat")
(assert (= (Target_MM MM_E_Constant_TD) MM_TypeDesignator))
(check-sat)
(pop)

(push)
(echo "Testing function 'Target_MM' (2)->sat")
(assert (= (Target_MM MM_E_I_RelEdge) MM_SDElem))
(check-sat)
(pop)

(push)
(echo "Testing function 'Target_MM' (3) -> unsat")
(assert (= (Target_MM MM_E_I_SetKind_Value) MM_Num))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_MM' ->sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))

108

(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved -> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Target_MM emm1)) (Target_G (Map_E emm1)))))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_MM' function (1)-> sat")
(assert (= (Source_MM MM_E_RelEdge_Tgt) MM_RelEdge))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_MM' function (2)-> sat")
(assert (= (Source_MM MM_E_I_SetKind_Value) MM_SetKind_Value))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_MM' function (3) -> unsat")
(assert (= (Source_MM MM_E_I_SetKind_Class) MM_SetKind_Value))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (1)-> sat")
(assert (= (Source_G G_E_RE_Src_M) G_RE))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (2) -> sat")
(assert (= (Source_G G_E_SK_Def_Value) G_SK_Value))
(check-sat)
(pop)

(push)
(echo "Testing the 'Source_G' function (3) -> unsat")
(assert (= (Source_G G_E_MRange_lb) G_TD))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_MM' ->sat")
(assert (forall ((emm E_MM))

109

(=> (= (Source_MM emm) MM_Null) (= emm MM_ENull))))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_G' ->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the source function 'Source_MM' is preserved -> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Source_MM emm1)) (Source_G (Map_E emm1)))))
(check-sat)
(pop)

C.2.1 Z3 Output
Testing function 'Map_V' (1) --> sat
sat
Testing function 'Map_V' (2) --> sat
sat
Testing function 'Map_V' (3) --> unsat
unsat
Checking Totality of 'Map_V' --> sat
sat
Checking injectiveness of 'Map_V' --> sat
sat
Checking Surjectiveness of 'Map_V' (1) --> sat
sat
Testing function 'Map_E' (1) --> sat
sat
Testing function 'Map_E' (2) --> sat
sat
Testing function 'Map_E' (3) --> unsat
unsat
Checking Totality of 'Map_E' --> sat
sat
Checking injectiveness of 'Map_E' --> sat
sat
Checking Surjectiveness of 'Map_E' (1) --> sat
sat
Testing function 'Target_MM' (1) --> sat
sat
Testing function 'Target_MM' (2)->sat
sat
Testing function 'Target_MM' (3) -> unsat

110

unsat
Checking totality of 'Target_MM' ->sat
sat
Checking totality of 'Target_G' ->sat
sat
Checking that the target function 'Target_MM' is preserved -> sat
sat
Testing the 'Source_MM' function (1)-> sat
sat
Testing the 'Source_MM' function (2)-> sat
sat
Testing the 'Source_MM' function (3) -> unsat
unsat
Testing the 'Source_G' function (1)-> sat
sat
Testing the 'Source_G' function (2) -> sat
sat
Testing the 'Source_G' function (3) -> unsat
unsat
Checking Totality of 'Source_MM' ->sat
sat
Checking Totality of 'Source_G' ->sat
sat
Checking that the source function 'Source_MM' is preserved -> sat
sat

C.3 Assertion diagrams
(set-option :mbqi true)
(set-option :macro-finder true)
(set-option :pull-nested-quantifiers true)
(set-option :produce-unsat-cores true)
(set-option :produce-models true)

(declare-sort V_MM)
(declare-sort E_MM)

(declare-sort V_G)
(declare-sort E_G)

(declare-const MM_Name V_MM)
(declare-const MM_Bool V_MM)
; From 'Common'
(declare-const MM_TypeDesignator V_MM)
(declare-const MM_SetDef V_MM)
(declare-const MM_SetElement V_MM)
(declare-const MM_PropEdgePred V_MM)
(declare-const MM_SetExpression V_MM)

111

;; 'FormulaSource'
(declare-const MM_FormulaSource V_MM)
(declare-const MM_FormulaSourceSet V_MM)
(declare-const MM_FormulaSourceElem V_MM)
(declare-const MM_FormulaSourceUnary V_MM)
(declare-const MM_FormulaSourceSetId V_MM)
(declare-const MM_FormulaSourceSetDef V_MM)
(declare-const MM_FormulaSourceUOp V_MM)
(declare-const MM_FormulaSourceUOp_Card V_MM)
(declare-const MM_FormulaSourceUOp_Domain V_MM)
(declare-const MM_FormulaSourceUOp_Range V_MM)
(declare-const MM_FormulaSourceUOp_The V_MM)
;; 'Formula'
(declare-const MM_Formula V_MM)
(declare-const MM_FormulaNAry V_MM)
(declare-const MM_ArrowsFormula V_MM)
(declare-const MM_SetFormula V_MM)
(declare-const MM_FormulaSubset V_MM)
(declare-const MM_SetFormulaDef V_MM)
(declare-const MM_SetFormulaShaded V_MM)
;; 'QFormula'
(declare-const MM_QFormula V_MM)
(declare-const MM_QDecl V_MM)
(declare-const MM_QuantifierKind V_MM)
(declare-const MM_QuantifierKind_ForAll V_MM)
(declare-const MM_QuantifierKind_Exists V_MM)
;; 'FormulaOp'
(declare-const MM_FormulaOp V_MM)
(declare-const MM_FOp_Implies V_MM)
(declare-const MM_FOp_And V_MM)
(declare-const MM_FOp_Or V_MM)
(declare-const MM_FOp_Equiv V_MM)
(declare-const MM_FOp_SeqComp V_MM)
(declare-const MM_FOp_Not V_MM)
;; 'Decl'
(declare-const MM_Decl V_MM)
(declare-const MM_VarDecl V_MM)
(declare-const MM_DeclObj V_MM)
(declare-const MM_DeclSet V_MM)
(declare-const MM_DeclSeq V_MM)
;; 'DeclFormula'
(declare-const MM_DeclFormula V_MM)
(declare-const MM_DeclFormulaNAry V_MM)
(declare-const MM_DeclFormulaAtom V_MM)
;; 'Renaming'
(declare-const MM_RenamingExp V_MM)
;; 'ADiag'
(declare-const MM_ADiag V_MM)
;; Special 'Null' constant to check totality

112

(declare-const MM_Null V_MM)

(declare-const G_Id V_G)
(declare-const G_Bool V_G)
; From 'Common'
(declare-const G_TD V_G)
(declare-const G_SDef V_G)
(declare-const G_SE V_G)
(declare-const G_PEP V_G)
(declare-const G_SExp V_G)
;; 'AFS'
(declare-const G_AFS V_G)
(declare-const G_AFS_SE V_G)
(declare-const G_AFSS V_G)
(declare-const G_AFS_FSOp V_G)
(declare-const G_AFSS_SetId V_G)
(declare-const G_AFSS_SDef V_G)
(declare-const G_FSOp V_G)
(declare-const G_FSOp_Card V_G)
(declare-const G_FSOp_Domain V_G)
(declare-const G_FSOp_Range V_G)
(declare-const G_FSOp_The V_G)
;; 'F'
(declare-const G_F V_G)
(declare-const G_AF V_G)
(declare-const G_F_NAry V_G)
(declare-const G_SF V_G)
(declare-const G_SF_SDef V_G)
(declare-const G_SF_shaded V_G)
(declare-const G_SF_hasIn V_G)
;; 'QF'
(declare-const G_QF V_G)
(declare-const G_QD V_G)
(declare-const G_QK V_G)
(declare-const G_QK_All V_G)
(declare-const G_QK_Exists V_G)
;; 'FOp'
(declare-const G_FOp V_G)
(declare-const G_FOp_Implies V_G)
(declare-const G_FOp_Equiv V_G)
(declare-const G_FOp_And V_G)
(declare-const G_FOp_Or V_G)
(declare-const G_FOp_Not V_G)
(declare-const G_FOp_SeqComp V_G)
;; 'D'
(declare-const G_D V_G)
(declare-const G_VD V_G)
(declare-const G_VD_O V_G)
(declare-const G_VD_Set V_G)

113

(declare-const G_VD_Seq V_G)
;; 'DF'
(declare-const G_DF V_G)
(declare-const G_DFA V_G)
(declare-const G_DF_NAry V_G)
;; 'R'
(declare-const G_R V_G)
;; 'AD'
(declare-const G_AD V_G)
;; Special 'Null' constant to check totality
(declare-const G_Null V_G)

;; 'FormulaSource'
(declare-const MM_E_I_FormulaSourceElem E_MM)
(declare-const MM_E_I_FormulaSourceSet E_MM)
(declare-const MM_E_I_FormulaSourceUnary E_MM)
(declare-const MM_E_FormulaSourceUnary_frmlSrc E_MM)
(declare-const MM_E_FormulaSourceUnary_operator E_MM)
(declare-const MM_E_I_FormulaSourceSetId E_MM)
(declare-const MM_E_FormulaSourceSetId_setId E_MM)
(declare-const MM_E_I_FormulaSourceSetDef E_MM)
(declare-const MM_E_FormulaSourceSetDef_setDef E_MM)
; 'Formula'
(declare-const MM_E_I_FormulaNAry E_MM)
(declare-const MM_E_FormulaNAry_frmls E_MM)
(declare-const MM_E_FormulaNAry_operator E_MM)
(declare-const MM_E_I_SetFormula E_MM)
(declare-const MM_E_I_ArrowsFormula E_MM)
(declare-const MM_E_ArrowsFormula_source E_MM)
(declare-const MM_E_ArrowsFormula_pes E_MM)
(declare-const MM_E_I_FormulaSubset E_MM)
(declare-const MM_E_I_SetFormulaShaded E_MM)
(declare-const MM_E_I_SetFormulaDef E_MM)
(declare-const MM_E_FormulaSubset_setId E_MM)
(declare-const MM_E_FormulaSubset_hasIn E_MM)
(declare-const MM_E_SetFormulaDef_shaded E_MM)
(declare-const MM_E_SetFormulaDef_setId E_MM)
(declare-const MM_E_SetFormulaDef_setDef E_MM)
(declare-const MM_E_SetFormulaShaded_setId E_MM)
(declare-const MM_E_I_QFormula E_MM)
(declare-const MM_E_QFormula_decls E_MM)
(declare-const MM_E_QFormula_frml E_MM)
; 'QDecl'
(declare-const MM_E_QDecl_vars E_MM)
(declare-const MM_E_QDecl_qkind E_MM)
(declare-const MM_E_I_QuantifierKind_ForAll E_MM)
(declare-const MM_E_I_QuantifierKind_Exists E_MM)
;; 'FormulaOp'
(declare-const MM_E_I_FOp_Implies E_MM)

114

(declare-const MM_E_I_FOp_And E_MM)
(declare-const MM_E_I_FOp_Or E_MM)
(declare-const MM_E_I_FOp_Equiv E_MM)
(declare-const MM_E_I_FOp_SeqComp E_MM)
(declare-const MM_E_I_FOp_Not E_MM)
;; 'Decl'
(declare-const MM_E_I_VarDecl E_MM)
(declare-const MM_E_I_DeclSet E_MM)
(declare-const MM_E_I_DeclSeq E_MM)
(declare-const MM_E_I_DeclObj E_MM)
(declare-const MM_E_DeclObj_optional E_MM)
(declare-const MM_E_VarDecl_dName E_MM)
(declare-const MM_E_VarDecl_dTy E_MM)
(declare-const MM_E_VarDecl_isHidden E_MM)
;; 'DeclFormula'
(declare-const MM_E_I_DeclFormula E_MM)
(declare-const MM_E_I_DeclFormulaNAry E_MM)
(declare-const MM_E_DeclFormulaNAry_dfop E_MM)
(declare-const MM_E_DeclFormulaNAry_dFrmls E_MM)
(declare-const MM_E_I_DeclFormulaAtom E_MM)
(declare-const MM_E_DeclFormulaAtom_refId E_MM)
(declare-const MM_E_DeclFormulaAtom_owningSet E_MM)
(declare-const MM_E_DeclFormulaAtom_callObj E_MM)
(declare-const MM_E_DeclFormulaAtom_import E_MM)
(declare-const MM_E_DeclFormulaAtom_renameExp E_MM)
;; 'Renaming'
(declare-const MM_E_Renaming_subExp E_MM)
(declare-const MM_E_Renaming_varToSub E_MM)
;; 'ADiag'
(declare-const MM_E_ADiag_aName E_MM)
(declare-const MM_E_ADiag_predicate E_MM)
(declare-const MM_E_ADiag_decls E_MM)
;; Special 'Null' constant to check totality
(declare-const MM_E_Null E_MM)

;; 'AFS'
(declare-const G_E_AFS_Def_SE E_G)
(declare-const G_E_AFS_Def_AFSS E_G)
(declare-const G_E_AFS_Def_FSOp E_G)
(declare-const G_E_AFS_FSOp_Op E_G)
(declare-const G_E_AFS_FSOp_AFS E_G)
;; 'AFSS'
(declare-const G_E_AFSS_Def_SetId E_G)
(declare-const G_E_AFSS_Def_SDef E_G)
(declare-const G_E_AFSS_SetId_Id E_G)
(declare-const G_E_AFSS_SDef_SDef E_G)
;; 'F'
(declare-const G_E_F_Def_AF E_G)
(declare-const G_E_F_Def_SF E_G)

115

(declare-const G_E_F_Def_NAry E_G)
(declare-const G_E_F_NAry_Fs E_G)
(declare-const G_E_F_NAry_FOp E_G)
(declare-const G_E_AF_AFS E_G)
(declare-const G_E_AF_PEPs E_G)
(declare-const G_E_SF_Def_SDef E_G)
(declare-const G_E_SF_Def_shaded E_G)
(declare-const G_E_SF_Def_hasIn E_G)
(declare-const G_E_SF_SDef_shaded E_G)
(declare-const G_E_SF_SDef_Id E_G)
(declare-const G_E_SF_SDef_SDef E_G)
(declare-const G_E_SF_shaded_TD E_G)
(declare-const G_E_SF_hasIn_TD E_G)
(declare-const G_E_SF_hasIn_SExp E_G)
;; 'QF'
(declare-const G_E_F_Def_QF E_G)
(declare-const G_E_QF_QDs E_G)
(declare-const G_E_QF_F E_G)
(declare-const G_E_QD_QK E_G)
(declare-const G_E_QD_VDs E_G)
(declare-const G_E_QK_Def_ForAll E_G)
(declare-const G_E_QK_Def_Exists E_G)
;; 'FOp'
(declare-const G_E_FOp_Def_Implies E_G)
(declare-const G_E_FOp_Def_Equiv E_G)
(declare-const G_E_FOp_Def_And E_G)
(declare-const G_E_FOp_Def_Or E_G)
(declare-const G_E_FOp_Def_SeqComp E_G)
(declare-const G_E_FOp_Def_Not E_G)
;; 'D'
(declare-const G_E_D_Def_VD E_G)
(declare-const G_E_D_Def_DF E_G)
(declare-const G_E_DV_Def_O E_G)
(declare-const G_E_DV_Def_Set E_G)
(declare-const G_E_DV_Def_Seq E_G)
(declare-const G_E_D_VD_Id E_G)
(declare-const G_E_D_VD_TD E_G)
(declare-const G_E_D_VD_isHidden E_G)
(declare-const G_E_DV_Def_O_opt E_G)
;; 'DF'
(declare-const G_E_DF_Def_DFA E_G)
(declare-const G_E_DF_Def_NAry E_G)
(declare-const G_E_DF_NAry_DFs E_G)
(declare-const G_E_DF_NAry_FOp E_G)
;; 'DFA'
(declare-const G_E_DFA_uparrow E_G)
(declare-const G_E_DFA_RefId E_G)
(declare-const G_E_DFA_ObjId E_G)
(declare-const G_E_DFA_SetId E_G)

116

(declare-const G_E_DFA_Rs E_G)
;; 'R'
(declare-const G_E_R_Id1 E_G)
(declare-const G_E_R_Id2 E_G)
;; 'AD'
(declare-const G_E_AD_Id E_G)
(declare-const G_E_AD_Ds E_G)
(declare-const G_E_AD_Fs E_G)
;; Special 'Null' constant to check totality
(declare-const G_E_Null E_G)

(assert (distinct
MM_Null
MM_Name
MM_Bool
MM_TypeDesignator
MM_SetDef
MM_SetElement
MM_PropEdgePred
MM_SetExpression
MM_FormulaSource
MM_FormulaSourceSet
MM_FormulaSourceElem
MM_FormulaSourceUnary
MM_FormulaSourceSetId
MM_FormulaSourceSetDef
MM_FormulaSourceUOp
MM_FormulaSourceUOp_Card
MM_FormulaSourceUOp_Domain
MM_FormulaSourceUOp_Range
MM_FormulaSourceUOp_The
MM_Formula
MM_ArrowsFormula
MM_SetFormula
MM_FormulaNAry
MM_FormulaSubset
MM_SetFormulaDef
MM_SetFormulaShaded
MM_QFormula
MM_QDecl
MM_QuantifierKind
MM_QuantifierKind_ForAll
MM_QuantifierKind_Exists
MM_Decl
MM_VarDecl
MM_DeclObj
MM_DeclSet
MM_DeclSeq
MM_DeclFormula

117

MM_DeclFormulaNAry
MM_DeclFormulaAtom
MM_FormulaOp
MM_FOp_Implies
MM_FOp_And
MM_FOp_Or
MM_FOp_Equiv
MM_FOp_SeqComp
MM_FOp_Not
MM_RenamingExp
MM_ADiag))

(assert (distinct
G_Null
G_Id
G_Bool
G_TD
G_SDef
G_SE
G_PEP
G_SExp
G_AFS
G_AFS_SE
G_AFSS
G_AFS_FSOp
G_AFSS_SetId
G_AFSS_SDef
G_FSOp
G_FSOp_Card
G_FSOp_Domain
G_FSOp_Range
G_FSOp_The
G_F
G_AF
G_SF
G_F_NAry
G_QF
G_QD
G_QK
G_QK_All
G_QK_Exists
G_D
G_VD
G_VD_O
G_VD_Set
G_VD_Seq
G_DF
G_DFA
G_DF_NAry

118

G_FOp
G_FOp_Implies
G_FOp_Equiv
G_FOp_And
G_FOp_Or
G_FOp_SeqComp
G_FOp_Not
G_R
G_AD))

(assert (distinct
MM_E_Null
MM_E_I_FormulaSourceElem
MM_E_I_FormulaSourceSet
MM_E_I_FormulaSourceUnary
MM_E_FormulaSourceUnary_frmlSrc
MM_E_FormulaSourceUnary_operator
MM_E_I_FormulaSourceSetId
MM_E_FormulaSourceSetId_setId
MM_E_I_FormulaSourceSetDef
MM_E_FormulaSourceSetDef_setDef
MM_E_ArrowsFormula_source
MM_E_ArrowsFormula_pes
MM_E_I_FormulaNAry
MM_E_FormulaNAry_frmls
MM_E_FormulaNAry_operator
MM_E_I_FormulaSubset
MM_E_I_SetFormulaShaded
MM_E_I_SetFormulaDef
MM_E_FormulaSubset_setId
MM_E_FormulaSubset_hasIn
MM_E_SetFormulaDef_shaded
MM_E_SetFormulaDef_setId
MM_E_SetFormulaDef_setDef
MM_E_SetFormulaShaded_setId
MM_E_I_QFormula
MM_E_QFormula_decls
MM_E_QFormula_frml
MM_E_QDecl_vars
MM_E_QDecl_qkind
MM_E_I_QuantifierKind_ForAll
MM_E_I_QuantifierKind_Exists
MM_E_I_VarDecl
MM_E_I_DeclSet
MM_E_I_DeclSeq
MM_E_I_DeclObj
MM_E_I_DeclFormula
MM_E_I_DeclFormulaNAry
MM_E_I_DeclFormulaAtom

119

MM_E_DeclFormulaNAry_dfop
MM_E_DeclFormulaNAry_dFrmls
MM_E_DeclFormulaAtom_refId
MM_E_DeclFormulaAtom_import
MM_E_DeclFormulaAtom_renameExp
MM_E_VarDecl_dName
MM_E_VarDecl_dTy
MM_E_VarDecl_isHidden
MM_E_DeclObj_optional
MM_E_I_FOp_Implies
MM_E_I_FOp_And
MM_E_I_FOp_Or
MM_E_I_FOp_Equiv
MM_E_I_FOp_SeqComp
MM_E_I_FOp_Not
MM_E_Renaming_subExp
MM_E_Renaming_varToSub
MM_E_ADiag_aName
MM_E_ADiag_predicate
MM_E_ADiag_decls))

(assert (distinct
G_E_Null
G_E_AFS_Def_SE
G_E_AFS_Def_AFSS
G_E_AFS_Def_FSOp
G_E_AFS_FSOp_Op
G_E_AFS_FSOp_AFS
G_E_AFSS_Def_SetId
G_E_AFSS_Def_SDef
G_E_AFSS_SetId_Id
G_E_AFSS_SDef_SDef
G_E_F_Def_AF
G_E_F_Def_SF
G_E_F_Def_NAry
G_E_F_NAry_Fs
G_E_F_NAry_FOp
G_E_AF_AFS
G_E_AF_PEPs
G_E_SF_Def_SDef
G_E_SF_Def_shaded
G_E_SF_Def_hasIn
G_E_SF_SDef_shaded
G_E_SF_SDef_Id
G_E_SF_SDef_SDef
G_E_SF_shaded_TD
G_E_SF_hasIn_TD
G_E_SF_hasIn_SExp
G_E_F_Def_QF

120

G_E_QF_QDs
G_E_QF_F
G_E_QD_QK
G_E_QD_VDs
G_E_QK_Def_ForAll
G_E_QK_Def_Exists
G_E_D_Def_VD
G_E_D_Def_DF
G_E_DV_Def_O
G_E_DV_Def_Set
G_E_DV_Def_Seq
G_E_DF_Def_DFA
G_E_DF_Def_NAry
G_E_D_VD_Id
G_E_D_VD_TD
G_E_D_VD_isHidden
G_E_DV_Def_O_opt
G_E_DF_NAry_DFs
G_E_DF_NAry_FOp
G_E_FOp_Def_Implies
G_E_FOp_Def_Equiv
G_E_FOp_Def_And
G_E_FOp_Def_Or
G_E_FOp_Def_SeqComp
G_E_FOp_Def_Not
G_E_DFA_uparrow
G_E_DFA_RefId
G_E_DFA_ObjId
G_E_DFA_SetId
G_E_DFA_Rs
G_E_R_Id1
G_E_R_Id2
G_E_AD_Id
G_E_AD_Ds
G_E_AD_Fs))

(define-fun Map_V ((v V_MM)) V_G
(ite (= v MM_Name) G_Id
(ite (= v MM_Bool) G_Bool
(ite (= v MM_TypeDesignator) G_TD
(ite (= v MM_SetDef) G_SDef
(ite (= v MM_SetElement) G_SE
(ite (= v MM_PropEdgePred) G_PEP
(ite (= v MM_SetExpression) G_SExp
(ite (= v MM_FormulaSource) G_AFS
(ite (= v MM_FormulaSourceSet) G_AFSS
(ite (= v MM_FormulaSourceElem) G_AFS_SE
(ite (= v MM_FormulaSourceUnary) G_AFS_FSOp
(ite (= v MM_FormulaSourceSetId) G_AFSS_SetId

121

(ite (= v MM_FormulaSourceSetDef) G_AFSS_SDef
(ite (= v MM_FormulaSourceUOp) G_FSOp
(ite (= v MM_FormulaSourceUOp_Card) G_FSOp_Card
(ite (= v MM_FormulaSourceUOp_Domain) G_FSOp_Domain
(ite (= v MM_FormulaSourceUOp_Range) G_FSOp_Range
(ite (= v MM_FormulaSourceUOp_The) G_FSOp_The
(ite (= v MM_Formula) G_F
(ite (= v MM_FormulaNAry) G_F_NAry
(ite (= v MM_SetFormula) G_SF
(ite (= v MM_ArrowsFormula) G_AF
(ite (= v MM_FormulaNAry) G_F_NAry
(ite (= v MM_FormulaSubset) G_SF_hasIn
(ite (= v MM_SetFormulaDef) G_SF_SDef
(ite (= v MM_SetFormulaShaded) G_SF_shaded
(ite (= v MM_QFormula) G_QF
(ite (= v MM_QDecl) G_QD
(ite (= v MM_QuantifierKind) G_QK
(ite (= v MM_QuantifierKind_ForAll) G_QK_All
(ite (= v MM_QuantifierKind_Exists) G_QK_Exists
(ite (= v MM_Decl) G_D
(ite (= v MM_VarDecl) G_VD
(ite (= v MM_DeclObj) G_VD_O
(ite (= v MM_DeclSet) G_VD_Set
(ite (= v MM_DeclSeq) G_VD_Seq
(ite (= v MM_DeclFormula) G_DF
(ite (= v MM_DeclFormulaNAry) G_DF_NAry
(ite (= v MM_DeclFormulaAtom) G_DFA
(ite (= v MM_FormulaOp) G_FOp
(ite (= v MM_FOp_Implies) G_FOp_Implies
(ite (= v MM_FOp_And) G_FOp_And
(ite (= v MM_FOp_Or) G_FOp_Or
(ite (= v MM_FOp_Equiv) G_FOp_Equiv
(ite (= v MM_FOp_SeqComp) G_FOp_SeqComp
(ite (= v MM_FOp_Not) G_FOp_Not
(ite (= v MM_RenamingExp) G_R
(ite (= v MM_ADiag) G_AD
G_Null)))

(define-fun Map_E ((e E_MM)) E_G
(ite (= e MM_E_I_FormulaSourceElem) G_E_AFS_Def_SE
(ite (= e MM_E_I_FormulaSourceSet) G_E_AFS_Def_AFSS
(ite (= e MM_E_I_FormulaSourceUnary) G_E_AFS_Def_FSOp
(ite (= e MM_E_FormulaSourceUnary_frmlSrc) G_E_AFS_FSOp_AFS
(ite (= e MM_E_FormulaSourceUnary_operator) G_E_AFS_FSOp_Op
(ite (= e MM_E_I_FormulaSourceSetId) G_E_AFSS_Def_SetId
(ite (= e MM_E_FormulaSourceSetId_setId) G_E_AFSS_SetId_Id
(ite (= e MM_E_I_FormulaSourceSetDef) G_E_AFSS_Def_SDef
(ite (= e MM_E_FormulaSourceSetDef_setDef) G_E_AFSS_SDef_SDef
(ite (= e MM_E_I_SetFormula) G_E_F_Def_SF

122

(ite (= e MM_E_I_ArrowsFormula) G_E_F_Def_AF
(ite (= e MM_E_I_FormulaNAry) G_E_F_Def_NAry
(ite (= e MM_E_FormulaNAry_frmls) G_E_F_NAry_Fs
(ite (= e MM_E_FormulaNAry_operator) G_E_F_NAry_FOp
(ite (= e MM_E_ArrowsFormula_source) G_E_AF_AFS
(ite (= e MM_E_ArrowsFormula_pes) G_E_AF_PEPs
(ite (= e MM_E_I_FormulaSubset) G_E_SF_Def_hasIn
(ite (= e MM_E_I_SetFormulaShaded) G_E_SF_Def_shaded
(ite (= e MM_E_I_SetFormulaDef) G_E_SF_Def_SDef
(ite (= e MM_E_FormulaSubset_setId) G_E_SF_hasIn_TD
(ite (= e MM_E_FormulaSubset_hasIn) G_E_SF_hasIn_SExp
(ite (= e MM_E_SetFormulaDef_shaded) G_E_SF_SDef_shaded
(ite (= e MM_E_SetFormulaDef_setId) G_E_SF_SDef_Id
(ite (= e MM_E_SetFormulaDef_setDef) G_E_SF_SDef_SDef
(ite (= e MM_E_SetFormulaShaded_setId) G_E_SF_shaded_TD
(ite (= e MM_E_I_QFormula) G_E_F_Def_QF
(ite (= e MM_E_QFormula_decls) G_E_QF_QDs
(ite (= e MM_E_QFormula_frml) G_E_QF_F
(ite (= e MM_E_QDecl_vars) G_E_QD_VDs
(ite (= e MM_E_QDecl_qkind) G_E_QD_QK
(ite (= e MM_E_I_QuantifierKind_ForAll) G_E_QK_Def_ForAll
(ite (= e MM_E_I_QuantifierKind_Exists) G_E_QK_Def_Exists
(ite (= e MM_E_I_VarDecl) G_E_D_Def_VD
(ite (= e MM_E_I_DeclSet) G_E_DV_Def_Set
(ite (= e MM_E_I_DeclSeq) G_E_DV_Def_Seq
(ite (= e MM_E_I_DeclObj) G_E_DV_Def_O
(ite (= e MM_E_I_DeclFormula) G_E_D_Def_DF
(ite (= e MM_E_I_DeclFormulaNAry) G_E_DF_Def_NAry
(ite (= e MM_E_I_DeclFormulaAtom) G_E_DF_Def_DFA
(ite (= e MM_E_DeclFormulaNAry_dfop) G_E_DF_NAry_FOp
(ite (= e MM_E_DeclFormulaNAry_dFrmls) G_E_DF_NAry_DFs
(ite (= e MM_E_VarDecl_dName) G_E_D_VD_Id
(ite (= e MM_E_VarDecl_dTy) G_E_D_VD_TD
(ite (= e MM_E_VarDecl_isHidden) G_E_D_VD_isHidden
(ite (= e MM_E_DeclObj_optional) G_E_DV_Def_O_opt
(ite (= e MM_E_I_FOp_Implies) G_E_FOp_Def_Implies
(ite (= e MM_E_I_FOp_And) G_E_FOp_Def_And
(ite (= e MM_E_I_FOp_Or) G_E_FOp_Def_Or
(ite (= e MM_E_I_FOp_Equiv) G_E_FOp_Def_Equiv
(ite (= e MM_E_I_FOp_SeqComp) G_E_FOp_Def_SeqComp
(ite (= e MM_E_I_FOp_Not) G_E_FOp_Def_Not
(ite (= e MM_E_DeclFormulaAtom_refId) G_E_DFA_RefId
(ite (= e MM_E_DeclFormulaAtom_callObj) G_E_DFA_ObjId
(ite (= e MM_E_DeclFormulaAtom_owningSet) G_E_DFA_SetId
(ite (= e MM_E_DeclFormulaAtom_import) G_E_DFA_uparrow
(ite (= e MM_E_DeclFormulaAtom_renameExp) G_E_DFA_Rs
(ite (= e MM_E_Renaming_subExp) G_E_R_Id1
(ite (= e MM_E_Renaming_varToSub) G_E_R_Id2
(ite (= e MM_E_ADiag_aName) G_E_AD_Id

123

(ite (= e MM_E_ADiag_predicate) G_E_AD_Fs
(ite (= e MM_E_ADiag_decls) G_E_AD_Ds
G_E_Null))

(push)
(echo "Testing function 'Map_V' (1) --> sat")
(assert (= (Map_V MM_SetDef) G_SDef))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (2) --> sat")
(assert (= (Map_V MM_PropEdgePred) G_PEP))
(check-sat)
(pop)

(push)
(echo "Testing function 'Map_V' (3) --> unsat")
(assert (= (Map_V MM_FormulaSourceUOp) G_FSOp_Range))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Map_V' --> sat")
(assert (forall ((vmm V_MM))

(=> (= (Map_V vmm) G_Null) (= vmm MM_Null))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_V' --> sat")
(assert (forall ((vmm1 V_MM) (vmm2 V_MM))

(=> (= (Map_V vmm1) (Map_V vmm2)) (= vmm1 vmm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_V' -->sat")
(assert (forall ((vg V_G))

(exists ((vmm V_MM))
(= (Map_V vmm) vg))))

(check-sat)
(pop)

;(push)
;(echo "Checking Surjectiveness of 'Map_V' (2)->sat")
;(declare-fun svmm (V_G) V_MM)
;(assert (forall ((vg V_G))
; (= (Map_V (svmm vg)) vg)))

124

;(check-sat)
;(pop)

(push)
(echo "Testing the 'Map_E' function (1) --> sat")
(assert (= (Map_E MM_E_I_DeclFormulaNAry) G_E_DF_Def_NAry))
(check-sat)
(pop)

(push)
(echo "Testing the 'Map_E' function (2) --> sat")
(assert (= (Map_E MM_E_I_FormulaNAry) G_E_F_Def_NAry))
(check-sat)
(pop)

(push)
(echo "Testing the 'Map_E' function (3) --> unsat")
(assert (= (Map_E MM_E_I_FormulaSourceSetDef) G_E_Null))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Map_E' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Map_E emm) G_E_Null) (= emm MM_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking injectiveness of 'Map_E' --> sat")
(assert (forall ((emm1 E_MM) (emm2 E_MM))

(=> (= (Map_E emm1) (Map_E emm2)) (= emm1 emm2))))
(check-sat)
(pop)

(push)
(echo "Checking Surjectiveness of 'Map_E' (1) --> sat")
(assert (forall ((eg E_G))

(exists ((emm E_MM))
(= (Map_E emm) eg))))

(check-sat)
(pop)

;(push)
;(echo "Checking surjectiveness of 'Map_E' (2) --> sat")
;(declare-fun semm (E_G) E_MM)
;(assert (forall ((eg E_G))
; (= (Map_E (semm eg)) eg)))
;(check-sat)

125

;(pop)

(define-fun Target_MM ((e E_MM)) V_MM
(ite (= e MM_E_I_FormulaSourceElem) MM_FormulaSource
(ite (= e MM_E_I_FormulaSourceSet) MM_FormulaSource
(ite (= e MM_E_I_FormulaSourceUnary) MM_FormulaSource
(ite (= e MM_E_FormulaSourceUnary_frmlSrc) MM_FormulaSource
(ite (= e MM_E_FormulaSourceUnary_operator) MM_FormulaSourceUOp
(ite (= e MM_E_I_FormulaSourceSetId) MM_FormulaSourceSet
(ite (= e MM_E_I_FormulaSourceSetDef) MM_FormulaSourceSet
(ite (= e MM_E_FormulaSourceSetId_setId) MM_Name
(ite (= e MM_E_FormulaSourceSetDef_setDef) MM_SetDef
(ite (= e MM_E_ArrowsFormula_source) MM_FormulaSource
(ite (= e MM_E_ArrowsFormula_pes) MM_PropEdgePred
(ite (= e MM_E_I_FormulaNAry) MM_Formula
(ite (= e MM_E_FormulaNAry_frmls) MM_Formula
(ite (= e MM_E_FormulaNAry_operator) MM_FormulaOp
(ite (= e MM_E_I_FormulaSubset) MM_SetFormula
(ite (= e MM_E_I_SetFormulaShaded) MM_SetFormula
(ite (= e MM_E_I_SetFormulaDef) MM_SetFormula
(ite (= e MM_E_FormulaSubset_setId) MM_TypeDesignator
(ite (= e MM_E_FormulaSubset_hasIn) MM_SetExpression
(ite (= e MM_E_SetFormulaDef_shaded) MM_Bool
(ite (= e MM_E_SetFormulaDef_setId) MM_Name
(ite (= e MM_E_SetFormulaDef_setDef) MM_SetDef
(ite (= e MM_E_SetFormulaShaded_setId) MM_TypeDesignator
(ite (= e MM_E_I_QFormula) MM_Formula
(ite (= e MM_E_QFormula_decls) MM_QDecl
(ite (= e MM_E_QFormula_frml) MM_Formula
(ite (= e MM_E_QDecl_vars) MM_VarDecl
(ite (= e MM_E_QDecl_qkind) MM_QuantifierKind
(ite (= e MM_E_I_QuantifierKind_ForAll) MM_QuantifierKind
(ite (= e MM_E_I_QuantifierKind_Exists) MM_QuantifierKind
(ite (= e MM_E_I_VarDecl) MM_Decl
(ite (= e MM_E_I_DeclSet) MM_VarDecl
(ite (= e MM_E_I_DeclObj) MM_VarDecl
(ite (= e MM_E_I_DeclSeq) MM_VarDecl
(ite (= e MM_E_I_DeclFormula) MM_Decl
(ite (= e MM_E_I_DeclFormulaNAry) MM_DeclFormula
(ite (= e MM_E_I_DeclFormulaAtom) MM_DeclFormula
(ite (= e MM_E_VarDecl_dName) MM_Name
(ite (= e MM_E_VarDecl_dTy) MM_TypeDesignator
(ite (= e MM_E_VarDecl_isHidden) MM_Bool
(ite (= e MM_E_DeclObj_optional) MM_Bool
(ite (= e MM_E_DeclFormulaNAry_dFrmls) MM_DeclFormula
(ite (= e MM_E_DeclFormulaNAry_dfop) MM_FormulaOp
(ite (= e MM_E_I_FOp_Implies) MM_FormulaOp
(ite (= e MM_E_I_FOp_And) MM_FormulaOp
(ite (= e MM_E_I_FOp_Or) MM_FormulaOp

126

(ite (= e MM_E_I_FOp_Equiv) MM_FormulaOp
(ite (= e MM_E_I_FOp_SeqComp) MM_FormulaOp
(ite (= e MM_E_I_FOp_Not) MM_FormulaOp
(ite (= e MM_E_DeclFormulaAtom_refId) MM_Name
(ite (= e MM_E_DeclFormulaAtom_import) MM_Bool
(ite (= e MM_E_DeclFormulaAtom_callObj) MM_Name
(ite (= e MM_E_DeclFormulaAtom_owningSet) MM_Name
(ite (= e MM_E_DeclFormulaAtom_renameExp) MM_RenamingExp
(ite (= e MM_E_Renaming_subExp) MM_Name
(ite (= e MM_E_Renaming_varToSub) MM_Name
(ite (= e MM_E_ADiag_aName) MM_Name
(ite (= e MM_E_ADiag_predicate) MM_Formula
(ite (= e MM_E_ADiag_decls) MM_Decl
MM_Null))

(define-fun Source_MM ((e E_MM)) V_MM
(ite (= e MM_E_I_FormulaSourceElem) MM_FormulaSourceElem
(ite (= e MM_E_I_FormulaSourceSet) MM_FormulaSourceSet
(ite (= e MM_E_I_FormulaSourceUnary) MM_FormulaSourceUnary
(ite (= e MM_E_FormulaSourceUnary_frmlSrc) MM_FormulaSourceUnary
(ite (= e MM_E_FormulaSourceUnary_operator) MM_FormulaSourceUnary
(ite (= e MM_E_I_FormulaSourceSetId) MM_FormulaSourceSetId
(ite (= e MM_E_I_FormulaSourceSetDef) MM_FormulaSourceSetDef
(ite (= e MM_E_FormulaSourceSetId_setId) MM_FormulaSourceSetId
(ite (= e MM_E_FormulaSourceSetDef_setDef) MM_FormulaSourceSetDef
(ite (= e MM_E_ArrowsFormula_source) MM_ArrowsFormula
(ite (= e MM_E_ArrowsFormula_pes) MM_ArrowsFormula
(ite (= e MM_E_I_FormulaNAry) MM_FormulaNAry
(ite (= e MM_E_FormulaNAry_frmls) MM_FormulaNAry
(ite (= e MM_E_FormulaNAry_operator) MM_FormulaNAry
(ite (= e MM_E_I_FormulaSubset) MM_FormulaSubset
(ite (= e MM_E_I_SetFormulaShaded) MM_SetFormulaShaded
(ite (= e MM_E_I_SetFormulaDef) MM_SetFormulaDef
(ite (= e MM_E_FormulaSubset_setId) MM_FormulaSubset
(ite (= e MM_E_FormulaSubset_hasIn) MM_FormulaSubset
(ite (= e MM_E_SetFormulaDef_shaded) MM_SetFormulaDef
(ite (= e MM_E_SetFormulaDef_setId) MM_SetFormulaDef
(ite (= e MM_E_SetFormulaDef_setDef) MM_SetFormulaDef
(ite (= e MM_E_SetFormulaShaded_setId) MM_SetFormulaShaded
(ite (= e MM_E_I_QFormula) MM_QFormula
(ite (= e MM_E_QFormula_decls) MM_QFormula
(ite (= e MM_E_QFormula_frml) MM_QFormula
(ite (= e MM_E_QDecl_vars) MM_QDecl
(ite (= e MM_E_QDecl_qkind) MM_QDecl
(ite (= e MM_E_I_QuantifierKind_ForAll) MM_QuantifierKind_ForAll
(ite (= e MM_E_I_QuantifierKind_Exists) MM_QuantifierKind_Exists
(ite (= e MM_E_I_VarDecl) MM_VarDecl
(ite (= e MM_E_I_DeclSet) MM_DeclSet
(ite (= e MM_E_I_DeclObj) MM_DeclObj

127

(ite (= e MM_E_I_DeclSeq) MM_DeclSeq
(ite (= e MM_E_I_DeclFormula) MM_DeclFormula
(ite (= e MM_E_I_DeclFormulaNAry) MM_DeclFormulaNAry
(ite (= e MM_E_I_DeclFormulaAtom) MM_DeclFormulaAtom
(ite (= e MM_E_VarDecl_dName) MM_VarDecl
(ite (= e MM_E_VarDecl_dTy) MM_VarDecl
(ite (= e MM_E_DeclObj_optional) MM_DeclObj
(ite (= e MM_E_VarDecl_isHidden) MM_VarDecl
(ite (= e MM_E_DeclFormulaNAry_dFrmls) MM_DeclFormulaNAry
(ite (= e MM_E_DeclFormulaNAry_dfop) MM_DeclFormulaNAry
(ite (= e MM_E_I_FOp_Implies) MM_FOp_Implies
(ite (= e MM_E_I_FOp_And) MM_FOp_And
(ite (= e MM_E_I_FOp_Or) MM_FOp_Or
(ite (= e MM_E_I_FOp_Equiv) MM_FOp_Equiv
(ite (= e MM_E_I_FOp_SeqComp) MM_FOp_SeqComp
(ite (= e MM_E_I_FOp_Not) MM_FOp_Not
(ite (= e MM_E_DeclFormulaAtom_refId) MM_DeclFormulaAtom
(ite (= e MM_E_DeclFormulaAtom_import) MM_DeclFormulaAtom
(ite (= e MM_E_DeclFormulaAtom_owningSet) MM_DeclFormulaAtom
(ite (= e MM_E_DeclFormulaAtom_callObj) MM_DeclFormulaAtom
(ite (= e MM_E_DeclFormulaAtom_renameExp) MM_DeclFormulaAtom
(ite (= e MM_E_Renaming_subExp) MM_RenamingExp
(ite (= e MM_E_Renaming_varToSub) MM_RenamingExp
(ite (= e MM_E_ADiag_aName) MM_ADiag
(ite (= e MM_E_ADiag_predicate) MM_ADiag
(ite (= e MM_E_ADiag_decls) MM_ADiag
MM_Null))

(define-fun Target_G ((e E_G)) V_G
(ite (= e G_E_AFS_Def_SE) G_AFS
(ite (= e G_E_AFS_Def_AFSS) G_AFS
(ite (= e G_E_AFS_Def_FSOp) G_AFS
(ite (= e G_E_AFS_FSOp_Op) G_FSOp
(ite (= e G_E_AFS_FSOp_AFS) G_AFS
(ite (= e G_E_AFSS_Def_SetId) G_AFSS
(ite (= e G_E_AFSS_Def_SDef) G_AFSS
(ite (= e G_E_AFSS_SetId_Id) G_Id
(ite (= e G_E_AFSS_SDef_SDef) G_SDef
(ite (= e G_E_AF_AFS) G_AFS
(ite (= e G_E_AF_PEPs) G_PEP
(ite (= e G_E_F_Def_AF) G_F
(ite (= e G_E_F_Def_SF) G_F
(ite (= e G_E_F_Def_NAry) G_F
(ite (= e G_E_F_NAry_Fs) G_F
(ite (= e G_E_F_NAry_FOp) G_FOp
(ite (= e G_E_SF_Def_hasIn) G_SF
(ite (= e G_E_SF_Def_shaded) G_SF
(ite (= e G_E_SF_Def_SDef) G_SF
(ite (= e G_E_SF_hasIn_TD) G_TD

128

(ite (= e G_E_SF_hasIn_SExp) G_SExp
(ite (= e G_E_SF_SDef_shaded) G_Bool
(ite (= e G_E_SF_SDef_Id) G_Id
(ite (= e G_E_SF_SDef_SDef) G_SDef
(ite (= e G_E_SF_shaded_TD) G_TD
(ite (= e G_E_F_Def_QF) G_F
(ite (= e G_E_QF_QDs) G_QD
(ite (= e G_E_QF_F) G_F
(ite (= e G_E_QD_QK) G_QK
(ite (= e G_E_QD_VDs) G_VD
(ite (= e G_E_QK_Def_ForAll) G_QK
(ite (= e G_E_QK_Def_Exists) G_QK
(ite (= e G_E_D_Def_VD) G_D
(ite (= e G_E_DV_Def_Set) G_VD
(ite (= e G_E_DV_Def_Seq) G_VD
(ite (= e G_E_DV_Def_O) G_VD
(ite (= e G_E_D_Def_DF) G_D
(ite (= e G_E_DF_Def_NAry) G_DF
(ite (= e G_E_DF_Def_DFA) G_DF
(ite (= e G_E_D_VD_Id) G_Id
(ite (= e G_E_D_VD_TD) G_TD
(ite (= e G_E_D_VD_isHidden) G_Bool
(ite (= e G_E_DV_Def_O_opt) G_Bool
(ite (= e G_E_DF_NAry_DFs) G_DF
(ite (= e G_E_DF_NAry_FOp) G_FOp
(ite (= e G_E_FOp_Def_Implies) G_FOp
(ite (= e G_E_FOp_Def_Equiv) G_FOp
(ite (= e G_E_FOp_Def_And) G_FOp
(ite (= e G_E_FOp_Def_Or) G_FOp
(ite (= e G_E_FOp_Def_SeqComp) G_FOp
(ite (= e G_E_FOp_Def_Not) G_FOp
(ite (= e G_E_DFA_RefId) G_Id
(ite (= e G_E_DFA_ObjId) G_Id
(ite (= e G_E_DFA_SetId) G_Id
(ite (= e G_E_DFA_uparrow) G_Bool
(ite (= e G_E_DFA_Rs) G_R
(ite (= e G_E_R_Id1) G_Id
(ite (= e G_E_R_Id2) G_Id
(ite (= e G_E_AD_Id) G_Id
(ite (= e G_E_AD_Fs) G_F
(ite (= e G_E_AD_Ds) G_D
G_Null))

(define-fun Source_G ((e E_G)) V_G
(ite (= e G_E_AFS_Def_SE) G_AFS_SE
(ite (= e G_E_AFS_Def_AFSS) G_AFSS
(ite (= e G_E_AFS_Def_FSOp) G_AFS_FSOp
(ite (= e G_E_AFS_FSOp_Op) G_AFS_FSOp
(ite (= e G_E_AFS_FSOp_AFS) G_AFS_FSOp

129

(ite (= e G_E_AFSS_Def_SetId) G_AFSS_SetId
(ite (= e G_E_AFSS_Def_SDef) G_AFSS_SDef
(ite (= e G_E_AFSS_SetId_Id) G_AFSS_SetId
(ite (= e G_E_AFSS_SDef_SDef) G_AFSS_SDef
(ite (= e G_E_AF_AFS) G_AF
(ite (= e G_E_AF_PEPs) G_AF
(ite (= e G_E_F_Def_AF) G_AF
(ite (= e G_E_F_Def_SF) G_SF
(ite (= e G_E_F_Def_NAry) G_F_NAry
(ite (= e G_E_F_NAry_Fs) G_F_NAry
(ite (= e G_E_F_NAry_FOp) G_F_NAry
(ite (= e G_E_SF_Def_hasIn) G_SF_hasIn
(ite (= e G_E_SF_Def_shaded) G_SF_shaded
(ite (= e G_E_SF_Def_SDef) G_SDef
(ite (= e G_E_SF_hasIn_TD) G_SF_hasIn
(ite (= e G_E_SF_hasIn_SExp) G_SF_hasIn
(ite (= e G_E_SF_SDef_shaded) G_SF_SDef
(ite (= e G_E_SF_SDef_Id) G_SF_SDef
(ite (= e G_E_SF_SDef_SDef) G_SF_SDef
(ite (= e G_E_SF_shaded_TD) G_SF_shaded
(ite (= e G_E_F_Def_QF) G_QF
(ite (= e G_E_QF_QDs) G_QF
(ite (= e G_E_QF_F) G_QF
(ite (= e G_E_QD_QK) G_QD
(ite (= e G_E_QD_VDs) G_QD
(ite (= e G_E_QK_Def_ForAll) G_QK_All
(ite (= e G_E_QK_Def_Exists) G_QK_Exists
(ite (= e G_E_D_Def_VD) G_VD
(ite (= e G_E_DV_Def_Set) G_VD_Set
(ite (= e G_E_DV_Def_Seq) G_VD_Seq
(ite (= e G_E_DV_Def_O) G_VD_O
(ite (= e G_E_D_Def_DF) G_DF
(ite (= e G_E_DF_Def_NAry) G_DF_NAry
(ite (= e G_E_DF_Def_DFA) G_DFA
(ite (= e G_E_D_VD_Id) G_VD
(ite (= e G_E_D_VD_TD) G_VD
(ite (= e G_E_D_VD_isHidden) G_VD
(ite (= e G_E_DV_Def_O_opt) G_VD_O
(ite (= e G_E_DF_NAry_DFs) G_DF_NAry
(ite (= e G_E_DF_NAry_FOp) G_DF_NAry
(ite (= e G_E_FOp_Def_Implies) G_FOp_Implies
(ite (= e G_E_FOp_Def_Equiv) G_FOp_Equiv
(ite (= e G_E_FOp_Def_And) G_FOp_And
(ite (= e G_E_FOp_Def_Or) G_FOp_Or
(ite (= e G_E_FOp_Def_SeqComp) G_FOp_SeqComp
(ite (= e G_E_FOp_Def_Not) G_FOp_Not
(ite (= e G_E_DFA_RefId) G_DFA
(ite (= e G_E_DFA_ObjId) G_DFA
(ite (= e G_E_DFA_SetId) G_DFA

130

(ite (= e G_E_DFA_uparrow) G_DFA
(ite (= e G_E_DFA_Rs) G_DFA
(ite (= e G_E_R_Id1) G_R
(ite (= e G_E_R_Id2) G_R
(ite (= e G_E_AD_Id) G_AD
(ite (= e G_E_AD_Fs) G_AD
(ite (= e G_E_AD_Ds) G_AD
G_Null))

(push)
(echo "Testing function 'Target_MM' (1) --> sat")
(assert (= (Target_MM MM_E_I_FormulaSourceSet) MM_FormulaSource))
(check-sat)
(pop)

(push)
(echo "Testing function 'Target_MM' (2) --> sat")
(assert (= (Target_MM MM_E_FormulaSourceUnary_operator) MM_FormulaSourceUOp))
(check-sat)
(pop)

(push)
(echo "Testing function 'Target_MM' (3) --> unsat")
(assert (= (Target_MM MM_E_FormulaSourceSetDef_setDef) MM_Null))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Target_MM emm) MM_Null) (= emm MM_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking totality of 'Target_G' --> sat")
(assert (forall ((eg E_G))

(=> (= (Target_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

(push)
(echo "Checking that the target function 'Target_MM' is preserved --> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Target_MM emm1)) (Target_G (Map_E emm1)))))
(check-sat)
(pop)

(push)

131

(echo "Testing function 'Source_MM' (1) --> sat")
(assert (= (Source_MM MM_E_I_FormulaSourceSetId) MM_FormulaSourceSetId))
(check-sat)
(pop)

(push)
(echo "Testing function 'Source_MM' (2) --> sat")
(assert (= (Source_MM MM_E_I_FormulaSourceSetDef) MM_FormulaSourceSetDef))
(check-sat)
(pop)

(push)
(echo "Testing function 'Source_MM' (3) --> unsat")
(assert (= (Source_MM MM_E_FormulaSourceUnary_operator) MM_Null))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_MM' --> sat")
(assert (forall ((emm E_MM))

(=> (= (Source_MM emm) MM_Null) (= emm MM_E_Null))))
(check-sat)
(pop)

(push)
(echo "Testing function 'Source_G' (1) --> sat")
(assert (= (Source_G G_E_AFS_FSOp_AFS) G_AFS_FSOp))
(check-sat)
(pop)

(push)
(echo "Testing function 'Source_G' (2) --> sat")
(assert (= (Source_G G_E_AFSS_Def_SetId) G_AFSS_SetId))
(check-sat)
(pop)

(push)
(echo "Testing function 'Source_G' (3) --> unsat")
(assert (= (Source_G G_E_AFSS_SDef_SDef) G_Null))
(check-sat)
(pop)

(push)
(echo "Checking Totality of 'Source_G' -->sat")
(assert (forall ((eg E_G))

(=> (= (Source_G eg) G_Null) (= eg G_E_Null))))
(check-sat)
(pop)

132

(push)
(echo "Checking that the source function 'Source_MM' is preserved --> sat")
(assert (forall ((emm1 E_MM))

(= (Map_V (Source_MM emm1)) (Source_G (Map_E emm1)))))
(check-sat)
(pop)

C.3.1 Z3 Output
Testing function 'Map_V' (1) --> sat
sat
Testing function 'Map_V' (2) --> sat
sat
Testing function 'Map_V' (3) --> unsat
unsat
Checking Totality of 'Map_V' --> sat
sat
Checking injectiveness of 'Map_V' --> sat
sat
Checking Surjectiveness of 'Map_V' -->sat
sat
Testing the 'Map_E' function (1) --> sat
sat
Testing the 'Map_E' function (2) --> sat
sat
Testing the 'Map_E' function (3) --> unsat
unsat
Checking Totality of 'Map_E' --> sat
sat
Checking injectiveness of 'Map_E' --> sat
sat
Checking Surjectiveness of 'Map_E' (1) --> sat
sat
Testing function 'Target_MM' (1) --> sat
sat
Testing function 'Target_MM' (2) --> sat
sat
Testing function 'Target_MM' (3) --> unsat
unsat
Checking totality of 'Target_MM' --> sat
sat
Checking totality of 'Target_G' --> sat
sat
Checking that the target function 'Target_MM' is preserved --> sat
sat
Testing function 'Source_MM' (1) --> sat
sat

133

Testing function 'Source_MM' (2) --> sat
sat
Testing function 'Source_MM' (3) --> unsat
unsat
Checking Totality of 'Source_MM' --> sat
sat
Testing function 'Source_G' (1) --> sat
sat
Testing function 'Source_G' (2) --> sat
sat
Testing function 'Source_G' (3) --> unsat
unsat
Checking Totality of 'Source_G' -->sat
sat
Checking that the source function 'Source_MM' is preserved --> sat
sat

134

	Introduction
	Background: The Visual Contract Language (VCL)
	VCL Diagrams
	VCL Syntax and Semantics

	Outline

	Running Example
	Syntax
	Metamodels
	Common
	Structural Diagrams
	Assertion Diagrams

	Grammars

	From Metamodels to Grammars and Back
	Overall setting
	VCL Syntactic Isomorphisms
	Isomorphism Theorems and their Proofs
	Proofs for the common part
	Proofs for the SD part
	Proofs for the AD part

	Type System
	Types and Environments
	Base Rules
	Common Rules
	Rules for Structural Diagrams
	Rules for Assertion Diagrams

	Auxiliary Definitions
	Environment Operators
	Predicates
	Auxiliary Functions
	Function getGType
	Functions producing variable environments (VEs)
	Function getDK
	Functions to extract information from ADs
	Functions for AD lookup
	Functions for substitutions
	Function getSIdFrScalarOrCollection

	Alloy Metamodels
	VCL Common
	Bool Module
	VCL Structural Diagrams
	VCL Assertion Diagrams

	Z3 Proofs
	Common
	Z3 Encoding
	Z3 Proof Output

	Structural diagrams
	Z3 Output

	Assertion diagrams
	Z3 Output

