Technische Universitdat Berlin

der Fakultat IV — Elektrotechnik und Informatik

Forschungsberichte

Enterprise Modelling
using Algebraic Graph Transformation -
Extended Version

Christoph Brandt, Frank Hermann, Hartmut Ehrig,
Thomas Engel

Bericht-Nr. 2010-06
ISSN 1436-9915

Enterprise Modelling using Algebraic Graph Transformation -

Extended Version

Construction, Integration, Transformation and
Evaluation of Organizational Models at Credit Suisse

Christoph Brandt!*, Frank Hermann?, Hartmut Ehrig?, Thomas Engel’

! Université du Luxembourg, SECAN-Lab, Campus Kirchberg,

6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, EU

e-mail: {christoph.brandt, thomas.engel}@uni. lu,

WWW home page: http://wiki.uni.lu/secan-lab

2 Technische Universitit Berlin, Fakultit IV, Theoretische Informatik/Formale Spezifikation,

Sekr. FR 6-1, Franklinstr. 28/29, 10587 Berlin, EU
e-mail: {frank, ehrig}@cs.tu-berlin.de
WWW home page: http://www.tfs.tu-berlin.de

Abstract An analysis of today’s situation at Credit
Suisse has shown severe problems, because it is based
on current best practices and ad-hoc modelling tech-
niques to handle important aspects of security, risk and
compliance. Based on this analysis we propose in this
paper a new enterprise model which allows the con-
struction, integration, transformation and evaluation of
different organizational models in a big decentralized
organization like Credit Suisse. The main idea of the
new model framework is to provide small decentralized
models and intra-model evaluation techniques to han-
dle services, processes and rules separately for the busi-
ness and I'T universe on one hand and for human-centric
and machine-centric concepts on the other hand. Fur-
thermore, the new framework provides inter-modelling
techniques based on algebraic graph transformation to
establish the connection between different kinds of mod-
els and to allow integration of the decentralized models.
In order to check for security, risk and compliance in
a suitable way, our models and techniques are based on
different kinds of formal methods. In this paper, we show
that algebraic graph transformation techniques are use-
ful not only for intra-modelling — using graph grammars
for visual languages and graph constraints for require-
ments — but also for inter-modelling — using triple graph
grammars for model transformation and integration.
Altogether, we present the overall idea of our new
model framework and show how to solve specific prob-
lems concerning intra- and inter-modelling as first steps.
This should give evidence that our framework can also

* This work is partially supported by Credit Suisse (Lux-
embourg) S.A., 56, Grand Rue BP 40, L-1660 Luxembourg,
Telephone: 4352 46 00 11-1, Fax: +352 46 32 70

handle important other requirements for enterprise mod-
elling in a big decentralized organization like Credit Su-
isse.

1 Introduction

The problem addressed in this paper is about how to
construct, integrate, transform and evaluate new orga-
nizational models in order to improve today’s enterprise
models at Credit Suisse and similar organizations based
on a research project supported by Credit Suisse. The
new models are going to be constructed to represent
relevant aspects of the real-world organization that are
needed to check for security, risk and compliance issues
the bank has to handle because of national and interna-
tional laws, financial regulations and internal rules.
After an analysis of today’s situation at Credit Suisse
and a detailed requirement analysis, this paper presents
a potential solution for enterprise modelling using alge-
braic graph transformation. This new modelling frame-
work includes services, processes and rules , business and
an IT views and a distinction between human-centric
and machine-centric models. The idea is to have not one
single bulky enterprise model but multiple lean models
that can be integrated leading to a holistic organiza-
tional view of the enterprise. The integrated enterprise
model can be used for evaluation, simulation and au-
tomation of business processes and can be managed inde-
pendently in order to match the requirements of a decen-
tralized organization. Algebraic graph transformation is
used as a formalism to construct, integrate, transform

and evaluate the various models. The foundations of al-
gebraic graph transformation date back to the 1970s [I]
and the framework is continuously extended and adapted
for an increasing area of applications, especially in com-
puter science. A wide range of results for the analysis of
rule based systems is available concerning correctness,
confluence, concurrency and distributed computing [2]
3l4]. The formal basis of algebraic graph transformation
[5] enables formal proofs about the qualities of opera-
tions and model transformations that may impact secu-
rity, risk and compliance issues. This has the potential to
be of enormous practical relevance in the Credit Suisse
scenario.

Therefore the scope of this study is to show how
lean organizational models can be constructed and main-
tained in a controlled way, and how the interplay of mod-
els can be organized by exploiting techniques based on
algebraic graph transformation respecting real-world re-
quirements. This result is assumed to create the precon-
dition for going much deeper into the analysis of security,
risk and compliance issues later on. In a first step, a se-
curity example is exemplarily discussed by applying the
introduced formalisms.

Cost reduction and quality assurance as well as au-
tomation have been defined by Credit Suisse as driving
business interests. Hence, the solution is not only re-
quired to lead to scientifically sound results but is also
required to realize these business interests. Because of
the generality of these requirements, our proposed new
enterprise model can also be applied to other organiza-
tions having similar requirements.

The novelty presented in this paper lies in the com-
bination of human-centric and machine-centric models
and in using algebraic graph transformation as the for-
mal modelling technique to construct, integrate, trans-
form and evaluate these models. At the same time, the
proposed solution has the potential to meet organiza-
tional side-constraints at Credit Suisse like decentraliza-
tion and other business interests. In contrast to today’s
practice at Credit Suisse which is about integrating tools
to address very specific issues, the proposed solution sug-
gests to start with the question of how a holistic organi-
zational model should be build, managed and evaluated
that can answer security, risk and compliance questions.
This enables the automation, monitoring and analysis
of the organizational workflows and helps to facilitate
a corresponding IT implementation. The proposed ap-
proach frees the enterprise model from IT implementa-
tion aspects and helps to keep the organizational model
consistent and focussed to answer questions about secu-
rity, risk and compliance.

Today’s Credit Suisse’s product-driven approach to
model organizational structures and to check for secu-
rity, risk and compliance requirements does not result
in a holistic organizational model that can be used to
answer such questions.

Christoph Brandt et al.

In contrast to any product-driven solution the pro-
posed approach promises a better scalability and exten-
sibility as well as lower long-term costs of ownership be-
cause it considers organizational scheme and instance
models to be objects of their own and independent of im-
plementation issues and tools. This is very different from
today’s practice where tools own certain data about the
organization that cannot easily be used without them.
Since people at Credit Suisse cannot be expected to be
technical experts in formal methods it is important to
point out that algebraic graph transformation is not only
a formal but also a visual specification technique, which
allows intuitive understanding. In detail, the construc-
tion, transformation, integration and evaluation of orga-
nizational scheme and instance models can be realized
by algebraic graph transformation techniques that can
directly work on the abstract syntax of these models.

This promises to enable the full control of organiza-
tional predicates that are of high practical relevance. The
product-driven approach that focuses on the technical
integration of tools and discards the formal integration
of methods is not able to do that.

The paper is organized as follows: In Sec. [2| enter-
prise modelling in the sense of our new modelling frame-
work is introduced based on the real-world requirements
coming out of the Credit Suisse scenario. In detail, di-
agrams representing IT and business services and pro-
cesses as well as samples of a domain language for orga-
nizational security requirements are shown as human-
centric models. In accordance with these models ab-
stract behaviour types and reo-connectors as well as suit-
able other formal techniques are proposed as machine-
centric models. In sections Bl and M intra-model and
inter-model techniques are introduced based on algebraic
graph transformation techniques. They are used to con-
struct, integrate, transform and evaluate the models of
this framework. In more detail, the intra model tech-
niques encompass the construction of models, their cor-
rection according to well-formedness rules and a valida-
tion of a subset of functional and non-functional require-
ments. Regarding inter-model techniques triple-graph
grammars [67] are explained and then used for model
transformation as well as model integration. Triple-
graph grammars can even help to propagate require-
ments that are formalized as graph constraints. In Sec.
we study related work and in Sec. [} we conclude with
a summary of main achievements and aspects of future
work.

2 Enterprise Models and Enterprise Modelling

The first part of this section presents how Credit Suisse
addresses security, risk and compliance issues today by
the help of best practices. This leads to highly focussed
and partial enterprise models that are mostly build using
ad-hoc modelling techniques. Thereafter, we propose our

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 3

new methodological approach that starts with lean and
focussed enterprise models which in a later stage should
be soundly integrated towards a holistic organizational
view, so that security, risk and compliance issues can
be answered based on an integrated and well focused
organizational model of the enterprise.

2.1 Today’s Situation

Today’s situation at Credit Suisse is essentially top-
down. It is top-down because based on given security,
risk or compliance requirements specific data are col-
lected and specific organizational operations are put into
place. In the best case this results in highly specialized
and partial enterprise models and in an ad-hoc mod-
elling technique based on best-practices that are used to
build those models. Therefore, security, risk and com-
pliance departments work in a non-integrated and un-
coordinated fashion. In a lot of cases controls are es-
tablished after the organizational practice is already in
place. So, controls are mostly realized in an end-of-pipe
way. Because controls are evaluated using best-practices
like checklists this often results in partial insights only.
Security, risk and compliance requirements are treated
on a demand basis driven by certain stakeholders who
only focus on their interests. Because this results in re-
dundant tasks and conceptual mismatches of results as
well as neglected reuse potentials in the area of enter-
prise modelling, one could think of using a performance
indicator that measures blind and misdirected outputs
to characterize the maturity of the current practice at
Credit Suisse. However, specific controlling data related
to the potential solution were not available at the time
of this writing. The following table in Fig. [I| summarizes
the situation.

Today
Approach | Best Practices
Focus Interest
Control End-of-pipe
Judgment | Checklists
Coverage | Partial

Fig. 1 Security, Risk and Compliance — Today

Today’s enterprise modelling at Credit Suisse can ei-
ther be looked at from its perspective of modelling busi-
ness processes in business departments or from the point
of view of running technical components in IT depart-
ments. In addition to that, business and IT requirements
are documented. At the bank, both perspectives exist
and both have their own history, document types and
people. These department-oriented views are not syn-
chronized, not integrated, not conflict-free and some-
times over- or under-specified. The situation can fur-
ther be characterized as document-oriented, not model-
centric. In the documents, different types of models or

fragments of models can be found — the following table
in Fig. 2] lists some of them.

Components | Processes | Requirements
Business
Department | — UML BO
IT MS Excel
Department | MS Visio - MS Word

Fig. 2 Today’s Enterprise Modelling at Credit Suisse

So, landscapes of I'T components are documented us-
ing Microsoft Visio, business processes are documented
using UML [8], business requirements are documented
using business object models (BO) [9] or just natural
or standardized business languages. The fact that busi-
ness services and I'T processes are not documented in the
scenario shows a mismatch in the involved departments’
understanding of the common universe.

Therefore, the situation at Credit Suisse is unsatis-
factory. Members of Credit Suisse’ staff confirmed that
best-practices do not scale well in a big organization and
they do not fully cover all possible organizational states.
So, there are quality and costs problems when imple-
menting best-practices and processing the obtained re-
sults. The interest-driven data collection leads to par-
tial models that are not synchronized and not soundly
integrated. So, for example, the modelling of business
continuity processes is not properly integrating security
requirements. The end-of-pipe control defined by best-
practices increases the cycle times for evaluations of or-
ganizational settings. So, a contemporary reaction is get-
ting difficult. Organizational attributes that are part of
best-practices’ checklists are not formally grounded in
well-defined enterprise models. So, there is no clear con-
trol about the derivation and deduction of security, risk
and compliance predicates. Often checklists are applied
to specific cases only. So, concrete statements about se-
curity, risk and compliance are exclusively valid for very
specific assumptions. Therefore, they may not even be
comparable among themselves.

The proposed new solution that is presented in the
following addresses these issues by the help of formal
methods. However, because formal methods are often
considered to be difficult to understand special accen-
tuation is put on usability and applicability as well as
visual techniques and suitable implementation aspects.
The aim is to replace the semi-formal and non-integrated
organizational models and methods used today by a
generic enterprise model build by the help of declarative
and well-defined modelling techniques. The formal basis
of such a model and corresponding methods will support
the modelling process and the evaluation of models re-
sulting in lower costs and better quality of results. This
is very likely to improve the organizational competitive-
ness by the help of a better organizational control and
decision support as well as automation.

At the same time organizational side constraints
remain and must be respected. Today, organizational
knowledge is available only partial, it is available in a
non-integrated and distributed way and is often incon-
sistent and incomplete.

2.2 Tomorrow’s Situation

Tomorrow’s situation is likely to be different. Business
people at Credit Suisse requested to work with models
that are build using diagram- and text-oriented domain
languages in an integrated way. They further requested
support for fuzzy, incomplete and inconsistent models
as well as for partial redundant models that have been
created and entered by different persons. Because of the
dynamic nature of their business environment they re-
quested support for evolving domain languages in terms
of their syntax and semantics and support to merge mod-
els from different people as well as an appropriate ver-
sioning. Despite the semi-formal nature of those mod-
els they asked for model-checking-like capabilities. Their
idea of a modelling process is the one of using clickable
mathematics which means constructing models by the
help of intuitive and declarative click operations on a
screen that result transparently in models that can be
evaluated by the help of formal methods.

The first shift compared with today’s situation is
to start building fragments of an envisioned enterprise
model in contrast of checking specific cases regard-
ing concrete security, risk and compliance requirements.
Therefore, our new approach starts bottom-up. Once, an
appropriate enterprise model is available security, risk
and compliance predicates can be defined that make ref-
erence to such a model. Therefore, their semantics will
be well-defined. Corresponding security, risk and com-
pliance requirements can then be build on top of such
predicates in a constructive manner.

Further, by starting with an enterprise model the fo-
cus shifts from specific interests of certain stakeholders
towards a more holistic understanding of the organiza-
tion. Once, such a holistic enterprise model is available it
can be model checked regarding security, risk and com-
pliance which causes a shift from evaluating the modelled
business reality of Credit Suisse in an ex-post fashion to
evaluating an enterprise model under development in an
ex-ante way. So, there is a switch from an end-of-pipe
control to a begin-of-pipe control. Assumed, that an en-
terprise model is available it would be possible to run
proves, simulations and tests to check for security, risk
and compliance requirements covering all states of the
model. The table in Fig. |3| summarizes some character-
istics of tomorrow’s situation.

Based on future requirements there will be a switch
from the use of UML models and informal MS Visio
diagrams at Credit Suisse towards domain specific mod-
elling languages. In addition to that, the process ori-
ented view of business departments will be enhanced by

Christoph Brandt et al.

Today Tomorrow
Approach | Best Practices | formal Models, Methods
Focus Interest Organization

top-down bottom-up
Control End-of-pipe Begin-of-pipe
Judgment | Checklists Prove, Simulation, Test
Coverage | Partial Complete

Fig. 3 Security, Risk and Compliance — Today and Tomor-
row

an understanding of business services. The same applies
to the IT departments in a symmetric way. Here, the
focus on IT services will be enlarged by looking at IT
processes as well. At the end, Business and IT depart-
ments can work with the same type of service, process
and rules models, which will facilitate any kind of au-
tomatic alignment between both worlds. Given that life
cycles of models in the Business and IT universe are
different and that there is no clear top-down or bottom-
up dependency but a mutual relationship between both
worlds, implementation driven modelling processes wont
be the driving force any longer. They will be substituted
by specification oriented modelling processes which are
going to be orthogonal to any implementation activity.
By aligning domain specific models with formal models
the semantics of domain models can be explained. In
detail, this relationship between so called human-centric
models or domain models and machine-centric models or
formal models can be realized by model integration. In
the given case of this study at Credit Suisse, abstract be-
haviour types and reo connectors are proposed to explain
the semantics of services and service landscape models,
the mCRL2 process algebra [I0] can be used to define
the semantics of business processes that appear as event
driven process chains. Finally, first-order logic can be
used to explain the semantics of business rules. Such a
framework of formal methods has the potential to reduce
today’s under-specification of enterprise models’ seman-
tics that causes significant integration problems. Orga-
nizational security, risk and compliance predicates can
then be soundly anchored in this formal framework.

Service Process Rules and
Landscapes | Landscapes | Principles
Business
Universe ABT & Reo | PA & ML FOL
IT Universe | ABT & Reo | PA & ML FOL

Fig. 4 Tomorrow’s Enterprise Engineering at Credit Suisse
— Machine-Centric View

The machine-oriented slice of the scenario is pre-
sented by the table in Fig.] where ABT & Reo means
abstract behaviour types and Reo connectors [I1], PA &
ML means a process algebra encompassing a modal logic
[T0] and FOL denotes first order logic. More details are

given in Sections 2.5 and

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 5

2.8 The New Model Framework in a Nutshell

The main idea of the new model framework is to reduce
the overall complexity of one big organizational model by
splitting it in three dimensions as shown in Fig. |5} The
first dimension includes services, processes and rules, the
second dimension the business and IT universe and the
third dimension human-centric and machine-centric con-
cepts as discussed in the previous sections. Altogether
this leads to 12 different types of models, which can be
specified, interrelated and integrated by different tech-
niques.

From a formal point of view the model framework
in Fig. [5| shows different coordinates (X,Y, Z) and each
of them usually contains several models for one overall
enterprise model and these models change over time. For
instance the coordinate (S, B, M) represents all service
models for the business universe using a machine centric
modelling language - in our scenario ABT-Reo diagrams.
We denote the set of the models in one coordinate by
Mx v,z and refer to a specific model by the notation
Mxy z for a model Mxyz € Mxy,z.

As pointed out already, the splitting into three di-
mensions leads to several lean and focussed models for
specific purposes, which reduces the overall complexity
of one big organizational model. But the new model
framework includes also the interrelations between cor-
responding models in each of the three dimensions. The
inter-dimensional interplay for each dimension will be
explained below.

Last but not least our new enterprise modelling
is based on algebraic graph transformation techniques,
which support construction, integration and transforma-
tion of organizational models in our new framework as
discussed in the next subsection.

Services Processes Rules

| | |
[) s
il i

Business

Universe (8BH) | | PBH) | | (RBH) Machine
Centric

IT Universe (SIH) | | PLH) || (RILH) // coneepts
Human
Centric
Concepts

Fig. 5 Model Framework

The inter-dimensional interplay in the framework in
Fig. p| between services, processes and rules can be ex-
plained by the paradigm of a street map. The service
landscape is considered to be the street map on which
processes run like bus lines. Rules will govern concrete
decisions like it is the case for road traffic regulations.

The inter-dimensional interplay between Business
and IT models is the one of a mutual supportive align-
ment. Parts of the Business model can be automated
by the help of a corresponding IT model. However, it is
still possible to assume that there are parts of the Busi-
ness model without IT support. The same is true for an
IT model. Parts of an IT model may automate a Busi-
ness model. However, the I'T may have their own specific
services, processes and rules for which there is no cor-
respondence in the business model. Therefore, neither
a top-down nor a bottom-up relationship is appropriate
here. It is more a relationship between equals.

The inter-dimensional interplay in the framework
between human-centric and machine-centric models is
about to join the world of humans with the world of
machines. Humans like to have the possibility to enter
incomplete, inconsistent, redundant and evolving mod-
els. In addition to that, they even like the definition of
the used domain languages to be open. Such require-
ments are usually incompatible with implemented for-
mal methods. However, having machine-oriented mod-
els that are build on implemented formal methods like
the ones just introduced the semantics of human-centric
models can be smoothly explained by a model integra-
tion between human-centric and machine-centric mod-
els. Further, model checking techniques can be applied
in an encapsulated way using machine-centric models
to evaluate security, risk and compliance requirements
in an automated fashion. This is something people at
Credit Suisse have strongly requested. They like to use
the power of formal methods without touching them.
A detailed motivation is given in [I2]. The special is-
sue here is that such an integration is open. Integration
rules can be changed, deleted and added. Therefore, the
semantics of human-centric models can evolve. In ad-
dition to that such a loose coupling between human-
and machine-centric models enables to have syntactic
elements in a domain language for which there is no se-
mantics available, but which can be added later. And
assuming that a given domain model is going to be modi-
fied an aligned machine-centric model can drive comple-
tion rules during the modelling process. Therefore, we
do have no clear top-down or bottom-up relationship
between human- and machine-centric models.

The inter-dimensional model interplay in the frame-
work in Fig. [flopens an orthogonal problem and solution
space. It is a problem space because the current situa-
tion of an organization can be documented and evaluated
ex-post. It is a solution space because possible future or-
ganizations can be defined by it and evaluated ex-ante.
Having the current and future organization available a
transition path can be defined. So, not only versions
of service, process and rule models but also versions of
whole organizational models can be imagined. Having a
history of organizational models and performance data
available the practical impact of business reengineering
projects can be much better controlled.

2.4 Using Algebraic Graph Transformation

Algebraic graph transformation techniques are able to
support a wide range of the requirements discussed in
the previous Subsections [2.2] and So, model integra-
tion can be used to realize the alignment between Busi-
ness and IT models [I3}[14] using triple graph grammar
techniques in Sec. [l Because model integration works
both ways round-trip-engineering can be supported in
principle as it can be realized by intra-model integra-
tion and transformation techniques shown in later sec-
tions. This ideally supports the decentralized organiza-
tion of Credit Suisse where models are created at differ-
ent locations asynchronously. Algebraic graph transfor-
mation can be used to connect domain models or human-
centric models with formal models or machine-centric
models to explain the semantics of domain models while
keeping this relationship open for future changes. As a
consequence, machine-centric models allow, for exam-
ple, fully automated evaluations of organizational poli-
cies of business processes by keeping the business pro-
cess model human-centric and aligned with the machine-
centric counterparts using inter-model integration tech-
niques. Algebraic graph transformation can also support
consistency checks between service, process and rules
models by the help of model integration. These means
to integrate models enables to keep the models inde-
pendent, lean, focused and manageable and they fur-
ther enable aggregated views that can be model checked.
In addition to that, integrated models will facilitate the
communication between different departments. Simula-
tion models do not need to be given explicitly. They can
be created by transformation rules using service, process
and rule models as their input.

Algebraic graph transformation - as shown in Sec.
below - enables to specify graph transformation rules in a
declarative way which makes this formal technique very
usable. Further, the underlying algorithms can be fully
implemented. At the same time, type graphs and graph
transformation rules can change. Therefore, the imple-
mentation can be kept static while being able to cope
with changing type graphs and changing graph transfor-
mation rules. So, transformation rules can be executed
by a generic implementation of algebraic graph trans-
formation. We will show this in detail based on a small
showcase that has been implemented in Mathematica
[156]. Compared with alternative solutions this formal
technique is built on a body of theory that allows for-
mal proofs. Therefore, guarantees can be given which
is of high relevance when discussing security, risk and
compliance predicates.

In detail, models are considered as objects of their
own. Small models can be integrated to one holistic
model. Decentralized modelling is possible. Enforcement
of security requirements by the help of graph constraints
is available. Algebraic graph transformation has a good
potential to be compatible with the concept of plugga-

Christoph Brandt et al.

bility and the notion of ontologies. Instance- and class-
modelling is possible likewise. Models can be modified in
a controlled way. Models can be build independently and
decentralized. Transformation rules are declarative and
therefore very easy to understand by people who are not
experts in formal methods. Language artefacts of differ-
ent types like diagram-artefacts and text-artefacts can
be glued together based on their abstract syntax using
the same technique. So, domain languages can be used
equally easy as diagram languages. The separation into
human-centric models and machine-centric models helps
people to administrate incomplete or inconsistent mod-
els without being forced to comply to well-formedness of
models based on formal methods. By using catalogues
of model elements and assemblies a lego-like modelling
system could be provided. The same applies to transfor-
mation rules or sets of transformation rules. The tech-
nique of algebraic graph transformation is able to cope
with such open catalogues.

The subjectivity of entered models can be handled
by intersecting service, process or rules models created
by different people to derive at a common denominator
that is shared by all modelling parties. Linguistic am-
biguities can be addressed by integration rules that are
mapping human-centric models towards machine-centric
models and using redundant elements of a human-centric
model for this mapping to reduce or resolve ambiguity
issues. Further, the modelling process as it is supported
by algebraic graph transformation is agile. It can there-
fore support refinements and extensions at any level of
detail and abstraction in a scalable and declarative way.
Finally, rules sets of transformation rules can be mod-
ified. New rules can be added, old rules can be depre-
cated. So, adaptive modelling can easily be supported.
And because the applied technique of algebraic graph
transformation address the abstract syntax of models,
it can in principle handle any type of model visual or
textual. It is even possible to combine semi-structured
models as in the case of natural text with structured
models like the ones used for business rules.

Finally, model-based interoperability is defined in the
context of this study in Sec. [d] as the ability to execute
sound model integrations and to check for inconsisten-
cies during the integration as well as to execute model
transformations using inter-model techniques. It further
encompasses the ability to propagate model invariants
— defined by graph constraints — and the possibility to
realize constructive completion during inter-model inte-
gration. This theoretical notion of model-based interop-
erability is likely to facilitate the tool-oriented interop-
erability of different modelling products in the future.

2.5 Service Models

In the following subsection service models are introduced
based on examples. A human-centric and a machine-
centric variant are shown.

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 7

Human-centric service models as they came up dur-
ing this study are diagram-like language artefacts that
sketch service instances as well as their connections. This
can be done using different pictograms. In practice, such
models are created at Credit Suisse by the help of MS
Viso or similar tools. In the following, we will always as-
sume that such diagram languages are given by a cata-
logue of icons and a corresponding graph grammar. How-
ever, the assumption is that both, the catalogue of lan-
guage icons and the graph grammar can be changed. In
detail, new elements can be added to the catalogue, old
ones can be deleted or modified, as well as new graph
transformation rules can be added to the graph gram-
mar and old ones can be deleted or modified. Therefore,
a diagram-like domain language for service landscapes
can be kept open as it was requested by people at Credit
Suisse to handle new and possibly unforeseen situations.

Because business and IT people are assumed to
model their service landscapes independently we do give
two examples for human-centric service models in the
following. Both models can be aligned to document how
business services are realized by the help of IT services,
or how IT services drive business services. This align-
ment can be realized by the help of model integration
techniques as it will be shown in Sec.

Private Banking

S o s s s o
e e e o

Fig. 6 Human-centric Model of Business Services

Ezample 1 (Human-centric Model for a Business Service
Structure) A fragment of a human-centric business ser-
vice model is shown in Fig. [f] The departments “In-
vestment Banking” and “Private Banking” are depart-
ments at Credit Suisse. Information exchanged between
both parties must comply to the Chinese Wall Policy
[16]. The policy defines what information is allowed to
be exchanged between both departments. To guarantee
that the policy is respected a filter will suppress illegal
messages between both service instances in the diagram.
Each service instance represents a department. There-
fore, the policy is realized as a filter in a service model.
This business view completely abstracts away IT details.

- J

Fig. 7 Human-centric Model of IT Services

Ezample 2 (Human-centric Model for an IT Service
Structure) A fragment of a human-centric IT service
model is shown in Fig. Here, we see that network
zone “NW4a”and “NW4b” are interconnected. We fur-
ther see that network “NW4a” is connected by the help
of a secured connection with network zone “NW7” and
network zone “NW4a” is connected by the help of a se-
cured connection with network zone “NW7”, too.

As a concrete alignment between the business model
fragment in Fig. [f] and the IT model fragment in Fig
the private banking department can be mapped to
network zone “NW4a” and “NW4b” and the investment
banking department can be mapped to the network zone
“NWT”. The connector between the investment and the
banking department in the business universe is then re-
lated with the connections between network “NWd4a”
and “NWT7T” as well as “NW4b” and “NW7”. Therefore,
this relation is not necessarily a one-to-one mapping.

Human-centric service models as they have just been
introduced are only syntax artefacts. A corresponding
semantics can be assigned by the help of an alignment
with machine-centric models. The corresponding type of
machine-centric model that is used here are abstract be-
haviour types and Reo connectors [TTLI7,A8T19]. This
kind of model is based on formal methods. Its set of
elementary icons and its graph grammar are fix.

The reason why we propose to use abstract behaviour
types and reo connectors to specify services and service
landscapes is because of their support for exogenous co-
ordination. In addition to that abstract behavior types
focus on incoming and outgoing messages and, therefore,
abstract away implementation details of services which
frees an ABT-Reo model from implementation aspects
and reduces the overall complexity of models.

Ezample 3 (ABT-Reo Instance) A fragment of machine-
centric business service model is shown in its concrete
syntax in Fig. [§] Here, two abstract behaviour types are
used to represent the investment and the private bank-
ing department. Messages running between these two
abstract behaviour types have to pass through different

Private_Banking:Department |
private

- public
Reo- ABT-

connectors F1:Filter components

private public

) S
[Investment_Banking:Department]

Fig. 8 ABT-Reo Instance in the Business Universe

Reo connectors. Messages using private connectors are
not visible to the outside. Messages using public connec-
tors are visible. The filter in the middle of the diagram
listens to messages and will suppress private messages
that are trying to get on a public connector. This frag-
ment of a machine-centric business service model is able
to formally specify by the help of formal methods orga-
nizational security policies like the Chinese Wall Policy.
Using model-checking it is possible to prove that no pri-
vate message will finally pass by a public connector.

Besides the modelling of business service structures
ABT-Reo diagrams can also be used to model IT ser-
vice structures. Both types are intended to be aligned
with their corresponding conceptual service models and
in this way the human centric models shall be formally
analysed using the ABT-Reo diagrams.

2.6 Modelling of Processes and Organizational Rules

In order to specify possible workflows within a concrete
enterprise and to formalize the given policies and laws
the presented model framework shows separate dimen-
sions for these aspects. This paper has a special focus to
service models and we describe possible techniques for
the processes and rules briefly. Accordingly, the Sections
and [4] for intra- and inter-model techniques focus on
service models.

2.6.1 Fvent Driven Process Chains Event driven pro-
cess chains (EPCs) [20] are a common modelling lan-
guage for business processes. It is preferred by many
modelers, because they like the intuitive notation, which
is easy to grasp and to understand. EPCs have been ex-
tended to suit different needs and in the case of Credit
Suisse, there is a special interest to have a support for
the generation of continuity processes and the analysis
of non-functional requirements, e.g. security constraints.
For this purpose, the language of WDEPCs (data-flow
oriented EPCs from the point of view of a workflow en-
gine) was introduced in [12]. These enterprise models for
business processes build a basis for process analysis with
respect to non-functional requirements and furthermore,
for the generation of continuity processes based on the
standard process that are equipped with process frag-
ments for specific failures of the system components.

Christoph Brandt et al.

The generated processes are ensured to be executable,
produce at least the same or equivalent output as the
standard process and some of the non-functional require-
ments are checked to be fulfilled.

LN
Contract ColD
29.07.2009
ID, Payment Plan .
Signature
SRM(RMID) costs, time
DB2
(availability)
Contract ColD
29.07.2009 Customer
ID, Payment Plan Signature
costs, time
sc !
DB2
(availability)
signed
ColD, F12
Contract SRM(RMID) Approve co
29.07.2009 Coqract (availabilit
ID, Payment Plan costs, time
SCO(COID)
DB2 J Contract
(availability) approved
LN]

Fig. 9 Part of a Workflow Model

Ezample 4 (Business Process Model) Figure [9] shows a
part of a WDEPC-business process model for a loan
granting process. The figure shows three steps, which
are situated in the middle of the overall process. The
three steps describe the three signatures that are placed
on the loan contract by the involved parties. The sig-
natures are placed by the relationship manager (RM,
function F10) that serves the customer, by the customer
himself (C, function F11) and finally, by the credit officer
(CO, function F12) in order to complete the contract.

The system components that are involved in the pro-
cess can fail and the actors can be unavailable. Both
is specified by the term “availability”. For a concrete
combination of failures alternative continuations of the
process have to be processed that respect the functional
and non-functional requirements of the process. For this
purpose, the model is formalized by a graph grammar,
in which the effect of each function is specified by a rule.
The grammar is constructed automatically and supports
the analysis of dependencies between the steps using the
well founded results for graph transformation.

graph constraint: samePerson \ graph constraint:
[c 4EyePrinciple
~ CO.RM : Person
RM : Person

—(samePerson)

Fig. 10 Graph Constraint 4-eye principle

N =

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 9

The validation of non-functional requirements is per-
formed by graph constraint checks, e.g. the constraint
in Fig. specifies a requirement for the creation of a
contract according to the four-eye principle . It ensures
that the employee roles relationship manager (“RM”)
and credit officer (“CO”) are performed by two different
persons in a concrete execution of the workflow schema.
The constraint “4EyePrinciple” is a negation of the con-
straint “samePerson” and thus, it requires that the con-
straint “samePerson”, i.e. the two roles are not assigned
to a single person in a concrete execution. Further details
of graph constraints are subject of Sections [3.3] and 4]
where we apply this technique to specify requirements
for the structure of service models. The complete pro-
cess model, its analysis and the generation of continuity
processes is described in [12].

2.6.2 Process Algebra mCRL2 In the machine centric
dimension of process models we propose to use the
language mCRL2 (micro Common Representation Lan-
guage 2) [10], which extends the process algebra ACP
(Algebra of Communicating Processes) by data and time
aspects. In [21], the mCRL2 tool-set is used for an anal-
ysis of a loan granting process that is similar to the
one in Sec. 2.6.1] Figure [I1] shows the specification of
the four-eye principle with respect to parallel executions
of the workflow. This time, there is no explicit distinc-
tion between the credit officer and the relationship man-
ager - both have the role of a relationship manager.
Nevertheless, the tool-set for mCRL2 allows to validate
that the computed state space for parallel executions
does not contain a path, in which the four-eye principle
is violated for the functions “F10_.RM_Signature” and
“F12_Approve_Contract” with respect to the workflow

model in Fig.

forall e:RelationshipManager, c:Customer.
[truex.F10_RM _Signature (e, c) .truex.
F12_Approve_Contranct (e, c)] false

Fig. 11 mCRL2 Specification of the segregation of duty (4-
eye-principle)

The tool-set allows the modeler to specify many de-
tailed requirements based on modal logic. This enables,
e.g. the specification of requirements regarding data flow.
In particular, Credit Suisse has to ensure the require-
ment that balance and address information of a customer
must not be send at the same time.

The alignment between the human- and machine-
centric process models, i.e. between WDEPCs and
mCRL2 specifications, shall be based on their abstract
syntax graphs. This will allow to reflect analysis results
from the machine-centric models to the intuitive human
centric models. The inter-model techniques that we use
in this paper are general with respect to domain lan-

guages and there is a potential that they can be used to
establish alignments not only for service models but also
for process models.

Besides the process algebra mCRL2, there are also
other machine-centric modelling techniques, especially
Petri nets [22], which have shown to be suitable for busi-
ness workflows [23] and several tool-sets have been im-
plemented.

2.6.3 Organizational Rules In order to ensure security,
risk and compliance requirements given by policy rules
there is a need for a formal analysis of the models within
the enterprise model framework in Fig. 5} There are dif-
ferent kinds of organizational rules, which are formulated
by several organizations as well as by the enterprise it-
self. A formalization can be performed in a first step
using a specified subset of a natural language for a spe-
cific business domain. This way, the semantics and struc-
ture of the rules given as sentences can be restricted and
equipped with an abstract syntax and these language
artefacts are still human-centric.

In the machine-centric dimension, there is a good po-
tential to completely formalize many of the rules by first
order logic (FOL). This way, the rules specified by for-
mulas can be evaluated and checked using rule-engines
as there are for example Prolog-based rule-processing
implementations available. Furthermore, there is a close
relationship between first order logic and graph con-
straints [24], such that the analysis of several formu-
las can be transferred to graph constraint checks on
the abstract syntax graphs. The alignment between the
human-centric policy rules and the formulas in first or-
der logic shall be based on their abstract syntax graphs.
Note that this alignment is usually not one-to-one, i.e.
there may be several sentences in a domain language that
correspond to a single formula and vice versa. A flexi-
ble alignment is a special need in the context of Credit
Suisse, because such domain languages need to be ex-
tendable while first order logic keeps fixed.

Furthermore, in order to formalize and analyze some
of the requirements that generally specify the permitted
workflows, graph transformation systems can be used.
They have shown to be a practicable and intuitive con-
cept for the specification of the operational semantics
of workflow models, including extensions for data and
control flow [25].

2.7 Scope of the Paper within the Model Framework

The enterprise model framework as shown in Fig.
encompasses the development of many different as-
pects. This paper presents suitable intra- and and inter-
modelling techniques focussed on machine-centric busi-
ness and IT service models given by ABT-Reo diagrams.
The techniques are general with respect to different do-
main specific languages, because they are based on the

10

underlying abstract syntax graphs of the models. Thus,
there is a good potential that they can be applied for
several other dimensions in the enterprise model frame-
work, too.

(SBM) | Machine centric Business Sewﬂ)dels |
MT Integration ~ Propagation
(CAD) | Machine centric IT Service Models |

Fig. 12 Scope of the Paper

The scope of this paper for intra- and inter-model
techniques in the following Sections [3|and []is illustrated
in Fig. and the examples are based on our previous
work in [26]. Algebraic graph transformation is applied
for both, intra- and inter-modelling. It is used to specify
the construction of the abstract syntax graphs during
the model development and the analysis of functional
and non-functional requirements. The inter-model tech-
niques are based on triple graphs, triple graph trans-
formation and triple graph grammars [27]. We present
how model transformation is used to transform a busi-
ness service model into an IT service model. This way,
model transformation supports the modelling when cer-
tain models in one domain are present, but their counter-
parts in a connected domain are missing. Furthermore,
we show how business and IT service models can be in-
tegrated, i.e. how the relations between their elements
can be automatically established and how inconsistencies
can be detected. Finally, we show how the propagation
of graph constraints can enable the transfer of especially
non-functional requirements from the I'T domain to the
business domain of service models.

3 Intra-Model Techniques

The enterprise model framework presented in Sec. [2] cap-
tures various kinds of models and the development of
these models is performed on its concrete syntax, i.e. in
visual notation. Synchronously to the construction of the
concrete syntax a development environment creates the
underlying abstract syntax elements which form abstract
syntax graphs as described e.g. in [28]. Hence, the struc-
tural and formal analysis of these models can be based
on the underlying formal abstract graph structure.

This section presents suitable techniques for the for-
mal and automated construction and for the analysis of
the created abstract syntax graphs. The benefits of the
analysis are the following. First of all, there is a user sup-
port for the detection and correction of violations against

Christoph Brandt et al.

well-formedness rules with respect to models. The detec-
tion and highlighting of errors is performed automati-
cally and the modeler can chose whether he corrects the
model manually or starts an automatic correction pro-
cess. In addition to that, a substantial part of the given
functional and nonfunctional requirements for a model
can be formulated in an intuitive and visual way us-
ing graph constraints as formal technique. These graph
constraints can be checked automatically based on the
underlying formal abstract syntax and the checks can
be implemented in the development tools. The formal
framework for these techniques is algebraic graph trans-
formation [5].

Unlike the standard approach in graph transforma-
tion in which a graph language is defined by one graph
grammar we define two separate graph grammars: a con-
struction and a correction graph grammar (C & C).
The construction grammar contains compact and gen-
eral editing rules that can be attached to the editing
operations of a model development environment. The
correction grammar is used for the detection and elimi-
nation of incomplete respectively inconsistent structures.

This way the modelling process is kept flexible, i.e.
the modeler is able to freely edit the models implying
that models may violate language constraints at inter-
mediate steps. Furthermore, the visual modelling lan-
guages are not restricted in the way visual elements are
aligned. Each visualization can be based on abstract syn-
tax graphs, where each node type can be visualized by
a visual element in the concrete syntax.

Because of the need for flexibility during the editing
process, the construction grammar usually allows to gen-
erate invalid models. But the correction grammar con-
tains rules that detect inconsistent respectively incom-
plete parts of models in order to correct them. Those
incorrect parts can be highlighted in a modelling envi-
ronment, such that the modeler has two options for cor-
rection. Either he modifies the problematic model parts
himself or he starts the cleaning up process, in which
the problematic elements are deleted by an automated
application of the rules of the correction grammar. In
order to validate the soundness of the automated cor-
rection we can analyze confluence by applying central
results proven for graph transformation systems in gen-
eral. In addition to the analysis of the modes with re-
spect to well-formedness rules we present a structural
analysis of the abstract syntax graphs based on graph
constraints that are used to verify functional an non-
functional constraints, such as security requirements or
modelling guidelines. If a constraint is violated the exe-
cution of the graph constraint checks detects the prob-
lematic parts of the models.

An adequate set of models My y,z € Mx y,z in the
coordinate (X,Y, Z) in the enterprise model framework
in Fig. [5| is obtained by the combination of the three
techniques explained above and applied in the following
way. The models are generated using the construction

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 11

grammar and a correction using the correction grammar
thereafter for eliminating the models that are not well-
formed. A further restriction is obtained using the graph
constraint checks for excluding models that do not fulfill
the functional and non-functional requirements. In this
section we concentrate on the service models in the co-
ordinates (S, B, M) and (S, I, M) and we illustrate the
three techniques by representative rules and an intuitive
constraint.

The following Sec. describes some basic no-
tions for the formal foundations of graph gram-
mars and presents parts of the construction grammar
GGecon—apr for the language of ABT-Reo diagrams
for business and IT service models. Thereafter, Sec.
presents the grammar GGcor_apr for the correction
of intermediate models constructed by GGcon-—aBT,
where we use the concept of negative application con-
ditions for the detailed specification of critical patterns.
The complete grammars are given in [6]. Finally, Sec.
[3-3] shows how graph constraints are used to specify and
check structural requirements that capture some of the
functional and non-functional aspects and in Sec. [3.4] we
summarize the achievements of this section.

8.1 Construction of Models by Construction Graph
Grammars

The framework of algebraic graph transformation pro-
vides a formal foundation for the specification and mod-
ification of object oriented models, in which the concrete
syntax of these models is related to their abstract syntax
graphs. In order to present representative parts of the
construction grammar GGocon_apr for ABT-Reo dia-
grams this section reviews the general notions of typed
graph transformation. For details about attribution and
type graphs with inheritance we refer to [5].

The algebraic approach of graph transformation uses
the notion of directed graphs with explicit functions that
point to the source and target nodes of an edge. Map-
pings between graphs are given by graph morphisms that
are compatible with the internal structure of the graphs,
i.e. the source node of an edge in the domain graph is
mapped to the source node of the mapped edge in the
image graph (and similarly for the target nodes).

Definition 1 (Graphs and Graph Morphisms) A
graph G = (Vg, Eg, sa, ta) consists of a set Vi of nodes,
a set Eg of edges, and two functions sq,tq : Fg — Vg,
the source and the target function.

Given two graphs G and H a graph morphism
f:G—H, f = (fv,[E) consists of two functions
fv: Ve —= Vg and fg : Eg — FEpg that preserve the
source and the target functions, i.e. fyy o sg = sy o fg
and fy otg = tg o fg. Graphs and graph morphisms
define the category Graphs. A graph morphism f is in-
jective if both functions fv, fg are injective.

NW4:LAN

Fig. 13 ABT-Reo Instance M; of the IT Universe

LAN : String
NW4:LAN
‘name

: ExtIP <—:port{ NW4 : ABT%:port—» : ExtOP
:glue. —— — :glue
o Soe—{ zPom | [Pom 3

e
[. ExtOP] *[Qrivate : Stringl‘ﬂ . ExtIP
private :port :nam.eReo N .Re.(r)wame :po
private y_-port =

:pol
:glue glue.

= el Poi | [a1
m«m ELABT]— o[L |
:name

E/D : String
Concrete Abstract Syntax
Syntax

Fig. 14 Part of M; in Fig. in Concrete and Abstract
Syntax

Ezample 5 (Graph) Figure shows the ABT-Reo di-
agram M, in concrete syntax specifying the structure
of a part of a network composed of local area networks
(LANSs). It contains four ABT elements that are con-
nected via Reo connectors. The two outer ABT elements
represent the LANs “NW4” and “NW7” while the two
inner ones denote encryption/decryption nodes, i.e. the
communication between both LANs is encrypted.

A part of the model M; is shown in [14]in both, con-
crete and abstract syntax. Bold bullets in concrete syn-
tax correspond to nodes of type “Point” in abstract syn-
tax and arrows correspond to Reo connectors, i.e. nodes
of type “Reo” in the abstract syntax graph. They are
attached to external input resp. external output ports
according to the direction of the Reo connectors. Each
point glues one input with one output port, e.g. the left
Reo connector in concrete syntax corresponds to the left
Reo node in the abstract syntax graph and the commu-
nication data enters the connector via the input port at
the bottom and exits the connector via the output port
at the top. The type graph for ABT-Reo diagrams is
shown in Fig. and described in Ex. [0}

While the concrete syntax of ABT-Reo models is
more compact and intuitive, a precise and detailed spec-
ification and analysis is based on the abstract syntax,

12

which enables e.g. to explicitly specify properties of ports
that are only implicit in the concrete notion.

Similar to the definition of a meta model of a visual
language according to the OMG MOF approach [29] a
type graph specifies the general structure in the graph
grammar approach. Graphs of the language are typed
over its type graph via a graph morphism that maps
each element to its type element in the type graph, i.e.
each node to a node and each edge to an edge in the

type graph.

Definition 2 (Type Graph) A type graph is a distin-
guished graph TG. A tuple (G,typec) of a graph G to-
gether with a graph morphism typeg : G — TG is called
a typed graph. Given typed graphs G = (G,typeq) and
H = (H,typey), a typed graph morphism f is a graph
morphism f: G — H, such that typeg o f = typeg.

TGABT»Reo
port—| AR |—name—>| String |
junction
glue rl Y
[Point =—» Port | | Reo | [ABT |
| | []
[Extt |[[1P] [IntP || OP | [ELABT| |[CompABT|

[ExtiP | [IntIP | [IntOP| [ExtOP|
\

Legend
AR = ABT/Reo ExtlP = External Input Port
EIABT = Elementary ABT IntIP = Internal Input Port

CompABT = Composite ABT IntOP = Internal Output Port

ExtP = External Port ExtOP = External Output Port
IntP = Internal Port

IP = Input Port & = Inheritance relation
oP = Output Port 4 = Edge type

Fig. 15 Type Graph TG ABT—Reo for ABT-Reo models

Ezample 6 (Type Graph) The structure of ABT-Reo di-
agrams in abstract syntax is given by the type graph
TG ABT— Reo in Fig. containing the main types “ABT”
for abstract behaviour type nodes, “Reo” for Reo con-
nectors, “Port” for ports and “Point” for points that glue
together input and output ports of both, ABT nodes and
Reo connectors. Ports of elementary ABT nodes and
Reo connectors are external, i.e. they are used for ex-
ternal communication with other elements. ABT nodes
can also be composite, i.e. they contain a further spec-
ified internal structure involving other ABT nodes and
Reo connectors. In this case their external ports are con-
nected to complementary internal ports, such that the
communication is transferred through the borders of the
composite ABT nodes.

Christoph Brandt et al.

General editing steps of graph based models are spec-
ified by graph transformation rules. The left hand side
(LHS) of a rule defines the pattern that has to be found
in a graph before applying the rule and it is replaced by
the right hand side (RHS) of the rule during the rule
application. Both sides of a rule are related by an inter-
mediate graph K, which defines the elements that are
preserved during an application of the rule. Since the
graph K is implicitly given by the LHS and RHS of a
rule we will usually omit this graph in the figures and
denote the mappings between the LHS and the RHS of
a rule by numbers.

A rule may further contain a negative application
condition (NAC) that specifies forbidden patterns. The
effect is that the rule is not applicable if the NAC pat-
tern is present at the matched part of the graph. This
improves the detailed specification of rules. A few rules
in the construction grammar contain NACs, in order
to prevent editing steps that are not adequate in gen-
eral. This improves the model quality before checking
the well-formedness conditions. However, the NACs can
also be ommited in the construction grammar to ensure
maximal flexibility for the modeler, but then the cor-
rection grammar becomes more complex. In any case,
NACs are very important for the correction grammar to
specify incomplete patterns, i.e. the NACs specify the
parts that are missing as described in Sec.

Definition 3 (Typed Graph Rule) A typed graph
rule p = (L & K I R) consists of typed graphs
L, K, and R, called the left-hand side, gluing graph, and
the right-hand side respectively, and two injective typed
graph morphisms | and r. A rule may furthermore be
equipped with additional NACs defining forbidden struc-
tures. A NAC of p is given by a graph N together with

an injective graph morphism n: L — N.

addExtInPort
g

K

uonejoN
ajo|dwo)

[1.ELABT [1:ELABT

addExtinPort
LHS RHS

[LELeT] | =

uonejoN
joedwo)

[ELABT)

Fig. 16 Rule “addExtInPort” of GGcon-aBT

Some editing steps can be more complex in the way
that they combine the effect of basic editing steps. In
this case the complex editing step combines the effect
of several basic construction rules and the rules needed
for this complex step are combined leading to a new
rule. The combination of rules is performed by a form of

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 13

addElementaryABT
LHS RHS

| [ZELsBT]

Fig. 17 Rule “addElementaryABT” of GGcon—aBT

NAC1 LHS
: 1: Point

Fig. 18 Rule “glue” of GGcon—aBT

gluing via a common subpart E, which is formalized by
the construction of E-concurrent rules in [5].

Ezample 7 (Typed Graph Rules) The rules in Fig-
ures to [18] are part of the construction grammar
GGeon—apr for the creation of ABT-Reo diagrams.
The complete grammar is given in [6] and each edit-
ing step of a development environment can be equipped
with one or more corresponding graph rules depending
on the complexity of the editing step as described before.
Rule “addExtInPort” in Fig. [I6] specifies the creation of
a new external input port that is attached to an existing
elementary ABT node, i.e. an ABT element without in-
ternal structure. The rule is shown in complete notation
including the intermediate graph K and in compact no-
tation leaving K implicit. In compact notation the graph
K is given by the numbered elements, i.e. the elements
that occur in the LH S and the RH S of a rule. Since the
rule “addExtInPort” does not delete any elements the
graphs L and K are identical. In the case of a deleting
rule the graph L contains the graph K and additionally
the elements that are deleted by the rule.

The rule “addElementaryABT” in Fig. has an
empty LHS and thus, it can be applied without any pre-
condition. The effect of the rule is the creation of a new
elementary ABT. Fig. shows the rule “glue” which
specifies the gluing of ports. In order to glue together two
ports via a point (a bold bullet in the concrete syntax)
the rule is applied twice to the same point but to differ-
ent ports. The negative application condition “NAC1”
is equal to the RHS of the rule and thus, it forbids a re-
peated application of the rule “glue” at the same match,
i.e. if the point “1” is already connected to the port “2”
then the rule cannot be applied at these nodes. The sec-
ond NAC “NAC2” ensures that no two ports of a Reo-
connector are directly connected with each other. Note

that the rule extensively uses the inheritance structure
in the type graph in the way that the rule is applicable
for any type of ports, i.e. for external, internal, input
and for output ports.

Formally, a graph transformation step from G to H
via a rule p and a match m is defined by two pushout
diagrams (1) and (2) as shown in Def. |4 For the formal
definition of pushouts we refer to [5]. The main ideas are
the following. Given a match of the LHS of the rule into a
graph G then this concrete part is replaced by the RHS of
the rule if the rule is applicable, which requires that the
gluing condition is satisfied and the match is NAC con-
sistent. A negative application condition (NAC) speci-
fies a negative pattern that must not occur at the match
when applying the rule. The gluing condition requires
that the identification and dangling points are gluing
points, i.e. that they are preserved and thus belong to the
set GP = ly (V) Ulg(EKk). The identification points are
those nodes and edges that are matched non-injectively
in G, i.e. at least two elements are mapped to the same
element in G. The dangling points specify those nodes
which are matched to nodes in G, such that there is
an adjacent edge which is not deleted by the rule. This
means that the edge would remain dangling by removing
the node. Thus, an identification or a dangling point is
never deleted. The gluing condition ensures the existence
of the intermediate object D and it has to be checked
only for deleting rules.

If a rule p is applicable to G via m : L — G then
the graph transformation step G 2 H is performed
by first deleting all elements in G that are matched by
the rule but not preserved, i.e. they do not occur in the
intersection K of the LHS and RHS of the rule. The
deletion leads to an intermediate graph D. The second
step is performed by adding those elements to D that
are in the RHS of the rule but not in K leading to the
resulting graph H.

Definition 4 (Typed Graph Transformation Step)
Given a rule p = (L <& K s R) with NACs and a match
m: L — G then p is applicable to G via m if the gluing
condition is satisfied and the match is NAC consistent.
The match is NAC consistent, if for each NAC n: L —
N of p there is no injective q : N — G compatible with
m, i.e. with gon = m as shown in the triangle diagram
(0). Given a rule p that is applicable to G via m, then
the graph transformation step G 22 H is defined by
the two pushouts (1) and (2).

N<" <1t g7
©)) ,

> mo1) |k @ |n
G l/ D !’

Ezample 8 (Typed Graph Transformation Step) The
graph transformation step in Fig. shows the appli-
cation of the rule “glue” at a graph G, which contains

14
L K R
< | r3:glug]
my) v @ ¥
:glue :glue :glue r3:glue

[LExtoP |[2:ExtlP ||<|[ExtOP][2:ExtlP ||| -ExtOP][2:ExtP |
A A A

port ip?ﬂ :port IPFI’t port ZP?ﬂ
[SELABT |[sReo || [SELABT][-Reo || |[SELABT][sReo |

Fig. 19 Application of Rule “glue”

& | H [Pont
:glue :glue r3:glue

| 4 | 4
| LExtOP |[2.ExtlP gue . | ExtOP |[2. ExtlP
7 — 7

port 1P?l’l port ip?l’t
[CELABT || :Reo | [CELABT || -Reo |

Compact Notation

Fig. 20 Application of Rule “glue” in Compact Notation

an elementary ABT node with an external output port
and a Reo connector with an external input port. The
match m is denoted by the numbers “1” and “2”. The
rule is applicable, because no node is deleted and the
NACs are fulfilled, i.e. nodes “1” and “2” are not con-
nected already and the involved ports do not belong to
the same Reo connector. In a first step we construct D
as subgraph of G, where all elements of L\ K are deleted.
In our case we have G = D, because L = K. In a second
step we glue together graphs D and R via K resulting
in graph H. This gluing construction is formally given
by a pushout in the category of graphs [5]. In fact, both
diagrams (1) and (2) in Fig. [19] are pushouts leading to
a transformation step G 225 H via rule p = glue and
match m. Figure shows the transformation step in
compact notation leaving the DPO diagram implicit.

A graph grammar consists of a type graph together
with a typed start graph and a set of typed rules. The
language generated by this grammar consists of all typed
graphs that can be obtained by applying a sequence of
rules to the start graph.

Definition 5 (Typed Graph Grammar) A typed
graph grammar GG = (TG,SG,P) consists of a type
graph TG, a start graph SG and a set of graph rules P
also called productions, both typed over TG. The typed
graph language L(GG) of GG is defined by L(GG) =
{G| 3 typed graph transformation SG =* G in GG}.

Ezample 9 (Construction Grammar) The graph gram-
mar GGcon—aBT = (TG ABT—Reo, D, Pcon) consists of
the type graph shown in Fig. the empty graph as

Christoph Brandt et al.

start graph and the set Pcon of construction rules. Some
of the rules of Pcon are shown in Figures[16] [I7] and [I8§]
Similar to the shown rules for adding structure parts the
set Pcon also contains the inverse rules for deleting such
elements [6]. Since the rules are very compact they can
be combined with general editing steps in a visual devel-
opment environment, where only the concrete syntax is
displayed to the modeler.

3.2 Correction of Non-Well-formed Models by
Correction Graph Grammars

During the development of ABT-Reo models in a visual
editor - based on the grammar GGoon_apr from the
previous section - the edited models may not satisfy the
well-formedness rules of the language of ABT-Reo di-
agrams defined in [II]. Therefore, this section presents
how a second grammar GGcor—apr is used to detect
and highlight incomplete as well as incorrect parts, such
that they can be deleted manually or corrected automat-
ically depending on the preference of the modeler.

More precisely, the set of correction rules Poog of
the correction grammar GGcor—apT is used for the de-
tection and correction of non-well-formed patterns. The
detection is performed by checking the applicability of
the rules of GGoogr_apr. If a rule is applicable, then
the found match specifies the location of the problem-
atic pattern and the rule describes the type of the oc-
curred problem. The automated correction is performed
by applying the correction rule. An overall correction
is obtained by applying the correction rules as long as
possible. As an alternative, the modeler can choose to
correct some of the highlighted parts himself.

Using the construction and the correction grammar
we intend to be able to construct all well-formed ABT-
Reo diagrams - and similar other well-formed diagrams
- in the following way. We first use the editing rules
of the construction grammar to construct a transfor-
mation sequence) = G; = ... = G, via the rules
Pcon of the construction grammar. In a second step
the rules Poogr of the correction grammar are applied
as long as possible to G, leading to a transformation
sequence G, = ... = G, via Poor. Assuming that for
each non-well-formed pattern in any graph G typed over
TG ABT—Reo there is a corresponding rule in Poog ap-
plicable to G, we can be sure that G,, is well-formed, if
G, is terminal with respect to Pcog. Fortunately, there
are results in the algebraic theory of graph transforma-
tions assuring termination based on suitable termination
criteria for typed graph grammars. A graph grammar
GG = (TG, SG, P) is called to be terminating, if there
is no infinite transformation sequence from SG via P.

Theorem 1 Fvery typed graph grammar GG =
(TG, SG, P) is terminating, if the termination criteria
1 - 4 of Theorem 3.37 in [3] are satisfied.

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 15

Another interesting question is whether the correc-
tion process leads to a unique result independently of
the order in which the correction rules are applied. The
uniqueness property is valid, if the graph grammar is
confluent. Confluence is based on critical pairs, which
specify conflicts in a minimal context. An important re-
sult is that confluence is assured by local confluence and
termination. For local confluence we have the following
result (see Thm. 3.34 in [3]).

Theorem 2 A typed graph grammar is locally confluent
if all its critical pairs are strictly confluent.

Based on this theorem there are analysis techniques
which offer sufficient conditions for local confluence. In
fact, we can statically analyse whether the order in which
the correction rules are applied is relevant or not for the
final result of any correction process. In the case of guar-
anteed confluence the automated correction is always de-
terministic. This means that the modeler can apply any
of the applicable correction rules without the risk that
the correction of another fragment becomes impossible
or will cause a backtracking.

deleteCompABT
LHS RHS

: CompABT =

Fig. 21 Rule “deleteCompABT” of GGcor-aBT

deletePortAtPoint
NAC1 LHS RHS
: AR
g 1: Point —>| | 1:Point
:glue
2itod [2-Por | 2Port

Fig. 22 Rule “deletePortAtPoint” of GGcor—aBT

Ezample 10 (Correction Grammar) The graph grammar
GGcor—aBr = (TG ABT—Reo, 0, Pcor) consists of the
type graph shown in Fig. the empty graph as start
graph and the set Poog of correction rules. Two rules of
Pcor are shown in Figures 21 and 22] The rule “delete-
CompABT” in Fig. 2] is applicable if the node of type
“CompABT” is not connected to any edge, which im-
plies that the composite ABT has no internal structure.
Since composite ABT elements are required to contain
some internal elements this part of the model is incom-
plete, which can be highlighted in the editor. Applying
the rule will delete this node. The rule “deletePortAt-
Point” in Fig. is applicable if the port “2” is not
connected to a node of type “AR”, i.e. it is neither con-
nected to a Reo connector nor to an ABT node. Again

this incomplete pattern is detected and the edge to its
connected point is deleted by the application of the rule.
Another correction rule for deleting points without any
adjacent edge may become applicable thereafter and in
this case a new problematic pattern will be detected.

3.8 Checking Requirements by Graph Constraints

In addition to well-formedness discussed in the previous
section, enterprise models have to fulfil functional and
non-functional requirements, e.g. security norms, which
depend on the particular domain. In order to automati-
cally analyze and verify the compliance of models to spe-
cific requirements and norms we propose a formalization
of a practicable subset of the norms and requirements by
graph constraints, which show several advantages. They
offer a compact and intuitive visual notation and they
can be checked automatically. Since the models in the
scenario of the paper are based on the abstract syntax
graphs we can analyze the norms and requirements by
checking the corresponding graph constraints. If needed,
graph constraints can be nested leading to the full ex-
pressiveness of first order logic as shown in [24].

A graph constraint consists of a premise pattern P
together with a conclusion pattern C and a morphism
a : P — C that relates the elements of the premise
with those of the conclusion. A graph G fulfils a graph
constraint a : P — C if for any occurrence of the premise
P there is also an occurrence of the conclusion C' at the
same position of the graph. Graph constraints can be
extended to boolean formulae as specified in [5].

Definition 6 (Graph Constraint) A graph constraint
PC(a) consists of a graph P called premise, a graph C
called conclusion and a graph morphism a : P — C' that
relates P with C. A graph G fulfils PC(a) if for any
injective graph morphism p : P — G there is also an
injective graph morphism q : C — G compatible with p,

i.e. qoa =p. a o
Kf—%
G

Ezample 11 (Graph Constraint) Figure shows the
graph constraint “pubclicIsEncrypted” for ABT-Reo
models [II] in the IT-universe. The constraint requires
that any public Reo element is connected to two ABT
nodes, which implement encryption and decryption of
communication data. This constraint formalizes the fol-
lowing verbal norm: “Confidential communication data
cannot be intercepted in plain text by eavesdropping at
public channels”. The model M; in Fig. [T fulfils this
constraint, because for each public Reo-connector there
are ABT-nodes of type “E/D” (encryption/decryption)
as required by conclusion C' of the constraint. Figure

P

© 0O Uk W~

16

PC: publiclsEncrypted

A . l
&
wn
| C I 0P | (,[ExtIP | [Extor , | 8
port glue’ :glue port * :glue ‘glue * ‘f;:
E1.ELABT | [Pont 1.Reo o ~Pont | [E2.ELABT ELABT X
name = "E/D" name = publlc name = "E/D"
[P] [c] 28
~1:public | —> [EV:E/D§-1:public#4 E2E/D | 35
X
o

Fig. 23 Graph Constraint for IT-models

(* construct graphs P and C)

(* Nodes and Edges of premise graph P x)
PNodes={{1,ABTReo$Reo}};

PEdges={};

(* Nodes and Edges of conclusion graph C *)

(* construct graphs P and C x)

publicIsEncryptedP=
makeTypedGraph [PNodes, PEdges, ABTReo$TypeGraph] ;

publicIsEncryptedC=
makeTypedGraph [CNodes, CEdges, ABTReo$TypeGraph] ;

(* construct constraint (P -> C))

publicIsEncrypted=makeGraphConstraint["atomic",
{publicIsEncryptedP,publicIsEncryptedC}];

Fig. 24 Mathematica Source Code of “publicIsEncrypted”

In:= checkGraphConstraint [Modell, publicIsEncrypted]
Out:= True

Fig. 25 Compliance Check of a Graph Constraint

shows the Mathematica source code for the graph con-
straint “publicIlsEncryped” and Fig. 25| shows the oper-
ation call in Mathematica for checking the graph con-
straint on model M; of Fig. [I3]

If we know already that a graph G satisfies a graph
constraint PC(a) we would like to know under which
conditions a graph transformation step G 22 H pre-
serves this constraint, i.e. also H satisfies PC(a). This
would avoid to check explicitly, if H satisfies PC(a). For
this purpose we only have to check whether the match
m : L — G satisfies a suitable application condition us-
ing the following general result for algebraic graph trans-
formation (see Thm. 7.23 in [5]). By A(p,a) we denote
the the application condition for the rule p that is de-
rived from PC/(a).

Theorem 3 For each graph constraint PC(a) and each
production p there is an application condition A(p,a) for
p such that for all graph transformation steps G 225 H
we have: H satisfies PC(a), if G satisfies PC(a) and m
satisfies the application condition A(p,a).

Christoph Brandt et al.

3.4 Summary of Achievements for Intra-Modelling
Techniques

In this section we have obtained the following achieve-
ments concerning intra-modelling techniques using alge-
braic graph transformations:

1. We have shown how to construct well-formed mod-
els, especially well-formed ABT-Reo models, using
construction and correction graph grammars.

2. By Thm. [I] there are termination criteria, which en-
sure that after arbitrary construction steps the cor-
rection process terminates. Moreover, this process
leads to a unique result independent of the order of
correction steps - if according to Thm. [2] all critical
pairs of the correction grammar are strictly conflu-
ent.

3. We have shown how to model and check func-
tional and non-functional requirements by graph con-
straints, where Thm. [3| shows how to preserve such
requirements under graph transformation steps.

After we have presented intra-modelling techniques
for the construction and analysis of business and IT
service models the next section presents suitable inter-
modelling techniques.

4 Inter-Model Techniques

Enterprise modelling encompasses several heterogeneous
aspects of the enterprise as shown in the model frame-
work of Fig. [5| Hence, an adequate framework for enter-
prise modelling has to support the integration of dif-
ferent domain specific languages that are appropriate
for the specific aspects and satisfy the preferences of
the modelers. This section shows how inter-model tech-
niques are applied in a formal and consistent way in
order to ensure important properties, such as correct-
ness and completeness. The techniques are based on the
abstract syntax graphs of the models, which can be ob-
tained as described in Sec. Bl

The application of the inter-model techniques leads
to a substantial gain in model-based interoperability
in the following ways. During the development process
models are integrated and inconsistencies are automat-
ically detected. Furthermore, existing models of partic-
ular source domains are transformed to models that be-
long to related target domains. This way the new models
in the target domains can be used for further refine-
ment in order to derive fully developed models. In ad-
dition, the new models can be checked against the non-
functional requirements of the target domain. A viola-
tion of these requirements shows an inconsistency, which
can be resolved by modifications of the source and the
target model.

The inter-model techniques have to ensure correct-
ness and completeness in order to produce reliable re-
sults. Therefore, we apply the well founded approach of

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 17

model transformation and model integration based on
triple graph grammars [27,B0LBI] for which these char-
acteristics are shown. Besides theses formal results triple
graph grammars convince by its intuitive specification
of compact patterns that show how typical model frag-
ments shall be related. Based on these patterns opera-
tional rules for model transformation and integration are
derived automatically.

The following section presents the main concepts of
triple graph grammars, where we intuitively describe the
used techniques but refer to [30,BI] for the formal de-
tails. Thereafter Sections to 4] explain the concepts
of model integration, model transformation and prop-
agation of constraints based on triple graph grammars.
All concepts are illustrated by an application to business
and IT service models given as ABT-Reo diagrams, i.e.
an application to models in the coordinates (S, B, M)
and (S, I, M) of the model framework in Fig. [5| For this
reason we substantially extend the examples of [26]. Note
that the techniques can be used also for source and tar-
get modelling languages that are quite different like class
diagrams and relational databases as in [31], such that
an application of the techniques to languages in other
coordinates of the enterprise model framework shall be
possible. While triple graph grammars are defined for
the abstract syntax graphs of models we present their
application by showing the model components in con-
crete syntax, i.e. by a visualization of the abstract syntax
graphs as explained in [28]. This way the presentation is
more compact and intuitive for this paper, but the cor-
responding formal theory in [30,[31] is based on abstract
syntax graphs.

4.1 Inter-Modelling by Triple Graph Grammars

In the following we lift the concepts of graph transfor-
mation to the case of triple graphs, an extension of plain
graphs dividing elements into source, target and corre-
spondence sections which are connected by graph mor-
phisms. This extension improves the definition of model
transformations, where models of a source language are
translated to models of a target language and correspon-
dence elements can be used to guide the creation of the
sequence of transformation steps. Similarly, triple graph
transformations are suitable for model integration, which
takes a source and a target model and sets up the missing
correspondences between both models.

Ezample 12 (Triple graph) The triple graph in Fig.
shows an integrated model consisting of a business ser-
vice model in the source component (left) and an IT ser-
vice model in the target component (right). Both models
are ABT-Reo diagrams, i.e. they contain abstract be-
haviour type nodes that are connected by Reo connec-
tors. The source model specifies that the data in the
communication channels between the private banking

| Private_Banking:Department I . i NW4:LAN
private private A ' private
public T
e T—{=m]
! public public
. @ [ED]
private public
private & y private
| Investment_Banking:Department | @ [NW7:LAN
%(—/
Msgm Ms im

Fig. 26 Triple Graph with models Mg g n and Mg, 1

and investment banking departments is filtered. The fil-
ter has to ensure that the communicated data does not
contain files which contain both, address and balance
information. The target model on the other side spec-
ifies the IT service structure. The local area networks
“NW4” and “NW7”, which are used in the private bank-
ing and investment banking departments, are connected
via an encrypted communication channel shown by the
ABT nodes of type “E/D” for encryption and decryp-
tion. The corresponding elements of both models are re-
lated by graph morphisms (indicated in grey) from the
correspondence graph (light blue) to source and target,
respectively.

Model transformation as well as model integration do
not require deletion during the transformation. The re-
sult of a model integration is the triple graph of the triple
transformation sequence. In the case of model transfor-
mations the result is obtained by restricting the resulting
triple graph to its target component. Thus it is sufficient
to consider triple rules that are non-deleting. This im-
plies that the first step in the DPO graph transforma-
tion approach can be omitted, because the creation of
elements is performed in the second step.

TGasT-Reo TG | TGhsTReo |
[AonA |
ABT A2A ABT
oz
| ELABT || CompABT | |ELABT || CompABT|| | % &
+++ | Point [<—-| P2P |+ Point|
\%{—/ \ﬁ/—/
Source Correspondence Target
TGhasr-Reo TGc | | [TGasrreo |
Name A Name 55’: (é:
oac . go
~ @ > *8

\ﬁ/—/
Correspondence

Source Target

Fig. 27 Triple Type Graph TGparr

18

Ezample 13 (Triple Graph Grammar) The triple graph
grammar TGGparr = (TG parr, Sparr, TRp21T) spec-
ifies how business service models and IT service mod-
els given as ABT-Reo diagrams are related and its type
graph is shown in Fig. in abstract and concrete
syntax. The language of ABT-Reo diagrams is used
for both, the source and the target language and the
type graph shows a correspondence between the relevant
types, which are “ABT” for abstract behaviour type el-
ements and “Point” for the gluing points between input
and output ports of ABT elements and Reo connectors.
The start graph Sporr is empty and Figures [28] to [30]
show some of the triple rules of TR gorr. Each rule spec-
ifies a pattern that describes how particular fragments
of business and IT models shall be related.

The first rule “DepartmentToLAN” synchronously
creates two ABT elements and a correspondence node
that relates them. This reflects the general correspon-
dence between departments in the business view and the
installed local area networks in the IT view. The rule is
presented in complete and in compact notation as well
as using the concrete syntax. The complete notion shows
that a triple rule consists of a triple graph for the left
hand side (upper one in the figure), a triple graph for
the right hand side (lower one one in the figure) and the
relating morphism in between. Thus, triple rules are non-
deleting and the intermediate graph K as it appears for
plain graph transformation rules in Sec. [3]is not needed.
The compact notation for triple rules combines the left
and the right hand side of a rule, i.e. the rule is shown
by a single triple graph with special annotations. All el-
ements that are created by the rule, i.e. which appear in
the right hand side only, are marked by green line colour
and double plus signs. The concrete syntax of the rule
shows the ABT diagrams in visual notation, where the
attribute “name” is used as label of the visual elements.

The further figures show rules in compact notation
and in concrete syntax. Similarly to the first rule the rule
“PublicToPublic” has also an empty left hand side. It
synchronously creates two Reo connectors on both sides
and they are related by the points at their input and out-
put ports. The rule “FilterToED” is slightly more com-
plex and shows the pattern how filters in business models
correspond to encrypted connections in the related IT
model. This reflects the abstract business requirement
of hiding confidential information and its possible im-
plementation by encryption in the IT domain. Note that
the left hand side of this rule corresponds to the right
hand side of rule “PublicToPublic”.

Private connections leading to related and secured
public connections are related by the rule “Privateln-
ToPrivateln”. The last rule “FilteredOutToPrivateOut”
in Fig. [30] specifies how outgoing communication from a
secured connection is handled. The private outgoing con-
nection in an IT model corresponds to the gluing of the
filtered public connection to the target ABT element,
which is defined by the box with the label “attach”.

Christoph Brandt et al.

This box specifies the explicit creation of elements in
the source component based on the underlying abstract
syntax, where an input port for the ABT node “S2” and
the linking edges to the existing nodes are created.

The triple rule “PublicToPublicExtend” for symmet-
ric communication is omitted, because it is similar to
“FilterToED” and it is not needed for the example trans-
formations, but it is shown in [6].

L
{ vo
¥ v v e
53| 2
R— . ELABT | A2A > ELABT Sa | 2
- name = "Department” name = "LAN" @ g
@
e S
++ ++ ++ 44+ g3 | &
LELABT [cAon h—>{ ZELABT || [23§
name = "Department" name = "LAN" S Q
s 0 o
el [] e e [E5eS
. B =T 3 0
:Department CA) ‘LAN S2 [g
Fig. 28 Triple Rule “DepartmentToLAN”
++
++
o+t . ot S0
++ T ++ S5
:public :public 8 -g
Vo &L= v S8
++e ++ =

Triple Rule PublicToPublic
Fig. 29 Triple Rule “PublicToPublic”

Considering the model framework in Fig. [5] there may
be the following situations during the development of
the models. First of all, two models that should be in-
tegrated may be unrelated, thus performing model inte-
gration may detect conflicts between them. Furthermore,
some model instances within the model framework may
not exist already, e.g. business process models and IT
service models usually exist while business service mod-
els may not be developed. The interesting challenge is to
automatically retrieve parts of the missing models from
the existing ones in order to improve interoperability
between system components and enterprise components
in general. For this purpose, model transformation can
be applied e.g. on business process models to derive IT
process models and on IT service models to derive ba-
sic business service models. The results can be checked
against integration conflicts with respect to the other
existing models.

The following sections show that triple graph gram-
mars are a suitable basis for the described needs. We
exemplarily show how operational rules for model trans-
formation and integration are derived from the original

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 19

++ £t Ty Tt ++ St
Filter < CA) :E/D

® . 139

S1:public T1:public g 3
@ 5%

++ =)

L
++ .++ ++
Triple Rule FilterToED
S1:Department CA) T1:LAN |

‘private Y :private 9
e 3

S2:Filter A T2:E/D i

3
S3:public @ T3:public e
£/ ® 5

)

CA) T3:E/D
Triple Rule PrivateInToPrivateln
atfach

S1:Filter [< 1+ T1:E/D

i . T2:public

S3:public
:port *++ .

S2.ELABT | [\++ @ T3ED
name = "Department" . -, privatev o
S2:Department .'- T4:LAN

Triple Rule FilteredOutToPrivateOut

Fig. 30 Further Triple Rules of TGGgarr

triple graph grammar. The underlying formal construc-
tion enables an automatic derivation of the operational
rules as described in [27.[7)[32]. The application of the
operational rules is controlled, such that correctness and
completeness with respect to the patterns are ensured for
the resulting models [31I]. The techniques are illustrated
based on the given scenario of IT and business service
models given by ABT-Reo diagrams.

4.2 Model Transformation based on Forward Rules

As described in Sec. [I.] triple rules can be used to spec-
ify how two models can be created simultaneously. Thus,
triple rules allow the modeler to define patterns of cor-
respondences between model fragments. Based on these
triple rules the operational forward rules for model trans-
formations from models of the source language to models
of the target language are derived automatically. Since
triple rules have a symmetric character, the backward
rules for backward model transformations from models
of the target to models of the source language are also

derived automatically. In this section we present both di-
rections and show the application in our scenario for the
forward case. In Sec. we will reuse the operational
rules for propagating constraints from one domain to a
related domain and illustrate the constructions for the
backward case.

Operational rules for model transformations are for-
ward and backward rules for forward and backward
transformations. Both kinds are derived from the triple
rules that specify pattern by pattern how integrated
models are created, i.e. how source and target models are
developed synchronously. Given a triple rule its forward
rule is derived by replacing the source component in the
left hand side by the source component in the right hand
side. This way the rule requires a complete fragment in
the source component of an integrated model and com-
pletes the missing parts for the correspondence and tar-
get components. Similar to the forward case backward
rules are derived in order to perform backward model
transformations.

[31]shows the triple rule “FilterToED” and its derived
forward rule “FilterToED ", where the source compo-
nent is now identical in the left and right hand side of
the forward rule. The forward rule is used to transform
a filter into two ABT nodes of the type “E/D”, which
implement the encryption and decryption of communi-
cation data. The underlying idea here is that confiden-
tial communication in a business universe is filtered out
while in the IT universe the data is encrypted for public
channels. Since the left hand side of the forward rule con-
tains already all source elements of the right hand side
of the triple rule, the item “S1” appears in both, in the
left and in the right hand side. The specification of the
triple rule and the automatic derivation of its forward
rule in the AGT Mathematica (AGT)) implementation
[6] is shown in Fig.

In order to perform model transformations based on
the derived forward rules a given source model is ex-
tended to a triple graph Gy with an empty correspon-
dence and an empty target component. The transforma-
tion starts with this triple graph. Each step of the trans-
formation starts with the computation of the possible
matches from the left hand sides of the forward rules to
the current triple graph. A valid match according to the
on-the-fly construction in [31] is chosen and the forward
step is performed. The resulting target model of a model
transformation based on forward rules is obtained by re-
stricting the final triple graph to its target component.
This construction leads to a source consistent forward se-
quence that defines the model transformation sequence.

Ezample 14 (Model Transformation) Using the pre-
sented triple rules and its derived forward rules, the busi-
ness service model Mg g pr is transformed to the IT ser-
vice model Mg j s . The model transformation sequence
consists of the following 6 forward transformation steps
and is shown in Figures [32) and

0O Utk W~

20
+4 A ++ | A
<<{ :Filter 'fr\ CA :E/D
® : 38
S1:public ® T1:public 5 3
++ S8
23
:E/D
++
ararF . ararF
riple Rule FilterTo
Triple Rule FilterToED
++ ++ +4+ At
S2:Filter CA :E/D
® . |38
S1:public T1:public g3
‘ oo
++ S 8
:E/D
++
arar . arar
Forward Rule FilterToEDp
(* creation of graphs SL,CL,TL,SR,CR and TR x)
FilterToEDSL = TGGmakeGraph[SL,CL,TL];
FilterToEDSR = TGGmakeGraph[SR, CR,TR];
(¥ TGG rule: L, R and application conditions x)
FilterToED = TGGmakeRule [FilterToEDSL,FilterToEDSR,

{11
FilterToEDF = TGGforwardRule[FilterToED];

Fig. 31 Triple Rule, Derived Forward Rule and Mathemat-
ica Source Code

GO DepartmentToLANFg Gl DepartmentToLANg GQ

PublicToPublicy FilterToEDp
ublic ToPublicp Gg zeroFG4

PrivateInToPrivatelng G FilteredOutToPrivate OQut g G
5 6

where Go = (Mg g,m — 0 — 0). At each step a part of
the source model is completed by the missing elements in
the correspondence and target component. The matches
of the forward rules do not overlap on their effective ele-
ments, which are given by Rg\ Lg of the specified triple
rule and visualized by green colour and plus signs in the
source components of the triple rules. Furthermore, each
element in Mg g is matched by an effective element
of a forward rules. Both properties are ensured by a for-
mal condition, called source consistency, which controls
the forward transformation. This way each source ele-
ment is translated exactly once and the resulting triple
graph is a well formed integrated model. The resulting
triple graph Gg is shown at the bottom of Fig. and
coincides almost with the triple graph in Fig. Only
the labels “NW4” and “NWT7” for the nodes of type
“LAN” are left blank. Such information cannot be de-
termined by the information of any source model and
therefore, the triple rules create blank labels. But note
that real attributes are processed and computed during
the model transformation, e.g. the connector type “pub-
lic” is specified as an attribute of a Reo connector in

Christoph Brandt et al.

Business Model Msg

Private_Banking:Department |

T
private

public

[Investment_Banking:Department |

DepartmentToLANg
Private_Banking:Department | A 'LAN
pri:ate
public
[Investment_Banking:Department |
DepartmentToLANg
Private_Banking:Department | A 'LAN
pri\Tate
public
Investment_Banking:Department I . :LAN

PublicToPublice

<_~-
CA

| Private_Banking:Department I

:LAN

s
(A]

| Investment_Banking:Department | A

hd
private

Fig. 32 Model Transformation Sequence Part 1

the abstract syntax. The result of of the forward trans-
formation is given by the target component Mg ; pr of
G = (Ms,gm — Go,c — Ms1m)- Figure shows
the model transformation in one step from its source
model as input to its target model as output. The figure
additionally contains the corresponding operation calls
in the Mathematica implementation AGT);. Note that
some transformation steps in this sequence are sequen-
tially independent, e.g. the second and the third step are

Enterprise Modelling using Algebraic Graph Transformation - Extended Version

FilterTOEDg

Private_Banking:Department . :LAN
pri\?ate |
i @ E/D
:Filter ‘\
public . public
v CA :E/D
Investment_Banking:Department I . :LAN
PrivateInToPrivatelng
: o | .
Private_Banking:Department | CA) :LAN
private / private
l—l
Y ® 'E’E
:Filter ’\
. . public
public
/ . \r 5"
CA) :E/D
Y
Investment_Banking:Department I . :LAN
FilterOutToPrivateOutr
Prlvate_Banklng.Departinent [. :LAN
private / private
e
Y ® 'E’E
:Filter ‘\
public . public
@ Y
v A E/D
 / _qy private
Investment_Banking:Department I . :LAN
R e
Business Model Correspondence IT Model
MS,B,M MS,I,M

Fig. 33 Model Transformation Sequence Part 2

independent. They can be switched leading to an equiva-
lent sequence. For this reason, the notion of parallel inde-
pendence of forward transformation steps in [31] is used
and analyzed during the transformation. This allows to
avoid the computation of the equivalent sequences.

Model transformations based on source consistent
forward sequences are correct and complete with respect
to the triple patterns [31], i.e. with respect to the lan-
guage VL = {G | § =* G in TGG} containing the

U W N =

21
| Private_Banking:Depgrtment | :LAN
private / private
£Q
public Y
[ED
Yy private
Investment_Banking:Department | m
-
Business Model Mg g u IT Model Mg m

(* Grammar: Forward Triple Rules ABTReo$RulesMT and
Integrated Type Graph TripleTG$A2A *)

ABTReo$GrammarMT={ABTReoSRulesMT, TripleTGS$A2A};

(* Apply Model Transforamation to Model M SBM x)

ModelSIM = TGGmodelTrafo[ModelSBM, ABTReo$GrammarMT];

Fig. 34 Model Transformation of Service Models

integrated models generated by the triple rules. More
precisely, each model transformation translates a source
model into a target model, such that the integrated
model that contains both models can be created by ap-
plications of the triple rules to the empty start graph.
This means that both models can be synchronously cre-
ated according to the triple patterns. Vice versa, model
transformation can be performed on each source model
that is part of an integrated model in the generated triple
language VL.

The languages of translatable source models VLg and
of reachable target models VLp are given by
VLg = {GS | (GS — G — GT) S VL} and
VLr ={Gr | (Gs — G¢c — Gr) € VL}. Based on these
definitions there is the correctness and completeness re-
sult below according to Theorems 2 and 3 in [33].

Theorem 4 (Correctness and Completeness)

— Correctness: Fach model transformation sequence

given by (Gg,Go ”:F> Gn,Gr), which is based on
a source consistent forward transformation sequence
Go ”:F> G, with Go = (Gs «— 0 — 0) and
G, = (Gs «— G¢ — Gr) is correct, i.e. Gg € VLg
and Gp € VL.

— Completeness: For each Ggs € VLg there exists
Gr € VLp with a model transformation sequence

(Gs, Gy g G, Gr) where Ggy ”:F> G,, is source
consistent with Gy = (Gg «— 0 — 0) and G, =
(GS — GC — GT).

The result in Thm. [4] goes beyond the available
results for other graph transformation approaches, for
which the available results can only ensure the syntacti-
cal correctness of the resulting target models. In addition
to the correctness and completeness result, the triple

1

22

graph transformation approach benefits from its intu-
itive triple patterns of corresponding fragments, which
substantially increases usability and maintainability.

4.3 Model Integration based on Integration Rules

The purposes of model integration are first of all in-
teroperability in general and the analysis of consistency
within the overall enterprise model in particular. Con-
ceptually, the challenge of model integration is different
from model transformation. However, both techniques
can be based on triple graph transformation and thus,
they are strongly related in our case. The starting set of
triple rules is even the same - the only differences occur
in the derivation of operational rules and the definition
of the control conditions for the execution. This section
shows the technical constructions and presents the cor-
rectness and completeness result, which is similar to the
case of model transformation.

++ A+ ++ ++ o, AEE
4—* :Filter II CA ‘E/D
@ publi 38
S1:public T1:public S5
@ =5
++ S 3
:E/D
++ .++ +
Triple Rule FilterToED
g piaiy ++
4—{82:F|Iter T2:E/D
@ - 38
S1:public T1:public 23
@ 53
o o
S q
T3:E/D
++ .++ +

Integration Rule FilterToED;

FilterToEDI = TGGintegrationRule[FilterToED];

Fig. 35 Derived Integration Rule FilterToED; and Mathe-
matica Source Code

Analogously to forward rules, integration rules are
derived from the set of triple rules, which describe the
patterns of the relations between two models. An inte-
gration rule is obtained from a triple rule by replacing
the source and the target component of the left hand
side by the source and target components of the right
hand side, such that only the correspondence part re-
mains different. This way, a match of the rule requires
that all fragments of the triple pattern in the source and
target component are present before applying the rule,

Christoph Brandt et al.

such that only the correspondences are added to com-
plete the triple pattern.

Ezample 15 (Integration Rule) Figure shows the
triple rule “FilterToED” and its derived integration rule
“FilterToED[”. The triple rule synchronously extends a
public connector by a filter in the business model and
its corresponding two de/encryption elements in the IT
model. Thus, an application of the integration rule com-
pletes the correspondence structure of existing and al-
ready related public connectors that have adjacent filter
resp. de/encryption elements.

Model integration based on triple graph transforma-
tion is defined by integration sequences, in which the
derived model integration rules are applied. Given a
source and a target model their integration is performed
by completing the correspondence structure that relates
both models. The consistency of a model integration is
ensured by a formal condition, called S-T-consistency
[30]. This condition ensures that the given source and
target models are completely parsed using the inverted
triple rules restricted to the source and target compo-
nent, respectively. Thus, each fragment of the models is
processed and integrated exactly once.

Ezample 16 (Model Integration) Figures [36] to [38] shows
the integration of models Mg g s and Mg 1, i.e. the
creation of the correspondence relation between them via
a correspondence graph. The model integration is based
on an S-T-consistent integration sequence consisting of
the following 6 steps using the derived model integration
rules as shown in Figures [36] and

GO DepartmentToLANy Gl

DepartmentToLAN| Iel
2

PublicToPublicy FilterToEDy
Gs Gy

PrivateInToPrivateln G Filtered Out To PrivateOQut G
5 6

with Go = (Mg,,pm — 0 — Mg 1,01)-

In the first four steps some fragments of the source
and target components are completed by the missing ele-
ments in the correspondence component. In the two last
steps no correspondence nodes are created. The reason
is the following. The triple rules “PrivatelnToPrivateln”
and “FilteredOutToPrivateOut” extend integrated frag-
ments in the source and target model by connecting
Reo elements and they do not create any correspondence
node. Therefore, the derived integration rules do not cre-
ate correspondences either. But these integration rules
are necessary to ensure correct integrations in the way
that the positions of the corresponding private Reo con-
nectors are checked.

The matches of the integration rules do not over-
lap on their effective elements, which are given by
RsURy \ Ls U Lt of the specified triple rule and visu-
alized by green colour and plus signs in the source and
target components of the triple rules. Furthermore, each
element in Mg g pr and Mg ;s is matched by an effec-
tive element of an integration rule. Both properties are

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 23

Business Model Ms g u IT Model Mg m —
T)
FilterToED;
Private_Banking:Department NW4:LAN v
| Private_Banking:Depariment | | NW4LAN |
private private - - 1
| Private_Banking:Department | A NW4:LAN
. private y Pprivate
public
Y ® '_E'/.F_l
private
: bl
Investment_Banking:Department| NW?7:LAN public . pepte
— @ Y
:
DepartmentToLAN; v A }'
 / private
Investment_Banking:Department I A NW?7:LAN
: -]
| Private_Banking:Department | CA) | NW4.LAN
pri\Tate private 1
PrivateInToPrivateln;
<_"
public public
| Private_Banking:Department I CA) NW4:LAN
private private private
Investment_Banking:Department | NW7:LAN D I_E‘El
Y
DepartmentToLAN; public . public
@ Y
: —] : ! @ G-
Private_Banking:Department | . NW4:LAN
pri\Tate private Y, private
Investment_Banking:Department I CA) NW7:LAN
public public
FilterOutToPrivateOut;
private v
Investment_Banking:Department I CA) NW7:LAN I
| Private_Banking:Department | CA) NW4:LAN
) }
PublicToPublic; private y Private
|—':|
~_~ e .y E/D
| :Filter
| Private_Banking:Department | CA) NW4:LAN public
e . public .
private private .
Y
L @
public . public / private
4
. >) Investment_Banking:Department I ‘ NW?7:LAN
private - -
[Investment_Banking:Department | A NW7:LAN Busin'\jss Model Correspondence |TMM0d9|
SBM SIM

Fig. 36 Model Integration Sequence Part 1

ensured by the formal S-T-consistency condition, which
controls the integration sequence. This way each source
element and each target element is integrated exactly
once and the resulting triple graph is a well formed in-
tegrated model. The resulting triple graph Gg is shown
at the bottom of Fig. and coincides with the triple
graph in Fig.

The result of the model integration is the completely
integrated triple graph of the sequence and it is shown
in the bottom part of Fig. where the model integra-

Fig. 37 Model Integration Sequence Part 2

tion is presented in a single step from the pair of the
source and the model as input to the integrated model
as output. Figure [39| shows the corresponding operation
calls in the Mathematica implementation AGT),.

Integration rules are used to establish or update the
correspondences between two models. The model frame-
work in Fig. 5] shows many coordinates, where models
should be integrated. Two models are consistent with
each other, if they can be completely integrated, other-
wise they show conflicts. Consistency between the mod-

Tk W N~

24

I Private_Banking:Department l

NW4:LAN

private private
(=]
-
public
public Y
E/D

private
Investment_Banking:Depart'ment l NW7:LAN
- -
Business Model Correspondence |IT Model
MS,B,M MS,I,M
[
Integration
: o | .
I Private_Banking:Department | ‘ NW4:LAN
private L / private
[—4
Y ® 'E@
:Filter ’\
bli
public . L
/ @ \rgr
. :E/D
A/ private
Investment_Banking:Department } . NW7:LAN
R
Business Model Correspondence IT Model
Msgm Ms i m

Fig. 38 Model Integration for Service Models

(* Grammar: Integration Triple Rules ABTReo$RulesMI and
Integrated Type Graph TripleTG$A2A x)

ABTReo$GrammarMI={ABTReoSRulesMI, TripleTGS$A2A};

(*» Apply Model Integration to Model M _SBM x)

ModelMI = TGGintegrate [ModelSBM,ModelSIM, ABTReo$GrammarMI] ;i

Fig. 39 Operation Calls for Model Integration

els is ensured by checking S-T-consistency [30], which
means that the integration has to conform to a parsing
of the existing source and target model.

If two models cannot be fully integrated, i.e. no S—T-
consistent integration sequence can be found, then some
parts of the models cannot be related. For instance the
IT model may contain some communication paths that
are not modelled in the business model. Those synchro-
nization fragments are detected by computing the in-
tegration sequences with maximal coverage. Thereafter,
the remaining parts are marked for further synchroniza-
tion that shall be performed by the modelers. The syn-
chronization by the modeler can be supported by the
application of the derived forward and backward triple
rules in the way that additional fragments in one model
are translated to new ones in the other model.

Christoph Brandt et al.

Analogous to the forward case model integration
based on triple rules is correct and complete according
to Thm. 3 in [30] combined with the the result for the
forward case. This means that each model integration
leads to a triple graph that can be created by the appli-
cation of the specified triple rules. Vice versa, integration
can be performed for each pair of a source and a target
model that can be obtained from a model in the language
VL ={G | 0 =* G in TGG} containing all integrated
models generated by the original triple rules.

Theorem 5 (Correctness and Completeness)

— Correctness: Fach model integration sequence given
by ((Gs,Gr),Go G, G,,) which is based on the

S-T'-consistent integration sequence Gg % G, with
Go = (Gs — 0 — Gr) is correct, i.e. G, € VL.
— Completeness: For each G, € VL there ezists

a model integration sequence ((Gg,Gr),Go by

Gn,Gy), such that Go g G, is S-T-consistent,
G() = (GS — (Z) — GT) andGn = (Gs — Gc HGT)

After we have shown how models can be integrated
by model integration based on triple graph grammars,
the next section focusses on a further aspect concern-
ing the analysis of the requirements between different
domains.

4.4 Rule based Propagation of Constraints

Each domain in the model framework for enterprise mod-
elling in Fig. [5] is faced with several non-functional re-
quirements and quite a lot of them are hard requirements
given by e.g. security rules that the enterprise has to im-
plement. This means that the enterprise models have to
be checked against the non-functional requirements. A
local analysis of these requirements for single models is
presented in Sec. [3.3] based on intuitive and visual graph
constraints that are checked against the abstract syntax
graph of the model.

However, even if the existing models of one dimension
in the enterprise model framework in Fig. [5| respect the
non-functional requirements, there may be some other
models in an interconnected dimension that implicitly
violate the requirements. This effect occurs if there are
e.g. IT service models that are not related with busi-
ness models, because the business models for this aspect
of the enterprise are currently not developed. In this
case, the implementation of the modelled IT structure
may lead to a system, in which the non-functional busi-
ness requirements are not respected. The solution is to
transfer the requirements from the specific domain to its
interconnected domains and to analyze the propagated
requirements on the models of the new domains.

In this section, we show how the propagation of graph
constraints from one domain to an interconnected other

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 25

domain can be performed, such that the constraint can
be interpreted in the new domain. This new technique
is based on the triple patterns for model transformation
and model integration, which we used already in Sections
and Since graph constraints in general consist of
model fragments only, instead of full models, we have to
adapt the model transformation technique, such that the
model transformation rules can be applied on fragments.
The left hand sides of the model transformation rules
may be to large for the small fragments. For this reason,
we perform a maximal partial matching and borrow the
missing parts in order to apply the rule. This way, the
source component is extended by the borrowed elements,
which was not the case for the model transformations in

Sec.

Constraint: publiclsEncrypted

P]

—1:publicp

1 :public

Fig. 40 Graph Constraint for IT Models

In order to illustrate the mechanism of constraint
propagation we reconsider the graph constraint for IT
models in Sec. [3.3] for ensuring secure communication
over public channels in local are networks, which is
shown in Fig. [40|in concrete syntax. The non-functional
requirement is formalized by the graph constraint in the
way that each public Reo connector that can be found
in a model (premise graph P) has to be connected to
ABT elements with encryption/decryption functionality
(conclusion graph C).

Backward Rule PublicToPublicg
Common Part

for Partial Match LHS RHS
I . IR
public > public |——={ public public

! Il o

Conclusion C
/—/%

:E/D
:public
:E/D
1
Pul@icg
:E/D
S1:public _. :public
if—-‘
:E/D
]
Tt || || A
:Filter
Stpublic | | @ :public
@
A ‘E/D

Propagated Conclusion C’ Conclusion C

Fig. 42 Propagation for Conclusion C

Constraint publiclsEncrypted for IT-models

P c] 1:pub|ic

—1:public
publics s

Propagation

Constraint publiclsFiltered for business models

T ST e prey

e 1:public

1:public

publlic —> public | public public

LJL] LIl
Premise P Extended Propagated Extended
remise Premise P+ Premise P’ Premise P+

Fig. 41 Propagation with Borrowing for Premise P

Ezample 17 (Propagation of Graph Constraint) The
graph constraint “publicIsEncrypted” in Fig. for
IT service models is propagated to a graph constraint
for business models. This means that we perform two

Fig. 43 Constraint Propagation

backward transformations with borrowing - one for the
premise graph of the constraint and one for the con-
clusion graph. Borrowing means that we allow partial
matching for the model transformation rules and add
those parts, which are missing for deriving a total match
[6]. The borrowing is performed by a gluing based on
a pushout along the common parts of the left hand
side of a rule and the triple graph on which the rule
is applied. This construction is illustrated in Fig. [I]
for the premise graph of “publicIsEncrypted”. The rule
“PublicToPublicg” requires a Reo connector with ports
and points in the left hand side of the rule and there-

26

fore, the missing ports and points are borrowed for the
premise P leading to the extended premise graph P,
which in this example coincides with the left hand side
of the rule. The application of the rule results in a triple
graph containing the extended premise P* and the prop-
agated premise P’, which coincide in this example as
shown in Fig. This step leads to the first step of the
propagation of the conclusion C', which is shown in Fig.
In the second step of the propagation of the con-
clusion graph C' we can apply the rule “FilterToEDg”
and derive the triple graph containing the original con-
clusion C' and the the propagated conclusion C’, which
is shown in Fig. [f2] The propagation leads to the con-
straint “publiclsFiltered” in Fig. A check of this new
constraint against the model Mg g »s in Fig. shows
that the constraint is fulfilled, which can be interpreted
as consistency with respect to the security requirement
for IT models.

4.5 Summary of Achievements for Inter-Model
Techniques

The described and illustrated techniques for model
transformation, integration and constraint propagation
in this section improve the interoperability between the
business and the IT service models given by ABT-Reo
diagrams. The techniques are general, such that they
should be applicable to the other visual languages and
coordinates in the model framework for enterprise mod-
elling in Fig. [5|as well. The benefits of the techniques can
be described as follows. Model transformation enables
the construction of model stubs that can be refined by
the experts for the specific domain. Model integration es-
tablishes the correspondences between the existing mod-
els e.g. for data interchange and furthermore, conflicts
between models can be detected and highlighted. Ac-
cording to Theorems [4 and [5] model transformation and
model integration based on triple graph grammars are
correct and complete. Finally, propagation of graph con-
straints supports the analysis of models with respect to
non-functional requirements that can be relevant for dif-
ferent domains in the model framework.

5 Related Work

The related work covers three parts. The first part ad-
dresses requirements about enterprise modelling and en-
terprise models as they can be found in numerous pub-
lications and studies. These requirements are put in re-
lation to the work presented in this paper. The second
part focusses on transformation techniques that are used
in today’s industrial environments. They are compared
with the technique of algebraic graph transformation in
part three that is used in the context of this study.

Christoph Brandt et al.

5.1 Enterprise Modeling and Enterprise Models

5.1.1 Paradigms, Frameworks, Architectures There are
a wide variety [34] of paradigms, frameworks and archi-
tectures for enterprise modelling [35,[86] available. We
focus here explicitly on the requirements that emerged
in existing approaches and that are relevant for the po-
tential solution.

Enterprise engineering or modelling as it is discussed
in the literature takes two points of view. The first is
about building organizational models [35]. The second
is about IT models that lead to an I'T architecture and
implementation to automate business processes [37]. Be-
cause of the scope of this paper we will focus explicitly
on requirements for organizational models that abstracts
away IT implementation details. We believe that this
will reduce the overall complexity and avoid the burden
of building and maintaining fat models [38]. The reason
for such problems is often an insufficient knowledge in
the field about available types of models and potential
modelling techniques [39]. The types or models required
to handle organizational phenomena need to be expres-
sive enough to describe the static and dynamic aspects
of an organization. They need to be open for extensions
as well as being formal to enable fully automated ver-
ification and validation [40]. Even so enterprise models
are created as descriptive models they should support
organizational control and automation by tools later on
which implies that an organizational model will config-
ure an IT platform running business processes [40]. How-
ever, it should not cover IT implementation aspects [40].

Our new model framework has a good potential to
address these requirements. The modelling framework
organizes the interplay of lean and simple models that
can be integrated towards an holistic view. The sound in-
tegration of human-centric and machine-centric models
supports current modelling workflows in the decentral-
ized organization of Credit Suisse and enables model-
checking capabilities. By putting the focus on services,
processes and rules such an organizational model can
serve as a configuration for service oriented IT architec-
tures. It is further able to capture the understanding of
the domain which is already in use.

5.1.2 Enterprise Modelling aspects The purpose of en-
terprise modelling is to understand [41], develop [42],
manage, optimize [42] and control [43] an organization.

From a social point of view, we can assume that or-
ganizational knowledge is usually distributed and that
the people who carry organizational knowledge are lim-
ited by their bounded rationality [44]. Therefore, build-
ing small and focussed models that can be locally inte-
grated should be given preference over creating big and
extensive models that are integrated by a global meta-
model [44]. Because people are considered to be the cru-
cial source of organizational knowledge their conceptual
understanding needs to be smoothly combined with for-

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 27

mal methods regarding the models, the modelling pro-
cess and modelling techniques [45]. Formal methods used
in this context need to support decentralized organiza-
tional workflows and agile modelling as well as collabo-
rative modelling [40].

From a domain point of view, enterprise models are
class and instance models because they need to represent
the organizational situation as it is [47].

From a technical point of view, domain specific mod-
elling environments are needed that extend the facility
of available meta-CASE tools by giving priority to model
transformation and integration. Such environments must
support the evolution of domain languages as well as
their artefacts [48].

Finally, because modelling causes significant costs
[49] reuse of models, modelling elements and modelling
procedures is required [50]. So, a catalogue of modelling
elements and modelling procedures can help here [51].
Such a catalogue will contain objects that are recon-
structed given environmental realities and objects that
are normatively developed based on available organiza-
tional theories. Quality assurance of catalogue elements
is assumed to be highly effective when reuse scales up
[52].

Our new model framework has the potential to cover
these requirements. Lean and focussed models allow on
one hand decentralized and agile modelling, but on the
other hand there are also integration techniques to take
care of a holistic view. Instance- and class modelling
is possible likewise. The declarative nature of algebraic
graph transformation makes the formalism highly us-
able. Negative application conditions and graph con-
straints allow to control the modelling process. Diagram-
like models and text-like models can be handled homo-
geneously by using their abstract syntax. The interplay
of human- and machine-centric models joins flexibility
requirements during the modelling process with formal
requirements during model evaluation. By using catalogs
of model elements and assemblies a lego-like modelling
system could be provided. The same applies to transfor-
mation rules or sets of transformation rules. Algebraic
graph transformation shows good potential to help to
address all this in a formal way which will support also
automation and quality assurance.

5.1.8 Alignment aspects As already stated in section
and in [I3] and [14] alignment aspects between busi-
ness and the IT models are of high importance. The
presented approach shows potential to support such a
flexible alignment in a (semi)- automated fashion, top-
down as well as bottom-up, by the help of intra-model
integration techniques.

5.1.4 Adaptive Modelling Adaptive modelling [53], [54]
shows up when domain languages and their artefacts
evolve [B5]. This happens because domain knowledge is
usually given in an implicit way and can be made explicit

only during the modelling process itself. Another rea-
son why this happens is because the environment that is
modelled changes [56]. Here, new kinds of requirements
may require a change of domain languages as well as
their already existing artefacts [57]. Adaptive modelling
can be supported by techniques of algebraic graph trans-
formation, because the rule based approach allows to
handle modifications and adaptions in an easy way.

5.1.5 Simulation and Analysis aspects As pointed out
in [58] and [59] it should be possible to simulate all kinds
of enterprise models. Simulation models for enterprise
planning purposes can be derived by using model trans-
formation rules. In addition to that, the tool environ-
ment AGG [60] can be used for analysis and simulation
of graph grammars.

5.2 Model Transformation techniques

A taxonomy of model transformation techniques is pre-
sented in [61] and it can be used to help developers decid-
ing which model transformation approach is best suited
to deal with a particular problem. By definition a trans-
formation is the automatic generation of a target model
from a source model, according to a transformation def-
inition, that describes how a model or a set of models
in the source language can be transformed into a model
or a set of models in the target language. Transforma-
tions can be endogenous or exogenous. The first case
is about transformations of models that share the same
language. The second case is about transformations of
models that are build on different languages. Further
on, a transformation can be horizontal or vertical. A
horizontal transformation is a transformation where the
source and target model is at the same abstraction level.
A vertical transformation has source and target models
at different abstraction levels.

Model transformations are based on a concept of
models, where one area of models is the model-driven
architecture initiative created by the Object Manage-
ment Group [62]. Here, platform-specific models are
generated from platform independent models. The ex-
isting model-to-model transformation approaches can
be differentiated into direct manipulation approaches,
relational approaches, graph-transformation-based ap-
proaches, structure-driven approaches and hybrid ap-
proaches. The direct manipulation is the most low-
level approach. It offers little or no support or guid-
ance in implementing transformations. The relational
approach seem to strike a well balance between flex-
ibility and declarative expressions. They provide flex-
ible scheduling and good control of non-determinism.
Some of the QVT [63] submissions fit into this category.
The graph-transformation-based approaches are power-
ful and declarative, but sometimes also complex. The

28

complexity stems from the non-determinism in schedul-
ing and application strategy, which requires careful con-
sideration of termination of the transformation process
and the rule application ordering (including the prop-
erty of confluence). There is a large amount of theoretical
work and good experience with research prototypes. The
structure-driven approach groups pragmatic approaches
that were developed in the context of certain kinds of ap-
plications and the hybrid approach allows the user to mix
and match different concepts and paradigms depending
on the application [64].

5.8 Graph Transformation Approaches

Graph transformation has a long tradition [I], a well-
founded theory [2l5] and has been widely used for ex-
pressing model transformations [727,30,3132,33]. Es-
pecially transformations of visual models can be natu-
rally formulated by graph transformations, since graphs
are well suited to describe the underlying structures of
models [65].

By comparing graph transformation approaches and
QVT we see that in all approaches considered, the typ-
ing information is given by an attributed type graph
or meta-model which contains the structural informa-
tion, inheritance concepts and multiplicity constraints.
AToM3 allows constraints to be expressed in Phython,
algebraic graph transformation shows up with graph
constraints, in QVT typing information is provided from
the source and target meta-models for model transfor-
mation. In the standard graph transformation approach
[B], the type graph of the model transformation con-
sists of the source type graph, the target type graph
and additional reference nodes and edges needed dur-
ing the model transformation. In the triple graph gram-
mar approach proposed in [7L27B0,BILB32lB3] source
and target graphs are connected by a correspondence
graph and triple rules can generate automatically for-
ward and backward model transformation rules. Fur-
thermore, there are general results that ensure correct-
ness and completeness of model transformations [31]. We
can notice that the graph transformation approaches and
QVT share a number of commonalities. The typing con-
cepts by type graphs or the almost equivalent concept
of meta-models can be found in all approaches. More-
over, all transformation approaches considered are rule-
based, even QVT with its concept of relations between
domain models is very close. While the simple rule-based
approach is unidirectional, triple graph grammars and
QVT relations focus more on bidirectional or even multi-
dimensional transformations. All approaches follow an
idea of pre- and post-conditions expressed by some pat-
terns, equipped with typical actions changing the mod-
els. Main differences can be found in the description of
additional attributes using Java, Python, ASM or OCL
as languages for attribute computations as well as con-
ditions. Moreover, the control of rule applications ranges

Christoph Brandt et al.

from pure rule-based approaches allowing a high degree
of non-determinism, to rather controlled rule applica-
tions using mainly automata-based descriptions [65].

Compared with alternative solutions the technique
of algebraic graph transformation is build on a body of
theory that allows formal proofs and that can therefore
guarantee qualities of model transformation and model
integration results [B0JB3TLB2B3]. It is able to check con-
straints about models. It is able to demonstrate how con-
straints can be propagated by the help of triple graph
rules to check for inconsistencies with constraints of
models of different type.

6 Conclusion: Summary and Future Work

The integration of business and IT models on one hand
and human-centric and machine-centric models on the
other hand are major challenges in enterprise modelling.
In addition to that there are several further requirements
depending on the enterprise domain and also specific to
the needs of the enterprise. In this paper, we have pro-
posed a new enterprise modelling framework based on al-
gebraic graph transformation techniques that is focussed
on the requirements of Credit Suisse with the purpose to
improve today’s enterprise models and the interoperabil-
ity between them. Furthermore, we presented suitable
techniques that support the development and analysis
of the models with respect to security, risk and compli-
ance, which are major needs for Credit Suisse. There is
a substantial potential that the results can be applied to
enterprises with similar needs as well.

The first main contribution of this paper is the pro-
posal of a new model framework with decentralized mod-
els in three different dimensions including intra- and
inter-modelling techniques in order to support interoper-
ability between them. Moreover, we have discussed how
the requirements for modeling and interoperability in
this framework can be supported in general by algebraic
graph transformation techniques and tools

The second main contribution of this paper is the ag-
gregation of suitable formal techniques for model devel-
opment, analysis, transformation, integration and prop-
agation of requirements. We illustrated their application
on formalised business and I'T service models which are
situated in the machine centric modelling dimension of
the model framework. They shall be aligned with human
centric domain languages as explained in Sec.

In order to support flexible modelling in visual no-
tation we introduced the notion of a construction and a
correction grammar (C&C system). This way the edit-
ing steps of a model development environment can be
equipped with the corresponding construction rules that
realise the formal construction of the abstract syntax
graphs. The correction of models with respect to the
well-formedness rules of the language is performed on the
basis of the correction grammar. This grammar enables

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 29

an automated detection and highlighting of the patterns
that violate the well-formedness rules. We further ex-
plained how the soundness of the C&C system with re-
spect to the set of well-formed models of the modelling
language can be analysed using the results for local con-
fluence and termination according to Theorems [If and
which are central results of algebraic graph transforma-
tion systems.

Moreover, we have shown how a substantial part of
the functional and non-functional requirements in the
domain of the enterprise can be formalized in an in-
tuitive but formal way by graph constraints in order
to perform automated checks of the models against the
requirements. The validity of graph constraints can be
preserved during the development of models if certain
conditions for the underlying transformation steps are
fulfilled, as stated by Thm.

As third main contribution of this paper, we have
shown how interoperability between models of different
dimensions of the framework can be achieved in order to
support the development process of the models and to
improve maintainability and the possibilities for analy-
sis. For this purpose we have presented how model trans-
formation and model integration are used to construct
and integrate models in order to relate their compo-
nents and to detect inconsistencies between them. Both
techniques are based on triple graph grammars, where
patterns describe how essential model fragments of the
source and target model shall be related. The techniques
can be applied in an automated way and they are shown
to be correct and complete according to Theorems 4 and

Moreover, we have illustrated how the requirements
specified by graph constraints for one domain can be
propagated to other models in the enterprise framework
in order to support consistency of related models.

Altogether, this paper should be considered as a pro-
posal for a new enterprise model at Credit Suisse and
similar decentralized organizations. In fact, in addition
to the general ideas, we have only shown first steps of
how to realize this enterprise model using formal meth-
ods and tools in the area of algebraic graph transforma-
tions. We mainly have focussed on modelling and inter-
operability of business and IT service models using ABT-
Reo diagrams. It remains for future work to extend this
to human-centric models based on other formal specifi-
cation techniques. Moreover, it remains to show semanti-
cal compatibility and to develop techniques for the over-
all integration of all decentralized models. Last but not
least, it is a key challenge to implement the new enter-
prise model at Credit Suisse.

References

1. Ehrig, H., Pfender, M., Schneider,
grammars: An algebraic approach.

H.J. Graph-
In: 14th Annual

10.

11.

12.

13.

14.

Symposium on Switching and Automata Theory, IEEE
(1973) 167-180

Rozenberg, G., ed.: Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foun-
dations. World Scientific Publishing Co., Inc. (1997)
Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.,
eds.: Handbook of Graph Grammars and Computing
by Graph Transformation, Volume 2: Applications, Lan-
guages and Tools. World Scientific Publishing Co., Inc.
(1999)

. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G.,

eds.: Handbook of Graph Grammars and Computing by
Graph Transformation: Volume 3: Concurrency, Paral-
lelism, and Distribution. World Scientific Publishing Co.,
Inc. (1999)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fun-
damentals of Algebraic Graph Transformation. EATCS
Monographs in Theor. Comp. Science. Springer (2006)
Brandt, C., Hermann, F.; Ehrig, H., Engel, T., Adamek,
J., Scholzel, H.: Security and Consistency of IT and
Business Models at Credit Suisse realized by Graph Con-
straints, Transformation and Integration using Algebraic
Graph Theory (Long Version). Technical report, Tech-
nische Universitét Berlin,Fakultdt IV (to appear 2010)
draft version available: http://tfs.cs.tu-berlin.
de/publikationen/Papersl10/BHE+10.pdf.
Kindler, E., Wagner, R.: Triple Graph Grammars:
Concepts, Extensions, Implementations, and Application
Scenarios. Technical Report TR-ri-07-284, Universitat
Paderborn (2007)

Object Management Group: Unified Modeling Language:
Superstructure — Version 2.1.1. (2007) formal/07-02-05,
http://www.omg.org/technology/documents/
formal/uml.html

Object Management Group:
Business Strategy, Business Rules And Busi-
ness Process Management Specifications. (2009)
http://www.omg.org/technology/documents/
br_pm_spec_catalog.htm.

Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y.,
van Weerdenburg, M.: The formal specification lan-
guage mcrl2. In Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R., eds.: Methods for Mod-
elling Software Systems (MMOSS). Number 06351 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, In-
ternationales Begegnungs- und Forschungszentrum fiir
Informatik (IBFI), Schloss Dagstuhl, Germany (2007)
Arbab, F.: Abstract Behavior Types: A Foundation
Model for Components and Their Composition. Science
of Computer Programming 55 (2005) 3-52

Brandt, C., Hermann, F., Engel, T.: Modeling and Re-
configuration of critical Business Processes for the pur-
pose of a Business Continuity Management respecting
Security, Risk and Compliance requirements at Credit
Suisse using Algebraic Graph Transformation. In: Proc.
Int. Workshop on Dynamic and Declarative Business
Processes (DDBP 2009), IEEE Xplore Digital Library
(2009) (accepted).

Zhang, L..J., Zhang, J., Cai, H.: Enterprise Modeling. In:
Services Computing, Springer (2007) 259-274
Wegmann, A.| Lé, L.S., Regev, G., Wood, B.: Enterprise
modeling using the foundation concepts of the rm-odp

Catalog Of OMG

http://tfs.cs.tu-berlin.de/publikationen/Papers10/BHE+10.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers10/BHE+10.pdf
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/br_pm_spec_catalog.htm
http://www.omg.org/technology/documents/br_pm_spec_catalog.htm

30

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

iso/itu standard. Inf. Syst. E-Business Management 5(4)
(2007) 397413

Pemmaraju, S., Skiena, S.: Computational Discrete
Mathematics: Combinatorics and Graph Theory with
Mathematica. Cambridge University Press, New York
(2003) The University of Iowa and SUNY at Stony
Brook.

Brewer, D.F.C., Nash, M.J.: The Chinese Wall Security
Policy. In: IEEE Symposium on Security and Privacy.
(1989) 206214

Klippelholz, S., Baier, C.: Symbolic model check-
ing for channel-based component connectors. In: Proc.
Int. Workshop on the Foundations of Coordination
Languages and Software Architectures (FOCLASA’06).
(2006)

Arbab, F.: Reo: a channel-based coordination model
for component composition. Mathematical Structures in
Computer Science 14(3) (2004) 329-366

Wirsing, M., Pattinson, D., Hennicker, R., eds.: Re-
cent Trends in Algebraic Development Techniques, 16th
International Workshop, WADT 2002, Frauenchiemsee,
Germany, September 24-27, 2002, Revised Selected Pa-
pers. In Wirsing, M., Pattinson, D., Hennicker, R., eds.:
WADT. Volume 2755 of LNCS., Springer (2003)

Scheer, A.W.: ARIS-Modellierungs-Methoden, Meta-
modelle, Anwendungen. Springer, Berlin/Heidelberg
(2001)

Boehmer, W., Brandt, C., Groote, J.: Evaluation of a

business continuity plan using process algebra and modal
logic. IEEE TIC Toronto (2009)

Reisig, W.: Petri Nets: An Introduction. Volume 4
of Monographs in Theoretical Computer Science. An
EATCS Series. Springer (1985)

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kie-
puszewski, B., Barros, A.P.:. Workflow Patterns. Dis-
tributed and Parallel Databases 14(1) (2003) 5-51
Rensink, A.: Representing First-Order Logic Using
Graphs. In Ehrig, H., Engels, G., Parisi-Presicce, F.,
Rozenberg, G., eds.: Proc. Int. Conference on Graph
Transformation (ICGT’04). Volume 3256 of LNCS.,
Springer (2004) 319-335

Jurack, S., Lambers, L., Mehner, K., Taentzer, G.,
Wierse, G.: Object Flow Definition for Refined Ac-
tivity Diagrams . In Chechik, M., Wirsing, M., eds.:
Proc. Fundamental Approaches to Software Engineering
(FASE’09). Volume 5503 of LNCS., Springer (2009) 49—
63

Brandt, C., Hermann, F., Engel, T.: Security and Con-
sistency of IT and Business Models at Credit Suisse re-
alized by Graph Constraints, Transformation and Inte-
gration using Algebraic Graph Theory. In: Proc. Int.
Conference on Exploring Modeling Methods in Systems
Analysis and Design 2009 (EMMSAD’09). Volume 29 of
LNBIP., Heidelberg, Springer Verlag (2009) 339-352
Schiirr, A.: Specification of Graph Translators with
Triple Graph Grammars. In Tinhofer, G., ed.: Proc.
Int. Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG’94). Volume 903 of LNCS., Springer
(1994) 151-163

Ermel, C., Biermann, E., Ehrig, K., Taentzer, G.: Gen-
erating Eclipse Editor Plug-Ins using Tiger. In Schiirr,
A., Nagl, M., Ziindorf, A., eds.: Proc. Int. Symposium

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Christoph Brandt et al.

on Applications of Graph Transformation with Indus-
trial Relevance (AGTIVE’07). Volume 5088 of LNCS.,
Heidelberg, Springer (2008) 583-585

Object Management Group: Meta-Object Facility
(MOF), Version 2.0. (2006)

Ehrig, H., Ehrig, K., Hermann, F.: From Model Trans-
formation to Model Integration based on the Algebraic
Approach to Triple Graph Grammars. In Ermel, C.,
de Lara, J., Heckel, R., eds.: Proc. Workshop on Graph
Transformation and Visual Modeling Techniques (GT-
VMT’08). Volume 10., EC-EASST (2008)

Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-
the-Fly Construction, Correctness and Completeness of
Model Transformationsbased on Triple Graph Gram-
mars. In Schiirr, A., Selic, B., eds.: ACM/IEEE 12th
International Conference on Model Driven Engineering
Languages and Systems (MODELS’09). Volume 5795 of
LNCS., Springer (2009) 241-255 To appear.

Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer,
G.: Information preserving bidirectional model transfor-
mations. In Dwyer, M.B., Lopes, A., eds.: Fundamen-
tal Approaches to Software Engineering. Volume 4422 of
LNCS., Springer (2007) 72-86

Ehrig, H., Hermann, F., Sartorius, C.: Completeness and
Correctness of Model Transformations based on Triple
Graph Grammars with Negative Application Conditions.
In Heckel, R., Boronat, A., eds.: Proc. Workshop on
Graph Transformation and Visual Modeling Techniques
(GT-VMT’09), EC-EASST (2009)

Giaglis, G.M.: A Taxonomy of Business Process Model-
ing and Information Systems Modeling Techniques. In-
ternational Journal of Flexible Manufacturing Systems
13(2) (2001) 209228

Sousa, G., Van Aken, E., Rentes, A.: Using enterprise
modeling to facilitate knowledge management in organi-
zational transformation efforts. Portland International
Conference on Management of Engineering and Technol-
ogy. IEEE. 1 (2001) 62

Lillehagen, F., Krogstie, J.: State of the Art of Enterprise
Modeling. In: Active Knowledge Modeling of Enterprises,
Springer (2008) 91-127

Lankhorst, M.: Enterprise Architecture at Work. Mod-
elling, Communication and Analysis. Springer (2005)
Pereira, C.M., Sousa, P.: A method to define an En-
terprise Architecture using the Zachman Framework.
In: Proc. ACM symposium on Applied Computing
(SAC’04), New York, NY, USA, ACM (2004) 1366-1371
Camarinha-Matos, L.M., Afsarmanesh, H., Ollus, M.,
eds.: Virtual Organizations. Springer (2005)

Popova, V., Sharpanskykh, A.: A Formal Framework
for Modeling and Analysis of Organizations. In Ra-
lyté, J., Brinkkemper, S., Henderson-Sellers, B., eds.:
Situational Method Engineering. Volume 244 of IFIP.,
Springer (2007) 343-358

Delen, D., Dalal, N.P., Benjamin, P.C.: Integrated mod-
eling: the key to holistic understanding of the enterprise.
Commun. ACM 48(4) (2005) 107-112

Dalal, N.P., Kamath, M., Kolarik, W.J., Sivaraman, E.:
Toward an integrated framework for modeling enterprise
processes. Commun. ACM 47(3) (2004) 83-87

Delen, D., Pratt, D., Kamath, M.: A new paradigm
for manufacturing enterprise modeling: reusable, multi-

Enterprise Modelling using Algebraic Graph Transformation - Extended Version 31

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

tool modeling. Proc. IEEE Simulation Conference (1996)
985-992

Kateel, G., Kamath, M., Pratt, D.: An overview of CIM
enterprise modeling methodologies. Proc. IEEE Simula-
tion Conference (1996) 1000-1007

Hoogervorst, J.A.: Enterprise Governance and Enter-
prise Engineering. Springer (2009)

Zhiming, C., Jun, Y.: The Process Conducting and Mem-
ber Audit in the Distributed Enterprise Modeling. IEEE
Asia-Pacific Services Computing Conference (2008) 416
420

Agarwal, R., Bruno, G., Torchiano, M.: Enterprise mod-
eling using class and instance models. Seventh Asia-
Pacific Software Engineering Conference. IEEE. (2000)
336-343

Englebert, V., Heymans, P.: Towards More Extensible
MetaCASE Tools. [66] 454-468

Work, B., Balmforth, A.: Using abstractions to
build standardized components for enterprise models.
Proc. IEEE Software Engineering Standards Symposium
(1993) 154-162

Sarder, M., Ferreira, S., Rogers, J., Liles, D.: A Method-
ology for Design Ontology Modeling. Portland Interna-
tional Center for Management of Engineering and Tech-
nology. IEEE. (2007) 1011-1018

Malone, T., Crowston, K., Lee, J., Pentland, B.: Tools for
inventing organizations: toward a handbook of organiza-
tional processes. Second Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises.
IEEE. (1993) 72-82

Fernandes, J.M., Duarte, F.J.: A reference framework
for process-oriented software development organizations.
Software and System Modeling 4(1) (2005) 94-105
Himsl, M., Jabornig, D., Leithner, W., Regner, P.,
Wiesinger, T., Kiing, J., Draheim, D.: An Iterative Pro-
cess for Adaptive Meta- and Instance Modeling. In Wag-
ner, R., Revell, N., Pernul, G., eds.: DEXA. Volume 4653
of LNCS., Springer (2007) 519-528

Whitman, L., Ramachandran, K., Ketkar, V.: A taxon-
omy of a living model of the enterprise. In: Proc. Confer-
ence on Winter Simulation (WSC’01), Washington, DC,
USA, IEEE Computer Society (2001) 848-855

Valentin, E.C., Verbraeck, A.: Domain specific model
constructs in commercial simulation environments. In:
Proc. Conference on Winter Simulation (WSC’07), year
= 2007, isbn = 1-4244-1306-0, pages = 785-795, location
= Washington D.C., publisher = IEEE Press, address =
Piscataway, NJ, USA,

Mertins, K., Jochem, R.: Integrated enterprise modeling:
method and tool. SIGGROUP Bull. 18(2) (1997) 63-66
Han, Y., Tai, S., Wikarski, D., eds. In Han, Y., Tai,
S., Wikarski, D., eds.: Engineering and Deployment of
Cooperative Information Systems (EDCIS’02). Volume
2480 of LNCS., Springer (2002)

Sadowski, D., Bapat, V.: The arena product family:
enterprise modeling solutions. In: Proc. Conference on
Winter Simulation (WSC’99), ACM (1999) 159-166
Kubota, F., Sato, S., Nakano, M.: Enterprise modeling
and simulation platform integrating manufacturing sys-
tem design and supply chain. IEEE International Con-
ference on Systems, Man, and Cybernetics 4 (1999) 511—
515

60.

61.

62. :

63.

64.

65.

66.

TFS-Group, TU Berlin: AGG. (2009) http://tfs.cs.
tu-berlin.de/agg.

Mens, T., Czarnecki, K., Gorp, P.V.: 04101 Discus-
sion — A Taxonomy of Model Transformations. In
Bezivin, J., Heckel, R., eds.: Language Engineering for
Model-Driven Software Development. Number 04101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, In-
ternationales Begegnungs- und Forschungszentrum fir
Informatik (IBFI), Schloss Dagstuhl, Germany (2005)
MDA Specifications. |http://www.omg.org/mda/
specs.htm (2009)

Object Management Group: Meta Object
Facility (MOF) 2.0 Query/View/Transforma-
tion Specification. Version 1.0 formal/08-04-03.

http://www.omg.org/spec/QVT/1.0/. (2008)
Czarnecki, K., Helsen, S.: Classification of Model Trans-
formation Approaches. In: OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-Driven
Architecture. (2003)

Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel,
L., Levendovszky, T., Prange, U., Varré, D., , Varré-
Gyapay, S.: Model Transformation by Graph Trans-
formation: A Comparative Study. In: ACM/IEEE 8th
International Conference on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica (Octo-
ber 2005)

Krogstie, J., Opdahl, A.L., Sindre, G., eds. In Krogstie,
J., Opdahl, A.L., Sindre, G., eds.: Proc. Conference on
Advanced Information Systems Engineering (CAiSE’07).
Volume 4495 of LNCS., Springer (2007)

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/agg
http://www.omg.org/mda/specs.htm
http://www.omg.org/mda/specs.htm

	TR-1st-page-main.pdf
	main
	Introduction
	Enterprise Models and Enterprise Modelling
	Intra-Model Techniques
	Inter-Model Techniques
	Related Work
	Conclusion: Summary and Future Work

