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Abstract

Triple Graph Grammars (TGGs) are a well-established concept for the specifica-
tion of model transformations. In previous work we have formalized and analyzed
already crucial properties of model transformations like termination, correctness and
completeness, but functional behaviour - especially local confluence - is missing up to
now.

In order to close this gap we generate forward translation rules, which extend stan-
dard forward rules by translation attributes keeping track of the elements which have
been translated already. In the first main result we show the equivalence of model
transformations based on forward resp. forward translation rules. This way, an addi-
tional control structure for the forward transformation is not needed. This allows to
apply critical pair analysis and corresponding tool support by the tool AGG. How-
ever, we do not need general local confluence, because confluence for source graphs
not belonging to the source language is not relevant for the functional behaviour of
a model transformation. For this reason we only have to analyze a weaker property,
called translation confluence. This leads to our second main result, the functional
behaviour of model transformations, which is applied to our running example, the
model transformation from class diagrams to database models.

Keywords: Model Transformation, Triple Graph Grammars, Confluence, Func-
tional Behaviour



1 Introduction

Model transformations based on triple graph grammars (TGGs) have been introduced by
Schiirr in [2I]. TGGs are grammars that generate languages of graph triples, consisting
of source and target graphs, together with a correspondence graph “between” them. Since
1994, several extensions of the original TGG definitions have been published |22 [15, 10] and
various kinds of applications have been presented [23], [11], [I4]. For source-to-target model
transformations, so-called forward transformations, we derive rules which take the source
graph as input and produce a corresponding target graph. Major properties expected to be
fulfilled for model transformations are termination, correctness and completeness, which
have been analyzed in [2, [4, Bl 1], [7].

In addition to these properties, functional behaviour of model transformations is an
important property for several application domains. Functional behaviour means that
for each graph in the source language the model transformation yields a unique graph
(up to isomorphism) in the target language. It is well-known that termination and local
confluence implies confluence and hence functional behaviour. Since termination has been
analyzed already in [5] the main aim of this paper is to analyze local confluence in the
view of functional behaviour for model transformations based on general TGGs. Our new
technique is implicitly based on our constructions in [5], where the “on-the-fly” construction
uses source and forward rules, which can be generated automatically from the triple rules.
In this paper, we introduce forward translation rules which combine the source and forward
rules using additional translation attributes for keeping track of the source elements that
have been translated already. The first main result of this paper shows that there is a
bijective correspondence between model transformations based on source consistent forward
sequences and those based on forward translation sequences. Furthermore, we introduce
an equivalent concept based on triple graphs with interfaces for handling the translation
attributes by separating them from the source model in order to keep the source model
unchanged.

In contrast to non-deleting triple rules, the corresponding forward translation rules are
deleting and creating on the translation attributes. This means that some transformation
steps can be parallel dependent. In this case we can apply the well-known critical pair
analysis techniques to obtain local confluence. Since they are valid for all M-adhesive
systems (called weak adhesive HLR systems in [3]), they are also valid for typed attributed
triple graph transformation systems. In fact, our model transformations based on forward
translation rules can be considered as special case of the latter. However, we do not need
general local confluence, because local confluence for transformations of all those source
graphs, which do not belong to the source language, is not relevant for the functional
bahaviour of a model transformation. In fact, we only analyze a weaker property, called
translation confluence. This leads to our second main result, the functional behaviour of
model transformations based on translation confluence. We have applied this technique
for showing functional behaviour of our running example, the model transformation from
class diagrams to database models, using our tool AGG [24] for critical pair analysis. Note
that standard techniques are not applicable to show functional behaviour based on local



confluence.

This paper is organized as follows: In Sec. [2| we review the basic notions of TGGs and
model transformations based on forward rules. In Sec. Bl we introduce forward translation
rules and characterize in our first main result model transformations in the TGG approach
by forward translation sequences. In Sec. 4] we show in our second main result how func-
tional behaviour of model transformations can be analyzed by translation confluence and
we apply the technique to our running example. While the presented concept for model
transformations using translation attributes relies on a modification of the additional at-
tributes within the source mode, Sec. [5| presents how the manipulation of the source model
is avoided by externalizing the translation attributes using interface graphs. Related work
and our conclusion - including a summary of our results and future work - is presented in
Sections [6] and [7], respectively.

This technical report is an extended version of [13] and presents the full proofs and the
concept of triple graphs with interfaces.

2 Review of Triple Graph Grammars

Triple graph grammars [21] are a well known approach for bidirectional model transfor-
mations. Models are defined as pairs of source and target graphs, which are connected via
a correspondence graph together with its embeddings into these graphs. In [15], Konigs
and Schiirr formalize the basic concepts of triple graph grammars in a set-theoretical way,
which is generalized and extended by Ehrig et al. in [I] to typed, attributed graphs. In
this section, we review main constructions and results of model transformations based on
triple graph grammars [22] 5].

A triple graph G =(Gg << G 1 Gr) consists of three graphs G, G¢, and Gr,
called source, correspondence, and target graphs, together with two graph morphisms
sqg: Go — Gg and tg : Go — Gp. A triple graph morphism m = (mg,me, mr) : G — H
consists of three graph morphisms mg : Gg — Hg, m¢ : Go¢ — He and my : Gr — Hryp
such that mg o s¢ = sy o mg and mr otg = ty ome. A typed triple graph G is typed
over a triple graph TG by a triple graph morphism typeqs : G — TG.

mS TGC TGT
0..1
parent |__> Class Table
name: String [«---—— —1- @ - —*{name: String
! 014 1A 1A A fk'eys |0..1
attrs src | dest references ‘
Association pKey
type -1+t 44-

— P name: String = cols
PrimitiveDataType | ¢
name: String Attribute Column

0.1 é type name: String type: String

is_primary: boolean [* ==~~~ T @ T name: String

Figure 1: Triple type graph for CD2RDBM



Example 1 (Triple Type Graph). Fig. shows the type graph TG of the triple graph
grammar TGG for our ezample model transformation CD2RDBM from class diagrams to
database models. The source component TGg defines the structure of class diagrams while
in its target component the structure of relational database models is specified. Classes
correspond to tables, attributes to columns, and associations to foreign keys. Throughout
the example, originating from [I], elements are arranged left, center, and right according
to the component types source, correspondence and target. Morphisms starting at a corre-
spondence part are specified by dashed arrows. Furthermore, the triple rules of the grammar
shown in Fig. [3 ensure several multiplicity constraints, which are denoted within the type
graph. In addition, the source language CD only contains class diagrams where classes
have unique primary attributes and subclasses have no primary attributes to avoid possible
confusion.

Note that the case study uses attributed triple graphs based on E-graphs as presented
in [I] in the framework of M-adhesive categories (called weak adhesive HLR in [3]).

Triple rules synchronously bui.Id up source L-(Ls g e L) L o p
and target graphs as well as their correspon- | .1 4gy troy oy l ro) J/”
dence graphs, i.e. they are non-deleting. A R= (RsﬁRc?RT)
triple rule ¢r is an injective triple graph mor- f GH
phism tr = (trg,tro,try) : L — R and w.l.o.g. we assume ¢r to be an inclusion. Given a

triple graph morphism m : L — G, a triple graph transformation (TGT) step G e H
from G to a triple graph H is given by a pushout of triple graphs with comatchn: R — H
and transformation inclusion t : G — H. A grammar TGG = (TG, S, TR) consists of a
triple type graph TG, a triple start graph S and a set TR of triple rules.

Class2Table(n:String) PrimaryAttr2Column(n:String, t:String)
++ -+ ++ 81 C|
: 5 :Class |< - 1 :
:Class " _@__ L :Table o+ >| T1:Table
name=n = Primiti
name=n :PrimitiveDataType | cattrs -cols | :pKey
name=t ++v +++
Subclass2Table(n:Strin e f o 'b‘: H it
ST @ T || e R
parent B4+ 4+ ! N ™ type=t
:Class ++ | primary=true
name=n [*~ 7| "@'_ T

Association2ForeignKey(an:Strin

Class |-+ -@— - >| Table | .15 :Column +
. ++ . =
'Src -+ . .fkeysvH_ " . type =t N
‘Association | o | | | --—>|E<ey fools—»-| NaMe = an+*_"+cn

name = an
references :Column
:desty ++ V++ type =4

Figure 2: Rules for the model transformation Class2Table




Example 2 (Triple Rules). The triple rules in Fig. @ are part of the rules of the grammar
TGG for the model transformation CD2RDBM . They are presented in short notation, i.e.
left and right hand sides of a rule are depicted in one triple graph. Elements, which are cre-
ated by the rule, are labeled with green "++" and marked by green line colouring. The rule
“Class2Table” synchronously creates a class in a class diagram with its corresponding table
in the relational database. Accordingly, subclasses are connected to the tables of its super
classes by rule “Subclass2Table”. Attributes are created together with their corresponding
columns in the database component. The depicted rule “PrimaryAttr2Column” concerns
primary attributes with primitive data types for which an edge of type “pKey” is inserted
that points to the column in the target component. This additional edge is not created for
standard attributes, which are created by the rule “Attr2Column”, which is not depicted. Fi-
nally, the rule “Association2ForeignKey” creates associations between two classes together
with their corresponding foreign keys and an additional column that specifies the relation
between the involved tables.

(Ls~ @ — @) (Rg <252 Lo — 2 = L)
trs¥Y V Y idY s tro Y " Ytre
(Rs~— 2 — ) (Rg <—— Rc —— Ry)

source rule trg forward rule trp

The operational rules for model transformations are automatically derived from the
set of triple rules TR. From each triple rule ¢r we derive a forward rule trp for forward
transformation sequences and a source rule trg for the construction resp. parsing of a
model of the source language. By TRg and TRp we denote the sets of all source and
forward rules derived from TR. Analogously, we derive a target rule ¢ry and a backward
rule trg for the construction and transformation of a model of the target language leading
to the sets TRy and TRp.

A set of triple rules TR and the start graph @& generate a visual language VL of
integrated models, i.e. models with elements in the source, target and correspondence
component. The source language V' Lg and target language VLp are derived by projection
to the triple components, i.e. V Lg = projs(V L) and V Ly = projr(VL). The set V Lgg of
models that can be generated resp. parsed by the set of all source rules TRg is possibly
larger than VLg and we have VLgs C VLgy = {Gs|9 =* (Gs «— @ — &) via TRg}.
Analogously, we have V Ly CV Ly ={Gr |9 =* (& «— @ — Gr) via TRr}.

As introduced in [I, [5] the derived operational rules provide the basis to define
model transformations based on source consistent forward transformations Gy =* G,

) tr ) tr
via (tryp,...,tr, ), short Gy —E, G,. Source consistency of Gy —= (,, means that

there is a source sequence @ % Gy such that the sequence @ L—% Go tr:’ﬂ G, is match
consistent, i.e. the S-component of each match m; p of tr; p(i = 1...n) is uniquely de-
termined by the comatch n; g of tr; g, where tr; ¢ and tr; p are source and forward rules

of the same triple rules tr;. Altogether the forward sequence Gq ;F—> G, is controlled

. tr - . .
by the corresponding source sequence & —55 Gy, which is unique in the case of match
consistency.



Definition 1 (Model Transformation based on Forward Rules). A model transformation
sequence (Gg, Gy tT:F> Gn,Gr) consists of a source graph Gg, a target graph Gr, and a

source consistent forward TGT-sequence Gg ”:F> G, with Gg = Gos and Gr = G, .
A model transformation MT : VLsg = VLo is defined by all model transformation se-

quences (Gg, Gy ”:F> G, Gr) with Gs € VLgy and Gy € VLpy. All the corresponding
pairs (Gg, Gr) define the model transformation relation MTRr C VLgg X VL.

In [T, 5] we have proved that source consistency ensures completeness and correctness of
model transformations based on forward rules with respect to the language VL of integrated
models. Moreover, source consistency is the basis for the on-the-fly construction defined
in [5].

3 Model Transformations based on Forward Translation
Rules

Model transformations as defined in the previous section are based on source consistent
forward sequences. In order to analyze functional behaviour, we present in this section a
characterizion by model transformations based on forward translation rules, which integrate
the control condition source consistency using additional attributes (see Thm.[l)). For each
node, edge and attribute of a graph a new attribute is created and labeled with the prefix
“tr”. If this prefix is used already for an existing attribute, then a unique extended prefix
is chosen.

The extension of forward rules to forward translation rules is based on new attributes
that control the translation process according to the source consistency condition. For
each node, edge and attribute of a graph a new attribute is created and labeled with the
prefix “tr”. Given an attributed graph AG = (G, D) and a family of subsets M C G for
nodes and edges, we call AG" a graph with translation attributes over AG if it extends
AG with one boolean-valued attribute ¢r_x for each element = (node or edge) in M and
one boolean-valued attribute tr _x a for each attribute associated to such an element x
in M. The family M together with all these additional translation attributes is denoted
by Attyr. Note that we use the attribution concept of E-Graphs as presented in [3], where
attributes are possible for nodes and edges.

Definition 2 (Family with Translation Attributes). Given an attributed graph AG =
(G, D) we denote by |G| = (V§, VP, ES, ENA, EEY) the underlying family of sets con-
taining all nodes and edges. Let M C |G|, then a family with translation attributes

for (G, M) extends M by additional translation attributes and is given by Atty =
(VG Viz, ESy, ENA, EEA) with:

o ENA=FENA U {tr z|zeViIu{tr x al|aec BV srel(a) =2 € VE,

o EFA=FEA Y {tr 2|2 € E§} U{tr_ oz _a|a€ EEA srcEA(a) = x € ES}.



Definition 3 (Graph with Translation Attributes). Given an attributed graph AG =
(G, D) and a family of subsets M C |G| with {T,F} C V] and let Attyr be a family
with translation attributes for (G, M). Then, AG' = (G', D) is a graph with translation
attributes over AG, where |G'| is the gluing of |G| and Atty over M, i.e. the sets of nodes
and edges are given by componentwise pushouts and the source and target functions are
defined as follows:

o srcG, = srcg, trgS, = trgS,

X X
sreg(z) z € Eg
T z=1tr xorz=1r_x_

o srcg(2) = { | Jor X € {NA, BA},
trg3(2) z € EX
X () — G G

* troc(z) = { TorF z=tr_ xorz=tr_z_a for X € {NA, EA}.

M S Att]yj

=

|G| —|¢]

Atty,, where v = T or v = F, denotes a family with translation attributes where all
attributes are set to v. Moreover, we denote by AG @ Atty that AG is extended by the
translation attributes in Atty i.e. AG & Atty = (G',D) = AG'. Analogously, we use
the notion AG @ Atty, for translation attributes with value v and we define Att’"(AG) =
AG @ Attly,.

The extension of forward rules to forward translation rules ensures that the effective
elements of the rule may only be matched to those elements that have not been translated
so far. A first intuitive approach would be to use NACs on the correspondence component
of the forward rule in order to check that the effective elements are unrelated. However, this
approach is too restrictive, because e.g. edges and attributes in the source graph cannot be
checked separately, but only via their attached nodes. Moreover, the analysis of functional
behaviour of model transformations with NACs is general more complex compared to using
boolean valued translation attributes instead. Thus, the new concept of forward translation
rules extends the construction of forward rules by additional translation attributes, which
keep track of the elements that have been translated at any point of the transformation
process. This way, each element in the source graph cannot be translated twice, which is
one of the main aspects of source consistency. For that reason, all translation attributes of
the source model of a model transformation are set to false and in the terminal graph we
expect that all the translation attributes are set to true. Moreover, also for that reason, the
translation rules set to true all the elements of the source rule that would be generated by
the corresponding source rule. This requires that the rules are deleting on the translation
attributes and we extend a transformation step from a single (total) pushout to the classical
double pushout (DPO) approach [3]. Thus, we can ensure source consistency by merely



using attributes in order to completely translate a model. Therefore, we call these rules
forward translation rules, while pure forward rules need to be controlled by the source
consistency condition. Note that the extension of a forward rule to a forward translation
rule is unique.

Definition 4 (Forward Translation Rule). Given a triple rule tr = (L — R), the forward

translation rule of tr is given by trpr = (Lpr AR R TET Rpr) defined as follows using

the forward rule (Lp 225 Rp) and the source rule (Ls X35 Rg) of tr, where we assume

w.l.o.g. that tr is an inclusion:
o Kpr=Lp® Att],

o Lpr =Lp & Att] & Aty 1.
o Rpr = Rp @ Alt] & Atty . = Rp @ Altg,,

o [pr and rpy are the induced inclusions.

Subclass2Table(n:Strin Subclass2Tablegr(n:String)

S1:Class ————@-- : LHS
parent A++ |

S1:Class || _@ --+»{:Table
:Class ++ |
name=n €~ "@__ _____

tr=T
S2:parent 4
tr=F

1
>|§
Q
o
(0]
a|ny adu |

S3:Class

Subclass2Tablegr(n:String) Prgrpe=n

S1:Class |q L | _@ --+»{ Table tr_name=F

-

o

2

Q

el

_|

o

>

21

o

=

S >

tr=T | 2 %

' | g RHS ‘U/ —~

S2:parent : =3 m

tr=[ F=T] | 5 STClass |_|| @-- 1| Table i<

| 2 tr=T h =}

S3:Class ++ : 9 S2.parent & : =

name=n 4__@_______1 ] =T : g

tr=[ F=T] Z S3:Class ! 3
= ) name=n

tr_name=[ F=T ] tr=T 4____@_______1 2

tr_name=T Z

Figure 3: Forward translation rule Subclass2Tablepr(n : String)

Example 3 (Derived Forward Translation Rules). Figure @ shows the derived forward
translation rule “Subclass2Table pr” for the triple rule“Subclass2Table” in Fig.[3. Note that
we abbreviate “tr _x” for an item (node or edge) x by “tr” and “tr _x_a” by “tr _type(a)”
wn the figures to increase readability. The compact notation of forward translation rules
specifies the modification of translation attributes by “|[F = T|”, meaning that the attribute
1s matched with the value “F” and set to “T” during the transformation step. The de-
tailed complete notation of a forward translation rule is shown on the right of Fig.[d for

“Subclass2Table pr”.



From the application point of view a model transformation should be injective on the
structural part, i.e. the transformation rules are applied along matches that do not identify
structural elements. But it would be too restrictive to require injectivity of the matches
also on the data and variable nodes in the abstract syntax graphs of models, because the
matching should allow to match two different variables in the left hand side of a rule to the
same data value in the host graph of a transformation step. Thus, this notion of almost
injective matches applies to all model transformations based on abstract syntax graphs with
attribution. For this reason we introduce the notion of almost injective matches, which
requires that matches are injective except for the data value nodes. This way, attribute
values can still be specified as terms within a rule and matched non-injectively to the same
value.

Definition 5 (Almost Injective Match and Completeness). An attributed triple graph mor-
phism m : L — G 1is called almost injective, if it is non-injective at most for the set of

variables and data values in Lpr. A forward translation sequence G Li> G,, with al-
most injective matches is called complete if G,, is completely translated, i.e. all translation
attributes of G, are set to true (“T”).

In order to prove Fact [1, which is needed for the equivalence in Thm. [1] of model
transformations based on forward rules and those based on forward translation rules, we
first prove Lemma [I] which states the equivalence for a single step using the on-the-
fly construction of [5]. For this purpose, we recall the main definition of partial source
consistency, partial match consistency and forward consistent matches.

Definition 6 (Partial Match and Source Consistency). Let TR be a set of triple rules and
let TRp be the derived set of forward rules. A sequence

tre trx
@:GO()%G”()&G()%}G”

defined by pushout diagrams (1) and (3) fori =1...n with G§ = @, G¥ = @ and inclusion
Gn = Gno — Gy is called partially match consistent, if diagram (2) commutes for all i, which
means that the source component of the forward match m; p is determined by the comatch
n,; s of the corresponding step of the source sequence with g; = g, ot,s...ti—1 3.
L; s¢ R; 5¢ L; r€ i Rir
mi,s Y (1) y7i,s (2) mi,F Y, (3) i F
Gi—1,0¢ P Gio© Go© Gi—fﬁ G;

tri,s

9i
A forward sequence G tT:F> G, 1s partially source consistent, if there is a source

sequence @ = Gy tr:s> Gno with inclusion Gy <2 Gy such that Gy ”:S> Gro <2

Gy tr:F> G, 1s partially match consistent.

Definition 7 (Forward Consistent Match). Given a partially match consistent se-

* *
trg trp

quence & = Gop = Gp10 < Gy == G,—1 then a match m,p



L,y — Gn_y for trpp : Lpr — Ry p 1s called for- Lns— R, s~ Lyr
ward consistent if there is a source match m, s such mmSi 1 ¢m7uF
that diagram (1) is a pullback. Gr-1,05> Go— Gn 1

We first proof the equivalence of forward translation sequences and source consistent
forward transformations for single steps as stated by Lemma

Lemma 1 (Forward translation step). Let TR be a set of triple rules with tr; € TR and
let TRy be the deriwed set of forward rules. Given a partially match consistent forward
sequence & = Gy L—S> Gi—10 2= Gy tT:F> G,;_1 and a corresponding forward translation

tr,

sequence Gy === G'_,, both with almost injective matches, such that Gi_, = G;_1 &
Attgo\GH’o @ Attaflyo.Then the following are equivalent:

1. 3 TGT-step Gij_1 % G; with forward consistent match m; p

2. 3 translation TGT-step G)_, —eflMerr, o

and we have G, = G; ® Attgo\giﬁo & Attgi_yo.

Proof. For simpler notation we assume w.l.o.g. that rule morphisms are inclusions and
matches are inclusions except for the data value component.

Constructions:
1. TGT-step Gi_1 —£s G, with forward consistent match is given by
try tr;
L; s¢ s R; s¢ L; p© o R; p
my,s @) yni,s (2) mi,Fy 3) Vi, F
Gio106 o Gio© 5 GoS Gz—lcﬁ G;

where (1) and (3) are pushouts and pullbacks, (2) commutes, and since m; r is forward
consistent we have by Def. 7| that (2) and therefore also (1 + 2) is a pullback.

(1 + 2) is a pullback
& mip(Lip) NGi1p =mip(Lis)
= m; p(Lir \ Lis) NGi_10 = 2.

2. Translation TGT-step G;_, LLrt T, Glis given by (POy), (POy)

Lirpr <— Kipr — R pr

l (PO1) l (PO2) i

l / /
Gi—l ) Di—l Gz

F
Li,FT = Li,F S Att%‘i,s D AttRi,S\Li.,S
Ki,FT = Li,F ® Attgi.s

10



Lipr = Rip © Att], @ Atth ., = Rip ® Att]

Direction 1. = 2. : We construct (PO;), (PO3) as follows from diagrams (1) — (3):
tr

Lip ® Att7,  © Aty o, <~— Lip ® AT, "2 R, p @ Atlg,

| : ;

(POy) H (POs) :

v v T T
Gio @ AUG, | DAL Gia @ Allg,_,, | |G:i® g,
i—1 Gi-1,0 Go\Gi-1,0 @AttF @AttF
Go\Gi,0 Go\Gi,0

The match m; pr is constructed as follows:

mi r(z), €Ly
m; pr(x) = tr_m; p(y), r=1tr_y,srcp.(r) =y
tr_m;p(y)_a, v=1tr_y_a,srcp,.(v) =y

The match m, p is injective except for the data value nodes. For this reason, the match

m, pr 1s an almost injective match, i.e. possibly non-injective on the data values.
Pushouts (PO,), (PO,) are equivalent to pushouts (0), (3) below without translation

attributes. Thus, the additional translation attributes are not involved in these pushouts.

id
Lip<——1Lir —Rip

i (0) l (3) i
Gy <= Gy —> G,
We now consider the translation attributes.
Let Eio = (Go\Gi—10) \ (nis(Ris\ Lis)) constructed componentwise on the sets of nodes
and edges. This implies that £ is a family of sets and not necessarily a graph, because
some edges could be dangling. However, we only need to show the pushout properties
for these sets, because the boundary nodes and context is handled properly in pushouts
(0), (3) before and the translation attribute edges for the items in E; o are derived uniquely
according to Def. |3l Thus, we have the following pushouts for the translation attributes:

Lis<—1L;s (Ris\Lis)<~—9@ Lis— R;s )——=0
I S A O R P
Gi10<Gi-1p0 (Go \ Gi—10) < Eip Gic10—Gip Eio—Eio

Pushout (POT) is a trivial pushout, (POY) is pushout by the definition of E;, (POY)
is a pushout by (1) and (POY) is a trivial pushout. Using pushout (1) for the source step
we have G, 0 = Gi—10U(n;s(Ri s\ Lis)) and thus, E; g = (Go\ Gi—10) \ (nis(Ris\ Lis)) =
Go \ (Gi—l,o U ni7s(RZ'7s \ Li,S)) = (GO \ G@O)' ThlS implies G; = Gz EB Attgho @ Attgo\Gi,o'

Direction 2. = 1. :
We construct diagrams (1) — (3) from pushouts (PO;), (PO,). The pushouts (PO;)

11



and (PO;) without translation attributes are equivalent to the pushouts (0),(3) and
(POT), (POY), (POYT), (POY) for families of sets. They do not overlap, because the have
different types according to the construction of the type graph with attributes by Def.
The match is a forward translation match and thus, it is injective on all components except
the data value nodes. It remains to construct diagrams (1) and (2) for graphs with (1) as
a pushout. Since the C- and T-components of (1) and (2) are trivial it remains to con-
struct the Corresponding S-components, denoted here by Lf g for L; g etc. The morphisms

LY it %%, R id, LYp =I5 G| are given already as graph morphisms. By (POJ) we
have a pushout in farmly of sets and G| ; C G§ = G, by assumption leads to a unique
G 1 — Gy = Gf, such that (4) and (5) below commute for families of sets, using that
(POT)S is a pullback and hence, also (PO3)s + (4) is a pullback for families of sets.

S ¢ s id S
Li,S Ri,S L7k

)

ms g

Since L7 ris, RS A L L mir GY ., =G§ and Gi_, ; — Gf are graph morphisms
by assumptlon and GZ 10 = GS is injective, we also have that L7 Ts—r G? | is a graph
morphism such that (PO )s becomes a pushout in Graphs with unique source and target
maps for Gf,o Finally, this implies that G? To— G? | = G5 is an injective graph morphism
and w.l.o.g. an inclusion. Hence, we obtain the diagrams (1) and (2) for triple graphs
from (POY)s and (4) for graphs, where (4) is a pushout and a pullback and (1) + (2) is a
pullback by pullback (1) and injective G, — Gy — G;_1.

Using pushout (1) for families of sets given by (POJ )s we have G; o = G;_10Un; s(R; s\
L; ) and thus, E;o = (Go \ Gio) implying G} = G; ® At , @ AttZD\Gm.

]

Now we are able to show the equivalence of complete forward translation sequences
with source consistent forward sequences as stated by Fact [1| below.

Fact 1 (Complete Forward Translation Sequences). Given a triple graph grammar TGG =

(TG,2,TR) and a triple graph Gy = (Gs «— @ — @) typed over TG. Let G| =
(Att¥(Gg) «+ @ — D). Then, the following are equivalent for almost injective matches:

1. 3 a source consistent TGT-sequence G % G wia forward rules and G =
(GS — GC — GT>

2. 3 a complete TGT-sequence Gj, tr_i> G’ wvia forward translation rules and G' =
(AttT(Gs) — GC — GT)

Proof.
try,F,m1,F tro p,ymo F trp, 7y, F .
1. & Gy G Gy ... =—=—== (G, = G, where each match is forward

consistent according to Thm. 1 in [5].
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2 o G6 try,pr,mM1 FT G/l tro, Fr,ym2 FT G,2 . U, FT,Mn, FT G; el
It remains to show that G ¢ = Att* (Gs) and Gy = Att™(Gy).
We apply Lemma [I] for ¢ = 0 with Goy = @ up to i = n with G,,0 = Gy and using
Go,s = Gg we derive:
T F F F F
Gos = Gos @ Attg, , & éttGo,s\Go,o,Fg = Gos ® Altg, , = Cis © Atte, = Atztr (Gs). .
va == G/TL,S = Gn’S@Atth,O,S GBAttGO,S\Gn,O,S - Gn’S@Atth,O,S = GS@AttGS == Att (GS)E]

Now, we define model transformations based on forward translation rules in the same
way as for forward rules in Def. [I where source consistency of the forward sequence is
replaced by completeness of the forward translation sequence. Note that we can separate
the translation attributes from the source model as shown in Sec. [5]in order to keep the
source model unchanged.

Definition 8 (Model Transformation Based on Forward Translation Rules). A model
transformation sequence (Gg, G}, i+ N G!,Gr) based on forward translation rules consists

of a source graph Gg, a target graph Gr, and a complete TGT-sequence G, % G!. with
almost injective matches, Gy = (Att* (Gg) «— @ — @) and G', = (Att™(Gs) «— Go — Gr).
A model transformation MT : VLgyg = VLrg based on forward translation rules is defined
by all model transformation sequences (Gg, G|, % G..,Gr) based on forward translation
rules with Gs € VLgy and Gp € VLpy. All these pairs (Gs, Gr) define the model transfor-
mation relation MTRpr C VLgy X VLyo. The model transformation is terminating if there
are no infinite 'TGT-sequences via forward translation rules and almost injective matches
starting with Gy = (Att* (Gg) «+ @ — @) for some source graph Gs.

The main result of this section in Thm. [ below states that model transformations
based on forward translation rules are equivalent to those based on forward rules.

Theorem 1 (Equivalence of Model Transformation Concepts). Given a triple graph
grammar, then the model transformation MTp : VLsy = VLpo based on forward rules
and the model transformation MTpr : VLsg = VLpg based on forward translation

rules, both with almost injective matches, define the same model transformation relation
MTRF = MTRFT Q VLSO X VLT().

Proof. The theorem follows directly from Def. [T} Def. [§] and Fact O

Remark 1. It can be shown that the model transformation relation MTR defined by the
triple rules TR coincides with the relations MTRr and MTRpr of the model transforma-
tions based on forward and forward translation rules TRr and TRpr, respectively.

The equivalence of model transformations in Thm. [I] above directly implies Thm.
beneath, because we already have shown the results for model transformations based on
forward rules in [5]. Note that the provided condition for termination is sufficient and in
many cases also necessary. The condition is not necessary only for the case that there are
some source identic triple rules, but none of them is applicable to any integrated model in
the triple language VL.
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Theorem 2 (Termination, Correctness and Completeness). Each model transformation
MT : VLsy = VLo based on forward translation rules is

e terminating, if each forward translation rule changes at least one translation attribute,

e correct, i.e. for each model transformation sequence (Gg, G % G ,Gr) there is
G € VL with G = (Gg «— G¢ — Gr), and it is

e complete, i.e. for each Gg € V Lg there is G = (Gs «— G¢ — Gr) € VL with a

model transformation sequence (Gg, G N Gl,Gr).

Proof. By Def. [d]we have that a rule changes the translation attributes iff the source rule of
the original triple rule is creating, which is a sufficient criteria for termination by Thm. 3 in
[5]. The correctness and completeness are based on Thm. [1jabove and the proof of Thm. 3
in [4]. Note that Thm. 3 in [4] states a weaker result of correctness and completeness for
source consistent forward transformations.

However, the proof is based on the composition and decomposition of triple graph
transformation sequences shown by Thm. 1 in [I]. In more detail, each triple transformation

sequence & AN (&,, can be decomposed into a match consistent triple transformation

*

tr try
sequence @ == G, ) —=

G, which means that the forward sequence G, W:F> G, is

. . . . try
source consistent. Vice versa, given a source consistent forward sequence G, == G,,

. tr . .
there there is a source sequence & —=s G0 such that the triple transformation sequence

o 25 G0 i (G, is match consistent and can be composed to the triple sequence
o G

Now, given a model transformation sequence based on forward translation rules
(Gs, G}, BN G!,Gr) we have by Thm. thate there is model transformation sequence

based on forward rules (Gg, Gy tr:f> G, Gr), which means by definition that Gg tr:’f> G,
is source consistent. Source consistency implies by definition that there is a source se-
quence & % Gno = Go such that @ L—S> Gno tT:F> G, is match consistent and can be
composed to the triple sequence @ == G,, by the composition result Thm. 1 in [1]. This
means that the model transformation based on forward translation rules is correct.

Vice versa, given G, € VL there is a triple transformation sequence @ == G,, and
using the decomposition result in Thm. 1 in [I] we derive the model transformation se-
quence based on forward rules (Gg, Gy .tr—i> G,,Gr) and finally, the equivalence result
in Thm. [I] leads to the model transformation sequence based on forward translation rules

(Gs, G}, Lrr, G ,Gr), i.e. the model transformation based on forward translation rules

is complete.
O

Example 4 (Model Transformation). Figure[{| shows a triple graph G € VL. By Thm.
and Thm. |9 we can conclude that the class diagram Gg of the source language can be
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S G
s ™ 1:Class 3:Table 4:cols— .
6:src | Name="Company" [~ @ ™ name="Company" 5-Column
— :Aissociation ;y;:]; metam loyee_cust_id“
= ust_i
11-dest LN@me = ‘employee” [+ _ — P ?V LGS
™  14:Class 13:references 12:fcols
—»{ name="Person” [ - —@..____> 17-Table
16:parent name=“Person*
18:Class A T
| name="Customer" [* " @ N----- ----1 20:cols
22:attrs T Y o1 pkey
27:PrimitiveDataType : _23:Attribute 25.?_0IL‘J‘mn
= “int* R T = U ‘ H=———» type = “int
(ENUSE L 23:type | name=“cust_id" name = “cust_id"

Figure 4: Result of a model transformation after removing translation attributes

translated into the relation database model G by the applzcatzon of the forward translation

rules, i.e. there is a forward translation sequence Gy :> G, starting at the source model
with translation attributes Gy = (Att¥ (Gg) «— @ — @) and ending at a completely trans-
lated model G, = (Att™ (Gs) «— G — G7). Furthermore, any other complete translation
sequence leads to the same target model Gr (up to isomorphism). We show in Ex. E)] m
Sec. |4| that the model transformation has this functional behaviour for each source model.

4 Analysis of Functional Behaviour

When a rewriting or transformation system describes some kind of computational process,
it is often required that it shows a functional behaviour, i.e. every object can be trans-
formed into a unique (terminal) object that cannot be transformed anymore. One way of
ensuring this property is proving termination and confluence of the given transformation
system. Moreover, if the system is ensured to be terminating, then it suffices to show local
confluence according to Newman’s Lemma [17].

We now show, how the generation and use of forward translation rules enables us
to ensure termination and then to adapt and apply the existing results [3] for showing
local confluence of the transformation system leading to functional behaviour of the model
transformation.

The standard approach to check local confluence is to check the confluence of all critical
pairs Py <= K = P,, which represent the minimal objects where a confluence conflict may
occur. The technique is based on two results. On one hand, the completeness of critical
pairs implies that every confluence conflict G; <= G = G, embeds a critical pair P, <
K = P,. On the other hand, it is also based on the fact that the transformations P, =
K' & P, obtained by confluence of the critical pair can be embedded into transformations
G, = G’ & G, that solve the original confluence conflict. However, as shown by Plump
[19, 20] confluence of the critical pairs is not sufficient for this purpose, but a slightly
stronger version, called strict confluence. This result is also valid for typed attributed
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graph transformation systems [3] and we apply them to show functional behaviour of
model transformations in the following sense.

Definition 9 (Functional Behaviour of Model Transformations). A model transformation
has functional behaviour if each model Gg of the source language Ls C VLg is transformed
into a unique terminal model G and, furthermore, G belongs to the target language VLr.

In our approach, we know that the forward translation rules that we generate for
performing model transformations are terminating if each of them changes at least one
translation attribute. In contrast to that, termination of model transformation sequences
based on forward rules requires an additional control structure - being source consistency
in [5] or a controlling transformation algorithm as e.g. in [22]. A common alternative way
of ensuring termination is the extension of rules by NACs that prevent an application at
the same match. However, termination is only one aspect and does not ensure correctness
and completeness of the model transformation. In particular, this means that matches
must not overlap on effective elements, i.e. elements that are created by the source rule,
because this would mean to translate these elements twice. But matches are allowed to
overlap on other elements. Since the forward rules are identic on the source part there
is no general way to prevent a partial overlapping of the matches by additional NACs
and even nested application conditions [12] do not suffice. Nevertheless, in our case study
CD2RDBM partial overlapping of matches can be prevented by NACs using the created
correspondence nodes, but this is not possible for the general case with more complex rules.

Therefore, an analysis of functional behaviour based on the results for local confluence
strictly depends on the generation of the system of forward translation rules. This means
that, in principle, to prove functional behaviour of a model transformation, it is enough
to prove local confluence of the forward translation rules. However, local confluence or
confluence may be to strong to show functional behavior in our case. In particular, a
model transformation system has a functional behavior if each source model, Gg, can be
transformed into a unique target model, G7. Or, more precisely, that (AttF (Gg) «— @ —
&) can be transformed into a unique completely translated graph (Att™(Gs) « Go — Gr).
However, this does not preclude that it may be possible to transform (Att¥ (Gg) «— @ — @)
into some triple graph (G <+ G — G’;) where not all translation attributes in G’y are set
to true but no other forward translation rule is applicable. This means that, to show the
functional behaviour of a set of forward translation rules, it is sufficient to use a weaker
notion of confluence, called translation confluence.

Definition 10 (Translation Confluence). Let TRpr be a set of forward translation rules
for the source language Ls C VLg. Then, TRpr is translation confluent if for every triple
graph G = (Att¥(Gg) «— @ — @) with Gg € Lg C VLg, we have that if G = G,
and G = Gy and moreover Gy and Gy are completely translated graphs, then the target
components of G and Gy are isomorphic, i.e. G = Gaor.

The difference between confluence with terminal graphs and translation confluence is
that, given G; < G = G, we only have to care about the confluence of these two trans-
formations if both graphs, G; and G5 are translatable into a completely translated graph
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and furthermore, that they do not necessarily coincide on the correspondence part. This
concept allows us to show the second main result of this paper in Thm. [3] that characterizes
the analysis of functional behaviour of model transformations based on forward translation
rules by the analysis of translation confluence, which is based on the analysis of critical
pairs.

In Ex. [0 we will show that the set of forward translation rules of our model trans-
formation “CD2RDBM?” is translation confluent and hence, we have functional behaviour
according to the following Thm. [3] In future work we will give sufficient conditions in order
to ensure translation confluence, which will lead to a more efficient analysis technique for
functional behaviour.

Theorem 3 (Functional Behaviour). A model transformation based on forward translation
rules has functional behaviour, iff the corresponding system of forward translation rules is
translation confluent.

Proof. “if”: For Gg € Lg C VLg, there is a transformation & tr:s> (Gg — @ — @) =Gy

via source rules leading to a source consistent transformation G ”:F G, = (Gs «— Goc —
Gr) (see |5, [1]). Using Fact |1} there is also a complete transformation Gj = (AttF (Gg) «

o — @) ZEL (AHT(Gs) «— Ge — Gr) = G, leading to (Gs,Gr) € MTRpp. For

. . . - t
any other complete transformation via forward translation rules #r,, we have G} —£Ls

(AttT(Gg) + G — G). Translation confluence implies that Gy = G, i.e. Gr is unique
up to isomorphism.

“only if”: For Gg € Lg C VLg, suppose G = G; and G = G, with
G = (AttF(Gs) « @ — @) and G;, G, are completely translated. This means that
(Gs,Gir), (Gs,Gar) € MT Rpr, and the functional behaviour of the model transforma-
tion 1mphes that Gl,T = GQ,T. O

In order to provide tool support for the analysis of functional behaviour of model trans-
formations we apply the flattening construction as presented in [4] for triple graphs and
derive a “plain” graph grammar GG. The analysis of GG can be performed using the im-
plemented critical pair analysis of the tool AGG [24] for typed attributed graph grammars
which allows to generate and analyze all critical pairs of a grammar. In order to apply the
flattening construction we additionally require that the correspondence component TG
of the type graph TG is discrete, i.e. has no edges. This condition is fulfilled for our case
study and many others as well. An extension of the tool AGG to general triple graphs will
be part of future work.

The flattening of a triple graph G = (G5 <2< G¢ & Gy) is a (single plain) graph F(G)
obtained by disjoint union of the components Gg, G¢ and G extended by additional edges
Linkg and Linky, which encode the internal morphisms sg and ts.

Definition 11. Flattening Construction: Given a triple graph G = (Gg <& Go Lo
Gr) the flattening F(G) of G is a plain graph defined by the disjoint union F(G) =
Gs + Go + Gr + Linkg(G) + Linkr(G) with links (additional edges) defined by
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Links(G) = {(z,y) |z € Vg, y € Vi, sa(z) =y},

Linkr(G) = {(z,y) |z € Vaeo,y € VGT7tG(‘r) =y}

with srerqy(z,y)) = v and tgtre)((x,y)) =y for (z,y) € Links U Linky. Given a triple
graph morphism f = (fs, fo, fr) : G — G’ the flattening F(f) : F(G) — F(G") is defined
by F(f) = fs+ o+ fr+ fus+ frr with fis : Links(G) — Links(G'), frr : Linky(G) —
Links(G') defined by fLs((z,y)) = (fe(x), fs(y)) and frr((x,y)) = (fo(2), fr(y))-

L |[ S1:Class | . »{Table ] R|[ S1:Class | . »{ Table |
tr=T c1:morph \E/c2:morph = tr=T c1:morph02:morph' ]

3

4 S2:paren 4 S2:parent
tr=F = tr=T
S3:Class S3:Class

name=n name=n
tr=F tr=T - : Y
tr_name=F tr_name=T :morph :morph

Figure 5: Flattening of the forward translation rule Subclass2Table pr

Example 5 (Flattened Forward Translation Rule). F' igure[a’] shows the result of the flatten-
ing construction applied to the forward translation rule Subclass2Table pr, which is depicted
in the right part of Fig.[3 The triple graphs are flattened to plain graphs, where each map-
ping of the internal graph morphisms of the triple graphs is encoded as an explicit edge of
type morph denoted by a solid line. The figure shows the one-to-one relationship between
the forward translation rule and the flattened rule.

Using Thm. [1] we know that the system of forward translation rules has the same
behaviour as the system of forward rules controlled by the source consistency condition.
Therefore, it suffices to analyze the pure transformation system of forward translation
rules without any additional control condition. This allows us furthermore, to transfer the
analysis from a triple graph transformation system to a plain graph transformation system
using Thm. 2 in [4], which states that there is a one-to-one correspondence between a triple
graph transformation sequence and its flattened plain transformation sequence. Hence, we
can analyze confluence, in particular critical pairs, of a set of triple rules by analyzing the
corresponding set of flattened rules. This allows us to use the tool AGG for the generation
of critical pairs for the flattened forward translation rules.

Example 6 (Generation of Critical Pairs). The tool AGG generates four critical pairs
for the flattened forward translation rules of CD2RDBM wusing the maximum multiplicity
constraints according to Fig. [1]

The overlapping graph for the combination (SC2T, C2T) is the same as for the com-
bination (C2T,SC2T) and it is shown in Fig. [6ll Given a subclass node then both rules,
SC2Tpr and C2Tpr are applicable, but lead to different results. We will show in Ez. [
that these critical pairs do not affect the functional behaviour.

The overlapping graphs for the combination (A2FK, A2FK) contain in both cases a
table with two primary keys. Assume that we can embed this overlapping graph into a
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&7 Minimal Conflicts

Export
first \ second 1: Class2Table 2: Subclass2Tahle 3: Attribute2Column 4: PAttribute2PKColumn 5: Association2ForeignKey

1: Class2Table

2: Subclass2Table

3: Attribute2Column

“1: PAttribute2PKColumn

5. Association2Foreignk

(a) Table of generated critical pairs

B:morphism
3Class Smorphism
r=trus ATakle
k

T:parent
tr=false

1.Class
name=ri_n_r2_n
tr=false
tr_name=false

(b) Overlapping graph for (SC2T, C2T)

9:morphism 10:morphism 9'morphism 10:morphism
2-Class A 2.Class
\Hue * @ {3 Table =true 3 Table
r‘ 3
18:src k 15:5r¢
tr=false tr=false
8 Association 8:Association
name=r1_an_r2_an name=r1_an_r2_an
tr=false tr=false
tr_name=false tr_name=false
14.dest 14:dest
tr=false tr=false
A 4 11:morphism 12:marphism Y 11:morphism 12:imorphism
4:Class [ @ » 5. Table
13:pkey 17:pkey 13.pkey
6:Column 16:Calumn
type=r1_t ype=r2_t B:Column
name=r1_cn name=r2_cn type=r1_t 12 t
name=r1_cn_r2_cn
(c) (A2FK, A2FK): overlapping 1 (d) (A2FK, A2FK): overlapping 2

Figure 6: Critical pair generation in AGG with overlapping graphs

flattened intermediate graph of a transformation sequence via the forward translation rules
starting with a valid source model. This tmplies that the table is related to a set of classes
with a shared root class w.r.t. the parent edges. However, the source language forbids
primary attributes for subclasses and allows at most one primary attribute for the top
most class within a hierarchy according to Ez.[1 This means that the forward translation
rule “PrimaryAttr2Columnpr” will never create a second primary attribute for a table
and both overlapping graphs cannot be embedded into any intermediate graph of a model
transformation sequence.

Example 7 (Functional Behaviour). We show functional behaviour of the model transfor-
mation CD2RDBM using Thm.[3. Bul note that that we focus on the source language of
class diagrams CD = Lg C VLg as specified in Ex.[1], i.e. class diagrams, where subclasses
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S1:Class | | - _@__ +»{ Table]
S3:Class tr=T -
names=n S2:parent A
tr=F —ir=F
Subclass2Tablerr tr name=F : Class2Tablerr
Py J P2
St:Class | _ _@______ S1Class | _| __@__....
tr=T : tr=T
S2:parent A : S2:parent 4
tr=T : ' >(~tr=F )
S3:Class | . S3:Class
= | =
name=n | || (&) ([ name=n ol (en)--+t
tr=T tr=T
tr_name=T tr_name=T
(a) Critical pair for the rules Subclass2Tablepr and Class2Table pr
GO GO
Gl
p1 % W2 p% p2,m2
/
Gk Gk
yz p%
p3,m3 P4,m4
* *
Gr1 k+1
G G ﬂ ﬂ
n l
Gy G,
(b) Diverging Situation

(c) Case for parallel independence

Figure 7: Diverging sequences s; and s

do not have primary attributes and the top most super classes may have at most one pri-
mary attribute to avoid confusion. The system is terminating, because all rules are source
creating, but the system is not confluent w.r.t. terminal graphs. The critical pairs for
the combination (A2FK, A2FK) can be neglected, because the overlapping graph cannot be
embedded into any intermediate graph of a transformation via the forward translation rules
as explained in Ex. [0 The remaining two critical pairs are symmetric, thus it is sufficient
to consider the pair (P, 222 | L2101, p)) shown in Fig. . The edge “S2” is labeled
with “F” while its source node s labeled with “T”. The only forward translation rule which
can change the translation attribute of a “parent™edge is “SC2T pr”, but it requires that the

source node is labeled with “F”. Thus, no forward translation sequence where rule “C2T pr”
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s applied to a source node of a parent edge, will lead to a completely translated graph.
Now, assume that our system is not translation confluent by two diverging complete
forward translation sequences s; = (G = G,) and sy = (G = G)) as shown in Fig. . If
the first diverging pair of steps in s1 and sy is parallel dependent we can embed the critical
pair and have that one sequence is incomplete, because the particular edge “S2” remains
untranslated. Otherwise, the steps are parallel independent and we can merge them using
the Local Church Rosser (LCR) Thm. leading to possibly two new diverging pairs of steps
(Gry1 £ Gy, P2y H) as shown in Fig. . If they are dependent we can embed
the critical pair. If the rule p = 3 = C2Tpy we can conclude that G, is not completely
translated. Thus, we have that py = C2Trp and by LCR we can reflect this step back to

Gr1 2222 G, and have that G), cannot be completely translated. This means that the
p3,m3 Gk p2,m)

diverging steps (Griq H) are again parallel independent. By induction

this leads to the final situation (G, LG pQ’:mg> H) and we have can conclude that
the steps are parallel independent. Since G, is completely translated we have that H = G,
and all together G, = G because we have termination.

Thus, the system is translation confluent and we can apply Thm. [3 showing the func-
tional behaviour of the model transformation CD2RDBM for the considered source language
Ls=CD.

5 Model Transformation via Interfaces

During the execution of a model transformation the given source model may be simulta-
neously used by other applications within an MDA environment and therefore, the model
transformation should not modify the source model. Considering our case study, the model
transformation transforms class diagrams to data base tables. However, the class diagram
may be additionally used for documenting the system structure and thus, should be avail-
able unchanged for the software development groups. Furthermore, other interrelated
models may rely on a synchronized connection to the class diagram, e.g. a synchronization
with corresponding block diagrams is common in the automotive domain as presented in
[9].

For this reason, we now present how the concept of model transformations based on
forward translation rules with translation attributes can be equivalently implemented using
a marking structure that points to the handled elements of the source model leaving the
source model itself unchanged. This way the additional structure necessary for ensuring
the correctness and completeness of the model transformation is externalized from the
source model and kept separately. More precisely, a triple graph consisting of the source,
correspondence and target model is extended by an additional triple graph, called interface
graph, which specifies the elements of the source model that have been translated so far.
This means that the boolean valued translation attributes are represented by the presence
and absence of elements in the interface graph. This way, the concept of translation
attributes can be used for the analysis of functional behaviour of a model transformation,
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while the equivalent concept using interfaces is used for implementations that need to
ensure the preservation of the source model.

Definition 12 (Category of Triple Graphs with Interfaces). A triple graph with interface
IG = (I1q,Ga,i1¢) is given by a triple graph morphism i = I;¢ — G in the category
TrGraphs of triple graphs, where 1,4 is the interface for the triple graph Gg. A morphism
m : IGy — IGy between triple graphs with interfaces with (IGy = (I, Gk, ix))(k=1,2) 15
given by a pair m = (my,mg) of triple graph morphisms my : I — Iy and mg : Go — G3
compatible with the interface morphisms, i.e. i0om; = mgoiy. The category TrGraphsl
consists of triple graphs with interfaces as objects and morphisms between triple graphs with
interfaces as morphisms.

]1L>G1

mll (%) imG

I2L>G2

Transformation steps within the category of triple graphs with interfaces are constructed
componentwise, i.e. by two pushouts, one for the interface triple graph and one for the
main triple graph. The new interface morphism of the resulting triple graph with interface
is induced by the pushout property, such that a rule is applicable at any match.

Definition 13 (Transformations in TrGraphsI). A rule tr in TrGraphsl is an injective
morphism tr . L — R. Given a morphism m : L — IG, called match, the transformation
step IG 22 IH is given by a pushout in TrGraphsl, which is constructed componentwise
for the I- and G-components and the new interface morphism iy is induced by the pushout

in the I-component. The transformation step is interface-consistent, if (I LIy Jeon,

Gy %2 1, J1 Iy) in Cube (2) beneath is a pullback in TrGraphs.
I1

Lh—lr
N A\
IGO*f>[G1 gll Gy —— G
ig (PO) lg' (1) v )
f IQ """"" >IS i G
1Gy ——1G3 N\ o
. GQ*,>G3

9a

Moreover, triple graphs with interfaces form an M-adhesive category as presented in
[6], which are a generalization of weak adhesive HLR in [3]. This way, the important HLR
results valid for all M-adhesive categories are available.

Definition 14 (M-adhesive category). A pair (C, M) containing a category C and a
morphism class M is called a M-adhesive category if:

1. M is a class of monomorphisms closed under isomorphisms, composition (f
A—-BeM,g : B - C € M = gof € M), and decomposition
(gofeM,ge M= feM).
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2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are closed
under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are weak VK squares, i.e. the VK square property
holds for all commutative cubes with m,a,b,c,d € M (see @)

//A/\m/ /
;A C\ B
RN

C\(l)/ B " D - | (2)
“p’ C/I/fm \mB
Ty

D

Figure 8: Pushout (1) and commutative cube (2) for VK property.

Fact 2. The category (TrGraphslI, M) with the class M of morphisms that consist of two
triple graph morphisms in M for (TrGraphs, M) is an M-adhesive calegory.

Proof. The category TrGraphsI can be constructed as comma category CommCat(F, G, I)
with [ = {1}, F = G = IDr,Graphs- We further have that (TrGraphs, M) is an M-
adhesive category with M the class of morphisms that consist of attributed M-morphisms
for each triple component within (AGraphs 4, M). Since F' and G preserve pushouts
and pullbacks we have by item 4 in Thm. 4.15 in [3] that (TrGraphsl, M) is a weak
adhesive HLR category and hence, also an M-adhesive category. ]

In order to perform model transformations based on triple rules with interfaces the
operational rules, called forward translation rules with interfaces, are derived analogously
to the forward translation rules with translation attributes in Def. 4l The boolean values of
the translation attributes correspond to the absence (F) and presence (T) of the elements in
the source component. This means that the effective elements of a forward rule are created
within the interface part of the forward translation rule with interfaces and all other source
elements are preserved within the interface part. Moreover, the correspondence and target
components of the interface graphs are always empty.
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Definition 15 (Forward Translation Rule with Interfaces). Given a triple rule tr =
(tr5,trC, tr") : L — R with (tr* : L — RX)x_scr) its forward translation rule with

interfaces trp; - IL — IR 4s a morphism in TRGraphsl with
Iy = (LS 0 — 0), Gy = (RS L2220 [0ty [T,

]IR = (RS <——® — @), G]R = (RS il RC ti) RT), and

t’)"F[J = (trg, @, @), t’f’F[’G = (’idRS, tT’C, trc).

TrGraphsl | TrGraphs Graphs

L LS L LC 122 LT
triple tr\ trs\ trc\ trT\
rule tr R RS <R po 'R pr

Ls t L’ 0 0

TS

forward L N N 5 \ \
transla- \trn Ry tre R 0 0
tion rule Ry 5 trgosy, ) i VT
with in- Lr (R < o LC: o= L)
terfaces trF\ id N\ e "y T
trer RF (RS <—SH— RC —tg—> RT)

Def. [15| shows that the forward translation rule with interfaces trp; of a triple rule ¢r is
composed of the source rule trg and the forward rule ¢rp, where the source rule concerns
the interfaces. In order to perform model transformations along almost injective matches
as in Sec. |3| we lift the notion of almost injective matches to the case with interfaces by
requiring that both the interface and the main components are almost injective in the
category of triple graphs.

Definition 16 (Almost injective Match in TrGraphsl). An almost injective match mpr =
(mg, mp) in TrGraphsl is given by two almost injective matches mg, mp in TrGraphs
according to Def. [3

In Thm. 4] we show that interface consitency is a sufficient and necessary condtion for
the correctness and completeness of model transformations in TrGraphslI. Hence, we first
characterize interface consistency by showing that the pullback condition is equivalent to
the condition that the induced interface morphism is an M-morphism.

trpr,mrr

Fact 3 (Characterization of Interface Consistency). Let IG IG' be a transforma-
tion in TrGraphsl via a forward translation rule with interface and an almost injective
match, where the interface morphism i;q : I — G is in M. Then, the transformation is in-
terface consistent iff the induced interface morphism i’ : I' — G’ is an M-monomorphism.

Proof. Direction “=":  According to Def. for interface consistency we have the
following pullback (2) for the source component with respect to the source component of
the transformation step shown in diagram (1):
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trS

LS \ RS \id
m3 RS RS
l (1) (2)
i GS id {GS

The morphism i° € M by assumption and t° € M because M-morphisms are preserved
by pushouts. This implies for the algebra part that ¢?, and i, are isomorphisms and by
commutativity of (2b) we derive that "> = t9, o (i3))~! is an isomorphism. The match is
a forward translation match and thus, by Def. [5| we have that it is injective on all parts
except on the data values. The pushout (1) is constructed componentwise for each E-graph
component and thus, we can analyze i’ for each component separately. Using Thm. 4.7
in [16] for effective unions in adhesive categories and thus in particular for Sets in each of
the remaining E-graph components we derive that i'¥ is injective .

Concerning the complete triple morphism ¢’ we have that the correspondence and target
component of the interface part of the rule trp; consists of empty graphs and empty
morphism and therefore ¢’ coincides with 7 on these components. This leads to i’ € M.

Direction “<: The square (2a) is a pushout along an M-morphism and thus a
pullback. Pullbacks can be extended by M-monomorphisms, because pullbacks can be
extended by monomorphisms in general. Therefore, Diagram (2) is a pullback. ]

Fact 4] below shows that the application of a forward translation rule with interfaces is
composed of transformation steps in TrGraphs using the source and forward triple rules
in a compatible way. This builds the basis for showing the correctness and completeness
of model transformations based on forward translation rules with interfaces in Thm. (4l

Fact 4 (Transformation via a Forward Translation Rule with Interfaces). Let IG =
(G, G,ig) be a triple graph with interface, where G = (G° «— G° — GT), Gy = (G"
) — 0). Let further trg; : IL — IR be a forward translation rule with interfaces of a triple
rule tr = (tr°, tr“, tr7) : L — R. A transformation step IG LELMEL TH in TrGraphs] is

giwen by the source and forward transformation steps I trsms, Iy and Gig reme, G
with matches (mg, mp) = mp; depicted below. The interface morphism iy is induced by
by the pushout in the source step as shown in Cube (2) for the source component using
myotrS = i3, om2 by mpr being a morphism in TrGraphsl, while for the correspondence

and target component we have %, = 0 and i5; = 0.

LS 0 0
e Y

, , Y A
G :\EG e lns """"" 00 . l
trs Hly— (H"S *@ 0)

source step
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s ™~ s ;= c T
mpi R oy R o R
G=(G"< -dJ/ """ 5 GO tci -G . J{nT
n VTR R A "X
F H = (GS HC HT)
forward step
LS RS
mi l (1) s v (2)
G'S' [ H/S
1G IH l Tis
ifG GS > GS
TrGraphsl source component in Graphs

Proof. Tt remains to show that (1) is a pushout. First of all, ¢ and ng; are morphisms
in TrGraphsI by the commutativity with the induced morphism ¢;5, which is direct for
the correspondence and target component with empty graphs and presented for the source
component in (2). Diagram (1) commutes, because it commutes componentwise.

Now, let (/X = (X', X,irx), 21 = (x11,7016) : [G — IX, 29 = (295, 22¢) : [R — IX)
be a comparison object. This implies, that (X', 217 : G' — X' 297 : R — X') is a
comparison object for the pushout in TrGraphs given by the source step and (X, 214 :
G — X,z : R — X) is a comparison object for the pushout in TrGraphs given by
the forward step. We derive the induced morphism h = (hr,hg) : IH — IX. It remains
to show that h is compatible with the interfaces, i.e. hg o iy = irx o hy. This is direct
for the correspondence and target components, because H'® = H'" = (). For the source
component we have that (X, 7, ¢0oi%,, 26017, is also a comparison object for the pushout
(2) and we derive a unique f : H® — X with fon® = ¥ ;0id and fot® = x5 ;0i7,. Both
conditions are also valid for f = hgoiy and for f = i;x ohy, such that hgoi;y =irxohy
by uniqueness of f. Thus, (1) is a pushout in TrGraphsI ]

Now, we define model transformations based on forward translation rules with inter-
faces in the same way as for forward translation rules without interfaces in Derf. [§| where
completeness of the forward translation sequence is replaced by interface consistency of the
forward translation sequence with interfaces.

Definition 17 (Model Transformation Based on Forward Translation Rules with Inter-

faces). A model transformation sequence (Gg, Gj, BTN G, Gr) based on forward trans-
lation rules with interfaces consists of a source graph Gg, a target graph Gr, and an
interface consistent transformation sequence with interfaces Gj, tr:}]> G!, with almost in-
jective matches, G = (& «— @ — @) — (G «— @ — @)) and G, = (Gs — T — ) —
(GS — GC — GT>)
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A model transformation MT : VLsg = VLo based on forward translation rules with in-

terfaces is defined by all model transformation sequences (Gg,Gj, E_F—1> G!,Gr) based on
forward translation rules with Gg € VLsy and Gr € VLrg. All these pairs (G, Gr) define
the model transformation relation MTRr; C VLsy X VLpo. The model transformation
is terminating if there are no infinite TGT-sequences via forward translation rules and
almost injective matches starting with Gjy = (@ «— @ — @) — (Gg «— & — @)) for some
source graph Gg.

The following lemma shows that model transformations in TrGraphslI are one to one
to triple transformation sequences via the triple rules of the given triple graph grammar.
This is the basis for showing the main result of this section in Thm.

Lemma 2 (Forward Translation Sequences with Interfaces). There is a triple transforma-
tion sequence () T G in TrGraphs ff there is an interface consistent transformation
(0, Gs, 0) =£L (G, G, 4) in TrGraphsL.

Proof. 1. Direction “=""

Let (s1)p 212, | 2™ G = @ be a derivation in TrGraphs.

RS <~——— RS RT

mgy m; Y
oxrso Lo ol o |0

tr;
" Giyi = (Gil Gz‘qu GiTH)
triple step

Using the decomposition result (Thm. 1 in [7]) = V i € {1,...,k}
(GF 0 — ) 22 (GF,) ) — 0) and

(GF -GS — GF) Zeamer, (o5 -GS, — GT,,) in TrGraphs

with mfF =g’ 0 nfs (%)
?\ w\ @\
w| RS 0 0
v v
Gu= @<y 0 | -0 |
trv} \Z S ’ 77{ RN
G0 = (G, 0 0)

source step
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mgy miy
Gi—i—l,i:(GE < \L """ g GZC ticin.c > GZT) ¢7 l”qT
T
Git1)

forward step

= Vie{l,... k}: (G5 —0) — (GF —GF 5 GF) Zuflrt, (@GS,

0 — 0) i1, (G <—Gic+1—> G;TFH) in TrGraphsI with m; p; = (m;s,m;r). The
transformation step is given by the source and the forward step and the morphism
iG,,, is given by the inclusion g;11 : Giy10 — Go = (G <0 — 0) as in Def. 3 of [3].

In order to show that each step ¢ in TrGraphsl is interface-consistent we can
first state that the correspondence and target components are pullbacks, be-
cause the components of the interfaces Iy, I; and I in Def. are the empty
graphs. It remains to show the pullback property for the source component.

trd

S L S
Li t'r? R’L

\ U
RS +Rf
(1)

s S
1
RN N

9; S
Gy

S
mis

s
m; R

G?3

S
id Gk

Using (*) we can apply Thm. 1 and Def. 4 of [5] and derive the following pullback
in TrGraphs: Lis > R; s~ L; p
mi75¢ (2) isz
Gio5= Go—=G;
with Gip = (G <~ 0 — 0) and G; = (G} — GY — GT). Thus, we have

S

ms m>
that (LS %, RS Mur, g5 9L g8 ™S [S) in Cube (1) is a pullback of

m? S . . .
(RY L, G 2L G?) in Graphs. Together with the pullbacks in the correspon-
dence and target component and commutativity with the empty morphisms we have
the desired pullback in TrGraphs.

. Direction “<":

Let (s2) : (0 — G®) LI N (Gs — @) be an interface consistent transformation in
TrGraphsl.

= Fach step i in (s2) defines a source and a forward transformation step as in the
first part. We need to show that the forward match is forward consistent according

28



to Def. 4 in [5]. By the interface-consistency of (s2) we have the pullback property
for Cube (1) before. Thus we derive the pullback property for the source component
of Diagram (2) before. Since G, has empty graphs on the correspondence and target
component we derive the pullback property for Diagram (2) in TrGraphs. Using
the resulting triple graph with interface in (s1) we know that gy = id and by point
3 of Thm. 1 in [5] we derive a source consistent forward sequence that leads to the
triple sequence (s1) as needed.

O

The main result of this section in Thm. [Il below states that model transformations
based on forward translation rules with interfaces are equivalent to those based on forward
translation rules without interfaces.

Theorem 4 (Forward Translation Sequences with Interfaces). Given a triple graph gram-
mar, then the model transformation MT pr : VLsy = VLrg based on forward translation
rules without interfaces and the model transformation MT gy : VLso = VLrg based on for-
ward translation rules with interfaces, both with almost injective matches, define the same
model transformation relation MTRpr = MTRp; C VLgg X VL.

Proof. By Lemma [2| we have the equivalence of triple sequence via the triple rules of the
given triple graph grammar and the model transformation sequences based on forward
translation rules with interfaces. Using the correctness and completeness result for model
transformations based on forward translation rules in Thm. 2| we also have the equivalence
of model transformation sequences based on forward rules and the triple sequences. Thus,
model transformation sequences based on forward translation rules with interfaces are
equivalent to model transformation sequences based on forward translation rules without
interfaces. [

6 Related Work

As pointed out in the introduction our work is based on triple graph grammars presented
by Schiirr et.el. in [22] 21], [15] with various applications in [10, 111 14} 15, 23]. The formal
approach to TGGs has been developed in [2, 4, B 8 [, [7]. In [I] it is shown how to
analyze bi-directional model transformations based on TGGs with respect to information
preservation, which is based on a decomposition and composition result for triple graph
transformation sequences.

As shown in [2] and [7], the notion of source consistency ensures correctness and com-
pleteness of model transformations based on TGGs. A construction technique for correct
and complete model transformation sequences on-the-fly is presented in [5], i.e. correct-
ness and completeness properties of a model transformation do not need to be analyzed
after completion, but are ensured by construction. In this construction, source consistency
is checked on-the-fly, which means during and not after the construction of the forward
sequence. Moreover, a strong sufficient condition for termination is given. The main con-
struction and results are used for the proof of Fact [[]and hence, also for our first main result
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in Thm. [Tl Similarly to the generated forward translation rules in this paper, the generated
operational rules in [I8] also do not need an additional control condition. However, the
notion of correctness and completeness is much more relaxed, because it is not based on a
given triple graph grammar, but according to a pattern specification, from which usually
many triple rules are generated.

A first approach to analyze functional behaviour for model transformations based on
TGGs was already given in [8] for triple rules with distinguished kernel typing. This strong
restriction requires e.g. that there is no pair of triple rules handling the same source node
type - which is, however, not the case for the first two rules in our case study CD2RDBM.
The close relationship between model transformations based on TGGs and those on “plain
graph transformations” is discussed in [4], but without considering the special control
condition source consistency. The treatment of source consistency based on translation
attributes is one contribution of this paper in order to analyze functional behaviour. As
explained in Sec. [3| additional NACs are not sufficient to obtain this result. Functional
behaviour for a case study on model transformations based on “plain graphs” is already
studied in [3] using also critical pair analysis in order to show local confluence. But the
additional main advantage of our TGG-approach in this paper is that we can transfer the
strong results concerning termination, correctness and completeness from previous TGG-
papers [4, 5] based on source consistency to our approach in Thm. [2 by integrating the
control structure source consistency in the analysis of functional behaviour. Finally there
is a strong relationship with the model transformation algorithm in [22], which provides
a control mechanism for model transformations based on TGGs by keeping track of the
elements that are translated so far. In [5] we formalized the notion of elements that are
translated at a current step by so-called effective elements. In this paper we have shown
that the new translation attributes can be used to automatically keep track of the elements
that have been translated so far.

7 Conclusion

In this paper we have analyzed under which conditions a model transformation based
on triple graph grammars (TGGs) has functional behaviour. For this purpose, we have
shown how to generate automatically forward translation rules from a given set of triple
rules, such that model transformations can be defined equivalently by complete forward
translation sequences. The main result shows that a terminating model transformation has
functional behaviour if the set of forward translation rules is translation confluent. This
allows to apply the well-known critical pair analysis techniques for typed attributed graph
transformations with support from the tool AGG to the system of forward translation rules,
which was not possible before, because the control condition source consistency could not
be integrated in the analysis. These techniques have been applied to show functional
behaviour of our running example, the model transformation from class diagrams to data
base models. In order to keep the source model unchanged during the transformation
the translation attributes can be separated from the source model as presented in Sec.

30



Alternatively, the model transformation can be executed using the on-the-fly construction
in [5], which is shown to be equivalent by Thm. [I] In future work we give sufficient
conditions in order to check translation confluence, which will further improve the analysis
techniques. Moreover, we will extend the results to systems with control structures like
negative application conditions (NACs), rule layering and amalgamation. In order to
extend the main result concerning functional behaviour to the case with NACs, we have to
extend the generation of forward translation rules by extending the NACs with translation
attributes and we have to prove the equivalence of the resulting model transformation with
the on-the-fly construction in [7].
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