
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

On-the-Fly Construction,
Correctness and Completeness

of Model Transformations
based on Triple Graph Grammars:

Long Version

Hartmut Ehrig, Claudia Ermel, Frank Hermann and
Ulrike Prange

Bericht-Nr. 2009-11
ISSN 1436-9915

On-the-Fly Construction,
Correctness and Completeness

of Model Transformations
based on Triple Graph Grammars:

Long Version

Hartmut Ehrig, Claudia Ermel, Frank Hermann and
Ulrike Prange

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

{ehrig, lieske, frank, uprange}(at)cs.tu-berlin.de

Bericht-Nr. 2009/11
ISSN 1436-9915

On-the-Fly Construction, Correctness and

Completeness of Model Transformations

based on Triple Graph Grammars: Long Version

= Technical Report =

Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

{ehrig, lieske, frank, uprange}@cs.tu-berlin.de

July 13, 2009

Abstract

Triple graph grammars (TGGs) are a formal and intuitive concept
for the specification of model transformations. Their main advantage
is an automatic derivation of operational rules for bidirectional model
transformations, which simplifies specification and enhances usability as
well as consistency.

In this paper we continue previous work on the formal definition of
model transformations based on triple graph rules with negative appli-
cation conditions (NACs). The new notion of partial source consistency
enables us to construct consistent model transformations on-the-fly in-
stead of analyzing consistency of completed model transformations.

We show the crucial properties termination, correctness and complete-
ness (including NAC-consistency) for the model transformations resulting
from our construction. Moreover, we define parallel independence for
model transformation steps which allows us to perform partial-order re-
duction in order to improve efficiency.

The results are applicable to several relevant model transformations
and in particular to our example transformation from class diagrams to
database models.

1 Introduction

Model transformations based on triple graph grammars (TGGs) have been intro-
duced by Schürr in [14]. TGGs are grammars that generate languages of graph
triples, consisting of a source graph GS and a target graph GT , together with a
correspondence graph GC “between” them. From a TGG, operational rules for
bidirectional model transformations, so-called forward and backward transfor-
mation rules, can be derived automatically. Forward transformation rules take
the source graph as input and produce a corresponding target graph (together

1

with the correspondence graph linking it to the source graph). Since 1994, sev-
eral extensions of the original TGG definitions have been published [15, 13, 10],
and various kinds of applications have been presented [16, 11, 12].

Major properties expected to be fulfilled for model transformations based on
forward transformation rules are termination, correctness and completeness.

in the following sense (see also [15]):

• Correctness: Whenever a forward transformation sequence starting with
source graph (GS ← ∅ → ∅) derives triple graph (GS ← GC → GT), then
this triple graph must be derivable also by the triple rules in TGG.

• Completeness: Whenever a triple graph (GS ← GC → GT) can be gen-
erated by the triple rules in TGG, then there is a forward transformation
sequence leading from (GS ← ∅ → ∅) to (GS ← GC → GT).

In a previous series of papers we focused on the formal definition of TGGs
and the analysis of model transformation properties: in [3], we showed how to
analyze bi-directional model transformations based on TGGs with respect to
information preservation, which is based on a decomposition and composition
result for triple graph grammar sequences. Moreover, completeness and correct-
ness of model transformations have been studied on this basis in [6]). In [7],
the formal results were extended to TGGs with negative application conditions
(NACs), a key concept for many model transformations (see [15]. In contrast
to the presented algorithm in [15] for controlling the model transformations we
introduced NAC consistency based on source consistent forward sequences. In
this way we could extend several important results to the case of TGGs with
NACs. Model transformations based on triple rules with NACs were also ana-
lyzed in [8] for a restricted class of triple rules with distinct kernel elements. For
this restricted class of triple graph grammars local confluence and termination
can be analyzed and thus, model transformations can be checked for functional
behavior.

As shown in [4] and [7] the notion of source consistency ensures correctness
and completeness of model transformations based on triple graph grammars
with and without NACs. However, source consistency does not directly guide
the construction of the model transformation, because it has to be checked for
the complete forward sequence. This means that possible forward sequences
have to be constructed until one is found to be source consistent. Additionally,
termination of this search is not guaranteed in general.

It is the main contribution of this paper to introduce a construction tech-
nique for correct and complete model transformation sequences on-the-fly, i.e.
correctness and completeness properties of a model transformation need not to
be analyzed after completion, but are ensured by construction. In our con-
struction, we check source consistency while creating the forward sequences
and define suitable conditions for termination. Thus, re-computations of model
transformations may be avoided. Moreover, we present a characterization of
parallel independence of forward transformation steps and use this notion for
an optimization of efficiency based on partial order reduction [9]. Summing up,
the paper provides the basis for efficient implementations of model transforma-
tion tools that ensure termination, correctness and completeness.

2

The paper is structured as follows: Sec. 2 reviews the definition of triple
graph grammars with NACs from [7]. In Sec. 3 we introduce an on-the-fly
construction of source consistent forward transformation sequences, generalizing
the notion of source consistency to partial source consistency. The on-the-fly
construction is analyzed in Sec. 4 regarding correctness and completeness of the
model transformations, and termination of the construction. Moreover, parallel
independence of forward transformation steps is defined and used to find switch
equivalent model transformation sequences by performing an optimization based
on partial order reduction. Sec. 5 discusses related work, and Sec. 6 concludes
the paper.

2 Review of Triple Graph Grammars with NACs

Triple graph grammars [14] are a well known approach for bidirectional model
transformations. Models are defined as pairs of source and target graphs, which
are connected via a correspondence graph together with its embeddings into
these graphs. In [13], Königs and Schürr formalize the basic concepts of triple
graph grammars in a set-theoretical way, which is generalized and extended by
Ehrig et al. in [3] to typed, attributed graphs. In this section, we briefly review
triple graph grammars with negative application conditions (NACs) [15, 7].

Definition 1 (Triple Graph and Triple Graph Morphism). A triple graph
G =(GS ←sG−− GC −tG−→ GT) consists of three graphs GS, GC , and GT , called
source, correspondence, and target graphs, together with two graph morphisms
sG : GC → GS and tG : GC → GT . G is empty, if all components are empty.

A triple graph morphism m = (mS , mC , mT) : G → H between two triple
graphs G =(GS ←sG−− GC −tG−→ GT) and H = (HS ←sH−− HC −tH−→ HT) consists of
three graph morphisms mS : GS → HS, mC : GC → HC and mT : GT → HT

such that mS◦sG = sH ◦mC and mT ◦tG = tH ◦mC . It is injective, if morphisms
mS, mC , and mT are injective. A typed triple graph G is typed over a triple
graph TG by a triple graph morphism typeG : G→ TG.

colsattrs
parent

:CT

:AC

next

Class
name: String

Attr

name: String

type: String

Column

name: String

type: String

next

Table

name: String

Figure 1: Triple type graph for CD2RDBM

Example 1. Fig. 1 shows the type graph TG of the triple graph grammar GG
for our example model transformation from class diagrams to database models.
The source component of TG defines the structure of class diagrams while in its
target component the structure of relational database models is specified. Classes
correspond to tables and attributes to columns. Throughout the example, origi-
nating from [15] and [3], elements are arranged left, center, and right according
to the component types source, correspondence and target. Morphisms starting
at a correspondence part are given by dotted arrows. Note that the case study is
equipped with attribution, which is based on the concept of E-graphs [5].

3

The extension of the results of this paper to the case with attributes is
straight forward, because all results can be shown in the framework of weak
adhesive HLR categories and hence, also for the category AGraphsATG of
attributed graphs.

Triple rules are used to build up source and target graphs as well as their
correspondence graphs, i.e. they are non-deleting. Structure filtering which
deletes parts of triple graphs, is performed by projection operations only, i.e.
structure deletion is not done by rule applications.

Definition 2 (Triple Rule tr and Triple Transformation Step). A triple rule
tr consists of triple graphs L and R, called left-hand and right-hand sides, and
an injective triple graph morphism tr = (trS , trC , trT) : L→ R and w.l.o.g. we
assume tr to be an inclusion.

(LS

trS

��

L LC
sLoo

trC

��

tL // LT)

trT

��
(RSR

tr

��
RC

sR

oo
tR

// RT)

LS

mS

��

&&LLL
LL LCoo //

mC
��

%%KKK
K LT

mT ��

&&MMM
MM

RS

nS

��

RCoo //

nC

��

RT

nT

��
(GS

tS

%%
G GCoo //

tC

$$
GT)

tT

%%KKK

(HSH
tr !)KKKKK

KKKKK

HCsHoo tH
// HT)

Given a triple rule tr : L→ R, a triple graph G and an injective triple graph
morphism m : L→ G, called triple match m, a triple graph transformation step
(TGT-step) G =

tr,m
==⇒ H from G to a triple graph H is given by three pushouts

(HS , tS , nS), (HC , tC , nC) and (HT , tT , nT) in category Graph with induced
morphisms sH : HC → HS and tH : HC → HT . Morphism n = (nS , nC , nT) is
called comatch.

Moreover, we obtain a triple graph morphism t : G→ H with t = (tS , tC , tT)
called transformation morphism.

A sequence of triple graph transformation steps is called triple (graph) trans-
formation sequence, short: TGT-sequence. Furthermore, a triple graph gram-
mar TGG = (S, TG , TR) consists of a triple start graph S, triple type graph
TG and a set TR of triple rules.

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)

:parent

:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++
++

++

++++
++

Figure 2: Rules for transforming classes to tables

Example 2 (Triple Rules). Examples for triple rules are given in Fig. 2 in
short notation. Left and right hand side of a rule are depicted in one triple
graph. Elements, which are created by the rule, are labeled with green ”++”
and marked by green line coloring. Rule ”Class2Table” synchronously creates a
class in a class diagram with its corresponding table in the relational database.
Accordingly, subclasses are connected to the tables of its super classes.

According to [7] we present negative application conditions for triple rules. In
most case studies of model transformations source-target NACs are sufficient
and we regard them as the standard case.

4

Definition 3 (Negative Application Conditions). Given a triple rule tr = (L→
R), a general negative application condition (NAC) (N, n) consists of a triple
graph N and an injective triple graph morphism n : L → N . A NAC with
n = (nS , idLC

, idLT
) is called source NAC and a NAC with n = (idLS

, idLC
, nT)

is called target NAC. This means that source-target NACs, i.e. either source or
target NACs, prohibit the existence of certain structures either in the source or
in the target part only.

A match m : L → G is NAC consistent if there is no injective q : N → G
such that q ◦ n = m. A triple transformation G

∗⇒ H is NAC consistent if all
matches are NAC consistent.

Operational rules for model transformations are automatically derived from
the set of triple rules TR. From each rule tr of TR we derive a forward rule trF

for forward transformation sequences and a source rule trS for the construction
resp. parsing of a model of the source language. Analogously, we derive a target
rule trT for models of the target language and backward rules trB , which are
not presented explicitly.

Definition 4 (Derived Triple Rules). From each triple rule tr = (L→ R) with
NACs we derive the following source, target and forward rules:

(LS

trS ��

∅oo

��

// ∅)

��
(RS ∅oo // ∅)

source rule trS

(∅
��

∅oo

��

// LT)
trT ��

(∅ ∅oo // RT)
target rule trT

(RS

id ��
LC

trS◦sLoo

trC
��

tL // LT)
trT��

(RS RC
sRoo tR // RT)
forward rule trF

Furthermore, trS contains all source NACs of tr and trF as well as trT con-
tain all target NACs of tr. TRS, TRT and TRF denote the sets of all source,
target resp. forward rules derived from TR.

A set of triple rules TR with NACs and start graph ∅ generates a visual
language VL of integrated models, i.e. models with elements in the source,
target and correspondence component. In order to formalize the domain and
codomain of correct model transformation sequences we define the sets VLS of
source and VLT of target models by a restriction of the integrated models to
the source and target components, respectively.

Definition 5 (Triple, Source and Target Language). A set of triple rules TR
defines the triple language VL = {G |∅⇒∗ G via TR} of triple graphs. Source
language V LS and target language are derived by projection to the triple com-
ponents, i.e. V LS = projS(V L) and V LT = projT (V L), where projX is a pro-
jection defined by restriction to one of the triple components, i.e. X ∈ {S, T}.

Note that a source rule trS may be applicable to triple graphs G even if the
corresponding triple rule tr is not applicable, because the left hand side of trS is
smaller in general. For this reason, the set V LS0 of models that can be generated
resp. parsed by the set of all source rules TRS is possibly larger than VLS in
Def. 5 and we have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}.
Analogously, we have V LT ⊆ V LT0 = {GT |∅ =⇒∗ (GT ← ∅→ ∅) via TRT }.

Example 3 (Triple Rules with NACs). Examples for triple rules with NACs
and derived rules are given in Fig. 3, where NACs are indicated by red frames
with label “NAC”. The triple rules specify the synchronous construction of at-
tributes in the source component and their corresponding columns in the target

5

NAC1
NAC2

NextAttr2NextColumn(n:String, t:String)

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t
++

:cols

:next

:next
:Column

++
:Attr

:attrs

:next

:next

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

:cols

:next

:next
:Column

++

Attr2NextColumn(n:String, t:String)

NAC1
NAC2

:cols

:AC

:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs
:CT t1:Table

:Column

:cols

++

++++ ++++

:Column

name=n

type=t

Attr2Column(n:String, t:String)

NAC1
:Class

:Attr

:Attr

name=n

type=t

:attrs

:attrs

++++

Source rule: Attr2ColumnS(n:String, t:String)

NAC1

:cols

:AC

:Class

:Attr

name=n

type=t

:attrs

:CT t1:Table

:Column

:cols

++

++++

:Column

name=n

type=t

Forward rule: Attr2ColumnF(n:String, t:String)

Figure 3: Rules for attributes and columns and derived source and forward rules

component. Attributes and columns build up list structures, which is ensured
by the NACs. The first attribute of a class is created by rules “Attr2Column”
and “Attr2NextColumn” while rule “NextAttr2NextColumn” extends an exist-
ing list of attributes. Lists of columns are initialized by rule “Attr2Column”
only, because there is no inheritance structure in data base tables, and they are
extended by the other two rules. The source rule trS and forward rule trF of
tr =“Attr2Column” are shown in the right part of Fig. 3, where trS contains
the source NAC (NAC1) and trF the target NAC (NAC2) of tr .

Thm. 1 based on [3, 7] shows that TGT-sequences can be decomposed to
source and forward sequences and composed out of them. All together this
correspondence is bijective. The result uses the following notion of match con-
sistency.

Definition 6 (Match and Source Consistency). Let tr∗S and tr∗F be sequences
of source rules tri,S and forward rules tri,F , which are derived from the same

triple rules tri for i = 1, . . . , n. Let further G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn be a
TGT-sequence with (mi,S , ni,S) being match and comatch of tri,S (respectively

(mi,F , ni,F) for tri,F) then match consistency of G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn means
that the S-component of the match mi,F is uniquely determined by the comatch
ni,S (i = 1, . . . , n).

A TGT-sequence Gn0 =
tr∗F==⇒ Gnn is source consistent, if there is a match con-

sistent sequence ∅ =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn.

Note that by source consistency the application of the forward rules is con-
trolled by the source sequence, which generates the given source model. More-
over, ∅ =

tr∗S==⇒ Gn0 is uniquely determined by source consistency of Gn0 =
tr∗S==⇒

Gnn.

6

Theorem 1 (De-/Composition of TGT-Sequences with NACs).

1. Decomposition: For each TGT-sequence

G0 =tr1=⇒ G1 =⇒ . . . =trn==⇒ Gn (1)

with NACs there is a corresponding match consistent TGT-sequence

G0 = G00 =
tr1,S===⇒ G10 . . . =

trn,S===⇒ Gn0 =
tr1,F===⇒ Gn1 . . . =

trn,F===⇒ Gnn = Gn (2)

with NACs.

2. Composition: For each match consistent transformation sequence (2)
with NACs there is a canonical transformation sequence (1) with NACs.

3. Bijective Correspondence: Composition and decomposition are inverse
to each other.

Remark 1 (Injective matches). According to Def. 2 the matches of the triple
rules are required to be injective. If we allow non-injective matches, then we
must allow n and q in definition 3 to be non-injective as well.

Model transformations with NACs from models of the source language VLS0

to models of the target language VLT0 can be defined on the basis of forward
rules as shown in [3, 7]. In this paper we focus our attention to model trans-

formations based on forward rules, where the forward sequence G0 =
tr∗F==⇒ Gn

is required to be source consistent. This means that it is controlled by the
corresponding source sequence ∅ =

tr∗S==⇒ G0.

Definition 7 (Model Transformation based on Forward Rules). A model trans-

formation sequence (GS , G0 =
tr∗F==⇒ Gn, GT) consists of a source graph GS, a tar-

get graph GT , and a NAC- as well as source consistent forward TGT-sequence
G0 =

tr∗F==⇒ Gn with GS = proj S(G0) and GT = proj T (Gn).
A model transformation MT : VLS0 V VLT0 is defined by all model transfor-
mation sequences (GS , G0 =

tr∗F==⇒ Gn, GT) with GS ∈ VLS0 and GT ∈ VLT0.

3 On-the-Fly Construction of Model Transfor-
mations

In order to construct a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

according to Def. 7 from a given GS there have been two alternatives up to now
[3, 7]: Either we construct a parsing sequence ∅ =

tr∗S==⇒ G0 first and then try to

extend it to a match consistent sequence ∅ =
tr∗S==⇒ G0 =

tr∗F==⇒ Gn, or we construct

directly a forward sequence G0 =
tr∗F==⇒ Gn and check afterwards, whether it is

source consistent. This means that many candidates of forward transformation
sequences may have to be constructed before a source consistent one is found.

We present an on-the-fly check of source consistency using the new notion of
partial source consistency. The construction proceeds stepwise and constructs
partial source consistent forward sequences. For each step the possible matches
of model transformation rules are filtered, such that sequences that will not
lead to a source consistent one are rejected as soon as possible. Simultaneously,

7

the corresponding source sequences of the forward sequences are constructed on-
the-fly leading to complete source sequences for the complete forward sequences.
Intuitively, this can be seen as an on-the-fly parsing of the source model.

Partial source consistency of a forward sequence extends source consistency
in Def. 6 to the case where G00 =

tr∗S==⇒ Gn0 and G0 =
tr∗F==⇒ Gn are subsequences

of the corresponding sequences of a match consistent sequence ∅ = G00 =
tr∗S==⇒

G0 =
tr∗F==⇒ Gn with inclusion gn : Gn0 ↪→ G0.

Partial source consistency of a forward sequence, which is necessary for a
complete model transformation, requires that there has to be a corresponding
source sequence, such that both sequences are partially match consistent. This
means that the matches of the forward sequence are controlled by an automatic
parsing of the source model, which is given by inverting the source sequence.
This allows us to incrementally extend partially source consistent sequences
and we can derive complete source consistent sequences, which ensure that all
elements of the source model are translated exactly once.

Definition 8 (Partial Match and Source Consistency). Let TR be a set of triple
rules with source and target NACs and let TRF be the derived set of forward
rules with target NACs. A NAC -consistent sequence

∅ = G00 =
tr∗S==⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn

defined by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅
and inclusion gn : Gn0 ↪→ G0 is called partially match consistent, if diagram
(2) commutes for all i, which means that the source component of the forward
match mi,F is determined by the comatch ni,S of the corresponding step of the
source sequence with gi = gn ◦ tn,S . . . ti−1,S.

Li,S
� � tri,S //

mi,S ��

Ri,S

ni,S��(1)

� � // Li,F

(2) mi,F ��

� � tri,F // Ri,F

ni,F��(3)

Gi−1,0
� �

ti,S

// Gi0
� �

gi

// G0
� � // Gi−1

� �

ti,F

// Gi

A NAC -consistent forward sequence G0 =
tr∗F==⇒ Gn is partially source consistent,

if there is a source sequence ∅ = G00 =
tr∗S==⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0

such that G00 =
tr∗S==⇒ Gn0 ↪−gn−→ G0 =

tr∗F==⇒ Gn is partially match consistent.

Remark 2.
1. If gn = idG0 , partial match consistency coincides with match consistency.

2. For n = 0 the partially match consistent sequence is given by g0 : G00 ↪→
G0.

Remark 3. Note that we can also consider a more general version of Def.
8, where G00 is not required to be empty. In this case Thm. 2 is modified
accordingly and the model G00 is fixed for all steps of the construction of a
partially match consistent sequence. This notion would provide the basis for
incremental model transformations. We can assume that G00 is an integrated
model that contains a source model and its corresponding target model equipped
with the correspondence part. G0 as extension of G00 contains further elements
in the source component that have to be transformed into target elements in
order to propagate the updates from the source model to the target model.

8

Example 4 (Partial Match and Source Consistency).
Let us consider a candidate sequence starting with triple
graph G0 (depicted to the right) which represents a class
diagram consisting of one class with two linked attributes.
By triple rules, G0 is mapped to a corresponding table with
two linked columns. Note that for this example, we assume
the triple rules shown in Fig. 3, but first without NACs.
This unsuccessful attempt will be improved later.
In the first step (i = 1), we apply rule tr1,S = Class2TableS to the empty start
graph G00 yielding the source graph G10 which contains one class. Obviously,
G10 is included in G0. Hence, diagram (2) commutes for step 1. The corre-
sponding forward rule tr1,F = Class2TableF is applied to G0 and maps the
class node to a table node, resulting in G1.

For step i = 2, we apply source rule tr2,S = Attr2ColumnS to graph G10

which adds an attribute and links it to the class. The result graph is G20.
Again, G20 is included in G0, which is included in G1, and diagram (2) for step
2 commutes. The corresponding forward rule tr2,F = Attr2ColumnF is applied
to G1, resulting in G2, where the upper attribute of the class now is mapped to
a column of the table.

In the third step (i = 3), we apply the same source rule once more, i.e.
tr3,S = Attr2ColumnS, and add a second attribute to G20, resulting in source
graph G30. This graph is included in G0, which in turn is included in G2.
Diagram (2) commutes for step 3. The application of the corresponding forward
rule tr3,F = Attr2ColumnF at the co-match of tr3,S yields G3, where now also
the second attribute is mapped to a column of the table.

Since for all considered steps, diagram (2) of Def. 8 commute, we conclude

that the sequence ∅ = G00
tr1,S=⇒ G10

tr2,S=⇒ G20
tr3,S=⇒ G30 ↪−gn−→ G0

tr1,F=⇒ G1
tr2,F=⇒

G2
tr3,F=⇒ G3 is a partial match consistent sequence.

9

The forward sequence G0
tr1,F=⇒ G1

tr2,F=⇒ G2
tr3,F=⇒ G3 is partially source con-

sistent, because we have the partial match consistent sequence ∅ = G00
tr1,S=⇒

G10
tr2,S=⇒ G20

tr3,S=⇒ G30 ↪−gn−→ G0
tr1,F=⇒ G1

tr2,F=⇒ G2
tr3,F=⇒ G3.

Note that this forward sequence, although being partially source consistent,
cannot be extended to a complete source consistent sequence. The reason is that
after the third step, we do not find a new partially source consistent match for
some tr4,F . We will analyze in Ex. 6 what went wrong and how NACs in triple
rules can help to improve the construction of valid source consistent sequences.

In order to provide an improved construction of source consistent forward
sequences we characterize valid matches by introducing the following notion of
forward consistent matches. The formal condition of a forward consistent match
is given by a pullback diagram where both matches satisfy the corresponding
NACs, and intuitively, it specifies that the effective elements of the forward
rule are matched for the first time in the forward sequence (see Interpretation
1 below).

Definition 9 (Forward Consistent Match). Given a partially match consistent

sequence ∅ = G00 =
tr∗S==⇒ Gn−1,0 ↪−gn−→ G0 =

tr∗F==⇒ Gn−1 then a match mn,F :
Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called forward consistent if there is a
source match mn,S such that (1) below is a pullback and the matches mn,F and
mn,S satisfy the corresponding target and source NACs, respectively.

Ln,S
� � //

mn,S
��

Rn,S
� � // Ln,F

(1) mn,F

��
Gn−1,0

� �

gn−1
// G0

� � // Gn−1

Interpretation 1. The pullback property of (1) means that the intersection of
the match mn,F (Ln,F) and the source graph Gn−1,0 constructed so far is equal
to mn,F (Ln,S), the match restricted to Ln,S, i.e. we have

(2) : mn,F (Ln,F) ∩Gn−1,0 = mn,F (Ln,F).
This condition can be checked easily and mn,S : Ln,S → Gn−1,0 is uniquely
defined by restriction of mn,F : Ln,F → Gn−1. Furthermore, as a direct conse-
quence of (2) we have

(3) : mn,F (Ln,F \ Ln,S) ∩Gn−1,0 = ∅.
On the one hand, the source elements of Ln,F \Ln,S - called effective elements -
are the elements to be transformed by the next step of the forward transformation
sequence. On the other hand, Gn−1,0 contains all elements that were matched
by the preceding forward steps, because matches of the forward sequence coin-
cide on the source part with comatches of the source sequence. Hence, condition
(3) means that the effective elements were not matched before, i.e. they do not
belong to Gn−1,0.

Example 5 (Forward Consistent Match). In the partial match consistent se-
quence from Ex. 4, all forward rule matches are forward consistent. Consider
for example the situation in step 3, depicted below, where all mappings have been
indicated explicitly by equal numbers. We can see that L3,F ∩G20 = L3,S, which
implies that Diagram (1) from Def. 9 is a pullback. Analogously, the matches
from forward rules in steps 1 and 2 are also forward consistent.

10

In the following improved construction of model transformations, we check
the matches to be forward consistent. This allows us to filter the available
matches to those which can lead to correct model transformations while those
matches that cannot lead to correct model transformations are rejected.

Theorem 2 (On-the-Fly Construction of Model Transformations). Given a
triple graph G0 with GC

0 = GT
0 = ∅, execute the following steps:

1. Start with G00 = ∅ and g0 : G00 ↪→ G0.

2. For n > 0 and an already computed partially source consistent sequence
s = 〈G0 =

tr∗F==⇒ Gn−1 〉 with ∅ = G00 =
tr∗S==⇒ Gn−1,0 and embedding gn−1 :

Gn−1,0 ↪→ G0 find a (not yet considered) forward consistent match for

some trn,F leading to a partially source consistent sequence G0 =
tr∗F==⇒

Gn−1 =
trn,F===⇒ Gn with G00 =

tr∗S==⇒ Gn−1,0 =
trn,S===⇒ Gn0 and embedding gn :

Gn0 ↪→ G0. If there is no such match, s cannot be extended to a source
consistent sequence. Repeat until gn = idG0 or no new forward consistent
matches can be found.

3. If the procedure terminates with gn = idG0 , then G0 =
tr∗F==⇒ Gn is source

consistent leading to a model transformation sequence (GS , G0 =
tr∗F==⇒ Gn, GT)

with GS and GT being the source and target models of G0 and Gn.

Proof. We have to show that this procedure is well-defined, i.e. that in Step
2, a forward consistent match leads to an extended partially source consistent
sequence G0 =

tr∗F==⇒ Gn.
Given the situation as in Step 2 above, (1) + (2) is a pullback because mn,F

is forward consistent. The construction of pushout (1) leads to the source trans-
formation Gn−1,0 =

trn,S===⇒ Gn0, embedding gn : Gn0 ↪→ G0 and gS
n ◦ nS

n,S = mS
n,F

due to RS
n,S = LS

n,F , GS
0 = GS

n−1 and the S-components of (1) and (1) + (2)
being a a pushout and a pullback over monomorphisms, respectively, such that
the induced morphism gS

n : GS
n0 → GS

0 is a monomorphism and w.l.o.g. an
inclusion. Hence gn : Gn0 ↪→ G0 is an inclusion.

Moreover, Gn−1,0 =
trn,S===⇒ Gn0 and Gn−1 =

trn,F===⇒ Gn are NAC-consistent by

assumption. Thus, G0 =
tr∗F==⇒ Gn is partially source consistent.

Ln,S
� � trn,S //

mn,S

��

Rn,S

nn,S

��
(1)

� � // Ln,F

mn,F

��
(2)

Gn−1,0
� � tn,S //
� u

gn−1

77Gn0
� � gn // G0

� � // Gn−1

11

The on-the-fly construction does not restrict the choice of a suitable n, trn,F ,
and match in Step 2. Hence, different search algorithms are possible, e.g.

• Depth First: If we increase n after every iteration, and only decrease n by
1 if no more new forward consistent matches can be found, a depth-first
search is performed.

• Breadth First: If we increase n only after all forward consistent matches
for n are considered, the construction performs a breadth-first search.

Depending on the type of the model transformation, other search strategies may
be reasonable. In Sec. 4, we show how to make the construction more efficient
by analyzing independent transformations.

t5:cols

s9:parent

c2:

AC

s8:next

s1:Class

name=“Person“

s5:Attr

name=“customer_id“

type=Integer

t2:Column

name=“S-ID“

type=String

t7:next

s4:Class

name=“Customer“

s3:Attr

name=“birth“

type=String

s2:Attr

name=“S-ID“

type=String

s7:attrss6:attrs

s10:attrs

c3:

AC

c5:

AC

c1:

CT

t1:Table

name=“Person“

t3:Column

name=“birth“

type=String

t4:Column

name=“customer_id“

type=Integer

c4:

CT

t6:cols

t8:cols

t9:next

Figure 4: G5 of Forward Sequence

Example 6 (On-the-Fly Construction). Let us assume we have found already
the partial match consistent sequence from Ex. 4 by depth-first search. All for-
ward rule matches found so far are forward consistent. But after the third
rule application step (i = 3), we do not find a new partial source consistent
match for some tr4,F . Hence, we cannot extend our sequence found so far
to a source consistent sequence. The reason is that there exists no triple rule
for inserting a next link between two already inserted attributes. The mistake
we made was to use the wrong rule Attr2ColumnS for the insertion of the
second attribute. If we had used rule NextAttr2NextColumnS instead, we
would have constructed a sequence which could be extended to a source con-
sistent sequence. If a sequence cannot be extended to a source-consistent one,
one has two choices: either, we have to try to apply a different rule in the
previous step (and maybe have to go back even further), or we restrict the ap-
plicability of our triple rules, e.g. by adding negative application conditions.
In the second case, when considering also the NACs in Fig. 3, we will al-
ways construct a source consistent sequence, because only one attribute-adding
rule would be applicable in each step. An example for a source-consistent se-
quence, constructed by partially source consistent sequences according to Thm. 2,
is the model transformation (GS = G0,S , G0 =

tr∗F==⇒ G5, GT = G5,T), where G5

(shown in Fig. 4) is generated by the forward sequence G0 =Class2Table=======⇒ G1

=Attr2Col=====⇒ G2 =Subclass2Table=========⇒ G3 =NextAttr2NextCol============⇒ G4 =Attr2NextCol=========⇒ G5,

and G0 is generated by the corresponding source sequence ∅ =
tr∗S==⇒ G0. All ele-

12

Table 1: Steps of Source Consistent Model Transformation
Source Sequence Elements Forward Sequence Elements

Step Matched Created Matched Created
1 s1 s1 c1,t1
2 s1 s2,s7 s1,s2,s7,c1,t1 c2,t2,t5
3 s1 s4,s9 s1,c1,t1,s4,s9 c4
4 s1,s2,s7 s3,s8 s1-s3,s6-s8,c1,t1,t2,t5 c3,t3,t6,t7
5 s4 s5,s10 s4,s5,s10,c4,t1,t3,t6 c5,t4,t8,t9

ments in Fig. 4 are labeled with numbers. Table 1 specifies the matches and the
created objects for each transformation step.

4 Analysis of the Construction and Improve-
ment of Efficiency

In this section, we analyze the on-the-fly construction in Thm. 2 regarding
correctness, completeness, and termination of the model transformations and
show how to improve efficiency by parallel independence, which allows partial
order reduction.

The on-the-fly construction is correct, which means that if it terminates
both the source and target models of the resulting model transformations are
valid models of the source and target languages, respectively. Moreover, it is
also complete, which means that for any source model the procedure can find a
model transformation sequence leading to a corresponding target model.

Theorem 3 (Correctness and Completeness). • Correctness: If the on-the-
fly construction terminates with gn = idG0 , then the resulting model trans-

formation (GS , G0 =
tr∗F==⇒ Gn, GT) is correct, i.e. GS ∈ V LS and GT ∈

V LT .

• Completeness: For each GS ∈ V LS there exists GT ∈ V LT with a model
transformation (GS , G0 =

tr∗F==⇒ Gn, GT), which can be obtained by the on-
the-fly construction.

Remark 4. Dually, for each GT ∈ V LT there exists GS ∈ V LS where the
corresponding model transformation can be obtained dually by partially target
consistent sequences.

Proof. • Correctness: If the procedure terminates with gn = idG0 and a

source consistent forward transformation G0 =
tr∗F==⇒ Gn with a correspond-

ing source transformation ∅ = G00 =
tr∗S==⇒ Gn0 = G0 then ∅ = G00 =

tr∗S==⇒
Gn0 = G0 =

tr∗F==⇒ Gn is match consistent and by Thm. 1 there is a TGT-
sequence ∅ = G00 =tr∗=⇒ Gn with GS

0 = GS
n = GS and GT

n = GT and by
Def. 5 GS ∈ V LS and GT ∈ V LT .

• Completeness: GS ∈ V LS implies that there is a TGT-transformation
∅ = G00 =tr∗=⇒ Gn with GS

n = GS and tr∗ = (tri)i=1...n, which can be

13

decomposed by Thm. 1 into a match consistent sequence G00 =
tr∗S==⇒ Gn0 =

G0 =
tr∗F==⇒ Gn with matches mi,S and mi,F .

The on-the-fly construction starts with ∅ = G00 and g0 : G00 ↪→ G0.
In Step 2, for i = 1, . . . n we have a partially match consistent sequence

∅ = G00 =
tr1...i

S===⇒ Gi0 ↪−gi−→ G0 =
tr1...i

F===⇒ Gi. Choose tri+1,F as the next
rule in the forward sequence with match mi+1,F . For the source match
mi+1,S , (1) is a pushout and since the original sequence is source consistent
mi+1,F is uniquely determined by ni+1,S , which means that there is an
inclusion gS

i+1 : GS
i+1,0 ↪−→ GS

0 = GS
i such that mS

i+1,F = gS
i+1 ◦ nS

i+1 and
gS

i = gS
i+1 ◦ tSi+1,S . With (1) being both pushout and pullback, and gi+1

and G0 ↪→ Gi being monomorphisms we have that (1) + (2) is a pullback,
leading to the fact that mi+1,F is forward consistent. This procedure
terminates after n steps with gn = idG0 leading to the target model GT =
GT

n .

Li+1,S
� � tri+1,S //

mi+1,S

��
(1)

Ri+1,S

ni+1,S

��
(2)

� � // Li+1,F

mi+1,F

��
Gi0

� �

ti+1,S

// Gi+1,0
� � gi+1 // G0

� � // Gi

In general, the termination of the on-the-fly construction cannot be guar-
anteed. But for the case that all source rules create new elements also the
termination of the on-the-fly construction is ensured.

Theorem 4 (Termination). The on-the-fly construction of a triple graph G0

with GC
0 = GT

0 = ∅ terminates if all source rules tri,S are creating, i.e. Ri,S \
Li,S 6= ∅.

Proof. In the case of creating source rules, the sequence of inclusions GS
00 ↪−t

S
1,S−−→

GS
10 ↪−t

S
2,S−−→ GS

20 . . . is strictly increasing, which means that we have, after a finite
number of steps, that either Gn0 = G0 and the procedure terminates, or there
are no more forward rules with forward consistent matches and the procedure
aborts.

Example 7 (Termination). The on-the-fly construction of triple graph G5 in
Ex. 6 terminates because all used source rules in the source sequence are creating,
as can be easily seen in Table 1 in the left column Source Sequence Elements.

Confluence. For functional behaviour of the model transformations, also con-
fluence should be considered, which insures that the results of different trans-
formations of a source graph lead to the same target graph. In general, it would
be interesting to find sufficient conditions for local confluence and confluence.

Example 8. Note that the triple rules from our running example are not con-
fluent. We have source-consistent sequences for the same G0 which lead to
different corresponding tables. If a class has more than one attribute, the order
of columns in the resulting table depends on the order in which we transform the
attributes. So, the columns of the table could be linked to each other in any order
and would always be a valid result of a source-consistent forward transformation.

14

In the following, we describe how to improve efficiency by analyzing parallel
independence of extensions. Two partially match consistent sequences which
differ only in the last rule application are parallel independent if the last rule
applications are parallel independent both for the source and forward sequence,
and, in addition, if the embeddings into the given graph G0 are compatible.

Definition 10 (Parallel Independence of Partially Match Consistent Exten-
sions). Two partially match consistent sequences

∅ = G00 =
tr∗S==⇒ Gn0 =

tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 and

∅ = G00 =
tr∗S==⇒ Gn0 =

tr2,S===⇒ G′n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗F==⇒ Gn =
tr2,F===⇒ G′n+1

are parallel independent if Gn0 =
tr1,S===⇒ Gn+1,0 and Gn0 =

tr2,S===⇒ G′n+1,0 as well

as Gn =
tr1,F===⇒ Gn+1 and Gn =

tr2,F===⇒ G′n+1 are parallel independent leading to the
diagram (1S) and (1F), and diagram (2) is a pullback.

Gn0

tr1,S +3

tr2,S

��

Gn+1,0

(1S) tr2,S

��
G′n+1,0 tr1,S

+3 Gn+2,0

Gn

tr1,F +3

tr2,F

��

Gn+1

(1F) tr2,F

��
G′n+1 tr1,F

+3 Gn+2

Gn0
� � t1,S //

� _
t2,S

��

Gn+1,0

(2)

� _

gn+1

��
G′n+1,0

� �

g′n+1

// G0

In the case of parallel independence of the extensions, both extensions can
be extended both in the source and forward sequences leading to two longer
partially match consistent sequences which are switch-equivalent.

Theorem 5 (Partial Match Consistency with Parallel Independence). If ∅ =

G00 =
tr∗S==⇒ Gn0 =

tr1,S===⇒ Gn+1,0 ↪−gn+1−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 and ∅ =

G00 =
tr∗S==⇒ Gn0 =

tr2,S===⇒ G′n+1,0 ↪−g
′
n+1−−−→ G0 =

tr∗F==⇒ Gn =
tr2,F===⇒ G′n+1 are parallel

independent then the following upper and lower sequences are partially match
consistent and called switch equivalent.

Gn+1,0
tr2,S

!)KKKK
KKKK

Gn+1
tr2,F

�'GGG
G

GGG
G

∅ = G00

tr∗S +3 Gn0

tr1,S 7?wwww
wwww

tr2,S
�'GGG

G
GGG

G
Gn+2,0

� � // G0

tr∗F +3 Gn

tr1,F 9A{{{{
{{{{

tr2,F
�%

CCC
C

CCC
C

Gn+2

G′n+1,0

tr1,S

5=tttt
tttt

G′n+1

tr1,F

7?wwww
wwww

Proof. We show the partial match consistency of the sequence ∅ = G00 =
tr∗S==⇒

Gn0 =
tr1,S===⇒ Gn+1,0 =

tr2,S===⇒ Gn+2,0 ↪−gn+2−−−→ G0 =
tr∗F==⇒ Gn =

tr1,F===⇒ Gn+1 =
tr2,F===⇒

Gn+2, the other one follows dually. It suffices to show that the match m2,F in
pushout (3F) is forward consistent, which means that (4) is a pullback.

L2,S
tr2,S //

m2,S

��

R2,S

n2,S

��
(3S)

Gn+1,0
� �

t2,S

// Gn+2,0

L2,F
tr2,F //

m2,F

��

R2,F

n2,F

��
(3F)

Gn+1
� �

t2,F

// Gn+2

L2,S
tr2,S //

m2,S

��

R2,S
� � // L2,F

m2,F

��
(4)

Gn+1,0
� �

gn+1
// G0

� � // Gn+1

By parallel independence we have the following pushouts from (1S) and (1F)
with (3S) = (6S) + (7S) and (3F) = (6F) + (7F).

15

L1,S
tr1,S //

m1,S

��

R1,S

n1,S

��
(5S)

L1,F
tr1,F //

m1,F

��

R1,F

n1,F

��
(5F)

L2,S

m′2,S //

tr2,S

��

Gn0

t1,S //

t′2,S
��

(6S)

Gn+1,0

(7S)
��

L2,F

m′2,F //

tr2,F

��

Gn

t1,F //

t′2,F

��
(6F)

Gn+1

��
(7F)

R2,S
n′2,S

// G′n+1,0
// Gn+2,0 R2,F

n′2,F

// G′n+1
// Gn+2

This implies that m2,S = t1,S ◦m′2,S and mS
2F = tS1F ◦m

′S
2F = m

′S
2F because

tS1,F = id. Moreover, match consistency of the second sequence implies that
mS

2,F = g
′S
n+1 ◦ n

′S
2,S . (6S) is a pushout and also a pullback, and thus the square

(6S) + (2) as a composition of pullbacks is also a pullback, and hence also (4) is
a pullback, because m2,S = t1,S ◦m′2,S and the S-component of (8) is a pullback
with horizontal identities and mS

2,F = g
′S
n+1 ◦ n

′S
2,S .

L2,S
tr2,S //

m′2,S

��

R2,S

n′2,S
��

(6S)

� � // L2,F

m2,F

��

Gn,0 t′2,S
//

t1,S

��

G′n+1,0

g′n+1
��

(2)

Gn+1,0 gn+1
// G0

� � // Gn+1

Example 9 (Parallel Independence). Consider the sequence of rule applications
in Table 1. Here, we may switch step 2 and step 3 without changing the result
G5 since the sequences ∅ = G00 =Class2TableS========⇒ G10 =Attribute2ColumnS============⇒ G2,0 ↪−g2−→
G0 =Class2TableF========⇒ G1 =Attribute2ColumnF=============⇒ G2 and ∅ = G00 =Class2TableS========⇒ G′10

=Subclass2TableS==========⇒ G′2,0 ↪−g
′
2−→ G0 =Class2TableF========⇒ G1 =Subclass2TableF==========⇒ G′2 are parallel

independent.

We can analyze parallel independence on-the-fly for the forward steps which
are applicable to the current intermediate triple graph. Based on the induced
partial order of dependencies between the forward steps we can apply several
techniques of partial order reduction in order to improve efficiency. This means
that we can neglect remaining switch-equivalent sequences, if one of them has
been constructed. This improves efficiency of corresponding depth-first and
breadth-first algorithms. For an overview of various approaches concerning par-
tial order reduction see [9], where also benchmarks show that these techniques
can dramatically reduce complexity.

5 Related Work and Evaluation of our Approach

Since 1994, several extensions of the original TGG definitions have been pub-
lished [15, 13, 10], and various kinds of applications have been presented [16,
11, 12]. For an extensive overview see [15]. A new extension of TGGs towards
declarative, pattern-based model transformation is presented in [2], where triple
rules are derived from triple graph constraints.

16

Furthermore, Kindler and Wagner [12] discuss that several applications of
model transformations based on TGGs require an efficient strategy for finding
a correct transformation sequence because of the non-deterministic character of
the matching of forward rules. A new strategy for controlling the construction
of a model transformation was given in [15], where elements of the source model
are distinguished for each step of the model transformation whether they were
translated so far. In this paper we have formalized this separation by specifying
which elements were matched so far and we call the new matched elements in
an intermediate model transformation step effective elements (see Def. 9).

As stated in Sec. 1 this paper extends especially various concepts and results
of our previous papers [3, 8, 6, 7]. In the following we explain how our approach
complies with the design principles of the “Grand Research Challenge of the
Triple Graph Grammar Community”, which was formulated by Schürr et. al.
in [15]:

1. Correctness: Model transformations shall be correct in the way that when-
ever the algorithm translates a source model GS into a target model GT

then there has to be a triple graph G = (GS ← GC → GT) ∈ VL. This
property is shown in Thm. 3 for an algorithm based on our construction
in Thm. 2.

2. Completeness and Termination: Completeness means that the algorithm
translates each model GS ∈ VLS . This property subsumes Termination.
Both properties are ensured for our construction by Thm. 3 and Thm. 4
if triple rules are creating on the source part.

3. Efficiency: Model transformations shall have polynomial space and time
complexity with exponent k the maximal number of elements of a rule.
Our construction does not guarantee this requirement in general. But
note that the algorithm in [15] only meets this condition because it avoids
backtracking by aborting a translation in the case that the chosen sequence
of model transformation steps does not lead to a target model, even if there
may be a possible sequence. Therefore, completeness is not achieved in
their approach. Note further that by Thm. 5 we are able to perform
partial order reduction, which has shown to provide massive power for the
reduction of complexity (see e.g. [9]).

4. Expressiveness: Finally, features that are urgently needed for solving prac-
tical problems like NACs and attribute conditions shall be captured. Both,
NACs and attributes are handled by our approach. It remains open,
whether our restriction to source-target NACs rules out some interesting
practical applications.

6 Conclusion and Future Work

In this paper we have given a new formal construction of model transforma-
tions based on triple graph grammars including crucial properties like NAC-
consistency, correctness, completeness and a sufficient condition for termina-
tion. In contrast to previous formal constructions in [14, 3, 7] the new construc-
tion avoids a parsing of the source graph beforehand or afterwards, but allows

17

to construct simultaneously NAC-consistent forward and source transformation
sequences leading to an on-the-fly construction of model transformations. More-
over, we have shown correctness and completeness of this on-the-fly construction
and termination for triple rules with non-identical source part. Currently, these
constructions are being implemented by us based on Mathematica libraries [1].

Finally, we have studied parallel independence of model transformation steps,
which allows us to perform partial-order reduction in order to improve efficiency
of the construction. We have not analyzed local confluence in this paper, which
- together with termination - leads to functional behaviour of the model trans-
formation. But we are confident that our concept of parallel independence can
be extended to study critical pairs and local confluence for model transforma-
tion sequences based on existing approaches for graph transformation systems
[5] including tool support by our tool AGG [17]. Furthermore, correctness cri-
teria independent from the TGG as well as an extension to general application
conditions shall be developed.

References

[1] C. Brandt, F. Hermann, and T. Engel. Security and Consistency of IT and
Business Models at Credit Suisse realized by Graph Constraints, Trans-
formation and Integration using Algebraic Graph Theory. In Proc. Int.
Conf. on Exploring Modeling Methods in Systems Analysis and Design 2009
(EMMSAD’09), volume 29 of LNBIP, pages 339–352. Springer, 2009.

[2] J. de Lara and E. Guerra. Pattern-based model-to-model transformation.
In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer, editors, Proc. of
ICGT’08, volume 5214 of Lecture Notes in Computer Science, pages 426–
441. Springer, 2008.

[3] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Informa-
tion Preserving Bidirectional Model Transformations. In M. Dwyer and
A. Lopes, editors, Proc. of FASE’07, volume 4422 of LNCS, pages 72–86.
Springer, 2007.

[4] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model
Integration based on the Algebraic Approach to Triple Graph Grammars.
In Proc. of GT-VMT’08. EC-EASST, 10:1–14, 2008.

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs. Springer, 2006.

[6] H. Ehrig, C. Ermel, and F. Hermann. On the Relationship of Model Trans-
formations Based on Triple and Plain Graph Grammars. In G. Karsai and
G. Taentzer, editors, Proc. of GraMoT’08. ACM, 2008.

[7] H. Ehrig, F. Hermann, and C. Sartorius. Completeness and Correctness of
Model Transformations based on Triple Graph Grammars with Negative
Application Conditions. In Proc. of GT-VMT’09. EC-EASST, 18, 2009. to
appear.

[8] H. Ehrig and U. Prange. Formal Analysis of Model Transformations Based
on Triple Graph Rules with Kernels. In H. Ehrig, R. Heckel, G. Rozenberg,

18

and G. Taentzer, editors, Proc. ICGT’08, volume 5214 of LNCS, pages
178–193. Springer, 2008.

[9] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems – An Approach to the State-Explosion Problem, volume 1032 of
LNCS. Springer, 1996.

[10] E. Guerra and J. de Lara. Attributed Typed Triple Graph Transforma-
tion with Inheritance in the Double Pushout Approach. Technical Report
UC3M-TR-CS-2006-00, Universidad Carlos III, Madrid, 2006.

[11] E. Guerra and J. de Lara. Model View Management with Triple Graph
Grammars. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and
G. Rozenberg, editors, Proc. of ICGT’06, volume 4178 of LNCS, pages
351–366. Springer, 2006.

[12] E. Kindler and R. Wagner. Triple Graph Grammars: Concepts, Extensions,
Implementations, and Application Scenarios. Technical Report TR-ri-07-
284, Universität Paderborn, 2007.

[13] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars -
A Survey. ENTCS, 148:113–150, 2006.

[14] A. Schürr. Specification of Graph Translators with Triple Graph Gram-
mars. In G. Tinhofer, editor, Proc. of WG’94, volume 903 of LNCS, pages
151–163. Springer, 1994.

[15] A. Schürr and F. Klar. 15 Years of Triple Graph Grammars. In H. Ehrig,
R. Heckel, G. Rozenberg, and G. Taentzer, editors, Proc. of ICGT’08,
volume 5214 of LNCS, pages 411–425. Springer, 2008.

[16] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky,
U. Prange, D. Varro, and S. Varro-Gyapay. Model Transformation by
Graph Transformation: A Comparative Study. In Proc. WMTP’05, 2005.

[17] TFS-group, TU Berlin. AGG, 2009. http://tfs.cs.tu-berlin.de/agg.

19

http://tfs.cs.tu-berlin.de/agg

	Introduction
	Review of Triple Graph Grammars with NACs
	On-the-Fly Construction of Model Transformations
	Analysis of the Construction and Improvement of Efficiency
	Related Work and Evaluation of our Approach
	Conclusion and Future Work

