From Model Transformation
to Model Integration
based on the Algebraic Approach to
Triple Graph Grammars

Hartmut Ehrig! , Karsten Ehrig? and Frank Hermann!

! [ehrig, frank](at)cs.tu-berlin.de
Institut fiir Softwaretechnik und Theoretische Informatik
Technische Universitat Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science
University of Leicester, United Kingdom

Bericht-Nr. 2008/03
ISSN 1436-9915

From Model Transformation to Model Integration based on
the Algebraic Approach to Triple Graph Grammars

Hartmut Ehrig!, Karsten Ehrig? and Frank Hermann®

! [ehrig, frank](at)cs.tu-berlin.de
Institut fiir Softwaretechnik und Theoretische Informatik
Technische Universitat Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science
University of Leicester, United Kingdom

February 5, 2008

Abstract

Success and efficiency of software and system design fundamentally relies on its models.
The more they are based on formal methods the more they can be automatically transformed
to execution models and finally to implementation code. This paper presents model transfor-
mation and model integration as specific problem within bidirectional model transformation,
which has shown to support various purposes, such as analysis, optimization, and code gen-
eration.

The main purpose of model integration is to establish correspondence between various
models, especially between source and target models. From the analysis point of view, model
integration supports correctness checks of syntactical dependencies between different views
and models.

The overall concept is based on the algebraic approach to triple graph grammars, which are
widely used for model transformation. The main result shows the close relationship between
model transformation and model integration. For each model transformation sequence there is
a unique model integration sequence and vice versa. This is demonstrated by a quasi-standard
example for model transformation between class models and relational data base models.

Keywords: model transformation, model integration, syntactical correctness

1 Introduction

Whenever one can expect benefits out of different modeling languages for the same specific
task there is a substantial motivation of combining at least two of the them. For this purpose
it is useful to have model transformations between these modeling languages together with
suitable analysis and verification techniques. In cases of bidirectional model transformation
the support for the modeling process increases, for instance, if results of analysis can be
translated backwards to mark the original source of deficiency or defect, respectively.

In [EEE'07] Ehrig et al. showed how to analyze bi-directional model transformations
based on triple graph grammars [Sch94, KS06] with respect to information preservation, which
is especially important to ensure the benefits of other languages for all interesting parts of
models. Triple graph grammars are based on triple rules, which allow to generate integrated
models G consisting of a source model Gg, a target model Gr and a connection model
Gc¢ together with correspondences from G¢ to Gg and Gr. Altogether G is a triple graph
G = (Gs «— G¢ — Gr). From each triple rule tr we are able to derive a source rule ¢rg and a
forward rule ¢rr, such that the source rules are generating source models G's and the forward

rules allow to transform a source model G5 into its corresponding target model Gr leading to
a model transformation from source to target models. On the other hand we can also derive
from each triple rule ¢r a target rule trr and a backward rule trp, such that the target rules are
generating target models Gt and backward rules transform target models to source models.
The relationship between these forward and backward model transformation sequences was
analyzed already in [EEET07] based on a canonical decomposition and composition result for
triple transformations.

In this paper we study the model integration problem: Given a source model Gg and a
target model G we want to construct a corresponding integrated model G = (Gs «— G¢ —
Gr). For this purpose, we derive from each triple rule ¢r an integration rule try, such that
the integration rules allow to define a model integration sequence from (Ggs,Gr) to G. Of
course, not each pair (Gg,Gr) allows to construct such a model integration sequence. In
our main result we characterize existence and construction of model integration sequences
sequences from (Gs,Gr) to G by model transformation sequences from Gg to Gr. This
main result is based on the canonical decomposition result mentioned above [EEE*07] and
a new decomposition result of triple transformation sequences into source-target- and model
integration sequences.

In Section 2 we review triple rules and triple graph grammars as introduced in [Sch94]
and present as example the triple rules for model transformation and integration between
class models and relational data base models. Model transformations based on our paper
[EEE107] are introduced in Section 3, where we show in addition syntactical correctness of
model transformation. The main new part of this paper is model integration presented in
Section 4 including the main results mentioned above and applied to our example. Related
and future work are discussed in sections 5 and 6, respectively.

2 Review of Triple Rules and Triple Graph Gram-
mars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently
co-develop two related structures. Bidirectional model transformation can be defined using
models consisting of a pair of graphs which are connected via an intermediate correspondence
graph together with its embeddings into the source and target graph. In [KS06], Konigs and
Schiirr formalize the basic concepts of triple graph grammars in a set-theoretical way, which
was generalized and extended by Ehrig et. el. in [EEET07] to typed, attributed graphs. In
this section, we shortly review main constructions and relevant results for model integration
as given in [EEET07].

Definition 1 (Triple Graph and Triple Graph Morphism). Three graphs SG, CG, and TG,
called source, connection, and target graphs, together with two graph morphisms sg : CG —
SG and tg : CG — TG form a triple graph G = (SG Loas TG). G is called empty, if
SG, CG, and TG are empty graphs.

A triple graph morphism m = (s,c,t) : G — H between two triple graphs G = (SG &€
CG 'S TG) and H = (SH & CH 24 TH) consists of three graph morphisms s : SG — SH,
c:CG— CH andt: TG — TH such that sosg = sgoc andtotg =ty oc. It is injective,
if morphisms s, ¢ and t are injective.

Triple graphs G are typed over a triple graph TG = (TGs «— TG¢ — TGr) by a triple
graph morphism t¢ : G — TG. Type graph of the example is given in Fig. 1 showing the
structure of class diagrams in source component and relational databases in target compo-
nent. Where classes are connected via associations the corresponding elements in databases
are foreign keys. Though, the complete structure of correspondence elements between both
types of models is defined via the connection component of T'G. Throughout the example,
originating from [EEE"07], elements are arranged left, center, and right according to the com-
ponent types source, correspondence and target. Morphisms starting at a connection part are
given by dashed arrow lines.

A triple rule is used to build up source and target graphs as well as their connection
graph, i.e. to build up triple graphs. Structure filtering which deletes parts of triple graphs,

Source Component Connectnon Component Target Component

’ - N/ Y ,’ N
| CIa:. parent i | ClassTableRel | ! Tabsli_ :
l name: String [- _ ___! _ I oo (----L-t-»| name:Sting |
? EE P T e[|
|

| attrs srf: dest Co I I references :
| T T — ! | AssocFKeyRel! | pkey !
[YP8 Association | ! 1 P |
. LI DR S S N LT
! name: String | | ! [cols
| [: | fcols i :
| Attribute P Lo v i
|| PrimitiveDataType || is_primary: boolean 4: | AttrColRel D | Column i

|| - 0 |- {)r--—-—-+-t-—-—-- = |
| name: String name: String | ! : :T type: Sst[mg !

name: Strin

\ gtypeé /: \) ' 9)

Figure 1: Triple type graph for CD2RDBM model transformation

is performed by projection operations only, i.e. structure deletion is not done by rule appli-
cations. Thus, we can concentrate our investigations on non-deleting triple rules without any
restriction.

Definition 2 (Triple Rule ¢r and Triple Transformation Step).

A triple rule tr consists of triple graphs L = (SL&CL#TL)

L and R, called left-hand and right-hand "\L SJ(C\L if

sides, and an injective triple graph morphism)

tr = (s,c,t): L — R. R = (SR<57RCRT>TR)

Give@ a triple rule tr = (g,c, t) : L—R, SI OL TL
a triple graph G and a triple graph mor- om, cm/ tm
phism m = (sm,cm,tm) : L — G, called G = (SG oG e
triple match m, a triple graph transfor- - :

mation step (TGT—step)GA ISR from SR< 77777777 'CVR s TR
G to a triple graph H is given by three o ' yz
pushouts (SH,s', sn), (CH,d',en) and _ Lo tn
(TH,t ,tn) in category Graph with induced H = SH o CH te TH)

morphisms sy : CH — SH and ty : CH — TH. Morphism n = (sn,cn,tn) is called co-
match.

Moreover, we obtain a triple graph morphism d : G — H with d = (s',c/,t') called
transformation morphism. A sequence of triple graph transformation steps is called triple
(graph) transformation sequence, short: TGT-sequence. Furthermore, a triple graph gram-
mar TGG = (S,TR) consists of a triple start graph S and a set TR of triple rules. Given a
triple rule ¢r we refer by L(¢r) to its left and by R(¢r) to its right hand side.

Remark 1 (gluing construction). Fach of the pushout objects SH,CH, TH in Def. 2 can be
constructed as a gluing construction, e.g. SH = SG +sr, SR, where the S-components SG of
G and SR of R are glued together via SL.

PrimaryAttribute2Column(an:String, p'Boolean t:String) Subclass2Table(n:String) :ClassTableRel
[Cls =+ - [ass -0 -
. :ClassTableRel i
:attrs {new} .

v :pkey {new} :cols {new} :parent {new} I

TN A A | :ClassTableRel {new}'
:Attribute {new} I

= :Column {new} :Class {new} | q- - — _O_ _______ I

name =an |4 - O--» type = t name=n
primary = true | .AttrColRel | Name =an -
‘type {neww {new} Class2Table(n:String) ,c|agsTableRel

:Class {new {new} | :Table {new
:PrimitiveDataType {new} {new} «--(r-—-» {_ :

name =t name =n name =n

Figure 2: TGT-rules for CD2RDBM model transformation

:cols {new} | :Column {new}

Cloee [4-————————- O---—---- >
:Class Table type =t
:src {new}

:ClassTableRel {new}

:fkeys {new} name = an+“_“+cn
A

:Association {new} o : ______ »| FKey fnew} :fcols {new} f

flame = an :AssocFKeyRel {new} :Column
:dest {new} references {new} e

. v =

_____ ‘ClassTableRel ["Table |————»{name = cn
O :pkey

Figure 3: Rule Association2ForeignKey(an : String) for CD2RDBM model transformation

Examples for triple rules are given in Fig. 2 and Fig. 3 in short notation. Left and right
hand side of a rule are depicted in one triple graph. Elements, which are created by the
rule, are labeled with "new” and all other elements are preserved, meaning they are included
in the left and right hand side. Rule ” Class2Table” synchronously creates a class in a class
diagram with its corresponding table in the relational database. Accordingly the other rules
create parts in all components. For rule ” PrimaryAttribute2Column” there is an analogous
rule ” Attribute2Column” for translation of non primary attributes, which does not add the
edge ”:pkey” in the database component.

3 Model transformation

The triple rules T'R are defining the language VL = {G |0 =" G via TR} of triple graphs. As
shown already in [Sch94] we can derive from each triple rule tr = L — R the following source
and forward rule. Forward rules are used for model transformations from a model of a source
language to models of the target language. Source rules are important for analyzing properties
of forward transformations such as information preservation, presented in [EEET07).

L = (SL=—Y cr—"%~TL) (SR <" or T (SL<— 0 —> 0)

e A e

R = (SR<—-CR——>=TR) (SR<- CR—TR) (SR<— 0 —=10)
triple rule tr forward rule trp source rule trg

For simplicity of notation we sometimes identify source rule trg with SL =, SR and target
rule trr with TL 4 TR.

Theses rules can be used to define a model transformation from source graphs to tar-
get graphs. Vice versa using backward rules - which are dual to forward rules - it is also
possible to define backward transformations from target to source graphs and altogether bidi-
rectional model transformations. In [EEE107] we have shown that there is an equivalence
between corresponding forward and backward TGT sequences. This equivalence is based
on the canonical decomposition and composition result (Thm. 1) and its dual version for
backward transformations.

Definition 3 (Match Consistency). Let trg and try be sequences of source rules tris and
forward rules trir, which are derived from the same triple rules tri fori=1,...,n. Let fur-

ther Goo L—S> Gno tT:F> Gnn be a TGT-sequence with (mig,nig) being match and comatch

of trig (respectively (mi,ni) for trir) then match consistency of Goo tr:s> Gno ”:F> Gon
means that the S-component of the match mi is uniquely determined by the comatch nig
(i=1,...,n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward Rule Case).

1. Decomposition: For each TGT-sequence based on triple rules tr*
(1) Go é G, there is a canonical match consistent TGT-sequence

tr trk)
(2) Go = Goo % Gno % Gnn = Gy based on corresponding source rules trg and
forward rules try.

2. Composition: For each match consistent transformation sequence (2) there is a canon-
ical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

Proof. See [EEE107]. O

Now we want to discuss under which conditions forward transformation sequences G1 %
G\, define a model transformation between suitable source and target languages. In fact we
have different choices: On the one hand we can consider the projections VLg = projs(VL)
and V Lt = projr(V L) of the triple graph language VL = {G |0 =™ G via TR}, where projx
is a projection defined by restriction to one of the triple components, i. e. X € {S,C,T}.
On the other hand we can use the source rules TRs = {trg|tr € TR} and the target rules
TRt = {trr |tr € TR} to define the source language VLgo = {Gs |0 =* Gs via TRs} and
the target language VLro = {Gr|0 =" Gr via TRr}. Since each sequence) =* G via TR
can be restricted to a source sequence) =* G5 via TRs and to a target sequence §) =* Gr
via TRt we have VLs C VLso and VLr C VLro, but in general no equality. In case of typed
graphs the rules in TR are typed over TG with TG = (TGs «— TG¢c — TGr) and rules of
TRs and TRy typed over (TGs «— @ — 0) and (0 — @ — T'Gr), respectively. Since Gs and
G are considered as plain graphs they are typed over TGs and T'Gr, respectively.

Given a forward transformation sequence G1 % G, we want to ensure the source
component of G; corresponds to the target component of G, i.e. the transformation sequence
defines a a model transformation MT from VLso to VLro, written MT : VLso = VLro,
where all elements of the source component are translated. Thus given a class diagram as
instance of the type graph in Fig. 1 all corresponding tables, columns and foreign keys
of the corresponding data base model shall be created in the same way they could have
been synchronously generated by the triple rules of TR. An example forward transformation
is presented in [EEE+O7]. Since Gg € VLgso is generated by TRg-rules we have a source

transformation) =* G5 via TRs. In order to be sure that G4 ”:F> G, transforms all parts
of G1, which are generated by § =* G5, we require that § =* Gg is given by 0 U5 Gy
with G1 = (Gs < 0 — 0), i.e. projs(G1) = Gs based on the same triple rule sequence tr*

*
trp

as G % Gr. Finally we require that the TGT-sequence () L—g> G1 =X G, is match
consistent, because this implies — by Fact 1 below — that Gs € VLs and Gr € VL and that
we obtain a model transformation MT : VLs = VLr (see Fact 1).

Definition 4 (Model Transformation). A model transformation sequence (Gs,G1 %
Gn,Gr) consists of a source graph Gg, a target graph Gr, and a source consistent forward
TGT-sequence Gy % G, with Gs = proj5(G1) and G = proj(Gy).

Source consistency of G1 % G, means that there is a source transformation sequence
0 g G4, such that () g G4 % G, is match consistent. A model transformation

MT : VLso = VLo is defined by model transformation sequences (Gg,G1 g Gn,GT)
with Gs € VLso and Gt € VLrq.

Remark 2. A model transformation MT : VLso = VLro is a relational dependency and
only in special cases a function.

This allows to show that MT : VLsg = VLro defined above is in fact MT : VLs = VLr
Fact 1 (Syntactical Correctness of Model Transformation MT). Given Gs € VLso and
G1 ”:F G, source consistent with projs(G1) = Ggs then Gr = projr(G,) € VLr and
Gs € VLg, i.e. MT : VLs = VLr.

: tri . trg try .
Proof. Given G1 =—£s G, source consistent, we have) —=s G; —Z G, match consistent

and hence, by Theorem 1 above with Go = () 4y G, which implies G, € VL. Now we have
proj (Grn) = projg(G1) = Gs € VLs and proj(Gn) = Gr € VLr. O

4 Model Integration

Given models Gg € VLgo and Gt € VLpo the aim of model integration is to construct an
integrated model G € VL, such that G restricted to source and target is equal to Gs and Gr,
respectively, i.e. projgG = Gs and projG = Gr. Thus, given a class diagram and a data
base model as instance of the type graph in Fig. 1 all correspondences between their elements
shall be recovered or detected, respectively. Similar to model transformation we can derive
rules for model integration based on triple rule ¢r. The derived rules are source-target rule
trst and integration rule tr; given by

(SL <% o~ T1) (SL<~— @ —> TL) (SR <L op, 2% TR)
S\L C\L \Lt S\L \L t\L zd\L . C\L . i/zd
(SR<— CR ——>TR) (SR <— @ —> TR) (SR <% CR —=> TR)

triple rule ¢r source-target rule trsr integration rule trr

An example for both kinds of rules is given in Fig. 4 for the triple rule Class2Table in Fig.

2.
:Class :Table
name=n [¥ 'O‘ ™ name=n :Class{new} :Table{new}
:ClassTableRel {new} name = n name =n
(a) integration rule Class2T abler (b) source-target rule Class2Tablest

Figure 4: Derived rules for Class2Table()

.
Similar to the canonical decomposition of TGT-sequences Gy === G, into source and
forward transformation sequences we also have a canonical decomposition into source-target

and integration transformation sequences of the form () j—S_T.> Go t_L> Grn. Such a sequence
is called S-T-consistent, if the S- and T-component of the comatch of trisr is completely
determined by that of the match of ¢ri; for tr = (t74)i=1...n-

Theorem 2 (Canonical Decomposition and Composition Result - Integration Rule Case).

1. Decomposition: For each TGT-sequence based on triple rules tr*
(1) Go é G, there is a canonical S-T-match consistent TGT-sequence

(2) Go = Goo ir—ET.> Gro L—’> Gnn = Gy based on corresponding source-target rules
trsr and integration rules try.

2. Composition: For each S-T-match consistent transformation sequence (2) there is a
canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

In the following we give the proof of Theorem 2 which is based on the Local-Church-Rosser
and the Concurrency Theorem for algebraic graph transformations (see [Roz97], [EEPT06]).
In Lemma 1 we show that a triple rule ¢r can be represented as concurrent production trsr *g
tr of the corresponding source-target rule trsr and integration rule ¢r;, where the overlapping
E is equal to L(try), the left hand side of tr;. Moreover E-related sequences in the sense of
the Concurrency Theorem correspond exactly to S-T-match-consistent sequences in Theorem
2. In Lemma 2 we show compatibility of S-T-match consistency with sequential independence
in the sense of the Local-Church-Rosser-Theorem. Using Lemma 1 we can decompose a single
TGT-transformation Gy s G; into an S-T-match consistent sequence Go % G1o %

G1 and vice versa. Lemma 2 allows to decompose TGT-sequences Go . @G, into S-T-
. trg try .
match consistent sequences Go =57 Gho —Ls G, and vice versa.

All constructions are done in the category TripleGraphrg of typed triple graphs and
typed triple graph morphisms, which according to Fact 4.18 in [EEPTO06] is an adhesive HLR

category. This implies that the Local-Church-Rosser and Concurrency Theorem are valid for
triple rules with injective morphisms (see Chapter 5 in [EEPT06]).

Lemma 1 (Concurrent Production tr = trgr xg trr). Let E = L(tr;) with el = (id, 0, id) :
R(trst) — E and €2 = id : L(tr;) — E then tr is given by the concurrent production
tr = trsr *xg trr. Moreover, there is a bijective correspondence between a transformation
G122 G and match-consistent sequences G trsrymlnl, gy trim2n2 G2, where S —T-
match consistency means that the S— and T—components of the comatch nl and the match
m2 are equal, i.e. nlg = m2g and nly = m2p. Construction of concurrent production:

Litrsr) —5% R(trsr) L(trr) —> R(try)
l i (1) x % (2) i/r
L(tr) ——— B - R

E — concurrent rule

Proof. The pushouts in (1) in TripleGraphrtc are given below showing d2 o d1 =
tr: L(tr) — R(tr)

S

SR——> SR

A N) N .
) — 0 G CL——1+—>CR
/ ‘ . / id N\ id ‘ \
TL ——TR w TR—— TR

id

SL SR
. \m/ N

id c

l CL CR
t
id / \totl/ . \ id

TL TR
E — concurrent rule tr : L(tr) — R(tr)

According to the Concurrency Theorem for TripleGraphrg there is a bijective corre-
spondence between transformations Gi ":m> G2 and FE-related sequences G ”ST:M>
H % G2. The sequence is E-related if there is h : E — H with hoel = nl and
hoe2 =m2 and there are cl : L(tr) — G1 and 2 : R(tr) — Gz, s.t. clol=ml,c2or =n2

and (3) as well as (4) in the following diagram are pushouts.

trst try

L(tTST) tTST t'I"[R(t?"[)
x W \ / /
ml L(tr) R(tr) n2
/ © \Lh @ K
Gl dl H d2 F2

FE — concurrent rule

First of all we observe that the sequence is S-T-match consistent, i.e. nlsg = m2s and
nly = m2r iff thereis h : E — H with hoel = nl and hoe2 = m2. In case of nls = m2g and
nly = m2r we define h by h = m2, which implies hoe2 = hoid = m2, but also hoel = honl,
because hsoels = m2soid = nls,hroelr = m2roid = nly and hcoelc = 0 = nlc. Vice
versa, given h with hoel = nl, hoe2 = m2 we have nlg = hgoels = hgsoid = hgoe2s = m2gs
and similar nly = m2p. In order to have an FE-related sequence we have to show that h
induces ¢l and ¢2 with ¢l ol = nl and c2or = n2, st. (3) and (4) become pushouts. This
follows for ¢2 and (4) directly from pushout (2) and pushout decomposition. For ¢l and (3),
however, we need pushout-pullback decomposition, which would require that h is injective.
In order to avoid the assumption h injective we give now a direct construction for ¢l with
cl ol =nl and pushout (3) by ¢l = (mlgs, hc,mlr) according to the following diagrams

SL —>—= SR

) ——0 TL ——>TR

N N N\ N N

mlg SL —>—> SR mlc L4>CL it TL*>TR
(3) 3 (3)
/Cls=mlss \th /‘:10:1(10)0 ihc }/clT=m1TT J/hT
SGy ————>SH CGi ————CH =CG, TGy ——— > TH
gls glo=id gl

Note that the outer diagrams are the S-, C- and T- component of the pushout according

trgr,ml,nl

to G ==L

H with n1l = h o el, where we assume w.l.o.g. glc = id induced by

0 24, P in the C-component. The outer diagrams in the S- and T-component are pushouts
and equal to (3)s and (3)7 respectively. (3)c¢ is a trivial pushout. It remains to show that
cl is a morphism in TripleGraphrg. This follows from componentwise commutativity of
(3) and the fact that d1,h and gl are in TripleGraphrtc by construction and g¢ls,glr
injective, because trsr injective implies g injective. In more detail, glg, glr injective implies
commutativity of the left squares below showing that cl is in TripleGraphrcg.

Lemma 2 (Compatibility of S — T-match consistency with independence).

ySL SR
; CL id cL sosl
TI%//‘ : TR{Q
hs
mlg
he SG, s | SH
T e ey
iy CGy CH =CG
/ ot hp /
TG, TH

O

Given the TGT-sequences on the right with independence in (4) and matches m;,m; and

comatches n;,n}.

(1) Goo Z£25Z Gy

Then we have:

’ ’
trigr m2',n2" ml" ,nl tr2;
mO0,n trl; tr2gp m3,'n§
ml,nl m2,n2

tr:11> G11 S — T-match consistent <
2ST . Qog s Goy S — T-match consistent

GOO

(2) Goo ST, Gy

and
tr2gm

3) G11 =% Ga1
(4) Gro 25T Gy

221 Goy S — T-match consistent <
Ly Gy 2Ly Gay S — T-match consistent

Proof. By independence we have d : L(tr2st) — G1o with g2o0d = n2 leading to g3on2’ = n2

and m1’ = gl onl.

L(tr2sr) 2255 R(tr2sr)

I

4 1/
L(t?“l[) il GlO : I” = G20 ;n2
I
trlli (PO) g2l;2 (PO) ggl/
n 4
R(trlr) : Gu ? = G2
—_— .
(1) S — T-match consistent < n0s = mls and nOr = mlrp
(2) S — T-match consistent < glg on0s = mls and glr o n0r = m17
(1) = (2) : gls o nls Q gls omls = mlY (and similar for T-component)
(2) = (1) : glsomls = mly @ gls on0g (and similar for T-component)
(3) S — T-match consistent < n2s = m3s and n27r = m3r
(4) S — T-match consistent < g3s o n2s = m3s and g3r o n27 = m3/
(3) = (4) : g3s on2y @ m3s (and similar for T-component)
(4) = (3) : m3s @ g3s on2g (and similar for T-component)

Proof of Theorem 2.
1. Decomposition: Given (1) we obtain (for n = 3) by Leamma 1 a decomposition into

triangles (1), (2), (3), where the corresponding transformation sequences are S —T-match con-
sistent.

tr3g trly
/ o \
t'rQ/ B xll tr3/ . &21
trl/ o xlf tr2/ @ \tr'h t’V‘S/ @ \t7”31

Go = Goo G33 - G3

trl tr2 tr3

In the next step we show that Gio tri G111 tr2st G21 is sequentially independent

leading by the Local Church Rosser Theorem to square (4) sequential independence in this
case means existence of d : L(tr2gsr) — G1o with g o d = m2.

L(trlr) ‘> R(trlr) L(tr2sr) — R(tr2sr)
mli \ / i
Gl = Gd

The diagram beneath shows that d = (ds,dc, dr) = (m2s, 0, m27) satisfies this property.
(1) — (4) leads to the following transformation sequence Goo TIST, Gio 22251, Gy LA

Gop 2Ly Gog 35T, (ay 731, Ga which is again S — T-match consistent due to shift
equivalence of corresponding matches in the Local Church Rosser Theorem (see Lemma 2).

Similar to above we can show that Ga1 ”_i> Gao % (32 are sequentially independent
leading to (5) and in the next step to (6) with corresponding S—T-match consistent sequences.

/ \ m2c
dp m2r
Gio,s - Gi1,s = Gio,s
! Z |
Gho,c e Gii,c
Gio,1 - Gu,r = Gor
K

2. Composition: Vice versa, each S —T-match consistent sequence (2) leads to a canonical
S — T-match consistent sequence of triangles (1),(2),(3) and later by Lemma 1 to TGT-
sequence (1). We obtain the triangles by inverse shift equivalence, where subsequence 1 as
above is S —T-match consistent. In fact S —T-match consistency of (2) together with Lemma
2 implies that the corresponding sequences are sequentially independent in order to allow
inverse shifts according to the Local Church Rosser Theorem. Sequential independence for
(6) is shown below

SRy
SRy = R(trlsr) L(tr3sr) iy R(tr3sr) L(t!l; — R(trly)
- \ P
Gho Gao = G31

g1

By S — T-match consistency we have ml; s = g25 0 glg onlg. Define ds = gls onlg, then
g2sods = g2soglsonls = mlr s and similar for the T-component, while dc = m1,c using
g2¢c = id. 3. Bijective Correspondence: by that of the Local Church Rosser Theorem and
Concurrency Theorem. O

Given an integration transformation sequence Go t_L> G, with proj4(Go) = Gs,
proj(Go) = Gr and proj-(Go) = 0, we want to make sure that the unrelated pair
(Gs,Gr) € VLgo x VLrg is transformed into an integrated model G = G,, with proj4(G) =
Gs, proj;(G) = Gr. Of course this is not possible for all pairs (Gs,Gr) € VLso x VLo,
but only for specific pairs. In any case (Gs,Gr) € VLso X VLro implies that we have a
source-target transformation sequence §) =" Go via TRgr = {trgr |tr € TR}. In order to be

sure that Go % G, integrates all parts of Gs and G, which are generated by 0 =* G,
we require that 0 =* Go is given by 0 -tr;—> Go based on the same triple rule sequence

tr* as Go :> G. Moreover, we require that the TGT-sequence () :> Go =% G, is
S-T-match consistent because this implies - using Theorem 2 - that Gs € VLS,GT € VLr
and G € VL (see Theorem 2).

trI

Definition 5 (Model Integration). A model integration sequence ((Gs,Gr),Go == Gn,G)
consists of a source and a target model Gg and Gr, an integrated model G and a source-target
consistent TGT-sequence Go —Ls Gy, with Gs = proj 5(Go) and Gt = proj(Go).
Source-target consistency of Go ; G means that there is a source-target transformation
sequence () % Go, such that 0 % Go t_L> G, 1s match consistent. A model integration
MI : VLso X VLro = VL is defined by model integration sequences ((Gs,Gr), Go =% i Gn,G)
with Gs € VLgo, Gr € VLo and G € VL.

trI

Remark 3. Given model integration sequence ((Gs,Gr),Go =% Gn,G) the corresponding

source-target TGT-sequence () % Go is uniquely determined. The reason is that each

10

comatch of trisr is completely determined by S- and T-component of the match of trir,
because of embedding R(trist) — L(trir). Furthermore, each match of trigr is given by
uniqueness of pushout complements along injective morphisms with respect to non-deleting
rule trisT and its comatch. Moreover, the source-target TGT-sequence implies Gs € V Lso
and G € V Lrg.

Fact 2 (Model Integration is syntactically correct). Given model integration sequence

*
try

((Gs,Gr), Go =% Gn, G) then G, = G € VL with projs(G) = Gs € VLs and
projr(G) = Gr € VLr.

Proof. Go L—’> G, source-target consistent

= 30 iT;ST—> Go s.t. 0 % Go % G, S-T-match consistent

T2 g o G, ie. Gn=Ge VL O
Finally we want to analyze which pairs (Gs,Gr) € VLs X VLr can be integrated. Intu-

itively those which are related by the model transformation MT : VLs = VLr in Theorem

1. In fact, model integration sequences can be characterized by unique model transformation
sequences.

Theorem 3 (Characterization of Model Integration Sequences). Each model integration se-
quence ((Gs,Gr),Go VN Gn, Q) corresponds uniquely to a model transformation sequence

(Gs, Gy N Gn,Gr), where tri and tri. are based on the same rule sequence tr*.

*
try

Proof. ((Gs,Gr),Go == G, G) is model integration sequence

g2y source-target consistent Go ;% G, with proj ¢(Go) = projs(Grn) = Gg, proj - (Go) = 0,
projr(Go) = projp(Gn) = Gr and G, = G

o g Go é@ G, S-T-match consistent with proj(Grn) = Gs and proj(Gn) = Gr
Thz2 g é G, with proj¢(Gr) = Gs and proj(Gn) = Gr

Tty % Go g G, match consistent with proj ¢(Gn) = Gs and proj;(Gr) = Gr

p=4 G) ZLEy G, source consistent with proj (Go) = proj(Grn) = Gs and proj(Gn) = Gr

d x . .
g (Gs, Gy tl—F.> Gn,Gr) is model transformation sequence. O
employee
o]
/\
Custumer

custumer_id : int

Figure 5: Source component of Fig. 6 in concrete syntax

Coming back to the example of a model transformation from class diagrams to database
models the relevance and value of the given theorems can be described from the more practical
view. Fig. 6 shows a triple graph, which defines a class diagram in its source component,
database tables in its target component and the correspondences in between. Since this model
is already fully integrated, it constitutes the resulting graph G of example model integration

sequence ((Gs,Gr),Go 2; Gn,@). The starting point is given by Gs as restriction of G
to elements of the class diagram, indicated by pink, and Gr containing the elements of the
database part, indicated by yellow colour. Now, the blue nodes for correspondence as well as
the morphisms between connection component to source and target component are created
during the integration process. All elements are labeled with a number to specify matches
and created objects for each transformation step. The sequence of applied rules is

11

Subclass2Table

PrimaryAttribute2Column

GO Class2table Gl Class2table G2 G3
G4 Association2ForeignKey GS _ Gn
> 1:Class 2:ClassTableRel 3Table I 4-cols
6:src | Name="Company" [« -~ ~~™ name="Company" 5:Column
L T T =it
8:Association 9:AssocFKeyRel 7:fkeys ype _'T -
() ____ <! name = “employee_cust_id
| name = “employee* [* > 10:FKey
1:dest) 1 2:fcoIsJ
M TaCiass e SRR t3ireferences
— name="Person TS
: =name=“Person“
16.p"arent 18:Class 19:ClassTableRel
»| Name="Customer” 4= -~_)-~--==~-~ ! 20:cols
.
22:attrs - ¢ 21:pkey
| 23:Attribute 24:AttrColRel -
is_primary = true |4 — _O_ _____ 25_.(3.0|l:!mn
name="“cust_id" type = ITt D
26:type name = “cust_id
27:PrimitiveDataType
name = “int*

Figure 6: Example of model integration for model transformation Class2T able

Integration Sequence Forward Sequence
Elements Elements
Step | Matched Created | Matched Created
1 1,3 2 1 2.3
2 14,17 15 14 15,17
3 14-18 19 14-18 19
4 17-20, 22,23, 25-27 | 24 17-19, 22,23, 26,27 | 20,21, 24,25
5 1-8, 10-15, 17,21,25 | 9 1-3,6,8, 11,14,15, 4,5,7,9,10,12,13
17,21,25

Table 1: Steps of example integration sequence

Now, Table 1 shows all matches of this sequence for both cases of Theorem 3 being the

model integration sequence Go % G and the forward transformation sequence G L@
G, where G contains the elements of G except correspondence parts and Gy is G leaving
out all elements of target and connection component. The column ” Created” in the table lists
the elements which are created at each transformation step. According to the numbers for the
elements, the correspondence component is completely created during the model integration
sequence and the elements of each match are created by the corresponding source-target rule
application in 0 g Go. Therefore, () % Go L—;> G, is match consistent. Analogously

*
trg

) =5+ G consists of the specified steps in Table 1, where comatches are given by the elements

of the match in the forward transformation sequence implying () s.oqp ZEy Gy, being
match consistent. Both integration and forward transformation sequence can be recaptured
by analyzing the other, which corresponds to Theorem 3.

12

5 Related Work

Various approaches for model transformation in general are discussed in [MB03] and [OMGO07]
using BOTL and QVT respectively. For a taxonomy of model transformation based on graph
transformation we refer to [MGO06]. Triple Graph Grammars have been proposed by A. Schiirr
in [Sch94] for the specification of graph transformations. A detailed discussion of concepts,
extensions, implementations and applications scenarios is given by E. Kindler and R. Wagner
in [KWO07]. The main application scenarios in [KWO07] are model transformation, model
integration and model synchronization. These concepts, however, are discussed only on an
informal level using a slightly different concept of triple graphs compared with [Sch94].

In this paper we use the original definition of triple graphs, triple rules, and triple trans-
formations of [Sch94] based on the double pushout approach (see [Roz97], [EEPTO06]). In
our paper [EEET07] we have extended the approach of [Sch94] concerning the relationship

between TGT-sequences based on triple rules Go . @, and match consistent TGT-sequences

Go tg Gno t;f Gy, based on source and forward rules leading to the canonical Decomposi-
tion and Composition Result 1 (Thm 1). This allows to characterize information preserving
bidirectional model transformations in [EEE*07].

In this paper the main technical result is the Canonical Decomposition and Composition
Result 2 (Thm 2) using source-target rules trgr and integration rules ¢r; instead of trs and
trr. Both results are formally independent, but the same proof technique is used based on the
Local Church—Rosser and Concurrency Theorem for graph transformations. The main result
of [EEPTO06] is based on these two decomposition and composition results. For a survey on
tool integration with triple graph grammars we refer to [KS06].

6 Future Work and Conclusion

Model integration is an adequate technique in system design to work on specific models in
different languages, in order to establish the correspondences between these models using rules
which can be generated automatically. Once model transformation triple rules are defined for
translations between the involved languages, integration rules can be derived automatically
for maintaining consistency in the overall integrated modelling process.

Main contributions of this paper are suitable requirements for existence of model inte-
gration as well as composition and decomposition of source-target and integration transfor-
mations to and from triple transformations. Since model integration may be applied at any
stage and several times during the modelling process, results of model integrations in previous
stages can be used as the starting point for the next incremental step.

All concepts are explained using the well known case study for model transformation be-
tween class diagrams and relational data bases. While other model transformation approaches
were applied to the same example for translation between source and target language, triple
graph grammars additionally show their general power by automatic and constructive deriva-
tion of an integration formalism. Therefore, model integration in the presented way can scale
up very easily, only bounded by the effort to build up general triple rules for parallel model
evolution.

Usability extends when regarding partly connected models, which shall be synchronized
as discussed on an informal level in [KWO07]. On the basis of model integration rules model
synchronization can be defined in future work as model integration using inverse source and
target rules, standard source and target rules as well as integration rules in a mixed way,
such that the resulting model is syntactically correct and completely integrated. Another
interesting aspect for future work is the extension of triple graph rules and corresponding
transformation and integration rules by negative application conditions (see [HHT96]), or by
more general graph constraints (see [HP05]).

13

References

[EEE07]

[EEPTO6]

[HHT96]

[HPO5]

[KS06]

[KW07]

[MBO3]

[MGO06]

[OMG07]

[Roz97]

[Sch94]

H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving
Bidirectional Model Transformations. In Dwyer and Lopes (eds.), Fundamental
Approaches to Software Engineering. LNCS 4422 pp. 72-86. Springer, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07 .pdf

H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer
Verlag, 2006.

http://www.springer.com/3-540-31187-4

A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application
Conditions. Special issue of Fundamenta Informaticae 26(3,4):287-313, 1996.

A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for
High-Level Structures. In Kreowski et al. (eds.), Formal Methods in Software and
Systems Modeling. Lecture Notes in Computer Science 3393, pp. 293-308. Springer,
2005.

http://dx.doi.org/10.1007/b106390

A. Konig, A. Schiirr. Tool Integration with Triple Graph Grammars - A Survey.
In Heckel, R. (eds.): Elsevier Science Publ. (pub.), Proceedings of the SegraVis
School on Foundations of Visual Modelling Techniques, Vol. 148, Electronic Notes
in Theoretical Computer Science pp. 113-150, Amsterdam. 2006.
http://dx.doi.org/10.1016/j.entcs.2005.12.015

E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Imple-
mentations, and Application Scenarios. Technical report tr-ri-07-284, Software
Engineering Group, Department of Computer Science, University of Paderborn,
June 2007.
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/
Quellen/Papers/2007/tr-ri-07-284.pdf

F. Marschall, P. Braun. Model Transformations for the MDA with BOTL. In Proc.
of the Workshop on Model Driven Architecture: Foundations and Applications
(MDAFA 2008), Enschede, The Netherlands. Pp. 25-36. 2003.
http://citeseer.ist.psu.edu/marschallO3model.html

T. Mens, P. V. Gorp. A Taxonomy of Model Transformation. In Proc. Interna-
tional Workshop on Graph and Model Transformation (GraMoT’05), number 152
in Electronic Notes in Theoretical Computer Science, Tallinn, Estonia, Elsevier
Science. 2006.
http://tfs.cs.tu-berlin.de/gramot/Gramot2005/FinalVersions/PDF/
MensVanGorp.pdf

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Final Adopted Specification (07-07-2007). 2007.
http://www.omg.org/docs/ptc/07-07-07 .pdf

G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

A. Schiirr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts in
Computer Science, volume 903 of Lecture Notes in Computer Science, pages 151—
163, Springer Verlag, Heidelberg. 1994.
http://dx.doi.org/10.1007/3-540-59071-4_45

14

