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Abstract

Success and efficiency of software and system design fundamentally relies on its models.
The more they are based on formal methods the more they can be automatically transformed
to execution models and finally to implementation code. This paper presents model transfor-
mation and model integration as specific problem within bidirectional model transformation,
which has shown to support various purposes, such as analysis, optimization, and code gen-
eration.

The main purpose of model integration is to establish correspondence between various
models, especially between source and target models. From the analysis point of view, model
integration supports correctness checks of syntactical dependencies between different views
and models.

The overall concept is based on the algebraic approach to triple graph grammars, which are
widely used for model transformation. The main result shows the close relationship between
model transformation and model integration. For each model transformation sequence there is
a unique model integration sequence and vice versa. This is demonstrated by a quasi-standard
example for model transformation between class models and relational data base models.

Keywords: model transformation, model integration, syntactical correctness

1 Introduction

Whenever one can expect benefits out of different modeling languages for the same specific
task there is a substantial motivation of combining at least two of the them. For this purpose
it is useful to have model transformations between these modeling languages together with
suitable analysis and verification techniques. In cases of bidirectional model transformation
the support for the modeling process increases, for instance, if results of analysis can be
translated backwards to mark the original source of deficiency or defect, respectively.

In [EEE+07] Ehrig et al. showed how to analyze bi-directional model transformations
based on triple graph grammars [Sch94, KS06] with respect to information preservation, which
is especially important to ensure the benefits of other languages for all interesting parts of
models. Triple graph grammars are based on triple rules, which allow to generate integrated
models G consisting of a source model GS , a target model GT and a connection model
GC together with correspondences from GC to GS and GT . Altogether G is a triple graph
G = (GS ← GC → GT ). From each triple rule tr we are able to derive a source rule trS and a
forward rule trF , such that the source rules are generating source models GS and the forward
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rules allow to transform a source model GS into its corresponding target model GT leading to
a model transformation from source to target models. On the other hand we can also derive
from each triple rule tr a target rule trT and a backward rule trB , such that the target rules are
generating target models GT and backward rules transform target models to source models.
The relationship between these forward and backward model transformation sequences was
analyzed already in [EEE+07] based on a canonical decomposition and composition result for
triple transformations.

In this paper we study the model integration problem: Given a source model GS and a
target model GT we want to construct a corresponding integrated model G = (GS ← GC →
GT ). For this purpose, we derive from each triple rule tr an integration rule trI , such that
the integration rules allow to define a model integration sequence from (GS , GT ) to G. Of
course, not each pair (GS , GT ) allows to construct such a model integration sequence. In
our main result we characterize existence and construction of model integration sequences
sequences from (GS , GT ) to G by model transformation sequences from GS to GT . This
main result is based on the canonical decomposition result mentioned above [EEE+07] and
a new decomposition result of triple transformation sequences into source-target- and model
integration sequences.

In Section 2 we review triple rules and triple graph grammars as introduced in [Sch94]
and present as example the triple rules for model transformation and integration between
class models and relational data base models. Model transformations based on our paper
[EEE+07] are introduced in Section 3, where we show in addition syntactical correctness of
model transformation. The main new part of this paper is model integration presented in
Section 4 including the main results mentioned above and applied to our example. Related
and future work are discussed in sections 5 and 6, respectively.

2 Review of Triple Rules and Triple Graph Gram-
mars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently
co-develop two related structures. Bidirectional model transformation can be defined using
models consisting of a pair of graphs which are connected via an intermediate correspondence
graph together with its embeddings into the source and target graph. In [KS06], Königs and
Schürr formalize the basic concepts of triple graph grammars in a set-theoretical way, which
was generalized and extended by Ehrig et. el. in [EEE+07] to typed, attributed graphs. In
this section, we shortly review main constructions and relevant results for model integration
as given in [EEE+07].

Definition 1 (Triple Graph and Triple Graph Morphism). Three graphs SG, CG, and TG,
called source, connection, and target graphs, together with two graph morphisms sG : CG →
SG and tG : CG → TG form a triple graph G = (SG

sG← CG
tG→ TG). G is called empty, if

SG, CG, and TG are empty graphs.

A triple graph morphism m = (s, c, t) : G → H between two triple graphs G = (SG
sG←

CG
tG→ TG) and H = (SH

sH← CH
tH→ TH) consists of three graph morphisms s : SG → SH,

c : CG→ CH and t : TG→ TH such that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective,
if morphisms s, c and t are injective.

Triple graphs G are typed over a triple graph TG = (TGS ← TGC → TGT ) by a triple
graph morphism tG : G → TG. Type graph of the example is given in Fig. 1 showing the
structure of class diagrams in source component and relational databases in target compo-
nent. Where classes are connected via associations the corresponding elements in databases
are foreign keys. Though, the complete structure of correspondence elements between both
types of models is defined via the connection component of TG. Throughout the example,
originating from [EEE+07], elements are arranged left, center, and right according to the com-
ponent types source, correspondence and target. Morphisms starting at a connection part are
given by dashed arrow lines.

A triple rule is used to build up source and target graphs as well as their connection
graph, i.e. to build up triple graphs. Structure filtering which deletes parts of triple graphs,
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Figure 1: Triple type graph for CD2RDBM model transformation

is performed by projection operations only, i.e. structure deletion is not done by rule appli-
cations. Thus, we can concentrate our investigations on non-deleting triple rules without any
restriction.

Definition 2 (Triple Rule tr and Triple Transformation Step).

A triple rule tr consists of triple graphs
L and R, called left-hand and right-hand
sides, and an injective triple graph morphism
tr = (s, c, t) : L→ R.
Given a triple rule tr = (s, c, t) : L→ R,
a triple graph G and a triple graph mor-
phism m = (sm, cm, tm) : L → G, called
triple match m, a triple graph transfor-
mation step ( TGT-step)G =

tr,m
==⇒ H from

G to a triple graph H is given by three
pushouts (SH, s′, sn), (CH, c′, cn) and
(TH, t′, tn) in category Graph with induced

L = (SL

tr
��

s
��

CL
sLoo

c

��

tL // TL)

t
��

R = (SR CRsR

oo
tR

// TR)

SL

��

smxxrrrr CLoo //

��

cm
||zzzz

TL

��

tm||yyy

G = (SG

tr

�� s′ ��

CGoo //

c′

��

TG)

t′ ��
SR

snxx
CRoo //
cn||

TR

tn||yyy

H = (SH CHsH

oo
tH

// TH)

morphisms sH : CH → SH and tH : CH → TH. Morphism n = (sn, cn, tn) is called co-
match.

Moreover, we obtain a triple graph morphism d : G → H with d = (s′, c′, t′) called
transformation morphism. A sequence of triple graph transformation steps is called triple
(graph) transformation sequence, short: TGT-sequence. Furthermore, a triple graph gram-
mar TGG = (S, TR) consists of a triple start graph S and a set TR of triple rules. Given a
triple rule tr we refer by L(tr) to its left and by R(tr) to its right hand side.

Remark 1 (gluing construction). Each of the pushout objects SH, CH, TH in Def. 2 can be
constructed as a gluing construction, e.g. SH = SG +SL SR, where the S-components SG of
G and SR of R are glued together via SL.

:Class {new}

name = n

:Table {new}

name = n

:ClassTableRel 

{new}

:Class :Table 

:attrs {new}
:ClassTableRel 

:Attribute {new}

name = an

primary = true

:PrimitiveDataType {new}

name = t 

:Column {new}

type = t

name = an:AttrColRel 

{new}

:cols {new}

:type {new}

:Class :Table 

:attrs 

:ClassTableRel 

:Attribute 

is_primary = true :Column
:AttrColRel 

:cols

:pkey {new}

:Class :Table 

:parent {new}

:ClassTableRel 

:ClassTableRel {new} 
:Class {new} 

name=n

Class2Table(n:String)

SetKey()

PrimaryAttribute2Column(an:String, p:Boolean, t:String) Subclass2Table(n:String)

Figure 2: TGT-rules for CD2RDBM model transformation
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:Class :Table 
:ClassTableRel {new}

:Association {new}

name = an

:src {new}

:Class 

:dest {new}

:FKey {new}

:Table 

:AssocFKeyRel {new}

:ClassTableRel

:Column {new}

type = t

name = an+“_“+cn

:cols {new}

:fcols {new}

:fkeys {new}

:references {new}
:Column 

type = t

name = cn
:pkey

Figure 3: Rule Association2ForeignKey(an : String) for CD2RDBM model transformation

Examples for triple rules are given in Fig. 2 and Fig. 3 in short notation. Left and right
hand side of a rule are depicted in one triple graph. Elements, which are created by the
rule, are labeled with ”new” and all other elements are preserved, meaning they are included
in the left and right hand side. Rule ”Class2Table” synchronously creates a class in a class
diagram with its corresponding table in the relational database. Accordingly the other rules
create parts in all components. For rule ”PrimaryAttribute2Column” there is an analogous
rule ”Attribute2Column” for translation of non primary attributes, which does not add the
edge ”:pkey” in the database component.

3 Model transformation

The triple rules TR are defining the language VL = {G | ∅ ⇒∗ G via TR} of triple graphs. As
shown already in [Sch94] we can derive from each triple rule tr = L→ R the following source
and forward rule. Forward rules are used for model transformations from a model of a source
language to models of the target language. Source rules are important for analyzing properties
of forward transformations such as information preservation, presented in [EEE+07].

L = (SL

tr
��

s
��

CL
sLoo

c

��

tL // TL)

t
��

R = (SR CRsR

oo
tR

// TR)

triple rule tr

(SR

id ��

CL
s◦sLoo

c
��

tL // TL)

t��
(SR CR

sRoo tR // TR)

forward rule trF

(SL

s
��

∅oo

��

// ∅)

��
(SR ∅oo // ∅)

source rule trS

For simplicity of notation we sometimes identify source rule trS with SL −s→ SR and target
rule trT with TL −t→ TR.

Theses rules can be used to define a model transformation from source graphs to tar-
get graphs. Vice versa using backward rules - which are dual to forward rules - it is also
possible to define backward transformations from target to source graphs and altogether bidi-
rectional model transformations. In [EEE+07] we have shown that there is an equivalence
between corresponding forward and backward TGT sequences. This equivalence is based
on the canonical decomposition and composition result (Thm. 1) and its dual version for
backward transformations.

Definition 3 (Match Consistency). Let tr∗S and tr∗F be sequences of source rules triS and
forward rules triF , which are derived from the same triple rules tri for i = 1, . . . , n. Let fur-

ther G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn be a TGT-sequence with (miS , niS) being match and comatch

of triS (respectively (mi, ni) for triF ) then match consistency of G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn

means that the S-component of the match mi is uniquely determined by the comatch niS
(i = 1, . . . , n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward Rule Case).

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =
tr∗
=⇒ Gn there is a canonical match consistent TGT-sequence
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(2) G0 = G00 =
tr∗S==⇒ Gn0 =

tr∗F==⇒ Gnn = Gn based on corresponding source rules tr∗S and
forward rules tr∗F .

2. Composition: For each match consistent transformation sequence (2) there is a canon-
ical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

Proof. See [EEE+07].

Now we want to discuss under which conditions forward transformation sequences G1 =
tr∗F==⇒

Gn define a model transformation between suitable source and target languages. In fact we
have different choices: On the one hand we can consider the projections V LS = projS(V L)
and V LT = projT (V L) of the triple graph language V L = {G | ∅ =⇒∗ G via TR}, where projX

is a projection defined by restriction to one of the triple components, i. e. X ∈ {S, C, T}.
On the other hand we can use the source rules TRS = {trS | tr ∈ TR} and the target rules
TRT = {trT | tr ∈ TR} to define the source language VLS0 = {GS | ∅ =⇒∗ GS via TRS} and
the target language VLT0 = {GT | ∅ =⇒∗ GT via TRT }. Since each sequence ∅ =⇒∗ G via TR
can be restricted to a source sequence ∅ =⇒∗ GS via TRS and to a target sequence ∅ =⇒∗ GT

via TRT we have VLS ⊆ VLS0 and VLT ⊆ VLT0, but in general no equality. In case of typed
graphs the rules in TR are typed over TG with TG = (TGS ← TGC → TGT ) and rules of
TRS and TRT typed over (TGS ← ∅ → ∅) and (∅ ← ∅ → TGT ), respectively. Since GS and
GT are considered as plain graphs they are typed over TGS and TGT , respectively.

Given a forward transformation sequence G1 =
tr∗F==⇒ Gn we want to ensure the source

component of G1 corresponds to the target component of Gn, i.e. the transformation sequence
defines a a model transformation MT from VLS0 to VLT0, written MT : VLS0 V VLT0,
where all elements of the source component are translated. Thus given a class diagram as
instance of the type graph in Fig. 1 all corresponding tables, columns and foreign keys
of the corresponding data base model shall be created in the same way they could have
been synchronously generated by the triple rules of TR. An example forward transformation
is presented in [EEE+07]. Since GS ∈ VLS0 is generated by TRS-rules we have a source

transformation ∅ =⇒∗ GS via TRS . In order to be sure that G1 =
tr∗F==⇒ Gn transforms all parts

of G1, which are generated by ∅ =⇒∗ GS , we require that ∅ =⇒∗ GS is given by ∅ =
tr∗S==⇒ G1

with G1 = (GS ← ∅ → ∅), i.e. proj S(G1) = GS based on the same triple rule sequence tr∗

as G1 =
tr∗F==⇒ Gn. Finally we require that the TGT-sequence ∅ =

tr∗S==⇒ G1 =
tr∗F==⇒ Gn is match

consistent, because this implies – by Fact 1 below – that GS ∈ VLS and GT ∈ VLT and that
we obtain a model transformation MT : VLS V VLT (see Fact 1).

Definition 4 (Model Transformation). A model transformation sequence (GS , G1 =
tr∗F==⇒

Gn, GT ) consists of a source graph GS, a target graph GT , and a source consistent forward

TGT-sequence G1 =
tr∗F==⇒ Gn with GS = proj S(G1) and GT = proj T (Gn).

Source consistency of G1 =
tr∗F==⇒ Gn means that there is a source transformation sequence

∅ =
tr∗S==⇒ G1, such that ∅ =

tr∗S==⇒ G1 =
tr∗F==⇒ Gn is match consistent. A model transformation

MT : VLS0 V VLT0 is defined by model transformation sequences (GS , G1 =
tr∗F==⇒ Gn, GT )

with GS ∈ VLS0 and GT ∈ VLT0.

Remark 2. A model transformation MT : VLS0 V VLT0 is a relational dependency and
only in special cases a function.

This allows to show that MT : VLS0 V VLT0 defined above is in fact MT : VLS V VLT

Fact 1 (Syntactical Correctness of Model Transformation MT ). Given GS ∈ VLS0 and

G1 =
tr∗F==⇒ Gn source consistent with projS(G1) = GS then GT = projT (Gn) ∈ VLT and

GS ∈ VLS, i.e. MT : VLS V VLT .

Proof. Given G1 =
tr∗F==⇒ Gn source consistent, we have ∅ =

tr∗S==⇒ G1 =
tr∗F==⇒ Gn match consistent

and hence, by Theorem 1 above with G0 = ∅ =
tr∗
=⇒ Gn which implies Gn ∈ VL. Now we have

proj S(Gn) = proj S(G1) = GS ∈ VLS and proj T (Gn) = GT ∈ VLT .
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4 Model Integration

Given models GS ∈ VLS0 and GT ∈ VLT0 the aim of model integration is to construct an
integrated model G ∈ VL, such that G restricted to source and target is equal to GS and GT ,
respectively, i.e. proj SG = GS and proj T G = GT . Thus, given a class diagram and a data
base model as instance of the type graph in Fig. 1 all correspondences between their elements
shall be recovered or detected, respectively. Similar to model transformation we can derive
rules for model integration based on triple rule tr. The derived rules are source-target rule
trST and integration rule trI given by

(SL

s
��

CL
sLoo

c

��

tL // TL)

t
��

(SR CRsR

oo
tR

// TR)

triple rule tr

(SL

s
��

∅oo

��

// TL)

t ��
(SR ∅oo // TR)

source-target rule trST

(SR

id ��

CL
s◦sLoo

c
��

t◦tL // TR)

id��
(SR CR

sRoo tR // TR)

integration rule trI

An example for both kinds of rules is given in Fig. 4 for the triple rule Class2Table in Fig.
2.

:ClassTableRel {new}

:Table 

name = n

:Class 

name = n

(a) integration rule Class2TableI

:Class{new} 

name = n

:Table{new} 

name = n

(b) source-target rule Class2TableST

Figure 4: Derived rules for Class2Table()

Similar to the canonical decomposition of TGT-sequences G0 =
tr∗
=⇒ Gn into source and

forward transformation sequences we also have a canonical decomposition into source-target

and integration transformation sequences of the form ∅ =
tr∗ST===⇒ G0 =

tr∗I=⇒ Gn. Such a sequence
is called S-T -consistent, if the S- and T -component of the comatch of triST is completely
determined by that of the match of triI for tr = (tri)i=1...n.

Theorem 2 (Canonical Decomposition and Composition Result - Integration Rule Case).

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =
tr∗
=⇒ Gn there is a canonical S-T -match consistent TGT-sequence

(2) G0 = G00 =
tr∗ST===⇒ Gn0 =

tr∗I=⇒ Gnn = Gn based on corresponding source-target rules
tr∗ST and integration rules tr∗I .

2. Composition: For each S-T -match consistent transformation sequence (2) there is a
canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

In the following we give the proof of Theorem 2 which is based on the Local-Church-Rosser
and the Concurrency Theorem for algebraic graph transformations (see [Roz97], [EEPT06]).
In Lemma 1 we show that a triple rule tr can be represented as concurrent production trST ∗E
trI of the corresponding source-target rule trST and integration rule trI , where the overlapping
E is equal to L(trI), the left hand side of trI . Moreover E-related sequences in the sense of
the Concurrency Theorem correspond exactly to S-T -match-consistent sequences in Theorem
2. In Lemma 2 we show compatibility of S-T -match consistency with sequential independence
in the sense of the Local-Church-Rosser-Theorem. Using Lemma 1 we can decompose a single

TGT-transformation G0 =
tr
=⇒ G1 into an S-T -match consistent sequence G0 =

trST===⇒ G10 =
trI=⇒

G1 and vice versa. Lemma 2 allows to decompose TGT-sequences G0 =
tr∗
=⇒ Gn into S-T -

match consistent sequences G0 =
tr∗ST===⇒ Gn0 =

tr∗I=⇒ Gn and vice versa.
All constructions are done in the category TripleGraphTG of typed triple graphs and

typed triple graph morphisms, which according to Fact 4.18 in [EEPT06] is an adhesive HLR
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category. This implies that the Local-Church-Rosser and Concurrency Theorem are valid for
triple rules with injective morphisms (see Chapter 5 in [EEPT06]).

Lemma 1 (Concurrent Production tr = trST ∗E trI). Let E = L(trI) with e1 = (id, ∅, id) :
R(trST ) → E and e2 = id : L(trI) → E then tr is given by the concurrent production
tr = trST ∗E trI . Moreover, there is a bijective correspondence between a transformation

G1 =
tr,m
==⇒ G2 and match-consistent sequences G1 =

trST ,m1,n1
=======⇒ H =

trI ,m2,n2
======⇒ G2, where S−T -

match consistency means that the S− and T−components of the comatch n1 and the match
m2 are equal, i.e. n1S = m2S and n1T = m2T . Construction of concurrent production:

L(trST )

l
��

trST //

(1)

R(trST )

e1 %%KKKKKKKK
L(trI)

e2zzuuuuuuu

trI //

(2)

R(trI)

r

��
L(tr)

d1
// E

d2
// R

E − concurrent rule

Proof. The pushouts in (1) in TripleGraphTG are given below showing d2 ◦ d1 =
tr : L(tr)→ R(tr)

SL
s //

id ��

SR

id

��......... SR
id //

id

�����������
SR

id��

∅

��

//
77ooooo

wwooooo ∅

��6666666666666

=={{

}}{{{ CL
c //

id

��������������� $$HH

ccHH
CR

id��

''OOOO

ggOOOO

TL
t //

id
��

TR
id

��;;;;;;;;;;;;;;;; TR
id //

id

�������������������
TR

id
��

SL
s // SR

id // SR

CL
id //

sl
<<yyyyy

tl

||xxxxx
CL

c //
t◦tl
��

s◦sl

OO

CR

##FFFFF

bbFFFFF

TL
t

// TR
id // TR

E − concurrent rule tr : L(tr)→ R(tr)

According to the Concurrency Theorem for TripleGraphTG there is a bijective corre-

spondence between transformations G1 =
tr,m
==⇒ G2 and E-related sequences G1 =

trST ,m1,n1
=======⇒

H =
trI ,m2,n2
======⇒ G2. The sequence is E-related if there is h : E → H with h ◦ e1 = n1 and

h ◦ e2 = m2 and there are c1 : L(tr)→ G1 and c2 : R(tr)→ G2, s.t. c1 ◦ l = m1, c2 ◦ r = n2
and (3) as well as (4) in the following diagram are pushouts.

L(trST )

m1

��

l &&MMMMMMM
trST //

(1)

R(trST )

e1 %%KKKKKKKK
L(trI)

e2zzttttttt

trI //

(2)

R(trI)

rxxrrrrrrr

n2

��

L(tr)
d1 //

c1

xxpppppppp
(3)

E
d2 //

h
��

R(tr)
c2

&&MMMMMMMM
(4)

G1
d1

// H
d2

// F2

E − concurrent rule

First of all we observe that the sequence is S-T -match consistent, i.e. n1S = m2S and
n1T = m2T iff there is h : E → H with h◦e1 = n1 and h◦e2 = m2. In case of n1S = m2S and
n1T = m2T we define h by h = m2, which implies h◦e2 = h◦id = m2, but also h◦e1 = h◦n1,
because hS ◦e1S = m2S ◦ id = n1S , hT ◦e1T = m2T ◦ id = n1T and hC ◦e1C = ∅ = n1C . Vice
versa, given h with h◦e1 = n1, h◦e2 = m2 we have n1S = hS ◦e1S = hS ◦id = hS ◦e2S = m2S

and similar n1T = m2T . In order to have an E-related sequence we have to show that h
induces c1 and c2 with c1 ◦ l = n1 and c2 ◦ r = n2, st. (3) and (4) become pushouts. This
follows for c2 and (4) directly from pushout (2) and pushout decomposition. For c1 and (3),
however, we need pushout-pullback decomposition, which would require that h is injective.
In order to avoid the assumption h injective we give now a direct construction for c1 with
c1 ◦ l = n1 and pushout (3) by c1 = (m1S , hC , m1T ) according to the following diagrams
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SL

m1S

��

id

��888888
s //

(1)S

SR

id

��777777

SL
s //

c1S=m1S��������
(3)S

SR

hS

��
SG1

g1S

// SH

∅

m1C

��

��999999
//

(1)C

∅

��33333

CL
id //

c1C=hC��������
(3)C

CL

hC

��
CG1

g1C=id
// CH = CG1

TL

m1T

��

id

��999999
t //

(1)T

TR
id

��888888

TL
t //

c1T =m1T��������
(3)T

TR

hT

��
TG1

g1T

// TH

Note that the outer diagrams are the S-, C- and T - component of the pushout according

to G1 =
trST ,m1,n1
=======⇒ H with n1 = h ◦ e1, where we assume w.l.o.g. g1C = id induced by

∅ −id−→ ∅ in the C-component. The outer diagrams in the S- and T -component are pushouts
and equal to (3)S and (3)T respectively. (3)C is a trivial pushout. It remains to show that
c1 is a morphism in TripleGraphTG. This follows from componentwise commutativity of
(3) and the fact that d1, h and g1 are in TripleGraphTG by construction and g1S , g1T

injective, because trST injective implies g injective. In more detail, g1S , g1T injective implies
commutativity of the left squares below showing that c1 is in TripleGraphTG.

SL
s //

m1S ��

SR

hS

��

CL
id //

hC

��

sl
88qqqqq

tl

xxqqqqq CL

hC ��

s◦sl

99rrrrr

t◦tlyyrrrrr

TL
t //

m1T

��

TR

hT ��

SG1

g1S // SH

CG1

g1C=id //

88rrrrr

xxrrrrr
CH

99sssss

yysssss
= CG1

TG1

g1T // TH

Lemma 2 (Compatibility of S − T -match consistency with independence).
Given the TGT-sequences on the right with independence in (4) and matches mi, m

′
i and

comatches ni, n
′
i. Then we have:

G20
tr1I

m1′,n1′ !)LLLLLL

LLLLLL

G00

tr1ST

m0,n0
+3 G10

tr2ST

m2′,n2′

5=rrrrrr
rrrrrr

tr1I

m1,n1 !)LLLLLL

LLLLLL G21

tr2I

m3,n3
+3 G22

G11

tr2ST

m2,n2

5=rrrrrr
rrrrrr

(1) G00 =
tr1ST===⇒ G10 =

tr1I==⇒ G11 S − T -match consistent ⇔
(2) G00 =

tr1ST===⇒ G10 =
tr2ST===⇒ G20 =

tr1I==⇒ G21 S − T -match consistent
and
(3) G11 =

tr2ST===⇒ G21 =
tr2I==⇒ G22 S − T -match consistent ⇔

(4) G10 =
tr2ST===⇒ G20 =

tr1I==⇒ G21 =
tr2I==⇒ G22 S − T -match consistent

Proof. By independence we have d : L(tr2ST )→ G10 with g2◦d = n2 leading to g3◦n2′ = n2
and m1′ = g1 ◦ n1.
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L(tr2ST )
tr2ST //

m2′=d

��

m2

��

R(tr2ST )

n2′

��
n2

��

L(tr1I)
m1

// m1′ **

tr1I

��
(PO)

G10
g1

//

g2

��
(PO)

G20

g3

��
R(tr1I)

n1 //
n1′

44G11

g4 // G21

(1) S − T -match consistent ⇔ n0S = m1S and n0T = m1T

(2) S − T -match consistent ⇔ g1S ◦ n0S = m1′S and g1T ◦ n0T = m1′T

(1)⇒ (2) : g1S ◦ n0S
(1)
= g1S ◦m1S = m1′S (and similar for T -component)

(2)⇒ (1) : g1S ◦m1S = m1′S
(2)
= g1S ◦ n0S (and similar for T -component)

(3) S − T -match consistent ⇔ n2S = m3S and n2T = m3T

(4) S − T -match consistent ⇔ g3S ◦ n2′S = m3S and g3T ◦ n2T = m3′T

(3)⇒ (4) : g3S ◦ n2′S
(3)
= m3S (and similar for T -component)

(4)⇒ (3) : m3S
(4)
= g3S ◦ n2′S (and similar for T -component)

Proof of Theorem 2.

1. Decomposition: Given (1) we obtain (for n = 3) by Leamma 1 a decomposition into
triangles (1), (2), (3), where the corresponding transformation sequences are S−T -match con-
sistent.

G30

(6)

tr1I

 (IIII
IIII

G20

(4)

tr1I

 (IIII
IIII

tr3ST
6>uuuu

uuuu
G31

(5)

tr2I

 (IIII
IIII

G10

(1)

tr1I

 (IIII
IIII

tr2ST
6>uuuu

uuuu
G21

(2)

tr2I

 (IIII
IIII

tr3ST
6>uuuu

uuuu
G32

(3)

tr3I

 (IIII
IIII

G00

tr1ST
6>uuuu

uuuu
tr1

+3G0 = G11

tr2ST
6>uuuu

uuuu
tr2

+3 G22

tr3ST
6>uuuu

uuuu
tr3

+3 G33 = G3

In the next step we show that G10 =
tr1I==⇒ G11 =

tr2ST===⇒ G21 is sequentially independent
leading by the Local Church Rosser Theorem to square (4) sequential independence in this
case means existence of d : L(tr2ST )→ G10 with g ◦ d = m2.

L(tr1I)

m1
��

tr1I // R(tr1I)

$$IIIIII
L(tr2ST )

m2yyttttttt
//

d

rrf f f f f f f f f f f f R(tr2ST )

��
G1 g

// G2
// G3

The diagram beneath shows that d = (dS , dC , dT ) = (m2S , ∅, m2T ) satisfies this property.

(1) − (4) leads to the following transformation sequence G00 =
tr1ST===⇒ G10 =

tr2ST===⇒ G20 =
tr1I==⇒

G21 =
tr2I==⇒ G22 =

tr3ST===⇒ G32 =
tr3I==⇒ G33 which is again S − T -match consistent due to shift

equivalence of corresponding matches in the Local Church Rosser Theorem (see Lemma 2).

Similar to above we can show that G21 =
tr2I==⇒ G22 =

tr3ST===⇒ G32 are sequentially independent
leading to (5) and in the next step to (6) with corresponding S−T -match consistent sequences.
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SL2

dS=m2S
{{{{{{{{{

}}{{{{{{{{{ m2S

66666666

��6666666
∅

dC
{{{{{

}}{{{{{{{{{{{{{{ m2C

555555

��555555555

OO

��
TL2

dT
|||

}}||||||||||||||||| m2T

55

��5555555555555
G10,S

id
// G11,S = G10,S

G10,C gC

//

OO

��

G11,C

OO

��
G10,T

id
// G11,T = G10,T

2. Composition: Vice versa, each S−T -match consistent sequence (2) leads to a canonical
S − T -match consistent sequence of triangles (1), (2), (3) and later by Lemma 1 to TGT-
sequence (1). We obtain the triangles by inverse shift equivalence, where subsequence 1 as
above is S−T -match consistent. In fact S−T -match consistency of (2) together with Lemma
2 implies that the corresponding sequences are sequentially independent in order to allow
inverse shifts according to the Local Church Rosser Theorem. Sequential independence for
(6) is shown below

R(tr1ST )

n1

��

SR1 = L(tr3ST )

m3

��

tr1I // R(tr3ST )

""FFFFFFFF
L(tr1I)

SR1

m1I}}zzzzzzzz
//

d

ssg g g g g g g g g g g g g R(tr1I)

��
G10 g1

// G20 g2
// G30

// G31

By S − T -match consistency we have m1I,S = g2S ◦ g1S ◦ n1S . Define dS = g1S ◦ n1S , then
g2S ◦dS = g2S ◦g1S ◦n1S = m1I,S and similar for the T -component, while dC = m1I,C using
g2C = id. 3. Bijective Correspondence: by that of the Local Church Rosser Theorem and
Concurrency Theorem.

Given an integration transformation sequence G0 =
tr∗I=⇒ Gn with proj S(G0) = GS ,

proj T (G0) = GT and proj C(G0) = ∅, we want to make sure that the unrelated pair
(GS , GT ) ∈ VLS0 × VLT0 is transformed into an integrated model G = Gn with proj S(G) =
GS , proj T (G) = GT . Of course this is not possible for all pairs (GS , GT ) ∈ VLS0 × VLT0,
but only for specific pairs. In any case (GS , GT ) ∈ VLS0 × VLT0 implies that we have a
source-target transformation sequence ∅ =⇒∗ G0 via TRST = {trST | tr ∈ TR}. In order to be

sure that G0 =
tr∗I=⇒ Gn integrates all parts of GS and GT , which are generated by ∅ =⇒∗ G0,

we require that ∅ =⇒∗ G0 is given by ∅ =
tr∗ST===⇒ G0 based on the same triple rule sequence

tr∗ as G0 =
tr∗I=⇒ Gn. Moreover, we require that the TGT-sequence ∅ =

tr∗ST===⇒ G0 =
tr∗I=⇒ Gn is

S-T -match consistent because this implies - using Theorem 2 - that GS ∈ VLS , GT ∈ VLT

and G ∈ VL (see Theorem 2).

Definition 5 (Model Integration). A model integration sequence ((GS , GT ), G0 =
tr∗I=⇒ Gn, G)

consists of a source and a target model GS and GT , an integrated model G and a source-target

consistent TGT-sequence G0 =
tr∗I=⇒ Gn with GS = proj S(G0) and GT = proj T (G0).

Source-target consistency of G0 =
tr∗I=⇒ Gn means that there is a source-target transformation

sequence ∅ =
tr∗ST===⇒ G0, such that ∅ =

tr∗ST===⇒ G0 =
tr∗I=⇒ Gn is match consistent. A model integration

MI : VLS0×VLT0 V VL is defined by model integration sequences ((GS , GT ), G0 =
tr∗I=⇒ Gn, G)

with GS ∈ VLS0, GT ∈ VLT0 and G ∈ VL.

Remark 3. Given model integration sequence ((GS , GT ), G0 =
tr∗I=⇒ Gn, G) the corresponding

source-target TGT-sequence ∅ =
tr∗ST===⇒ G0 is uniquely determined. The reason is that each
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comatch of triST is completely determined by S- and T -component of the match of triI ,
because of embedding R(triST ) � L(triI). Furthermore, each match of triST is given by
uniqueness of pushout complements along injective morphisms with respect to non-deleting
rule triST and its comatch. Moreover, the source-target TGT-sequence implies GS ∈ V LS0

and GT ∈ V LT0.

Fact 2 (Model Integration is syntactically correct). Given model integration sequence

((GS , GT ), G0 =
tr∗I=⇒ Gn, G) then Gn = G ∈ VL with proj S(G) = GS ∈ VLS and

proj T (G) = GT ∈ VLT .

Proof. G0 =
tr∗I=⇒ Gn source-target consistent

⇒ ∃ ∅ =
tr∗ST===⇒ G0 s.t. ∅ =

tr∗ST===⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent

Thm2⇒ ∅ =
tr∗
=⇒ Gn , i.e. Gn = G ∈ VL

Finally we want to analyze which pairs (GS , GT ) ∈ VLS × VLT can be integrated. Intu-
itively those which are related by the model transformation MT : VLS V VLT in Theorem
1. In fact, model integration sequences can be characterized by unique model transformation
sequences.

Theorem 3 (Characterization of Model Integration Sequences). Each model integration se-

quence ((GS , GT ), G0 =
tr∗I=⇒ Gn, G) corresponds uniquely to a model transformation sequence

(GS , G′0 =
tr∗F==⇒ Gn, GT ), where tr∗I and tr∗F are based on the same rule sequence tr∗.

Proof. ((GS , GT ), G0 =
tr∗I=⇒ Gn, G) is model integration sequence

def⇔ source-target consistent G0 =
tr∗I=⇒ Gn with proj S(G0) = proj S(Gn) = GS , proj C(G0) = ∅,

proj T (G0) = proj T (Gn) = GT and Gn = G
def⇔ ∅ =

tr∗ST===⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent with proj S(Gn) = GS and proj T (Gn) = GT

Thm2⇔ ∅ =
tr∗
=⇒ Gn with proj S(Gn) = GS and proj T (Gn) = GT

Thm1⇔ ∅ =
tr∗S==⇒ G′0 =

tr∗F==⇒ Gn match consistent with proj S(Gn) = GS and proj T (Gn) = GT

def⇔ G′0 =
tr∗F==⇒ Gn source consistent with proj S(G′0) = proj S(Gn) = GS and proj T (Gn) = GT

def⇔ (GS , G′0 =
tr∗F==⇒ Gn, GT ) is model transformation sequence.

PersonCompany

custumer_id : int

Custumer

employee

Figure 5: Source component of Fig. 6 in concrete syntax

Coming back to the example of a model transformation from class diagrams to database
models the relevance and value of the given theorems can be described from the more practical
view. Fig. 6 shows a triple graph, which defines a class diagram in its source component,
database tables in its target component and the correspondences in between. Since this model
is already fully integrated, it constitutes the resulting graph G of example model integration

sequence ((GS , GT ), G0 =
tr∗I=⇒ Gn, G). The starting point is given by GS as restriction of G

to elements of the class diagram, indicated by pink, and GT containing the elements of the
database part, indicated by yellow colour. Now, the blue nodes for correspondence as well as
the morphisms between connection component to source and target component are created
during the integration process. All elements are labeled with a number to specify matches
and created objects for each transformation step. The sequence of applied rules is
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G0 =
Class2table
=======⇒ G1 =

Class2table
=======⇒ G2 =

Subclass2Table
=========⇒ G3 =

PrimaryAttribute2Column
==================⇒

G4 =
Association2ForeignKey
================⇒ G5 = Gn.

3:Table

name=“Company“

10:FKey

7:fkeys 

2:ClassTableRel

24:AttrColRel 

15:ClassTableRel

9:AssocFKeyRel

19:ClassTableRel

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association 

name = “employee“

1:Class 

name=“Company“

14:Class 

name=“Person“

18:Class 

name=“Customer“

27:PrimitiveDataType 

name = “int“ 

23:Attribute 

is_primary = true

name=“cust_id“

25:Column 

type = “int“

name = “cust_id“

22:attrs

26:type 

17:Table 

name=“Person“

5:Column 

type = “int“

name = “employee_cust_id“

4:cols

12:fcols
13:references

Figure 6: Example of model integration for model transformation Class2Table

Integration Sequence Forward Sequence
Elements Elements

Step Matched Created Matched Created
1 1,3 2 1 2,3
2 14,17 15 14 15,17
3 14-18 19 14-18 19
4 17-20, 22,23, 25-27 24 17-19, 22,23, 26,27 20,21, 24,25
5 1-8, 10-15, 17,21,25 9 1-3,6,8, 11,14,15, 4,5,7,9,10,12,13

17,21,25

Table 1: Steps of example integration sequence

Now, Table 1 shows all matches of this sequence for both cases of Theorem 3 being the

model integration sequence G0 =
tr∗I=⇒ Gn and the forward transformation sequence G′0 =

tr∗I=⇒
Gn, where G0 contains the elements of G except correspondence parts and G′0 is G leaving
out all elements of target and connection component. The column ”Created” in the table lists
the elements which are created at each transformation step. According to the numbers for the
elements, the correspondence component is completely created during the model integration
sequence and the elements of each match are created by the corresponding source-target rule

application in ∅ =
tr∗ST===⇒ G0. Therefore, ∅ =

tr∗ST===⇒ G0 =
tr∗I=⇒ Gn is match consistent. Analogously

∅ =
tr∗S==⇒ G′0 consists of the specified steps in Table 1, where comatches are given by the elements

of the match in the forward transformation sequence implying ∅ =
tr∗S==⇒ G′0 =

tr∗F==⇒ Gn being
match consistent. Both integration and forward transformation sequence can be recaptured
by analyzing the other, which corresponds to Theorem 3.
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5 Related Work

Various approaches for model transformation in general are discussed in [MB03] and [OMG07]
using BOTL and QVT respectively. For a taxonomy of model transformation based on graph
transformation we refer to [MG06]. Triple Graph Grammars have been proposed by A. Schürr
in [Sch94] for the specification of graph transformations. A detailed discussion of concepts,
extensions, implementations and applications scenarios is given by E. Kindler and R. Wagner
in [KW07]. The main application scenarios in [KW07] are model transformation, model
integration and model synchronization. These concepts, however, are discussed only on an
informal level using a slightly different concept of triple graphs compared with [Sch94].

In this paper we use the original definition of triple graphs, triple rules, and triple trans-
formations of [Sch94] based on the double pushout approach (see [Roz97], [EEPT06]). In
our paper [EEE+07] we have extended the approach of [Sch94] concerning the relationship

between TGT-sequences based on triple rules G0
tr∗⇒ Gn and match consistent TGT-sequences

G0
tr∗S⇒ Gn0

tr∗F⇒ Gm based on source and forward rules leading to the canonical Decomposi-
tion and Composition Result 1 (Thm 1). This allows to characterize information preserving
bidirectional model transformations in [EEE+07].

In this paper the main technical result is the Canonical Decomposition and Composition
Result 2 (Thm 2) using source-target rules trST and integration rules trI instead of trS and
trF . Both results are formally independent, but the same proof technique is used based on the
Local Church–Rosser and Concurrency Theorem for graph transformations. The main result
of [EEPT06] is based on these two decomposition and composition results. For a survey on
tool integration with triple graph grammars we refer to [KS06].

6 Future Work and Conclusion

Model integration is an adequate technique in system design to work on specific models in
different languages, in order to establish the correspondences between these models using rules
which can be generated automatically. Once model transformation triple rules are defined for
translations between the involved languages, integration rules can be derived automatically
for maintaining consistency in the overall integrated modelling process.

Main contributions of this paper are suitable requirements for existence of model inte-
gration as well as composition and decomposition of source-target and integration transfor-
mations to and from triple transformations. Since model integration may be applied at any
stage and several times during the modelling process, results of model integrations in previous
stages can be used as the starting point for the next incremental step.

All concepts are explained using the well known case study for model transformation be-
tween class diagrams and relational data bases. While other model transformation approaches
were applied to the same example for translation between source and target language, triple
graph grammars additionally show their general power by automatic and constructive deriva-
tion of an integration formalism. Therefore, model integration in the presented way can scale
up very easily, only bounded by the effort to build up general triple rules for parallel model
evolution.

Usability extends when regarding partly connected models, which shall be synchronized
as discussed on an informal level in [KW07]. On the basis of model integration rules model
synchronization can be defined in future work as model integration using inverse source and
target rules, standard source and target rules as well as integration rules in a mixed way,
such that the resulting model is syntactically correct and completely integrated. Another
interesting aspect for future work is the extension of triple graph rules and corresponding
transformation and integration rules by negative application conditions (see [HHT96]), or by
more general graph constraints (see [HP05]).
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