

PhD-FSTM-2023-085
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 29/09/2023 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Samira CHAYCHI
Born on 22 October 1987 in Maragheh, Iran

PROACTIVE COMPUTING PARADIGM APPLIED TO

THE PROGRAMMING OF ROBOTIC SYSTEMS

Dissertation defence committee
Prof. Dr. Denis ZAMPUNIERIS, dissertation supervisor
Professor, Université du Luxembourg

Prof. Dr. Martin THEOBALD
Professor, Université du Luxembourg

Prof. Dr. Steffen ROTHKUGEL, Chairman
Professor, Université du Luxembourg

Dr. Eric Wagner
Research Associate, Universität des Saarlandes

Prof. Dr. Jean-Noël COLIN, Vice Chairman
Professor, Université de Namur

https://www.uni-saarland.de/en/home.html
https://www.uni-saarland.de/en/home.html

iii

Declaration of Authorship
I, Samira CHAYCHI, declare that this thesis titled, “Proactive Computing
Paradigm Applied to the Programming of Robotic Systems” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“The best way to predict the future is to invent it.”

Alan Kay

vii

UNIVERSITY OF LUXEMBOURG

Abstract
Doctor of Philosophy

Proactive Computing Paradigm Applied to the Programming of Robotic
Systems

This doctoral thesis is concerned with the development of advanced software
for robotic systems, an area still in its experimental infancy, lacking essential
methodologies from generic software engineering. A significant challenge
within this domain is the absence of a well-established separation of concerns
from the design phase. This deficiency is exemplified by Navigation 2, a real-
world reference application for (semi-) autonomous robot journeys devel-
oped for and on top of the Robot Operating System (ROS): the project’s lead-
ing researchers encountered difficulties in maintaining and evolving their
complex software, even for supposed-to-be straightforward new functions,
leading to a halt in further development. In response, this thesis first presents
an alternative design and implementation approach that not only rectifies the
issues but also elevates the programming level of consistent robot behaviors.
By leveraging the proactive computing paradigm, our dedicated software
engineering model provides programmers with enhanced code extension,
reusability and maintenance capabilities. Furthermore, a key advantage of
the model lies in its dynamic adaptability via on-the-fly strategy change in
decision-making. Second, in order to provide a comprehensive evaluation
of the two systems, an exhaustive comparative study between Navigation 2
and the same application implemented along the lines of our model, is con-
ducted. This study covers thorough assessments at both compile-time and
runtime. Software metrics such as coupling, lack of cohesion, complexity,
and various size measures are employed to quantify and visualize code qual-
ity and efficiency attributes. The CodeMR software tool aids in visualizing
these metrics, while runtime analysis involves monitoring CPU and mem-
ory usage through the Datadog monitoring software. Preliminary findings
indicate that our implementation either matches or surpasses Navigation 2’s
performance while simultaneously enhancing code structure and simplify-
ing modifications and extensions of the code base.

HTTP://WWW.UNIVERSITY.COM

ix

Acknowledgements
I am grateful for the opportunity to express my sincere appreciation to Pro-
fessor Dr. Denis Zampunieris for his invaluable support and guidance over
the past few years. As a member of his research and teaching team, I have
had the privilege of gaining profound insights from his extensive knowledge
and expertise in our field. His constructive feedback and encouragement
have been invaluable in helping me to grow and develop as a researcher. I
am truly thankful for his time and dedication to my academic and profes-
sional success.
I would like to take this opportunity to express my gratitude to Sandro Reis
and the members of my CET, professors Martin Theobald and Jean-Noël
Colin, for their invaluable advice and guidance during the past few years.
Their support and encouragement have been instrumental in helping me to
navigate the challenges of research and learning. Their expertise and diverse
perspectives have contributed greatly to the success of our collaborative ef-
forts. In addition, I express my gratitude to the respected professor Steffen
Rothkugel and Dr. Eric Wagner, for kindly accepting to be part of my thesis
committee.
Lastly, I would like to express my heartfelt appreciation to my parents, who
have been my pillars of strength throughout this journey. Their unwavering
love, encouragement, and support have kept me going, and I could not have
accomplished this without them. I would also like to thank my close friends
for their constant moral support, which has continually inspired and focused
my efforts.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Research Questions . 2
1.2 Thesis Structure . 3

2 Problem Statement 5
2.1 Introduction . 5
2.2 Separation of Concerns . 5
2.3 Robot Operating System . 8
2.4 Navigation 2 . 10
2.5 Code Extension . 17
2.6 Code Reusability . 18
2.7 Code Maintenance . 19
2.8 Conclusion . 20

3 Tools 21
3.1 Robot Operating System . 21
3.2 Proactive Engine . 22

3.2.1 Rules . 23
Data Acquisition . 24
Activation Guards . 24
Conditions . 24
Actions . 24
Rule Generation . 24

3.2.2 Scenarios . 25
Meta Scenarios . 26
Target Scenarios . 26

3.2.3 Database . 27

xii

3.3 Simulation and Visualization 27
3.3.1 Gazebo . 27
3.3.2 Rviz . 28

4 Proposed Model 31
4.1 Introduction . 31
4.2 System Architecture . 31
4.3 Database . 32
4.4 Proactive Engine . 33

Strategy Scenario . 34
Planner Scenario . 35
Controller Scenario . 36
Decision Making Scenario 37

4.5 Robot Operating System . 39
4.6 Conclusion . 40

5 Implementation 41
5.1 Introduction . 41
5.2 Proactive Engine . 43

Strategy . 44
Planner . 46
Controller . 47
Decision Making . 49

5.3 Database . 50
5.3.1 Data from ROS . 52

Odometry . 52
LaserScan . 53

5.3.2 Data from Proactive Engine 54
5.4 Robot Operating System . 54

6 Comparison 57
6.1 Introduction . 57
6.2 Compile Time . 58

6.2.1 Software Quality Attributes 59
Coupling . 59
Lack of Cohesion . 60
Complexity . 61
Size . 62

6.2.2 Exploring Attribute Visualizations 62

xiii

Overview . 63
Metric Distribution . 64
Package Structure . 65
Sunburst . 69
Package Dependency 70
TreeMap . 72
Project Outline . 74

6.2.3 Summary . 75
6.3 Runtime . 75

6.3.1 CPU Usage . 76
6.3.2 Memory Usage . 81
6.3.3 Summary . 83

6.4 Maintaining and Extending Software Systems 84
6.5 Dynamic Change of Decision Making 87
6.6 Conclusion . 89

7 Conclusion 91
7.1 Revisiting the Research Questions 91
7.2 Future work . 94

7.2.1 Recovery Scenario Implementation Completion 95
7.2.2 Machine Learning for Enhanced Decision-Making . . . 96

Bibliography 97

xv

List of Figures

2.1 RQT Graph . 12
2.2 RQT Graph for Bt_Navigation Node 13
2.3 Behaviour Tree Navigation 2 . 13
2.4 Current World Model . 16
2.5 New World Model . 17

3.1 Navigation 2 Behaviour Tree [Macenski et al., 2020] 22
3.2 The algorithm to run a rule [Zampunieris, 2006a] 25
3.3 Gazebo Simulation . 28
3.4 Rviz Visualization . 29

4.1 Our Model Architecture . 32

5.1 Architecture of the ROS and Proactive Engine implementation
with a MySQL database connection. 41

5.2 Navigation Model . 42
5.3 Command . 51
5.4 Local Storage . 55

6.1 Low -> High . 63
6.2 Overview Analysis of Proactive Engine 63
6.3 Overview Analysis of Navigation 2 64
6.4 Metric Distribution of Proactive Engine 65
6.5 Metric Distribution of Navigation 2 66
6.6 Package Structure of Proactive Engine 67
6.7 Package Structure of Navigation2 68
6.8 Sunburst Chart of Proactive Engine 69
6.9 Sunburst Chart of Navigation 2 70
6.10 Package Dependency of Proactive Engine 71
6.11 Package Dependency of Navigation2 72
6.12 TreeMap of Proactive Engine 73
6.13 TreeMap of Navigation2 . 74
6.14 Project Outline of Proactive Engine 74

xvi

6.15 Project Outline of Navigation 2 75
6.16 CPU Usage of Proactive Engine 77
6.17 CPU Usage of navigation 2 . 78
6.18 CPU Usage by process of Proactive Engine 79
6.19 CPU Usage by Process of Navigation 2 80
6.20 CPU Usage Breakdown for Proactive Engine Processes 81
6.21 CPU Usage Breakdown for Navigation 2 Processes 82
6.22 CPU Usage of Proactive Engine 83
6.23 CPU Usage of Navigation 2 . 83
6.24 World Model Navigation 2 [Orduno, 2019] 86
6.25 Navigation 2 Behaviour Tree [Macenski et al., 2020] 88

xvii

List of Abbreviations

ROS Robot Operating System
PE Proactive Engine
SoC Separation of Concerns
FIFO First In First Out
DDS Data Distribution Service
RTPS Real-time Publish Subscribe Protocol
BT Behavior Tree
ODE Open Dynamics Engine
DM Decision Making
CBO Coupling Between Object
LCOM Lack of Cohesion Of Methods
WMC Weighted Method Count
RFC Response For a Class
DIT Depth of Inheritance Tree
LOC Line Of Code
NOM Number Of Methods
C3 Coupling Cohesion Complexity
CPU Central Processing Unit

1

Chapter 1

Introduction

In the world of software applications, a fundamental challenge has long plag-
ued developers in the realm of robotic systems: the absence of a robust soft-
ware development methodology. Many existing applications lack the flexi-
bility required for seamless adaptation, reuse, and maintenance fundamental
pillars of software engineering.
To address these pressing issues, the concept of Separation of Concerns (SoC)1

emerges as a promising solution. SoC is a methodology that advocates di-
viding computer programs into distinct sections, with each section address-
ing a specific concern or set of information related to the program’s code.
By applying SoC, software developers gain greater freedom to simplify and
maintain their code. This approach results in what is referred to as modu-
lar programming, offering enhanced opportunities for individual modules
to evolve, be reused, and developed independently. This, in turn, facilitates
the extension and maintenance of the code base.
Our investigation aims to discover innovative solutions for creating a more
modular and maintainable software landscape. Additionally, we explore the
potential of the proactive computing paradigm[Tennenhouse, 2000], which is
realized through a rule-based proactive engine, as a coding approach to ad-
dress our first research question. This exploration seeks to determine whether
this paradigm can serve as an effective foundation for building more efficient
and organized robotic software systems. Furthermore, our research delves
into the intricacies of managing conflicts within proactive decision-making
scenarios. These scenarios often involve conflicting recommendations stem-
ming from multiple independent objective-based scenarios. We are actively
seeking strategies and methodologies to effectively navigate these complexi-
ties. Lastly, we contemplate the design and implementation of smart and self-
managing behavior within robotic systems. This inquiry revolves around en-
abling dynamic changes in strategy, paving the way for more adaptable and

1https://en.wikipedia.org/wiki/Separation_of_concerns

2 Chapter 1. Introduction

responsive robotic software.
Based on these challenges and research questions, our thesis aims to demon-
strate the advantages of employing separation of concerns principles to over-
come existing hurdles within robotic software systems. The core principle of
SoC is to facilitate the creation of a well-organized model comprising inde-
pendent components, each addressing a distinct concern. To embody this
SoC principle, we propose a model for developing robotic software systems
using a Proactive Engine. The Proactive Engine represents the implemen-
tation of a rule-based proactive system, harnessing the strengths of object-
oriented principles and rule-based systems. It consists of a rule engine, a
database, and rules. These rules can be categorized into scenarios, which are
sets of rules executed in response to specific events. This engine serves as a
middleware system that can seamlessly integrate with other systems [Chay-
chi, Zampunieris, and Reis, 2023].
Within the Proactive Engine, scenarios play a pivotal role—a scenario com-
prises a combination of proactive rules, with each rule responsible for a spe-
cific action. Scenarios exhibit a wide range of features, structures, and com-
plexities, making them adaptable to various domains and situations. In our
project, we utilize the Robotic Operating System (ROS) [M and al, 2009] to
implement robot simulations. ROS, an open-source operating system, facili-
tates message passing between processes, package management, device con-
trol, and more. It emphasizes code reusability, extensibility, and maintenance
in the realm of robotics. This doctoral thesis endeavors to provide insights
into enhancing robotic software engineering by embracing SoC principles
and the innovative use of a Proactive Engine within the ROS ecosystem. Our
goal is to contribute to the evolution of intelligent, adaptable, and resilient
robotic systems, paving the way for future advancements in this field.

1.1 Research Questions

The inspiration for our proposed model was sparked by a proof-of-concept
paper featuring a virtual robot deployed in the Webots™ simulator [Frantz
and Zampunieris, 2020]. This concept led us to formulate several critical re-
search questions, including:

1. How to improve separation of concerns in robotic software engineer-
ing? How can software metrics be used to measure the enhancement?

1.2. Thesis Structure 3

2. Is the proactive computing paradigm, implemented through a rule-
based proactive engine, an adequate coding approach for addressing
our first research question?

3. How can conflict handling be effectively managed in proactive decision-
making scenarios where conflicting recommendations arise from mul-
tiple independent objective-based scenarios?

4. How can smart and self-managing behavior be designed and imple-
mented in the system to address our third research question, enabling
dynamic changes in strategy?

1.2 Thesis Structure

After the introduction section, the subsequent chapter will focus on the prob-
lem statement. This chapter emphasizes the critical absence of separation of
concerns in robotic software systems. It engages in a comprehensive discus-
sion about the far-reaching consequences of this absence on the domain of
robotics technology. Furthermore, it provides a comprehensive overview of
the contemporary landscape of robotics and the principle of Separation of
Concerns. The chapter also squarely addresses the multifaceted challenges
associated with the complexity of robotic systems, delving into the intricate
ramifications that stem from the lack of proper separation of concerns. No-
tably, the chapter shines a spotlight on the challenges pertaining to modifica-
tion, reusability, and maintenance within this context.
Following this, we will delve into a dedicated tools chapter. This section
will elaborate on the arsenal of tools that were instrumental in materializing
our research model. The tools utilized encompass the ROS and Navigation
2 [Macenski et al., 2020] as a case study, a Proactive Engine, simulation and
visualization tools, and a robust database system. By detailing the utilization
of these tools, we demonstrate their role in shaping the implementation and
methodology of our research.
The proposed model chapter will provide a comprehensive exploration of
our innovative model. It will elucidate the fundamental issue of inadequate
separation of concerns, accentuating the significance of attributes like modi-
fiability, reusability, and maintainability in robotic software systems. Central
to this chapter will be a heightened focus on the enhancement of navigation
systems, bolstered by the introduction of the Proactive Engine. This dynamic
element, the Proactive Engine, emerges as a pivotal strategy for achieving

4 Chapter 1. Introduction

improved separation of concerns. The chapter will also intricately describe
different scenarios within the Proactive Engine and provide an overview of
how our proposed model seamlessly integrates with ROS for better modu-
larity and performance.
Transitioning into the subsequent chapter dedicated to implementation, intri-
cate details will be unveiled. The architecture forging a connection between
ROS and the Proactive Engine through a MySQL database will be intricately
described. Real-time data and command exchange mechanisms will be laid
bare, along with the code snippets that exemplify the operation of individual
scenarios within the Proactive Engine. The implementation design within
ROS, comprising subscriber and publisher nodes, will be meticulously ex-
plained. Notably, the design choices that enable efficient data management
and communication between robotic systems and the database will be high-
lighted.
A chapter of comparison follows, where we undertake a thorough analy-
sis to juxtapose our proposed solution against Navigation 2. This analysis
will be multifaceted, encompassing aspects such as compile time, runtime,
system modification, extension capabilities, and responsiveness to dynamic
changes. For these analyses, we will employ sophisticated tools like CodeMR
and Datadog.
Lastly, the conclusion chapter will encapsulate the entire journey. It will
revisit the research questions and objectives, encapsulate the insights to be
garnered, and highlight the significant contributions to be made to the do-
main of robotics software engineering. Reflecting on the implications of the
proposed solutions, the chapter will acknowledge limitations and articulate
areas for potential refinement. Furthermore, it will map out avenues for fu-
ture research endeavors, particularly focusing on enhancing the concept of
separation of concerns within the realm of robotics.

5

Chapter 2

Problem Statement

2.1 Introduction

In this chapter, we delve into the problem statement at the heart of our re-
search, addressing the profound impact of the absence of separation of con-
cerns on robotic software systems. We explore the challenges it poses, such as
complexity, codebase maintainability, and hindered advancements in robotics
technology. By unraveling these intricacies, we not only lay the foundation
for innovative solutions and design principles but also set the stage for our
exploration of novel strategies. These strategies aim to revolutionize the way
robotic software is conceptualized, developed, and maintained, ultimately
paving the way for a more efficient, modular, and scalable future in robotics
software engineering.

This exploration is complemented by an overview of the current state of
the art concerning the Navigation 2 and the concept of Separation of Con-
cerns. Alongside this, we delve into the challenges arising from the absence
of proper separation of concerns within systems. The central challenges
we address in this thesis are centered around modification, reusability, and
maintenance. In subsequent sections, we delve deeper into these challenges
and present our proposed solutions, aiming to effectively tackle them. The
work we present here aims to make a significant contribution to the advance-
ment of robotics software engineering, fostering a more scalable and adapt-
able approach to the development of robotic systems.

2.2 Separation of Concerns

Separation of concerns (SoC) is a well-established software engineering prin-
ciple that advocates for the decomposition of a system into distinct parts,
each addressing a separate and well-defined concern. The ultimate objec-
tive of SoC is to create a modular system where each module or component

6 Chapter 2. Problem Statement

has a clear, singular responsibility, enhancing the system’s comprehensibility,
maintainability, and extensibility. By segregating different concerns into sep-
arate components, modifying or extending the system becomes more man-
ageable without affecting other parts. This approach reduces the risk of un-
intended consequences and simplifies the debugging and troubleshooting
process1.

The concept of SoC has gained widespread recognition and extensive
discussion in various software development resources, such as books, pa-
pers, and articles within the fields of computer science and software engi-
neering [Heckel and Engels, 2002, Andrade et al., 2002]. SoC refers to the
practice of tackling a program’s complexity by separating its fundamental
computational algorithms, making the software more manageable. This idea
has given rise to a new research area and software development paradigm
known as "aspect-oriented software development" [Elrad, Filman, and Bader,
2001]. Aspect-Oriented Programming (AOP) is a technology that supports
the separation of concerns in software engineering. Consequently, it be-
comes evident that applying a technology designed to handle distinct con-
cerns within a single application can significantly contribute to usability en-
gineering. Remote usability testing has proven to deliver promising results,
and AOP provides the ideal approach to streamline the testing process for
various software products without mixing concerns. By separating the gen-
eration of test data from program execution [Elrad, Filman, and Bader, 2001],
AOP empowers developers and testers to focus on specific aspects of the
software independently, leading to more effective and efficient testing proce-
dures.

One of the earliest references to the concept of SoC can be traced back to
Edsger W. Dijkstra’s influential 1968 paper [Dijkstra, 2001]. In this ground-
breaking work, Dijkstra highlights the significance of structured program-
ming and the separation of concerns as fundamental elements in elevating
software quality. Dijkstra’s emphasis on structured programming under-
scores the significance of organizing code into well defined modules, facil-
itating code readability, maintainability, and reducing potential errors. Ad-
ditionally, his recognition of the separation of concerns as a crucial principle
addresses the need to isolate different aspects of a software system, allowing

1https://en.wikipedia.org/wiki/Separation_of_concerns

2.2. Separation of Concerns 7

developers to focus on individual functionalities independently. By incor-
porating these principles into software development practices, Dijkstra’s in-
sights have played a pivotal role in shaping modern programming method-
ologies. The lasting impact of his work continues to influence the way soft-
ware engineers approach problem-solving and the design of complex sys-
tems, ultimately leading to the creation of more efficient, reliable, and scal-
able software solutions.

Based on [Heckel and Engels, 2002], the functional and non-functional re-
quirements are initially separated into distinct sub-models during the early
stages of development. However, when these sub-models need to be inte-
grated into a unified system, consistency issues often arise between them.
Moreover, any changes made to the sub-models can exacerbate these prob-
lems. To address these challenges, the paper proposes a relational approach
that pairs functional and non-functional models, utilizing meta-models as an
additional layer of abstraction. This technique helps mitigate inconsistencies
and facilitates smoother integration between the sub-models. Considering
the potential benefits of this approach, I believe we can apply the insights
from this paper to enhance our project. By implementing the relational ap-
proach and incorporating meta-models, we can tackle the complexity of man-
aging functional and non-functional requirements, ensuring a more seamless
integration process and reducing the likelihood of inconsistencies. This, in
turn, can lead to a more efficient and robust system for our project, ultimately
enhancing its overall quality and performance.

In [Andrade et al., 2002], a three-layered architectural approach is pro-
posed, emphasizing a stringent separation between computation, coordina-
tion, and configuration, referred to as a "coordination contract." This coor-
dination contract serves as an additional level of abstraction built on top of
standard Object-Oriented Programming (OOP) constructs. we find this pa-
per highly relevant to our project, as it aligns with similar subjects we are
exploring. The concept of a coordination contract, which facilitates clear de-
marcation between the essential aspects of computation, coordination, and
configuration, can greatly benefit our project’s architecture. By incorporat-
ing the insights from this paper, we can enhance the structure and design of
our project, ensuring a well-defined and efficient coordination mechanism.
The use of the coordination contract can improve the maintainability and ex-
tensibility of our codebase, making it easier to manage and adapt to future
changes. In conclusion, the ideas presented in [Andrade et al., 2002] resonate
with the objectives and scope of our project, making it a valuable resource to

8 Chapter 2. Problem Statement

consider during the development process. Integrating the three-layered ar-
chitectural approach and coordination contract principles can lead to a more
robust and organized system, ultimately contributing to the success of our
project.

In the context of robotics, the complexity of systems, involving hard-
ware interactions, sensor integration, and intricate control algorithms, ne-
cessitates a disciplined approach to software design. The lack of SoC in
robotics software can lead to challenges such as codebase entanglement, re-
duced maintainability, and hindered adaptability to evolving robotic tech-
nologies [Brooks, 1991]. The concept of SoC in robotics involves segregating
concerns such as perception, control, and decision-making into distinct com-
ponents. By doing so, developers can focus on individual functionalities in-
dependently, reducing the risk of unintended consequences and simplifying
debugging processes [Quigley et al., 2009]. In summary, the application of
SoC in the domain of robotics is a crucial aspect of software engineering that
addresses the unique challenges posed by complex robotic systems. By ad-
hering to the principles of SoC, developers can foster a more scalable, adapt-
able, and efficient approach to the development and maintenance of robotic
software.

2.3 Robot Operating System

Existing methods to support Separation of Concerns in robotics encompass a
range of strategies and frameworks designed to enhance the modularization,
maintainability, and scalability of robotic software. One notable approach in-
volves the utilization of the Robot Operating System (ROS) and its associated
concepts. The ROS [M and al, 2009] is a widely adopted open-source mid-
dleware for robotics development. ROS provides a framework that inher-
ently supports SoC principles by encouraging the development of modular
and decoupled components. It employs a publish-subscribe communication
model and a service-oriented architecture, allowing different robotic func-
tionalities to be encapsulated in separate nodes that communicate through
well-defined interfaces [Quigley et al., 2009]. ROS facilitates the separation
of concerns by enabling developers to focus on specific robot functionali-
ties, such as perception, control, and planning, within individual nodes. The
modularity introduced by ROS enhances the maintainability and reusability
of code, fostering a more organized and adaptable approach to robotic soft-
ware engineering.

2.3. Robot Operating System 9

The ROS2 project aims to capitalize on the strengths of ROS 1 while ad-
dressing its shortcomings. ROS 2 utilizes DDS/RTPS as its middleware, in-
corporating functionalities such as discovery, serialization, and transporta-
tion. The rationale behind adopting DDS (Data Distribution Service) im-
plementations and the RTPS wire protocol of DDS is elucidated here. In
essence, DDS serves as an end-to-end middleware that offers features per-
tinent to ROS systems, including distributed discovery (in contrast to the
centralized approach in ROS 1) and the ability to manage various Quality of
Service (QoS) options for transportation. The flexibility of ROS 2 is evident
in its support for multiple DDS/RTPS implementations, acknowledging that
a "one size fits all" approach may not be optimal when selecting a vendor or
implementation. Several factors may influence this choice, including logis-
tical considerations like licensing, technical aspects such as platform avail-
ability, or computational footprint. Vendors may offer diverse DDS or RTPS
implementations tailored to different requirements [Macenski et al., 2022a].

The ROS client library provides an API that exposes communication con-
cepts, such as publish/subscribe, to users. In ROS 1, the implementation of
these communication concepts relied on custom protocols, such as TCPROS.
In contrast, ROS 2 has opted to build on top of an existing middleware so-
lution, specifically DDS (Data Distribution Service). This strategic decision
offers a significant advantage, allowing ROS 2 to leverage a mature and
well-established implementation of the DDS standard. While ROS could
have chosen to build on a single DDS implementation, numerous alterna-
tives exist, each with its own set of advantages and drawbacks concerning
supported platforms, programming languages, performance characteristics,
memory footprint, dependencies, and licensing. Recognizing this diversity,
ROS strives to support multiple DDS implementations, acknowledging the
nuanced differences in their respective APIs. To manage this variability, an
abstract interface has been introduced to abstract from the specifics of in-
dividual DDS APIs. This interface can be implemented for different DDS
implementations, serving as a middleware interface that defines the API be-
tween the ROS client library and any specific DDS implementation [Macenski
et al., 2022a].

RViz2 (ROS Visualization) stands out as a robust 3D visualization tool
crafted for ROS, empowering users to observe sensor data, robot models,
and diverse information within a three-dimensional space. Its seamless inte-
gration with ROS relies on the subscription to relevant ROS topics, including

2http://wiki.ros.org/rviz

10 Chapter 2. Problem Statement

sensor_msgs, geometry_msgs, nav_msgs, and more, facilitating the visual-
ization of data disseminated through these topics. User control over these
subscriptions is streamlined through the left window pane, offering options
to select visualizations and modify the subscribed topics. Moreover, RViz ac-
tively engages with ROS by subscribing to various topics, allowing users to
manipulate these subscriptions efficiently via the left window pane. This
granular control, achieved through visualization selection and subscribed
topic modification, ensures precision in displaying information. Further-
more, RViz provides specific tools, such as those for setting goals or current
poses, which publish messages to ROS topics, solidifying its status as a ver-
satile and comprehensive visualization tool in the ROS ecosystem.

2.4 Navigation 2

In their work [Macenski et al., 2020], the authors introduced Navigation 2
as an advanced navigation solution that builds upon the successful legacy
of ROS navigation. It provides a comprehensive set of services that are typ-
ically found in an operating system. These services encompass hardware
abstraction, precise control over low-level devices, implementation of com-
monly used functionalities, seamless communication between processes via
message-passing, and efficient package management. Furthermore, ROS of-
fers a diverse range of tools and libraries to streamline tasks such as ac-
quiring, constructing, writing, and executing code across multiple comput-
ers.The ROS runtime graph is a peer-to-peer network of processes, which can
be spread across multiple machines, and they are connected using the ROS
communication infrastructure. The communication in ROS can be done in
various ways, such as synchronous RPC-style communication through ser-
vices, asynchronous streaming of data using topics, and data storage on a
Parameter Server. While ROS itself is not designed for real-time applications,
it can be integrated with real-time code if needed [Dattalo, 2018]. The cen-
tral objective of Navigation 2 revolves around empowering mobile robots
to navigate safely and execute intricate tasks across various environments
and robot kinematics. Navigation 2 surpasses mere point-to-point move-
ment by accommodating intermediate goal points and facilitating complex
actions such as object tracking. Employing a behavior tree framework, it
provides a structured approach to organizing and managing novel methods
and tasks for navigation. This project introduces a fully configurable, open-
source navigation system encompassing three core navigation tasks: Planner,

2.4. Navigation 2 11

Controller, and Recovery.
For visualizing the Navigation 2 system’s communication between nodes

and topics, as well as understanding their interconnections, the rqt_graph
proves to be a valuable tool. The ROS computation graph visualization is
facilitated by the rqt_graph graphical user interface (GUI) plugin, which has
been designed with a generic structure to allow other packages to establish
dependencies on it. This tool, an integral part of the Rqt suite, offers a com-
prehensive view of the ROS graph dynamics. With rqt_graph, users can ef-
fectively visualize the complex ROS graph of their applications, observing
running nodes and communication patterns. Seamlessly integrated into the
Rqt suite, this GUI plugin presents a user-friendly window into the system’s
architecture, displaying nodes and topics organized within their namespaces
and providing an overarching system overview. As seen in Figure 2.1, which
illustrates how nodes and topics connect within the Navigation 2 system,
there’s a lot of interconnectivity among numerous nodes. This complexity
gets even more pronounced as the code expands, leading to challenges in
both development and maintenance. This results in a system that’s intricate
and interdependent. In the upcoming discussion, we’ll explore the integra-
tion of an extended Navigation 2 model, which further adds to the model’s
complexity and makes maintenance more challenging.

To provide a clearer representation of the complexity within the system,
we opted to delve more deeply into a single node. Specifically, in Figure 2.2,
we present a more detailed view of the ’bt_navigator_rclccp_node.’ Further-
more, in Figure 2.3, you’ll notice a similar overarching concept presented in a
more general manner. Within Figure 2.2, nodes are depicted as ovaal shapes,
while rectangular shapes symbolize different topics. Observing the system
components—bt_navigator, controller, and planner server—it becomes ev-
ident that one topic serves data transmission, while another serves as feed-
back. Multiple topics are dedicated to recovery processes. This visual reveals
the intricate communication interdependencies among all nodes. It’s impor-
tant to note that these nodes are interconnected and mutually reliant, posing
potential challenges for system expansion.

Let’s now take a look at a section of the code related to this node. This
analysis will aid us in gaining a more effective understanding of the under-
lying complexity.

1 #include "nav2_bt_navigator/bt_navigator.hpp"
2 #include "geometry_msgs/msg/pose_stamped.hpp"
3 #include "nav2_behavior_tree/behavior_tree_engine.hpp"

12 Chapter 2. Problem Statement

F
IG

U
R

E
2.1:R

Q
T

G
raph

2.4. Navigation 2 13

FIGURE 2.2: RQT Graph for Bt_Navigation Node

FIGURE 2.3: Behaviour Tree Navigation 2

14 Chapter 2. Problem Statement

4 #include "nav2_util/lifecycle_node.hpp"
5 #include "nav2_msgs/action/navigate_to_pose.hpp"
6 #include "nav_msgs/msg/path.hpp"
7 #include "nav2_util/simple_action_server.hpp"
8 #include "rclcpp_action/rclcpp_action.hpp"
9 #include "tf2_ros/transform_listener.h"

10 #include "tf2_ros/create_timer_ros.h"
11

12 #include "nav2_util/geometry_utils.hpp"
13 #include "nav2_util/robot_utils.hpp"
14 #include "nav2_behavior_tree/bt_conversions.hpp"
15 #include "nav2_bt_navigator/ros_topic_logger.hpp"
16

17 namespace nav2_bt_navigator
18 {
19

20 BtNavigator :: BtNavigator ()
21 : nav2_util :: LifecycleNode (" bt_navigator", "", false),
22 start_time_ (0)
23 {
24 RCLCPP_INFO(get_logger (), "Creating ");
25

26 const std::vector <std::string > plugin_libs = {
27 "nav2_compute_path_to_pose_action_bt_node",
28 "nav2_follow_path_action_bt_node",
29 "nav2_back_up_action_bt_node",
30 "nav2_spin_action_bt_node",
31 "nav2_wait_action_bt_node",
32 "nav2_clear_costmap_service_bt_node",
33 "nav2_is_stuck_condition_bt_node",
34 "nav2_goal_reached_condition_bt_node",
35 "nav2_initial_pose_received_condition_bt_node",
36 "nav2_goal_updated_condition_bt_node",
37 "nav2_reinitialize_global_localization_service_bt_node",
38 "nav2_rate_controller_bt_node",
39 "nav2_distance_controller_bt_node",
40 "nav2_speed_controller_bt_node",
41 "nav2_truncate_path_action_bt_node",
42 "nav2_recovery_node_bt_node",
43 "nav2_pipeline_sequence_bt_node",
44 "nav2_round_robin_node_bt_node",
45 "nav2_transform_available_condition_bt_node",
46 "nav2_time_expired_condition_bt_node",
47 "nav2_distance_traveled_condition_bt_node",
48 "nav2_rotate_action_bt_node",
49 "nav2_translate_action_bt_node",

2.4. Navigation 2 15

50 "nav2_is_battery_low_condition_bt_node",
51 "nav2_goal_updater_node_bt_node",
52 "nav2_navigate_to_pose_action_bt_node",
53 };
54

55 // Declare this node ’s parameters
56 declare_parameter (" default_bt_xml_filename ");
57 declare_parameter (" plugin_lib_names", plugin_libs);
58 declare_parameter (" transform_tolerance", rclcpp ::

ParameterValue (0.1));
59 declare_parameter (" global_frame", std:: string ("map"));
60 declare_parameter (" robot_base_frame", std:: string (" base_link ")

);
61 declare_parameter (" odom_topic", std:: string ("odom"));
62 declare_parameter (" enable_groot_monitoring", true);
63 declare_parameter (" groot_zmq_publisher_port", 1666);
64 declare_parameter (" groot_zmq_server_port", 1667);
65 }
66

67 BtNavigator ::~ BtNavigator ()
68 {
69 RCLCPP_INFO(get_logger (), "Destroying ");
70 }
71

72 nav2_util :: CallbackReturn
73 BtNavigator :: on_configure(const rclcpp_lifecycle :: State & /*

state */) {...}
74 bool
75 BtNavigator :: loadBehaviorTree(const std:: string &

bt_xml_filename) {...}
76 nav2_util :: CallbackReturn
77 BtNavigator :: on_activate(const rclcpp_lifecycle :: State & /*state

*/) {...}
78 nav2_util :: CallbackReturn
79 BtNavigator :: on_deactivate(const rclcpp_lifecycle :: State & /*

state */) {...}
80 nav2_util :: CallbackReturn
81 BtNavigator :: on_cleanup(const rclcpp_lifecycle ::State & /*state

*/) {...}
82 nav2_util :: CallbackReturn
83 BtNavigator :: on_shutdown(const rclcpp_lifecycle :: State & /*state

*/) {...}
84 void
85 BtNavigator :: navigateToPose () {...}
86 void
87 BtNavigator :: initializeGoalPose () {...}

16 Chapter 2. Problem Statement

88 void
89 BtNavigator :: onGoalPoseReceived(const geometry_msgs ::msg::

PoseStamped :: SharedPtr pose){...}
90 }

Throughout its development, the Navigation 2 project underwent an evo-
lution. The core developers undertook a gradual expansion of the design, as
depicted in Figure 2.4, with a specific emphasis on integrating a new world
model for 2D navigation [Orduno, 2019]. The proposed design unfolds in
several sequential phases, each aimed at enhancing various aspects of robotic
navigation systems. This comprehensive approach encompasses diverse lev-
els of navigation, catering to unstructured scenarios devoid of specific rules
or reference paths, as well as structured navigation governed by predefined
rules. Moreover, the design prioritizes adaptability by accommodating dif-
ferent types of planners and controllers, facilitating seamless integration and
flexibility.

FIGURE 2.4: Current World Model

During the initial phase, a pivotal proposal emerged: the separation of the

2.5. Code Extension 17

world model from the clients, leading to the creation of distinct nodes. Subse-
quently, in the second phase, a groundbreaking step was taken as new mod-
ules were introduced, accompanied by the migration of the existing costmap-
based world model. This phase’s primary objective was to untangle the core
representation from client specifics, achieved through the implementation of
plugins. As the development unfolded, subsequent phases witnessed fur-
ther expansion. Beyond grid-based maps, additional map formats were in-
troduced, accompanied by the integration of advanced perception pipelines.
The framework was further bolstered with support for multiple internal rep-
resentations, enhancing versatility and adaptability. Culminating this evo-
lution, the new design emerged, seamlessly depicted in Figure 2.5. In sum-
mary, their evaluation led them to conclude that the new design not only fell
short of its intended objectives but also introduced unnecessary complexity.
Consequently, they made the strategic decision to adhere to the current de-
sign [Orduno, 2019].

FIGURE 2.5: New World Model

2.5 Code Extension

Developers confront significant challenges in creating a software system that
facilitates seamless code extension and modification. Their objective is to es-
tablish a software model that is both flexible and adaptable. Nonetheless,

18 Chapter 2. Problem Statement

as exemplified by the navigation system, the introduction of additional fea-
tures during the software development phase often leads to intricacies aris-
ing from numerous dependencies and intercommunication among different
system components. This, in turn, results in the software system growing in
size, complexity, and potentially disorder, with segments of code that prove
difficult to optimize[Orduno, 2019].

Moreover, when we see interactions between different modules, it can cre-
ate more problems and complexities. To handle these challenges effectively,
we should break the project into smaller, self-contained tasks. This way, we
can deal with specific issues more efficiently and avoid getting tangled up in
complex dependencies.

I believe this approach not only streamlines our development journey but
also enhances our system’s maintainability and fosters a clearer comprehen-
sion of its architectural framework. Moreover, it paves the way for improved
testing, debugging, and optimization of each task in isolation, culminating
in an overall software solution that is more robust and efficient. Breaking
down our project into autonomous tasks empowers us to navigate complex-
ities with greater efficiency, crafting a well-organized and easily manageable
software system poised for seamless adaptation to future modifications and
expansions.[Chaychi, Zampunieris, and Reis, 2023].

2.6 Code Reusability

The concept of software reusability offers significant advantages to develop-
ers, as it allows them to utilize existing pieces of a software system to create
new applications. This approach considerably reduces the time and effort
required compared to building a complete software system from scratch [9].
To achieve a highly reusable system, it is essential to design modules that are
independent of each other, ensuring that they can be easily integrated and
repurposed for various projects.

One of the inevitable aspects of software development is the need for
maintenance at some point during the project’s lifecycle. As software evolves,
changes, updates, and bug fixes become necessary to ensure its continued
functionality and reliability. Effective maintenance practices play a crucial
role in keeping the software system running smoothly and meeting user
needs over time. By emphasizing reusability and prioritizing the indepen-
dence of modules, developers can not only reduce development time but also

2.7. Code Maintenance 19

streamline the maintenance process. Reusable components can be tested, op-
timized, and perfected once and then applied to multiple projects, saving
considerable effort and resources. Moreover, independent modules facili-
tate targeted updates and bug fixes, making maintenance tasks more man-
ageable and minimizing the risk of unintended side effects. Investing in
reusability and independent modules is a strategic approach that yields long-
term benefits for software development projects. It empowers developers to
build robust, adaptable, and maintainable software systems that can evolve
with changing requirements and stay relevant in the face of technological
advancements. As the software industry continues to evolve, the focus on
reusability and independence will remain essential to drive innovation and
ensure efficient development and maintenance practices[Chaychi, Zampunieris,
and Reis, 2023].

2.7 Code Maintenance

Another prevalent challenge in software development is code maintenance,
both during the development phase and in the years following its imple-
mentation. As projects evolve, the need for updates and bug fixes becomes
inevitable. Ignoring the importance of code maintenance can lead to a deteri-
orating software system. To ensure a robust and reliable software product, it
is essential to prioritize code maintenance and updates throughout the soft-
ware’s lifecycle.

In our project, recognizing the significance of maintenance in software
development, we are prioritizing implementation strategies that emphasize
the separation of concerns. By adopting this approach, we aim to create a
system that facilitates straightforward maintenance and efficient bug-fixing
processes.

To evaluate the effectiveness of the Proactive Engine approach in enhanc-
ing separation of concerns, we will employ software metrics to measure var-
ious aspects such as modularity, code coupling, and cohesion. The met-
rics will help assess the improvements achieved and provide quantitative
insights into how the proactive scenario-based approach contributes to the
separation of concerns in robotic software engineering.

20 Chapter 2. Problem Statement

2.8 Conclusion

Considering all these factors, separation of concerns emerges as a funda-
mental objective in the development of any software system. In this thesis,
our primary focus will be on tackling the lack of separation of concerns by
utilizing the proactive scenario-based approach of Proactive Engine, which
empowers developers to strategically separate concerns, leading to a more
modular and maintainable software system. Our primary research question,
which we will address in this thesis, is: “How to improve separation of con-
cerns in robotic software engineering? How can software metrics be used
to measure the enhancement?“ By incorporating proactive scenarios, devel-
opers can implement a well-structured and adaptable software architecture,
which facilitates seamless updates, bug fixing, and code maintenance. The
ultimate goal is to create a software system that is easy to understand, ex-
tend, and modify, enabling developers to respond promptly to evolving re-
quirements and ensuring the longevity and success of the software product
in the dynamic landscape of the software industry.

21

Chapter 3

Tools

In this section, we will introduce the tools that we utilized in our thesis to im-
plement our model. These tools were instrumental in shaping the success of
our research and enabled us to delve into the fascinating world of computer
science and robotics.

3.1 Robot Operating System

Our implementation is based on ROS 2, specifically utilizing the Foxy ver-
sion. ROS 2, the second generation of the Robot Operating System, aims
to retain the strengths of ROS 1 while addressing its limitations. It utilizes
DDS/RTPS as its middleware, providing discovery, serialization, and trans-
portation capabilities. DDS, a comprehensive middleware used in critical in-
frastructure, aligns well with ROS systems by offering distributed discovery
and control over Quality of Service (QoS) options. ROS 2 supports multiple
DDS/RTPS implementations, considering factors such as licensing, platform
availability, and computational footprint. This redesign of ROS 2 leverages
community-driven capabilities to overcome challenges, utilizing the Data
Distribution Service (DDS) that is widely used in critical systems. By adopt-
ing DDS, ROS 2 offers enhanced security, support for embedded and real-
time applications, seamless communication between multiple robots, and
the ability to operate in challenging networking environments[Macenski et
al., 2022b]. As previously mentioned, ROS is accessible in several program-
ming languages, including Python, C++, and Lisp. Experimental libraries
also exist in Java and Lua. For our specific implementation, we have chosen
to utilize C++.

Navigation 2 is a professionally supported project that serves as the suc-
cessor to the ROS Navigation Stack. It aims to enable mobile robots to safely
navigate and accomplish complex tasks across various environments and

22 Chapter 3. Tools

FIGURE 3.1: Navigation 2 Behaviour Tree [Macenski et al.,
2020]

robot kinematics. Beyond simple point-to-point movement, Navigation 2 al-
lows for intermediate goal point and supports diverse tasks like object fol-
lowing. It encompasses perception, planning, control, localization, visual-
ization, and other essential components to build highly reliable autonomous
systems. The core of navigation tasks lies in planners and controllers, which
determine the robot’s path. Recoveries are employed to handle challenging
situations and ensure fault tolerance. Smoothers can be utilized to enhance
the quality of planned paths. These highly reliable autonomous systems
perform tasks such as environmental modeling based on sensor data, dy-
namic path planning, obstacle avoidance, and objects, and the organization
of higher-level robot behaviors [Macenski et al., 2020].

3.2 Proactive Engine

The idea of proactive computing was first put forth by [Tennenhouse, 2000].
In proactive computing, the human user no longer occupies the central role
in the interaction between humans and computers. Instead, the user serves
as a supervisor who monitors the actions performed by a proactive system.
A proactive system operates without depending on explicit user input, and
is capable of taking actions on its own initiative [Tennenhouse, 2000]. It can
respond to various events and even interpret the absence of user input in a

3.2. Proactive Engine 23

proactive manner. To achieve this, proactive systems must possess contextual
awareness, extract pertinent information from it, and then respond accord-
ingly to their tasks [Shirnin, Reis, and Zampunieris, 2013]. The concept of
proactive computing led to the creation of a rule-based Proactive Engine (PE)
by Professor Zampunieris and his team. This engine was employed in nu-
merous projects at the University of Luxembourg, particularly in the areas of
robotic[Dias, Reis, and Zampunieris, 2012], E-Learning[Dobrican, Reis, and
Zampunieris, 2013], cognitive science[Shirnin, 2014], and eHealth [Dobrican
and Zampunieris, 2016].

3.2.1 Rules

The Proactive Engine is essentially a rule-based system that integrates both
object-oriented principles and rule-based systems. It includes a rule engine,
database, and set of rules, which allows it to be attached directly to other
systems or connected via a shared database[Chaychi, Zampunieris, and Reis,
2023]. The system is designed to be proactive, using predefined rules to pro-
cessing data and this feature allows the proactive engine to be highly respon-
sive and proactive, preventing potential issues and improving efficiency.

The rule engine executes the proactive rules in iterations and consists of
two First-In-First-Out (FIFO) queues: the currentQueue and the nextQueue.
The currentQueue contains rules that need to be executed in the current iter-
ation, while the nextQueue contains rules generated during the current itera-
tion. At the end of each iteration, the rules from the nextQueue are added to
the currentQueue, and the nextQueue is emptied. This ensures that all rules
are executed and the system remains efficient and optimized[Neyens, 2019].
The behavior of the rules-running system is influenced by two parameters:
F, the time frequency of activation periods, and N, the maximum number
of rules to be run during an activation period. These parameters are set by
the system manager. The activation of the rules-running system is triggered
by parameter F. If the system is already activated, it will continue with its
current activation. Once activated, the system executes the first N rules in
the FIFO list (if available) in order of their ranks, using the algorithm shown
at the end of this section. Once a rule is executed, it is removed from the
system. If a rule needs to remain active in the system for a longer period,
it must clone itself to be included in the next activation of the rules-running
system[Zampunieris, 2006b]. A rule can consist of any number of input pa-
rameters and comprises five distinct execution steps, each playing a unique
role in the execution process[Zampunieris, 2006a].

24 Chapter 3. Tools

Data Acquisition

Data acquisition is the first step performed when a rule is run, allowing it
to obtain information from the system for use in other parts of the rule. The
context manager of the proactive engine provides this data, which can be
obtained from various sources such as sensors or a database. The acquired
data is stored in local variables, which are read-only and cannot be modified
by the rule. However, these variables can be used as references to access
and modify values in the system database. Once the rule is executed, the
variables are discarded.

Activation Guards

After the data acquisition part, an activation guard is performed. This guard
is composed of a set of AND-connected tests on the local variables. If the ac-
tivation guard is evaluated positively, the conditions and actions parts of the
rule are executed. If not, these parts are ignored, but the rules generation part
is still performed. A local Boolean variable called ’activated’ is automatically
defined and its value is set according to the result of the guard evaluation. If
the activation guard evaluates to true, the ’activated’ variable of the rule will
also be set to true.

Conditions

The conditions part comprises a series of tests on local variables that are con-
nected by AND statements. These tests determine whether the subsequent
actions part will be executed or not. The syntax and semantics of the condi-
tions tests are equivalent to those of activation guards.

Actions

The actions part, which is the fourth component, consists of a sequential list
of instructions. These instructions will only be executed if all the tests in the
conditions part evaluate to true.

Rule Generation

The fifth and final component in our software model is the rules generation
phase, which occurs at the end of the process. During this phase, rules have
the capability to generate additional rules that will be executed in subsequent
iterations. This dynamic rule generation allows for a flexible and adaptive

3.2. Proactive Engine 25

system, enabling the inclusion of new rules as needed. Furthermore, the rules
generation component can even load itself if the logic of the system requires
it, providing a self-modifying capability to the software model. This ensures
that the system can continuously evolve and respond to changing require-
ments or conditions, enhancing its overall effectiveness and adaptability.

By utilizing this mechanism, one can develop long-lasting rules that ex-
ecute actions over an extended period.The primary algorithm for executing
a rule can be outlined as follows figure (3.2). In order to enhance clarity, the
algorithm is presented in pseudocode format, without including low-level
details:

FIGURE 3.2: The algorithm to run a rule [Zampunieris, 2006a]

3.2.2 Scenarios

The rules mentioned earlier can be categorized into scenarios, which are sets
of rules executed in response to specific events. Essentially, a scenario com-
bines rules that are essential for reacting to or taking proactive action in par-
ticular situations [Shirnin, Zampunieris, and Reis, 2012]. There are two types

26 Chapter 3. Tools

of Proactive Scenarios that categorize them: Meta Scenarios and Target Sce-
narios.

Meta Scenarios

Meta Scenarios are designed to provide the system with perception-centered
features. Their main objective is to identify and capture events of interest and
subsequently take the appropriate actions. To activate a specific Meta Sce-
nario that aligns with the user’s current activity situation, the system needs
to be aware of the current state of the database. While Target Scenarios do not
possess the capability to detect changes in the database, this role is fulfilled
by Meta Scenarios. These Meta Scenarios operate as context-aware, contin-
uous, and ongoing rules that never cease. Once a Meta Scenario detects a
relevant event within the database, it triggers the corresponding Target Sce-
narios, which then execute the predefined actions. Essentially, the Meta Sce-
nario delegates the specific task to the appropriate scenarios. Implementing
Meta Scenarios typically involves integrating them into the system environ-
ment of the Learning Management Systems, enabling interactions between
the user, the Proactive Engine, and the database.Meta Scenarios primarily fo-
cus on internal actions but have an effect on the user’s external environment
[Shirnin, Zampunieris, and Reis, 2012].

In our thesis implementation, we have incorporated various meta scenar-
ios, including strategy, planner, controller, and decision-making meta scenar-
ios. These meta scenarios play a crucial role in the system’s operation. Based
on the specific meta scenario being utilized, the system activates the corre-
sponding set of rules. These rules govern the behavior and actions of the
system, ensuring that it operates within the desired constraints and guide-
lines.

Target Scenarios

The primary objective of target scenarios is to provide multiple target re-
sponses for each event or non-event detected by Meta Scenarios. These sce-
narios can be seen as the hands of the Proactive Engine, responsible for exe-
cuting specific predefined actions such as notifications, reminders, problem
prevention, and user guidance. Unlike Meta Scenarios, which are continuous
rules, Target Scenarios are designed to complete their individual tasks and
then become dismissed. This distinction allows for memory optimization in
the system. Target Scenarios have their own areas of application, including

3.3. Simulation and Visualization 27

the system administrator environment. When creating new scenarios and
rules, the focus is on maximizing the accuracy of the Proactive Engine’s ac-
tions and effectively responding to users’ needs by considering their cogni-
tive aspects such as intentions, objectives, and actions [Shirnin, Zampunieris,
and Reis, 2012].

In our thesis implementation, we have incorporated several target scenar-
ios, each serving a specific task within the system. These scenarios include
the strategy, planner, controller scenarios. The strategy scenario encompasses
multiple strategies designed for the navigation system. It provides different
approaches to achieve specific objectives and optimize the robot’s movement.
The planner scenario focuses on path planning for navigation. It generates
command recommendations and determines the optimal route for the robot
to follow based on the provided inputs and constraints. The controller sce-
nario is responsible for controlling the robot’s movements and ensuring ob-
stacle avoidance. It implements rules and algorithms to guide the robot’s
actions and ensure safe and efficient navigation.

3.2.3 Database

In the Proactive Engine, there are two distinct types of data that are stored
in a MySQL database. The first type is utilized for storing the system’s state
and enabling communication with external systems that are connected to the
Proactive Engine. This data encompasses all the necessary information to
recover the last state of the Proactive Engine in the event of a crash.The sec-
ond type of data in the Proactive Engine is specifically intended for exchang-
ing information with external systems, Navigation 2, which exist beyond the
boundaries of the Proactive Engine. This data includes historical information
collected from sensors, as well as the results generated by executed rules.

3.3 Simulation and Visualization

3.3.1 Gazebo

Gazebo1 is a popular open-source 3D robotics simulator. It allows develop-
ers to create and test applications for physical robots without relying on the
actual hardware, resulting in significant cost and time savings. The simula-
tor seamlessly integrates with the Open Dynamics Engine (ODE), a robust

1https://classic.gazebosim.org./

28 Chapter 3. Tools

physics engine written in C/C++, and utilizes OpenGL, a versatile cross-
platform API for rendering 2D and 3D vector graphics. Gazebo also provides
built-in support for sensor simulation and actuator control, further enhanc-
ing its capabilities2.

FIGURE 3.3: Gazebo Simulation

Our implementation is based on Gazebo 11, as depicted in Figure (3.3).
We utilize the TurtleBot3 Simulation Package, which represents a new gen-
eration mobile robot characterized by its modularity, compactness, and cus-
tomizability. The primary objective of TurtleBot3 is to significantly decrease
the platform’s size and cost while preserving its capability, functionality, and
quality. Various optional parts, including chassis, computers, and sensors,
are accessible, enabling extensive customization of the TurtleBot3 platform3.

3.3.2 Rviz

Visualizing and logging sensor information plays a crucial role in the devel-
opment and debugging of controllers. Rviz stands as a robust tool for robot
visualization, offering a user-friendly graphical interface to visualize sensor
data, robot models, and environment maps. These features prove invaluable
for the development and debugging processes of the robot controllers4. To
begin, it is necessary to launch Rviz while the robot simulation is running.
Initially, we start with an empty world, to which we gradually add the robot

2https://en.wikipedia.org/wiki/Gazebo_simulator
3http://wiki.ros.org /Turtlebot3_simulations
4http://wiki.ros.org/rviz

3.3. Simulation and Visualization 29

model, laser scan, camera, and other required elements. Once the setup is
complete, we configure the environment and save our world. Subsequently,
this configured world can be reused for future sessions, eliminating the need
for repetitive setup. Figure (3.4) showcases an example of your Rviz world.

FIGURE 3.4: Rviz Visualization

Firstly, we need to establish the "2D Pose Estimate" based on the current
position of the robot in the simulation or real world. This allows us to ac-
curately initialize the robot’s starting location. Next, we can set a goal point
using "Navigation2 Goal". As the robot attempts to reach the initial goal, we
retain the flexibility to set a new goal point if necessary. This dynamic ad-
justment of the goal enables the robot to adapt its path and continue moving
towards the new target within the environment.

31

Chapter 4

Proposed Model

4.1 Introduction

In this thesis, we address the issue of insufficient separation of concerns in
robotic software systems. Throughout the history of software engineering
research, one of the primary challenges has been focused on enhancing mod-
ifiability, reusability, and maintainability. Our primary emphasis lies in the
navigation system, utilizing a Proactive Engine to establish an enhanced nav-
igation system that incorporates a clear separation of concerns. By incorpo-
rating a Proactive Engine into the navigation system, we aim to overcome the
limitations of traditional approaches. This Proactive Engine enables a more
refined separation of concerns, allowing for better modularity and encap-
sulation of functionality. Additionally, in our research, we utilize the ROS
framework to create the robot environment. The ROS system provides a
comprehensive and flexible platform for developing and managing robotic
software systems. This chapter is dedicated to providing a comprehensive
overview of the model. It serves as a flexible framework that can be effort-
lessly extended for implementing other robot systems. Furthermore, we will
delve into the details of the implementation we employed for the purpose of
comparing it with the Navigation 2 project, which will be elucidated in the
following chapter.

4.2 System Architecture

In our proposed software model for navigation, we prioritize the separa-
tion of concerns to enhance the overall system architecture. By structuring
the navigation system into distinct scenarios, we enable developers to fo-
cus on individual objectives and address them independently. This modu-
lar approach promotes code reusability, as each scenario can be reused in

32 Chapter 4. Proposed Model

different contexts without extensive modifications. Furthermore, it simpli-
fies maintenance tasks by allowing developers to isolate and update specific
components without affecting the entire system. To implement our software
model, we utilize the Proactive Engine, a rule-based proactive system that
combines object-oriented principles with rule-based systems. The Proactive
Engine serves as the core engine responsible for executing the scenarios and
coordinating their interactions. By running scenarios in parallel, the Proac-
tive Engine enables efficient and independent operation without the need
for explicit knowledge or communication between the scenarios. To ensure
a seamless integration of the navigation system with ROS, we suggest the
adoption of a database as a communication medium, as illustrated in Figure
(4.1). The database serves as a repository for storing data that can be accessed
by both ROS and the Proactive Engine. Within this framework, ROS com-
ponents, including subscribers and publishers, interact with the database to
read and write relevant data. Simultaneously, the Proactive Engine retrieves
essential information from the database to make well-informed decisions and
generate appropriate commands for the robot. Additionally, the ROS compo-
nent retrieves the recommended command from the database, written by the
Proactive Engine, in order to execute it accordingly. In the upcoming chapter,
we will delve into a detailed illustration of our model.

FIGURE 4.1: Our Model Architecture

4.3 Database

As mentioned before to facilitate the integration of the navigation system
with ROS, we utilize a shared database as a central repository. In this imple-
mentation, we have opted for the use of MySQL as our database system. The

4.4. Proactive Engine 33

shared database acts as a communication bridge between ROS and the Proac-
tive Engine, ensuring smooth and efficient data exchange between the two
components. Through the database, ROS components such as subscribers
and publishers can read and write relevant data. This allows for seamless
interaction with the navigation system, enabling the retrieval of sensor data,
updating of status information, and issuing commands for robot control. Si-
multaneously, the Proactive Engine leverages the shared database to access
the necessary information required for strategy scenarios. By retrieving and
analyzing data from the database, the Proactive Engine can make informed
decisions based on sensor inputs, system status, and other relevant informa-
tion. This facilitates the generation of appropriate commands to steer the
robot effectively. The utilization of MySQL as the database system ensures
reliable and efficient data storage and retrieval, contributing to the seamless
integration of the navigation system with ROS. This integration promotes
effective coordination between the two components, enabling robust naviga-
tion and decision-making processes within the robotic environment.

4.4 Proactive Engine

To implement our software model, we rely on the Proactive Engine, a rule-
based proactive system that seamlessly integrates object-oriented principles
with rule-based systems. The Proactive Engine consists of multiple scenarios,
which can be executed in parallel, allowing for efficient and independent op-
eration. Each scenario operates independently, without the need for explicit
knowledge or communication between them. This decentralized approach
simplifies the system’s design and promotes scalability.

Now, let’s delve into our second research question: "Is the proactive com-
puting paradigm, implemented through a rule-based proactive engine, a suit-
able coding approach for addressing our initial research question? This ques-
tion revolves around improving the separation of concerns in robotic soft-
ware engineering. To explore this further, let’s examine our proposed model
in the context of the second research question.

Our design consists of two types of scenarios: meta scenarios and sce-
narios. Within our system, we have several scenarios, including Strategy,
Planners, Controllers, and Decision Making. Each scenario has its own corre-
sponding meta scenario as well. These scenarios are responsible for handling
various aspects of the system’s behavior and are designed to accomplish spe-
cific objectives and tasks. Each objective is assigned to a separate scenario,

34 Chapter 4. Proposed Model

enabling us to focus on individual scenarios, facilitating better understand-
ing, modification, and system maintenance. Furthermore, this segregation
allows us to reuse and combine different scenarios, resulting in the creation
of more intricate and adaptable behaviors. Meta scenarios, on the other hand,
are responsible for activating the rules within the scenarios.

Strategy Scenario

The proposed software model for navigation consists of the Strategy sce-
nario, which receives data from the database and utilizes the required in-
formation from it. Additionally, the Strategy scenario also receives data from
the system, enabling runtime changes in the system. By incorporating multi-
ple planned strategies, the Strategy scenario offers various options to control
the robot’s behavior, allowing for different behaviors to be achieved without
modifying any code within the system. This flexibility enables the applica-
tion of different strategies during runtime without the need to relaunch the
system. To facilitate the selection of a planned strategy based on conditions
and rules from the environment or user input, a meta strategy scenario is
employed. This meta scenario is responsible for choosing the appropriate
strategy and storing it in local storage. Other scenarios, such as the Con-
troller, Planner, and other relevant components, can then access the selected
strategy. These scenarios can then be activated based on the planned strategy,
effectively coordinating the robot’s actions.

1 Algorithm: StrategyScenario
2

3 Input:
4 Database: Object representing the database
5 SystemData: Data from the system
6 UserInput: Input provided by the user
7 MetaStrategyScenario: Object representing the meta scenario

for strategy selection
8 ChosenStrategy: Selected strategy
9

10 1. Initialize the Database for storing and retrieving relevant
information.

11 2. Initialize SystemData and UserInput for obtaining contextual
information.

12 3. Create StrategyScenario within the Proactive Engine.
13 4. Logically connect StrategyScenario with its corresponding

meta scenario (MetaStrategyScenario).
14 a. Set MetaStrategyScenario to activate rules within

StrategyScenario.

4.4. Proactive Engine 35

15 5. StrategyScenario Operation:
16 a. Receive data from the database and the system (Database ,

SystemData).
17 b. Offer multiple strategies to control the r o b o t s

behavior.
18 c. Enable runtime changes in the system (SystemData).
19 d. Allow different behaviors without modifying system code.
20 e. Facilitate the selection of a planned strategy based on

conditions and rules.
21 f. Store the appropriate strategy in local storage (Database)

.
22 6. End Algorithm

Planner Scenario

The Planner scenario plays a crucial role in our system by managing path
planning and navigation. Although there are several algorithms available for
implementation, we choose to activate only one Planner scenario at a time,
each representing a different algorithm. To coordinate this process, we have
a meta-planner scenario that retrieves the planned strategy from local stor-
age. It then triggers the corresponding scenario, activating the algorithm that
aligns with the planned strategy obtained from the strategy scenarios. This
approach ensures efficient and streamlined path planning based on the spe-
cific needs and objectives of the system. Within our planner scenario, we
have implemented a feature that allows the robot to modify its path and di-
vert towards a new direction based on certain criteria. This additional func-
tionality ensures that the robot can dynamically adapt its navigation strat-
egy as needed. By periodically evaluating the relevant criteria, the planner
scenario can determine if a path adjustment or diversion is required. This
adaptive behavior enables the robot to effectively navigate and overcome
obstacles or changing conditions. Integrating this capability into the planner
scenario enhances the overall efficiency and autonomy of the robot, allowing
it to intelligently respond to different situations and optimize its strategy.

1 Algorithm: PlannerScenario
2

3 Input:
4 MetaPlannerScenario: Object representing the meta scenario for

planner coordination
5 LocalStorage: Storage for accessing planned strategy

information
6 PathPlanningAlgorithm: Selected path planning algorithm
7

36 Chapter 4. Proposed Model

8 1. Initialize MetaPlannerScenario for coordinating the Planner
Scenario.

9 2. Initialize LocalStorage for accessing planned strategy
information.

10 3. Activate PathPlanningAlgorithm based on the selected
algorithm.

11 a. Set MetaPlannerScenario to retrieve planned strategy from
LocalStorage.

12 b. Activate PlannerScenario based on the planned strategy.
13 4. PlannerScenario Operation:
14 a. Manage path planning and navigation.
15 b. Activate only one Planner scenario at a time , representing

a different algorithm.
16 c. Retrieve planned strategy from LocalStorage using

MetaPlannerScenario.
17 d. Activate corresponding PathPlanningAlgorithm based on the

planned strategy.
18 e. Ensure efficient and streamlined path planning aligned

with system needs.
19 f. Periodically evaluate relevant criteria to determine if a

path adjustment or diversion is required.
20 g. Dynamically adapt the robot ’s navigation strategy as

needed.
21 5. End Algorithm

Controller Scenario

The Controller scenarios hold the responsibility of governing the movement
and response of the robot in accordance with its environment. Depending
on the chosen strategy, it is possible to activate multiple Controller scenarios
simultaneously, leading to enhanced intelligence and improved control capa-
bilities of the robot. Within our model, the Controller scenarios are accompa-
nied by a meta-controller scenario. This meta-controller retrieves the planned
strategy from local storage and triggers the corresponding Controller scenar-
ios, which could be one or multiple, aligned with the expected behavior of
the robot. By employing this approach, we ensure that the robot operates in
a manner that is consistent with the intended objectives and desired perfor-
mance, allowing for efficient adaptation and response to different situations.

1 Algorithm: ControllerScenario
2

3 Input:
4 MetaControllerScenario: Object representing the meta scenario

for controller coordination

4.4. Proactive Engine 37

5 LocalStorage: Storage for accessing planned strategy
information

6 RobotMovement: Object representing robot movement capabilities
7 RobotResponse: Object representing robot response capabilities
8

9 1. Initialize MetaControllerScenario for coordinating the
Controller Scenarios.

10 2. Initialize LocalStorage for accessing planned strategy
information.

11 3. Initialize ChosenStrategy based on the selected strategy.
12

13 4. Create ControllerScenario within the Proactive Engine.
14 a. Set MetaControllerScenario to retrieve planned strategy

from LocalStorage.
15 b. Activate ControllerScenario based on the planned strategy.
16

17 5. ControllerScenario Operation:
18 a. Govern the movement and response of the robot in

accordance with its environment.
19 b. Activate multiple Controller scenarios simultaneously

based on the chosen strategy.
20 c. Retrieve planned strategy from LocalStorage using

MetaControllerScenario.
21 d. Activate corresponding Controller scenarios based on the

planned strategy.
22 e. Align Controller scenarios with the expected behavior of

the robot.
23 f. Operate in a manner consistent with the intended

objectives and desired performance.
24 g. Allow for efficient adaptation and response to different

situations in the robot ’s environment.
25

26 6. End Algorithm

Decision Making Scenario

The Decision Making (DM) meta scenario is a pivotal component within our
software system. It receives data from the Controller and Planner modules
in the form of recommendation commands generated by various scenarios,
each with its own assigned priority. These priorities are determined during
scenario implementation. By incorporating priorities into the command rec-
ommendations at their creation, we ensure that the DM scenario can seam-
lessly integrate new scenarios without requiring any modifications. This flex-
ibility enables the addition of new scenarios to the system without disrupting

38 Chapter 4. Proposed Model

the decision-making process. Based on the assigned priorities, the DM sce-
nario takes into account all the recommendation commands and makes the
final decision. It then sends the selected recommendation command to the
robot for execution.
The DM scenario plays a crucial role in our software system, and we have
incorporated a significant feature called the feedback loop. This feedback
loop enables the DM scenario to not only send the recommended command
to the robot for execution but also influence the strategy scenario by sending
what we refer to as a system command. Based on the newly planned strategy,
the system’s behavior can adapt to the current situation. This feedback loop
enhances the dynamic nature of the system by allowing the DM scenario to
influence the strategy scenario. As a result, the decision-making process is
not limited to a one-way flow of commands but incorporates a continuous
loop of information exchange. This facilitates real-time adjustments and en-
sures that the system can respond effectively to changing conditions.

It’s important to note that the other scenarios within our system are un-
aware of the existence of the DM scenario. Each scenario independently gen-
erates its own decision by producing a command recommendation, which is
indirectly transmitted to the DM scenario through the database. This archi-
tecture ensures autonomy and encapsulation of decision-making responsi-
bilities while facilitating efficient communication between the different com-
ponents of the system.

1 Algorithm: DecisionMakingScenarioOperation
2

3 Input:
4 ControllerRecommendations: Data from Controller modules

containing recommendation commands
5 PlannerRecommendations: Data from Planner modules containing

recommendation commands
6 PriorityAssignments: Assigned priorities for each

recommendation command
7 Database: Object representing the shared database for

communication
8 SystemCommand: Object representing the system command

influenced by the DM scenario
9 RobotExecution: Object representing the robot for command

execution
10

11 1. Initialize ControllerRecommendations for receiving data from
Controller modules.

12 2. Initialize PlannerRecommendations for receiving data from
Planner modules.

4.5. Robot Operating System 39

13 3. Initialize PriorityAssignments for assigned priorities for
recommendation commands.

14 4. Initialize Database for efficient communication between
components.

15 5. Initialize SystemCommand for storing the system command
influenced by the DM scenario.

16 6. Initialize RobotExecution for handling command execution by
the robot.

17 7. Create DecisionMakingScenario within the Proactive Engine.
18

19 8. DecisionMakingScenario Operation:
20 a. Receive recommendation commands from

ControllerRecommendations and PlannerRecommendations.
21 b. Receive priority assignments for each recommendation

command.
22 c. Incorporate priorities into command recommendations during

their creation.
23 d. Take into account all recommendation commands and make the

final decision.
24 e. Send the selected recommendation command to RobotExecution

for execution.
25 f. Store the selected recommendation command in SystemCommand

.
26 g. Implement a feedback loop:
27 i. Influence the Strategy Scenario by sending a system

command.
28 ii. Adapt the system ’s behavior to the newly planned

strategy.
29 h. Facilitate real -time adjustments to respond effectively to

changing conditions.
30

31 9. End Algorithm

4.5 Robot Operating System

Within the ROS framework, we seamlessly integrate essential components to
enhance our robotic simulation. Gazebo, a robust robot simulator, becomes
the cornerstone of our simulation environment, delivering an authentic vir-
tual setting that closely mirrors real-world scenarios. To further amplify the
user experience and interaction within this simulation, we employ RViz. This
choice is not without merit, as RViz confers the dynamic capability of altering
the robot’s objectives in real-time, thereby imparting a remarkable flexibility
to our navigation system.

40 Chapter 4. Proposed Model

Our ROS component design features a straightforward configuration, com-
prising two subscribers and one publisher. These components harmoniously
work together to facilitate seamless data flow and efficient control. The sub-
scribers possess distinct roles: one captures Laser scan data from the robot,
with another dedicated to Odometry data. This collective effort accumulates
the data in our database, positioning it for streamlined management and in-
sightful analysis. We deliberately chose to allocate separate subscribers for
different data streams, ensuring a modular approach. This architecture af-
fords the flexibility to effortlessly introduce new data sources as needed, fur-
ther bolstering the extensibility of our system. Conversely, a solitary pub-
lisher plays a pivotal role in our setup. This publisher becomes the conduit
through which final commands from the database are channeled to the robot.
The robot then faithfully interprets and executes these directives, effectively
performing a diverse array of actions. The choice of C++ as the program-
ming language for the ROS segment offers a strategic advantage. It empow-
ers us with fine-grained control over the system, providing the speed and
adaptability necessary for real-time operations and seamless communication
within the expansive ROS ecosystem.

4.6 Conclusion

In this thesis, we addressed the challenge of insufficient separation of con-
cerns in robotic software systems. Our proposed model focused on enhanc-
ing modifiability, reusability, and maintainability by incorporating a Proac-
tive Engine into the navigation system. The model utilized modular scenar-
ios such as Strategy, Planner, Controller, and Decision Making, each with
its own responsibilities and objectives. The integration of a feedback loop al-
lowed for dynamic adaptation and interaction between decision-making and
strategy scenarios. By utilizing a shared database and the ROS framework,
efficient communication and seamless integration were achieved. Overall,
the proposed model provides a flexible framework for developing and man-
aging robotic software systems, promoting modularity and adaptability.

41

Chapter 5

Implementation

5.1 Introduction

In this chapter, we will provide a detailed explanation of the implementation
of our proposed model. In our implementation, as shown in Figure (5.1), we
have established a connection between ROS and Proactive Engine through
a MySQL database.This architecture allows for seamless communication be-
tween ROS and Proactive Engine, enabling the exchange of data and com-
mands in real-time. By utilizing the database as an intermediary, we ensure
reliable and efficient data transfer between the two systems.

The Proactive Engine is an implementation of a rule-based proactive sys-
tem, consisting of several scenarios, each containing condition-action rules.
These scenarios run in parallel, operating independently, and without aware-
ness of each other’s existence, as depicted in Figure (5.2). The detailed design
of the navigation model in the Proactive Engine demonstrates that all scenar-
ios operate concurrently and autonomously, without the need for communi-
cation between them.

FIGURE 5.1: Architecture of the ROS and Proactive Engine im-
plementation with a MySQL database connection.

42 Chapter 5. Implementation

FIGURE 5.2: Navigation Model

5.2. Proactive Engine 43

In our ROS implementation, we utilize subscriber and publisher nodes.
The subscriber nodes receive essential data from the robot and write it into
the database. On the other hand, the publisher node reads data from the
database and sends it to the robot for execution. This setup ensures efficient
data management and seamless communication between the robot and the
database, enabling the robot to perform its tasks effectively based on the re-
ceived data.

Overall, this design promotes modularity and flexibility, allowing for easy
integration of different components and systems within the overall architec-
ture. It also facilitates the implementation of complex functionalities and the
coordination of multiple processes in a distributed environment. Below, you
will find a comprehensive overview of the detailed implementation of our
system.

5.2 Proactive Engine

In our implementation, we have developed a navigation system consisting
of several scenarios and meta-scenarios, each focusing on specific concerns.
These scenarios run in parallel, working collectively to achieve our system’s
objectives. Let’s explore how these scenarios interact and coordinate. In the
Strategy scenario, the planned strategy is selected based on user or system
input. Once determined, the planned strategy is saved in the local database
for future access. The Controller and Planner meta-scenarios can access this
local database, and within their respective meta-scenarios, they activate the
corresponding rules based on the active strategy. Each scenario generates
its recommended command, which is sent to the Decision Making scenario.
In the Decision Making scenario, all the recommended commands from the
Controller, Planner, and other scenarios are considered, along with their as-
signed priorities. The Decision Making scenario evaluates these inputs and
makes the final decision about the command to send for the robot to act on.
The selected command is then sent to the database. This synchronized inter-
action between the different scenarios and meta-scenarios ensures efficient
coordination and seamless decision-making within our navigation system.
By dividing responsibilities and utilizing a local database, our implementa-
tion achieves a modular design.

In the detailed design of the Proactive Engine, depicted in Figure (5.2), all
scenarios operate in parallel and independently, with no awareness of each
other’s existence. This design fosters efficient communication and seamless

44 Chapter 5. Implementation

coordination among the various scenarios. Our implementation comprises of
several essential scenarios, including Strategy, Planner, Controller, and Deci-
sion Making. Each active scenario runs in parallel, generating command rec-
ommendations based on its unique algorithm. This decentralized approach
guarantees efficient and dynamic decision-making, while also preserving a
modular and adaptable system architecture. In the subsequent sections, you
will find a detailed explanation of the implementation of each scenario.

Strategy

In our implementation, the Strategy scenario, as depicted in the proposed
model, offers various pre-defined strategies to control the robot’s behavior.
These strategies include options such as going to the goal point while avoid-
ing obstacles, going to the goal point without considering obstacles, and
checking the robot’s battery level to divert towards the charging station if
necessary. The system can dynamically switch between these behaviors at
runtime without requiring a system relaunch. For instance, if the robot’s
battery level is low, it will autonomously change its direction to reach the
charging station, thereby altering its behavior. Afterward, when the battery
has been charged, the system is able to resume the previous strategy with-
out any intervention. Similarly, if the robot needs to consider obstacles in
its path during runtime, the strategy can be adjusted accordingly. Our sys-
tem is capable of choosing different scenarios based on specific conditions
and rules. These conditions can be derived from the environment or user
input. The feedback loop, as shown in Figure (5.2), allows the Decision Mak-
ing scenario to send a command to the Strategy scenario, enabling a change
in the planned strategy at runtime. The Strategy scenario stores the planned
strategy in local storage, and the meta scenarios can access this data. Con-
sequently, the corresponding scenarios from the Planner and Controller, that
implement the new strategy are activated by their respective meta scenarios.

1 protected void actions Strategy Scenario () {
2 super.actions ();
3

4 if (! MySQLOperations.isResultSetEmpty(this.sysCmdRS)) {
5 Global_Vars.logger.fine("NEW command to change strategy

found. Reacting accordingly !");
6 try {
7 boolean firstTreated = false;
8 this.sysCmdRS.beforeFirst ();
9 while (! sysCmdRS.isClosed () && sysCmdRS.next()) {

10 if (! firstTreated) {

5.2. Proactive Engine 45

11 applyNewSystemCommand(sysCmdRS.getString ("
command "));

12 firstTreated = true;
13 }
14 dataNativeSystem.setCommand2RobotTreated(sysCmdRS.

getLong (" idcommand2robot "));
15 }
16 } catch (final SQLException e) {
17 Global_Vars.logger.warning (" ResultSet not empty , but ’

command ’ field cannot be read !");
18 e.printStackTrace ();
19 }
20 } else {
21 Global_Vars.logger.fine("NEW strategy by user. Reacting

accordingly! Code = " + userStrategyCode);
22 previousStrategyCode = currentStrategyCode;
23 currentStrategyCode = userStrategyCode;
24 }
25

26 dataNativeSystem.changeActiveStrategy(currentStrategyCode);
27 }

1 private void applyNewSystemCommand(final String newCommand) {
2 if (newCommand.compareToIgnoreCase(previousSystemCommand) ==

0) {
3 return;
4 } else {
5 previousSystemCommand = newCommand;
6 }
7

8 switch (newCommand) {
9 case CMD_RESUME:

10 final String swapStrategy = previousStrategyCode;
11 previousStrategyCode = currentStrategyCode;
12 currentStrategyCode = swapStrategy;
13 break;
14 case CMD_BATTSAVE:
15 previousStrategyCode = currentStrategyCode;
16 currentStrategyCode = STRATEGY_CHARGE;
17 break;
18 default:
19 Global_Vars.logger.warning (" Command (CMD) not recognized!

Ignoring ...");
20 previousStrategyCode = currentStrategyCode;
21 currentStrategyCode = STRATEGY_NULL;
22 break;
23 }

46 Chapter 5. Implementation

24 Global_Vars.logger.config (" Strategy is now " +
currentStrategyCode);

25 }

Planner

The Planner scenario plays a crucial role in the system’s implementation by
computing the path based on the start and goal points, guiding the robot
towards its destination. It is the only scenario that knows the goal point.
Notably, there are multiple algorithms available for the Planner module, re-
sulting in different behaviors. For example, one algorithm may prioritize
turning before moving forward, while another may execute both actions si-
multaneously. To ensure efficient operation, the meta-Planner activates only
one Planner scenario at a time, aligned with the chosen strategy. In our imple-
mentation, the "turn&move" scenario is activated, enabling the robot to effi-
ciently reach the designated goal point. Furthermore, we have incorporated a
battery level checking feature within the planner scenario. This functionality
assesses whether the robot needs to modify its path and divert to a charging
station for recharging. By periodically evaluating the battery level, the plan-
ner scenario determines if sufficient charge remains to complete the planned
path. If not, the scenario generates a new system command to change strat-
egy, so that the robot can go to the nearest charging station. After recharging,
the robot resumes its journey towards the goal point. This adaptive behav-
ior allows the robot to proactively address its energy needs and continue
its operation effectively. Moreover, our implementation offers the flexibil-
ity to change the goal point while the robot is in motion or after recharging.
Users or the system can modify the goal point as needed during navigation.
This dynamic capability enhances the overall efficiency and autonomy of the
robot, ensuring intelligent energy resource management and seamless navi-
gation adjustments based on real-time requirements.

1 protected void actions Planner () {
2 super.actions ();
3

4 if (checkpoint.sameCoordinate(robotPosition , TRESHOLD)) {
5 reachedDestination ();
6 } else {
7 final double ThetaWithYaw = checkpoint.calculateAngle(

robotPosition , robotOrientation);
8

9 }
10 selectMovement(ThetaWithYaw);

5.2. Proactive Engine 47

11 }
12

13 createCommandRecommendation(THIS_CMD , P_PARAM_STRING ,
THIS_PRIORITY);

14 }

1 private void selectMovement(final double ThetaWithYaw) {
2

3 THIS_PRIORITY = PRIORITY_DEFAULT; // using the default
priority

4

5 if ((ThetaWithYaw < (-(Math.PI - threshold))) || (
ThetaWithYaw > (Math.PI - threshold))) {

6 THIS_CMD = "M_F";
7 P_PARAM_STRING = "CMD_PARAM_M_F ";
8 } else if ((ThetaWithYaw > (-threshold)) && (ThetaWithYaw <

(threshold))) {
9 THIS_CMD = "M_B";

10 P_PARAM_STRING = "CMD_PARAM_M_B ";
11 } else if ((0 < ThetaWithYaw) && (ThetaWithYaw < (Math.PI)))

{
12 THIS_CMD = "T_R_F ";
13 P_PARAM_STRING = "CMD_PARAM_T_R_F ";
14 } else if ((ThetaWithYaw < 0) && (ThetaWithYaw > -(Math.PI))

) {
15 THIS_CMD = "T_L_F ";
16 P_PARAM_STRING = "CMD_PARAM_T_L_F ";
17 } else {
18 Global_Vars.logger.severe ("Angle not correct! ThetaWithYaw

=" + ThetaWithYaw);
19 return;
20 }
21 }

Controller

In the implementation of the Controller, its main task is to control the robot’s
movement while effectively avoiding obstacles in the environment. The Con-
troller scenario takes charge of the robot’s movement and responds to the sur-
rounding environment. Within our implementation, the Controller includes
a meta-controller scenario that retrieves the planned strategy from local stor-
age and activates corresponding scenarios based on the expected behavior of
the robot. Depending on the strategy, multiple Controller scenarios can be
activated simultaneously. In our implementation, scenarios like "avoid and

48 Chapter 5. Implementation

move to the left" and "avoid and move to the right" are available. These cho-
sen scenarios can be dynamically changed at runtime, depending on specific
conditions and requirements. This dynamic selection of Controller scenar-
ios ensures effective obstacle avoidance and adaptability during the robot’s
navigation.

1 protected void actions Controller () {
2 super.actions ();
3

4 long cmd = 0;
5 String PARAM_STRING = null;
6

7 if (((range [0] >= 0) && (range [0] < OBJ_DISTANCE))
8 || ((range [19] >= 0) && (range [19] < OBJ_DISTANCE))
9 || ((range [16] >= 0) && (range [16] < OBJ_DISTANCE))) {

10 PARAM_STRING = ParametersData.getInstance ().
getParameterValueByName(P_PARAM_STRING_R);

11 cmd = CommandList.getInstance(getDataNativeSystem ()).
getCommandIdByName(THIS_CMD_R);

12 } else if (((range [0] >= 0) && (range [0] < this.OBJ_DISTANCE
))

13 || ((range [1] >= 0) && (range [1] < OBJ_DISTANCE))
14 || ((range [4] >= 0) && (range [4] < OBJ_DISTANCE))) {
15 PARAM_STRING = ParametersData.getInstance ().

getParameterValueByName(P_PARAM_STRING_L);
16 cmd = CommandList.getInstance(this.getDataNativeSystem ()).

getCommandIdByName(THIS_CMD_L);
17 } else if (((range [1] > OBJ_DISTANCE) && (range [19] >

OBJECT_DISTANCE_LESS))
18 || (range [5] < OBJECT_DISTANCE_LESS) || (range [15] <

OBJECT_DISTANCE_LESS)
19 || (range [7] < OBJECT_DISTANCE_LESS) || (range [13] <

OBJECT_DISTANCE_LESS)) {
20 PARAM_STRING = ParametersData.getInstance ().

getParameterValueByName(P_PARAM_STRING_FWR);
21 cmd = CommandList.getInstance(getDataNativeSystem ()).

getCommandIdByName(THIS_CMD_FWD);
22 }
23

24 if (cmd != 0) {
25 final CommandRecommendation newCR = new

CommandRecommendation(PRIORITY , cmd , PARAM_STRING ,
26 getEngine ().getIterationCount (), toString (),

getDataNativeSystem ());
27 newCR.saveDataToDB ();
28 }

5.2. Proactive Engine 49

29 }

Decision Making

Finally, we have the Decision Making(DM) scenario, responsible for reading
recommendation commands and priority levels from the active Controller,
Planner, and Recovery scenarios. It plays a crucial role in making the fi-
nal decision based on the priorities and types of each active scenario, ulti-
mately sending the command to the robot for execution. In this process, the
decision-making scenario also dynamically influences the planned strategy
by sending commands to the strategy scenario.

Let’s now turn our attention to the third research question: "How can
effective management of conflict handling be achieved in proactive decision-
making scenarios, particularly when conflicting recommendations emerge
from distinct, independently objective-based situations?" Additionally, we’ll
explore our fourth research question: "How can intelligent and self-managing
behavior be formulated and put into action within the system, so as to tackle
our third research question? This involves facilitating dynamic changes in
strategy".

The feedback loop, as shown in Figure (5.2), illustrates the bidirectional
flow of information between the decision-making scenario and the strategy
scenario. This feedback loop enables real-time adjustments to the planned
strategy, accommodating changing conditions and system requirements.

One advantage of our implementation lies in the assignment of priorities
to all scenarios within the Planner, Controller, and Recovery modules dur-
ing creation. This design facilitates the addition of new scenarios to these
modules without the need for modifications to the DM scenario. The in-
corporation of rules and strategies that can be dynamically applied to the
robot’s behavior during runtime makes our implementation highly adapt-
able and efficient. The feedback loop further allows for the selection of dif-
ferent strategies, resulting in entirely different behaviors without requiring
code modifications during runtime [Chaychi, Zampunieris, and Reis, 2023].

Our implementation offers a robust solution, ensuring the system’s effec-
tive response to changing circumstances without the need for code changes
or system relaunches. The ability to dynamically adjust behavior using dif-
ferent rules and strategies at runtime enhances the system’s adaptability and
performance. This dynamic behavior allows for real-time changes during
runtime, providing greater flexibility and efficiency to the overall system.

1

50 Chapter 5. Implementation

2 protected void actions Decision Making () {
3 super.actions ();
4 saveLatestRcmdToDB(robotRcmdList);
5 saveLatestRcmdToDB(systemRcmdList);
6 }
7

8 private void saveLatestRcmdToDB(final CommandRcmdList
rcmdList) {

9 boolean firstTreated = false;
10 final Iterator <CommandRecommendation > crListIterator =

rcmdList.getList ().iterator ();
11 while (crListIterator.hasNext ()) {
12 final CommandRecommendation rcmd = crListIterator.next();
13 Global_Vars.logger.finest(rcmd.toString ());
14 if (! firstTreated) {
15 saveCommands2Robot(rcmd);
16 firstTreated = true;
17 }
18 rcmd.setTreated ();
19 }
20 }
21

22 protected boolean rulesGeneration () {
23 createRule(this);
24 printCommands2Robot ();
25 return true;
26 }

5.3 Database

In our MySQL database, we have several tables for efficiently storing data
from both the ROS and Proactive Engine components. two tables are dedi-
cated to storing data from LaserScan and Odometry received from the robot.
These tables captures essential sensor information, such as distance measure-
ments and robot pose, facilitating accurate navigation and mapping. On the
other hand, we have separate tables for "command_recommendation" and
"command2robot," which are utilized by the Decision Making process and
saved to the database by the Proactive Engine. You can see our command
tables in the Figure 5.3. These tables contain the final command recommen-
dations and commands sent to the robot for execution, ensuring smooth and
effective operation based on the system’s decision-making process. To en-

5.3. Database 51

FIGURE 5.3: Command

52 Chapter 5. Implementation

hance communication between ROS and the Proactive Engine, we have im-
plemented rules and conditions within the database. These rules serve as
guidelines for data exchange and enable seamless coordination between the
different components. By employing a structured database approach, we
ensure efficient data management and communication, contributing to the
overall effectiveness and reliability of our system.

5.3.1 Data from ROS

In our implementation, we subscribe to data from the robot, specifically Odom-
etry and LaserScan data, and store it in our MySQL database regularly. This
data is crucial for the system’s operation and allows for efficient retrieval and
analysis when making decisions and generating appropriate commands for
the robot.

Odometry

Odometry is a crucial component in robotics, representing an estimate of
the robot’s position and velocity in free space. The pose information in the
Odometry message is specified in the coordinate frame given by the header.fr
ame_id. This frame provides context for interpreting the position and orien-
tation of the robot. Additionally, the twist information in the Odometry mes-
sage is specified in the coordinate frame given by the " child_frame_id. " The
"child_frame_id" frame is used to define the robot’s movement, capturing its
linear and angular velocity.

In the Odometry message, the header contains essential metadata such
as the timestamp ("stamp") and frame ID ("odom"). The child_frame_id sec-
tion holds the position and orientation information, representing the robot’s
pose in the specified coordinate frame. The twist section contains data on the
linear and angular velocity, reflecting the robot’s movement in the specified
coordinate frame. By combining these components, the Odometry message
provides valuable insights into the robot’s position, velocity, and movement
within the given coordinate frames. This information is fundamental for nav-
igation, mapping, and control tasks in robotic systems The example format
of Odometry data is as follows:

1 header:
2 stamp:
3 sec: 3516
4 nanosec: 858000000
5 frame_id: odom

5.3. Database 53

6 child_fram_id: base_footprint
7 pose:
8 pose:
9 position:

10 x: 0.5220085108172701
11 y: 0.5009689100135933
12 z: 0.008716563288815664
13 orientation:
14 x: 0.000116762304784384
15 y: 0.0007713307381056864
16 z: -0.13695340825999733
17 w: 0.990577182950136
18 covarience:
19 ...
20 twist:
21 twist:
22 linear:
23 x: 5.831598723866704e-05
24 y: 2.6196281658887204e-06
25 z: 0.0
26 angular:
27 x: 0.0
28 y: 0.0
29 z: -0.0002702359079858924
30 covariance:
31 ...

LaserScan

In the LaserScan data, we have a header that includes essential information
such as the timestamp for the acquisition time of the first ray in the scan and
the frame ID, which is labeled as "laser sensor link." The angular measure is
taken around the position Z-axis, with a counterclockwise direction (assum-
ing Z is up) and the zero angle representing forward along the X-axis.

There are several parameters that define the characteristics of the Laser-
Scan. "angle_min" indicates the starting angle of the scan in radians, while
"angle_max" represents the ending angle of the scan in radians. The "an-
gle_increment" parameter specifies the angular distance between consecu-
tive measurements in radians. The "time_increment" parameter denotes the
time between individual measurements in seconds and is used for interpo-
lating the position of 3D points when the scanner is in motion. Additionally,
"scan_time" indicates the time between consecutive scans in seconds.

54 Chapter 5. Implementation

For the actual laser measurements, we have "range_min" and "range_max"
parameters, which define the minimum and maximum range values that the
scanner can detect. The "ranges" data contains the measured distances from
the scanner to the detected objects. Lastly, the "intensities" parameter holds
the intensity data, which might be empty if the scanner does not provide
intensity information. The example format of LaserScan data is as follows:

1 header:
2 seq:5
3 stamp:
4 secs: 2829
5 nsecs: 69000000
6 frame_id: "laser_sensor_link"
7 angle_min: -1.57079994678
8 angle_max: 1.57079994678
9 angle_increment: 0.00436940183863

10 time_increment: 0.0
11 scan_time: 0.0
12 range_min: 0.10000000149
13 range_max: 30.0
14 range: [inf ,... ,2.46343994140625 ,... , inf]

5.3.2 Data from Proactive Engine

In our MySQL database, we have multiple tables dedicated to the Proactive
Engine’s functionalities. Each scenario within the Proactive Engine has its
own table for storing the chosen strategies and recommendations. These ta-
bles capture the recommended actions generated by each scenario, enabling
a comprehensive view of the system’s decision-making process.

Furthermore, we have a separate table named "command2robot," which
serves as the final destination for the decision-making process. Once the De-
cision Making scenario makes its final decision, it sends the corresponding
command to the "command2robot" table within the database. From there,
the command is retrieved by the database and transmitted to the robot for
execution.

5.4 Robot Operating System

In our ROS implementation, we utilize the latest version, ROS Foxy, to take
advantage of its updated features and capabilities.

5.4. Robot Operating System 55

FIGURE 5.4: Local Storage

Our system consists of both subscriber and publisher nodes for effective com-
munication with the robot and the database.
To ensure separation of concerns, we have two subscriber nodes: one for
receiving LaserScan data and another for Odometry data. The LaserScan
subscriber processes the data and extracts the essential range information,
which is then saved into the corresponding table in the database. On the
other hand, the Odometry subscriber receives data and stores the position,
orientation, twist linear, and angular information into the appropriate table
in the database.
In the publisher node, we read the commands from the database and con-
vert them into the required twist format, represented as [Linear.X, Linear.Y,
Linear.Z; Angular.X, Angular.Y, Angular.Z]. The transformed commands are
then published to the robot, enabling it to execute the desired actions based
on the received commands.
By using ROS Foxy and structuring the communication between the sub-
scriber, publisher, and the database, we ensure efficient data exchange and
seamless interaction with the robot. This implementation allows for smooth
operation and effective control of the robot’s movements and behaviors.

57

Chapter 6

Comparison

6.1 Introduction

In order to evaluate the outcomes of our implementation, we will perform a
comparative analysis between our solution and Navigation 2. This analysis
will encompass several aspects, such as compile time, runtime, code modifi-
cation and extension, and dynamic system changes.

Software metrics play a pivotal role in facilitating comparison, enabling a
comprehensive assessment of diverse aspects of software. In the scope of my
thesis, which emphasizes code extension, reusability, and maintenance, the
comparison with Navigation 2 involves scrutinizing code complexity, qual-
ity, and performance metrics. The researched metrics encompass size[Nguyen
et al., 2007], complexity[Henderson-Sellers, 1995], coupling, cohesion[Cai et
al., 2014], maintainability[Abdullah, 2017], reliability, performance, and se-
curity[Lee, 2014]. Additionally, dynamic coupling metrics[Arisholm, Briand,
and Foyen, 2004], dynamic cohesion, and dynamic complexity are consid-
ered in our research [Kumar Chhabra and Gupta, 2010].

In our meticulous examination of software metrics, we explore their prac-
tical applications in both C++ and Java, aligning with our chosen program-
ming languages for the robot and Proactive Engine parts. For C++, tools
like Datadog1, and CodeMR2 stand out as exemplary choices for measur-
ing various code quality aspects, providing detailed analyses of complexity,
coupling, cohesion, and maintainability within the C++ codebase. On the
Java side SonarQube3, Eclipse4, Datadog and CodeMR remain robust tools
for comprehensive code analysis, showcasing their adaptability across dif-
ferent programming languages and contributing to a thorough examination

1https://www.datadoghq.com/
2https://www.codemr.co.uk/
3https://www.sonarqube.org/
4https://www.eclipse.org/

58 Chapter 6. Comparison

of Java code, ensuring consistent metric measurements across the entire soft-
ware system.

For our chosen software metrics, CodeMR is utilized for compile-time
analysis, offering valuable insights into the code structure during compila-
tion. Its versatility in handling both C++ and Java makes it suitable for our
hybrid system. Datadog takes the spotlight for run-time metrics, providing
real-time monitoring and performance analysis. Its compatibility with both
C++ and Java enables a holistic evaluation of the system’s performance and
behavior during execution.

Through the utilization of these tools, we aim to conduct a robust compar-
ison between our system and Navigation 2, ensuring effective measurement
and analysis of chosen metrics in both programming languages. The com-
bined use of CodeMR and Datadog, along with other supporting tools, forms
a comprehensive approach to evaluating our system’s codebase, reusabil-
ity, and maintenance against the industry-standard Navigation 2. Within
these software metrics, specific additional metrics are considered, allowing
for a detailed measurement and comparison of our system with Navigation
2. Subsequent sections provide a detailed explanation of each software tool
and its associated software metrics.

For comparing the compile time, we will utilize the CodeMR5 tool, while
the runtime analysis will be utilized using Datadog6. These tools will offer
valuable insights into the performance and behavior of both software sys-
tems. By utilizing CodeMR and Datadog, our objective is to gain a compre-
hensive understanding of the similarities and differences between the two
systems in terms of their compilation and execution processes.

6.2 Compile Time

We have used the CodeMR software tools to compare our system with Nav-
igation 2 during the compilation phase. All definitions and synonyms used
in this section are sourced from the official CodeMR webpage. CodeMR is
a robust software quality and static code analysis tool that helps software
companies develop high-quality products with improved code. It allows us
to visualize code metrics and high-level quality attributes such as Coupling,
Lack of Cohesion, Complexity, and Size for both C++ and Java. Since our

5https://www.codemr.co.uk/
6https://www.datadoghq.com/

6.2. Compile Time 59

Proactive Engine is implemented in Java and Navigation 2 is implemented
in C++, and CodeMR supports both programming languages, we have cho-
sen to utilize this tool for analysis and comparison purposes.

6.2.1 Software Quality Attributes

External quality of software refers to the noticeable problems that arise, while
the true causes lie within the internal quality attributes. These internal at-
tributes include various factors, but coupling, complexity, cohesion, and size
are the key elements that strongly influence the overall quality of a software
system(Quoted from the CodeMR webpage).

Coupling

In software engineering, coupling refers to the degree of interdependence
between software modules. It is a measure of how closely connected two
routines or modules are, and represents the strength of the relationships be-
tween them7.

Coupling between two classes, A and B, can occur in several ways, includ-
ing when A has an attribute that refers to B, A calls on services of an object B,
A has a method that references B (via return type or parameter), A has a local
variable of type B, or A is a subclass of (or implements) class B. Tightly cou-
pled systems typically exhibit the following characteristics: changes made to
one class usually force a ripple effect of changes in other classes, which can
require more time and effort due to the increased dependency. Moreover,
tightly coupled systems may be harder to reuse because dependent classes
must also be included.

CodeMR software tools use the Coupling Between Object Classes (CBO)
as the basis for measuring coupling. CBO is calculated by counting the num-
ber of other classes that use the attributes or methods of a given class, as well
as the number of classes whose attributes or methods are used by the given
class. Inheritance relations are excluded from this calculation (Quoted from
the CodeMR webpage). High coupling can make the code more difficult to
maintain because changes made to other classes can also cause changes in

7https://en.wikipedia.org/wiki/Coupling_(computer_programming)

60 Chapter 6. Comparison

the given class. Moreover, highly coupled classes are less reusable and re-
quire more testing effort. The levels of Coupling Between Objects (CBO) can
be categorized into five different groups:

• Low: CBO <= 5

• Low medium: (CBO < 5) AND (CBO <= 10)

• Medium high: (CBO > 10) AND (CBO <= 20)

• High: (CBO > 20) AND (CBO <= 30)

• Very high: CBO > 30

Lack of Cohesion

Cohesion refers to the measure of how well the methods of a class are related
to each other. High cohesion (low lack of cohesion) is generally preferred
because it is associated with several desirable traits of software, including
robustness, reliability, reusability, and understandability. In contrast, low co-
hesion is associated with undesirable traits such as difficulty in maintaining,
testing, reusing, or understanding the code(Quoted from the CodeMR web-
page).

LCOM (Lack of Cohesion of Methods) is a metric used to evaluate the co-
hesion of a class. Low cohesion means that the class implements more than
one responsibility, and a change request for one responsibility will result in
changes to the entire class. Lack of cohesion also affects understandability
and implies that classes should be split into two or more subclasses. LCOM3
is a variation of LCOM and is defined as follows:

LCOM3 = (m − sum(mA)/a)/(m − 1)

Where m is the number of methods in the class, a is the number of variables
in the class (both shared and non-shared), and mA is the number of methods
that access a variable. LCOM3 varies between 0 and 2, and values between 1
and 2 are considered alarming. In a normal class, LCOM3 varies between 0
(high cohesion) and 1 (no cohesion). LCOM3=0 indicates the highest possi-
ble cohesion, where each method accesses all variables. LCOM3=1 indicates
extreme lack of cohesion, and in this case, the class should be split.

If there are variables that are not accessed by any of the class’s methods,
LCOM3 will be greater than 1. This indicates a design flaw, and the class

6.2. Compile Time 61

is a candidate for rewriting as a module. Alternatively, the class variables
should be encapsulated with accessor methods or properties, and dead vari-
ables should be removed. If there is only one method in a class, LCOM3 is
undefined. If there are no variables in a class, LCOM3 is also undefined, and
it is displayed as zero8.

The levels of cohesion can be classified into five categories based on their
numerical values. These categories are as follows:

• Low: LCAM <= 0.6

• Low medium: (LCAM > 0.6) AND (LCAM <= 0.7)

• Medium high: (LCAM > 0.7) AND (LCAM <= 0.8)

• High: (LCAM > 0.8) AND (LCAM <= 0.9)

• Very high: LCAM > 0.9

Complexity

Complexity can be measured using several metrics, including Weighted Meth
od Count (WMC), Response For a Class (RFC), and Depth of Inheritance Tree
(DIT). WMC is the weighted sum of all methods in a class, where the com-
plexity of each method is usually taken as 1. A high WMC indicates a more
complex class, which can increase development, maintenance, and testing
effort. Inheritance can also affect WMC, as all methods in the base class are
represented in its child classes. Highly domain-specific classes with a high
number of methods are less reusable and tend to be more prone to defects
and changes.

RFC measures the number of methods that can potentially be invoked in
response to a public message received by an object of a particular class. If the
RFC value is high, the class is considered more complex and may be highly
coupled to other classes, requiring more testing and maintenance effort.

DIT indicates the position of a class in the inheritance tree, with a 0 value
for root and non-inherited classes. For multiple inheritance, the metric shows
the maximum length. Deeper classes in the inheritance tree may be more
complex to develop, test, and maintain, as their behavior is harder to predict
(Quoted from the CodeMR webpage).

To interpret these metrics, we can use the following scale:

• Low: (WMC <=20) OR (RFC <= 50) OR (DIT <=1)
8https://www.aivosto.com/project/help/pmoo-cohesion.html.LCOM4

62 Chapter 6. Comparison

• Low medium: (20 < WMC <= 50) OR (50 < RFC <= 100) OR (1 < DIT <=
3)

• Medium high: (50 < WMC <= 101) OR (100 < RFC <= 150) OR (3 < DIT
<= 10)

• High: (101 < WMC <= 120) OR (150 < RFC <= 200) OR (10 < DIT <= 20)

• Very high: (WMC > 120) OR (RFC > 200) OR (DIT > 20)

Size

Size is an important aspect of software quality, and two common metrics
used to measure it are Line of Code (LOC) and Number of Methods (NOM).

LOC measures the number of nonempty, non-commented lines of code
in the body of a class. A high LOC can indicate a more complex class and
increase the potential for errors.

NOM measures the number of methods in a class. A high NOM can also
indicate a more complex class, which can lead to more difficult maintenance
and testing (Quoted from the CodeMR webpage).

To interpret these metrics, we can use the following scale:

• Low: (LOC < 50) OR (NOM <= 20)

• Low medium: (50 < LOC 300) OR (20 < NOM <= 30)

• Medium high: (300 < LOC <= 900) OR (30 < NOM <= 40)

• High: (900 < LOC <= 1500) OR (40 < NOM <= 50)

• Very high: (LOC > 1500) OR (NOM > 50)

6.2.2 Exploring Attribute Visualizations

CodeMR provides various visualizations, including Overview, Metric Dis-
tribution, Package Structure, Sunburst, Package Dependency, TreeMap, and
Project Outline. Our plan is to utilize these visualizations to compare two
systems by displaying their respective visual representations (Quoted from
the CodeMR webpage). As depicted in Figure (6.1), the color of the chart
shapes corresponds to the metric of the respective software entity. Metrics
are categorized into five levels: low, low-medium, medium-high, high, and
very-high. The use of red indicates a high value for the selected metric, while
the use of green represents the lowest values.

6.2. Compile Time 63

FIGURE 6.1: Low -> High

Overview

The Overview tab in the codeMR model editor provides general information
about the extracted project, including the total number of lines of code, num-
ber of classes, number of packages, number of problematic classes, and num-
ber of highly problematic classes. Furthermore, the tab presents a pie chart
that shows the percentage of metric levels for the selected metric, propor-
tional to the code size of the classes in each level. Our results show that we
have selected C3, which represents the coupling, cohesion, and complexity
quality attributes and has the maximum value across the coupling, cohesion,
and complexity matrices (Quoted from the CodeMR webpage). In the fig-
ure(6.2) you see the result of proactive engine and in the figure (6.3) you see
the result of Navigation 2.

FIGURE 6.2: Overview Analysis of Proactive Engine

Based on the provided figures for the Proactive Engine and Navigation 2,
it is noticeable that the Proactive Engine project has significantly fewer lines
of code compared to the Navigation 2 project. Specifically, the Proactive En-
gine project consists of 1722 lines of code, while navigation2 has 9387 lines

64 Chapter 6. Comparison

FIGURE 6.3: Overview Analysis of Navigation 2

of code. This makes the Proactive Engine project approximately five times
smaller than Navigation 2. In terms of the C3 metric, which measures cou-
pling, complexity, and cohesion, the Proactive Engine project demonstrates a
relatively low level of complexity. Only 14.7% of the project falls under the
medium-high C3 category. On the other hand, Navigation 2 exhibits a higher
level of C3, with 21.4% categorized as medium-high, 9.3% as high, and 8% as
very high C3.

Metric Distribution

The Metric Distribution Tab displays the percentage of metric levels for each
metric in pie charts. The size of the pie chart slices is proportional to the code
size of the corresponding classes for each level. This visualization provides a
detailed chart for Complexity, Coupling, Lack of Cohesion, and Size. In the
figure(6.4) you see the result of Proactive Engine and in the figure (6.5) you
see the result of Navigation 2.

Based on the provided figure comparing the Proactive Engine and Nav-
igation 2 projects, it is noticeable that the proactive engine project performs

6.2. Compile Time 65

FIGURE 6.4: Metric Distribution of Proactive Engine

significantly better than the Navigation 2 project. Specifically, in terms of
complexity, the Proactive Engine project has a low percentage of medium-
level complexity, with the majority of the project having low and low-medium
complexity. On the other hand, Navigation 2 has 8% very high complexity
and 13.5% medium-level complexity. In terms of coupling, the Proactive En-
gine project has only 4.1% medium-high coupling, with the rest having low
and low-medium coupling. In contrast, Navigation 2 has 6.1% medium-high
coupling. Regarding lack of cohesion, the Proactive Engine project has 8.9%
medium-high level of lack of cohesion, while Navigation 2 has 9.3% high and
18.1% medium-high level of lack of cohesion. Finally, concerning project size,
the proactive engine project has a low and medium-low size, while Naviga-
tion 2 has a high size of 3.6% and a medium-high size of 18.7%.

Package Structure

The Package Structure feature is a visual representation of a project’s pack-
ages and encapsulated classes displayed in a hierarchical manner using a
circle pack layout. This feature has several properties, including circle sizes
that are proportional to the size of the represented software entity, and circle

66 Chapter 6. Comparison

FIGURE 6.5: Metric Distribution of Navigation 2

6.2. Compile Time 67

FIGURE 6.6: Package Structure of Proactive Engine

68 Chapter 6. Comparison

colors that represent the level of the selected metric. Additionally, when the
Metric Chart option is selected, hovering over a class displays its metrics in
the CodeMR Metric Chart. The Package Structure feature is also zoomable,
allowing users to change the zoom level by clicking the circles. Overall, this
feature provides a comprehensive and visually appealing way to understand
a project’s package structure and metrics (Quoted from the CodeMR web-
page).

FIGURE 6.7: Package Structure of Navigation2

Based on the provided figures for the Proactive Engine and Navigation
2, Figure (6.6) illustrates the package structure and encapsulated packages of
the Proactive Engine, taking into account the C3 metric, which measures cou-
pling, complexity, and cohesion. Figure (6.7) depicts the package structure
and encapsulation in Navigation 2. In terms of size, the "nav2_navfn_planner"
package stands out as the largest package in both Navigation 2 and the Proac-
tive Engine. However, the other classes in Navigation 2 are either similar in
size or smaller when compared to the Proactive Engine. When considering
complexity levels indicated by colors, Navigation 2 exhibits a very high com-
plexity in the "nav2_navfn_planner" package. Additionally, there are three

6.2. Compile Time 69

other package with high complexity. In contrast, the Proactive Engine does
not have any packages with very high or high complexity.

Sunburst

The Sunburst view is a useful tool for displaying hierarchical data. It uses a
radial layout, with the root node of the tree at the center and leaves on the
circumference. The angle of each arc corresponds to the size (in lines of code)
of the elements it represents. Users can select class, package, and project met-
rics separately. The Sunburst view has several properties, including angles
that are proportional to the size of the represented software entity and colors
that represent the level of the selected metric. When the Metric Chart option
is selected, hovering over a class displays its metrics in the CodeMR Metric
Chart. The Sunburst view is also zoomable, allowing users to change the
zoom level by clicking the arcs (Quoted from the CodeMR webpage). In the
figure(6.8) you see the result of Proactive Engine and in the figure (6.9) you
see the result of Navigation 2.

FIGURE 6.8: Sunburst Chart of Proactive Engine

70 Chapter 6. Comparison

FIGURE 6.9: Sunburst Chart of Navigation 2

Based on the provided figures comparing the Proactive Engine, and Nav-
igation 2, the Sunburst charts offer more detailed information about each
class, including their hierarchical relationships. In the Proactive Engine Sun-
burst chart, the "proactivity" package stands out with a medium-high C3
level. Clicking on each class provides a more detailed analysis within the
chart. In the Navigation 2 project, the "nav2_navfn_planner" package ex-
hibits a very high C3 level, and there are several other packages with high
and medium-high C3 levels as well.

Package Dependency

The Package Dependency view arranges packages radially, connecting them
with thick curves. The thickness of the curve represents the frequency of
relations between two packages. If a chord is tapered, it indicates that there
are more relations from a given package compared to the relations it receives.
In the CodeMr software, by hovering over the chord between packages, you

6.2. Compile Time 71

FIGURE 6.10: Package Dependency of Proactive Engine

72 Chapter 6. Comparison

can view the number of relations in the tooltip (Quoted from the CodeMR
webpage).

FIGURE 6.11: Package Dependency of Navigation2

Based on the provided figures comparing the dependency of Proactive
Engine and Navigation 2, it is evident that the packages in Navigation 2 have
a higher level of dependency. Each package in Navigation 2 relies on mul-
tiple other packages. On the other hand, it is worth noting that Proactive
Engine has fewer packages, and each package has fewer dependencies.

TreeMap

A TreeMap is a visualization technique used to represent software entities
based on their size, typically measured in lines of code. It divides an area
into rectangles, with each rectangle representing a software entity. The size
of the rectangle corresponds to the size of the entity it represents. A key
feature of TreeMap is that the area of each rectangle is proportional to the

6.2. Compile Time 73

FIGURE 6.12: TreeMap of Proactive Engine

entity’s size. The color of the rectangles indicates the level of a selected met-
ric, making it easy to identify areas that need attention. If the Metric Chart
option is chosen, hovering over a class provides access to its metrics in the
CodeMR Metric Chart. One advantage of TreeMap is its zoom capability, al-
lowing users to change the zoom level by clicking on the rectangles. This
enables detailed examination or a broader overview of the entire software
system. Overall, TreeMap is an effective visualization tool for analyzing com-
plex software systems and identifying areas that require further investigation
(Quoted from the CodeMR webpage). In the figure(6.12) you see the result
of Proactive Engine and in the figure (6.13) you see the result of Navigation 2.

Based on the provided figures comparing the Proactive Engine and Navi-
gation 2 using the TreeMap visualization, the size of the rectangles represents
lines of code. Considering the figure and our previous measurements of size,
it is noticeable that the Proactive Engine outperformed ROS. In terms of the
color of the rectangles, it is worth noting that Navigation 2 has a considerable
amount of C3, with several instances of high and medium-high levels. How-
ever, in the Proactive Engine, we only have a few medium-level instances of
C3.

74 Chapter 6. Comparison

FIGURE 6.13: TreeMap of Navigation2

Project Outline

The Outline view presents the quality attributes and metrics of software el-
ements in a structured tree table. This view allows you to sort the elements
by different metrics and quality attributes, enabling you to quickly identify
problematic elements. Additionally, you can easily jump to the source code
of any selected element. This feature helps in the speedy resolution of issues
and improves the overall quality of the software system (Quoted from the
CodeMR webpage).

In the figure(6.14) you see the result of Proactive Engineand in the figure
(6.15) you see the result of Navigation 2.

FIGURE 6.14: Project Outline of Proactive Engine

Based on the provided figures and comparing the Proactive Engine and
Navigation2 using the project outline view, the results are consistent with the

6.3. Runtime 75

FIGURE 6.15: Project Outline of Navigation 2

previous view.

6.2.3 Summary

In conclusion, the comparison between the Proactive Engine and Navigation
2 revealed significant differences in terms of code size, complexity, coupling,
and lack of cohesion. The Proactive Engine project had a significantly smaller
codebase and demonstrated lower complexity levels, with a lower percent-
age of medium-high complexity, coupling, and lack of cohesion compared to
Navigation 2. The project size of the Proactive Engine was also relatively
smaller. The figures and visualizations further supported these findings,
showcasing the differences in package structures, class sizes, and C3 levels
between the two projects. Overall, the Proactive Engine outperformed Navi-
gation 2 in terms of codebase efficiency and complexity management.

6.3 Runtime

We utilized Datadog software tools to analyze our system with Navigation
2 in runtime. The runtime measurements were conducted on a PC Dell sys-
tem featuring an Intel Core i7 6700 processor with 8 threads and 16 GB of

76 Chapter 6. Comparison

RAM. The experiments were executed under the Ubuntu 20.04 LTS operat-
ing system for consistent runtime assessments. Datadog is an essential plat-
form that focuses on monitoring and enhancing the security of cloud appli-
cations. By integrating end-to-end traces, metrics, and logs, it offers compre-
hensive observability for your applications, infrastructure, and third-party
services. These powerful capabilities enable businesses to effectively secure
their systems, minimize downtime, and optimize the overall user experience
for their customers (Quoted from the Datadog webpage). To launch Data-
dog, we need to run the Datadog Agent9, which is a software that runs on
our host. It is an open-source tool available on GitHub. The Datadog Agent
collects events and metrics from the host and sends them to Datadog, where
we can analyze and monitor the data. Datadog can be accessed through a
web browser for data monitoring. Using Datadog, we conducted measure-
ments for CPU usage, CPU usage by process, and memory usage. To ensure
accuracy, we performed 10 measurements for each metric. However, for pre-
sentation purposes, we are showcasing a typical single execution. Below, you
will find the results and a comparison between the proactive engine and nav-
igation 2 based on these measurements.

6.3.1 CPU Usage

CPU time refers to the duration during which a central processing unit (CPU)
is actively engaged in processing instructions for a computer program or op-
erating system. It specifically focuses on the time dedicated to executing pro-
gram instructions, excluding factors such as waiting for input/output (I/O)
operations or entering low-power (idle) mode. CPU time is typically mea-
sured in clock ticks or seconds. To gauge the efficiency of CPU utilization,
it is often valuable to express CPU time as a percentage of the CPU’s total
capacity. This measurement is referred to as CPU usage and indicates the
proportion of time the CPU is actively performing tasks relative to its max-
imum capability. By monitoring CPU usage, one can gain insights into the
workload and effectiveness of the CPU in executing instructions[Ehrhardt,
2010]

To measure the CPU usage of the Proactive Engine, the following steps
were taken:

1. The Datadog agent was launched at 10:45 minutes.

9https://docs.datadoghq.com/agent/

6.3. Runtime 77

2. A waiting period of 5 minutes was observed to ensure system stability.

3. At 10:50, Gazebo (simulation software) and Eclipse (IDE) to run the
Proactive Engine were launched.

4. Also, as part of our implementation, we utilized ROS so at this point
ROS nodes were launched to facilitate the exchange of data between
ROS and the Proactive Engine through a database.

FIGURE 6.16: CPU Usage of Proactive Engine

In the figure (6.16), it can be observed that within less than a minute, the
entire system was up and running. The maximum CPU usage recorded was
82.17%. The figure also demonstrates that the CPU usage remained relatively
stable throughout the execution. The system continued to run for approxi-
mately 3 minutes before the Datadog agent was stopped, and the results were
obtained. In Figure (6.16), an overview of Proactive Engine is provided, de-
picting three layers. Starting from the top, the light blue layer represents the
CPU usage of the system. The middle layer represents the CPU usage for
I/O wait. Finally, the dark blue layer represents the CPU usage of the user.
However, in Figure (6.16), determining the precise process that consumes
a certain percentage of the user’s CPU usage can be challenging due to the
representation of usage in a single color.

To measure the CPU usage of the Navigation 2, the following steps were
taken:

1. The Datadog agent was launched at 12:25 minutes.

78 Chapter 6. Comparison

2. A waiting period of 5 minutes was observed to ensure system stability.

3. At 12:30, the launch file for Navigation2 was executed. This launch
file included the launching and connection of Gazebo and RViz. Once
these components were successfully connected, it became possible to
select the goal for the robot.

In the figure (6.17), it is notable that although the launch file was executed
at 12:30, it took nearly 2 minutes for the entire system to fully initialize and
become operational. The maximum recorded CPU usage for Navigation 2
was 75.76%. The figure also illustrates the fluctuation in CPU usage immedi-
ately after the system was launched, with a subsequent stabilization. Same
as the Proactive Engine, the Navigation 2 system also continued to run for 3
minutes before stopping the Datadog agent and obtaining the results.
In figure (6.17), an overview of the Navigation 2 system is presented, show-
casing two layers. The light blue layer represents the CPU usage of the sys-
tem, while the dark blue layer represents the CPU usage of the user. As men-
tioned earlier, it remains challenging to determine which specific processes
account for various percentages of CPU usage.
In Figures (6.18) and (6.19), a detailed analysis is presented, illustrating the

FIGURE 6.17: CPU Usage of navigation 2

breakdown of CPU usage by process in Figure (6.16) and Figure (6.17) re-
spectively. These figures offer a comprehensive overview of the percentage
of CPU usage allocated to each process, making it easier to identify the spe-
cific processes responsible for the user’s CPU usage.

6.3. Runtime 79

FIGURE 6.18: CPU Usage by process of Proactive Engine

80 Chapter 6. Comparison

Figure (6.18) presents a comprehensive breakdown of CPU usage in the
proactive engine. By examining the figure from the top, we can identify the
main processes responsible for consuming CPU resources. These processes
are "My notify start", "Xorg", "Firefox", "Firefox", "Gnome-terminal-server",
"Gserver", "Gzclient", "Java", and "Python3". These processes play important
roles in determining the overall CPU usage of the proactive engine. "My no-
tify start" is likely a custom notification system, "Xorg" represents the X Win-
dow System server, "Firefox" is the web browser for monitoring data from
Datagod, "Gnome-terminal-server" is the terminal emulator for launching
gazebo and ROS nodes, "Gserver" and "Gzclient" are involved in the gazebo
simulation, and "Java" is used for running the proactive engine.

FIGURE 6.19: CPU Usage by Process of Navigation 2

Figure (6.19) shows a detailed breakdown of CPU usage in the Naviga-
tion 2 system. The main processes responsible for CPU consumption, from
top to bottom, are "My notify start", "Xorg", "Firefox" (purple), "Firefox",
"Gzserver", "Gzclient", "Rviz2", "Controller_server", "Planner_Server", and
"Bt_navigation". These processes have significant roles in determining the
overall CPU usage of the proactive engine. "My notify start" is a custom noti-
fication system, "Xorg" is the X Window System server, and "Firefox" is used
for data monitoring from Datagod. "Gserver" and "Gzclient" contribute to the

6.3. Runtime 81

gazebo simulation, while "Rviz2" handles visualization. "Controller_server,"
"Planner_Server," and "Bt_navigation" are integral components of the navi-
gation system, each serving specific functions in controlling, planning, and
implementing behavior trees.

FIGURE 6.20: CPU Usage Breakdown for Proactive Engine Pro-
cesses

To focus solely on the CPU usage of the Proactive Engine and Navigation
2, we filtered out unrelated processes in Figure (6.20) for the proactive engine
and Figure (6.21) for Navigation 2. These figures provide a more detailed
view of how each system utilizes CPU resources, displaying the percentage
of CPU usage for better analysis. In Figure (6.20), we observe the presence of
"Gserver," "Gzclient," "Java," and "Python3" processes exclusively.

In Figure (6.21), we can see exclusively "Gzserver," "Gzclient," "Rviz2,"
"Controller_server," "Planner_Server," and "Bt_navigation" processes.

6.3.2 Memory Usage

Monitoring memory usage is crucial for maintaining optimal performance.
High levels of memory utilization can result in decreased performance, while

82 Chapter 6. Comparison

FIGURE 6.21: CPU Usage Breakdown for Navigation 2 Pro-
cesses

a gradual increase over time may indicate a memory leak. To track and man-
age memory usage, we rely on datadog, a monitoring software, which helps
us identify fluctuations and analyze their causes. By regularly monitoring
memory utilization, we can ensure efficient resource allocation and address
any issues that may arise.Below, you will find the memory usage statistics
for the Proactive Engine and Navigation 2. In Figure (6.22), the memory us-
age of the proactive engine by process is depicted. Each rectangular shape
represents the percentage of memory occupied by a specific process. Starting
from the highest to the lowest, we observe the following utilization: 65.13%
of the memory is free, 6.15% is allocated to java, 4.66% to firefox, 3.11% to
firefox, 2.47% to mysql, 2.19% to gnome-shell, 2.13% to gzserver, 1.8% to gz-
client, 1.64% to WebKitWebProcess, 1.58% to mynotify, 1.49% to Web Con-
tent, 1.29% to snap-store, 1.2% to jetbrains-toolbox, 1.09% to agent, 0.71%
to process-agent, 0.67% to WebExtensions, 0.65% to postgres, 0.64% to Xorg,
0.56% to ros2, 0.43% to python3, and 0.41% to CTERAAgent.

In Figure (6.23), the memory usage of Navigation 2 by process is visual-
ized. Each rectangular shape represents the percentage of memory occupied
by a specific process. The utilization, listed from highest to lowest, is as fol-
lows: 72.9% of the memory is free, 3.69% for firefox, 2.9% for firefox, 2.47% for
mysql, 2.18% for gnome-shell, 2% for gzserver, 1.74% for gzclient, 1.58% for
mynotify, 1.49% for Web Content, 1.37% for jetbrains-toolbox, 1.29% for snap-
store, 1.16% for rviz2, 1.07% for agent, 0.67% for WebExtensions, 0.66% for
Xorg, 0.65% for postgres, 0.58% for process-agent, 0.43% for python3, 0.41%

6.3. Runtime 83

FIGURE 6.22: CPU Usage of Proactive Engine

for CTERAAgent, 0.39% for gnome-terminal-server, and 0.37% for evolution-
alarm-notify.

FIGURE 6.23: CPU Usage of Navigation 2

6.3.3 Summary

In summary, the Proactive Engine quickly became operational in under a
minute, maintaining stable CPU usage throughout execution (peaking at
82.17%). The figure for the Proactive Engine displayed three layers repre-
senting system and user CPU usage, as well as I/O wait for database oper-
ations. However, identifying specific processes contributing to CPU usage
was challenging due to the color representation. In contrast, Navigation 2

84 Chapter 6. Comparison

took around two minutes to initialize, with initial CPU fluctuations before
stabilizing. The maximum CPU usage recorded for Navigation 2 was 75.76%.
The figure for Navigation 2 showcased system and user CPU usage, without
the inclusion of I/O wait, making it similarly challenging to pinpoint spe-
cific processes. To analyze the systems in detail, we utilized the breakdown
of CPU usage by process, enabling a comprehensive comparison between the
two systems. To further enhance clarity, we isolated and presented the core
system processes for each system, allowing for a distinct view of the unique
processes employed by each system. Upon examination, it became appar-
ent that while both systems shared certain processes, the Proactive Engine
specifically employed Java for engine launching and database utilization.

In summary, we conducted an analysis comparing the memory usage
statistics of the Proactive Engine and Navigation 2. Figure (6.22) visually
represented the memory usage of the Proactive Engine, with each rectangle
indicating the percentage of memory occupied by a specific process. Sim-
ilarly, Figure (6.23) illustrated the memory usage of Navigation 2. While
both systems shared many common processes, the Proactive Engine stood
out by utilizing additional processes such as Java (6.15%). In summary, an
analysis was conducted to compare the memory usage statistics of the Proac-
tive Engine and Navigation 2 systems. Figure (6.22) visually represented the
memory usage of the Proactive Engine, with each rectangle indicating the
percentage of memory occupied by a specific process. Similarly, Figure (6.23)
illustrated the memory usage of Navigation 2. While both systems shared
many common processes, the Proactive Engine stood out by utilizing ad-
ditional processes such as Java (6.15%) and MySQL (3.11%) that were not
present in Navigation 2. This variance in process usage accounted for the
disparity in free memory between the two systems. The table (6.1) provided
a comparison of the memory usage percentages for each process in both sys-
tems, showcasing the differences in memory utilization.

6.4 Maintaining and Extending Software Systems

In this section, we will compare the features of maintaining and extending
systems in Navigation 2 and Proactive Engine.
Let’s examine an issue that the core designer of Navigation 2 published on
GitHub [Orduno, 2019]. The figures and definitions referenced here are from
that reference. According to Jay Wright Forrested, a mental model can be
defined as follows: "The image of the world around us, which we carry in

6.4. Maintaining and Extending Software Systems 85

Process Proactive En-
gine

Navigation 2

Free Memory 65.13% 72.9%
Java 6.15% -
Firefox 4.66% 3.69%
firefox 3.11% 2.9%
MySQL 2.47% 2.47%
Gnome Shell 2.19% 2.18%
Gzserver 2.13% 2%
Gzclient 1.8% 1.74%
WebKitWebProcess 1.64% -
Mynotify 1.58% 1.58%
Web Content 1.49% 1.49%
Snap Store 1.29% 1.29%
Jetbrains Toolbox 1.2% 1.37%
Rviz2 - 1.16%
Agent 1.09% 1.07
Process Agent 0.71% 0.58%
WebExtensions 0.67% 0.67%
Postgres 0.65% 0.65%
Xorg 0.64% 0.66%
ROS2 0.56% -
Python3 0.43% 0.43%
CTERAAgent 0.41% 0.41%
Gnome Terminal Server - 0.39%
Evolution Alarm Notify - 0.37%

TABLE 6.1: Memory Usage Comparison: Proactive Engine vs.
Navigation 2

our head, is just a model. Nobody imagines the entire world, government,
or country in their head. They only select concepts and the relationships
between them to represent the real system." Based on this model, the de-
signer of Navigation 2 developed the navigation model. As shown in Figure
(6.24), the world model is populated with information obtained from sensing
& perception, and mapping. This information is then supplied to the naviga-
tion sub-modules, which include Global Path Planning, Local Path Planning
which are Obstacle Avoidance & Control, and Motion Primitives & Recovery.
This represents the current world model for Navigation 2. The design team
aims to create a world model for 2D navigation with the following objectives:

• Supporting different levels of navigation

• Adding support for various types of planners and controllers

86 Chapter 6. Comparison

FIGURE 6.24: World Model Navigation 2 [Orduno, 2019]

• Consolidating the world model

• Defining a clean interface

• Avoiding code replication

• Improving the integration of perception pipelines

They proposed several phases. In the first phase, they suggested separating
the world model from the clients and making them separate nodes. The sec-
ond phase involved proposing new modules and porting the current costmap-
based world model. The main objective of this phase was to remove the de-
pendency between the core representation and the type of client. In the sub-
sequent phase, they suggested extending this approach by introducing other
map formats (beyond grid-based maps) and perception pipelines. Addition-
ally, they proposed supporting multiple internal representations. Ultimately,
they found that the new designs not only failed to achieve the objectives but
also complicated the system. As a result, they decided to stick with the cur-
rent design.
In our implementation of the Proactive Engine, we have successfully achieved

6.5. Dynamic Change of Decision Making 87

a better separation of concerns by treating each objective as a separate sce-
nario. Extending the code does not necessarily lead to increased complexity.
We have designed the system to easily incorporate different algorithms for
various robot types and platforms without the need for modifying the ex-
isting code or additional configurations. This allows for seamless code ex-
tension without introducing unnecessary complexity. For example, in ourp
implementation, the path computation and robot control tasks have separate
scenarios, making it easier to add new algorithms or functionalities to each
scenario without affecting the overall system complexity. By focusing on
separation of concerns and providing a flexible code base for extension, our
implementation offers improved maintainability and adaptability in robotic
software systems. It simplifies development and facilitates the evolution of
robotic applications to meet different requirements and platforms.
In conclusion, the comparison between Navigation 2 and the Proactive En-
gine revealed different approaches to maintaining and extending systems.
Navigation 2 aimed to create a 2D navigation world model with various ob-
jectives, but the new designs did not meet the goals effectively. In contrast,
the Proactive Engine implementation emphasized easy code extension with-
out increased complexity. By incorporating separate scenarios for each sce-
nario, our implementation allowed for seamless addition of new algorithms
or functionalities, enhancing maintainability and adaptability in robotic soft-
ware systems.

6.5 Dynamic Change of Decision Making

Our implementation incorporates various rules and strategies that can be ap-
plied to the robot’s behavior dynamically, without the need to relaunch the
system. As we discussed in the implementation of the Proactive Engine, the
presence of a feedback loop enables the selection of different strategies, re-
sulting in a completely different behavior without requiring any code mod-
ifications during runtime. Our implementation enables a high level of flexi-
bility in how the system behaves. By utilizing the proactive engine, we can
make real-time adjustments and fine-tune the robot’s sterategy and decision-
making scenarios. This adaptability allows us to respond to changing condi-
tions and requirements without interrupting or restarting the system. As a
result, the system provides a smooth and responsive experience. Overall, our
implementation empowers robotic systems with the ability to dynamically

88 Chapter 6. Comparison

alter their behavior using different rules and strategies at runtime. This flex-
ibility ensures that the system can respond effectively to changing circum-
stances and perform optimally without the need for code changes or system
relaunches.

FIGURE 6.25: Navigation 2 Behaviour Tree [Macenski et al.,
2020]

In the Navigation 2 implementation, as shown in Figure (6.25), they pro-
vide a set of strategy plugins that allow for different strategies or algorithms
to be used for planner, controller, and behavior plugins. However, in order
to make changes, it is currently required to stop the system, edit the corre-
sponding file, save it, and then relaunch the system[Macenski et al., 2020].
In our implementation, we have introduced a runtime capability that enables
us to make these changes without the need to stop and restart the system.
This flexibility allows for more efficient development and testing, as adjust-
ments can be made on-the-fly during runtime.
In conclusion, our implementation offered a robust solution that enabled the
system to effectively respond to changing circumstances and perform opti-
mally without the need for code changes or system relaunches. The ability to
dynamically adjust behavior using different rules and strategies at runtime
enhanced the system’s adaptability and performance. Unlike Navigation2,
which necessitated system interruption and file editing, our implementation
allowed for real-time changes during runtime, providing greater flexibility
and efficiency.

6.6. Conclusion 89

6.6 Conclusion

In conclusion, our comparison between the Proactive Engine and Naviga-
tion 2 involved several tools and aspects. We evaluated the systems based
on compile time using CodeMR software, run time using Datadog, mainte-
nance and extension capabilities, and the ability to handle dynamic changes
in decision-making.

The Proactive Engine and Navigation 2 displayed substantial differences
in code size, complexity, coupling, and lack of cohesion during compile time.
The Proactive Engineexhibited a notably smaller codebase with lower com-
plexity levels, fewer instances of medium-high complexity, coupling, and
lack of cohesion compared to Navigation 2. Additionally, the project size
of the Proactive Engine was relatively smaller. The figures and visualiza-
tions provided further confirmed these disparities, highlighting variations
in package structures, class sizes, and C3 levels between the two projects.
Overall, the Proactive Engine demonstrated superior codebase efficiency and
effective complexity management compared to Navigation 2.

The runtime analysis indicated that the Proactive Engine and Naviga-
tion 2 displayed disparities in system performance and memory usage. The
Proactive Engine exhibited faster initialization, maintained stable CPU us-
age, and utilized additional processes such as Java and MySQL. Furthermore,
the memory usage differed, with the Proactive Engine employing more pro-
cesses compared to Navigation 2.

The comparison between Navigation 2 and the Proactive Engine empha-
sized different approaches to system maintenance and extension. Navigation
2 aimed to create a 2D navigation world model but faced challenges in meet-
ing its objectives effectively. On the other hand, the Proactive Engine focused
on easy code extension without increased complexity, allowing for seamless
addition of new algorithms or functionalities. This approach enhanced main-
tainability and adaptability in robotic software systems.

The Proactive Engine implementation offered a robust solution that al-
lowed the system to respond effectively to changing circumstances without
the need for code changes or system relaunches. It provided the ability to
dynamically adjust behavior using different rules and strategies at runtime,
enhancing adaptability and performance. In contrast, Navigation 2 required
system interruption and file editing, limiting real-time changes and overall
flexibility.

91

Chapter 7

Conclusion

7.1 Revisiting the Research Questions

Let’s circle back to each research question and examine the outcomes of our
efforts.

1. How to improve separation of concerns in robotic software engineer-
ing? How can software metrics be used to measure the enhancement?
This study emphasized the vital importance of enhancing the separation of
concerns in robotic software engineering. The thesis centered on addressing
the absence of this principle by leveraging the proactive scenario approach of
the Proactive Engine. This approach empowered developers to strategically
divide concerns, resulting in a software architecture that enhanced modular-
ity, maintainability, extendibility, and reusability. The core of our research
was intertwined with the first question, exploring how this approach could
concretely lead to advancements.
Integrating proactive scenarios molded a versatile software architecture. This
blueprint, with its precise concern separation, fostered continuous evolution.
The implications were significant: an efficient path for updates, streamlined
bug fixing, and simplified maintenance easily extendable without adding
complexity and enhancing code reusability. As the architecture enhanced
module comprehension, it enabled seamless extensibility and adaptability.
This envisioned outcome was a software system that thrived in the ever-
changing software industry.
In this context, the strategic use of software metrics became a powerful tool
for quantifying the improvement in the separation of concerns. These metrics
provided an objective perspective through which we could assess the effec-
tiveness of our proposed methodology. By analyzing these metrics, we could
track the tangible progress towards our overarching goal. In conclusion, this
study emphasized the crucial significance of the separation of concerns in

92 Chapter 7. Conclusion

shaping the future of robotic software engineering. Through the adoption
of innovative methodologies like the Proactive Engine, we aimed to redefine
software architectures and enhance their adaptability. As the software land-
scape continued to evolve, a modular, easily comprehensible, and responsive
system became an invaluable asset.

2. Is the proactive computing paradigm, implemented through a rule-
based proactive engine, an adequate coding approach for addressing our
first research question?
The exploration of the second research question, centered on the adequacy
of the proactive computing paradigm in addressing the first research ques-
tion, has been a journey of comprehensive analysis. We implemented a soft-
ware model that relied on the Proactive Engine, a rule-based proactive sys-
tem seamlessly integrating object-oriented principles with rule-based sys-
tems. The Proactive Engine framework facilitated the parallel operation of
numerous scenarios, ensuring both efficiency and autonomy. This approach,
characterized by the independent and decentralized nature of each scenario,
eliminated the need for explicit inter-scenario communication, thereby pro-
moting streamlined architecture and scalability.
Our inquiry then transitioned to evaluating the viability of the proactive
computing paradigm, particularly through the implementation of a rule-bas-
ed proactive engine, as a coding approach to tackle the initial research ques-
tion. This primary question revolved around the enhancement of the sepa-
ration of concerns in robotic software engineering. Within this context, we
carefully scrutinized the conceptualized model in relation to the second re-
search question.
Through rigorous examination and analysis, we have established that the
proactive computing paradigm, represented by our rule-based proactive en-
gine, stands as an effective coding approach for addressing the enhancement
of separation of concerns. The decentralized and scenario-based nature of the
Proactive Engine aligns well with the goal of modularizing concerns within
robotic software systems. This paradigm not only offers an effective means
of addressing the initial research question but also opens avenues for future
advancements in the field of robotic software engineering.
In conclusion, our exploration into the proactive computing paradigm has af-
firmed its aptness as a coding approach to tackle the challenge of enhancing
the separation of concerns. This validation paves the way for refined soft-
ware architectures that embody modularity and scalability, underscoring the

7.1. Revisiting the Research Questions 93

pivotal role of innovative coding methodologies in shaping the future land-
scape of robotic software engineering.

3. How can conflict handling be effectively managed in proactive deci-
sion-making scenarios where conflicting recommendations arise from mul-
tiple independent objective-based scenarios?
In conclusion, the examination of the third research question, focused on ef-
fectively managing conflict handling in proactive decision-making scenar-
ios where conflicting recommendations originate from multiple independent
objective-based scenarios, has yielded valuable insights. One of the pivotal
components of our software system, the Decision Making (DM) scenario, has
emerged as a central piece in the decision-making process. This DM sce-
nario acts as a pivotal point for data reception, acquiring recommendation
commands from both the Controller and Planner modules. Each command
carries a designated priority, meticulously assigned during the scenario im-
plementation phase. This deliberate incorporation of priorities in the cre-
ation of command recommendations ensures the seamless integration of new
scenarios within the DM scenario. Importantly, this integration is achieved
without necessitating extensive modifications. This adaptive approach em-
powers the system to expand and evolve, accommodating new components
while minimizing disruption to the decision-making process. This strategic
design choice underscores the importance of conflict resolution and decision-
making in the context of proactive systems, positioning our software archi-
tecture for versatility and longevity in the dynamic landscape of robotic soft-
ware engineering.

4. How can smart and self-managing behavior be designed and im-
plemented in the system to address our third research question, enabling
dynamic changes in strategy?
The exploration of the fourth research question, focused on designing and
implementing smart and self-managing behavior in the system to address
the third research question and enable dynamic changes in strategy, has cul-
minated in significant advancements. The Decision Making (DM) scenario,
a key component within our system, has played a pivotal role in realizing
these objectives.

94 Chapter 7. Conclusion

The orchestration of recommendation commands within the Decision Mak-
ing scenario was meticulously guided by their assigned priorities. This or-
chestration ultimately led to the determination of the optimal decision, sub-
sequently dispatched to the robot for execution. However, the DM scenario’s
significance extended beyond this foundational function. Notably, the in-
corporation of a feedback loop within this scenario introduced a profound
enhancement. This loop not only facilitated the execution of recommended
commands but also extended its influence to the strategy scenario. This syn-
ergy fostered real-time adaptation in the system’s behavior, guided by the
dynamically planned strategy.
Importantly, the architecture ensured the isolation of the DM scenario from
other components. Each scenario independently generated command rec-
ommendations, which were conveyed indirectly to the DM scenario through
the database. This architectural choice ensured the autonomy and encapsu-
lation of decision-making roles, while simultaneously facilitating seamless
communication among various components of the system. This architectural
integrity underpinned the adaptability of our software framework, position-
ing it to effectively navigate and respond to dynamic changes.
In conclusion, the investigation of the fourth research question has resulted
in the realization of a self-managing and dynamically responsive ecosystem
within our software system. The symbiotic relationship between the Decision
Making and strategy scenarios, empowered by the feedback loop, showcases
the system’s ability to autonomously adapt in real-time. This achievement
underscores the sophistication of our software architecture, offering a tangi-
ble pathway to robust and adaptable robotic software engineering solutions.

7.2 Future work

Drawing from our previous discussions, the future development of our rob-
otic software system holds promising opportunities for innovation and ad-
vancement. We see two key directions for our future work. First, we aim
to complete the implementation of the recovery scenarios within the system.
Second, we plan to seamlessly integrate machine learning techniques to en-
hance decision-making. These avenues promise to significantly enhance the
system’s capabilities and strengthen its resilience.

7.2. Future work 95

7.2.1 Recovery Scenario Implementation Completion

In our future work, a critical path involves integrating a recovery scenario
into our system. Recoveries are essential in fault-tolerant systems, designed
to autonomously handle unknown or failure conditions. For instance, if the
perception system encounters faults resulting in a cluttered environmental
representation with fake obstacles, the clear recovery can trigger to allow the
robot to move. Likewise, if the robot gets stuck due to dynamic obstacles or
control issues, actions like backing up or spinning in place, if feasible, can
help it maneuver to a better position. In extreme cases of total failure, a re-
covery may notify an operator for assistance.
Recovery scenarios can be complex, but our implementation approach breaks
them down into manageable sections. Our system’s design inherently sup-
ports the addition of new scenarios. The modular architecture we’ve meticu-
lously crafted, with a clear separation of concerns, simplifies the integration
of a recovery scenario. This sets us apart from systems like Navigation 2,
which grapple with complexities when extending recovery features due to
their intricate structures.
Our system’s design philosophy ensures that extending the recovery scenario
will be a seamless process. While Navigation 2 faces challenges in integrat-
ing new features into recovery scenarios, our system’s modular nature grants
a unique advantage. This modularity allows us to integrate additional func-
tionalities effortlessly without jeopardizing the system’s stability or introduc-
ing unnecessary complexities.
Incorporating a recovery scenario can significantly enhance our system’s abil-
ity to respond to unexpected situations and errors. Moreover, the ease of ex-
tending this recovery scenario reflects our commitment to building a system
that is both effective and highly adaptable. Leveraging our existing architec-
ture, we can confidently explore new functionalities and features without the
constraints experienced by other systems.
Through strategic integration and a modular design, we are poised to rev-
olutionize the field of robotic software engineering, contributing to the de-
velopment of intelligent and resilient robotic systems. This forward-looking
approach underscores our dedication to shaping a future where adaptability
and innovation drive the forefront of robotics technology.

96 Chapter 7. Conclusion

7.2.2 Machine Learning for Enhanced Decision-Making

While our current research has shed light on promising avenues for address-
ing challenges in separation of concerns, proactive computing, and dynamic
decision-making within robotic software engineering, there is still much fer-
tile ground for future exploration. One particularly noteworthy path in-
volves the integration of machine learning techniques into the decision mak-
ing process, paving the way for even more intelligent and adaptable robotic
systems.
Machine learning, renowned for its ability to identify patterns, learns from
data, and makes predictions, offers a compelling opportunity to enhance de-
cision making capabilities within our software architecture. By incorporating
machine learning algorithms into the Decision Making (DM) scenario, we
can empower the system to learn from past experiences, adapt to changing
contexts, and optimize decision outcomes.
In the realm of machine learning, we can utilize data obtained from the Proac-
tive Engine’s input and output as a training dataset. This dataset will un-
dergo the training process, and once we have a well-trained neural network,
it can be seamlessly integrated as an additional recommendation system into
the decision-making scenario.
Furthermore, the incorporation of machine learning can enable predictive
analytics, allowing the system to anticipate potential conflicts or scenarios
based on historical data. This predictive capability could guide the decision-
making process, proactively averting issues before they manifest, thereby en-
hancing the system’s overall efficiency and reliability.
While the integration of machine learning into decision-making poses chal-
lenges such as data collection, training, and model integration, the poten-
tial benefits are substantial. Not only could it elevate decision-making qual-
ity, but it could also lead to the creation of truly autonomous and adaptive
robotic systems, continuously enhancing their performance based on real-
world experiences. This represents an exciting frontier in the evolution of
robotic software engineering.
In conclusion, the integration of machine learning techniques into decision-
making processes stands as a promising direction for future research. By
augmenting our software architecture with smarter decision-making capa-
bilities, we can further enhance the adaptability, intelligence, and overall per-
formance of robotic systems in dynamic and unpredictable environments.

97

Bibliography

Abdullah, Farooq (2017). “Evaluating Impact of Design Patterns on Software
Maintainability and Performance”. MA thesis.

Andrade, Luis et al. (2002). “Separating computation, coordination and con-
figuration”. In: Journal of software maintenance and evolution: research and
practice 14.5, pp. 353–369.

Arisholm, Erik, Lionel C Briand, and Audun Foyen (2004). “Dynamic cou-
pling measurement for object-oriented software”. In: IEEE Transactions on
software engineering 30.8, pp. 491–506.

Brooks, Rodney A (1991). “Intelligence without representation”. In: Artificial
intelligence 47.1-3, pp. 139–159.

Cai, Yuanfang et al. (2014). “A decision-support system approach to economics-
driven modularity evaluation”. In: Economics-Driven Software Architecture.
Elsevier, pp. 105–128.

Chaychi, Samira, Denis Zampunieris, and Sandro Reis (2023). “Software Model
for Robot Programming and Example of Implementation for Navigation
System”. In: 2023 9th International Conference on Automation, Robotics and
Applications (ICARA), pp. 75–79. DOI: 10.1109/ICARA56516.2023.10125856.

Dattalo, Amanda (2018). ROS Introduction. URL: https://www.ros.org.
Dias, Sergio Marques, Sandro Reis, and Denis Zampunieris (2012). “Personal-

ized, Adaptive and Intelligent Support for Online Assignments Based on
Proactive Computing”. In: 2012 IEEE 12th International Conference on Ad-
vanced Learning Technologies, pp. 668–669. DOI: 10.1109/ICALT.2012.223.

Dijkstra, Edsger W. (2001). “Go To Statement Considered Harmful”. In: Pi-
oneers and Their Contributions to Software Engineering: sd&m Conference on
Software Pioneers, Bonn, June 28/29, 2001, Original Historic Contributions. Ed.
by Manfred Broy and Ernst Denert. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 297–300. ISBN: 978-3-642-48354-7. DOI: 10.1007/978-3-
642-48354-7_12. URL: https://doi.org/10.1007/978-3-642-48354-
7_12.

Dobrican, Remus A. and Denis Zampunieris (2016). “A Proactive Solution,
using Wearable and Mobile Applications, for Closing the Gap between
the Rehabilitation Team and Cardiac Patients”. In: 2016 IEEE International

https://doi.org/10.1109/ICARA56516.2023.10125856
https://www.ros.org
https://doi.org/10.1109/ICALT.2012.223
https://doi.org/10.1007/978-3-642-48354-7_12
https://doi.org/10.1007/978-3-642-48354-7_12
https://doi.org/10.1007/978-3-642-48354-7_12
https://doi.org/10.1007/978-3-642-48354-7_12

98 Bibliography

Conference on Healthcare Informatics (ICHI), pp. 146–155. DOI: 10.1109/
ICHI.2016.23.

Dobrican, Remus-Alexandru, Sandro Reis, and Denis Zampunieris (2013).
“Empirical Investigations on Community Building and Collaborative Work
inside a LMS using Proactive Computing”. In: URL: http://hdl.handle.
net/10993/13859.

Ehrhardt, Christian (2010). “CPU time accounting”. In: IBM. URL: https://
en.wikipedia.org/wiki/CPUtime.

Elrad, Tzilla, Robert E Filman, and Atef Bader (2001). “Aspect-oriented pro-
gramming: Introduction”. In: Communications of the ACM 44.10, pp. 29–
32.

Frantz, Alexandre and Denis Zampunieris (2020). “Separation of Concerns
Within Robotic Systems Through Proactive Computing”. In: 2020 Fourth
IEEE International Conference on Robotic Computing (IRC). IEEE, pp. 197–
201.

Heckel, Reiko and Gregor Engels (2002). “Relating functional requirements
and software architecture: Separation and consistency of concerns”. In:
Journal of Software Maintenance and Evolution: Research and Practice 14.5,
pp. 371–388.

Henderson-Sellers, Brian (1995). Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc.

Kumar Chhabra, Jitender and Varun Gupta (2010). “A survey of dynamic
software metrics”. In: Journal of computer science and technology 25, pp. 1016–
1029.

Lee, Ming-Chang (2014). “Software quality factors and software quality met-
rics to enhance software quality assurance”. In: British Journal of Applied
Science & Technology 4.21, pp. 3069–3095.

M, Quigley and et al (2009). “ROS: an open-source Robot Operating System”.
In: vol. 3. 3.2. URL: https://www.ros.org.

Macenski, S. et al. (2020). The Marathon 2: A Navigation System. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).

Macenski, Steven et al. (2022a). “Robot Operating System 2: Design, archi-
tecture, and uses in the wild”. In: Science Robotics 7.66, eabm6074. DOI:
10.1126/scirobotics.abm6074. URL: https://www.science.org/doi/
abs/10.1126/scirobotics.abm6074.

— (2022b). “Robot Operating System 2: Design, architecture, and uses in the
wild”. In: Science Robotics 7.66. DOI: 10.1126/scirobotics.abm6074. URL:
https://doi.org/10.1126%2Fscirobotics.abm6074.

https://doi.org/10.1109/ICHI.2016.23
https://doi.org/10.1109/ICHI.2016.23
http://hdl.handle.net/10993/13859
http://hdl.handle.net/10993/13859
https://en.wikipedia.org/wiki/CPUtime
https://en.wikipedia.org/wiki/CPUtime
https://www.ros.org
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126%2Fscirobotics.abm6074

Bibliography 99

Neyens, Gilles (2019). “CONFIDENCE-BASED DECISION-MAKING SUP-
PORT FOR MULTI-SENSOR SYSTEMS”. In: p. 106. URL: http://hdl.
handle.net/10993/41506.

Nguyen, Vu et al. (2007). “A SLOC counting standard”. In: Cocomo ii forum.
Vol. 2007. Citeseer, pp. 1–16.

Orduno, Carlos A. (2019). Design the World Model. URL: https://github.
com/ros-planning/navigation2/issues/565.

Quigley, Morgan et al. (2009). “ROS: an open-source Robot Operating Sys-
tem”. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan,
p. 5.

Shirnin, Denis (2014). “Formalising the twofold structure of a proactive sys-
tem: Proof of concept on deterministic and probabilistic levels”. In: URL:
http://hdl.handle.net/10993/18929.

Shirnin, Denis, Sandro Reis, and Denis Zampunieris (2013). “Experimenta-
tion of proactive computing in context aware systems: Case study of human-
computer interactions in e-learning environment”. In: 2013 IEEE Interna-
tional Multi-Disciplinary Conference on Cognitive Methods in Situation Aware-
ness and Decision Support (CogSIMA), pp. 269–276. DOI: 10.1109/CogSIMA.
2013.6523857.

Shirnin, Denis, Denis Zampunieris, and Sandro Reis (2012). “Design of Proac-
tive Scenarios and Rules for Enhanced e-Learning”. In: pp. 253 –258. URL:
http://hdl.handle.net/10993/2663.

Tennenhouse, D. (2000). “Proactive computing,” in: Communications of the
ACM 43, pp. 43–50. URL: 43.

Zampunieris, Denis (2006a). “Implementation of a Proactive Learning Man-
agement System”. In: pp. 3145–3151. URL: http://hdl.handle.net/
10993/13857.

Zampunieris, Denis. (2006b). “Implementation of efficient proactive comput-
ing using lazy evaluation in a learning management system”. In: Proceed-
ings of" m-ICTE-International Conference on Multimedia and Information &
Communication Technologies in Education", pp. 886–890.

http://hdl.handle.net/10993/41506
http://hdl.handle.net/10993/41506
https://github.com/ros-planning/navigation2/issues/565
https://github.com/ros-planning/navigation2/issues/565
http://hdl.handle.net/10993/18929
https://doi.org/10.1109/CogSIMA.2013.6523857
https://doi.org/10.1109/CogSIMA.2013.6523857
http://hdl.handle.net/10993/2663
43
http://hdl.handle.net/10993/13857
http://hdl.handle.net/10993/13857

