
Here we examined various GNN models to identify and interpret discriminative patterns
between PD patients and controls using omics data. We built a pipeline integrating 1)
Lasso penalty-based feature selection; 2) similarity graph construction based on cosine
distance; 3) modelling for sample (node) classification.
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Hyper-parameter optimization was done
in cross validation via random search. An
explainer module6 was added to gain
insights and interpretation on the model’s
decisions.
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The pipeline was trained and evaluated in an
end-to-end manner in two independent PD
omics datasets (transcriptomics from PPMI1 and
metabolomics from the Luxembourg Parkinson’s
Study2) with models:
- Graph Convolutional Network3
- ChebyNet4
- Graph Attention Network5

PD control

PD control

An extensive random hyperparameter search was performed for the validation set; in each fold 130 runs were launched exploring values of regularization penalty, similarity (edge)
threshold, learning rate, weight decay, dropout, number of convolutional layer units, and K (for ChebyNet model). Despite some variability, certain trends are visible: the best models
(i.e., with lower average validation loss) tend to be achieved when avoiding higher learning rates in combination with low weight decay and low dropout.

- In this implementation, the attention mechanism in GATs did not provide advantages when
compared to GCN and ChebyNet, while ChebyNet performed better than GCN.
- Contrary to previous research on graph classification tasks, using a GCN layer did not beat
the more established methods that only take a flatten representation into account (i.e. SVM).
- We conjecture that high levels of noise combined with limited sample size hinder graph
convolutional operators from learning meaningful representations from single omics, hence
learning similar embeddings regardless of the diagnosis. Incorporating molecular interactions
data or multi-omics from the same cohort hold potential to capture richer node embeddings.
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Graph neural networks (GNNs) have emerged as a promising approach to investigate relational information. Omics data analysis is a critical component in the study of complex
diseases, and allows to represent relational information among samples as a graph structure that can be modelled with GNNs. However, it is still unclear which strategies for
designing and optimizing GNNs are most effective when working with real-world omics data from complex disorders, such as Parkinson's disease (PD).
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Test performance of GCN, ChebyNet, GAT in transcriptomics dataset5 Metabolites that most frequently appeared among the top-20 most relevant for 10-fold CV ChebyNet
model on a subset of unmedicated de novo PD patients vs controls from the metabolomics cohort

Results
AUC Accuracy Recall Specificity

ChebyNet 0.55 ± 0.05 0.53 ± 0.05 0.58 ± 0.05 0.49 ± 0.12
ChebyNet(w) 0.58 ± 0.05 0.55 ± 0.06 0.55 ± 0.1 0.55 ± 0.08
GCN 0.55 ± 0.07 0.56 ± 0.07 0.55 ± 0.07 0.56 ± 0.11
GCN (w) 0.56 ± 0.04 0.53 ± 0.04 0.56 ± 0.07 0.51 ± 0.08
GAT 0.53 ± 0.05 0.51 ± 0.06 0.53 ± 0.08 0.49 ± 0.08
GAT (w) 0.56 ± 0.04 0.54 ± 0.04 0.59 ± 0.06 0.48 ± 0.08
SVM Radial (no graph) 0.64 ± 0.07 0.6 ± 0.06 0.58 ± 0.07 0.65 ± 0.09

AUC Accuracy Recall Specificity
ChebyNet 0.83 ± 0.05 0.75 ± 0.05 0.77 ± 0.05 0.73 ± 0.12
ChebyNet (w) 0.83 ± 0.05 0.74 ± 0.06 0.72 ± 0.1 0.76 ± 0.08
GCN 0.78 ± 0.07 0.72 ± 0.07 0.7 ± 0.07 0.74 ± 0.11
GCN (w) 0.81 ± 0.04 0.74 ± 0.04 0.72 ± 0.07 0.75 ± 0.08
GAT 0.79 ± 0.05 0.74 ± 0.06 0.69 ± 0.08 0.78 ± 0.08
GAT (w) 0.79 ± 0.04 0.73 ± 0.04 0.69 ± 0.06 0.76 ± 0.08
SVM Radial (no graph) 0.88 ± 0.07 0.8 ± 0.06 0.8 ± 0.07 0.81 ± 0.09

Test performance of GCN, ChebyNet, GAT in metabolomics dataset*6

(w) = weighted network was used in the model
*This is a comparison focusing on methodology; the metabolomics dataset contains treatment confounding effects requiring separate follow-up analysis
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