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A B S T R A C T

Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling
the deployment of automatic vision-based systems in orbit, with applications ranging from on-orbit servicing
to space debris removal. Following the general trend in computer vision, more and more works have been
focusing on leveraging Deep Learning (DL) methods to address this problem. However and despite promising
research-stage results, major challenges preventing the use of such methods in real-life missions still stand in
the way. In particular, the deployment of such computation-intensive algorithms is still under-investigated,
while the performance drop when training on synthetic and testing on real images remains to mitigate. The
primary goal of this survey is to describe the current DL-based methods for spacecraft pose estimation in a
comprehensive manner. The secondary goal is to help define the limitations towards the effective deployment of
DL-based spacecraft pose estimation solutions for reliable autonomous vision-based applications. To this end,
the survey first summarises the existing algorithms according to two approaches: hybrid modular pipelines
and direct end-to-end regression methods. A comparison of algorithms is presented not only in terms of pose
accuracy but also with a focus on network architectures and models’ sizes keeping potential deployment in
mind. Then, current monocular spacecraft pose estimation datasets used to train and test these methods are
discussed. The data generation methods: simulators and testbeds, the domain gap and the performance drop
between synthetically generated and lab/space collected images and the potential solutions are also discussed.
Finally, the paper presents open research questions and future directions in the field, drawing parallels with
other computer vision applications.
1. Introduction

In recent years, the number of satellites launched into orbit has
increased rapidly, aided by lower launch costs and minimal entry
barriers, making space more accessible than ever before [1,2]. Each
space mission has a unique set of goals that influences the satellite’s
size, functions and intended lifetime. In most mission scenarios, the
satellites launched into orbit will last for the entire mission life-cycle
and at the end of life, they are either moved to the graveyard orbit
or left to re-enter the Earth’s atmosphere. However, a few space mis-
sions may encounter anomalies or malfunctions before their full life
span. These malfunctioned satellites may become non-cooperative and
threaten existing space infrastructure. To tackle such scenarios, the
demand for orbital missions targeting On-Orbit Servicing (OOS) and
Active Debris Removal (ADR) has steadily increased, as OOS and ADR
are considered key spaceflight capabilities for the next decade. OOS is
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defined as the process of inspection, maintenance and repair of a system
as an in-space operation. Commercial OOS missions aim to perform
various functions, including providing life extension, maintaining the
spacecraft, rescuing and recovering satellites from deployment failures
and assisting astronauts with extravehicular activities [3,4]. ADR is
the process of removing obsolete space objects (such as satellites,
rocket bodies, or fragments of spacecraft) through an external disposal
method, thus minimising the build-up of unnecessary objects and low-
ering the probability of on-orbit collisions that can fuel a ‘‘collision
cascade’’ [5,6]. Several technology demonstration missions, including
PROBA-3 by the European Space Agency (ESA) [7], PRISMA by OHB
Sweden [8] and commercial missions such as MEV-1 by Northrop
Grumman [9], had been carried out successfully in recent years. Future
missions such as Clearspace-1 by ESA and Clearspace [10] are already
in preparation to demonstrate ADR in 2026.
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Fig. 1. Spacecraft pose estimation is the problem of finding the relative position
(𝑡𝐵𝐶 ) and orientation (𝑅𝐵𝐶 ) of the target spacecraft reference frame (B) shown in red,
with respect to the camera reference frame (C) shown in blue, mounted on a chaser
spacecraft. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

An important aspect of OOS and ADR missions is that it requires
rendezvous and proximity operations near the target before performing
mission-specific operations. To perform any rendezvous operations, it
is essential to know the target spacecraft’s position and orientation
(i.e. pose), allowing the relative navigation algorithms to generate real-
time trajectories onboard the spacecraft. Several sensor options are
available to perform inference and observation of the target spacecraft
state, including Monocular RGB/Greyscale Cameras, Stereo Cameras,
Thermal Cameras, Range Detection and Ranging (RADAR), Light Detec-
tion and Ranging (LIDAR), etc. Monocular cameras are widely preferred
over other active sensors (like LIDARs and RADARs) due to their
relative simplicity, small size, weight, power requirements and ability
to be easily integrated into a wide range of spacecraft configurations.

Recovering the relative pose between a camera and an observed
object from a single image is a fundamental computer vision prob-
lem [11–13]. Given an image and the corresponding intrinsic camera
parameters, the relative pose estimation problem involves estimating
the relative transformation, i.e. translation and rotation, between the
camera and the target object. The location of the object in the camera
reference frame is specified by 𝑡 ∈ R3 and its orientation is most
often represented by a quaternion 𝑞 = (𝑞0, 𝑞1, 𝑞2, 𝑞3) ∈ R4. The relative
orientation (rotation) can also be represented using standard 3D rota-
tion representations such as rotation matrix or Euler’s Angles [14]. In
Fig. 1, a simple illustration of the spacecraft pose estimation problem is
presented, where axes 𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 represent the camera reference frame
mounted on the chaser (C) spacecraft and 𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵 represent the target
spacecraft’s body (B) reference frame. Spacecraft pose estimation is the
problem of finding the relative position (𝑡𝐵𝐶 ) and orientation (𝑅𝐵𝐶 ) of
the reference frame of a target spacecraft with respect to the reference
frame of a camera mounted on a chaser spacecraft, using a single image
from a monocular camera.

In the last decade, vision-based spacecraft pose estimation has
utilised hand-engineered features described using feature descriptors
and detected using feature detectors to detect these features in the
2D images and to finally use their 3D correspondences to find the
relative pose [15,16]. Although the use of feature correspondences
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between the detected features in the 2D image and 3D feature loca-
tions, together with perspective transformation, aids in pose solution
convergence, the features are not robust to harsh lighting conditions
encountered in space. The feature-based approaches perform poorly
in variable illumination conditions, low signal-to-noise ratio and high
contrast characteristics encountered in space imagery. This results in a
poor estimation of the target state in many scenarios. Spacecraft pose
estimation before the evolution of deep learning algorithms has been
summarised in [17,18]. With their gain in popularity and exponential
growth, Deep Learning (DL)-based approaches have prompted many
new developments in recent years. According to the findings of the
recent ESA’s Spacecraft Pose Estimation Challenges [19,20], DL-based
methods have been the preferred option for tackling the problem
of uncooperative spacecraft pose estimation. However, investigated
DL-based approaches still heavily rely on annotated data that are
cumbersome to obtain. While synthetic data generation and laboratory
data acquisition have been identified as the most tractable way to
train and test such algorithms, the performance drops significantly
on the test image domain compared to the train image domain, such
problem being known as the domain gap [21]. Dedicated strategies have
therefore to be investigated to mitigate it. In addition, the laboratory
conditions under which test images are acquired still differ from space-
borne conditions, adding another level of domain discrepancy that is
yet to be addressed.

A recent survey on the DL-based approaches for spacecraft rela-
tive navigation [22] provides a general narrative across different use
cases, including spacecraft pose estimation. In this survey, we focus
on monocular pose estimation of non-cooperative targets using DL
approaches and review the latest developments in the field. In addition,
we conduct a comparison between the two main types of approaches
and assess the still unmet needs that would enable the deployment of
DL-based algorithms in real space missions. Furthermore, we explore
the fundamental counterpart of any DL-based algorithm that is the data.
We review the existing datasets, generation engines and testbed facili-
ties. We also analyse the current validation procedure that consists in
testing on laboratory-acquired images algorithms trained on synthetic
data, after discussing the methods proposed to address this domain gap.
Finally, we provide the reader with prospects on research directions
that could help making the leap to the deployment of reliable DL-
based spacecraft pose estimation algorithms for autonomous in-orbit
operations. Note that we mainly considered the works published until
Dec 2022 for this survey.

The following sections are organised as follows. Section 2 provides a
comprehensive survey of the two main types of DL-based algorithms for
spacecraft pose estimation, before highlighting their limitations. Sec-
tion 3 presents the datasets, generation engines and testbed facilities.
It also presents the main existing methods to address the domain gap
between synthetic and laboratory images and discuss the underlying
validation procedure. Section 4 discusses open research problems and
future directions and finally, Section 5 concludes the survey.

2. Algorithms

The use of DL has had significant implications in developing com-
puter vision algorithms over the last decade [23,24], improving their
performance and robustness for applications such as image classifi-
cation [25], segmentation [26] and object tracking [27]. Following
this trend, the proposals of DL-based spacecraft pose estimation al-
gorithms have outnumbered [17,22] the classical feature-engineering-
based methods [16,28–32] in recent years. Fig. 2 presents an overview
tree diagram of the algorithms reviewed in this survey. DL-based
spacecraft pose estimation algorithms broadly fall under two categories:
(1) Hybrid modular approaches and (2) Direct end-to-end approaches.
Hybrid modular approaches (see Fig. 3-A) combine multiple DL models
and classical computer vision methods for spacecraft pose estimation.
On the other hand, direct end-to-end approaches (see Fig. 3-B) only
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Fig. 2. Tree diagram of spacecraft pose estimation algorithms reviewed in this paper. Blue boxes show the two different categories of approaches: hybrid modular and direct
end-to-end. The yellow boxes and the sub-branches (grey boxes) show the separate stages and the different methods used at each stage, respectively, of the hybrid modular
approach.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Illustration of different approaches for spacecraft pose estimation. (A) Direct end-to-end approaches which use deep learning. (B) Hybrid modular approaches which consist
of three steps: object detection/localisation, keypoint regression and pose computation. The first two steps use deep learning and the third step uses a classical algorithm which
performs outlier removal necessary for the PnP solver and finally pose refinement.
use a single DL model for pose estimation, trained end-to-end. This
survey summarises a total of 25 algorithms, 16 of which use the
hybrid modular approach and the remaining 9 use the direct end-
to-end approach. Each of these approaches are discussed in detail
(Sections 2.1 and 2.2), with a comparative analysis (Section 2.3) and a
discussion on limitations (Section 2.4) below.

2.1. Hybrid modular approaches

This survey defines hybrid approaches as those using a combination
of DL models and classical computer vision methods for spacecraft
pose estimation. The hybrid algorithms have three common stages
(see Fig. 4): (1) spacecraft localisation for detecting and cropping the
spacecraft region in the image, (2) keypoint prediction for predicting
2D keypoints locations of pre-defined 3D keypoints inside cropped
regions and (3) pose computation for computing the pose from these 2D–
3D correspondences. The following subsections describe each of these
stages in detail.
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2.1.1. Spacecraft localisation
The spacecraft object size in the image varies considerably with

changes in the relative distance between the chaser and target space-
craft as illustrated in Fig. 5. This scale variance affects the performance
of the pose estimation algorithm [19]. The spacecraft localisation stage
uses a DL object detection framework to detect the spacecraft by pre-
dicting bounding boxes around the object (spacecraft). These bounding
boxes are then used to crop out the region of interest (RoI) in the image
containing the spacecraft. The extracted RoI is then processed for pose
estimation in the subsequent stages. Based on literature [34], DL-based
object detectors for spacecraft localisation can be classified into two
categories:

• Multi-stage object detectors
• Single-stage object detectors

Multi-stage object detectors: In these detectors object detection
proceeds in multiple stages. The first stage generates region proposals,
i.e. image areas with a higher probability of containing objects to
be detected. These region proposals are then refined and classified
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Fig. 4. Hybrid modular approach for spacecraft pose estimation. The spacecraft localisation stage is outlined in brown, the keypoint prediction stage is in red and the pose
computation stage is shown in green. Spacecraft image from the SPARK2 dataset is used for illustration [33]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Fig. 5. Illustrating variations in spacecraft size in captured images. The bounding boxes
predicted by an object detector are shown in green. These images are taken from the
SPARK2 [33] dataset and show the Proba-2 spacecraft class. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

in the second stage. Detectors of this kind generally provide highly
accurate detections. However, due to their multi-stage nature, they
suffer from longer image processing times (high latency) and higher
number of parameters making them resource-intensive. This can be
particularly detrimental in resource-constrained scenarios such as those
encountered in space. Faster R-CNN [35] and Mask R-CNN [36] are the
commonly used multi-stage object detectors for spacecraft localisation.

Single-stage object detectors: These detectors, on the other hand,
are lightweight detectors with a reduced number of parameters and
have lower latency for real-time detection. YOLO [37] (and its deriva-
tives), SSD [38], Transformer-based [39] detectors and MobileDet [40]
are the single-stage detectors applied in the different spacecraft pose
estimation algorithms reviewed this survey.

Several other object detectors have also been proposed in the wider
computer vision literature, which can be applied for spacecraft locali-
sation. Zaidi et al. [41] and Zou et al. [42] presented detailed surveys
on different classes of object detectors and their characteristics. The
modular nature of the hybrid approaches makes it easier to replace
object detectors in the pose estimation algorithms based on criteria
such as the number of parameters, resource utilisation, latency and
real-time inference.

2.1.2. Keypoint prediction
In this stage, the 2D projections of a set of predefined 3D keypoints

are predicted from the cropped regions containing the spacecraft using
a DL model (see Fig. 4). The 3D keypoints are generally defined by
the CAD model of the spacecraft. If the CAD model is not available,
multiview triangulation (as in [44,46,47]) or Structure from Motion
(SfM) techniques [48] can be used for reconstructing a wireframe 3D
model of the spacecraft containing the 3D keypoints.
342
Regression of keypoint locations: A common method for pre-
dicting keypoints is to directly regress the keypoint locations. Huan
et al. [49] uses a CNN regression model with an HRNet [50] backbone
for directly regressing the 2D keypoint locations as a 1 × 1 × 2𝑀
vector, where 𝑀 is the number of keypoints. Park et al. [51] uses a
YOLOv2 [52] based architecture with a MobileNetv2 [53] backbone
with only 5.64M parameters for regressing keypoints. The lightweight
nature of the model makes it suitable for deployment in space hardware
or edge devices. Similarly, Lotti et al. [54] also propose a deploy-
able CNN regression model for keypoint regression with EfficientNet-
Lite backbone [55], which is obtained by removing operations not
well supported for mobile applications (deployment) from the original
EfficientNets [56].

Deviating from the CNN architectures, [57] introduced a Trans
former-based keypoint-set predictor for regressing the keypoint loca-
tions. Unlike the previous works, which predicted keypoints in order
(as fixed by the network structure), here, location coordinates as well
as their corresponding indexes are also predicted. The unordered set
of predictions is then matched to the ground truth and a loss function
is defined using the bipartite matching mechanism. Another work in
this direction is from Lotti et al. [58], which presents a keypoint
regression model with a Swin-Transformer [59] backbone. A subse-
quent lightweight architecture is also proposed, which is a hybrid of
a standard CNN (with an EfficientNet-Lite backbone [55] suitable for
mobile deployment) and the Vision-Transformer (ViT) [60]. The results
from the paper show an increase of 273% in the inference speed with
only nominal performance degradation. The use of transformer-based
architectures can model the long-range dependencies in images and
helps to mitigate problems such as the domain gap [21] problem.

Segmentation-driven approach: Algorithms in [61–63] follow the
segmentation-driven approach from Hu et al. [64] for regressing the
keypoint locations, with a dual-headed (segmentation and regression)
network architecture and a shared backbone. The input image is di-
vided into a grid and the segmentation head separates the foreground
grid cells (containing the spacecraft) from the background. The regres-
sion head predicts the location of each keypoint as an offset from the
centre of each of the grid cells. Only the predictions from foreground
(spacecraft) grid cells contribute to the prediction of the keypoint
location, making predictions more accurate. Additionally, [63] also
presents different variants of the keypoint prediction model with a
lower number of parameters making it suitable for deployment in space
hardware. The model with the lowest number of parameters achiev-
ing sufficient keypoint prediction accuracy uses a MobileNetv3 [65]
backbone that has only 7.8M parameters.

Heatmap prediction: Another method for keypoint prediction is
to regress the heatmaps encoding probability of the keypoint loca-
tions. The pixel coordinates are then obtained by extracting locations
with the highest probability from these heatmaps [43,44,66–68]. The
ground truth heatmaps are generated as 2D normal distributions with
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Fig. 6. (a) Keypoint heatmap prediction with a ResNet-UNet architecture [43] (b) YOLO-like CNN detector with a heatmap regression subnetwork [44] (c) Keypoint prediction is
formulated as a keypoint bounding box detection problem [45].
means equal to the ground truth keypoint locations and unit standard
deviations. HRNet [50] network architecture and its derivative, the
HigherHRNet [69], is used extensively for heatmap predictions in dif-
ferent algorithms. HRNet architectures maintain high-resolution feature
maps throughout the network making it suitable for heatmap predic-
tion tasks. UNet [70] architecture is also used for predicting keypoint
heatmaps [43] (see Fig. 6-A). Originally developed for image segmenta-
tion, UNet architecture consists of a sequence of downsampling layers
(contracting path) that captures relevant semantic information. This is
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followed by symmetrical upsampling layers (expanding path) for pre-
cise location predictions. The use of skip connections in the architecture
preserves spatial information during downsampling and subsequent
upsampling. Huo et al. [44] presented a lightweight hybrid architec-
ture for keypoint prediction combining a YOLO-like CNN spacecraft
detector with a heatmap regression subnetwork (see Fig. 6-B). Sharing
the backbone network architecture between the object detection and
the keypoint prediction brings down the total number of parameters
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Fig. 7. Network architecture used in [82]. A GoogLeNet [83] based CNN architecture is used to regress the 7D pose vector [𝑥, 𝑦, 𝑧, 𝑞0 , 𝑞1 , 𝑞2 , 𝑞3].
to ∼.89M, making it suitable to deploy in resource-constrained space
systems.

Bounding box prediction: Recently, Li et al. [45] formulated
keypoint prediction as a keypoint bounding box detection problem.
Instead of predicting the keypoint locations or heatmaps, the enclosing
bounding boxes over the keypoints are predicted along with the con-
fidence scores. Authors used CSPDarknet [71] CNN backbone with a
Feature Pyramid Network (FPN) [72] for multi-scale feature extraction,
followed by a detection head for the keypoint bounding box detection
(see Fig. 6-C). A similar method is also used in [73]. Here, a counter-
factual analysis [74] framework is used to generate the FPN, which is
then fed to the keypoint detector.

2.1.3. Pose computation
The final stage is to compute the spacecraft pose using the 2D

keypoints (from the keypoint prediction stage) and the corresponding
pre-defined 3D points [75]. One important step in the pose computation
process is to remove the wrongly predicted keypoints, referred to as out-
liers, since the Perspective-𝑛-Point (P𝑛P) [76] solvers are sensitive to the
presence of outliers. The RANdom SAmple Consensus (RANSAC) [77]
algorithm is commonly used for removing outliers. IterativePnP [78]
and EPnP [79] are the two solvers extensively used in the different
hybrid algorithms. Recently, Legrand et al. [63] replaced the P𝑛P
solver with a Multi-Layer Perceptron (MLP) network architecture, the
Pose Inference Network (PIN) [80], for regressing the pose from the
predicted keypoints. This makes pose computation differentiable and it
can be trained with a pose loss function. In the final step, the estimated
pose is further refined by optimising a geometrical loss function [81]
such as the keypoint reprojection error [66].

2.2. Direct end-to-end approaches

In this survey, direct approaches refer to the use of only one DL
model in an end-to-end manner for regressing the spacecraft pose
directly from the images without relying on intermediate stages. The
models are trained using loss functions calculated from the pose error.
Unlike hybrid algorithms, the approach does not require any additional
information like camera parameters or a 3D model of the spacecraft
apart from the ground truth pose labels. The camera parameters are
intrinsically learned by the models during the training process.

Phisannupawong et al. [82] proposed a GoogLeNet-based [83] CNN
architecture for regressing the 7D pose vector representing position
and orientation quaternion (see Fig. 7). The network was trained using
different loss functions, an exponential loss function and a weighted
Euclidean-based loss function. The experimental results show that the
network offers better performance when trained with the latter. How-
ever, directly regressing the orientation using a norm-based loss of unit
quaternions fails to achieve higher accuracies and results in a larger
error margin [84]. This is mainly due to the loss function’s inability to
represent the actual angular distance of any orientation representation.

Sharma et al. [85] proposed discretising the pose space itself into
pose classification labels by quantising along four degrees of freedom as
344
Fig. 8. Illustration of pose space discretisation along four degrees of freedom used
in [85]. Two degrees of freedom controlling the position of the camera on the enclosing
sphere, one degree of freedom from the rotation of the camera along the bore-sight
direction and one degree of freedom from the distance of the camera to the spacecraft.

illustrated in Fig. 8. Two degrees of freedom controlling the position of
the camera (w.r.t. to the spacecraft) along the surface of the enclosing
sphere, one degree of freedom denoting the rotation of the camera
along the bore-sight angle and one degree of freedom determined by
the distance of the camera from the spacecraft. An AlexNet-based [86]
CNN network is used for classifying the spacecraft images into these
discretised pose label classes, trained with a Softmax loss function [87].
However, this is constrained by the total number of pose class labels
to be learned. A larger number of pose labels will need an equivalent
number of neurons in the final softmax layer, increasing model size
considerably. Also, the method provides an initial guess and requires
further refinement to produce more accurate pose estimations.

To overcome these limitations, Sharma et al. [88] later presented
Spacecraft Pose Network (SPN), a model with a five-layer CNN back-
bone followed by three different sub-branches (see Fig. 9). The first
branch localises the spacecraft in the input image and returns the
bounding box. The second branch classifies the target orientation in
terms of a probability distribution of discrete classes. It minimises
a standard cross entropy loss for a set of closest orientation labels.
Finally, the third branch takes the candidate orientation class labels ob-
tained from the previous branch and minimises another cross-entropy
loss to yield the relative weighting of each orientation class. The final
refined attitude is obtained via quaternion averaging with respect to the
computed weights, which represents a soft classification approach. The
position is then estimated from the constraints imposed by the detected
bounding box and the estimated orientation, using the Gauss–Newton
optimisation algorithm [89].

Similar network architecture is also used in [90]. A ResNet50
model [91] with a Squeeze-and-Excitation (SE) module [92] is used as
the base CNN network for feature extraction. The first sub-network, the
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Fig. 9. Network architecture used for spacecraft pose estimation in [88]. Branch 1 localises the spacecraft outputting the bounding box, branch 2 predicts the probability distribution
for orientation classification and branch 3 regresses the weights for each orientation class.
attitude-prediction-subnetwork, estimates the orientation by soft clas-
sification and error quaternion regression. The second pose regression
sub-network, predicts the position of the spacecraft by direct regression.
Finally, the object detection sub-network detects the spacecraft by
predicting the enclosing bounding box. The bounding box is used to
validate the position and orientation prediction.

Proença et al. [84] propose URSONet, a ResNet-based backbone
architecture followed by two separate branches for the estimation of the
position and orientation (see Fig. 10). The position estimation was car-
ried out through a simple regression branch with two fully connected
layers while minimising the relative error in the loss function. A con-
tinuous orientation estimation via classification with soft-assignment
coding was proposed for orientation estimation. Each ground truth la-
bel is encoded as a Gaussian random variable in the orientation discrete
output space. The network was then trained to output the probability
mass function corresponding to the actual orientation. Poss et al. [93]
presented Mobile-URSONet, a mobile-friendly deployable lightweight
version of the URSONet. The ResNet backbone was replaced with a
MobileNetv2 [53] model and the number of fully connected layers
in the sub-branches was reduced to one (from two). It reduced the
number of parameters to a range of 2.2M to 7.4M, 13 times smaller
than the URSONet. Moreover, this was achieved without a considerable
degradation in performance.

Recently, Park et al. [94] presented SPNv2, improving on the orig-
inal SPN [88] for addressing the domain gap problem. SPNv2 has
a multi-scale multi-task network architecture with a shared feature
extractor following the EfficientPose [95] network, which is based on
the EfficientDet [96] feature encoder comprised of an EfficientNet [56]
backbone and a Bi-directional FPN (BiFPN) [96] for multi-scale feature
fusion. This is followed by multiple prediction heads for each of the
tasks learned: binary classification of spacecraft presence, bounding
box prediction, target position and orientation estimation, keypoint
heatmap regression and pixel-wise binary segmentation of the space-
craft foreground. The results show that joint multi-task learning helps
in domain generalisation by preventing the shared feature extractor
from learning task-specific features. The authors also propose an online
domain refinement (ODR) using target domain images (without labels)
to be performed on board spacecraft. The ODR fine-tunes SPNv2 on
the target images by minimising the Shannon entropy [97] on the
segmentation task prediction head. The paper also presents different
variants of the algorithm by changing the number of parameters in
the EfficientNet backbone. The smallest variant with 3.8M parameters
has comparable performance to the best-performing variant with 52.5M
parameters on the SPEED+ synthetic dataset.

Garcia et al. [98] presented a network architecture with two CNN
modules: the translation and orientation modules, for pose estimation
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(see Fig. 11). The translation module has a UNet architecture [70] for
predicting the 3D position [𝑥, 𝑦, 𝑧] of the target (from the intermediate
feature embedding layer) and the 2D spacecraft location in the image
[𝑢, 𝑣] (from the final heatmap output). This is then used to generate the
enclosing bounding box for the spacecraft and the RoI is cropped out.
The orientation module with a CNN regression network predicts the
spacecraft orientation [𝑞0, 𝑞1, 𝑞2, 𝑞3] from the cropped RoI.

Finally, Musallam et al. evaluated their state-of-the-art absolute
pose regression network E-PoseNet [99] on the SPEED dataset. The
model is based on the PoseNet architecture [100], where the back-
bone is replaced by a SE(2)-equivariant ResNet18 backbone [101].
The equivariant features encode more geometric information about
the input image. Moreover, equivariance to planar transformations
constrains the network in a way that can aid generalisation, especially
due to the weights sharing. Finally, the rotation-equivariant ResNet
shows a significant reduction in model size compared to the regular
ResNet architecture, to obtain the same feature size.

2.3. Algorithm comparison

In this section, different spacecraft pose estimation algorithms are
compared. Tables 1 and 2 summarise different hybrid and direct algo-
rithms, respectively, with a comparison of DL models used, the total
number of parameters and the pose accuracy. The performance of the
pose estimation algorithm is expressed in terms of the mean position
and orientation errors. The position error is calculated as:

𝐸𝑡 = ‖𝑡predicted − 𝑡groundtruth‖2 (1)

and the orientation error is calculated as:

𝐸𝑅 = 2 ∗ arccos
(

| < 𝑞predicted, 𝑞groundtruth > |

)

(2)

where, 𝑡predicted, 𝑡groundtruth are the predicted and the ground truth
translation vectors and 𝑞predicted, 𝑞groundtruth are the predicted and the
ground truth rotation quaternions respectively. |⟨, ⟩| indicates the abso-
lute value of the vector dot product and ∥2 is the Euclidean norm. The
mean position and orientation error values on the SPEED [19] synthetic
test set are reported where available [19]. In other cases, the error
values on the corresponding synthetic published dataset are reported.
Similarly, in many instances, authors do not report the total number of
parameters in their algorithms. In such cases, an approximate number
of parameters is estimated based on the known backbone models
and frameworks used. This survey is the first attempt to compare
different DL-based spacecraft pose estimation algorithms in terms of
performance reported on different datasets and the number of model
parameters with available information in the literature.
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Fig. 10. Direct end-to-end approach for spacecraft pose estimation. The position is regressed directly and the orientation is obtained with soft classification [84].
Fig. 11. LSPnet architecture for spacecraft pose estimation [98].
A key aspect of the spacecraft pose estimation algorithms is the
deployment on edge devices for their use in space. As a generic def-
inition, a model can be considered deployable on a computing device
if the hardware has sufficient resources to run the model at a reasonable
inference speed suitable for the application. Unlike the commonly
used resource-abundant workstations, computing resources are scarce
in space systems. Also, missions with onboard AI capabilities began
development only very recently. For examples, ESA’s recently launched
technology demonstration mission, Phi-Sat −1 [115], uses an Intel
Movidius board with a Myriad II chip [116] and NASA’s Low-Earth
Orbit Flight Test of an Inflatable Decelerator (LOFTID) demonstration
mission used the Nvidia Jetson TX2i module [117] as the AI accelera-
tors. In the broader edge AI literature [118–121], the following factors
are commonly considered for measuring the deployability of a DL
model: latency (or inference time), memory footprint (RAM utilisation
and model size), computational cost (number of FLOPs) and power
consumption.

However, in current spacecraft pose estimation literature, these
numbers are not commonly reported. Hence in this survey, we consider
the number of parameters as an indirect measure of deployability in
terms of resource consumption. Larger DL models with a higher number
of parameters will proportionally have higher latency, memory foot-
print, computational cost and power consumption making it unsuitable
for a space device. On the other hand, using smaller DL models with
fewer parameters leads to a drop in performance. Thus, a trade-off is
needed between the use of large, high-performing models and smaller,
deployable models. Based on Tables 1 and 2, Fig. 12 shows this trade-
off by plotting the algorithm performance against the total number of
model parameters. The results show that the algorithms [44,54,99] and
the SLAB Baseline [51] provide a good trade-off in terms of the perfor-
mance and the number of parameters. These algorithms have position
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and orientation errors of less than 0.30 m and 4◦, respectively, while
using fewer than 20 million parameters. In general, the analyses show
that the YOLO family [52,71,104,112] of network architectures and
MobileNet and its derivative-based [40,53] and EfficientNet-Lite [56]
backbones are very suitable for deployment with a lower number of
parameters while retaining higher performance.

However, despite the best efforts of this survey, deployability is very
much a hardware and application-specific concept. Using the small-
est models given in the survey cannot guarantee deployability if the
hardware used does not have sufficient resources to support them. Stud-
ies [121–123] provide the experimental setups for measuring deploy-
ability, which can be used for spacecraft pose estimation algorithms.
In future, this survey can be extended to include experiment-based
benchmarking of these algorithms on various space computing devices
to further understand their deployability.

Another factor of comparison for algorithms is the modular nature
of the approaches themselves. The hybrid algorithms are built by inte-
grating three components: spacecraft localisation, keypoint regression
and pose computation. This helps to work and improve each stage of
the algorithms in isolation. For example, changes in the camera model
can be incorporated into the pose computation stage without retraining
the localisation and keypoint regression models. This provides more
flexibility in building the algorithms for different pose estimation ap-
plications. By contrast, the direct algorithms comprise only a single
DL model trained end-to-end. The entire model has to be retrained to
incorporate changes such as changes in camera parameters.

In terms of performance comparison between the approaches, anal-
ysis of the top-10 methods from the first edition of ESA Kelvin Satellite
Pose Estimation Challenge (KSPEC’19) [19] show that the hybrid ap-
proaches perform comparatively better than the direct approaches. The
hybrid and direct algorithms have mean position errors of 0.0083 ±
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Table 1
Summary of the hybrid algorithms for spacecraft pose estimation. Details of the object detector and keypoint prediction models (including the estimated number of parameters)
and the pose computation methods used are provided. The mean position and orientation error values on the SPEED synthetic test set are reported where available. In cases where
the number of parameters is not reported by the authors, estimated values based on the known backbone models and frameworks are given. Additionally, the links to the publicly
available algorithms are included in Appendix A.1.

Ref Object Detector Parameters (millions) Keypoint Prediction
Model

Parameters (millions) Total Parameters
(millions)

Pose Computation Mean position
error (Et) (m)

Mean
orientation
error (ER)
(deg)

UniAdelaide [66] Faster-RCNN [35]
with HRNet-W18-C
[50] as the backbone

∼21.3b [102] Pose-HRNet-W32
[103]

∼28.5 [103] ∼49.8 (176.2 [54]) PnP + RANSAC [77]
refined with a
geometric loss
optimised using
SA-LMPE optimiser

0.0320a 0.4100a

EPFL_cvlab [61] Not applied -NA- Yolov3 [104] with
DarkNet-53 [104] as
the backbone
followed by a
segmentation and
regression decoder
branchers

∼59.1 [105] ∼59.1 (89.2 [54]) EPnP [79]
+ RANSAC

0.0730a 0.9100a

SLAB Baseline [51] YOLOv3 [104] with
MobileNetV2 [53] as
the backbone

5.53 YOLOv2 [52] with
MobileNetV2 [53] as
the backbone

5.64 11.17 EPnP 0.2090a 2.6200a

Huo et al. [44] Tiny-YOLOv3 [104]
architecturec with a
detection subnetwork

-NA- Tiny-YOLOv3 [104]
architecturec with a
regression
subnetwork

-NA- ∼0.89 PnP+RANSAC refined
with a Log-cosh
geometric loss
optimised by
Levenberg–Marquardt
solver [106]

0.0320 0.6812

Piazza et al. [68] YOLOv5s [107] 7.5 HRNet32 [103] ∼28.6b [69] ∼36.1 EPnP refined with a
geometric loss
optimised by
Levenberg–Marquardt
solver

0.1036 2.2400

Huan et al. [49] Cascade Mask R-CNN
[108] with HRNet as
backbone

-NA- HRNet [103] ∼28.5 to ∼63.6
[103]

-NA- EPnP refined with a
Huber style
geometric loss
optimised as
non-linear
least-squares problem

0.1823 2.8723

STAR LAB keypoint
method [67]

Faster-RCNN [35]
with RestNet50 [91]
backbone

∼23.9b [109] HigherHRNet [69]
with HRNet-W32
[103] as the
backbone

∼28.6b [69] ∼52.5 PnP + RANSAC 0.3000
(URSO-OrViS
dataset)

4.9000
(URSO-OrViS
dataset)

Black et al. [110] SSD [38]
MobileNetV2 [53]

-NA- MobilePose [111]
architecture with
MobileNetV2 [53] as
backbone

-NA- 6.9 EPnP + RANSAC 1.0800
(Cygnus
dataset)

6.4500
(Cygnus
dataset)

Wide-Depth-Range
[62]

Not applied -NA- FPN [72]
architecture with
DarkNet-53 [104] as
the backbone

51.5 51.5 EPnP + RANAC with
and without a pose
refinement strategy

-NA- -NA-

Cosmas et al. [43]d YOLOv3 [104] ∼59.1 [105] ResNet34-UNet
[70,91] architecture

∼21.5b [109] ∼80.6 -NA- -NA- -NA-

Lotti et al. [54]d MobileDet [40] 3.3 Regression head with
an EfficientNet-Lite
[56] backbone

-NA- 15.4 EPnP + RANSAC and
further optimised by
Levenberg–Marquardt
solver

0.0340 0.5200

Kecen et al. [45]d YOLOX-Tiny [112] ∼5.06 [112] FPN [72]
architecture with
CSPDarknet53 [71]
as the backbone

∼27.6b [71] ∼32.66 EPnP 0.0049 0.0129

CA-SpaceNet [73]d Not used -NA- Keypoint prediction
head having three
FPNs [72] with two
DarkNet-53 [104]
networks as the
backbones

-NA- 51.29 PnP -NA- -NA-

Legrand et al. [63]d An ideal object
detector assumed

-NA- DarkNet-53 [104]
pre-trained on
Linemod [113] with
two decoding heads
- a segmentation
head and a
regression head

71.2 -NA- PIN architecture [80]
consists of an MLP
that aggregates local
features per keypoint
into a single
representation

0.201 4.687

Wang et al. [57] Vanilla Faster-RCNN
[35]

∼23.9b [109]
(ResNet50 [91]
backbone assumed)

Transformer
[39]-based
keypoint-set predictor
with a ResNet50
[91] backbone

∼23.9b [109] ∼47.8 EPnP + RANSAC and
further refined with
a Ceres solver [114]

0.0391 0.6638

Lotti et al. [58]d Single stage detector
with
Swin-Transformer
[59] as the backbone
and an additional
discriminator head
present during
training

-NA- Regression head with
a Swin-Transformer
[59] as the backbone
and an additional
discriminator head
present during
training

-NA- 207 EPnP with RANSAC
followed by a
Levenberg–Marquardt
refinement step

-NA- 6.24 (SPEED+
Sunlamp
dataset), 9.69
(SPEED+
Lightbox
dataset)

aResults from KSPEC first edition [19]
bOnly no: of parameters in the backbone considered.
cBackbone shared between the object detector and the keypoint prediction model.
dBest performing variant considered.
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Fig. 12. Comparison of pose estimation algorithms in terms of number of parameters versus (a) position error and (b) orientation error. (c) The index mapping used for the plot.
The results show that the algorithms [44,54,99] and the SLAB Baseline [51] provide a good trade-off in terms of the performance and the number of parameters, as shown by
the red regions of each plot. These algorithms have position and orientation errors of less than 0.30 m and 4◦, respectively, while using fewer than 20 million parameters.. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
0.0269 m and 0.0328 ± 0.0430 m and mean orientation errors of 1.31 ±
2.24◦ and 9.76±18.51◦, respectively. Analysis of the recently concluded
second edition of the same challenge (KSPEC’21) [20] also gives similar
indications. Winning algorithms on both streams of the challenge used
the hybrid approach.

2.4. Limitations

Recently, several promising algorithms have been developed for DL-
based spacecraft pose estimation using both the hybrid and the direct
approaches. However, these algorithms still have several limitations
that need to be considered and have room for further improvement.
This section highlights these limitations with discussions on each topic.

2.4.1. Deployability
Deployability is a key aspect of any space algorithm. Despite the

recent progress in spacecraft pose estimation algorithm development,
the deployment remains an important open research question. The
limitations of current algorithms in terms of deployability refer to
the challenges of implementing these algorithms in real-world space
missions.

Among the current research works, only a small fraction of the de-
veloped algorithms are tested and evaluated on edge systems for space
deployment [43,54,73]. Also, authors rarely report factors affecting
algorithm deployability such as latency or inference time, memory re-
quirements, power consumption and computational cost. These missing
details are important to understand the deployability of a model [123,
124], on resource-constrained environments such as in a space system
with limited computational capabilities.

Another limitation is the extensive use of off-the-shelf DL mod-
els and frameworks (refer to Tables 1 and 2). While these off-the-
shelf models work well on a workstation, they may not be suitable
for space deployment due to several reasons. Primarily, these models
are designed to work on systems with abundant resources and are
computationally expensive, requiring significant processing power and
memory. Secondly, these models (or certain DL layers) may not be
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supported [125] by the AI accelerators used in current space sys-
tems like FPGA-based [126,127] accelerators. Hence it is required to
build algorithms with architectures specifically customised for space
applications and hardware.

2.4.2. Explainability
Explainability refers to the ability to understand how an algorithm

arrives at its predictions and it is an essential factor in building trust
and ensuring safety in critical applications such as space missions. This
makes error analysis and troubleshooting easier. A key limitation of
the current DL-based spacecraft pose estimation algorithms is their lack
of explainability. In the direct approach, the black-box nature of DL
models in general [128] makes interpreting the errors and failures very
difficult. Comparably, the hybrid approach tackles the spacecraft pose
estimation problem in stages, providing better interpretability. How-
ever, these algorithms still lack capabilities such as reasoning [129] or
modelling the uncertainty between the input data and the predictions
made [130].

2.4.3. Robustness to illumination conditions
Monocular vision-based algorithms are in general sensitive to

changes in lighting conditions. This can affect the accuracy and ro-
bustness of the pose estimation, especially in the dynamic illumination
conditions in space. For example, shadows, reflections and sun glare
can all create visual noise and make it difficult to identify and track
features on the spacecraft. Analysis of the results (see Fig. 13) from
the latest edition of KSPEC (KSPEC’21) [20] shows that even the best
vision-based spacecraft pose estimation algorithms performs poorly on
images with extreme lighting conditions.

Overcoming these limitations will require continued research and
development in areas including algorithm design, evaluation protocols
on edge devices, sensor technology and modelling of environmental
factors. Section 4 outlines future directions of research in spacecraft
pose estimation algorithm development to address these challenges.
Finally, any DL-based algorithm development cannot be separated
from the question of the datasets, both for training and validating the
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Fig. 13. Visualization of the worst 3 predictions made by stream-1 winning method of the KSPEC’21 challenge on lightbox (top-row) and sunlamp (bottom-row) images [20]. These
results show considerable drop in accuracy of estimated poses (shown in green) under extreme lighting conditions, highlighting an important limitation of vision-based spacecraft
pose estimation algorithms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
algorithms. The next section (Section 3) presents a detailed discussion
of spacecraft pose estimation datasets (Section 3.1) with a focus on the
domain gap problem (Section 3.2) and a discussion on their limitations
(Section 3.3).

3. Datasets

The use of DL models in spacecraft pose estimation necessitates
proper training to achieve the robust performance demanded by space
applications. The quality of the datasets is likely equally influential
in DL model performance compared to designing an effective DL al-
gorithm to reach the intended performance. Large datasets [133,134]
with a wide range of application scenarios are usually considered to
train DL models, which helps them generalise well for unseen scenarios.
Though DL algorithms are evolving towards few-shot [135] and zero-
shot [136] learning, solving 6 DoF pose prediction problems with high
accuracy still depends on large datasets with images spanning a wide
range of scenarios [137,138].

Currently, there is a lack of publicly available space-borne image
datasets. This limits the application of DL models and their validation
to specific targets where actual space-borne images are available and
to a limited range of operation scenarios. To overcome this limitation,
image rendering tools are the preferred way to generate realistic space-
borne images and testbeds are considered for on-ground validation. The
rendering tools help generate thousands of images for a wide range of
targets with annotations for any user-defined applications such as ob-
ject detection, semantic segmentation and 6 DoF pose estimation. These
generation tools also provide a lot of flexibility to adapt parameters
such as camera models, orbital lighting conditions, etc., depending on
the final use-case application.

Spacecraft pose estimation algorithms are usually part of vision-
based navigation systems and are validated in a dedicated testbed
facility that can simulate the orbital relative motion using robotic
arms [139,140] or air-bearing [141] platforms under realistic space
lighting conditions. The target mock-up used in such facilities will be
scaled or original depending on various factors, including the size of
the facility, mock-up size, application scenario, etc. While synthetic
imagery can be mass-produced to address any requirements, the images
produced from testbed scenarios are limited to a certain extent. It
includes the Earth in the background, the accurate position of the
sun, earth’s albedo; such characteristics differentiate the lab/testbed
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imagery from the actual space imagery.
From the above discussion, it is evident that the spacecraft pose
estimation deals with images from three domains (i.e., synthetic, lab
and actual space imagery) during the development, testing/validation
and deployment phases. It is the nature of the DL models to overfit the
model to the features specific to the training domain and this challenge
is well-known in the literature as the domain gap [142,143] problem.
So, the algorithms need to consider the aspect of domain generalisation
from the data viewpoint to improve the algorithm’s performance.

3.1. Summary of datasets, simulators & testbeds

This section provides a summary of the spacecraft pose estimation
datasets, simulators and rendering tools for synthetic image generation
and testbeds for validation.

Datasets: Table 3 summarises the properties of the major space-
craft pose estimation datasets. The properties of the datasets include
the number of images, the target spacecraft model, image resolution,
annotations and the rendering tools used for the synthetic image gen-
eration. The number of images in the currently available spacecraft
pose estimation datasets is between 104 and 105. This is relatively low
compared to some typical datasets used for other machine learning
tasks such as image classification and object detection. The COCO [144]
dataset, one of the standard datasets used for object detection, contains
∼300k images. ImageNet dataset [131] primarily used for classification
contains ∼14M images. Similarly, YCB dataset [138], a recent generic
dataset for 6 DoF pose estimation, has ∼133k images.

The target spacecraft model used in the datasets also plays a vital
role in determining the dataset characteristics. For example, a smaller
target size will lead to a smaller operation range and vice-versa. The
TANGO satellite [145] model used in the multiple datasets [19,20,51,
51,85,132] has a coarse dimension of 80 × 75 × 32 cm will lead to
the operation range of ∼10 m. However, for Soyuz or Cygnus models
in other datasets increases the operating range to 40∼80 m. Similar
constraints will apply to testbed data as well. A 1:1 mockup scale of
TANGO spacecraft in SPEED+ [20] leads to a lower range in the lab-
generated images due to the size constraint of the facility. Usually, a
scaled mock-up is considered a solution to increase the validation range
in the testbed scenarios.

The level of annotations may vary for different datasets; for space-
craft pose estimation applications, each image in the dataset must be
appropriately annotated with corresponding relative 6DoF pose labels.
All the datasets mentioned in Table 3 are adequately annotated with
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Table 2
Summary of direct end-to-end algorithms for spacecraft pose estimation. Details of the network architectures used, along with an estimated number of parameters, are presented.
The error values on the SPEED synthetic test set are reported where available. In cases where the number of parameters is not reported by the authors, an estimated number of
parameters based on the backbone models used are given. Additionally, the links to the publicly available algorithms are included in Appendix A.1.

Reference Network architecture Parameters
(millions)

Mean position error
(Et) (m)

Mean rotation error
(ER) (deg)

Sharma et al.
[85]a

AlexNet [86] with half as many kernels
per layer as the original AlexNet
architecture, with the last fully
connected layer containing as many
neurons as the number of pose labels

∼20.8 [86] 0.83 (Imitation-25
dataset)

14.35 (Imitation-25
dataset)

SPN [88] A 5-layer CNN with 3 sub-branches for
bounding box classification and
regression, relative orientation
classification and relative orientation
weights regression.

-NA- 0.7832 8.4254

SPNv2 [94]a Bi-directional Feature Pyramid Network
(BiFPN) [96] with EfficientNet [56]
backbone and with multi-task head
networks shared by the features at all
scales.

52.5 0.031 (SPEED+) 0.885 (SPEED+)

URSONet [84] ResNet18, ResNet34, ResNet50,
ResNet101 [91] base networks with 2
sub-branch networks for position
regression and probabilistic orientation
estimation via soft classification.

∼11.4 to ∼42.8
[109] (∼500c)

0.1450b 2.4900b

Mobile-URSONet
[93]a

MobileNet-v2 [53] based network,
pre-trained on ImageNet [131], with 2
sub-branches for position regression and
probabilistic orientation estimation via
soft classification.

7.4 0.5600 6.2900

LSPnet [98] ResNet50 [91] base architecture for
position regression followed by an
up-sampling CNN for object localisation
and a second ResNet50 for orientation
regression.

∼47.8 [109] 0.4560 13.9600

Huang et al.
[90]

ResNet50 [91] base network with 3
sub-branch networks for object
detection, position regression and
orientating soft classification.

∼23.9 [109] 0.1715
(URSO-OrViS datast)

4.3820
(URSO-OrViS
dataset)

Phisannupawong
et al. [82]

A modified version of GoogLeNet [83]
that forms a general pose estimation
model as implemented in PoseNet [100].
The softmax classifiers in the original
GoogLeNet were replaced with affine
regressors and each fully connected
layer was modified to output a 7D pose
vector.

∼7.0 [83] 1.1915d

(URSO-OrViS
dataset)

13.7043d

(URSO-OrViS
dataset)

E-PoseNet [99] PoseNet architecture [100] with
SE(2)-equivariant ResNet18 backbone
[101].

14.1 0.1806 2.3073

aDetails of the best-performing variant reported.
bResults from KSPEC first edition [19].
cNumber of parameters in the best performing ensemble of models reported by the authors.
dMedian values reported.
Table 3
Review of recent spacecraft pose estimation datasets, sorted by year. The Syn/Lab/Space column is, the number of synthetic, lab and space-borne images in the dataset, respectively.
The Spacecraft column specifies the spacecraft used in the dataset. The resolution column corresponds to the width × height of the images, in pixels. The I column indicates if the
images are RGB (C) or grey-scale (G). The Range column indicates the distance between the camera and the spacecraft. The Tools column is a list of the rendering software used
to generate the synthetic data. Additionally, the links to the publicly available datasets are included in Appendix A.2.

Dataset Year Syn/Lab/Space Spacecraft Resolution I Range Tools

SHIRT [132] 2022 5k/5k/– Tango 1920 × 1200 G ≤8 m OpenGL
SPARK2-Stream2 [33] 2022 30k/900/– Proba-2 1440 × 1080 C [1.5 m, 10 m] Blender
COSMO [54] 2022 15k/–/– COSMO-SkyMed 1920 × 1200 C [36 m, 70 m] Blender
SwissCube [62] 2021 50k/–/– SwissCube 1024 × 1024 C [0.1 m, 1 m] Mitsuba 2
SPEED+ [20] 2021 60k/10k/– Tango 1920 × 1200 G ≤10 m OpenGL
Cygnus [110] 2021 20k/–/540 Cygnus 1024 × 1024 C [35 m, 75 m] Blender
SPEED [19] 2020 15k/305/– Tango 1920 × 1200 G [3 m, 40.5 m] OpenGL
URSO [84] 2019 15k/–/– Dragon, Soyuz 1080 × 960 C [10 m, 40 m] Unreal Engine 4
PRISMA12K [51] 2019 12k/–/– Tango 752 × 580 G – OpenGL
PRISMA12K-TR [51] 2019 12k/–/– Tango 752 × 580 G – OpenGL
Sharma et. al. [85] 2018 500k/–/– Tango 227 × 227 C [3 m, 12 m] OpenGL
350
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Fig. 14. (a) SnT Zero-G Lab at the University of Luxembourg [139] (b) TRON facility at Stanford University [140].
6DoF pose labels. However, the hybrid algorithm approach discussed in
Section 2.1 demands secondary annotations such as the bounding boxes
and the keypoints. To recover the secondary annotations from pose
labels, it is necessary to have 3D information on the edges or vertices
of the target. Even for the standard datasets such as SPEED [19] and
SPEED+ [20], the only way to use a hybrid approach is to recover the
3D locations of interested keypoints is via the 3D reconstruction meth-
ods [66]. These recovered keypoints will be used to construct secondary
annotations such as bounding boxes, keypoints, segmentation masks
and even ellipse heatmap annotations [146]. The lack of secondary
annotations can be an issue for multi-task learning approaches where
the annotations (such as segmentation masks) could be used to define
auxiliary tasks intended to prevent learning domain-specific features
to improve generalisation [94]. Several learning-based approaches are
evolving to generate secondary annotation to address the label scarcity,
such as depth estimation using a single image depth estimator [147]
and an image segmentation technique [148]. Some self-supervised
approaches are evolving as an alternate way to get bounding box
annotations for a single target in the image [149]. Though these
approaches aid annotations, they cannot replace the properly calibrated
annotations recorded during synthetic data generation.

Simulators and Rendering Tools: Computer graphics allow us to
create realistic images of objects based on high-quality textures using
ray tracing. Ray Tracing techniques mimic how light interacts with the
real world and rely on evaluating and simulating the path of view lines
from the observer camera to objects in the field of view. This simula-
tion enables the calculation of the light intensity of associated pixels.
Several efforts were made towards creating simulators for space appli-
cations. Realistic image simulation tools were used in previous missions
to aid vision-based navigation in space/planetary environments (such
as the Lunar environment, Asteroid surface) and it includes the PANGU
(Planet and Asteroid Natural scene Generation Utility) [150] and the
SurRender [151] by Airbus. The University of Dundee has developed
the PANGU simulation tool, which generates realistic, high-quality,
synthetic surface images of planets and asteroids. PANGU uses a custom
GPU-based renderer to render the scene. Airbus’s Surrender can be used
in two modes of image rendering, ray tracing and OpenGL [152]. It
can produce physically accurate images providing the known irradiance
(each pixel contains an irradiance value expressed in W/m2). Other
general rendering tools such as Blender [54], Unreal Engine [84] and
Mitsuba [62] were also used to generate synthetic images. The main
issue with these tools is that they are designed for general usage and are
not customised for space imagery. A brief comparison of rendering tools
for synthetic imagery was provided in [153]. Recently, efforts [19,154]
have been made towards developing simulation tools specific for the
purpose of synthetic image generation for spacecraft pose estimation.
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SPEED and SPEED+ images are obtained using the Optical Simula-
tor [155], based on an OpenGL rendering pipeline. The images from
SPEED and SPEED+ are validated against the real images of TANGO
spacecraft from the PRISMA mission using histogram comparison [19].
However, to our knowledge, no tool can be considered a de facto
standard to generate space imagery for spacecraft pose estimation.

Testbeds: In spacecraft pose estimation, collecting images from
space for training and evaluating algorithms is extremely difficult
and expensive. Laboratory testbeds (see Fig. 14) are considered as
an alternative to replicate relative motion and orbital lighting condi-
tions. Table 4, summarises different laboratory testbed facilities based
on their size, manipulation capabilities, tracking systems, perception
sensors and orbital motion simulations. Some of the SoTA testbed
includes The Robotic Testbed for Rendezvous and Optical Naviga-
tion (TRON) at Stanford’s Space Rendezvous Laboratory (SLAB) [140],
STAR Lab at the University of Surrey [153], SnT Zero-G Lab at the
University of Luxembourg [139], GMV Platform-Art [156,157], German
Aerospace Center European Proximity Operations Simulator 2.0 (DLR
EPOS) [158], European Space Agency’s GNC Rendezvous, Approach
and Landing Simulator (GRALS) [159] and PoliMI-DAER facility at the
Aerospace Science and Technology Department (DAER), Politecnico di
Milano [160,161] . These testbeds generally have robotic manipulators
to carry the payloads. The payloads can be different target spacecraft
mock-up models or mounted cameras mimicking a chaser. Different
lighting equipment has been used for simulating space conditions. For
instance, in SPEED+ [20], the images collected in a sunlamp setup
replicate the sun’s bright light and those collected with a lightbox setup
emulate the diffused light of the earth’s albedo, respectively. Motion
capture systems are extensively used to collect pose labels based on the
reflective markers attached to the target and cameras. However, these
motion capture systems should be carefully calibrated [140] to generate
accurate ground truth data, which can be tedious and time-consuming.

The next section discusses the major issue with the current space-
craft pose estimation datasets: the domain gap between synthetic data
used for training and the real laboratory/ space-borne images used for
testing/ validating and deploying the DL-based algorithms.

3.2. Bridging the domain gap

Any DL-based algorithm trained on a synthetic dataset is likely to
suffer from a performance drop when tested on real images (whether
acquired within a ground-based laboratory or in space), which is re-
ferred to as the domain gap [163] problem. Following the related
computer vision terminology, the training dataset arises from a source
domain while the test dataset belongs to the target domain. More
subtly, a domain gap persists even when the real source and target
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Table 4
Summary of different laboratory testbed facilities for evaluating spacecraft pose estimation algorithms.

Facility STAR Lab [153] TRON [140] SnT Zero-G Lab
[139]

GMV
Platform-Art©
[156,157]

DLR EPOS 2.0
[158]

GRALS [159] PoliMI-DAER
Facility
[160,161]

Illumination • Forza 500
LED spotlight

• LED panels (for
diffused light)
• Metal-halide
arc lamp (for
sunlight)

• Godox SL-60
LED Video Light
• Aputure LS
600d Pro

• Numerically
controlled Sun
emulator

• Osram ARRI
Max 12/18 (with
a 12 kW
hydrargyrum
medium-arc
iodide lamp)

• Dimmable,
uniform and
collimated light
source

• An array of
LED spotlights
with narrow
beam angle

Perception
Sensor

• FLIR Blackfly
(monocular
camera) • 2D/3D
LIDAR • Intel
RealSense D435i
(RGBD camera)

• Point Grey
Grasshopper 3
(monocular
camera)

• FLIR Blackfly
(monocular
camera)
• Prophesee
EKv4 (event
camera) • Intel
RealSense D435i
(RGBD camera)

• Optical
navigation
camera
• Industrial laser
sensor • A set of
GPS-like
pseudolites

• Prosilica
GC-655M (CCD
camera)
• PMDtec
Camcube 3.0
(PMD camera)
• Bluetechnix
Argos3D-
IRS1020 DLR
Prototype (PMD
LiDAR)

• Prosilica
GC2450
(monocular
camera)

• Point Grey
Chameleon 3
(monocular
camera

Manipulator
(Robotic Arms)

• UR5 • KUKA • UR10e • Mitsubishi
PA10-6CE
• KUKA KR150-2

• KUKA
KR100HA
• KUKA KR240-2

• KUKA
• UR5

• Mitsubishi
PA10-7C

Tracking System Qualisys Vicon OptiTrack Model-based
tracking
algorithm based
on virtual visual
servoing &
Kanade-Lucas-
Tomasi (KLT)
feature tracker
algorithm

VIsion BAsed
NAvigation
Sensor System
(VIBANASS)

VICON Oriented FAST &
rotated BRIEF
(ORB) features
tracked with the
pyramidal
Lucas-Kanade
algorithm

Background
Material

Black
background
curtains

Light-absorbing
black commando
curtains

Blind made of
non-reflective
black textile
from inside and
outside

Black curtains
fully covering
the walls and
ceiling

Black curtain
and a black
wrapping of one
of the robots
made of Molton
material

Black
background
curtains

Non reflective
black structure

Simulated
Operations

• Proximity • Rendezvous
• Proximity

• Proximity
• Rendezvous
• Orbital
maintenance
operations

• Rendezvous
• Proximity

• Rendezvous
• Dock-
ing/berthing
• Proximity

• Rendezvous
• Proximity

• Planetary
landing

Dimensions
(W × L × H)

3 m × 2 m × 2.5 m 8 m × 3 m ×
3 m (simulation
room) and 6 m
(track)

5 m × 3 m ×
2.3 m

15 m 25 m (track) 4 m -NA-

ROS [162]
Supported

Yes -NA- Yes No No No -NA-
datasets are acquired under different (laboratory and space) envi-
ronmental conditions [164]. To ensure the reliable performance of
DL-based spacecraft pose estimation algorithms in real-world space
missions, it is, therefore, crucial to bridge the domain gap. Several
methods have been used in spacecraft pose estimation literature for this
purpose. These methods are classified into two categories:

• Data level methods: Expanding or adding diversity to the training
data by applying different techniques to alter the images, such as
(1) data augmentation [94] or (2) domain randomization [51]

• Algorithm level methods: Adapting the learning procedure of
the model by using different techniques, such as (3) multi-task
learning [94] or (4) adversarial learning [20], to make the features
extracted from images as less domain-dependent as possible

3.2.1. Data augmentation
This involves artificially creating additional training data by apply-

ing various transformations to the existing data [165]. This is done
352
to increase the size and variations of the training set and to make
the model more robust to unseen variations in the input data, i.e. to
improve the generalisation to unseen domains. Data augmentation
techniques used in spacecraft pose estimation algorithms can be further
categorised into:

• Pixel-wise data augmentations such as blurring, noising or chang-
ing the image contrast

• Spatial-level data augmentations such as rotation or scaling

The main difference between the two categories is their effect on
the pose labels. The pixel-level augmentations only affect the input
image, whereas the spatial-level augmentations require modifying both
the input image as well as the pose label, which can be difficult. Fig. 15
illustrates different data augmentation techniques (pixel and spatial-
level) applied to a reference image of PROBA-2 spacecraft from the
SPARK2 [33] dataset. Finally, even though data augmentation gener-
ally helps with the domain gap problem, there can be instances when
applying data augmentation can be counter-productive. For example,
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Fig. 15. Illustration of different data augmentation methods used on the same reference image taken from SPARK2 [33] dataset. Images A, B and C show examples of pixel-wise
augmentation methods and images D, E and F show the application of spatial augmentation methods. The captions refer to the corresponding functions used by the Albumentations
Python library.
the Random Erase augmentation used by Park et al. [94] is shown to
cause a drop in the pose estimation performance. Consequently, finding
the best set of augmentations for a given context is a hard task in
itself [166]. Table 5 provides a summary of data augmentation methods
used in spacecraft pose estimation algorithms surveyed in this paper.

3.2.2. Domain randomisation
The goal is to help the model generalise by training it on a set of

sufficiently randomised source data so that the target domain appears
as just another randomisation to the model [167]. Hence, the expec-
tation is that the model will be less prone to the domain gap [167].
An example of domain randomisation in the context of spacecraft
pose estimation is provided in [51], where the spacecraft texture is
randomised using the Neural Style Transfer (NST) technique presented
in [168]. Domain randomisation can be seen as a particular case of data
augmentation: one does not search for a set of augmentations relevant
to a context, but for a sufficiently varied set of augmentations that will
make the actual scene appear as just another variation.

3.2.3. Multi-task learning
In this approach, a single DL model is trained to perform multiple

related tasks (a primary task and several secondary/ auxiliary tasks)
simultaneously. The assumption here is that the model will generalise
better on the primary task (spacecraft pose estimation in this context)
by being less prone to the noise induced by the primary task [169].
The most common way of implementing multi-task learning is to
have a shared backbone architecture extracting features and feeding
these features to the task-specific layers [94] (see Fig. 16). Here Ef-
ficientPose [95] network architecture is modified with the addition
of two heads: one for the segmentation of the spacecraft and one to
compute the 2D heatmaps associated with pre-designated keypoints on
the spacecraft. The results show that when the model is trained with
different head configurations, the best performance is reached when
all the task heads are enabled, thereby showing the effectiveness of
multi-task learning. However, the authors show that all the heads do
not contribute to the same extent; the segmentation head only improves
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Fig. 16. A model architecture used for multi-task learning, where some layers are
shared between all tasks and some layers are dedicated to specific tasks.
Source: Adaptation from [94].

the performance slightly. This highlights one of the key challenges in
multi-task learning: identifying the correct set of secondary tasks that
is relevant for a particular primary task [170].

3.2.4. Domain-adversarial learning
This technique [171] is applied to spacecraft pose estimation [20]

to bridge the domain gap. The goal here is to help the model learn
features that are domain-invariant but discriminative with respect to
the pose estimation task. A domain classifier, whose purpose is to
discriminate between the source and the target domain, is attached to
the model and its loss function maximised over the learning phase. The
underlying idea of this method is that the less this classifier can dis-
tinguish between the source and the target domain, the more domain-
invariant the model becomes. Recently Lotti et al. [58] showed that
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Table 5
Datasets used and data augmentations applied with different pose estimation algorithms.

Algorithm Datasets Used Data Augmentations Applied

EPFL_cvlab [61] SPEED Rotation, addition of random noise, zooming and cropping

SLAB Baseline [51] SPEED, PRISMA12K, PRISMA25 Random variations in brightness and contrast, random flipping,
rotation at 90 degree intervals and addition of random Gaussian
noise. Also, RoI enlargement and RoI shifting are applied
specifically for object detector training.

STAR LAB keypoint
method [67]

SPEED, URSO-OrViS Rotation, translation, coarse dropout, addition of Gaussian noise,
random brightness and contrast variations applied for training
keypoint prediction network

Black et al. [110] SPEED, Cygnus Randomised flips, 90 degree rotations and crops applied for object
detector training. Random translation and expansions, random flips,
90 degree rotations, brightness, contrast and saturation
augmentations applied for keypoint prediction training.

Wide-Depth-Range [62] SPEED, SwissCube Random shift, scale and rotation

LSPnet [98] SPEED Centre data augmentation

URSONet [84] SPEED, URSO-OrViS Change in image exposure and contrast, addition of Additive White
Gaussian (AWG) noise, blurring and drop out of patches, random
camera orientation perturbations and random plane rotations (only
for SPEED dataset)

Mobile-URSONet [93] SPEED Random rotation of the camera across the roll axis with a
maximum magnitude of 25 degrees, Gaussian blur, random changes
to brightness, contrast, saturation and hue

Huang et al. [90] SPEED, URSO Change in image exposure and contrast, addition of AWG noise,
blurring and drop out patches, random camera orientation
perturbations and random plane rotations (only for SPEED)

Lotti et al. [54] SPEED, CPD Random image rotations, bounding box enlargement and shifts,
random brightness and contrast adjustments

Kecen et al. [45] SPEED Same as SLAB Baseline

SPNv2 [94] SPEED+ Style augmentation via neural style transfer, brightness and
contrast, random erase, sun flare, blur (motion blur, median blur,
glass blur), noise (Gaussian noise, ISO noise)

Sharma et al. [85] PRISMA (Imitation-25) Horizontal reflection, addition of zero mean white Gaussian noise

CA-SpaceNet [73] SPEED, SwissCube Random shift, scale and rotation

Legrand et al. [63] SPEED Random variations in brightness and contrast, Gaussian noise
augmentations, random rotations, and random background data
augmentation

Wang et al. [57] SPEED Random rotation, brightness and contrast adjustment, RGB values
shift, JPEG compression, addition of Gaussian noise and Gaussian
blur

Lotti et al. [58] SPEED+ Random rotations, random variations in brightness and contrast,
adding sunflare, Gaussian blurring and addition of Gaussian noise.
Additionally, style randomisation, image equalisation, inversion,
posterization and solarization, RoI enlargement and shifting were
also used during different keypoint prediction training settings.
using Transformer-based [39] architectures combined with adversarial
learning can further mitigate the domain gap problem in spacecraft
pose estimation algorithms. The improvement in domain generalisation
when using transformer architectures can be attributed to their stronger
inductive bias towards shapes and structures [172] rather than to image
textures and backgrounds as in standard CNNs [173].

3.3. Limitations

Current datasets and evaluation procedures are still insufficient to
enable the deployment of DL-based spacecraft pose estimation algo-
rithms in space missions. We identify key limitations below.

3.3.1. Realism of synthetically generated datasets
One factor increasing the domain gap is the realism of the synthetic

images used to train the models. The question of rendering realistic
images is a hard topic in the context of space because it involves simu-
lating the behaviour of light and its interaction with various materials
and surfaces in space. The lack of reference points and the absence of
an atmosphere make it difficult to create realistic lighting and shading
effects. To achieve a realistic depiction of space, computer graphics
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techniques need to be tailored specifically to the unique properties of
space environments. Therefore, the question of how to render more
realistic synthetic space images is a challenging and open research
topic.

3.3.2. Algorithm evaluation
While several attempts have been made to mitigate the domain

gap between synthetic and laboratory images, there persists a one-
order-of-magnitude difference between the best pose scores in the 2019
(synthetic test images) and 2021 (laboratory test images) editions of
ESA’s Satellite Pose Estimation Challenge [19,20]. Moreover, ensuring
that an algorithm trained on synthetic images (source domain) per-
forms well on laboratory images (target domain) does not guarantee
that the performance level will be maintained for space images, mainly
as a result of the domain gap between the two environments.

4. Future research directions

Despite the recent progress in spacecraft pose estimation, there is
room for improvement in algorithm development and data generation
(or collection). This section summarises open research questions and
possible future directions for the field.
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4.1. Deployability of algorithms

The end goal of developing spacecraft pose estimation algorithms
is to deploy them in space-borne hardware with limited resources.
However, most existing algorithms are tested on workstations and
large server clusters and very limited evaluations have been conducted
on edge systems with FPGA [126,127] or GPU [174–176]-based AI
accelerators for space applications. In this context, this survey has
made an effort to perform a trade-off comparison between the number
of parameters (which can be a measure of resource consumption in
the deployed hardware) in the DL models used and the algorithm
performance. However, the lack of relevant information reported makes
this difficult. In future works, it would be valuable for authors to
report additional metrics such as memory requirements, number of
FLOPs, latency and power consumption which are suitable measures
for estimating the deployability of algorithms.

Another future direction is to develop novel DL models specifically
suited for edge AI accelerators. Unlike commonplace Nvidia GPUs,
AI accelerators for space systems support only a limited number of
network layers and operations [177]. DL models with unsupported
layers will have difficulty to work on such devices. Techniques like
Neural Architecture Search (NAS) [178] can be used for developing
efficient DL models which are deployable in space systems.

4.2. Explainability of algorithms

In real-world applications, the explainability of algorithms is a key
factor in determining their reliability and trustworthiness. Especially
in safety-critical applications like in space, it is important to know
why and how a decision/prediction was made. However, the black-
box nature of DL models makes them weak for interpreting their
inference processes and final results. This makes explainability difficult
in DL-based spacecraft pose estimation, especially for direct end-to-
end algorithms. Recently, eXplainable-AI (XAI) [179] has become a
hot research topic, with new methods developed [180,181]. Several
of these proposed methods, like Bayesian deep learning [182] or con-
formal inference methods [183–185] can be applied to spacecraft
pose estimation improving their explainability, which are interesting
directions for future research.

4.3. Multi-modal spacecraft pose estimation

Most existing methods focus on visible-range images only. However,
visible cameras are likely to suffer from difficult acquisition conditions
in space (e.g., low light, overexposure). Therefore, other sensor such
as thermal and time-of-flight or event cameras need to be considered
in order to extend the operational range of classical computer vision
methods. Till now, only a few works have investigated multi-modality
for spacecraft pose estimation [186–188] which is a direction of interest
for the future of vision-based navigation in space.

4.4. Generation of more realistic synthetic data

As mentioned in Section 3, the main issue with the application of
machine learning to space is the lack of data. Moreover, the ubiquitous
resort to synthetic data is the source of the current domain gap problem
faced in the literature. Addressing this problem could be done through
a deep analysis of the rendering engines’ images compared to actual
space imagery. The results of this analysis could serve as the starting
point for developing a rendering engine dedicated to generating realis-
tic data for model training. To the best of our knowledge, PANGU [150]
is the only initiative on this track to date. Another approach for
simulation-to-real, is to introduce a physics-informed layer into a deep
learning system, as for example in [189]. This may induce invariance
to lighting conditions in images of satellites that result from complex
lighting and shadowing conditions for satellites orbiting the Earth, such
as from reflections from the satellite itself, from the Earth’s surface and
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from the moon’s surface.
4.5. Domain adaptation

One of the main obstacles to the deployment of DL-based pose
estimation methods in space is the performance gap when the models
are trained on synthetic images and tested on real ones. The second
edition of the ESA Pose Estimation Challenge [20] was specifically
designed to address this challenge, with one synthetic training and
two lab test datasets. Winning methods [20] have taken advantage of
dedicated learning approaches, such as self-supervised, multi-task or
adversarial learning. Together with the generation of more realistic syn-
thetic datasets for training, domain adaptation is likely to receive much
interest in the coming years to overcome the domain gap problem.

4.6. Beyond target-specific spacecraft pose estimation

Current algorithms estimate the pose of a single type of spacecraft
at a time. For every additional spacecraft, a new dataset has to be
generated and the algorithm needs to be retrained. However, with
the increasing number of spacecraft launched yearly, a natural way
forward is to develop more generic algorithms that are not restricted to
a particular spacecraft model. Especially in applications such as debris
removal, the original spacecraft structure can disintegrate into geomet-
rical shapes not seen by the algorithm during training. Generic 6D pose
estimation methods for unseen objects [190,191] can be exploited to
develop spacecraft-agnostic pose estimation algorithms.

4.7. Multi-frame spacecraft pose estimation

Multi-frame spacecraft pose estimation refers to determining the
spacecraft pose using consecutive images, thereby leveraging temporal
information. Current spacecraft pose estimation algorithms consider
each image frame in isolation and the pose is estimated from infor-
mation extracted from this single image frame. However, in space,
pose estimation algorithms are commonly used in applications such
as autonomous navigation, where a sequence of consecutive images
(trajectories) is available. Hence using temporal information is key
to higher pose estimation accuracy and generating temporally con-
sistent poses [192,193]. Datasets like SPARK2 [33] already provide
pose estimation data as trajectories. In this direction, recently pro-
posed ChiNet [188] have used Long Short-Term Memory (LSTM) [194]
units in modelling sequences of data for estimating the spacecraft
pose. However, there is a rich history of video-based 6-DoF pose
estimation methods leveraging temporal information in general com-
puter vision [195,196]. In future, these methods can be integrated
into spacecraft pose estimation, especially for applications such as
spacecraft relative navigation.

5. Conclusions

Monocular vision-based spacecraft pose estimation has seen con-
siderable progress with the use of DL in recent years. However, there
are still fundamental concerns that need to be addressed before these
algorithms are deployed in actual space scenarios. This survey high-
lights these limitations, both in terms of algorithms design and datasets
used. With this aim, the survey first summarised the existing algorithms
and compared them in terms of performance as well as the size of the
network architectures to help understand their deployability. Then the
spacecraft pose estimation datasets available for training and validat-
ing/testing these methods were discussed. Based on this, the survey also
provided future research directions to address the existing limitations
and to develop algorithms deployable in real space missions. Finally,
we conclude the survey by sharing our suggestions and insights into

the field of monocular spacecraft pose estimation:
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• The problem of 6D pose estimation from 2D images has been stud-
ied widely in computer vision literature and advanced algorithms
are continuously being developed [11]. However, these latest
concepts and ideas in the generic 6D pose estimation literature
have had very little influence on the current state of spacecraft
pose estimation algorithms. It would be useful to draw inspiration
from these advancements in developing more robust algorithms.

• Spacecraft pose estimation algorithms are currently limited to hy-
brid and direct approaches. There are indications that in the near
future, new branches will emerge. For example, [197] presents a
proof of concept pipeline for pose estimation of texture-less space
objects by leveraging the 2D–3D ellipse-ellipsoid relationship.

• The emerging trend in the development of deployable models is
expected to grow further in the coming years. Models with the
sole purpose of space deployment will be developed. On-board
experimental frameworks will be formulated. Deployability could
possibly be a key constraint in the future editions of KSPEC [19,
20], SPARK [33,198,199] or similar spacecraft pose estimation
challenges.

• Current trends in closing the domain gap is expected to continue
along both directions reported in this survey: (a) generating more
realistic synthetic data and (b) making models generalisable.
However, with space launches getting cheaper, soon, there will be
publicly available spaceborne datasets. First, the smaller datasets
for evaluations and later, larger ones for training the models as
well.
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ppendix. Additional information

.1. Publicly available algorithm implementations

• https://github.com/BoChenYS/satellite-pose-estimation [66]
• https://indico.esa.int/event/319/attachments/3561/4754/pose_g

erard_segmentation.pdf [61]
• https://github.com/cvlab-epfl/wide-depth-range-pose [62]
• https://github.com/tpark94/speedplusbaseline [51]
• https://github.com/pedropro/UrsoNet [84]
• https://github.com/possoj/Mobile-URSONet [93]
• https://github.com/tpark94/spnv2 [94]
• https://github.com/Shunli--Wang/CA-SpaceNet [73]

.2. Links to the publicly available datasets

• SHIRT: https://purl.stanford.edu/zq716br5462
• SPARK2022: https://cvi2.uni.lu/spark2022/
• SwissCube: https://github.com/cvlab-epfl/wide-depth-range-pos

e
• SPEED+: https://zenodo.org/record/5588480
• SPEED: https://zenodo.org/record/6327547
• URSO-OrViS: https://zenodo.org/record/3279632
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