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Abstract—This paper proposes a robust beamforming algo-
rithm for massive multiple-input multiple-output (MIMO) low
earth-orbit (LEO) satellite communications under uncertain
channel conditions. Specifically, a Conditional Value at Risk
(CVaR)-based stochastic optimization problem is formulated to
optimize the hybrid digital and analog precoding aiming at
maximizing the network data rate while considering the required
Quality-of-Service (QoS) by each ground user. In particular, the
CVaR is used as a risk measure of the downlink data rate
to capture the high dynamic and random channel variations
of the satellite network, achieving the required QoS under the
worst-case scenario. Utilizing the decomposition and relaxation
optimization techniques, an alternating optimization algorithm
is developed to solve the formulated problem. Simulation results
demonstrate the efficacy of the proposed approach in achieving
the QoS requirements under uncertain satellite channel condi-
tions.

Index Terms—6G, LEO satellites communication, NTN, mas-
sive MIMO, CVaR, digital precoding, analog beamforming.

I. INTRODUCTION

The next-generation wireless networks are expected to offer
ubiquitous uninterrupted connectivity to everywhere, every-
thing, and everyone with ultra-high reliability and extremely-
high data rate. However, the deployment of terrestrial base
stations (BSs) with wired backhaul infrastructure in sparsely
populated remote areas is costly and unprofitable. These
limitations of terrestrial wireless systems have steered the
focus towards non-terrestrial networks (NTNs) as a pivotal
technology in next-generation wireless communications [1],
[2]. NTNs present an opportunity to overcome several short-
comings associated with traditional terrestrial networks, such
as coverage gaps and high throughput demands. To support
the integration of NTN technologies into 5G and beyond,
the 3rd Generation Partnership Project (3GPP) has undertaken
numerous studies as part of its Release 15 and Release 16 [3].
Among the diverse range of NTN technologies, low Earth orbit
(LEO) satellite systems stand out as a promising candidate
to meet future wireless network requirements in terms of
global coverage and ubiquitous connectivity. LEO satellites
are typically positioned at altitudes ranging from 500− 2000
km above the Earth’s surface, enabling the utilization of fo-
cused beams that result in faster communications and reduced
signal attenuation compared to conventional geostationary
orbit (GSO) satellite systems. Notably, recent launches of
LEO satellite constellations, such as Starlink, Telesat, and
OneWeb, have aimed to deliver seamless and high-capacity

wireless services, driving the realization of the envisioned
future wireless network landscape.

In recent years, numerous terrestrial communication tech-
nologies have emerged to enhance wireless connectivity.
Among these advancements, massive multiple-input multiple-
output (MIMO) transmission has gained significant atten-
tion as a promising technology for 5G networks, offering
significant performance improvements and expanded cover-
age. Extensive research has been conducted to investigate
the implementation of massive MIMO in terrestrial wireless
networks [4]. However, the application of massive MIMO in
satellite communication systems is still in its nascent stages
and requires further exploration. This work aims to harness
the potential of massive MIMO technology in LEO satellite
communication systems by integrating large antenna arrays
into LEO satellites. In particular, most LEO satellite systems
are designed to operate within the Ku and Ka frequency bands,
which correspond to the mmWave band in terrestrial networks.
The use of these higher frequency bands enables a significant
reduction in antenna size, facilitating the integration of a large
number of antennas within a confined space.

Massive MIMO technology can significantly enhance spec-
tral efficiency due to its intrinsic feature of exploiting multiple
spatial degrees of freedom, making it an optimistic approach
for future satellite communication systems [5], [6]. Specifi-
cally, the precoding technique plays a crucial role in massive
MIMO to exploit the spatial dimension and enhance the overall
system performance by enabling efficient beamforming, inter-
ference mitigation, and increased spectral efficiency. However,
the effectiveness of the precoding in massive MIMO depends
on the availability of channel state information (CSI), which
is hard and sometimes infeasible to obtain in satellite systems
[7]. In practice, the swift movement of satellites relative to
ground users can introduces rapid variations in the channel
conditions. Consequently, the integration of massive MIMO
into satellite communication systems emerges as a challenging
research direction. More specifically, the fundamental chal-
lenge is how to design reliable precoding that can ensure link
quality in uncertain and dynamic wireless environments.

The conventional digital precoding approach leads to high
power consumption as many radio frequency chains are re-
quired due to the numerous antennas in the massive MIMO
design. To reduce power consumption in massive MIMO, the
hybrid precoding architecture has been proposed by leveraging



the low-dimension digital precoding and analog precoding
technology [8]. The hybrid precoding design in terrestrial
networks has been well investigated in several recent studies.
For instance, the work in [9] studied the hybrid beamforming
design in millimeter wave communication systems. The au-
thors in [10] proposed a hybrid beamforming framework for
massive MIMO wireless systems considering accurate CSI es-
timation. Some recent works have studied the transmit design
of massive MIMO LEO satellite communications. The work
in [11] proposed different network architectures for distributed
massive MIMO LEO satellite systems. A joint power and
handover management approach was proposed to optimize
the power allocation and handover using artificial intelligence
technology. The authors in [12] analyzed the throughput of
multi-user MIMO multibeam LEO satellite systems with four-
color frequency reuse. In [13], a closed-form tight upper-bound
approach is applied to obtain an approximate data rate. The
authors then proposed an algorithm to calculate the hybrid
precoding considering fully and partially connected architec-
ture scenarios. The study in [14] developed a novel activation
strategy for LEO satellite nodes by utilizing the cell-free
massive MIMO communication scheme in order to enhance
system energy efficiency. The problem was formulated as a
binary integer linear optimization, and its optimal solutions
were obtained using the quantum approximate optimization
algorithm (QAOA).

Unlike the previous works, this paper proposes a risk-aware
robust precoding approach for massive MIMO LEO com-
munication systems that considers the random and dynamic
behavior of wireless channels. Specifically, we formulate a
stochastic optimization problem based on the Conditional
Value at Risk (CVaR) to optimize the digital and analog
precoding at the LEO satellite side. The formulated problem
aims to improve the network data rate while considering
the required transmission reliability. The motivation to use
the CVaR is its capability to define the tail distribution of
random variables, capturing the worst-case scenario. Thus,
the provided CVaR-based optimization problem can ensure
achieving the required data rate by each ground user under the
worst-case scenario of the wireless channels, which is antici-
pated to efficiently suit the turbulent and dynamic propagation
environment of LEO satellite systems. To solve the formulated
problem, we introduce an alternating optimization approach
that simplifies the optimization problem using relaxation and
decomposition techniques and obtains a near-optimal solution.
To our knowledge, this work is the first to propose a risk-aware
optimization framework based on the CVaR for massive MIMO
LEO satellite networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a LEO satellite serving a set K = {1, 2, . . . ,K}
of ground users over the Ka-band, as depicted in Fig. 1. The
LEO satellite connects with a central terrestrial data server
via ground gateway stations distributed in different locations
due to satellite movement. The satellite covers a region of
interest using a set of potential beams following the scenarios
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Figure 1. Considered system model.

in the 3GPP technical reports on solutions for NR to support
non-terrestrial networks [3]. Uniform planar arrays (UPAs)
of active digital antennas are installed at the satellite and
ground users, where the phase of each antenna element can
be digitally controlled [15]. Specifically, the LEO satellite is
equipped with a large-scale UPA composed of Ns = Nx

s ×Ny
s

antenna elements where Nx
s is the number of elements on

the x-axis, and Ny
s is the number of elements on the y-axis.

In the considered scenario, the x-axis is the direction of the
satellite movement, while the y-axis is the orthogonal direction
of the movement. A UPA consists of Nu = Nx′

u × Ny′

u

omnidirectional elements is installed at each ground user in
the x′-axis and y′-axis.

A. Communication Model

We adopt the multi-path channel model for the downlink
LEO communication system. Using the ray-tracing model, the
downlink channel response Hk(t, f) between the satellite and
the kth ground user at time t and frequency f can be defined
as [5], [16]

Hk(t, f) =

Lk−1∑
l=0

gk,l(t, f)·exp {ȷ̄2π [νk,l − fτk,l]}·µk,l, (1)

where Lk is the number of propagation paths of the ground
user k, and gk,l denotes the channel gain between user k
and the LEO satellite. νk,l and τk,l are the Doppler shift and
the propagation delay, respectively. µk,l represents the array
response vector associated with the lth path of the kth user
which is expressed as follows:

µk = µx
k ⊗ µy

k = µx (ϕ
x
k)⊗ µy (ϕ

y
k) , (2)

where µx
k and µy

k denote the response vector with angles
measured from the x-axis and y-axis, and defined as

µx
k =

1√
Nx

s

[1 exp {−ȷπϕx
k} · · · exp {−ȷπ (Nx

s − 1)ϕx
k}]

T
,

(3)

µy
k =

1√
Ny

s

[1 exp {−ȷπϕy
k} · · · exp {−ȷπ (Ny

s − 1)ϕy
k}]

T
.

(4)



In the space domain, the propagation properties of wireless
channels depend on the space angles ϕx

k and ϕy
k defined

as ϕx
k = sin θyk cos θ

x
k and ϕy

k = cos θxk, respectively. The
statistical properties of the channel gain term gk(t, f) are
determined by the ground user locations. Furthermore, the
LEO satellite system is usually operated with Line-of-Sight
(LoS) propagation [17]. Thus, the term gk(t, f) can be mod-
eled as a Rician fading distribution with factor υk and power
E
{
|gk(t, f)|2

}
.

In the considered network model, the transmitter of the
LEO satellite is based on the hybrid architecture beamforming
with M RF chains, such that K ≤ M ≤ N . Let the vector
x = [x1, x2, . . . , xK ]

T ∈ CK×1 be the transmit symbols.
The vector x is first precoded with a digital precoder and
then processed by an analog precoder. Let W ∈ CM×K

be the digital precoding matrix and V ∈ CN×M denote the
analog precoding matrix. We consider that the analog precoder
is designed with phase shifters that adjust the signal phase
only, i.e., |Vi,j | = 1. The phase shifters are implemented
by a uniform quantizer with c-bits resolution and step size
∆ = 2π/2c. Furthermore, a discrete phase shifter with a finite
set of resolutions is considered in this work. To this end, the
set of values of the analog precoder V satisfy

V =

{
V | Vn,m = exp

{
ȷ

(
2π

2c
ι+

π

2c

)}
,

∀n,m, ι = 0, 1, . . . , 2c − 1}
(5)

Thus, the received signal at the ground user k at time slot
t can be modeled as

yk(t) = HH
k (t)V (t)wk(t)xk(t) + ςk(t), (6)

where ςk ∼ CN
(
0, σ2

)
is the additive Gaussian white noise

variable of the kth ground user with a zero mean and variance
σ2. In particular, advanced signal processing techniques, such
as interference alignment and interference cancellation, can
be employed to mitigate inter-beam interference [18]. Accord-
ingly, the Signal-to-Noise Ratio (SNR) of the kth user can be
given by

γk(t) =

∣∣V (t)wH
k (t)Hk(t)

∣∣2
σ2

, (7)

and the obtained downlink data rate of the ground user k is
given by rk(t) = F log [1 + γk(t)], where F is the downlink
bandwidth.

B. Problem Formulation

The objective is to design a robust precoding technique
considering the dynamic channel variations. To achieve that,
we formulate an optimization problem that maximizes the
sum data rate of all users while considering transmission
reliability. In this work, transmission reliability is defined
based on the minimum data rate satisfaction of each ground
user. In particular, uncertainty in channel variations due to the
dynamic behavior of the satellite networks exacerbates the ob-
tained throughput by each ground user, impacting transmission
reliability. In such a case, formulating an optimization problem

based on the average quantity of data rate without considering
the uncertainty of channel conditions may violate the data rate
constraint of each ground user.

This work uses the CVaR as a risk measure for data rate.
In particular, the CVaR can efficiently define the tail distribu-
tion of random variables, capturing the worst-case scenario.
Specifically, the CVaR gives the average potential loss that
exceeds the Value-at-Risk (VaR). In general, the CVaR of a
random variable Z is defined as [19]

CVaRα(Z) := inf
δ∈R

[
δ +

1

1− α
E
[
(Z − δ)+

] ]
, (8)

where α ∈ (0, 1). Thus, the data rate constraint of each ground
user can be formulated based on the CVaR as follows

CVaRα[rk(t)] ≥ rmin, ∀k ∈ K, (9)

where rmin defines the minimum data rate threshold of the
ground users.

Lemma 1. Constraint (9) can guarantee the minimum re-
quired data rate with a probability higher than 1− α.

Proof. The α-percentile (Value at Risk) of a random variable,
i.e., the value for which the likelihood of a random variable
is less than or equal to it is at least α, is given by [19]:

VaRα(Z) = arg inf
δ
{δ : Pr(Z ≤ Zmin) ≤ α}, (10)

where Pr(·) defines the probability. Thus, VaRα[rk(t)] ≤ rmin

is equivalent to following probability constraint:

Pr[rk(t) ≥ rmin] ≥ 1− α. (11)

Since the VaR of distribution of rk(t) is a minimizer of the
right-hand side in (8), CVaRα[rk(t)] ≥ VaRα[rk(t)] always
holds. Therefore, the constraint (9) defines an approximation
of the chance constraint (11). ■

Accordingly, we formulate the following stochastic opti-
mization problem

maximize
V ,W

∑
k∈K

Et[rk(t)] (12a)

subject to CVaRα[rk(t)] ≥ rmin, ∀k ∈ K, (12b)∑
k∈K

||V wk||2 ≤ Pmax, (12c)

V m,n = exp

{
ȷ

(
2π

2c
ι+

π

2c

)}
,

ι = {0, 1, . . . , 2c − 1}, ∀m ∈ M, n ∈ N
(12d)

where Pmax is the maximum transmit power of the LEO
satellite. Problem (12) aims to obtain the optimum analog
and digital precoding matrices V ∗, W ∗, respectively, that
maximize the average total data rate of all ground while
keeping the required transmission reliability. The constraint
(12b) is set to achieve the data rate required by each ground
user regardless of the channel variations. Constraints (12c)
and (12d) define the feasibility regions of the optimization
variables.



III. PROPOSED SOLUTION APPROACH

We first reformulate problem (12) by using the CVaR
definition in (8) as follows

maximize
V ,W , δ ∈ R

∑
k∈K

Et[rk(t)] (13a)

subject to δ +
E[(rk(t)− δ)+]

(1− α)
≥ rmin, ∀k ∈ K,

(13b)∑
k∈K

||V wk||2 ≤ Pmax, (13c)

V m,n = exp

{
ȷ

(
2π

2c
ι+

π

2c

)}
,

ι = {0, 1, . . . , 2c − 1}, ∀m ∈ M, n ∈ N .
(13d)

The formulated risk-aware stochastic problem (13) is a non-
convex mixed-integer programming problem that poses sig-
nificant challenges to solve it. To tackle this complexity, a
decomposition approach is employed to simplify the problem
into two subproblems. Specifically, we decompose problem
(13) into the following subproblems: 1) Analog beamforming
problem and 2) Digital precoding problem. Subsequently,
appropriate relaxation techniques are applied to attain convex
formulations.

A. Analog Beamforming Problem

The analog beamforming problem is derived by imposing
a fixed value for the digital precoding variable in (13). This
subproblem focuses on optimizing the analog beamforming
matrix to enhance the total network data rate while considering
the data rate constraint required by each ground user. Thus,
the analog beamforming problem can be given by

P1: maximize
V , δ ∈ R

∑
k∈K

Et[rk(t)] (14a)

subject to δ +
E[(rk(t)− δ)+]

(1− α)
≥ rmin, ∀k ∈ K,

(14b)∑
k∈K

||V wk||2 ≤ Pmax, (14c)

V m,n = exp

{
ȷ

(
2π

2c
ι+

π

2c

)}
,

ι = {0, 1, . . . , 2c − 1}, ∀m ∈ M, n ∈ N .
(14d)

We can notice that problem P1 is an integer non-convex
programming, which poses challenges for obtaining tractable
solutions. In order to address this, we employ a relaxation
technique to simplify P1 and transform it into a convex
optimization problem. The relaxation method involves treating
the integer phase shift variable V as a continuous variable
constrained within the interval [0, 2π]. Furthermore, we replace
the term E[(rk(t)− δ)+] by introducing a new variable β and

imposing the constraints β ≤ E[rk(t) − δ] and β ≥ 0. Thus,
we can achieve the following optimization problem:

P̃1: maximize
Ṽ ,β, δ ∈ R

∑
k∈K

Et[rk(t)] (15a)

subject to δ +
βk

(1− α)
≥ rmin, ∀k ∈ K, (15b)

βk ≤ E[rk(t)− δ], βk ≥ 0,∀k ∈ K
(15c)∑

k∈K

||Ṽ wk||2 ≤ Pmax, (15d)

0 ≤ Ṽ m,n ≤ 2π,∀m ∈ M, n ∈ N .
(15e)

The optimization problem (15) is a non-convex problem.
Consequently, we decompose (15) into subproblems, each
corresponding to an individual variable. Then, we use semidef-
inite approximation techniques to reformulate the analog
beamforming optimization problem into a convex problem.
Subsequently, convex solvers can be applied to solve these
subproblems iteratively.

B. Digital Precoding Problem

We hold the analog beamforming variable in (13) constant
and focus on optimizing the digital precoding matrix to obtain
the digital precoding problem. Furthermore, we replace the
term E[(rk(t) − δ)+] by introducing a new variable ϱ in a
similar way to P̃1. The digital precoding problem can be given
as follows

P2: maximize
W ,ϱ, δ ∈ R

∑
k∈K

Et[rk(t)] (16a)

subject to δ +
ϱk

(1− α)
≥ rmin, ∀k ∈ K, (16b)

ϱk ≤ E[rk(t)− δ], ϱk ≥ 0,∀k ∈ K
(16c)∑

k∈K

||V wk||2 ≤ Pmax, . (16d)

Similar to P̃1, problem (16) is a convex optimization prob-
lem for each variable; thus, we can use convex optimization
tools to obtain a solution for each variable and fixing other
variables iteratively in a similar way to the analog beamform-
ing problem.

Finally, we solve P̃1 and P2 in an iterative manner until
reaching a satisfactory desired outcome, as illustrated in Algo-
rithm 1. By iteratively solving the two problems, the algorithm
gradually improves the overall solution quality and converges
towards an acceptable solution. During each iteration, the
algorithm updates the solutions to P̃1 and P2 based on the
previous iteration’s outcomes. This iterative refinement process
continues until the stopping criterion is met, which is achieving
a predefined level of accuracy defined as ∥ F(j)−F(j+1)

F(j) ∥ ≤ β,
where F (j) is the obtained value of the objective at the jth

iteration and β is a predefined threshold.



Algorithm 1 : The proposed Optimization Algorithm.

1: Set j = 0, β > 0, and initialize Ṽ
(0)

,W (0);
2: Obtain P1 and P2 form P;
3: Obtain problem P̃1 from P1;
4: repeat
5: Use W (j) to solve P̃1 and get Ṽ

(j+1)
;

6: Use Ṽ
j+1

to solve P2 and get W (j+1);
7: j = j + 1;
8: until ∥ F(j)−F(j+1)

F(j) ∥ ≤ β;

9: Apply rounding to obtain V (j+1) from Ṽ
j+1

10: Then, set
(
V ∗ = V (j+1),W ∗ = W (j+1)

)
as the

solution.
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Figure 2. Convergence of the data rate over iterations.

IV. PERFORMANCE EVALUATION

We provide simulation analysis in this section to evaluate
the proposed approach. In the simulation environment, we
consider a LEO satellite orbiting at 1300 km and operating
at the Ka-band with a carrier frequency of 20 GHz. At the
LEO satellite side, a UPA antenna is installed composed of
Nx

s antenna elements in the x-axis and Ny
s antennas in the

y-axis. The values of Nx
s and Ny

s are set as Nx
s = Ny

s = 20.
Thus, the total number of antenna elements at the satellite is
Ns = Nx

s ×Ny
s = 400. The ground users within the satellite

coverage area are generated randomly based on the Poisson
process with λ arrival rate.

Figure 2 shows the convergence of the proposed algo-
rithm, which is demonstrated through the analysis of the data
rate evolution over iterations. The obtained results illustrate
that the algorithm achieves convergence within a relatively
small number of iterations, i.e., less than 20 iterations. The
observed rapid convergence pattern validates the efficiency
and effectiveness of the proposed iterative-based optimization
algorithm. In particular, the demonstrated convergence within
a limited number of iterations reinforces the algorithm’s ability
to quickly reach a near-optimal solution, ensuring efficient
performance enhancement.

We assess the reliability of the proposed algorithm in terms
of achieving the required QoS, i.e., the minimum data rate, at
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Figure 3. Percentage of ground users who achieved the minimum required
data rate.

each ground user with different settings of rmin in Figure 3.
Furthermore, we compare the obtained results by the proposed
CVaR-based approach to the Average-based method, where
the average data rate quantity is considered in the problem
formulation instead of the worst-case scenario. The results
show that the percentage of ground users who achieved the
minimum data rate in the proposed CVaR-based approach is
around 95% when rmin = 2, while the percentage in the
Average-based method is around 79%. When setting rmin = 4,
the QoS satisfaction percentage of the proposed CVaR-based
algorithm reduces to around 91%, while it breaks down to 68%
in the Average-based method. Finally, setting the minimum
data rate threshold at 6 Mbps reduces the QoS achievement
percentage of the proposed CVaR approach and the Average-
based method to 82% and 55%, respectively. We can conclude
that the proposed CVaR-based method enhances transmission
reliability by reducing the QoS violation probability. Specifi-
cally, the obtained results illustrate that the proposed algorithm
performs better than the scenario when formulating the data
rate constraint considering the average quantity only, as in
the related works. In particular, the proposed CVaR-based
approach includes the data rate distribution when making
beamforming decisions, improving transmission reliability.

Finally, Figure 4 plots the empirical cumulative distribution
function (ECDF) of the sum data rate of all ground users
obtained over different channel configurations. The obtained
results show that the Average-based method provides a higher
sum data rate than the proposed CVaR-based approach. This
is because the Average-based method focuses mainly on
maximizing the linear summation of the data rate and evaluates
the QoS satisfaction constraint in terms of the average data rate
only. However, the proposed CVaR-based algorithm considers
the tail distribution (worst case) of the data rate in addition to
the average quantity when adjusting the precoding matrices,
considering users with bad channel conditions and achieving
better transmission reliability. As illustrated in Figure 4, the
sum data rate of the Average-based proposed approach varies
between 36 to 42 Mbps with an average is around 39 Mbps.
However, the sum data rate obtained by the proposed CVaR-
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Figure 4. ECDF of the sum data rate of ground users.

based algorithm varies between 34 to 40 Mbps with an average
data rate of 37 Mbps. In particular, Figures 3 and 4 show the
trade-off between the proposed CVaR-based algorithm and the
conventional Average-based method regarding the reliability
and sum data rate. To conclude, the proposed algorithm
provides robust and reliable precoding by considering the
worst-case scenario of channel conditions for each user, while
the Average-based approach focuses mainly on maximizing
the sum data rate of the network without considering the risk
of channel variations of each user.

V. CONCLUSION

The paper has discussed the precoding optimization in mas-
sive MIMO LEO satellite communication systems. A stochas-
tic optimization problem has been formulated to optimize the
hybrid digital/analog beamforming aiming at maximizing the
average sum data rate while satisfying the QoS requirements
of all ground users. The CVaR has been used as a risk measure
to guarantee the required data rate by each ground user under
uncertain channel variations. To solve the formulated problem,
an alternating optimization algorithm has been developed that
leverages the decomposition and relaxation optimization tech-
niques to obtain a near-optimum solution. The obtained results
have shown the efficacy of the proposed approach in keeping
the QoS requirements under dynamic channel variations.
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