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A Hyperparameters for self-training performance at
fixed nl

This section provides a detailed list of the chosen hyperparameters foreach
dataset. Self-training hyperparameters can be found in Table 1. The other hy-
perparameters are listed in Table 2.

Table 1: Training hyperparameters used for the experiments of Section 6.1.
Dataset nl iter/epoch tile size W E

MoNuSeg 2 100 512 10 50
SegPC-2021 30 300 512 10 50

GlaS 8 225 384 10 50

Table 2: Self-training hyperparameters used for the experiments of Section 6.1
for MoNuSeg and SegPC-2021. The same hyperparameters have been used for
GlaS except for the combination “constant” and C = 0.2.

Weight C wmin η Datasets
M S G

constant 0.01 ✓ ✓
constant 0.5 ✓ ✓ ✓
constant 1.0 ✓ ✓ ✓
constant 2.0 ✓
entropy 0.1 ✓ ✓ ✓

consistency 2 ✓ ✓ ✓
merged 0.1 2 ✓ ✓ ✓

B Weighting strategies

This section provides more details about our weighting strategies.

Constant. This strategy consists in setting wcst
ij = C where C ∈ R+ is an

hyperparameter. Because wij = 1 for ground truth pixels, this allows to manually
balance the relative contributions of ground truth and pseudo-labeled pixels. The
special case C = 1 assigns the same weight to ground truth and pseudo-labels
and therefore corresponds to removing wij,b from Equation 6 in the main article.

Entropy. Unlike the previous, this strategy is not concerned with balancing the
contributions but instead penalizes pseudo-labels for which the model was un-
certain. It considers the prediction ŷij as a probability and tune the contribution
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down using the Shannon entropy. The use of entropy is motivated by its use in
several self-training methods [1,2]. First, an intermediate weight ωij is computed
as:

ωij = 1 + ŷij log2(ŷij) + (1− ŷij) log2(1− ŷij). (1)

Early experiments have shown that directly using ωij as a weight resulted in
unstable training. Indeed, during early self-training rounds, the model typically
produces ŷij ∼ 0.5 which results in ωij ∼ 0 for most pixels in a patch, leaving
only foreground ground truth pixels to be evaluated in the loss. In order to avoid
this behavior, we introduce a new hyperparameter wmin ∈ ]0, 1] which allows
rescaling linearly the weights ωij to went

ij ∈ [wmin, 1] as defined in:

went
ij = (1− wmin)ωij + wmin. (2)

Consistency. Self-training algorithms often enforce consistency between the teacher
and student models predictions. Inspired from this, we exploit another form of
consistency for this strategy. In structured output tasks like segmentation, there
is a correlation between predictions that are spatially close, as, for most pixels,
it is unlikely that the true label should differ between a pixel and its neigh-
bours. Therefore, we use the pseudo-label consistency between a pixel and its
neighbours as a proxy to evaluate reliability of this pseudo-label:

wcty
ij = 1−

∑η
k=−η

∑η
l=−η(ŷij − ŷ(i+k)(j+l))

2

η2 − 1
(3)

where η is the size of the neighbourhood and an hyperparameter of the method.
We consider a square neighbourhood around the central pixel and ignore pixels
outside of the image at the image borders. We have arbitrarly chosen η = 2
as default value for all our experiments involving the “consistency” weighting
strategy.

Merged. This strategy assigns a high weight to pixels for which the model is
both certain and consistent (spatially). It achieves this by multiplying together
the consistency weight wcty

ij and the entropy raw weight ωij . Because ωij suffers
from the issue described earlier, we apply the same re-scaling operation after
multiplication:

wmgd
ij = (1− wmin)

(
wcty

ij × ωij

)
+ wmin. (4)

C Additional weighting strategies evaluated for the fixed
nl experiment

This section reports performance for all the weighting schemes actually evaluated
(see Figures 1, 2 and 3) for the fixed nl experiment.
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Fig. 1: MoNuSeg , see Figure 2 (main article) for explanation.
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Fig. 2: SegPC-2021 , see Figure 2 (main article) for explanation.
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Fig. 3: GlaS , see Figure 2 (main article) for explanation.

D Samples from the public datasets

In this section, we illustrate the public datasets we have used to support our
experiments: MoNuSeg (see Figures 4a and 4b), SegPC-2021 (see Figures 4c
and 4d) and GlaS (see Figures 4e and 4f).

E About splitting Thyroid FNAB training set into Dl

and Ds

The Thyroid FNAB dataset was labeled by experienced pathologists from Is-
abelle Salmon’s team from Erasme Hospital (Brussels, Belgium) who followed a
detailed ontology to categorize their annotations:

1. Architectural patterns (see examples in Figure 5):
– Normal follicular architectural pattern
– Proliferative follicular architectural pattern
– Proliferative follicular architectural pattern (minor sign)

2. Nuclear features (see examples in Figure 6):
– Papillary cell NOS
– Normal follicular cells
– Normal follicular cell with pseudo-inclusion (artefact)
– Papillary cell with ground glass nuclei
– Papillary cell with nuclear grooves
– Papillary cell with inclusion

3. Others:
– Macrophages
– Red blood cells



5

(a) MoNuSeg (b) MoNuSeg

(c) SegPC-2021 (d) SegPC-2021

(e) GlaS (f) GlaS

Fig. 4: Samples from MoNuSeg, GlaS and SegPC-2021 used in this work.
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– PN (polynuclear)
– Colloid
– Artefacts
– Background

Given how the labeling process was carried out, we hypothesize that crops
of architectural patterns are less likely to contain unlabeled cells than crops of
nuclear features. Indeed, the former usually consist in large polygons delineating
areas containing cell aggregates. Nuclear features, unlike architectural patterns,
were usually labeled more sparsely and it is frequent to find annotations of a
single cell within an unlabeled cell aggregate. This can be seen in Figures 5 and
6. These observations and hypothesis motivate the assignment of architectural
patterns to Dl and nuclear features to Ds.

(a)

(b)

(c)
(d)

Fig. 5: Examples of architectural patterns annotations made by pathologists for
Thyroid FNAB.
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(a) (b) (c) (d)

Fig. 6: Examples of nuclear features annotations made by pathologists for Thy-
roid FNAB.
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