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ABSTRACT

Parkinson’s disease (PD) is a neurodegenerative
disorder that causes motor and non-motor
symptoms. Speech impairments are one of the
early symptoms of PD, but they are not always
fully exploited by clinicians. In this study, the use
of phonological features extracted from speech
data collected from Spanish-speaking patients
was explored to predict PD patients from healthy
subjects using phonet, which was trained on Spanish
data, and PhonVoc, which was trained on English
data. These features were then used to train and test
several machine learning models. The XGBoost
model achieved the best performance in classifying
patients from HCs, with an accuracy of over 0.76.
However, the model performed better when using a
phonological model trained on Spanish data rather
than English data.

Keywords: Parkinson’s disease, machine learning
models, classification, Phonet, PhonVoc.

1. INTRODUCTION

Parkinson’s disease (PD) is the second most
common  neurodegenerative  disorder  after
Alzheimer’s that affects movement and can
cause symptoms such as tremor, slowness of
movement, muscle rigidity, and different writing
and speech deficits. PD is typically diagnosed
through a combination of a patient’s medical
history, symptoms, and a neurological and physical
exam. However, PD is a slow-progressive disease
and may have a prodromal period of 3 to 15 years
during which the main motor symptoms may not
be clearly perceivable [1]. This highlights the
importance of developing robust and automatic
methods for detecting the disease in its early stages
to improve the patient’s quality of life.

Speech impairments are often one of the earliest
motor symptoms of PD, and they can worsen as the
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disease progresses. Recent studies have indicated
that over 90% of PD patients express some kind
of speech impairment [2], with disorders mostly
related to phonation and articulation, including
alterations in speech rate and pitch variations,
imprecise articulation of vowels and consonants,
and monotonous speech, leading to decreased
speech intelligibility [3].  Speech impairments
in individuals with PD often result in imprecise
articulation, particularly affecting the production of
stop, affricate, and fricative sounds [4]. Analysis
of speech materials such as sustained vowels and
diadochoknetic (DDK) exercises (i.e., rapid syllable
repetition) can aid in monitoring the disease severity
of patients [5]. which have been widely used for
detecting early symptoms of the disease [6].

Various machine learning (ML) methods have
been widely used to classify PD patients vs. HCs
using speech signals ([7, 8]). In [7], feature subset
selection ranging from 8 to 20 was used to represent
dimensionality reduction in complexity, and the
accuracy of ML models was improved using 10-
fold cross-validation on a small dataset to implement
a voice-based detection methodology In [9], the
importance and effectiveness of ML models were
investigated using utterances of the sustained vowel
/ah/ from 188 PD patients and 64 HCs. The results
showed that repeating voice patterns are identified in
PD speech, proving that ML models can support the
diagnosis of PD with similar accuracy as movement
disorder therapists.

Phonological posterior features have been found
to be helpful in gathering information about the
presence and severity of PD in patients [10]. Among
the common toolkits for extracting phonological
features, PhonVoc [11] has been used to evaluate
the progress of apraxia based on speech. [12]
used PhonVoc to extract phonological features of
impaired speech to better distinguish the disease. In
addition, the Phonet toolkit [13] is also being used
for speech processing, specifically for predicting the
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posterior probability of speech files, which refers
to the likelihood of a speech file based on the
data it contains. [14] recently used Phonet to
extract phonological features from Dutch patients
with dysarthria to develop a computer-based therapy
approach. This study aims to address the pertinent
problem of identifying and monitoring PD using
speech signals as a measurement, with the intention
of creating useful tools for this purpose.

It is uncertain how neurodegenerative diseases
impact the production of different groups of
phonemes, including those related to the manner and
place of articulation. Additionally, the majority of
available language resources are in English. We
are conducting a study to compare the performance
of two phonological feature extraction models, one
trained on English data and one trained on Spanish
data. This is the first cross-language study of these
models, and the goal is to determine whether these
models are language independent or if one model
performs better on the Spanish data due to being
trained on data in the same language.

2. MATERIAL & METHODS
2.1. PD Dataset

The study used data from the PC-GITA database
[15], which consists of speech utterances from 68
individuals with PD and 48 healthy controls (HC),
all of whom were Spanish-speaking and balanced
in terms of age and gender. Patients’ neurological
state was evaluated using the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS-III scale) [16]. Recording were
taken while patients were on anti-Parkinsonian
medication. This was done because of ethical
reasons. The statistical tests for validating gender
and age balance are detailed in Table 1( [17]).

2.1.1. Speech material

The Speech material includes six DDK tasks, which
consist of rapid repetition of syllables such as /pa-
ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, and /ka/.
These tasks are designed to evaluate the speakers’
ability to move their vocal tract articulators (e.g, lips,
tongue, and soft palate) as quickly and consistently
as possible.

2.2. Toolkits

We used PhonVoc [11] and Phonet [13] toolkits to
extract phonological features from the speech signal,
including features related to phonation. PhonVoc
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is a toolkit that uses a deep neural network (DNN)
to estimate the probability that a sound belongs to
a specific phonological class in English, and it has
an accuracy of over 96% for detecting these classes.
Phonet toolkit is based on Gated Recurrent Neural
Networks to extract phonological posteriors from
speech. The toolkit was trained on 17 hours of clean
FM podcasts in Mexican Spanish, which is able to
detect the phonological classes with high accuracy
(90%). For each toolkit, we have calculated
values for the mean, standard deviation, skewness,
and kurtosis. The list of phonological classes
that correspond to both stop and voiced segments
of speech for evaluating consonant imprecision
includes "Back," "Voice," "Vocalic," "Consonantal,"”
"Continuant," "Coronal," & "Silence". "Silence" is
considered a separate phonological class, because
it represents the absence of sound. These classes
can be used to analyze the accuracy of the toolkits
in detecting specific phonological features in speech
signals.

2.3. Classical ML models

In this project, ML techniques were used to classify
speech based on its features. ML allows computers
to recognize patterns in data and make decisions
based on those patterns. We used several commonly
used ML models such as Naive Bayes (NB),
Decision Trees (DT), Support Vector Machines
(SVM), k-nearest neighbors (kKNN), and Ensemble
methods (Voting & eXtreme Gradient Boosting
(XGBoost)) for the binary classification problem.
These models were implemented using the scikit-
learn library in python (3.9).

2.3.1. Data sampling methods

The number of speech samples for HCs and PD
patients was not equal: 72% of the samples related
to tasks performed by PD patients, while 28%
related to tasks performed by HCs. Imbalanced
distribution of the classes could lead to a higher
likelihood of misclassification for the minority
class. A balancing technique was applied to create
equal samples for each class. We used a number
of commonly employed techniques for handling
imbalanced datasets, including:

Oversampling: It is a technique for balancing
imbalanced datasets by increasing the number of
minority class samples in the training dataset.
One commonly used oversampling technique is
Synthetic Minority Over-sampling (SMOTE) [18],
which generates synthetic data by selecting the
nearest data points (typically k = 5) based on the
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PD patients HC subjects Patients vs. controls
Gender [F/M] 31/37 24/24 *p=0.99
Age [F/M] 60.9(11.2)/64.7(9.4) **p=0.08

Time since diagnosis [F/M]
MDS-UPDRS-III [F/M]

15.5(14.5)/8.1(5.9)
36.2(18.1)/36.3(18.9)

59.9(8.7)/63.5(10.4)

Time since diagnosis and age are given in years. [F/M]: Female/Male. Average (Standard deviation).

*p-value calculated through Chi-square test. **p-value calculated through Mann-Whitney U-test.

Table 1: Clinical & demographic information of the subjects from the PC-GITA database [15].

Euclidean distance between them in the feature
space and duplicating these points in the dataset.

Class weight: This technique involves computing
the frequency of each class and then inverting it such
that the underrepresented class has a much larger
error when multiplied by the class loss compared to
the majority class.

Threshold: It is a technique for adjusting the
predicted values by setting a threshold value. If the
predicted value is greater than this threshold, it is set
to 1; otherwise, it is set to 0.

2.4. Evaluation

The dataset was split into a training set (75% of data,
including 84 out of 112 participants) and a testing
set (25% of data) based on the participants’ IDs.
To optimize performance, k-fold cross validation
was used, specifically group k-fold cross validation
(n_splits=5), to ensure the same group of recordings
from one participant does not appear in both the
training and testing sets, avoiding overfitting and
ensuring subject-independent cross-validation. To
evaluate the performance of the ML models, we
used metrics such as accuracy, precision, recall, and
receiver operating characteristic (ROC) to obtain the
Area Under Curve (AUC). These metrics are based
on four outcomes: true negative (TN), false negative
(FN), false positive (FP), and true positive (TP),
which are shown in a confusion matrix (Figure 3).
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3. RESULTS & DISCUSSION

The outputs of using Phonet to extract Spanish
phonological features (SpNet) and English
phonological features (EnVoc) were presented to
evaluate the performance of the models with these
features. By comparing the results with different
types of features, it is possible to determine which
models work best with specific types of data. To
evaluate the effectiveness of balancing techniques,
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we used SVM for binary classification tasks which
yields the best accuracy score with relatively low
training times. We calculated the accuracy scores of
the models with and without a balanced dataset for
the baseline model to determine which balancing
techniques were most effective.

The baseline classifier model had an accuracy
of 0.75 for the SpNet and 0.73 for the EnVoc,
but it was biased towards the majority class (PD).
To address this issue, various balancing approaches
were employed (as described in Section 2.3.1). The
results of the baseline model on different sampling
techniques (Figure 1) showed that oversampling
performed better than SMOTE, class weight, or
threshold techniques, with AUC values of 0.81 and
0.77 for SpNet and EnVoc, respectively. AUC values
between 0.7 and 0.8 are considered fair [19] , and
the values obtained for SpNet and EnVoc fall within
this range. This suggests that the model is relatively
accurate in its classification tasks.
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Figure 1: ROC curves & AUC values: imbalanced,
Oversampling, SMOTE, Class weight & threshold.

To further improve the performance of the ML
models, we implemented a grid search procedure
to optimize the hyperparameters of the models.
This entailed specifying a range of values for each
hyperparameter and evaluating the performance of
all possible combinations to identify the optimal
configuration. Although this did not significantly
improve as a result of this process, with the
exception of the SVM model, the results of the other
models were still relatively comparable to those of
the SVM model.
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Figure 2: Result of ML models before & after

hyperparameter tuning.

In addition to the ML models previously
mentioned, we also used ensemble methods such as
the Voting method and the XGBoosting technique to
try to improve the performance of the ML models.
The Voting method involves combining the results
of multiple base classifiers based on weighting,
while XGBoosting is a combination of bagging and
boosting techniques. After applying hyperparameter
tuning and oversampling to the datasets, we found
that the XGBoost model was more effective at
classifying PD vs. HC than the other models,
achieving a mean accuracy of 0.79 for SpNet and
0.77 for EnVoc 2. The confusion matrix for this
model also supported its effectiveness (Figure 3).

The confusion matrix in Figure 3 illustrates the
model’s performance and the types of errors it is
making by comparing the actual labels (vertical
levels) to predicted labels (horizontal levels) by
XGBoost model for each phonological feature to
evaluate the model’s performance in the binary
classification problem. These values were used to
calculate accuracy, recall, and precision. The results
of the XGBoost model are presented in Figure 3,
which shows the correct (i.e., TP and TN) and
incorrect (i.e., FP and FN) predictions made by the
model. These results demonstrate high recall and
precision values: recall for SpNet was 0.85 and for
EnVoc was 0.84, while precision for SpNet was 0.84
and for EnVoc was 0.83.

SpNet EnVoc

™
284
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FP
230
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™
251
13.56%
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263
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FN
203
10.97%

TP
1134
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FN
179
9.67%

TP
1158
62.56%

HC PD
Predicted

HC PD
Predicted

Figure 3: Confusion matrix of XGBoost model.

The XGBoost model was used to conduct a
feature importance analysis in PD speech by ranking
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the input features based on their phonological
features on SpNet and EnVoc. This analysis
identified the most important and influential features
for classifying PD speech from HCs in the dataset.
The top team important features are shown in
Figure 4, with higher scores indicating a greater
impact on the model’s predictions. The mean
of continuant in SpNet and the kurtosis of voice
consonant in EnVoc received the highest importance
scores among all the features (Figure 4). These
listed features have the potential to improve the
model’s performance. The underlying aspects of
speech production warrant further investigation.

kurtosis_Back NNEEEEIN skewness_Back [ N NRNRRRRN
mean_Consonantal [ EEEEENN kurtosis_Back [ N NRNERRR
mean_Silence | N NN SOERy |
mean_Voiced NN mean_Vocalic INEG__
skewness_Back | N NN mean_Coronal [ NN
std_Continuant | A NERRRREN std_Silence [ I NREGEGTNNGNGNGN
skewness_Continuant [ I EEEEENN skewness_Voiced [ N
mean_Back [ NRNcGTGTGNGNG_ std_Continuant [ ENEGTNTNTNTNEN
std_Coronal | NN mean_Voiced NG
mean_Continuant [  AANRRDE kurtosis Voiced INNEGEGRNENGEGE

Figure 4: Top 10 important features of SpNet
(left) & EnVoc (right) for XGBoost model.

4. CONCLUSION

We conducted a study to assess the ability of ML
models to classify PD patients and HCs based on
speech features. We compared the performance
of phonVoc and phonet toolkits: one trained on
a large corpus of Librispeech consisting of 1000
hours of clear speech in English, and another
trained on the Spanish corpus of radio podcasts
in Spanish. Our results showed that SpNet had
slightly better performance than English (0.79 vs
0.77). The difference in the quality and size of the
training data may have contributed to the slightly
lower performance of phonVoc model. But this
difference could be larger if we had access to a
higher quality corpus of Spanish speech. Our
study is the first to compare the performance of
ML models trained on English and Spanish for
our task, and this opens up new research avenues,
such as considering the use of the UPDRS-III for
multiclass classification problems. These results
support the usefulness of the Phonet toolkit, which
was specifically designed for the Spanish language
and optimized for classifying speech data.

5. ACKNOWLEDGEMENT

This publication
COST Action

is based upon work from
GoodBrother, COST Action



ICPhS

24. Clinical Phonetics and Speech Disorders

19121—Network on Privacy-Aware Audio- and
Video-Based Applications for Active and Assisted
Living, supported by COST (European Cooperation
in Science and Technology).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

6. REFERENCES

R. Savica, J. M. Carlin, B. R. Grossardt, J. H.
Bower, J. E. Ahlskog, D. M. Maraganore, A. E.
Bharucha, and W. A. Rocca, “Medical records
documentation of constipation preceding Parkinson
disease,” Neurology, vol. 73, no. 21, pp. 1752—
1758, 2009.

G. Solana-Lavalle, J. C. Galan-Hernandez, and
R. Rosas-Romero, “Automatic Parkinson disease
detection at early stages as a pre-diagnosis
tool by using classifiers and a small set of
vocal features,” Biocybernetics and Biomedical
Engineering, vol. 40, no. 1, pp. 505-516, 1 2020.
J. Hlavnicka, R. émejla, T. Tykalové, K. Sonka,
E. Rdzicka, and J. Rusz, “Automated analysis
of connected speech reveals early biomarkers of
Parkinson’s disease in patients with rapid eye
movement sleep behaviour disorder,” Scientific
Reports, vol. 7,no. 1, p. 12, 2017.

J. A. Logemann and H. B. Fisher, “Vocal Tract
Control in Parkinson’s Disease,” Journal of Speech
and Hearing Disorders, vol. 46, no. 4, pp. 348-352,
1981.

J. C. Viésquez-Correa, C. D. Rios-Urrego,
A. Rueda, J. R. Orozco-Arroyave, S. Krishnan,
and E. Noth, “Articulation and Empirical Mode
Decomposition Features in Diadochokinetic
Exercises for the Speech Assessment of
Parkinson’s Disease Patients,” in Iberoamerican
Congress on Pattern Recognition, vol. 11896
LNCS. Springer, 2019, pp. 688-696.

F. Karlsson, E. Schalling, K. Laakso, K. Johansson,
and L. Hartelius, “Assessment of speech
impairment in patients with  Parkinson’s
disease from acoustic quantifications of oral
diadochokinetic sequences,” The Journal of the
Acoustical Society of America, vol. 147, no. 2, p.
839, 2 2020.

G. Solana-Lavalle and R. Rosas-Romero, “Analysis
of voice as an assisting tool for detection of
Parkinson’s disease and its subsequent clinical
interpretation,” Biomedical Signal Processing and
Control, vol. 66, p. 102415, 2021.

J. R. Orozco-Arroyave, J. C. Vadsquez-Correa,
F. Honig, J. D. Arias-Londono, J. F. Vargas-
Bonilla, S. Skodda, J. Rusz, and E. Noth, “Towards
an automatic monitoring of the neurological state of
Parkinson’s patients from speech,” ICASSP, IEEE
International Conference on Acoustics, Speech and
Signal Processing - Proceedings, vol. 2016-May,
no. March, pp. 6490-6494, 2016.

J. S. Almeida, P. P. Reboucas Filho, T. Carneiro,
R. Damasevicius, R. Maskelitnas, and V. H. C.
de Albuquerque, “Detecting Parkinson’s disease
with sustained phonation and speech signals using

3901

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

ID: 300

machine learning techniques,” Pattern Recognition
Letters, vol. 125, pp. 55-62, 2019.

M. Cernak, J. R. Orozco-Arroyave, F. Rudzicz,
H. Christensen, J. C. Vasquez-Correa, and E. Noth,
“Characterisation of voice quality of Parkinson’s
disease using differential phonological posterior
features,” Computer Speech and Language, vol. 46,
no. June, pp. 196-208, 2017.

M. Cernak and P. N. Garner, “PhonVoc: A
phonetic and phonological vocoding toolkit,” in
INTERSPEECH, 2016, pp. 988-992.

A. Asaei, M. Cernak, and M. Laganaro, “PAoS
Markers: Trajectory Analysis of Selective
Phonological Posteriors for Assessment of
Progressive Apraxia of Speech,” in Proceeding
on the 7th Workshop on Speech and Language
Processing for Assistive Technologies (SLPAT),
2016.

J. C. Vasquez-Correa, P. Klumpp, J. R. Orozco-
Arroyave, and E. Noth, “Phonet: a Tool
Based on Gated Recurrent Neural Networks to
Extract Phonological Posteriors from Speech.” in
INTERSPEECH, 2019, pp. 549-553.

V. M. Ramos, J. C. Vasquez-Correa, R. Cremers,
L. Van, D. Steen, E. N6th, M. De Bodt, and G. V.
Nuffelen, “Automatic boost articulation therapy
in adults with dysarthria: Acceptability, usability
and user interaction,” International Journal of
Language & Communication Disorders, vol. 56,
no. 5, pp. 892-906, 2021.

J. R. Orozco-Arroyave, J. D. Arias-Londofio,
J. F. V. Bonilla, M. C. Gonzalez-Rativa,
and E. Noth, “New Spanish speech corpus
database for the analysis of people suffering from
Parkinson’s disease.” in Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14), 2014, pp. 342-347.

C. G. Goetz, B. C. Tilley, S. R. Shaftman, G. T.
Stebbins, S. Fahn, P. Martinez-Martin, W. Poewe,
C. Sampaio, M. B. Stern, R. Dodel, and others,
“Movement Disorder Society-sponsored revision
of the Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS): Scale presentation and clinimetric
testing results,” Movement disorders: official
Jjournal of the Movement Disorder Society, vol. 23,
no. 15, pp. 2129-2170, 2008.

J. C. Vasquez-Correa, J. R. Orozco-Arroyave,
T. Bocklet, and E. Noth, “Towards an automatic
evaluation of the dysarthria level of patients with
Parkinson’s disease,” Journal of Communication
Disorders, vol. 76, pp. 21-36, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic Minority
Over-sampling Technique,” Journal of Artificial
Intelligence Research, vol. 16, pp. 321-357, 2002.
J. V. Carter, J. Pan, S. N. Rai, and S. Galandiuk,
“ROC-ing along: Evaluation and interpretation of
receiver operating characteristic curves,” Surgery,
vol. 159, no. 6, pp. 1638-1645, 2016.



