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Abstract—In this paper, we investigate the suitability of cur-
rent multi-label classification approaches for deepfake detection.
With the recent advances in generative modeling, new deepfake
detection methods have been proposed. Nevertheless, they mostly
formulate this topic as a binary classification problem, resulting
in poor explainability capabilities. Indeed, a forged image might
be induced by multi-step manipulations with different properties.
For a better interpretability of the results, recognizing the nature
of these stacked manipulations is highly relevant. For that
reason, we propose to model deepfake detection as a multi-label
classification task, where each label corresponds to a specific kind
of manipulation. In this context, state-of-the-art multi-label image
classification methods are considered. Extensive experiments are
performed to assess the practical use case of deepfake detection.

Index Terms—Deepfake detection, Multi-Label Classification,
Stacked Manipulations

I. INTRODUCTION

The recent advances in Deep Learning (DL) techniques have
led to the emergence of highly realistic facial manipulations,
known as deepfakes. The subtlety of these forgeries makes
their distinction from authentic images increasingly challeng-
ing. Given this threat, many efforts have been dedicated to
developing deepfake detection techniques [1]–[3]. Typically,
these approaches formalize the problem of deepfake detection
as a binary classification [2]–[8]. Given an input image or
video, they predict whether it has been forged or not; therefore
classifying it as ‘real’ or ‘fake’. However, binary predictions
are opaque and are difficult to interpret, while in real-world
applications, explainable predictions in deepfake detectors are
of utmost importance. In fact, an image predicted as fake can
be produced by one or multiple manipulations. In existing face
editing software, such as FaceTune1, it is common for the
same image to undergo several edits, which we refer to as
stacked manipulations or multi-step operations, as illustrated
in Fig. 1(a).

As an alternative, we propose in this paper to reformulate
the task of deepfake detection as a multi-label classification
problem, where each label corresponds to a specific manipula-
tion. Such a formulation is supported by the fact that multiple
forgeries can be present in the same image.

Recently, Shao et al. [9] highlighted the necessity of de-
tecting multi-step manipulations. For that purpose, they have
introduced a novel deepfake dataset incorporating sequences
of facial forgeries, along with their annotations. However,
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instead of considering multi-label classification, they framed
the problem of deepfake detection as an image-to-sequence
task. This means that their goal was not only to recognize
the different manipulations applied to a given image, but also
to retrieve their chronological order. Nevertheless, predicting
the temporal structure of a forgery sequence adds complexity
to the problem without having a clear benefit in a practical
scenario.

In this paper, we argue that for detecting stacked manip-
ulations, it is sufficient to formulate deepfake detection as a
multi-label image classification task. As we are the first to
explicitly rethink deepfake detection as such, we propose to
show the suitability of existing multi-label image classification
methods for the practical scenario of detecting multi-step
manipulations. Our main finding is that current deepfake multi-
label image datasets might be too simplistic since they were
created under controlled conditions. This emphasizes the need
for more realistic deepfake datasets, as the existing ones may
not accurately reflect the performance of state-of-the-art multi-
label classification methods.

In summary, our contributions are twofold: (1) we reformu-
late deepfake detection as a multi-label classification problem
and show that more explainable predictions can be achieved
regardless of the forgery order; (2) we compare multiple state-
of-the-art multi-label classification techniques in the context
of deepfake detection and present an extensive analysis of the
obtained results.

In the remainder of this work, Section II formulates the
problem of multi-label deepfake classification. Section III
presents an overview of the considered multi-label image clas-
sification techniques. In Section IV, we detail the experimental
setup and present our results. Finally, Section V concludes this
work and offers interesting perspectives.

II. FORMULATING DEEPFAKE DETECTION AS A
MULTI-LABEL IMAGE CLASSIFICATION PROBLEM

Let I be a dataset formed by a set of real and fake
images. Given an image I ∈ I, traditional deepfake detection
methods consider that the label of I belongs to [[0, 1]]. In other
words, they classify an image as real or fake, formulating
the problem as a simple binary classification. Nevertheless,
a deepfake image might result from multi-step manipulations
that enclose different properties. As detecting the nature of
these manipulations is highly relevant for obtaining a more
explainable output, we propose to define the problem of
deepfake detection as a multi-label classification. Let I ∈ I be
a given image, we aim at estimating a function f that predicts
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Fig. 1. (a) Examples of single-step manipulation affecting only the eyes and multi-step manipulations affecting both the eyes and the nose. (b) Binary
deepfake detectors treat single-step and multi-step forged images equally, which implicitly assumes that only one manipulation took place in the image. (c)
Whereas Multi-Label deepfake Classifiers (MLC) predict more informative outputs by indicating the labels of the applied manipulations.

the presence or not of N different manipulations. This can be
written as follows,

f : Rw×h → [[0, 1]]N

I 7→ y = (yi)i∈[[1,N ]],

where w and h are respectively the pixel-wise width and height
of the image. It is to note that yi = 1 if the manipulation i is
present in I, otherwise, yi = 0.

III. COMPARISON OF MULTI-LABEL IMAGE
CLASSIFICATION FOR DEEPFAKE DETECTION

The multi-label image classification problem has received a
lot of attention from the computer vision research community
in recent years. Many methods have demonstrated outstand-
ing performances in light of current developments in deep
learning techniques. We propose in this paper to evaluate the
performance and assess the current state of existing multi-
label image classification methods in the context of deepfake
detection, as formulated in Section II. For that purpose, two
main categories of methods are considered, namely, direct
and indirect methods. We describe these methods in the
subsections that follow.

A. Direct methods

In order to determine if multiple objects are present in
an image or not, direct methods employ a single stream
deep neural network f that directly maps a given image
to a binary vector. In other words, f is usually learned in
an end-to-end manner in this case. Generally, these single-
stream architectures are constituted of two main components,
namely: (1) a block of Convolutional Neural Networks (CNN)
which seeks to extract discriminative image features; and (2)
a classification head that employs a Multi-Layer Perceptron

(MLP) to directly translate these features into the probability
of occurrence of each considered label.

Among direct methods, the ResNet architecture is probably
one of the most successful [10]–[13]. Recently, TResNet [11]-
an improved version of ResNet [10] that takes advantage
of GPU capabilities, has also been proposed for multi-label
classification. Moreover, by combining the recently introduced
Asymmetric Loss (ASL) [13] with TResNet, improved results
have been achieved. Note that the ASL loss acts differently
on positive and negative labels.

Herein, we compare the effectiveness of some popular direct
techniques in the context of deepfake detection, namely: (1)
ResNet50 [10]; (2) ResNet101 [10]; and (3) TResNetM [11].
Additionally, we couple these methods with ASL [13]. Sec-
tion IV provides more details on the quantitative performance
of these methods.

B. Indirect methods

While direct approaches have shown great performance,
they tend to require a large number of layers to work effec-
tively. To avoid using very deep networks, a second research
line has attempted to model label dependencies. In fact, label
correlations are important cues since some labels are more
likely to appear together in the same image. For example, we
have a higher chance to observe a “sheep” and some “grass”
in one image than a “sheep” and a “bicycle”. We refer to these
approaches as indirect methods.

Graphs have been particularly useful for modeling label
correlations. Graph-based approaches are typically formed by
two streams. They usually combine a CNN denoted by f1
that learns discriminative image features with a Graph Convo-
lutional Network (GCN) for generating interdependent label-
wise classifier denoted by f2 [16], [18], [19]. These generated



classifiers are directly applied to the features resulting from
f1. In other words, images are mapped to a binary vector
using the function f = f2 ◦ f1. The pioneering work on
graph-based multi-label classification [16] made use of word
embeddings [17] to represent graph nodes. More recent tech-
niques [18], [19] have generated image-based embeddings to
improve the performance. Additionally, earlier graph methods
are mainly based on a pre-computed fixed adjacency matrix
where weak edges are ignored using an empirically fixed
threshold. This may lead to a significant loss of information.
To overcome this issue, ML-AGCN [19] attempts to adaptively
learn the adjacency matrix by computing an attention weight
for each node pair.

Herein, we compare the effectiveness of some recent in-
direct graph-based techniques in the context of deepfake
detection, namely: (1) ML-GCN [16]; (2) IML-GCN [18];
and (3) ML-AGCN [19]. We use both word [17] and image-
based [18] node embeddings to assess the performance of the
aforementioned indirect methods. We generate the label graph
using the co-occurrences of each manipulation pair in an image
over the entire dataset, as in [16]. Section IV gives more details
on the quantitative performance of these methods.

IV. EXPERIMENTS

A. Datasets

For our experiments, we use the dataset referred to as
Deep-Seq proposed in [9]. Initially, this dataset was proposed
for image-to-sequence tasks. Nevertheless, its annotations are
compatible with multi-label classification. As compared to [9],
the order constraint is not considered. More specifically, the
dataset consists of two subsets depicting various manipula-
tions. The first subset, called Sequential facial components
manipulations (Seq-Com-Deepfake), shows forgeries that alter
the appearance of facial attributes such as hair bangs or the
beard. In the second subset, the manipulations are applied by
swapping facial regions, such as the eyes, the mouth, etc.,
between an original and a reference image, respectively. This
subset is termed Sequential facial attributes manipulations
(Seq-Att-Deepfake). For both sub-collections, one to five ma-
nipulations are applied to the same image. Hence, the label
vector is formed by five elements (N = 5).

B. Evaluation metrics

We provide the mean Average Precision (mAP) as well
as the number of model parameters (# Params) in order to
assess the effectiveness of current state-of-the-art multi-label
classification approaches in the context of deepfake detection.
In addition, as in [13], we report the following evaluation
metrics on both subsets of the Deep-Seq dataset: average per-
Class Precision (CP), average per-Class Recall (CR), average
per-Class F1-score (CF1), the average Overall Precision (OP),
average overall recall (OR) and average Overall F1-score
(OF1).

C. Implementation details

In the context of deepfake detection, the effectiveness of
both direct and indirect approaches is assessed. For that
purpose, we employ ResNet [10] and TResNet [11] as direct
approaches, in addition to ML-GCN [16], IML-GCN [18] and
ML-AGCN [19] as indirect methods. More specifically, we
utilize both Resnet50 and Resnet101 variations. For TResNet,
we adapt a smaller version known as TResNet-M.

We use the original train and test split that was initially
provided in the dataset [9] to train our models. For the subset
of facial attribute manipulations (Seq-Attr-Deepfake), we use
41600 samples for training and 4160 samples for testing, and
for the subset of facial component manipulations (Seq-Comp-
Deepfake), we use 29408 and 2860 samples for training and
testing, respectively. Using conventional image augmentation
techniques, the image samples are reshaped to 224x224 as
suggested in the original methods [10], [11], [16], [19]. We
train the models on an NVIDIA TITAN V GPU with a total
memory of 12GB using PyTorch in Python with a batch size
of 128 for a total of 40 epochs or until convergence.

D. Experimental Results

We report in Table I and Table II the results obtained
for both Seq-Att-Deepfake and Seq-Com-Deepfake subsets,
respectively.

1) Comparison of direct methods: In general, all the results
obtained for direct methods are comparable. However, it is
interesting to note that, in our experiments, ResNet50 out-
performs TResNetM in terms of mAP regardless of ResNet’s
depth, with an improvement of approximately 2%. It should be
noted, though, that TResNetM allows for a larger batch size
than ResNet50 while still utilizing the same GPU memory.
In addition, surprisingly, the use of the ASL loss does not
seem to influence the results importantly on the Seq-Attr-
Deepfake subset, only inducing a variation of 0.1% in mAP.
On the other hand, a marginal performance improvement on
the other subset i.e., Seq-Comp-Deepfake can be noticed when
comparing direct methods to their counterpart ASL-based
ones. However, the recall (CR, OR) and F-1 score (CF, OF),
both per-class and overall, increase significantly when these
methods are combined with ASL. This might be explained
by two points: 1) since ASL aims to focus more on positive
labels than negative ones, the model tends to predict more
false positives; and 2) the models may overfit the distribution
of manipulations in Seq-Attr-Deepfake.

Finally, it can be noted that the best performance is achieved
when using a deeper architecture, i.e ResNet101, with an en-
hancement between 2% and 4%, in terms of mAP, on Seq-Attr-
Deepfake and Seq-Com-Deepfake, respectively. Nevertheless,
this slight improvement comes at the cost of an important
increase in terms of number of parameters (almost multiplied
by a factor of 2).

2) Comparison of indirect methods: The largest architec-
ture corresponding to ML-GCN outperforms other graph-
based methods. More specifically, an improvement of 0.5-
12% and 1.6-8% can be observed in terms of mAP for Seq-



TABLE I
COMPARISON OF EXISTING MULTI-LABEL IMAGE CLASSIFICATION METHODS ON DEEPFAKE ATTRIBUTE MANIPULATIONS SUBSET

(SEQ-ATTR-DEEPFAKE). BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Category Method # Params (↓) mAP (↑) CP (↑) CR (↑) CF1 (↑) OP (↑) OR (↑) OF1 (↑)

Direct methods

ResNet50 [10] 23.8 96.0 93.5 80.7 86.5 93.7 80.9 86.9
ResNet 50 (with ASL) [10] 23.8 95.9 89.2 91.6 90.4 89.3 91.7 90.5
ResNet101 [10] 42.8 96.1 92.9 83.6 87.8 93.1 83.7 88.2
ResNet101 (with ASL) [10] 42.8 96.0 88.1 92.3 90.1 88.1 92.4 90.2
TResNetM [11] 29.4 93.9 93.4 69.2 79.1 93.8 69.4 79.8
TResNetM (with ASL) [13] 29.4 94.0 86.1 89.5 87.7 86.2 89.5 87.8

Indirect methods

ML-GCN† [16] 44.9 95.1 93.3 74.9 82.9 93.6 75.0 83.3
IML-GCN [18] 31.6 82.5 76.7 72.4 74.3 76.9 72.6 74.7
IML-GCN† [18] 31.7 94.0 84.8 90.6 87.6 84.9 90.6 87.7
ML-AGCN [19] 36.3 82.7 74.8 77.1 75.9 74.9 77.1 76.0
ML-AGCN† [19] 36.6 94.3 85.3 90.9 88.0 85.3 90.9 88.0
ML-AGCN† w/o ASL [19] 36.6 94.5 93.8 70.0 79.9 94.1 70.2 80.4

†Graph-based indirect approaches with word embeddings [17]

TABLE II
COMPARISON OF EXISTING MULTI-LABEL IMAGE CLASSIFICATION METHODS ON DEEPFAKE COMPONENT MANIPULATIONS SUBSET

(SEQ-COMP-DEEPFAKE). BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Category Method # Params (↓) mAP (↑) CP (↑) CR (↑) CF1 (↑) OP (↑) OR (↑) OF1 (↑)

Direct methods

ResNet50 [10] 23.8 89.8 89.0 68.5 77.0 89.6 68.5 77.6
ResNet 50 (with ASL) [10] 23.8 90.5 80.3 87.7 83.8 80.3 87.9 84.0
ResNet101 [10] 42.8 91.7 89.3 74.4 80.7 89.7 74.5 81.4
ResNet101 (with ASL) [10] 42.8 92.7 82.7 90.0 86.2 82.7 90.0 86.2
TResNetM [11] 29.4 87.1 88.3 58.2 68.6 89.4 58.7 70.8
TResNetM (with ASL) [13] 29.4 87.2 79.9 82.1 80.9 80.1 82.2 81.1

Indirect methods

ML-GCN† [16] 44.9 89.6 87.5 69.4 76.9 87.8 69.8 77.8
IML-GCN [18] 31.6 81.7 94.9 18.8 27.9 92.3 20.0 32.9
IML-GCN† [18] 31.7 87.7 79.8 82.1 80.9 80.0 82.2 81.1
ML-AGCN [19] 36.3 81.7 80.1 65.5 71.8 80.2 65.3 72.0
ML-AGCN† [19] 36.6 87.1 78.1 84.9 81.3 78.2 85.1 81.5
ML-AGCN† w/o ASL [19] 36.6 88.0 90.7 54.4 65.5 91.7 54.7 68.5

†Graph-based indirect approaches with word embeddings [17]

Attr-Deepfake and Seq-Comp-Deepfake subsets, respectively.
This is consistent with the results obtained for direct methods,
as the feature extraction branch of ML-GCN is based on
ResNet101. Moreover, while image embeddings have sig-
nificantly improved the performance on standard multi-label
image classification datasets, word embeddings give a higher
mAP when tested on both deepfake subsets. In fact, as reported
in Table I and Table II, for both IML-GCN and ML-AGCN, the
mAP decreases by more than 12% when paired with image-
based embeddings. This is counter-intuitive since, unlike the
word embeddings that were initially proposed for the task of
Natural Language Processing (NLP), image-based embeddings
are semantically more meaningful for image classification as
discussed in [18]. This might be caused by the fact that
the discrepancy between the image embeddings produced
by two different manipulations is not significant. In contrast
to generic objects, image embeddings may fail to describe
the manipulation semantics. Last but not least, the attention
mechanism proposed in [19] does not improve the performance
of the standard ML-GCN.

3) Direct methods versus indirect methods: In Fig. 2 and
Fig. 3, we visualize the average performance of both direct
and indirect methods on Seq-Attr-Deepfake subset and Seq-
Comp-Deepfake subset, respectively. Given Fig. 2 and Fig. 3,
two observations can be made. First, direct methods seem to
be more suitable for multi-label deepfake classification. This

Fig. 2. Comparison of the average performance of numerous direct (non-
hatched) and indirect (hatched) approaches on the Seq-Attr-Deepfake subset.

Fig. 3. Comparison of the average performance of numerous direct (non-
hatched) and indirect (hatched) approaches on the Seq-Comp-Deepfake subset.



comes again in contradiction with the results obtained in the
generic field of multi-label image classification, showing that
modelling the label correlations is highly beneficial. This can
be explained by the fact that the present deepfake dataset has
not been spontaneously generated, but has been produced in
a controlled environment. The distribution of the generated
manipulations is assumed to be uniform, which does not
necessarily reflect a realistic scenario. Second, we can observe
that the facial components manipulations subset is relatively
more challenging than the facial attribute subset, especially
for indirect methods that enclose a high standard deviation in
terms of performance metrics.

V. CONCLUSION

Existing deepfake detection techniques model the problem
as a simple binary classification task, with the aim to determine
whether or not a particular image is fake. However, this makes
the classification task hardly interpretable. For obtaining more
explainable outputs, this work proposes to tackle deepfake
detection problem as a multi-label classification problem, with
the objective of simultaneously identifying several categories
of image manipulations. To this end, state-of-the-art multi-
label classification methods are benchmarked on a recently
proposed deepfake dataset incorporating multi-label annota-
tions. This allows assessing the effectiveness of current multi-
label classification methods, including both direct and indirect,
in the practical use case of deepfake detection. Multiple results
are against intuition, showing the need to investigate further
multi-label deefake classification. These future investigations
might be supported by the introduction of more complex and
realistically generated multi-label deepfake datasets.
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