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Abstract—Mutation testing can help reduce the risks of re-
leasing faulty software. For such reason, it is a desired practice
for the development of embedded software running in safety-
critical cyber-physical systems (CPS). Unfortunately, state-of-
the-art test data generation techniques for mutation testing of
C and C++ software, two typical languages for CPS software,
rely on symbolic execution, whose limitations often prevent its
application (e.g., it cannot test black-box components).

We propose a mutation testing approach that leverages fuzz
testing, which has proved effective with C and C++ software. Fuzz
testing automatically generates diverse test inputs that exercise
program branches in a varied number of ways and, therefore,
exercise statements in different program states, thus maximizing
the likelihood of killing mutants, our objective.

We performed an empirical assessment of our approach with
software components used in satellite systems currently in orbit.
Our empirical evaluation shows that mutation testing based on
fuzz testing kills a significantly higher proportion of live mutants
than symbolic execution (i.e., up to an additional 47 percentage
points). Further, when symbolic execution cannot be applied,
fuzz testing provides significant benefits (i.e., up to 41% mutants
killed). Our study is the first one comparing fuzz testing and
symbolic execution for mutation testing; our results provide
guidance towards the development of fuzz testing tools dedicated
to mutation testing.

Index Terms—Mutation testing, Fuzzing, Test data generation

I. INTRODUCTION

Software testing plays a key role in verifying and validating
embedded software for cyber-physical systems (CPS). Ensur-
ing the high-quality of test suites is therefore essential for
quality assurance purposes in such contexts.

Mutation analysis is an effective approach to assess the
quality of a test suite. Indeed, it entails measuring the mutation
score, which is the proportion of programs with artificially
injected faults (i.e., mutants) detected by the test suite [1],
and there exists a strong association between a high mutation
score and a high fault revealing capability for test suites [2],
[3]. Further, recent work has shown that mutation analysis can
be cost-effectively applied to large CPS software by combining
multiple optimizations [4].

In practice, mutation analysis warrants the effective selec-
tion of inputs for mutation testing since test cases are required
to detect all or a large proportion of the generated mutants. A
mutant detected by a test suite is said to be killed. However,
due to the typically high number of mutants generated in
the context of large CPS projects [4], it is challenging for
engineers to perform mutation testing manually.

Unfortunately, we lack automated test data generation tech-
niques (automated mutation testing techniques) applicable to
CPS; indeed, most of the existing techniques do not target the
C and C++ languages, which are widely used in CPS domains.

The state-of-the-art (SOTA) solution for the automated
mutation testing of C software (i.e., SEMu [5]) is based
on the KLEE symbolic execution engine [6]. Though it has
shown to be effective with command line utilities, it inherits
the limitations of symbolic execution. Specifically, it requires
modeling of the environment (e.g., network communication)
and cannot deal with programs that require complex analyses
to enable input generation (e.g., programs with floating point
instructions). Further, it generates test inputs for command line
utilities, which are seldom used in CPS, and does not generate
unit test cases nor target other CPS interfaces. Search-based
techniques developed for other programming languages (e.g.,
Java) [7] are impractical for C and C++ software because
of the difficulty of instrumenting the software to compute
dedicated fitness functions (e.g., branch distance). For exam-
ple, to compute branch distance at runtime, it is necessary to
modify all the conditional statements in the software under test
(SUT) and, for that, the source code must be processed with
static analysis tools that require loading all the dependencies.
Unfortunately, for large systems, this often leads to configuring
such tools to process several source files in nested directories,
which is impractical except if the tool is well integrated with
the compiler already in use for the SUT. Moreover, CPS source
files often rely on architecture-specific C constructs (e.g., for
the RTEMS compiler [8]) that are not successfully parsed by
static analysis frameworks [4].

In this paper, we propose relying on gray-box fuzz testing
techniques [9], also called fuzzing techniques or fuzzers, to
generate test data for mutation testing. Grey-box fuzzers apply
evolutionary algorithms to data (called seed data), which is
either randomly generated or user-provided, to generate test
input data (usually input files) that maximize code coverage
and trigger failures. In contrast to other search-based testing
techniques [10], they do not rely on branch distance [11] but
instead make use of coarser heuristics like bucket-based branch
coverage, which analyzes if an input exercises a branch for
a number of times not observed before (see Section II-B);
such heuristics can be implemented with simple extensions of
standard C/C++ compilers, which facilitates their adoption in
industry.

Because of their effectiveness and applicability to C and
C++ software, gray-box fuzzers are promising alternatives



to support the automated mutation testing of CPS software.
However, fuzzers target console software, while CPS software
is usually tested either with system-level test scripts interacting
with a hardware emulator or through unit and integration test
cases implemented with the same language as the SUT. In
this paper, we focus on the automated generation of unit
test cases because fuzzing large systems is an open research
problem [12]. For simplicity, we use the term unit test cases to
indicate test cases implemented with the same language as the
SUT providing inputs to a function under test; however, the
unit test cases generated by our approach may exercise either
single units (e.g., a C function) or multiple components (e.g.,
if the function under test invokes other functions or interacts
with remote components through the network).

Since fuzzers cannot automatically generate test drivers for
unit testing, several techniques that generate test drivers to
enable fuzz testing of C and C++ APIs have been devel-
oped [13]–[15]; however, they are not maintained and therefore
not applicable in practice. Further, they require the availability
of client programs using the API under test, which are not
available in our context.

To address the limitations above, as a first contribution of
this paper, we propose an approach based on fuzzing that con-
sists of an automated pipeline supporting the generation of unit
test cases for mutation testing; we call our approach MOTIF
(MutatiOn TestIng with Fuzzing). Our pipeline includes the
automated generation of seed data and the automated gener-
ation of test drivers; to enable mutation testing, test drivers
automatically determine if the outputs of the mutant differ
from the outputs of the original software. We do not design a
dedicated fuzzing algorithm but rather propose an approach to
apply SOTA fuzzers to support automated mutation testing.
Our intuition is that the bucket-based coverage strategy of
fuzzers can effectively drive the selection of test inputs that
kill mutants because such strategy, in addition to selecting
inputs leading to different software states, can also track, and
be guided by, differences in the behavior of the original and
the mutated function. From a practical standpoint, relying on
standard fuzzing algorithms helps with the adoption of our
solution by practitioners because the maintenance of well-
known fuzzing tools is guaranteed by several interest groups
(e.g., companies investing in reliability and security).

As a second contribution, we compare MOTIF with a
SOTA symbolic execution approach to determine if fuzzing
is more effective and can overcome the limitations of sym-
bolic execution in practical settings. For our experiments,
we considered three software components used in satellites
currently in orbit: MLFS, a mathematical library qualified by
the European Space Agency (ESA) for flight systems, LIBU,
a utility library for nanosatellites developed by one of our
industry partners in a project with ESA [16], and ASN1lib,
a serialization/deserialization library generated with the ESA
ASN.1 compiler [?].

Our empirical results show that, in the two case study
subjects where symbolic execution is applicable (ASN1lib and
part of LIBU), MOTIF outperforms mutation testing based on

symbolic execution by 46.86 and 10.52 percentage points,
respectively. For subjects in which symbolic execution is
not applicable (MLFS and part of LIBU), MOTIF achieves
interesting results by killing 35.97% and 41.38% of the live
mutants, respectively.

This paper proceeds as follows. Section II provides related
work on automated mutation testing and background on sym-
bolic execution and fuzzing. Section III describes our pipeline
for automated mutation testing with fuzzing and an alternative
pipeline relying on symbolic execution. Section IV presents
our empirical evaluation. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

This paper relates to techniques for automated mutation
testing and fuzzing; relevant work is discussed below.

A. Symbolic execution

Symbolic execution (SE) is a program analysis technique
that relies on an interpreter to process the source code of
the SUT and automatically generate test inputs [17]. Inputs
are represented through symbolic values; during the symbolic
execution, the state of the SUT includes the symbolic values
of program variables at that execution point, a path constraint
on the symbolic values to reach that point, and a program
counter. The path constraint is a boolean formula that captures
the conditions that the inputs must satisfy to follow that path.
Constraint solving [18] is then used to identify assignments
for the symbolic inputs that satisfy the path constraint.

SE presents several limitations, including (1) the need for
abstract representations for the external environment and any
black-box components used by the SUT (otherwise, the SE
engine cannot know what outputs to expect from the environ-
ment), (2) path explosion (the SE engine may need to process a
large number of paths before satisfying a target predicate), (3)
path divergence (i.e., abstract representations do not behave
like the real systems), (4) handling of complex constraints
(e.g., solving constraints with floating point variables).

A recent solution to partially address the above-mentioned
limitations is dynamic symbolic execution (DSE), which con-
sists of treating only a portion of the program state sym-
bolically. Concrete program states help dealing with complex
constraints or path explosion (e.g., SE is used after a certain
branch has already been reached using a concrete input). How-
ever, most frameworks with DSE capabilities like Angr [19],
KLEE [6], and S2E [20] rely on binary interpretation, which,
in practice, requires some degree of environment modeling
(e.g., libc library modeling in KLEE) and limit their practical
applicability [21].

Compilation-based approaches like QSYM [22] and
SYMCC [21] augment the original program with instructions
to populate and solve symbolic expressions while the original
software is executed; such characteristic eliminates some lim-
itations of interpretation-based approaches thus being applica-
ble to a broader set of software systems. For example, since
the symbolic execution interacts with the actual environment
there is no need to emulate it within the interpretation layer.



SYMCC requires the source code of the SUT, while QSYM
relies on dynamic binary instrumentation. However, we have
excluded QSYM and SYMCC from our investigation because
there is no dedicated mutation testing approach for them.
Further, implementing such a mutation testing approach is a
significant research challenge since it entails finding solutions
to integrate, within the original program, the logic to derive
inputs that kill mutants. Last, these approaches have shown
to provide their best results when combined with fuzzing,
a solution referred to as hybrid fuzzing (see Section II-B).
Hybrid fuzzing is nevertheless difficult to apply in our context
because QSYM and SYMCC still present technical limitations
preventing their application to CPS software; indeed, SYMCC
relies on LLVM, which is not applicable to certain systems [4],
[23], while QSYM is not maintained [24] and relies on an
outdated version of the PIN instrumenter [25], [26].

B. Fuzzing

Fuzzing (or fuzz testing) is an automated testing technique
that generates test inputs by repeatedly modifying1 existing
inputs; the selection of the inputs to modify is usually driven
by metrics collected during the execution of the SUT. Based on
the information collected during program execution, fuzzing
techniques (i.e., fuzzers) are classified as black-box, white-
box, or gray-box.

In this paper, we focus on grey-box fuzzers because they
have demonstrated to effectively maximize code coverage [27]
and discover faults [28] (mainly crashes and memory errors),
two objectives that relate to the problem studied in this paper;
indeed, to kill a mutant it is necessary to (1) exercise a
mutated statement, which can be achieved by maximizing code
coverage, and (2) exercise the mutated statement with many
different inputs (i.e., in different states), a common practice in
fuzzers to discover crashes and memory errors.

Most fuzzers generate input files to be used for system-
level testing of console applications; however, engineers can
implement driver programs (hereafter, fuzzing drivers) that rely
on the data generated by the fuzzer to test other software
interfaces (e.g., APIs, see Section III-A1). Most fuzzers keep
a pool of input files and rely on the following evolutionary
search process: (1) select an input file from the pool, (2)
modify the input file to generate new input files, (3) provide
the new input files to the SUT and monitor its execution, (4)
report crashes or problems detected through sanitizers [29], (5)
add to the pool all the input files that contribute to improve
code coverage.

What facilitates the adoption of fuzzers is that they rely on
simple dynamic analysis strategies to trace branch coverage of
C/C++ programs. A common strategy consists of dynamically
identifying branches by applying a hashing function to the
identifiers assigned to code blocks by compile-time instru-
mentation; it is implemented as an extension of popular C/C++
compilers [30]. Further, instead of relying on traditional branch

1To avoid confusion, we avoid the term ‘mutation’ when describing fuzzing
techniques.

coverage [31], most fuzzers adopt a bucketing approach to
track the number of times each branch has been covered by
each input file across ranges: only once, twice, three times,
between four and seven, between 8 and 15, between 16 and 31,
etc.; the fuzzers add to the pool those files that cover at least
one branch for a range of times (i.e., a bucket) not observed
before. Such bucketing strategy help reach software states that
are not reachable by simply relying on branch coverage.

Fuzzers mainly differ with respect to the strategy adopted
to (1) select what operations to apply in order to modify input
files and obtain new ones (e.g., MOpt [32] relies on a particle
swarm optimization algorithm) and (2) select the inputs from
the input pool (e.g., AFLfast [33] and AFL++ [34] rely on
a simulated annealing algorithm and prioritize new paths and
paths exercised less frequently). Also, fuzzers differ in the
strategy adopted to determine interesting inputs. For example,
directed grey-box fuzzers [35], instead of maximizing code
coverage, aim to reach specific targets — usually a subset of
program locations (e.g., modified code) or invalid sequences
of operations (e.g., use-after-free). Hybrid fuzzers [22], [36],
[37], instead, rely on grey-box fuzzing to explore most of the
execution paths of a program and leverage DSE to explore
branches that are guarded by narrow-ranged constraints when
the fuzzer does not improve coverage further. The two SOTA
hybrid fuzzers combine AFL [38] with QSYM [22] and
SYMCC [21].

Some researchers have addressed the problem of generating
test drivers to fuzz test program functions as in unit test-
ing [13]–[15]; however, they all target library APIs and make
the assumption that such APIs have been already integrated
into consumer programs (i.e., programs using the library API).
FuzzGen [13] relies on the static analysis of both the API
under test and its consumers to derive call graphs capturing
valid sequences of function invocations and derive test drivers.
Different from FuzzGen, Fudge [14] works with a single
API consumer and, instead of synthesizing test drivers from
a graph, it relies on code snippets (i.e., sequences of API
calls and the variables in scope) extracted from the consumer.
ApiCraft [15] targets APIs without source code and leverages
both static and dynamic information (headers, binaries, and
traces) to collect control and data dependencies for API
functions. Unfortunately, consumer programs are not available
when performing mutation analysis for CPS, which makes
the above-mentioned approaches inapplicable; indeed, some
components are often developed only for a specific product
(e.g., the application layer for a satellite under development),
while other components, despite being implemented for reuse
(e.g., utility libraries), should be verified by mutation testing
before they are integrated into consumer programs.

Other techniques address the problem of generating highly
structured input files [39], [40]. TensileFuzz generates struc-
tured inputs (e.g., image or zip files) by probing random
executions to derive constraints for potential input fields, and
then relying on string constraint solving to derive inputs [39].
SkyFire, instead, learns a probabilistic context-sensitive gram-
mar to generate JSON and XML files [40]. Such techniques



can generate input files with a complex structure but they do
not generate unit test cases, which is necessary in our context;
however, leveraging those approaches to populate complex
data structures may also help with unit-level fuzz testing.

C. Automated mutation testing

To kill a mutant, a test case should satisfy three conditions:
reachability (i.e., the test case should execute the mutated
statement), necessity (i.e., the test case should cause an in-
correct intermediate state if it reaches the mutated statement),
and sufficiency (i.e., the observable state of the mutated
program should differ from that of the original program) [41].
Automated mutation testing approaches differ regarding the
strategy adopted to satisfy these conditions.

There exist two families of automated mutation testing
techniques based respectively on: constraint solving and meta-
heuristic search. Only one of them relies on fuzzing [42], as
further described below.

In this Section, we mainly focus on techniques targeting
C and C++ programs because these languages are used in
many CPS; unfortunately, the C and C++ languages are
more complex to process for static and dynamic analysis
techniques than the higher-level languages targeted by most
of the techniques in the literature (e.g., Java).

1) Techniques based on constraint solving: Inspired by
the earlier work of Offut et al. [41], Holling et al. execute
symbolically the original and mutated functions with input
data leading them to generate different outputs [43]. A similar
technique from Riener et al. [44] relies on a bounded model
checker (BMC) to select the input values that kill the mutant.
Unfortunately, no prototype tools for the above-mentioned
approaches are available.

The SOTA tool for automated mutation testing is SEMu [5],
[45], which relies on KLEE to generate test inputs based
on SE. To speed up mutation testing, SEMu relies on meta-
mutants (i.e., it compiles mutated statements and the original
statements together). First, SEMu relies on SE to reach mutated
statements (reachability condition). Then, for each mutant, it
relies on constraint solving to determine if inputs that weakly
kill the mutant exist (necessity condition). For killable mutants,
it symbolically runs the mutated and the original program in
parallel; when an output statement is reached (e.g., a printf
or the return statements of the main function), it relies
on constraint solving to identify input values that satisfy the
sufficiency condition.

2) Techniques based on meta-heuristic search: Most of the
work on automated mutation testing with meta-heuristic search
targets Java software; we report the most relevant techniques
below. Ayari et al. [46] rely on an Ant Colony Optimization
algorithm [47] driven by a fitness function that focuses on
the reachability condition. Precisely, their fitness measures the
distance (number of basic blocks in the program’s control
flow graph) between the mutated statement and the closest
statement reached by a test case. Fraser and Zeller [7], instead,
extended the EvoSuite tool [10] with a fitness function consid-
ering the reachability and the necessity conditions (number of

statements that are covered a different number of times by the
original and the mutated program). The integration of mutation
testing into EvoSuite has been further improved with branch
distance metrics tailored to the operator used to generate the
mutants [48]. Recently, EvoSuite has been further extended
by Almulla et al. with adaptive fitness function selection
(AFFS), a hyperheuristic approach that relies on reinforcement
learning (RL) algorithms to determine which composition of
fitness functions to use [49]. Unfortunately, when applied to
mutation testing, AFFS does not perform better than SOTA
solutions [48].

Concerning C software, we should note the work of Souza
et al. [50], who rely on the Hill Climbing AVM algorithm [51].
They combine three fitness functions that rely on branch
distance to measure how far an input is from satisfying each
of the three killing conditions. The mutation score obtained
with simple C programs ranges between 52% and 93%.
The approach has been implemented on top of AUSTIN, a
search-based test generation tool for C [52]–[54]; however,
this implementation is not available. A recent search-based
testing tool prototype for C is Ocelot [55]; however, it has
not been extended for automated mutation testing. Another
key limitation of both Ocelot and AUSTIN is that they
implement preprocessing steps that do not work with complex
program structures (e.g., we couldn’t apply them to the subject
programs considered in our empirical evaluation because of
preprocessing errors).

A recent mutation testing technique targeting C software
is that of Dang et al. [56], who propose a co-evolutionary
algorithm that reduces the search domain at each iteration
(the original search domain is replaced by the joint domain
of the best solutions found); unfortunately, their prototype is
not available.

D. Techniques based on fuzzing

The work of Bingham [42] is the only one to rely on
fuzzing to automate mutation testing for C software. For input
generation, it relies on TOFU [57], a grey-box, grammar-
aware fuzzer that generates grammar-valid inputs by modi-
fying existing ones. Similar to Ayari’s work, TOFU’s input
generation strategy is guided by the distance between the
mutated statement and the closest statement reached by a
test case; however, instead of generating unit test cases, it
generates input files matching a given grammar. Unfortunately,
the results obtained by Bingham are preliminary (they targeted
only the Space benchmark [58]) and a prototype tool is not
available.

Mu2 [59], which has been developed in parallel with MO-
TIF, is a fuzzer that integrates the findings of search-based unit
test generation [60] to generate test input files with fuzzing:
it relies on the mutation score to drive the generation of test
inputs. Different from MOTIF, Mu2 tests every live mutant
with each generated input and, in the file pool, prioritizes
those files that increase the mutation score; the scalability of
such choice is enabled by dynamic classloading and instru-
mentation, two options that are feasible for Java programs but



not for the C/C++ programs targeted by MOTIF. Further, by
targeting Java, Mu2 can easily determine if mutants are killed
by relying on the method ‘equals’, which is implemented by
every class to determine if two instances are equal; the method
‘equals’ is not available in C and C++ software. Results show
that Mu2 kills more mutants than the inputs generated by a
traditional fuzzer; however, the question remains if Mu2 (i.e.,
testing all the live mutants together) is more effective than
the approach used by MOTIF (i.e., testing the original and
mutated function in sequence). Mu2’s results follow previous
work showing that, in Java benchmarks, prioritizing inputs
that increase the mutation score may lead to higher branch
coverage and mutation score than traditional prioritization
strategies based on branch coverage [61].

To summarize, our research is motivated by the lack of
support for automated mutation testing of C/C++ software.
The SOTA approach for the automated mutation testing of
C/C++ software (i.e., SEMu) relies on KLEE and inherits
its limitations, making it inapplicable to most CPS software;
further, it does not generate unit test cases but selects inputs
for console programs. Other SE tools (QSYM and SYMCC)
also present technical limitations preventing their application
to CPS software. Search-based approaches for the mutation
testing of C/C++ software present acute feasibility challenges
because of the difficulty of executing static analysis, which is
needed for branch distance fitness, in large software projects.
Though fuzzing appears to be a feasible input generation
strategy for mutation testing, existing fuzzers do not generate
test drivers for unit testing. The only fuzzer proposed for
mutation testing is not available for download and its results
are very preliminary.

III. PROPOSED APPROACHES

In this Section, we present two approaches for automated
mutation testing: (1) MutatiOn Testing wIth Fuzzing (MOTIF),
our main contribution, which is automated through a pipeline
of commands to generate unit test cases by relying on fuzzing
(Section III-A). (2) SEMuP, which is a pipeline derived
from MOTIF to perform unit mutation testing with SEMu
(Section III-B). They are both used in our empirical evaluation.

A. MOTIF

Similar to Holling et al. [43], we aim to identify a set of
test inputs that lead to different outputs when provided to the
original and to the mutated function. To achieve such objective
with fuzzing, for each mutated function, MOTIF generates a
fuzzing driver that reads the input data generated by the fuzzer
and then appropriately provides such data, as arguments, to
both the original and the mutated function. Finally, the fuzzing
driver compares the output data generated by the original and
the mutated function, if they differ, the mutant has been killed.

Our intuition is that fuzzers not only help kill mutants
because they can achieve high coverage [27] and reach mul-
tiple program states, including faulty ones [28], but also that,
by invoking the original and the mutated functions within
a same fuzzing driver, we can leverage the bucket-based

SeedsSeedsSeeds

Step 1. Generate the fuzzing driver

Step 2. Generate seed files

Failures Regression Tests

Inputs killing the mutant

Post-processing

Fuzzing Driver

Executable Fuzzing Driver

Test Driver

User inputs:
• SUT source
• Live Mutant
• MOTIF Configuration

Step 3. Compile

Generate the test driver

Step 4. Mutation testing

Step 5. Test the SUT

Log file

Execute fuzzer

Crashing Inputs

Compare with specifications (manual step)

Output Test Original SUT

Fig. 1: The MOTIF process.

fuzzing strategy to drive the generation of test inputs towards
killing mutants. Indeed, if differences in the coverage of
the original and the mutated function are observed then the
two functions behave differently and, consequently, they yield
different outputs leading to the mutant being killed [4], [62],
[63]. Also, large differences in coverage lead to new buckets
being covered and since fuzzing favors inputs covering new
buckets, it indirectly leads to inputs killing mutants. In other
words, the bucket-based fuzzing strategy may help kill mutants
by preserving, during test generation, those inputs that lead to
incorrect intermediate states but do not kill the mutant (i.e.,
they do not satisfy the sufficiency condition); the following
iterations of the evolutionary search process implemented by
the fuzzer (see Section II-B) may modify such inputs such
that, in addition to reaching an incorrect intermediate state,
they also satisfy the sufficiency condition. We leave to future
work the extension of fuzzers with dedicated strategies; for
example, instead of measuring the coverage of the mutated
function, the fuzzer may measure the difference in coverage
between the original and the mutated function, and use this
information to further prioritize the inputs in the fuzzer queue
(e.g., test first the inputs that leads to larger differences).

MOTIF automatically generates all the scaffolding required
to test the original function, the mutated function, and compare
their outputs. Specifically, MOTIF implements the workflow
depicted in Figure 1, which consists of five Steps that we
describe below.

MOTIF receives as input a set of mutants (source files) to be
killed; each mutant matches the original source file except for
the statements modified by a mutation operator. The MOTIF
Steps in Figure 1 are repeated for each mutant. However, Steps
1, 2, 3, and part of Step 5 (i.e., Generate the test driver) can
be executed only once for all the mutants belonging to a same



function; indeed, the structure of the input and output data of
a function does not change based on the mutants—we do not
target interface mutation [64].

1) Step 1 – Generate the fuzzing driver: In Step 1, MOTIF
relies on the clang static analysis library [65] to process the
SUT and determine the types of the parameters required by
the function under test. Such information is used to generate a
fuzzing driver for mutation testing; an example fuzzing driver
for the function T_POS_IsConstraintValid belonging
to our ASN1lib case study subject is shown in Listing 1. The
fuzzing driver renames the mutated function by adding the
prefix mut .

1 int main(int argc, char** argv){
2 load_file(argv[1]); // load the input file and
3 // extends the input with random data if needed
4

5 /* Variables for the original function */
6 T_POS origin_pVal; // for the first parameter
7 int origin_pErrCode; // for the second parameter
8 /* Variables for the mutated function */
9 T_POS mut_pVal; // for the first parameter

10 int mut_pErrCode; // for the second parameter
11 /* Variables for the return values */
12 flag origin_return; // for the original
13 flag mut_return; // for the mutant
14

15 /* Copy the input data to the variables for the
original function */

16 get_value(&origin_pVal, sizeof(origin_pVal), 0);
17 get_value(&origin_pErrCode,sizeof(origin_pErrCode),0);
18 log("Calling the original function");
19 origin_return = T_POS_IsConstraintValid(&origin_pVal,

&origin_pErrCode);
20

21 /* Copy the same input data to the variables for the
mutated function */

22 seek_data_index(0); //reset the input data pointer
23 get_value(&mut_pVal, sizeof(mut_pVal), 0);
24 get_value(&mut_pErrCode, sizeof(mut_pErrCode), 0);
25 log("Calling the mutated function");
26 mut_return = mut_T_POS_IsConstraintValid(&mut_pVal, &

mut_pErrCode);
27

28 log("Comparing result values: ");
29 ret += compare_value(&origin_pVal, &mut_pVal, sizeof(

origin_pVal));
30 ret += compare_value(&origin_pErrCode,&mut_pErrCode,

sizeof(origin_pErrCode));
31 ret += compare_value(&origin_return, &mut_return,

sizeof(origin_return));
32

33 if (ret != 0){
34 log("Mutant killed");
35 safe_abort();
36 }
37 log("Mutant alive");
38 return 0;
39 }

Listing 1: Example fuzzing driver for the ASN1lib subject.

The fuzzing driver contains two sets of variables (Lines 5-7
and 8-10) whose types match the parameters of the function
under test and are provided as input to the original and to
the mutated function, respectively; in our example, it declares
a struct T_POS and an int variable. The two sets of
variables are then assigned by performing a byte-by-byte copy
of a same portion of input file provided by the fuzzer (Lines
16-17 and 23-24); MOTIF ensures to copy a number of bytes
to match the size of the assigned variable. If the input file
provided by the fuzzer is shorter than required, MOTIF extends
it with random data (Line 2). Additionally, the fuzzing driver

TABLE I: Seeds assigned to types

Type Seed 1 Seed 2 Seed 3
int -1 0 1

Bool False True
float -3230283776.0 0.0 1072693248.0

double 13826050856027422720.0 0.0 4602891378046628864.0
char 0xFF 0x00 0x41
byte 0xFF 0x00 0x41

ISO8601 2145916800.999999999 1970-01-
01T00:00:00Z

2038-01-01T00:00:00Z

declares the variables required to store the functions’ return
values (Lines 11 to 13).

The original and the mutated functions are then invoked
(Lines 19 and 26). The fuzzing driver then compares the
output generated by the original and the mutated function
(Line 28-31). Unfortunately, in C and C++, the presence of
pointer and reference arguments complicates distinguishing
input and output parameters. Further, to determine input
parameters, we cannot rely on data-flow analysis because it
entails preprocessing the SUT with a static analysis framework
(e.g., LLVM [66]), which is often not feasible with CPS soft-
ware [4]. Therefore, we adopt a simple solution consisting of
comparing all the parameters and return values of the original
and mutated function; indeed, comparing input parameters
does not lead to incorrect mutant killing since they are not
modified. For pointers, we compare the pointed data (e.g., an
int instance for int*). If the pointer is used as an array,
the end-user can specify the expected length of the array, so
the array data can be compared. When arrays are inputs to
the function under test, the end-user may not need to provide
the length because MOTIF automatically generates arrays with
a default length (100). If arrays are dynamically allocated
by the function under test, the end-user should specify the
minimal possible length (e.g., an array of length one), to avoid
false positives due to readings out of the array bounds. For
data structures with pointer fields, it is possible to specify
the pointed data length and the initialization procedure. When
the outputs differ, the fuzzing driver stops its execution with
an abort signal (Line 35 in Listing 1) thus letting the fuzzer
detect the aborted execution and store the input file; MOTIF
then stops the fuzzer because the mutant has been killed.

2) Step 2 – Generate seed files: In Step 2, MOTIF generates
seed files based on the types of input parameters for the
function under test. Seed files are used by the fuzzer to start the
testing process; usually, fuzzers are executed with seed files
that correspond to typical inputs for the SUT. In our case, we
automatically generate seed files that contain enough bytes to
fill all the input parameters with values covering basic cases.
Precisely, for each primitive type, we have identified three
seed values that are representative of typical input partitions;
they are reported in Table I. For example, for numeric values,
we provide zero, a negative, and a positive number. Based on
these seed values, for each fuzzing driver, MOTIF generates
at most three seed files in such a way that each seed value is
covered at least once for every input parameter.

Example seed files for function T_POS_IsConstraint-
Valid are provided in Figure 2 (type definitions in Listing 2).



FFFF FFFF FFFF FFFF
FFFF FFFF FFFF FFFF 
*
FFFF FFFF FFFF FFFF 
FFFF FFFF

0001 0000 0001 0000 
0001 0000 0001 0000
*
0001 0000 0001 0000 
0001 0000

0000 0000 0000 0000 
0000 0000 0000 0000
*
0000 0000 0000 0000 
0000 0000

Seed 1 Seed 2 Seed 3

8048 
bytes

Fig. 2: Seed files generated for the fuzzing driver in Listing 1.

Please note that MOTIF can generate seed files also for
complex input types, indeed the struct T_POS received as
input by function T_POS_IsConstraintValid consists
of an enum (named kind), which is used to specify the type
of data stored inside the rest of the struct, and a union (named
u), which is sufficiently large to contain the data for all the
data types selectable with the variable kind. MOTIF treats
such struct as an int array thus filling it with the seeds
0xFFFFFFFF, 0x00000000, and 0x00000001. The first four
bytes in the seed files (see Figure 2) belong to the enum item
kind, and are filled with the seed values of the int type. The
same happens for the union field u but, since the union
has a size of 8,052 bytes (size of subTypeArray with 4 bytes
padding2), MOTIF repeats the same set of four bytes 2,013
times. The last four bytes belong to the second parameter of
T_POS_IsConstraintValid, the int * pErrCode.

1 typedef enum { T_POS_NONE, longitude_PRESENT,
2 latitude_PRESENT, height_PRESENT,
3 subTypeArray_PRESENT, label_PRESENT,
4 intArray_PRESENT, myIntSet_PRESENT,
5 myIntSetOf_PRESENT, anInt_PRESENT
6 } T_POS_selection;
7

8 typedef struct {
9 T_POS_selection kind;

10 union { asn1Real longitude; asn1Real latitude;
11 asn1Real height; My2ndInt anInt;
12 T_POS_label label; T_ARR intArray;
13 T_SET myIntSet; T_SETOF myIntSetOf;
14 T_POS_subTypeArray subTypeArray;
15 } u;
16 } T_POS;

Listing 2: Definition of struct T_POS

3) Step 3 – Compile the SUT: In Step 3, MOTIF compiles
the fuzzing driver, the mutated function, and the SUT using the
fuzzer compiler; this is necessary to collect the code coverage
information required by the fuzzer.

4) Step 4 – Perform mutation testing: In Step 4, MOTIF
runs the fuzzer to generate inputs for the executable fuzzing
driver. The fuzzer keeps generating input files until it reports
one or more crashes, after which MOTIF stops the fuzzer. The
execution leads to the generation of fuzzing driver logs and
crashing inputs (i.e., input files that caused a crash during the
execution of the fuzzing driver). Since fuzzers generate several
input files from each input taken from the file pool, and since
all of them are executed by the fuzzer, more than one crashing
input may be reported.

Fuzzing driver logs include checkpoints indicating the
progress of testing (see Lines 18, 25, 28, 34, 37 in Listing 1).

2https://research.nccgroup.com/2019/10/30/padding-the-struct-how-a-
compiler-optimization-can-disclose-stack-memory/

For each crashing input, MOTIF processes the corresponding
logs to distinguish between:

• Crashes occurring during the execution of the original
function. They indicate either the presence of a fault in
the original function or the violation of preconditions.
We ignore these inputs because they do not correspond
to inputs killing a mutant.

• Crashes occurring during the execution of the mutated
function. Since the crashes occur during the execution of
the mutated function, which is executed after the original
one, we can safely conclude that the test inputs do not
cause any crash in the original function. Therefore, the
observed crashes indicate that the mutant introduced a
fault that was exercised by the input. Thus, we can
consider these inputs as inputs that kill the mutant.

• Aborted executions due to the fuzzing driver determining
that the mutant has been killed (see Line 35 in Listing 1).

MOTIF keeps all the test inputs killing a mutant. However,
the function under test may generate non-deterministic outputs
and in such situations, despite observed differences in outputs,
the inputs may not have killed the mutant. For example, two
consecutive invocations of a function that reads and writes
global variables may lead to different outputs even if the
mutated statement is not exercised; consequently, the input
suggested by the fuzzer would be a false positive. To minimize
false positives, MOTIF automatically re-executes every test
input killing a mutant with a modified version of the fuzzing
driver that invokes the original function instead of the mutated
function. If this false positive driver, as we refer to it, reports
a difference in the outputs of the two function calls, it implies
that the function under test is non-deterministic and thus that
the input does not kill the mutant. MOTIF considers mutants
exclusively killed by false positive inputs to be live. To kill
mutants in functions modifying global state variables, the end-
user should manually introduce the instructions required to
reset the state between the two function calls in the fuzzing
driver, which is similar to what required by other fuzzing
approaches for unit and library testing (e.g., LibFuzzer [67]).

5) Step 5 – Test the SUT: In this Step, MOTIF generates
a test driver for the SUT. An example test driver for function
T_POS_IsConstraintValid is shown in Listing 3. The
test driver matches the fuzzing driver except that (1) it invokes
only the original function (Line 5 in Listing 3) and (2)
instead of comparing the outputs obtained from two function
invocations, it prints out the output data generated by the
original function (Lines 7 to 9). The test driver is used to
test the original SUT with the inputs that kill the mutant and
the outputs should then be verified by a software engineer
based on the SUT specifications. If the observed output values
are correct, they can be used as oracles for future regression
testing. Otherwise, a fault has been found in the SUT; such
a scenario is one of the key advantages of mutation testing:
by testing the SUT with inputs that detect simulated human
mistakes (mutants), actual faults in the SUT are more likely
to be found than with randomly selected inputs.



In our test driver, the print statements for struct and pointers
are generated based on the configuration of the fuzzing drivers.
Precisely, by default, all the bytes belonging to a struct
are printed out. In the presence of pointers, if the end-user
specifies the size of the data referred to by pointers, the test
driver prints the pointed data instead of the pointer value.

1 int main(int argc, char** argv){
2 load_file(argv[1]); /* load the input file */
3 // Declaration of variables and assignment with input

file data missing to save space...
4 /* Invoke the original function*/
5 _return = T_POS_IsConstraintValid(&pVal, &pErrCode);
6 /* Print output values of the original function */
7 printf_struct("pVal (T_POS)=", &pVal, sizeof(pVal));
8 printf("pErrCode (int) = %d\n", pErrCode);
9 printf("return (flag) = %d\n", _return);

10 return 0;
11 }

Listing 3: Example test driver for the ASN1lib subject.

B. SEMuP
To compare the effectiveness of fuzzing and SE when used

for automated mutation testing, we have adapted the MOTIF
pipeline to enable test generation with SEMu; we call the
adapted pipeline SEMuP. At a high level, SEMuP follows the
same steps of MOTIF, with differences concerning how inputs
and outputs are declared to enable test generation with SE.

1 int main(int argc, char** argv){
2 // Declare variable to hold function returned value
3 _Bool result;
4 // Declare arguments and make input ones symbolic
5 T_POS pVal;
6 int pErrCode;
7

8 klee_make_symbolic(&pVal, sizeof(pVal), "pVal");
9 // Call function under test

10 result = T_POS_IsConstraintValid(&pVal, &pErrCode);
11 // Print output data
12 printf("pErrCode = %d\n", pErrCode);
13 printf("result = %d\n", result);
14 return (int)result;
15 }

Listing 4: Example SEMu driver corresponding to the fuzzing
driver in Listing 1.

In Step 1, we generate SEMu drivers instead of fuzzing
drivers; an example SEMu driver generated for function
T_POS_IsConstraintValid is shown in Listing 4. In
SEMu drivers it is necessary to specify what are the input
parameters to be treated symbolically (see Line 8 in Listing 4);
input parameters are provided as configuration parameters by
the end-user. SEMu drivers do not include explicit comparisons
between the outputs of the mutated and the original function
because such comparison is taken care by SEMu when sym-
bolically executing the original and the mutated functions in
parallel (see Section II-C1). Precisely, the SEMu driver invokes
only the function under test and prints to standard output the
data values that should be considered to determine if a mutant
has been killed. Similar to MOTIF, SEMu also requires end-
users to manually specify how to process data values belonging
to data structures referenced with pointers.

For SEMu, there is no Step 2 (i.e., we do not generate seed
inputs). In Step 3, we compile the mutated function and the

TABLE II: Subject artifacts.

Subject Open-source LOC # Test cases Statements coverage MS
MLFS Yes 5,402 4,042 100.00% 81.80%
LIBU No 10,576 201 83.20% 71.20%
ASN1lib Yes 7,260 139 95.80% 58.31%

SEMu drivers with LLVM. Step 4 concerns the execution of
SEMu and the processing of its logs to determine if mutants
have been killed. Step 5 is conceptually the same as for
MOTIF, except that we load the inputs generated by KLEE.

IV. EMPIRICAL EVALUATION

We address the following research questions:
RQ1. How does mutation testing based on fuzzing compare

to mutation testing based on symbolic execution, for software
where the latter is applicable? SE proved to be an effective
mean to perform mutation testing of command line tools that
do not rely on floating-point instructions nor integrate black-
box components. Therefore, SE may still outperform fuzzing
when applied to mutation testing of CPS units that satisfy
those assumptions.

RQ2. How does mutation testing based on fuzzing perform
with software that cannot be tested with symbolic execution?
The motivation for our work stems from the limited applica-
bility of SE and we therefore aim to assess if fuzzing can
effectively overcome such limitations.

RQ3. How does MOTIF’s seeding strategy contribute to its
results? MOTIF kills mutants either through the generated
seeds or through the inputs generated by the fuzzer; we
therefore aim to assess how the two strategies individually
contribute to MOTIF results.

A. Subjects of the study

To address our research questions, we considered software
deployed on space CPS (satellites) currently in orbit. This
included (a) MLFS, the Mathematical Library for Flight Soft-
ware [68], which complies with the ECSS criticality category
B [69], [70], (b) LIBU, which is a utility library developed by
one of our industry partners and used in NanoSatellites, and (c)
ASN1lib, a serialization/deserialization library generated with
ASN1SCC from a test grammar provided by ESA. ASN1SCC
is a compiler that generates C/C++ code suitable for low
resource environments [71], [72].

Our software subjects are provided with test suites; informa-
tion about their code coverage is reported in Table II. Some
of our test suites do not achieve 100% statement coverage
because some components need to be tested with specific
hardware not available to us; therefore, we generated mutants
only for the covered statements. We generated mutants with
MASS [4], [73]; specifically, we rely on all the mutation
operators supported by MASS and which proved effective
in previous experiments on similar subjects. We excluded
mutants that are identified as equivalent or duplicate according
to trivial compiler equivalence methods [4]. Column MS in
Table II provides the mutation score for our case study
subjects; it corresponds to the proportion of mutants detected



by the test suite. The highest mutation score is observed with
MLFS, whose test suite achieves MC/DC adequacy [74]. The
lowest mutation score is observed with ASN1lib, which is
automatically generated by the ASN1SCC using a grammar-
based approach [?]. Our subjects’ mutation score is in line with
empirical investigations reporting mutation scores ranging
from 55% to 95% [75], [76], for CPS software.

To perform test data generation, we rely on the mutants
not killed by the original test suites. We assume that the live
mutants are not equivalent (i.e., produce the same outputs for
every input) to the original software and though this could
be an under-approximation, it does not introduce bias in the
comparison between MOTIF and SEMuP, which both cannot
kill equivalent mutants. Further, two mutants ma and mb can
also be duplicates (i.e., they lead to the same outputs for every
input) or subsumed (i.e., ma is killed by a superset of the test
cases killing mb). However, the identification of test inputs
that kill mutants is a precondition to determine if mutants
are duplicate or subsumed [77]; for this reason, including
duplicate and subsumed mutants should not introduce bias
in the comparison of the two approaches. In other words, a
mutation testing approach should easily kill mutants that are
either duplicates and subsume other killed mutants; if it does
not happen, it is correct to penalize such an approach in the
empirical evaluation. Finally, for LIBU, we have excluded 8
mutants manually identified as equivalent after inspecting the
(few) live mutants not killed by MOTIF for RQ1; we could not
perform the same analysis for the other cases as such manual
analysis would take too long.

B. Experimental setup

We performed our experiments using a prototype imple-
mentation of the MOTIF and SEMuP pipelines described in
Section III.

For MOTIF, as fuzzer, we selected AFL++ because it is the
fuzzer that performed better in terms of code coverage, accord-
ing to a recent benchmark in the literature [27]; moreover,
along with HonggFuzz [78], it is the fuzzer that maximizes
fault coverage in another recent benchmark [28].

Since the number of live mutants is large for complex CPS,
we assume that an effective setup for mutation testing consists
in relying on distributed services that enable the execution of
a large number of computing nodes in parallel; for example,
we execute our experiments on a grid infrastructure. Although
multiple mutants may be killed by similar test inputs [5], we
do not test live mutants with inputs that have killed other
mutants because we test mutants in parallel. In the future, we
will assess how MOTIF’s effectiveness can be improved by
reusing inputs that have killed mutants.

To account for randomness factors in MOTIF and SEMuP,
we executed each approach ten times for each subject. For
each mutant, we executed both MOTIF and SEMuP for 10,000
seconds, which we determined, in a preliminary study, to be
sufficient for SEMuP to maximize the percentage of killed
mutants. Precisely, for SEMuP we allocate 10,000 seconds to
the symbolic execution process, which means that, after the

timeout, if the mutant has not been killed yet, SEMuP still tries
to generate test inputs using the path conditions traversed so
far, which leads to an execution time for SEMuP that is slightly
higher than MOTIF’s (around 650 seconds more).

MOTIF is available online [79]; also, we provide a repli-
cation package with our open-source subjects and all our
empirical data [80].

C. RQ1 - Fuzzing vs Symbolic Execution

1) Design: We compare fuzzing and symbolic execution
in terms of cost-effectiveness. The effectiveness of an au-
tomated mutation testing tool can be measured in terms of
the proportion of live mutants killed. Its cost depends on the
time required to kill the mutants; indeed, lengthy test data
generation may delay the testing process and increase the
usage of computing resources. Cost is also driven by the time
required to manually inspect test outputs; however, MOTIF
and SEMuP should require the same manual inspection time
because they invoke the same functions under test and print out
the same output values. Therefore, regarding cost, we focus on
execution time and thus compare cost-effectiveness in terms
of live mutants killed for different time budgets.

To address RQ1, we could not consider MLFS because
it works mainly with floating point arguments, which are
not supported by KLEE. An old version of KLEE addresses
floating point variables but it is not integrated into SEMu.
We therefore focus on LIBU and ASN1lib; however, for LIBU
we considered only four out of 27 source files, because all
the other source files included I/O operations, which are not
supported by KLEE/SEMu, or cannot be compiled into LLVM
bitcode. This leads to 1,347 live mutants for ASN1lib and 153
for LIBU.

2) Results: Figure 3 depicts the percentage of live mutants
killed by MOTIF and SEMuP for LIBU (3a) and ASN1lib
(3b), respectively. Each plot depicts the percentage of mutants
killed after each second, for each run. Separate curves are
plotted to visualize dispersion across the ten runs. The vertical
dashed line shows the 10,000 seconds timeout when, for
ASN1lib, which includes paths with several nested conditions,
we observe a rapid increase in the number of mutants killed
by SEMuP. At that point, SEMuP stops exploring paths and
generates inputs that satisfy the current path condition, which,
sometimes, is sufficient to identify inputs that kill mutants.

The plots show that MOTIF outperforms SEMuP. After
10,000 seconds, MOTIF kills between 111 (72.55%) and 115
(75.16%) mutants for LIBU (avg. is 112.9, 73.79%) and be-
tween 1,153 (85.60%) and 1,167 (86.64%) for ASN1lib (avg. is
1,159.5, 86.08%). In contrast, SEMuP kills 41 (26.80%) to 42
(27.45%) mutants for LIBU (avg. is 41.2, 26.93%) and 1,017
(75.50%) to 1,018 (75.58%) for ASN1lib (avg. is 1,017.8,
75.56%). On average, across the ten runs, MOTIF kills a
percentage of mutants that is 46.86 percentage points (pp)
and 10.52 pp higher than SEMuP’s, for LIBU and ASN1lib,
respectively.
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Fig. 3: Percentage of live mutants killed by MOTIF and SEMuP

The difference between MOTIF and SEMuP is significant
at every timestamp, based on Fisher test 3 [81] (α < 0.01).
For example, after one minute, MOTIF kills, on average,
101.3 (LIBU) and 976.2 (ASN1lib) mutants, while SEMuP kills
29 (LIBU) and 924.6 (ASN1lib) mutants. For LIBU, MOTIF
quickly reaches a near plateau because of LIBU’s simple
control logic.

Though MOTIF outperforms SEMuP, they show some de-
gree of complementarity, which suggests that future work
should integrate hybrid fuzzers in MOTIF (see Section II-B,
including the limited applicability of existing hybrid fuzzers).
If we consider the best run of each approach, in the case of
ASN1lib, MOTIF kills 252 (18.70%) mutants not killed by
SEMuP, while SEMuP kills 103 (7.65%) mutants not killed
by MOTIF. In the case of LIBU, MOTIF kills 74 (48.36%)
mutants not killed by SEMuP, while SEMuP kills 1 (0.65%)
mutant not killed by MOTIF. We manually inspected some
of the mutants and noticed that SEMuP is sometimes better at
generating inputs that satisfy narrow, simple constraints. How-
ever, such a characteristic is more useful for ASN1lib, which
mainly performs boundary checks for nested data structures,
rather than the utility library. On the other hand, MOTIF is
better when SEMuP fails to solve complex constraints. For
example, for LIBU, SEMuP could not kill 52 mutants affecting
a conditional statement with 24 bitwise operations, 44 mutants
affecting a conditional statement with 13 conditions expressed
using inequalities, and 5 mutants affecting the size of the
buffer used in snprintf statements. Finally, MOTIF enabled
the discovery of four bugs in LIBU that were confirmed by
developers; SEMuP discovered three of them too.

D. RQ2 - Fuzzing effectiveness

1) Design: The mutants considered for RQ2 are the ones
that cannot be tested with SEMuP because of limitations
of symbolic execution, which appear to be prevalent in the
context of CPS. Recall that such software often cannot be
compiled with LLVM, include I/O operations, and rely on
floating point variables. To determine if fuzzing is effective

3We compare the proportion of mutants killed by the two approaches across
the ten experiments, which gives us high-statistical power given the large
number of mutants.
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Fig. 4: RQ2 results with MLFS and LIBU.

at compensating for the limitations of symbolic execution,
we applied MOTIF to all the mutants of MLFS (3,891) and
a subset of the mutants derived from the LIBU functions
excluded for RQ1 (290). Precisely, for LIBU, we selected all
the mutants for which we can derive a complete fuzzing driver
automatically (i.e., eight functions that can be tested without
executing setup operations, 94 mutants) and a random subset
of the other functions (32 functions, 196 mutants).

As in RQ1, we discuss cost-effectiveness to determine if
fuzzing can effectively overcome the limitations of symbolic
execution.

2) Results: Figure 4 shows the percentage of live mutants
killed by MOTIF for MLFS and LIBU.

In the case of MLFS, after 10,000 seconds, MOTIF kills on
average 1,399.4 (35.97%) mutants (min 1,391, max 1,408).
The proportion of killed mutants is lower than for RQ1
because of, most probably, the mathematical nature of MLFS,
resulting in mutants being killed only by inputs from a very
small part of the input domain.

For LIBU, after 10,000 seconds, MOTIF kills, on average,
120 (41.38%) mutants (min 118, max 122). Such percentage
of killed mutants is again lower than for RQ1 because some
of the mutants can be killed only with inputs belonging to a
narrow portion of a large input domain (e.g., an input string
that matches a string stored in a global variable).

As for RQ1, for both MLFS and LIBU, after one minute,
MOTIF kills a large proportion of the mutants killed after
10,000 seconds. On average, after one minute, MOTIF kills



63.39% (i.e., 22.80%/35.97%) of all the mutants killed for
MLFS and 88.26% (36.52%/41.38%) of all the LIBU mutants
killed. Our results show that MOTIF can be practically useful
even when the budget available for mutation testing is limited.

For LIBU, the number of mutants killed by MOTIF reaches
a plateau after 1,500 seconds (25 minutes). For MLFS, the
number of killed mutants keeps increasing over time, thus
suggesting that a large test budget may help MOTIF iden-
tify inputs that kill mutants when they belong to a narrow
subdomain of the input space.

E. RQ3 - Seeding effectiveness

1) Design: To discuss how MOTIF seeds contribute to
mutation testing results, we focus on the proportion of mutants
killed with seed inputs in the experiments performed to address
RQ1 and RQ2.

2) Results: In RQ1 experiments, for LIBU and ASN1lib,
one mutant (less than 1% of the mutants killed on average
in 10,000 seconds) and 280 (24.15%) mutants are killed by
seeds, respectively. In RQ2 experiments, seeds kill 76 MLFS
mutants (5.43%) and 26 LIBU mutants (21.66%).

The percentage of mutants killed by seed inputs largely
depends on the nature of the functions under test. For MLFS
and the LIBU functions considered for RQ1, such percentage is
low because they mainly alter mathematical operations whose
mutants are killed with inputs satisfying complex constraints.
For RQ2, the proportion of LIBU mutants killed is higher be-
cause several mutants alter conditions verifying the correctness
of input strings; the seed strings generated by MOTIF include
characters (e.g., spaces) that are targeted by such correctness
controls, thus killing the mutants. Seed inputs do not introduce
bias in RQ1 results since SEMuP kills most of the mutants
killed by seed inputs (267/280 for ASN1lib and 1/1 for LIBU).

Concluding, although the selected seed inputs help kill
mutants, the contribution of the fuzzing process is significant
with, at the very minimum (RQ2-ASN1lib), 75.85% (i.e.,
100%−24.15%) of the killed mutants being killed by fuzzing.

F. Threats to validity

To address threats to internal validity, we manually verified
that MOTIF and SEMuP correctly execute and, further, we
manually inspected a large subset of the generated test cases
and all the mutants killed by MOTIF but not SEMuP. Further,
our false positive driver ensures that MOTIF results are not
affected by the presence of global variables or, more gener-
ally, non-determinism. Although we do not reset global state
variables in fuzzing drivers, note that across all experiment
runs, out of 27,918 mutants reported as killed by the fuzzing
driver, only 123 were false positives (0.4%), thus showing
that non-determinism does not undermine the applicability of
MOTIF.

Though our results may depend on the specific fuzzer used
in our experiments, AFL++ is one of the best performing
grey-box fuzzers according to recent benchmarks (see Sec-
tion IV-B). Further, though in Section II-A we clarified the
technical reasons for not applying hybrid fuzzers, they could

be considered in future work if the applicability of their
underlying technology (e.g., LLVM) improves.

To address generalizability issues, we selected diverse soft-
ware subjects that are installed and running on space CPS,
including satellites currently in orbit: a mathematical library,
a utility library, and a data serialization component. Since they
implement a diverse set of features (mathematical operations,
serialization, string, and time utilities), they strengthen the
generalizability of our results. Further, these types of software
components are typical in many CPS systems including avion-
ics, robotics, and automotive, thus suggesting the proposed
approach may be useful in many sectors other than space.

V. CONCLUSION

We propose MOTIF, an approach that leverages fuzzing
to automatically generate test data for mutation testing of
embedded software deployed in cyber-physical systems (CPS).
It aims to overcome the limitations of SOTA approaches,
which rely on symbolic execution and cannot easily be applied
in many contexts, especially CPS ones.

MOTIF is implemented through a pipeline that generates a
test driver to process the input data generated by the fuzzer,
provides appropriate chunks of such input data to the original
and mutated versions of a function under test, and determines
when the outputs generated by the two functions differ (i.e., the
mutant is killed). By monitoring the coverage achieved when
executing the original and mutated functions, the fuzzer identi-
fies inputs leading to different behaviors across these functions
and, consequently, is driven towards the identification of inputs
that kill the mutant.

We performed an empirical evaluation with embedded soft-
ware deployed on satellites currently in orbit. To compare
MOTIF with a SOTA approach based on symbolic execution,
we created an alternative pipeline that leverages symbolic ex-
ecution instead of fuzzing. Our results show that the approach
based on fuzzing outperforms the one based on symbolic
execution, for two software subjects where symbolic execution
is applicable: it kills 73.79% and 86.08% of live mutants
in contrast to 26.93% and 75.56% for symbolic execution,
respectively. Further, it also detects a large number of mutants
(35.97% and 41.38%) for subjects where symbolic execution
is infeasible. Our results therefore clearly show that fuzzing
should be adopted as the preferred method to use to perform
mutation testing. Further, this motivates the development of
fuzzing tools dedicated to mutation testing which can, for
example, prioritize inputs in the fuzzer queue based on the
difference in coverage between the original and the mutated
function.
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