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1 Introduction

Federated Learning is a relatively novel concept in the field of distributed machine learning, de-
veloped to allow the joint training of a common machine learning model by many participants
without revealing their respective training data to each other. This is generally accomplished by
having each participant separately train a local machine learning model, using only the dataset
known to itself, then sharing the results of the training process with others in the form of model
parameters or model outputs. These results are then utilised to obtain a global model that implic-
itly incorporates each participant’s local information.
Since its inception in 2016 [1], great strides have been made in the field; however, much of the
related research has been limited to the problem known as horizontal federated learning (HFL),
where all participants possess samples from the same feature space. Significantly less research exists
on the more complex scenario where participants may observe different features and train models
with different architectures [2]. This type of problem is generally referred to as vertical federated
learning (VFL).
Furthermore, application of such research has generally been focused on scenarios where privacy
of data is the driving cause for keeping participants’ datasets separate. In contrast, our research is
targeted towards a scenario where the available communication channels between participants are
severely constrained, thereby limiting the amount of information that can be shared. Federated
learning is a natural solution approach for such application scenarios, but this requires somewhat
different considerations than the privacy-focused scenario, e.g. with respect to robustness. A highly
relevant example for such scenarios is that of autonomous satellite swarms, consisting of multiple
miniature satellites working towards a common goal, with communication capacity limited by a
strict energy budget [4]. An effective joint learning strategy in such a scenario would represent a
significant leap forward on the path towards realising truly autonomous satellite swarms.

In some previous work [3], we introduced the Joint-embedding Vertical Federated Learning
(JoVe-FL) framework as a first step towards developing a VFL scheme tailored to such applications.
This article introduces a novel extension to JoVe-FL which consists in the introduction of separate
training phases for the local embedding and prediction models, intended to encourage the learning
of a joint embedding space while further reducing the amount of computation required.

2 The JoVe-FL framework

JoVe-FL is based on the idea of transforming the underlying vertical federated learning problem
into a horizontal one. The framework is designed such that each client maintains a complete local
model, allowing independent functioning of all participants outside of the joint training process,
with the server acting in an auxiliary role only to facilitate model aggregation.

Each client Ci maintains a local model consisting of two parts: the embedding model ξi and
the prediction model θi (see Figure 1 (a)). These are concatenated in the given order to obtain
the complete local model ξi ◦ θi. Each individual embedding model may take any type of input,
independent of the models of other clients. The only requirement w.r.t. the architecture is that all
participating clients’ embedding models must return an output vector of the same dimensions. In
contrast, the architecture of prediction models is uniform across all clients. The purpose of this
setup is to train all clients to map their differing feature spaces to a common embedding space by
training the individual embedding models; on this embedding space the prediction models can be
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trained in classical HFL fashion.
We have demonstrated in preliminary experiments that participants in this framework are indeed
capable of learning such an embedding, and that doing so enables them to share information
with each other, thus improving their performance compared to the no-communication setting.
However, these experiments still showed room for improvement when comparing the results of the
federated models to those trained on the centralised dataset; hence we experimentally consider
possible modifications of the framework to improve its performance.

Fig. 1: (a) Architecture of the JoVe-FL framework, (b) Process with separate model training phases.

Embedding-prediction model training phases. The local model training is split into two
phases, so that the prediction model and the embedding model are trained entirely separately - this
process is also illustrated in Figure 1 (b). After the global aggregation phase (step 3 in Figure 1
(b)), once the local prediction model has been updated (step 4 in the figure), the client fixes
the parameters of its local prediction model and trains only the embedding model for a certain
number of steps (see step 1 in the figure). Then, the local prediction model is held fixed for a
certain duration while the embedding model is trained (step 1 in the figure). Then these states are
reversed: the parameters of the embedding model are frozen while the prediction model is trained
(step 2 in the figure). The duration of each of the two training phases is varied across experiments.

3 Experiments

Experiments were carried out on the CIFAR10 dataset for image classification [5], with a vertically
distributed dataset created by assigning different partial slices of each image to different clients. For
each experimental configuration, we compare the performances of (1) the federated model under
consideration, (2) the original federated model without separation of training phases, and (3) the
same model without communication between clients as a lower bound. The models in (3) were
trained with the same local scheme as the ones in (2), without the separation of training phases
that is present in the modified federated learning scheme, as this is not expected to benefit the
performance of non-federated clients.
Each experiment is repeated five times and is stopped upon convergence, i.e. once the gradient of the
test loss falls below a certain threshold. The results of one such experiment are presented in Figure 2.
For this experiment, the final top-1 accuracies achieved by the two clients were (73.5, 84.4) and
(74.2, 84.7) for the modified and original scheme, respectively. Both present a clear improvement
over the accuracies of (71.4, 83.1) that were obtained without cooperation between clients. We
observe a similar pattern across all but one experiment, showing that the performance of the
modified JoVe-FL scheme outperforms the non-federated training. Indeed, in all experiments the
final accuracy results accomplished by the modified learning scheme with lower computational
effort nearly match those of the original version.

4 Conclusion

This article presented a possible modification of the JoVe-FL framework, designed to reduce the
computational cost of the local training performed by participating clients. Experiments were
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Fig. 2: Results for two clients with differently-sized datasets performing (1) federated learning with
separate training phases, (2) federated learning without separate training phases, and (3) model
training without communication.

carried out on the CIFAR10 image classification dataset, separated into partial views to obtain
a vertical distribution. We conclude that the modified version of the framework is capable of
producing results similar to the ones obtained by the original JoVe-FL scheme, while significantly
reducing the amount of computation required in the local training phase.
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