Evaluating the Robustness of Test Selection
Methods for Deep Neural Networks

Qiang Hu*, Yuejun Guof, Xiaofei Xie*, Maxime Cordy*, Wei Ma$, Mike Papadakis* and Yves Le Traon*
*University of Luxembourg, Luxembourg
TLuxembourg Institute of Science and Technology, Luxembourg
iSingapore Management University, Singapore
§Nanyang Technological University, Singapore

Abstract—Testing deep learning-based systems is crucial but
challenging due to the required time and labor for labeling
collected raw data. To alleviate the labeling effort, multiple test
selection methods have been proposed where only a subset of test
data needs to be labeled while satisfying testing requirements.
However, we observe that such methods with reported promising
results are only evaluated under simple scenarios, e.g., testing
on original test data. This brings a question to us: are they
always reliable? In this paper, we explore when and to what
extent test selection methods fail for testing. Specifically, first,
we identify potential pitfalls of 11 selection methods from top-
tier venues based on their construction. Second, we conduct a
study on five datasets with two model architectures per dataset to
empirically confirm the existence of these pitfalls. Furthermore,
we demonstrate how pitfalls can break the reliability of these
methods. Concretely, methods for fault detection suffer from
test data that are: 1) correctly classified but uncertain, or 2)
misclassified but confident. Remarkably, the test relative coverage
achieved by such methods drops by up to 86.85%. On the other
hand, methods for performance estimation are sensitive to the
choice of intermediate-layer output. The effectiveness of such
methods can be even worse than random selection when using
an inappropriate layer.

I. INTRODUCTION

Deep learning (DL) has been a critical technique in our daily
life and multiple DL-based systems have been deployed, for
example, face recognition systems [1], chatbots [2], and self-
driving cars [3]. Similar to conventional software systems that
need to be systematically tested, testing DL-based systems is
crucial to ensure that they meet the performance expectation
and user requirements. Generally, the key component of DL-
based systems is the deep neural network (DNN). Thus, the
straightforward way of testing such systems is to evaluate their
embedded pre-trained DNNSs.

In a nutshell, DNN follows a data-driven paradigm and
learns the inference logic from the training data, then makes
decisions for new data. High-quality training data are im-
portant for preparing DNNs, and diverse test data with their
corresponding labels are necessary for testing the performance
of pre-trained DNNs. However, labeled test data are difficult
to obtain due to the heavy labeling process, intensive human
effort, and required domain knowledge. How to efficiently and
fully test DNNs with fewer labeled test data is a challenging
problem and becomes a hot research direction recently.

One promising solution to tackle this labeling problem is
test selection for deep learning [4] — select and only label a

subset of data from the entire test set. Multiple test selection
methods have been proposed mainly by the software engi-
neering community. Those methods can be roughly divided
into two categories, 1) test selection for quick fault detec-
tion, and 2) test selection for model performance estimation.
For simplicity, we call these two methods fault detection
method and performance estimation method. Fault detection
methods tend to identify the test data that have a higher
probability to be misclassified by the model as faults. This kind
of data can be further used for repairing the model (mainly by
retraining) to enhance its performance. Performance estimation
methods try to select a small size of data that can represent the
entire test set. The model performance on the entire test set
can be then approximated by using this subset. Here, robust
means the capability of test selection methods to preserve their
effectiveness on unusual (often, altered) data.

Similar to DL targeted test generation techniques whose
reliability needs to be carefully studied [5] before real usage.
The reliability of test selection methods also requires sys-
tematic exploration to check when they could fail, and more
importantly, how harmful the failure could bring to the users.
Otherwise, under the risky test selection methods, the testing
requirements might not be satisfied and the labeling budget
will be wasted. For example, fault detection methods rely on
the assumption — there is a strong correlation between the
probability of misclassification and the uncertainty of the data.
They believe the data with high uncertainty (i.e., the model
has low confidence in the data) should be misclassified by the
model. Here, uncertainty is the proneness of input data to be
mishandled by a model, which can be measured in different
ways, e.g., entropy of the output probabilities. Confidence
refers to how much the model believes it has made the correct
decision. In classification models, this is the class probability
as output by the softmax layer. However, this assumption leads
the selection process to ignore faults with low uncertainty.
Thus, when facing a large number of low uncertain data, the
effectiveness of fault detection methods may degrade a lot. We
conjecture that existing test selection methods are not robust.
It is necessary to know what are their limitations for reliable
usage.

In this paper, we study the above problems and focus on ex-
ploring when and to what extent the test selection methods fail.
Concretely, first, we collect and make a short survey of existing



fault detection methods and performance estimation methods.
In total, there are eight methods for fault detection and
three methods for performance estimation (including random
selection). Second, we analyze the potential pitfalls that could
make these methods fail based on their design strategies. After
that, we conduct an empirical study to reveal whether these
issues exist and if yes, how harmful they are. Here, we design
test generation methods to trigger these issues. Finally, based
on our findings, we provide guidelines on how to robustly
evaluate test selection methods when developing new ones.
In total, our study covers five widely studied datasets (e.g.,
Traffic-sign, CIFAR100) with two popular model architectures
(e.g., ResNet, DenseNet) for each dataset. Based on our study,
we found:

o All fault detection methods are fooled by two types of test
data, 1) correctly classified but with high uncertainty data,
and 2) wrongly classified but with low uncertainty data. On
average, the effectiveness of test selection methods drops
52.49% and 39.80% when facing these two types of test
data, respectively.

o These two types of test data have a huge negative impact
on the selection-guided model repair (i.e. retraining). When
facing them, even random selection can achieve better repair
results than well-designed methods like PRIMA, TestRank,
and DSA. Specifically, 55 out of 80 repaired models have
accuracy degradation when dealing with correctly classified
but uncertain data.

o The effectiveness of existing performance estimation meth-
ods highly depends on the choice of output from the
intermediate layer. They can only outperform the random
selection with handpicked layers.

To summarize, the main contributions of this paper are:

1) This is the first work that explores the limitations of test
selection methods for DNNS.

2) We reveal that existing 1) fault detection methods suffer
from the correctly (wrongly) classified but uncertain (with
high confidence) test data, and 2) performance estimation
methods are sensitive to the choice of intermediate layers.

II. BACKGROUND AND RELATED WORK
A. Deep Learning Testing

Roughly speaking, the objectives of testing DNNs mainly lie
in two parts, 1) testing the natural robustness of DNNs [6]-
[8] for ensuring their performance facing data with diverse
distributions (including the same distribution as training data),
and 2) testing the adversarial robustness of DNNs [9], [10]
for potential security issues (e.g., adversarial attack). For the
natural robustness testing, developers need to prepare as many
as possible test data that follow different data distributions,
and then assess DNN models accordingly. For adversarial
robustness testing, generating adversarial examples and using
them to test the models is a common way. Utilizing adversarial
robustness certification techniques [11], [12] to strictly verify
the model robustness is another way. For both types of DNN
testing, labeled test data are necessarily needed. In this paper,

we focus on the first objective of DNN testing and target the
test data selection for efficient deep learning testing.

B. Test Selection for DNNs

Test selection methods are proposed for efficiently testing
DNNs without heavy labeling effort. There are two types of
test selection methods, the first one tries to select data that
are most likely misclassified by the model [4], [13]-[18], and
the second selects data [19], [20] to approximate the model
performance on the entire test set. We introduce methods from
each type in Section III. In this paper, instead of proposing
new test selection methods, we reveal and study when existing
test selection methods could fail.

C. Empirical study on Deep Learning Testing

Similar to this paper, many works [21] conducted empirical
studies to investigate the usefulness of existing deep learning
testing techniques. Yan et al. [22] and Dong et al. [23]
studied the correlations between the neural coverage [24],
[25] criteria (a type of deep learning testing criteria) and
the model quality (mainly focus on the adversarial robustness
of models). Jahangirova et al. [26] empirically evaluated the
effectiveness of mutation testing for DNNs by using different
mutation operators. Hu et al. [27] specifically studied how the
test selection methods guided model retraining performance
when facing data with different types of distribution shifts.
Two works [4], [28] studied the effectiveness of fault detection
target test selection methods, and they found that simple
methods perform well in terms of fault detection and model
retraining. Different from existing studies, our work focuses on
two types of test selection methods and does not only consider
simple test data. We build more complex testing scenarios
to challenge the test selection methods and reveal their weak
point.

III. TEST SELECTION METHODS ANALYSIS

In total, We collect 10 representative test selection methods
plus the random selection based on existing works [4], [28]
and our review. Table I presents a brief description of methods,
data features used for conducting selection, target tasks, and
the venue where a method comes from. According to the
purpose of use, existing test selection methods can be classified
into two types. The first one is test selection for fault detection
(fault detection method), and the second is test selection
for model performance estimation (performance estimation
method). In this work, we focus on the classification task since
most of the methods (7 out of 10) are specifically designed
for this task.

Let f : X — ) be a trained DNN model that maps input
data X into the target space ). x € X and y denote a given test
sample and its true label, respectively. The model f assigns
the label 3 to x based on its learned knowledge from the
training set. Let p,, (x) be the likelihood of z belonging to
class y; € Y, y = y; if py, is the maximum over all possible
classes in ).



TABLE I
SUMMARY OF TEST SELECTION METHODS.

Type Method Name Feature Used Target Task  Venue
Distance-based surprise adequacy (DSA) [13] Intermediate output gl:gf;ggon ICSE 2019
DeepGini [14] Final output Classification ~ ISSTA 2020
Multiple-boundary clustering and prioritization (MCP) [15]  Final output Classification ~ ASE 2020

Fault detection Monte Carlo dropout uncertainty (MC) [4] Final output Classification ~ TOSEM
Maximum probability (MaxP) [4] Final output Classification =~ TOSEM

TestRank [16]

Logits output

+ graph model NeurIPS 2021

Classification

PRIMA [17] Final o_utput Classmc_atlon ICSE 2021
+ ranking model Regression
Adaptive test selection (ATS) [18] Final output Classification ~ ICSE 2022
. . Cross entropy-based sampling (CES) [19] Intermediate output  Classification =~ ESEC/EFSE 2019
Performance estimation Intermediate output  Classification
Practical accuracy estimation (PACE) [20] . P oo TOSEM
+ clustering model ~ Regression

A. Fault Detection Methods

In this paper, fault refers to perceptible discordance between
the model decision and the expected outcome. In classification
tasks that we study in this work, a fault is revealed by an
incorrect label. Given a set of unlabeled test data and a DNN
model, fault detection methods identify test data (faults) that
are likely to be wrongly predicted by the model. Generally,
compared to the correctly predicted data, people are more
interested in fault data that are useful to analyze the weak/blind
point of the DNN model and further enhance the model. In
practice, the found faults are usually utilized as a patch to
repair (via model retraining) DNN models.

Distance-based surprise adequacy (DSA) [13] is the very
first method proposed to select test data. The main idea of
DSA is to measure the difference in activation traces between
a given test sample and the training set.

_ dist,
- distb

DSA (2) (1)
where dist,, is the Euclidean distance between x and its closest
neighbor from the same class 3§ and dist,, refers to the neighbor
from a different class. A sample with a high difference can
better reveal faults.

DeepGini [14] quantifies the uncertainty of x for f:

Gini(z) =1- Y py, ()

yi €Y

2

Test samples with high uncertainties are considered as insuf-
ficiently learned by f and selected to detect faults.
Multiple-boundary  clustering and prioritization
MCP) [15] first performs the so-called boundary area
clustering that divides data into different boundary areas
(confusion areas of every two classes). Based on the
prediction, MCP assigns a priority:
by
Dy
where y, is the predicted second most likely class. Next,

from each boundary area, MCP evenly selects data with the
minimum priority.

MCP (x) =

3)

Monte Carlo dropout uncertainty (MC) [4] takes advan-
tage of the Monte Carlo dropout technique f to obtain multiple
predictions and then calculate the uncertainty score of the data.
There are several variants of MC, we consider the famous
one [29], [30] in which the uncertainty is calculated by:

_ i1 9 = mode{g;,1<j < N}} |
N

MC(z) =1 4
where N is the number of applying the dropout to obtain pre-
dictions. mode (.) is the function of identifying the predicted
class that appears most often.

Maximum probability (MaxP) [4] considers pj (x) as the
confidence level f is given x. Accordingly, data with low
confidence are supposed to be useful to uncover faults.

TestRank [16] is a learning-based method that contains
three main steps. First, it extracts two types of features from
the input data, 1) the output from the logits layer as intrinsic
attributes, 2) the graph information that contains the distance
of this data (cosine distance) to others, and the label of
this data. Then, a GNN model is built to learn the graph
information and predict the learned contextual attributes of the
data. Finally, the contextual attributes and intrinsic attributes
are combined and fed to a simple binary classification model
to learn the failure-revealing capability.

PRIMA [17] is another learning-based method that first
generates mutants from both input data and models. Then,
it extracts features of each input data from those mutants,
e.g., the number of mutants that have different predicted labels
from the original model on this data. Finally, PRIMA trains
a ranking model (XGBoost ranking algorithm) based on the
features of correctly and wrongly predicted data to identify if
the unlabeled data is a fault.

Adaptive test selection (ATS) [18] is a method that totally
depends on the final output probability of the data. Roughly
speaking, it first projects the output vectors (built by the top-3
maximum vectors) to a plane and then calculates the coverage
of each data on the plane. After that, the difference between
the coverage of a single data and the whole test set is utilized
as an identifier to distinguish the faults and normal test data.



B. Performance Estimation Methods

Given a set of unlabeled test data and a DNN model,
performance estimation methods tend to select a representative
subset from the entire test data. The model performance on this
subset should be close to that on the entire test data. In this
way, developers can quickly observe how the model performs
on unseen data and then take the next step. For example, if
the performance is lower than the exception, developers need
to repair the model.

Cross Entropy-based Sampling (CES) [19] selects a
subset of test data that have the minimum cross entropy with
the entire set.

Practical accuracy estimation (PACE) [20] first clusters
data into groups based on the hierarchical density-based spatial
clustering of applications with noise algorithm. Next, from
each group, PACE proportionally selects data to represent the
entire group.

Note that, prediction outputs from intermediate layers of
DNNs are required to calculate the cross entropy in CES and
to conduct clustering in PACE.

C. Pitfalls of Test Selection Methods

We conjecture that there are three types of pitfalls that
hinder the success of test selection methods.

Blind in high uncertainty but correctly predicted data.
All uncertainty-based fault detection methods (DeepGini,
MCP, MC, MaxP, PRIMA, and ATS) assume that data with
high uncertainty are more likely to be misclassified by the
model. However, this assumption only stands when the model
is well-trained and has low bias. DSA and TestRank do not rely
on this assumption. They utilize the difference between cor-
rectly predicted data and wrongly predicted data to determine
the new faults. However, in the original test data, there are
not many high-uncertainty but correctly predicted faults which
makes the learned difference can not be generalized to this type
of fault. We conjecture that all the fault detection methods will
identify the high uncertainty but correctly predicted data as
faults. And in this paper, we call this type of data as Typel
data. The methods involved are DSA, DeepGini, MCP, MC,
MaxP, TestRank, PRIMA, and ATS.

Blind in low uncertainty but wrongly predicted data.
The same reason as the last point, we conjecture that all the
fault detection methods cannot detect the low uncertainty but
wrongly predicted fault data, and we call this type of data as
Type2 data. The methods involved are DSA, DeepGini, MCP,
MC, MaxP, TestRank, PRIMA, and ATS.

Susceptible to layer selection. We found that all the
existing model performance estimation methods rely on the
intermediate output of the model. However, a DNN model
normally consists of multiple hidden layers. We doubt that the
effectiveness of such test selection methods is highly impacted
by the choice of outputs of hidden layers, and it is difficult
to make a clear conclusion about which layer is better across
different datasets and models. The methods involved are DSA,
CES, and PACE.

IV. OVERVIEW

In this section, we design a study to investigate if the
potential non-robust features exist. Although a perfect test
selection method may not exist, people should know what
they need to pay attention to when proposing, evaluating, and
applying test selection methods.

A. Study Design

Figure 1 illustrates the overview workflow of our empirical
study. Overall, our plan is to explore and answer the following
five research questions:

RQ1: How do fault detection methods compare to each other?
RQ2: Can existing fault detection methods bypass uncertain
but correctly classified data?

RQ3: Can fault detection methods identify high confidence
but wrongly classified faults?

RQ4: How do uncertain (high confidence) but correctly
(wrongly) classified data affect test selection-based model
repair?

RQS: How does the choice of intermediate layers affect
performance estimation methods?

Before studying the problems listed in Sec III-C, we first in-
vestigate the common concern of using test selection methods
— do we have the best choice among the massive number of
methods? To do this, we have a quick look at all fault detection
methods and check, when we only consider the original
test data, if there is a recommended method that performs
consistently better than others, or if there are methods that
have big performance variances across different datasets that
are not recommended to use.

Then, we go deeper to study the robustness of test selection
methods. For fault detection, as discussed in Section III-C,
there are two types of test data that are difficult for existing
test selection methods to handle, Typel: high uncertainty
but correctly predicted data, and Type2: low uncertainty but
wrongly predicted data. The first step of our study is to
generate these two types of test data. We follow the previous
work [31] and design a genetic algorithm (GA) based test
generation technique. The details will be introduced in the next
section. After the data preparation, we inject the generated test
data into the original test data and obtain three groups of test
data, 1) only original test data, 2) Typel test data + original
test data, and 3) Type2 test data + original test data. Then, we
perform test selection on these three groups of test data and
analyze the effectiveness of each method. In addition, since
the final target of fault detection is to fix or repair the pre-
trained model to make it bypass these faults, we conduct a
study to utilize the selected test data to retrain (the common
model repair approach) the model. Specifically, we first evenly
split the three groups of test data into two parts, the candidate
set and the new test set. Then, we perform test selection on
the candidate set and combine the selected data with training
data to retain the model with a few epochs. After that, we
test the retrained model using the new test set and analyze the
effectiveness of test selection methods when facing Typel and
Type2 test data in terms of model repair.



Data Preparation

=

Model Prediction and Test selection

Result Analysis

7 RQ1
Original Single layer’s output idata
test set Fault detection r :
___________________ methods " !ldentifyTypeldata | RQ2
@ DSA, DeepGini, MCP, MC, . 3
+ MaxP, TestRank, PRIMA, E Identify Type 2 data { RQ3
— ATS
Test Typel Original
generation |_lestset _ _ftestset | ! Repair model i RQ4
____________________ Multiple layers’ output L
Performance Approximate model
@ + @ estimation methods performance RS
Type2 Original CES, PACE

test set test set

Fig. 1. Overview of the study design.

On the other hand, for the test selection-based model per-
formance estimation, we choose outputs from different hidden
layers gained by using the original test data and then fed them
to the test selection methods. We analyze the difference in the
estimated model performance to check the impact of the choice
of the intermediate outputs.

B. Test Data Preparation

Test generation is a common practice to prepare test data
when testing DNNs. In which, genetic algorithm [31], [32]
based test generation technique is effective in generating
diverse test data. To prepare the two types of test data,
we design a very simple and flexible (easy to extend) GA-
based test generation technique, as presented in Algorithm 1.
Mention that, our purpose is to reveal the limitations of test
selection methods instead of attacking them. Other methods
like modified white or black-box adversarial attacks can also
generate such kinds of test data. Investigation of them is left
as future work.

Here, we explain the flexible components in the generation
process that control whether to generate Typel or Type2 test
data. We use the notations defined in Section III. Given a DNN
model f, a test data x and its true label y, py (x) represents
the probability of x belonging to the predicted class 7 by f.
ys 1s the predicted second most likely class.

Seed preparation. We follow a previous work [33] to
randomly select seed data from each class of the datasets to
increase the diversity of the seeds.

Condition controls if Typel or Type2 test data are success-
fully generated. For Typel test data, the generated data should
fit all these three conditions: 1) § = v, 2) p; (x) < T4, and 3)
Py () —py, (x) < Ts. For Type2 test data, the generated data
should fit all these two conditions: 1) ¥ # y, 2) py (x) > T.
Here, 77 and T5 are two predefined thresholds (see Table III).
Fitness function controls the evolution direction during test
generation. For Typel data generation, the fitness function
is the combination of — (pg (x) — py, (x)) and —pg (x). For
Type2, the fitness function is p,, () if the data are correctly
classified, otherwise py (x).

Crossover follows the work [31] and utilizes the tournament
selection strategy to select two tournaments, and then chooses

Algorithm 1: GA-based test generation

: seed: seed data
pop_size: size of population
max_iteration: maximum number of iteration
tour_size: size of tour data
Output : X_generated: generated test data
1 pop = Population_Initialization(seed, pop_size)
2 count_num =0
3 while count_num < mazx_iteration do
4 for X_generated in pop do

Input

5 if X_generated fits Condition then
6 | return X_generated;

7 end

8 end

9 new_pop = ||

10 fitness = Fitness_Calculation()

11 individual = Select_Best(pop, fitness)

12 pop = pop \ individual
13 new_pop.update(individual)
14 pop = Crossover(pop, tour_size)

15 pop = Mutation(pop)
16 new_pop.update(pop)
17 pop = mew_pop

18 end

19 X_generated = pop|0]

20 return X_generated,

one data with the biggest fitness score from each tournament
respectively to do randomly pixel changing.

Mutation aims to increase the diversity of the population.
Here, we utilize image transformation techniques to generate
mutants and control the perturbation size to ensure the seman-
tics of the generated image do not change.

C. Experimental Setup

Dataset and model. Table II lists the details of our studied
datasets and models. MNIST [34] and SVHN [35] contain
digital numbers. CIFAR10 [36] is a collection of color images
with 10 categories (e.g., airplane, bird). CIFAR100 [34] is
a more challenging version of CIFAR10 with fine-grained
100 categories (e.g., aquarium fish, flatfish). Traffic-Sign [37]
contains traffic sign images and is commonly used for self-
driving cars. For each dataset, we build two popular models



that are mainly from the LeNet [38], ResNet [39], VGG [40],
and DenseNet [41] families.

TABLE 11
DATASET AND MODEL.

Dataset Class Number  Test Size  Model Test Accuracy (%)
MNIST 10 10000 LNEl ot
SVHN L 9555
CIFARI0 10 10000 KeNet o
Traffic-Sign 43 12630 L S
a0 e Bt

Configurations of test generation. There are some hyper-
parameters in the test generation process. Investigating the best
configuration is not our focus. Instead, we give recommended
configurations used in our study that can already achieve our
purpose. Table III lists the detailed configurations. And for
the image mutation, we employ four image transformation
techniques, image contrast changing, image brightness chang-
ing, blur noise adding, and Gaussian noise adding [6]. It is
flexible and easy to extend with more mutation operators. To
preserve the semantics of the generated data, we follow the
work [42] and limit the maximum L-infinite perturbation size
of the injected noise.

TABLE III
CONFIGURATIONS OF TEST GENERATION.

Typel Type2 perturbation pop max tour

T1 T2 T_1 size size iteration  size
MNIST 05 0.01 0.95 0.5
SVHN, CIFAR10 0.5  0.01 0.95 0.05

Traffic 03 005 095 0.05 200020020
CIFAR100 0.1  0.05 0.5 0.05

Configurations of test selection. For the fault detection,
we set the maximum labeling budget as 10% of the entire
test data, which is a common setting in previous works [15],
[18], [27]. For the performance estimation, we follow previous
works [19], [20] and set the labeling budgets from 50 to 180
in intervals of 10. For the intermediate output selection for the
performance estimation, we chose the last 1, 2, and 3 hidden
layers in our study.

Evaluation methods. To evaluate the effectiveness of fault
detection, we adopt the measurement, Test Relative Coverage
(TRC), from the literature [16].

TRC is defined as:

_ |F_detected|
)= min (|F_X]|, Budgets)
where Budgets is the size of selected data.
Besides, we employ Student’s ¢-test [43] which is a famous
statistical analysis method to analyze the significance of the
impact from the Typel and Type2 data. For model repair,
we use the absolute accuracy difference between the original
model and the repaired model to quantify the effectiveness of
related test selection methods.
Implementation. The main framework uses Tensor-
Flow [44] 2.3.0. The implementation of each test selection

TRC (X 5)

method is modified from the source code provided by the orig-
inal paper to fit our experiment environment. All experiments
run on a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA
Tesla V100 16G SXM2 GPU. We repeat the experiments with
randomness factors five times and report the average results,
e.g., test selection using PRIMA, the model repair process.

V. RESULTS
A. RQI: Performance on Original Test Data

First, for the practi-
cal usage of test selec- 07
tion methods, we need
to know if there is one
that outperforms others
and can be recommended 04
to use. Figure 2 depicts
the test relative cov-
erage of each method. o2
From the results, we can
see the TRC of each
method variant from dif-
ferent datasets and models, which means that when facing new
datasets, it is hard to choose which one we should use. More
specifically, Table IV shows the TRC of each method when the
labeling budget is 10%. From the ranking of each method, we
can draw the same conclusion as before that no method can
always stand out. However, we found two methods, DeepGini
and MaxP, have top-3 TRC scores in all situations. This finding
is similar to the recent study [28] which reveals that simple
methods work better for DL-targeted test selection.

CIFAR10
Traffic
CIFAR100

—e— SVHN
MNIST

»\\\//’*ﬂ

0.6

0.5

TRC

0.3

1 2 3 8 9 10

4 5 6 7
Labeling Budget (%)

Fig. 3. TRC of MCP on different datasets.

TABLE IV
FAULT DETECTION PERFORMANCE OF EACH METHOD WITH LABELING
BUDGET OF 10% — TRC(RANKING).

Random __ DSA
0.1309)  0.82(6)

DeepGini__MCP____MC___ MaxP
092(1)  0.86(3) 0.88(d) 0.92(1)

TestRank
0.17(8)

PRIMA___ATS
0.80(7)  091(3)

MNIST-LeNet1

MNIST-LeNet5 0.129)  096(1)  0953)  091(5) 091(5) 0953)  0308)  0.96(1)  0.82(7)
SVHN-LeNet5 0.139)  047(7)  057(2)  0.525) 0496) 0.58(1)  056(3)  0.42@8)  0.56(3)
SVHN-ResNet20 0.119)  0.69@4)  0732)  0.655) 0.606) 0732  0.508)  0.60(6)  0.79(1)
CIFAR10-ResNet20 0.1209)  0426)  0.54(1)  043(5) 0.54(1) 0.54(1)  0208)  040(7)  0.534)
CIFAR10-VGG16 0.109)  041(7)  0.54(1)  042(6) 0523) 0.532)  0.1608) 0465 0514)
Traffic-LeNetS 0.18(9)  0.535)  0.63(1)  024(7) 0.56@) 0.63(1)  0218)  0535)  0.613)
Traffic-VGG16 0.098)  065(1)  0642)  017(7) 062(4) 0642)  0098)  051(6) 0.61(5)
CIFAR100-ResNet50 0288)  074(3)  079(1)  031(7) 069(5) 0791)  0259)  0.56(6) 0.74(3)
CIFAR100-DenseNet101  0.14(8)  042(5)  0.632)  0.15(7) 0.623) 0.65(1)  0.119)  030(6)  0.58(4)
Average 0.140)  061()  069(2)  047(7) 064 070(1)  025(8)  0556) 0.6703)
Variance 0.00(1)  0.047) 0.02(2) 0.07(9)  0.02(2)  0.02(2) 0.02(2) 0.04(7)  0.02(2)

Interestingly, besides proving the literature findings, we
found that the TRC of MCP has a bigger variance across
different datasets than others. When checking the TRC of MCP
of each dataset, we can see MCP has the same level of perfor-
mance as DeepGini and MaxP (e.g., 0.91 vs. 0.95 vs. 0.95) in
datasets MNIST, SVHN, and CIFAR10. But when checking
the results on Traffic and CIFAR100, the performance of
MCP has a great degradation, and the difference between
MCP, DeepGini, and MaxP becomes not negligible (e.g., 0.15
vs. 0.63 vs. 0.65). The reason for this unstable performance
of MCP is that MCP is highly dependent on the number
of classes of the dataset. MCP first divides data into fine-
grained boundary areas before selecting. For a 10-class dataset
(e.g., MNIST), the number of decision boundary areas is
A%, = 90. However, when the class number increases to



c ) i

T 2 3 4

5 6 7 8 5 10 12 3
Labeling Budget (%)

i 5 & 7 8 5 10 12 3
Labeling Budget (%)

(a) MNIST, LeNet-1 (b) MNIST, LeNet5

7 8 5 10 12 3

5 5 10 1 2 3 2 5 &
Labeling Budget (%)

(d) SVHN, ResNet20

07 0718y R 08
ool NS o6 S S
05 T —— 0.5
~—,
Loa B - £o4
£ E
03 L 03] 4 3 eyt g
. * e gy
02 D - S ssd 02 W —s—2—*
o1fs gt — g 01 e

e R g . i PR

0.9
08 ~

e R

12 3 5 5 10 T 2 3 a4 T 2 3 a4

5 6 7
Labeling Budget (%)

(g) Traffic, LeNet5

P 5 5 10
Labeling Budget (%)

(f) CIFAR10, VGG16

ATS  —— DeepGini MaxP —+— MCP ——

5 6 7
Labeling Budget (%)

(h) Traffic, VGG16

T 2 3 a4

8 9 10 1 2 3 > o b
Labeling Budget (%)

i 5 & 7 8 5 10
Labeling Budget (%)

(i) CIFAR100, ResNet50 (j) CIFAR100,
DenseNet121
Random —— MC PRIMA —— TestRank DSA

Fig. 2. Test Relative Coverage (TRC) of Test Selection Methods on Original and Typel Test Data. Solid lines: original test data, dash lines: Typel test data.

100 (e.g., CIFAR100), the number of boundary areas also
increases to A%), = 9900, which can easily exceed the
labeling budget. In this case, MCP becomes a random-like
selection method. Figure 3, the detailed TRC scores of MCP
on different datasets, also confirm our analysis. MCP performs
much worse on Traffic and CIFAR100 than on others.

Then, we go further and check the efficiency of each
method. Table V presents the executing time of each test
selection method when it ranks all the test data once. It
is reasonable that the time cost increases along with the
increasing complexity of datasets and model architectures.
However, we found that, in the case of (SVHN-LeNet5 vs
Traffic-LeNet5) and (CIFAR10-VGG16 vs Traffic-VGG16),
only ATS and PRIMA have a big difference in the time cost.
PRIMA has complex steps including preparing the mutants of
data and models, and the total time cost is unstable and hard
to analyze. For the ATS, the time cost increases significantly
because 1) it tries to identify the faults from each class one by
one, and 2) when the number of classes increases, the types
of fault pattern (combination of classes) increase non-linearly,
e.g., from A3 to A%y,.

TABLE V
RUNNING TIME (SECONDS) OF FAULT DETECTION TARGET TEST
SELECTION METHODS WHEN RANKING ALL THE TEST DATA ONCE.

Random DSA DeepGini  MCP  MC  MaxP  TestRank PRIMA ATS
MNIST-LeNet1 0.44 10.26 11.50 0.61 L1l 0.45 30.90 185.38 18.92
MNIST-LeNet5 0.48 11.98 12.58 064 120 049 3221 289.33 3.17
SVHN-LeNet5 0.77 12.06 18.57 0.93 1.74 0.79 27.86 286.37 2.06
SVHN-ResNet20 1.56 51.92 39.66 181 3.14 1.53 43.38 2085.41 19.08
CIFAR10-ResNet20 1.59 51.02 40.38 177 335 1.57 54.38 1980.69 31.24
CIFAR10-VGG16 .17 131.21 27.06 1.31 2.54 1.19 76.70 3986.26 18.34
Traffic-LeNet5 0.93 14.09 2224 1.08 214 096 3594 2568.60  1035.86

147531
5080.69
417033

Traffic-VGG16
CIFAR100-renset50
CIFAR100-denset101

1.37
2.66
4.82

101.23
62.42
58.49

31.44
58.82
102.55

1.52
2.85
5.00

3.01
5.53
9.76

1.38
2.66
4.76

76.40
60.83
56.70

2658.98
3183.44
3042.73

Answer to RQ1: No methods have consistently better
performance than others. MCP and ATS have significant
effectiveness and efficiency drops, respectively, when han-
dling data with a large number of classes.

B. RQ2: Impact of Typel Test Data

To study how the test selection methods deal with the
data that are correctly classified but with high prediction
uncertainty. We generate Typel test data and inject it into
the original test set, then evaluate the test selection methods
accordingly. Here, the number of injected data is the same as
the budget of selected (labeled) data.

Figure 2 presents the results of the 10 fault detection
methods with the labeling budget ranging from 1% to 10%. In
general, there is a clear gap between the results of the original
test data and the Typel test data. All the test selection methods
perform worse when the Typel data exists, which means that
methods tend to select Typel data as the faults but in fact,
they are not. Then, comparing each method, PRIMA and ATS
are more effective than others when dealing with Typel test
data, e.g., in MNIST, PRIMA is significantly better than other
methods, and in SVHN, Traffic, and CIFAR100 datasets, ATS
is better. The potential reason is that PRIMA mutates the
data multiple times and then calculates the uncertainty scores.
Although the generated test data are close to the decision
boundary, their predictions may not change after mutation,
thus, PRIMA does not identify these Typel test data as faults.
ATS selects faults from diverse fault patterns and does not
only select uncertain data. Besides, we statically compare the
fault detection performance of each method on original test
data and Typel data using t-test. The results show that except
for Random, TestRank, and MCP, all the methods perform
significantly worse on Typel data than on original test data
(with a p-value <0.05).

More specifically, Table VI presents the average test relative
coverage values of each test selection method among all the
datasets and models when the labeling budget is 10%. We
can see that except for random selection, only TestRank has a
small performance degradation on the Typel test data, but its
TRC on the original test data is not high. Other test selection
methods have at least 42% test relative coverage drops, where



TABLE VI
AVERAGE TRC VALUES OF TEST SELECTION METHODS OVER ALL DATASETS AND MODELS (LABELING BUDGET 10%).

Random DSA DeepGini MCP MC MaxP TestRank PRIMA ATS Average
Ori 0.14 0.61 0.69 0.47 0.64 0.70 0.25 0.55 0.67 0.53
Typel 0.13 0.16 0.14 0.21 0.26 0.09 0.19 0.30 0.39 0.21
Diff 6.42% | 7347% ) 79.25% ) 55.05% 1 6031% ) 86.85% ) 2496% | 4525% ) 40.88% | 52.49% |

MaxP and DeepGini drop the greatest.

Answer to RQ2: Existing fault detection methods cannot
distinguish real faults and Typel (correctly predicted but
uncertain) test data. On average, when facing Typel test
data, the test relative coverage of test selection methods
drops 52.99%.

C. RQ3: Impact of Type2 Test Data

Next, we explore how the data that are wrongly classified
but with high prediction confidence affect the effectiveness of
fault detection methods. Same as the last study, we inject the
same number of labeling budget of Type2 test data into the
original test data and then perform the fault detection.

Table VII presents the results of fault detection, where All
is the TRC of the entire test set, and T'ype2 only shows
the percentage of type2 faults that have been detected. We
can see that MC, DeepGini, MaxP, and PRIMA cannot detect
the Type2 faults where their T'ype2 only scores are nearly
0 across all the datasets and models. This means that these
methods can not detect faults that are far away from the
decision boundaries. Although other methods can detect some
Type2 faults, most of them detect fewer than the random
selection except TestRank. From the average results, we can
see that compared to the TRC values on the original test data
(Ori), the TRC values on Type2 data drop 39.80% (46.70%
if without random selection). Similar to the analysis of Typel
data, we compare the performance of all methods on Type2
data and original test data using ¢-test. The results demonstrate
that except for Random and TestRank, all methods perform
significantly worse on Type2 data than on original test data
(with a p-value <0.05). Surprisingly, the intermediate output-
based method, DSA has the greatest performance degradation.
And the scores of T'ype2 only and All are close to the scores
achieved by random selection (0.09), which indicates that
when facing the Type2 test data, DSA is completely ineffective.
The potential reason could be that the distance map between
the test data and the training data is significantly changed by
the Type2 data and DSA is confused by the new distance map.
The deeper analysis is an interesting research direction for our
future work.

Answer to RQ3: Existing fault detection methods cannot
detect Type2 faults where the model has high confidence.
On average, when facing Type2 test data, the test relative
coverage scores achieved by test selection methods drop
39.80%.

D. RQ4: Model Repair

After finding the fault, the next step is to fix the fault.
The most common approach the existing works [4], [13]-[15],

[17] apply is to use faults as patches to repair (by retraining)
the pre-trained model. In this part, we study how Typel and
Type2 data affect the effectiveness of test selection-based
model retraining. Table VIII presents the detailed accuracy
difference between pre-trained and re-trained models. First, it
is interesting that when facing the Typel test data, after model
retraining, most of the models have accuracy degradation (55
out of 80 models). From the average results, we can see
only ATS, DeepGini, MaxP, MCP, and MC can repair the
pre-trained models but with negligible improvement (only
by up to 0.90% accuracy improvement). After significance
analysis using t-test, we found that compared to retraining with
original test data, all the methods (except for ATS) produce
significantly worse models after retraining with Typel data.
On the other hand, for the Type2 test data, although most (70
out of 80) of the test selection methods can repair the pre-
trained models and achieve positive accuracy improvement,
compared to the performance of model repair on the original
test data, the improvement is slight (i.e., only in 2 out of 80
cases, the results on Type2 data are better than the results on
original data). However, different from the Typel data, the ¢-
test results demonstrate that only DSA produces significantly
worse models after retraining on Type2 data. This phenomenon
indicates that, for model retraining, Typel data is more harmful
than Type2 data.

Figure 4
the average
improvements of model
repair on all datasets
and models. The results
clearly show that when

depicts
accuracy “ or

Typel
Type2

Accuracy Improvement (%)

the test set contains

Typel and Type2 data, -1

the effectiveness  of =

test Selection based ATS Gini PRIMA MaxP MCP Random MC TestRank DSA

model repair is worse
than when there are only
original test data. Considering different test selection methods,
we can see that the accuracy improvement by PRIMA and
TestRank is always lower than by random selection. Note that
in their original work, they did not check the effectiveness of
test selection-based model repair. This reminds us that when
proposing new fault detection target test selection methods,
we should also explore whether the revealed faults are useful
for repairing the model or not. For DSA, although it achieves
better results than random selection on the original test data,
its performance on the Typel and Type2 test data are worse
than random selection. This indicates, for model repair, that
DSA is only suitable for standard test data that share the
same characteristics as the training set.

Fig. 4. Repair results by different test
selection methods.



TABLE VII
RESULTS OF TRC ON Type2 TEST DATA (LABELING BUDGET 10%).

Random DSA MC DeepGini MCP MaxP TestRank PRIMA ATS Average
LeNet1 All 0.11 0.13 0.18 0.18 0.24 0.18 0.24 0.14 0.18 0.17
MNSIT Type2 only 0.08 0.11 0.00 0.00 0.07 0.00 0.20 0.04 0.00 0.06
LeNet5 All 0.10 0.10 0.10 0.11 0.20 0.11 0.16 0.12 0.15 0.13
Type2 only 0.09 0.09 0.00 0.00 0.10 0.00 0.12 0.06 0.06 0.06
LeNets All 0.22 0.21 0.50 0.57 0.53 0.58 0.46 0.45 0.57 0.45
SVHN Type2 only 0.11 0.09 0.04 0.00 0.01 0.00 0.00 0.08 0.00 0.04
ResNet20 All 0.14 0.13 0.26 0.30 0.30 0.30 0.90 0.25 0.30 0.32
Type2 only 0.11 0.09 0.00 0.00 0.04 0.00 0.87 0.00 0.00 0.12
ResNet20 All 0.13 0.12 0.52 0.50 0.40 0.49 0.23 0.23 0.53 0.35
CIFARI0 Type2 only 0.09 0.09 0.01 0.00 0.01 0.00 0.01 0.05 0.00 0.03
VGG16 All 0.17 0.17 0.45 0.46 0.36 0.46 0.26 0.22 0.44 0.33
Type2 only 0.09 0.10 0.00 0.00 0.01 0.00 0.07 0.07 0.00 0.04
LeNet5 All 0.29 0.30 0.74 0.79 0.73 0.79 0.39 0.36 0.78 0.57
Traffic Type2 only 0.09 0.09 0.00 0.00 0.09 0.00 0.00 0.08 0.00 0.04
VGG16 All 0.17 0.17 0.55 0.56 0.49 0.56 0.16 0.18 0.54 0.37
Type2 only 0.10 0.09 0.00 0.00 0.13 0.00 0.00 0.08 0.00 0.04
ResNet50 All 0.37 0.34 0.70 0.79 0.70 0.79 0.31 0.48 0.74 0.58
CIFAR100 Type2 only 0.10 0.10 0.00 0.00 0.00 0.00 0.07 0.09 0.00 0.04
DenseNet121 All 0.20 0.18 0.60 0.63 0.61 0.65 0.16 0.39 0.58 0.45
Type2 only 0.08 0.08 0.00 0.00 0.00 0.00 0.06 0.10 0.00 0.04
Type2 only 0.09 0.09 0.01 0.00 0.05 0.00 0.14 0.07 0.01 0.05
Average Ori 0.14 0.61 0.64 0.69 0.93 0.70 0.76 0.55 0.67 0.63
All 0.18 0.18 0.42 0.45 0.41 0.45 0.30 0.26 0.44 0.34
Diff 2228% 1 7140% ) 3585% ) 5558% ) 35.16% ) 3578% ) 59.86% ) 5233% ) 3455% ] 39.80% |
TABLE VIII

ACCURACY DIFFERENCE (%) AND THE VARIANCE (IN BRACKETS) BETWEEN THE PRE-TRAINED AND RETRAINED MODELS (LABELING BUDGET 10%).
THE BEST RESULTS AMONG ORI, Typel, AND Type2 ARE HIGHLIGHTED USING GRAY BACKGROUND. MODELS THAT HAVE ACCURACY DEGRADATION
AFTER RETRAINING ARE HIGHLIGHTED USING ORANGE BACKGROUND.

Rand DSA DeepGini MCP MC MaxP TestRank PRIMA ATS Average

Ori 045 (0.05)  0.59 (0.06)  0.62 (0.07) 0.67 (0.1) 0.78 (0.06)  0.74 (0.08)  0.43 (0.06)  0.55 (0.02)  0.69 (0.04)  0.61 (0.06)

LeNetl Typel -1.60 (0.06) -1.66 (0.37)  0.22 (0.08)  -0.29 (0.51)  0.25 (0.02) ~ 0.25(0.08)  -1.91 (0.28)  -2.95 (0.82) -2.85 (0.89) -1.17 (0.34)

MNIST Type2  0.12(02) 024 (0.11) 051 (0.12) 052 (0.03) 052 (0.09)  0.53(02) 034 (0.11) 048 (0.08) 044 (0.16)  0.41 (0.12)
Ori 0.17 (0.06)  0.94 (0.08)  0.87 (0.22)  0.91 (0.09)  0.85(0.08)  0.81 (0.12) 042 (0.02) 048 (0.02)  0.72 (0.05)  0.68 (0.08)

LeNet5 Typel -1.00 (1.01) -0.33 (0.59) -0.03 (0.04) -0.64 (0.41) 021 (0.08)  -0.03 (0.07) -3.02 (0.55) -1.83(0.7) 033 (0.11) -0.71 (0.40)

Type2  0.04 (0.12)  -0.11 (0.09) 0.74 (0.13) 0.70 (0.05) 0.57 (0.20) 0.80 (0.10) 0.14 (0.16) 0.29 (0.18) 0.57 (0.30) 0.42 (0.15)

Ori 0.98 (0.30)  2.19 (0.55)  4.46 (0.34)  3.81 (0.18)  3.60 (0.27)  4.27 (0.18)  3.34 (0.32) 1.15 (0.75)  2.65(0.20)  2.94 (0.34)

LeNet5 Typel -2.29 (0.81) -3.18 (049) -2.97 (0.57) -0.79 (2.28)  0.30 (0.89)  -0.85 (0.49) -0.57 (0.46) -5.02 (0.15) -2.90 (1.38)  -2.03 (0.83)

SVEN Type2 -0.50 (0.11)  -0.01 (0.15)  1.99 (0.32)  1.74 (0.43)  1.72(0.28)  1.46 (0.89) 131 (0.32)  -0.25(0.95) 0.67 (0.72)  0.90 (0.46)
Ori 0.15 (0.28)  0.80 (0.20) 1.33 (0.25) 1.32 (0.31)  0.95 (0.36) 143 (0.12) 061 (047) 073 (0.30)  0.96 (0.26)  0.92 (0.28)

ResNet20 Typel -3.37 (1.38) -3.60 (0.74)  -0.38 (0.63) -0.38 (0.66) -0.11 (0.21) -0.48 (0.08) -4.17 (0.31) -3.47 (0.74) -0.04 (0.80) -1.78 (0.62)

Type2  -0.02 (0.18) -0.37 (0.11) 0.59 (0.21) 0.43 (0.58) 0.45 (0.52) 0.71 (0.17) -0.16 (0.54) 0.37 (0.15) 0.56 (0.54) 0.28 (0.33)

Ori 0.78 (0.29) 1.52 (0.35)  3.64 (0.46) 1.27 (0.26)  2.84 (0.98) 3.68 (0.62) 093 (0.52) 0.70 (0.36)  3.15 (0.96)  2.06 (0.53)

ResNet20 Typel -1.66 (2.04) -3.76 (1.50)  -0.71 (0.58) -0.63 (0.61) -3.50 (2.44) -1.42 (0.84) -2.77 (246) -4.54 (0.41) -0.59 (0.10) -2.17 (1.22)

CIFAR10 Type2  -0.69 (0.56) -1.25(1.30)  0.34 (0.35)  -0.06 (0.52)  0.98 (0.12)  0.60 (0.60)  -0.12 (0.70) -1.09 (0.79)  0.62 (0.43)  -0.08 (0.60)
Ori 236 (0.17)  3.83(0.08)  6.80 (0.19)  5.18 (0.13)  6.56 (0.17)  6.81 (0.18) 1.98 (0.11) 2.17 (0.3) 4.67 (0.11) 448 (0.13)

VGG16 Typel 075 (0.11)  0.78 (0.12)  2.09 (0.46) 1.83 (0.04) 1.40 (0.07) 1.12 (0.15)  -1.57 (0.23)  -0.50 (0.06)  3.68 (0.06) 1.06 (0.15)

Type2 1.34 (0.04) 1.00 (0.2) 4.07 (0.04) 3.10 (0.1) 4.04 (0.03) 4.06 (0.02) 1.91 (0.10) 1.54 (0.14) 4.08 (0.07) 2.79 (0.05)

Ori 641 (0.10)  7.25(0.19) 1024 (0.74)  6.79 (0.55)  10.16 (0.42)  9.85(0.24)  2.15(0.31)  6.97 (0.66)  7.68 (0.87)  7.50 (0.45)

LeNet5 Typel  1.96 (0.60) 1.58 (1.82)  4.63 (0.71) 430 (0.62)  4.55(0.86)  4.01 (1.02) -0.58 (0.70) 2.02 (0.06)  5.68 (0.36)  3.13 (0.75)

Traffic Type2 1.90 (0.00) 3.09 (1.01) 7.27 (0.10) 6.49 (0.74) 6.85 (0.19) 6.58 (0.07) 3.26 (0.10) 3.21 (0.23) 6.56 (0.59) 5.02 (0.34)
Ori 4.52 (0.28)  5.36 (0.65)  6.10 (0.18)  4.43 (1.10)  5.30 (0.68)  5.09 (0.49)  2.19 (0.03)  2.86 (0.56)  3.97 (0.72)  4.42 (0.52)

VGG16 Typel 102 (0.64)  0.59 (2.14) 3.41(0.28) 3.40 (0.20) 301 (027)  261(0.92) 0.27 (0.64) -0.64 (0.83) 4.35(0.96)  2.00 (0.76)

Type2 3.83 (0.29) 0.67 (0.21) 3.99 (0.43) 3.89 (0.41) 4.24 (0.66) 3.64 (0.78) 1.26 (0.83) 2.88 (0.61) 4.31 (0.26) 3.19 (0.50)

Ori 1.35 (1.30)  0.27 (0.86) 1.64 (0.60)  3.18 (3.26)  3.27 (2.04) 1.06 (0.77)  2.37 (0.61) 1.58 (0.71) 1.15 (1.60) 1.76 (1.31)

ResNet50 Typel -1.18 (1.65) -1.45(1.75) -151(255) 0.11(0.05) -0.02 (1.18)  0.59 (1.39)  -1.66 (0.97) -0.95 (0.97)  1.09 (0.44)  -0.55 (1.22)

CIFAR100 Type2 057 (281) 119 (213) 136 (1.71) 172 (058) 098 (1.61)  2.12(0.59) 087 (1.53)  1.25(045)  1.63 (1.58)  1.30 (1.44)
Ori 0.68 (0.14)  2.75 (0.26) 876 (0.32)  0.88(0.17)  9.01 (0.28)  9.23 (0.33)  0.43 (0.07) 1.75 (0.24) 453 (0.10) 422 (0.21)

DenseNet101 ~ Typel -3.26 (0.12) -3.27 (0.17)  -1.60 (0.03)  2.97 (0.11) ~ 0.49 (0.08)  -1.37 (0.16) -4.48 (0.16) -3.11 (0.19)  1.17 (0.31)  -1.39 (0.15)

Type2  -0.69 (0.37) -0.93(0.19) 433 (028) 4.16 (024) 443 (021) 458 (0.25) -0.75(0.06) 0.71 (0.27)  3.88 (0.35)  2.19 (0.25)

Ori 1.62 (0.30)  2.32(0.33)  4.04 (0.34)  2.58 (0.62)  3.94 (0.53) 391 (0.31) 1.35 (0.25) 1.72 (0.36) 274 (0.49)  2.69 (0.25)

Average Typel -0.97 (0.55) -1.30 (0.97) 0.29 (0.59)  0.90 (0.52)  0.60 (0.61)  0.40 (0.49)  -1.86 (0.68) -1.91 (0.89)  0.90 (0.54)  -0.33 (0.64)
Type2  0.54 (0.47) 0.32 (0.53) 2.29 (0.37) 2.06 (0.36) 2.25 (0.39) 2.28 (0.37) 0.73 (0.45) 0.85 (0.38) 2.12 (0.50) 1.49 (0.42)

Answer to RQ4: Typel and Type2 test data harm the
performance of selection-based model repair. Given these
two types of data, DSA, PRIMA, and TestRank achieve
worse repair results than random selection. Especially, more
than half (55 out of 80) of repaired models occur accuracy
degradation with Typel data.

E. RQ5: Performance Estimation

Finally, we explore how the choice of intermediate output
affects the effectiveness of performance estimation methods.
Table IX shows the frequency of test selection methods achiev-
ing the best results over different labeling budgets. The first
two columns of values are the comparison between different
intermediate layers in the same test selection method. The last
three columns are the comparison between different methods.

We can see that, first, by the same method, the average results
suggest the second-last hidden layer as the best choice for
both CES and PACE methods. However, when we check the
results of each dataset and model, it is difficult to decide which
layer should be used. For example, for CES, layer-2 is the
best choice for MNIST-LeNet5, but layer-1 is the best one for
SVHN-LeNet5. Similar to CES, for PACE, layer-3 achieves
the best results on MNIST-LeNet5 while layer-2 is the best
for SVHN-LeNet5. This means the choice of an intermediate
layer highly impacts the results of these two methods and
there is no clear conclusion on which layer we should choose
when using different models. Then, if we compare different
methods, the average results demonstrate that only CES with
the outputs from layer-2 (0.44) can significantly outperform
the random selection (0.38), which means if we choose an
unsuitable intermediate layer, the results achieved by the well-



TABLE IX
FREQUENCY OF EACH TEST SELECTION METHOD ACHIEVING THE TOP- 1
PERFORMANCE USING DIFFERENT INTERMEDIATE OUTPUTS. layer-N
MEANS THE OUTPUT IS FROM THE LAST NTH LAYER.

CES PACE | CES PACE Rand

layer-1  0.29 0.00 0.64 0.00 0.36

LeNetl layer-2  0.36 0.21 0.29 0.64 0.07

layer-3  0.36 0.79 0.00 0.93 0.07

MNSIT layer-1  0.07 0.29 0.21 0.29 0.50
LeNet5 layer-2  0.64 0.29 0.29 0.29 0.43

layer-3  0.29 0.43 0.14 0.29 0.57

layer-1  0.57 0.00 0.71 0.00 0.29

LeNet5 layer-2  0.14 0.79 0.57 0.21 0.21

< layer-3  0.29 0.21 0.43 0.36 0.21
SVHN layer-1  0.57 0.00 0.71 0.00 0.29
ResNet20 layer-2  0.14 0.57 0.36 0.29 0.36

layer-3  0.29 0.29 0.43 0.29 0.29

layer-1  0.21 0.00 0.64 0.00 0.36

ResNet20 layer-2  0.21 0.14 0.64 0.07 0.29

layer-3  0.57 0.86 0.43 0.57 0.00

CIFAR10 layer-1 029 000 | 057  0.00 043
VGG16 layer-2  0.50 0.93 0.71 0.00 0.29

layer-3  0.21 0.07 0.50 0.00 0.50

layer-1  0.21 1.00 0.57 0.00 0.43

LeNet5 layer-2  0.50 0.00 0.50 0.00 0.50

Traffic layer-3  0.29 0.00 0.64 0.00 0.36
layer-1  0.57 0.36 0.43 0.00 0.57

VGG16 layer-2  0.21 0.36 0.36 0.00 0.64

layer-3  0.21 0.29 0.14 0.00 0.86

layer-1  0.36 0.79 0.14 0.00 0.86

ResNet50 layer-2 043 0.07 0.29 0.00 0.71

layer-3  0.21 0.14 0.21 0.00 0.79

CIFAR100 layer-1  0.14 0.00 0.21 0.00 0.79
DenseNetl121 layer-2  0.50 0.93 0.36 0.36 0.29

layer-3  0.36 0.07 0.50 0.21 0.29

layer-1  0.33 0.24 0.49 0.03 0.49

Average layer-2  0.36 0.43 0.44 0.19 0.38
layer-3 031 0.31 0.34 0.26 0.39

designed methods are worse than random selection.

w
o

N
5]

g
=}

-
n

-
o

Accuracy Difference (%)

o
«n

o LB
P LE ﬁ@ﬁ

CES-2

B .

Random CES-1

CES-3 PACE-1 PACE-2 PACE-3

Fig. 5. Results of accuracy estimation with labeling budgets 50 and 180

(Allgd nggldfff(%lﬁZ' we check the effectiveness of performance
estimation under different labeling budgets. Figure 5 depicts
the results of these three methods on labeling budgets 50
(minimum) and 180 (maximum). The results clearly show that
when the labeling budget is 50, the second last hidden is more
suitable for CES, but when the labeling budget is 180, the last
hidden layer is the best. Besides, when selecting an unsuitable
intermediate layer, the estimated results are worse than the
random selection, e.g., CES-2 and PACE-1.

Answer to RQS: Performance estimation methods are sen-
sitive to the choice of intermediate outputs. Those methods
perform worse than random selection when an unsuitable
layer is chosen. Unfortunately, it is difficult to determine the
best layer since there is no clear conclusion across different
datasets and models.

VI. DISCUSSION
A. Guidance

Here, we provide guidelines for proposing and evaluating
test selection methods:

1) From RQ2 and RQ3, we can see final output-based fault
detection methods have critical constraints. To propose a
fault detection method, only using the output probability is
insufficient. The method can be easily fooled by uncommon
data (like Typel and Type2 data). It is better to avoid only
relying on the output probability, e.g., combining the output
and features from the input itself.

2) For learning-based methods (e.g., TestRank), the learning
models (e.g., simple GNN used in TestRank) should be
evaluated first to check if they can distinguish features
of any type of faults (not only the faults in the original
test data but also harder data like Typel and Type2) and
correctly classified data.

3) RQ4 shows that when there are Typel data in the candidate
data, retraining is ineffective and the computing resource
is wasted. Thus, before repairing models via retraining,
it is suggested to use out-of-distribution detection tech-
niques [45], [46] to check the distribution of test data.

4) RQ5 demonstrates that it is difficult to choose the ap-
propriate layer for the use of existing performance esti-
mation methods. Therefore, when proposing performance
estimation methods, a layer-selection solution should be
developed along with the method. It is impractical to use
all intermediate outputs due to the high complexity.

B. Threats to Validity

The external threat lies in the considered test selection
methods, datasets, and models. For test selection methods,
we collect methods that are specifically designed for test
selection. Others such as neural coverage methods and active
learning methods are not considered since they are proposed
for different targets. For datasets and models, we use 5 datasets
spanning from digit recognition to more practical traffic sign
classification. And for each dataset, we include two model
architectures, which can, to some extent, alleviate the model
dependency. The internal threat can be the implementation of
test selection methods and the GA-based test generation algo-
rithm. All implementations of selection methods are modified
from the official projects provided by corresponding authors.
The implementation of GA-based test generation is also based
on an existing work [31]. The construct threat can be the
configuration of test selection methods and test generation
process. For test selection methods, we follow their original
papers and use default settings. For the configuration of the
test generation process, we set parameters adaptively given the
dataset and model. Note that our target is not to find a perfect
parameter setting to attack test selection methods, instead, we
focus on proving that non-robust features are easy to reveal.

VII. CONCLUSION

We identified and systematically assessed three types of
pitfalls in existing test selection methods for reliable testing of
deep learning (DL)-based systems. Via an exploratory study,
we found that methods for fault detection skip faults (up
to 91%) if a DL model is confident in the misclassification
and introduce fake faults (up to 100%) if a model has low



confidence. In addition, selected data can degrade the accuracy
when repairing models (e.g., 5.02% degradation). On the other
hand, methods for performance estimation fail to defeat the
simplest random selection when using an inappropriate inter-
mediate layer. Ultimately, we provide actionable guidelines
on how to mitigate pitfalls when applying existing selection
methods and avoid pitfalls when developing new ones.

[1]

[2]

[3

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

G. Hu, Y. Yang, D. Yi, J. Kittler, W. Christmas, S. Z. Li, and
T. Hospedales, “When face recognition meets with deep learning: an
evaluation of convolutional neural networks for face recognition,” in
Proceedings of the IEEE international conference on computer vision
workshops, 2015, pp. 142-150.

W. Wu and R. Yan, “Deep chit-chat: Deep learning for chatbots,”
in Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2019, pp. 1413—
1414.

C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz et al., “Self-
driving cars: A survey,” Expert Systems with Applications, vol. 165, p.
113816, 2021.

W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test
selection for deep learning systems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 2, pp. 1-22, 2021.
V. Riccio and P. Tonella, “When and why test generators for deep
learning produce invalid inputs: an empirical study,” ICSE, 2023.

D. Hendrycks and T. Dietterich, “Benchmarking neural network robust-
ness to common corruptions and perturbations,” International Confer-
ence on Learning Representations, 2019.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon,
B. Lakshminarayanan, and J. Snoek, “Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift,” Advances
in neural information processing systems, vol. 32, 2019.

M. Chen, K. Goel, N. S. Sohoni, F. Poms, K. Fatahalian, and C. Ré,
“Mandoline: Model evaluation under distribution shift,” in International
Conference on Machine Learning. PMLR, 2021, pp. 1617-1629.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). leee,
2017, pp. 39-57.

N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” arXiv preprint arXiv:1902.06705, 2019.

T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vecheyv, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE symposium on security and
privacy (SP). 1EEE, 2018, pp. 3-18.

G. Singh, T. Gehr, M. Mirman, M. Piischel, and M. Vechev, “Fast
and effective robustness certification,” Advances in neural information
processing systems, vol. 31, 2018.

J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). 1EEE, 2019, pp. 1039-1049.
Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural
networks,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 177-188.

W. Shen, Y. Li, L. Chen, Y. Han, Y. Zhou, and B. Xu, “Multiple-
boundary clustering and prioritization to promote neural network retrain-
ing,” in IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2020, pp. 410-422.

Y. LI, M. LI, Q. LAL Y. Liu, and Q. Xu, “Testrank: bringing order
into unlabeled test instances for deep learning tasks,” in Advances in
Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran
Associates, Inc., 2021, pp. 20 874-20 886.

Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 397-409.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

X. Gao, Y. Feng, Y. Yin, Z. Liu, Z. Chen, and B. Xu, “Adaptive test
selection for deep neural networks,” in IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022, pp. 73-85.

Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lii, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
499-509.

J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 29, no. 4, pp. 1-35, 2020.

Z. Yang, J. Shi, M. H. Asyrofi, and D. Lo, “Revisiting neuron coverage
metrics and quality of deep neural networks,” in 2022 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). 1EEE, 2022, pp. 408—419.

S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, and X. Zhang,
“Correlations between deep neural network model coverage criteria
and model quality,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 775-787.

Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao, X. Wang,
L. Wang, J. Dong, and T. Dai, “An empirical study on correlation
between coverage and robustness for deep neural networks,” in 2020
25th International Conference on Engineering of Complex Computer
Systems (ICECCS). IEEE, 2020, pp. 73-82.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP *17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 1-18. [Online].
Available: https://doi-org.proxy.bnl.lu/10.1145/3132747.3132785

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018, pp.
120-131.

V. Riccio, N. Humbatova, G. Jahangirova, and P. Tonella, “Deepmetis:
Augmenting a deep learning test set to increase its mutation score,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2021, pp. 355-367.

Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and Y. Le Traon,
“An empirical study on data distribution-aware test selection for deep
learning enhancement,” ACM Transactions on Software Engineering and
Methodology, 2022.

M. Weiss and P. Tonella, “Simple techniques work surprisingly well
for neural network test prioritization and active learning (replicability
study),” Proceedings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA), 2022.

Q. Hu, Y. Guo, M. Cordy, X. Xie, W. Ma, M. Papadakis, and Y. L. Traon,
“Towards exploring the limitations of active learning: an empirical
study,” in The 36th IEEE/ACM International Conference on Automated
Software Engineering., 2021.

A. Siddhant and Z. C. Lipton, “Deep Bayesian active learning for
natural language processing: Results of a large-scale empirical study,”
in Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, Oct.-Nov. 2018, pp. 2904-2909. [Online].
Available: https://aclanthology.org/D18-1318

X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1EEE, 2020, pp. 739-
751.

X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz testing
based data augmentation to improve robustness of deep neural net-
works,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 1EEE, 2020, pp. 1147-1158.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146-157.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning



[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Toronto, Tech. Rep., 2009.

S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: the german traffic
sign detection benchmark,” in International Joint Conference on Neural
Networks, no. 1288, 2013.

Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in [EEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” International Conference on Learning
Representations, 2014.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700-4708.
X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: detecting
disagreements for deep neural networks.” in IJCAI 2019, pp. 5772—
5778.

D. B. Owen, “The power of student’s t-test,” Journal of the American
Statistical Association, vol. 60, no. 309, pp. 320-333, 1965.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning,” in /2th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265-283.
D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and
out-of-distribution examples in neural networks,” in 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. [Online]. Available: https://openreview.net/forum?id=Hkg4TI9x1
K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, ser. NIPS’18. Red Hook, NY, USA: Curran
Associates Inc., 2018, p. 7167-7177.



